

For the period July 1. 1966 - September 30, 1969

Submitted by..... Dr....M. Haseeb Rizvi \qquad
......Department of Mathematics \qquad

Date \qquad June 17, 1971

OPITMAL SELECTION OF AUTOMATION SYSTEMS UNDER MULTIVARIATE NORMAL MODEL

M. Haseeb Rizvi
Stanford University, Stanford, California
\section*{O. SUMMARY AND APPLITCATIONS}

Suppose we have several (say $k \geq 2$) alternative automation systems $\Pi_{i}(i=1, \ldots, k)$ and we are interested in selecting a certain number $t(<k)$ of best systems in terms of reliability, feasibility and economy; the case $t=1$ corresponds to the selection of the best automation system. Let these k automation systems be operating under k independent p-variate normal distributions with column vector means μ_{i} and covariance matrices $\Sigma_{i}(i=1, \ldots, k)$. Assume that the ranking criterion which incorporates the various considerations of reliability, feasibi.. lity and economy is given by the parametric function $\theta_{i}=\mu_{i}^{\prime} \Sigma_{i}{ }^{-1} \mu_{i}$ for $\Pi_{i}(i=1, \ldots, k)$; thus we assume that the larger the θ-value of a system II the better is the system. A typical parametric function θ represents the Mahalanobis distance between two p-variate normal distributions, one with p-vector mean μ and covariance matrix Σ and another with mean null p-vector and the same covariance matrix Σ. Mahalanobis distances are commonly employed for purposes of comparisons in multivariate analysis. Within this set-up we require a selection procedure R (optimal in the sense of economizing on the sample size to be used) which makes a correct selection with a probability no smaller than P^{*}, a preassigned quantity, wherever the t largest θ-values are (i) at least δ_{I}
larger than the rest of θ-values, and are simultaneously (ii) at least as large as δ_{2} times the largest of the rest of θ-values. Like P^{*}, δ_{1} and δ_{2} are also specified in advance by the experimenter.

A selection procedure $R_{1}\left(R_{2}\right)$ is proposed for case I (case 2) when $\Sigma_{1}, \ldots, \Sigma_{\mathrm{k}}$ are all known (unknown) and the common number of observations (needed from each of the k automation systems) is obtained so that the probability of a correct selection is no less than P^{*}. Some tables are provided for determination of the comnon sample size for various values of the constants involved.

1. INTRODUCTION

Alam and Rizvi [1] considered the problens of selection of the t largest non-centrality parameters of the k non-central chi-squared distributions as well as of the k non-central F distributions and obtained the mathematical results concerning the "least favorable configurations" of the parameter space (of k non-centrality parameters) within a specified parametric subspace. The least favorable configuration of the parameters is defined to be that configuration for which the probability of a correct selection for a given selection procedure is minimum. Thus the probability of a correct selection evaluated at the least favorable configuration of parameters can be obtained as an integral that depends on the common sample size n. This integral can then be equated to the pre-assigned probability P^{*} and a solution for n obtained. The ranking of k p-variate normal distributions in terms of Mahalanobis distance functions $\theta_{i}=\mu_{i}^{\prime} \Sigma_{i}^{-1} \mu_{i}$ can be reduced to ranking of non-centrality
parameters of k non-central chi-squared distributions (F distributions) if the selection procedure is based on the natural ordering of some statistic $n U_{i}\left(n V_{i}\right)$ from Π_{i} that has a non-central chi-squared (F) distribution with non-centrality parameter $n \theta_{i}$. Using this approach the present paper adapts the procedures of [I] for the selection of t best of the k automation systems (operating under independent p-variate normal distributions) on the basis of Mahalanobis distances and prom vides some tables for determination of the most-economical value of the common sample size n.

When $\mathrm{p}=1$ and the common varjance σ^{2} of the k univariate normal distributions is unity, the Mahalanobis distances clearly reduce to μ_{i}^{2}; the ranking criterion thus is μ_{i}^{2} or equivalently $\left|\mu_{i}\right|$. In this special situation, the solution of the ranking problem with a much larger "preference zone" of the parameter space than that of [1] when $\mathrm{p}=1$ is possible and has been considered by Rizvi [4]. Whereas a more stringent characterization of the preference zone as in [I] is necessary for $p>1$, the univariate problem is solved with a reasonably general preference zone in [4]. It should be pointed out here that the measurement signal-to-noise ratio $|\mu| / \sigma$, where μ is the mean and σ^{2} the variance of a normal random variable, plays a basic role in the evaluation of modern electronic equipment. An electronic device is considered superior if it has a larger signal-to-noise ratio. Thus if we have k electronic devices to compare and they all have a know cormon variance, we really are interested in ranking k independent normal distributions with unknown means and a common known variance, say
unity, according to the unknown ordering of the absolute values of the means. This is the problem treated extensively in [4].

It follows from the general treatment of Hall [2] that the decision rules R_{1} and R_{2} of this paper are most economical, that is, no other rules can satisfy the basic probability requirement with a smaller fixed sample size.

2. FORMULATION OF THE PROBTEM

Let $\Pi_{\mathbf{i}}$ denote a p-variate non-singular normal ($\mu_{i}, \Sigma_{\mathbf{i}}$) distribution ($i=1, \ldots, k$) where μ_{i} 's are unknown. Let the ordered values of $\theta_{i}=\mu_{i}^{\prime} \Sigma_{i}^{-1} \mu_{i}$ be denoted by

$$
0 \leq \theta[1] \leq \theta[2] \leq \cdots \leq \theta_{[k]}
$$

We are interested in selecting $t(<k)$ "best" distributions in an unordered manner; a "better" distribution is defined to be one with a larger θ-value. The selection of any t largest θ-values is regarded as a correct selection (CS).

Let $\lambda=\left(\theta_{[I]}, \ldots, \theta_{[k]}\right)$ denote a point in the parameter space Ω which is partitioned into a "preference zone" Ω^{*} and its complement, the "indifference zone" $\bar{\Omega}^{*}$. For specified Ω^{*} and $P^{*}, I /\binom{k}{\mathrm{t}}<P^{*}<L$, we require a decision procedure R for which the probability of a correct selection $P\{C S \mid R\}$ satisfies the basic probability requirement

$$
\begin{equation*}
\inf _{\Omega^{*}} P\{\operatorname{CS} \mid R\} \geq P^{*} \tag{I}
\end{equation*}
$$

3. PROPOSED PROCEDURES AND THE PROBABILITTY OF A CORRECT SEIECTION

First we propose selection procedure R_{1} for case 1 where $\Sigma_{1}, \ldots, \Sigma_{k}$ are all known.

Procedure $R_{\text {I }}$.
Take a random sample of size $n(n>p)$ form each Π_{i} and compute $U_{i}=\bar{X}_{i}^{\prime} \Sigma_{i}^{-1} \bar{X}_{i}$, where \bar{X}_{i} is the i th sample vector mean ($i=1, \ldots, k$). Rank $U_{i}{ }^{\prime} \mathrm{S}$, breaking ties (if any) with suitable randomization, and select the Π_{i} 's corresponding to t largest U_{i} 's and assert that these are the t best distributions.

Now consider the preference zone Ω^{*} defined as $\Omega_{1} \cap \Omega_{2}$ where

$$
\begin{align*}
& \Omega_{1}=\left\{\begin{array}{ll}
\lambda \in \Omega: & \theta[k-t+1]-\theta[k-t] \geq \delta_{1}
\end{array}\right\} \tag{2}\\
& \Omega_{2}=\left\{\begin{array}{ll}
\lambda \in \Omega: & \left.\theta_{[k-t+1]} \geq \delta_{2} \theta_{[k-t]}\right\}
\end{array},\right. \tag{3}
\end{align*}
$$

and $\delta_{1}>0$ and $\delta_{2}>1$ are specified constants. For $\Omega^{*}=\Omega_{1} \cap \Omega_{2}$ and R_{1}, it is shown in [1] that the probability of a correct selection is minimized on Ω^{*} by the vector λ^{*} whose components are given by

$$
\theta_{[i]}=\left\{\begin{array}{l}
\delta_{1} /\left(\delta_{2}-1\right), i=1, \ldots, k-t \tag{4}\\
\delta_{1} \delta_{2} /\left(\delta_{2}-1\right), i=k-t+1, \ldots, k
\end{array}\right.
$$

Moreover, with the distribution function $F_{p}(x, \theta)$ given by

$$
\begin{aligned}
F_{p}^{*}(x, \theta) & =e^{-\theta / 2} \sum_{r=0}^{\infty}(\theta / 2)^{r}\left[r^{!}\right]^{-1} \int_{0}^{x} 2^{-(p+2 r) / 2}[\Gamma((p+2 r) / 2)]^{-1} \\
& \times e^{-u / 2} u((p+2 r) / 2)^{-1} d u
\end{aligned}
$$

for $x>0, \theta \geq 0$ and zero otherwise, the smallest common sample size n
required for R_{1} to satisfy (1) is obtained as the solution of the integral equation
$\left.t \int_{0}^{\infty} F_{p}^{k-t}\left(x, n \delta_{1} /\left(\delta_{2}-1\right)\right)\left[1-F_{p}\left(x, n \delta_{1} \delta_{2} /\left(\delta_{2}-1\right)\right)\right]^{t-1} d F_{p}\left(x, n \delta_{1} \delta_{2} / \delta_{2}-1\right)\right)=P^{*}$

Note that the left side of equation (5) represents the infimum of the probability of a correct selection over $\Omega^{*}=\Omega_{1} \cap \Omega_{2}$ for the selection procedure R_{1}.

Next for case 2 where $\Sigma_{1}, \ldots, \Sigma_{k}$ are all unknown, we propose selec. tion procedure R_{2}.

Procedure R_{2}.
Take a random sample of size $n(n>p)$ from each Π_{i} and compute $V_{i}=(n p)^{-1}(n-p) \bar{X}_{i}^{\prime} s_{i}{ }^{-1} \bar{X}_{i}$, where \bar{X}_{i} and S_{i} are respectively the sample vector mean and sample covariance matrix (that is, maximum likelihood estimate of Σ_{i}) from Π_{i}, $i=1, \ldots, k$. Rank V_{i} 's, breaking ties (if any) with suitable randomization, and select the Π_{i} 's corresponding to t largest $V_{i}{ }^{\prime}$ s and assert that these are the t best distributions.

For $\Omega^{*}=\Omega_{1} \cap \Omega_{2}$, where Ω_{1} is defined by (2) and Ω_{2} by (3), and R_{2}, it is again shown in [l] that the probability of a correct selection is minimized over Ω^{*} by the vector λ^{*} whose components are given by (4). Furthermore, with the distribution function $G_{p, n-p}(x, \theta)$ given by

$$
\begin{aligned}
G_{p, n-p}(x, \theta)= & e^{-\theta / 2}[\Gamma((n-p) / 2)]^{-1} \sum_{r=0}^{\infty}(\theta / 2)^{r}[r!]^{-1} \int_{0}^{x} \Gamma((p / 2)+((n-p) / 2)+r) \\
& \times[\Gamma((p / 2)+r)]^{-1} v(p / z)+r-1(1+v)(p / 2)+((n-p) / 2)+r d v
\end{aligned}
$$

for $x>0, \theta \geq 0$ and zero otherwise, the smallest common sample size n required for R_{2} to satisfy (1) is obtained as the solution of the integral equation

$$
\begin{align*}
& t \int_{0}^{\infty} G_{n, n-p}^{k-t}\left(x, n \delta_{1} /\left(\delta_{2}-1\right)\right)\left[1-G_{p, n-p}\left(x, n \delta_{1} \delta_{2} /\left(\delta_{2}-1\right)\right)\right]^{t-1} \\
& \quad \times d G_{p, n-p}\left(x, n \delta_{1} \delta_{2} /\left(\delta_{2}-1\right)\right)=p^{*} \tag{6}
\end{align*}
$$

Note that the left side of (6) represents the infimum of the probability of a correct selection over $\Omega^{*}=\Omega_{1} \cap \Omega_{2}$ for the selection procedure R_{2}.

4. TABLES AND ILLUSTRATIONS

The left side of (5) and (6) are evaluated by appropriate quadrature and (5) or (6) are then solved for n. This has been done extenm sively by Milton and Rizvi [3]. Tables I and II are extracted from [3]. Table I gives values of $n \delta_{1}$ as solution of (5) for $P^{*}=.95$, $t=1, k=2(1) 5, p=1,3,5,7,9,19,29$ and $\delta_{2}=1.01,1.05(.05)$ 1.25(.25)2.00(.50)3.00. Table II gives values of $\left(n, \delta_{1}\right)$ as solution of (6) for $P^{*}=.95, t=1, k=2, p=4,10$ and $\delta_{2}=1.50,2.00,3.00$.

Suppose we wish to select the best of two automation systems that operate under 9-variate normal distributions with known covariance matrices Σ_{1} and Σ_{2}. Moreover, suppose we wish to select ${ }^{\text {a }}$ [2] (that
 and require the selection procedure R_{1} to have the probability of a correct selection not less than 0.95 . Then from Table I we obtain $n \delta_{1}=55.15$ so that we need 12 observations from each of the two $9-v a r i a t e$
normal distributions for carrying out procedure R_{1}.
Next, suppose we are interested in the selection of the best of two automation systems operating under 10-variate normal distributions with unknown covariance matrices Σ_{1} and Σ_{2}. Furthermore, suppose we are interested in this selection only if ${ }^{\theta}[2]-{ }^{\theta}[1] \geq 5.0$ as well as $\theta[2] \geq 1.5 \theta_{[1]}$, and require the probability of a correct selection using R_{2} to be at least 0.95. Then from Table II we obtain $n=87.292$ so that we need 88 observations from each of the two lo-variate nommal distributions for carrying out procedure R_{2}.

ACKNOWLEDGEMENTT

This work was supported in part by National Aeronautics and Space Administration under Grant No. NGR 36-008-040, Supplement 2 at the Ohio State University.

TABLE I
n_{1} VALUES AS SOLUTION OF (5) WHEN $P^{*}=.95$ AND $t=1$ FOR DETERMTNING COMMON SAMPLE SIZE REQUIRED TO SELECT THE BEST SYSTEM IN THE CASE OF AL工 KNOWN COVARIANCE MATRICES

k	δ_{2}	$\mathrm{p}=1 \ldots$	$\mathrm{p}=3$	$\mathrm{p}=5$	$\mathrm{p}=7$	$\mathrm{p}=9$	$\mathrm{p}=19$	$\mathrm{p}=29$
2	1.01	2172.00	2172.00	2172.00	2172.00	2172.00	2172.00	2172.00
2	1.05	443.60	443.70	443.70	443.80	443.80	444.00	444.30
2	1.10	227.10	227.20	227.30	227.40	227.50	228.00	228.50
2	1.15	154.90	155.10	155.20	155.30	155.50	156.20	156.90
2	1.20	118.80	119.00	119.20	119.30	119.50	120.40	121.30
2	1.25	97.10	97.32	97.54	97.76	97.98	99.07	100.13
2	1.50	53.56	53.97	54.37	54.76	55.15	57.02	58.77
2	1.75	38.93	39.49	40.03	40.56	41.08	43.49	45.68
2	2.00	31.54	32.23	32.89	33.53	34.15	36.95	39.42
2	2.50	24.03	24.95	25.80	26.60	27.36	30.66	33.45
2	3.00	20.19	21.29	22.28	23.20	24.05	27.65	30.61
3	1.01	2948.00	2948.00	2948.00	2948.00	2948.00	2948.00	2948.00
3	1.05	602.10	602.20	602.20	602.30	602.30	602.60	602.80
3	1.10	308.30	308.40	308.50	308.60	308.70	309.10	309.60
3	1.15	210.30	210.40	210.60	210.70	210.80	211.50	212.20
2	1.20	161.20	161.40	161.60	161.80	162.00	162.90	163.80
3	1.25	131.80	132.00	132.20	132.50	132.70	133.80	134.80
3	1.50	72.70	73.11	73.51	73.90	74.29	76.19	78.00
3	1.75	52.84	53.40	53.94	54.47	55.00	57.48	59.78
3	2.00	42.81	43.50	44.16	44.81	45.44	48.36	51.00
2								

TABLE I - (Continued)

| k | δ_{2} | $\mathrm{p}=1$ | $\mathrm{p}=3$ | $\mathrm{p}=5$ | $\mathrm{p}=7$ | $\mathrm{p}=9$ | $\mathrm{p}=19$ | $\mathrm{p}=29$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 2.50 | 32.62 | 33.53 | 34.39 | 35.21 | 35.99 | 39.52 | 42.56 |
| 3 | 3.00 | 27.41 | 28.50 | 29.50 | 30.45 | 31.34 | 35.24 | 38.52 |
| 4 | 1.01 | 3413.00 | 3413.00 | 3413.00 | 3414.00 | 3414.00 | 3414.00 | 3414.00 |
| 4 | 1.05 | 697.20 | 697.30 | 697.30 | 697.30 | 697.40 | 697.60 | 697.90 |
| 4 | 1.10 | 357.00 | 357.10 | 357.20 | 357.30 | 357.40 | 357.80 | 358.30 |
| 4 | 1.15 | 243.50 | 243.60 | 243.80 | 243.90 | 244.00 | 244.70 | 245.40 |
| 4 | 1.20 | 186.70 | 186.90 | 187.10 | 187.30 | 187.40 | 188.30 | 189.20 |
| 4 | 1.25 | 152.60 | 152.80 | 153.00 | 153.30 | 153.50 | 154.60 | 155.70 |
| 4 | 1.50 | 84.18 | 84.59 | 84.99 | 85.38 | 85.77 | 87.68 | 89.51 |
| 4 | 1.75 | 61.18 | 61.74 | 62.28 | 62.82 | 63.34 | 65.86 | 68.21 |
| 4 | 2.00 | 49.57 | 50.25 | 50.92 | 51.57 | 52.20 | 55.18 | 57.89 |
| 4 | 2.50 | 37.77 | 38.68 | 39.54 | 40.37 | 41.16 | 44.77 | 47.93 |
| 4 | 3.00 | 31.74 | 32.82 | 33.83 | 34.79 | 35.70 | 29.72 | 43.15 |
| 5 | 1.01 | 3746.00 | 3746.00 | 3746.00 | 3746.00 | 3746.00 | 3746.00 | 3746.00 |
| 5 | 1.05 | 765.20 | 765.30 | 765.30 | 765.40 | 765.40 | 765.70 | 765.90 |
| 5 | 1.10 | 391.80 | 391.90 | 392.00 | 392.10 | 392.20 | 392.70 | 393.10 |
| 5 | 1.15 | 267.20 | 267.40 | 267.50 | 267.70 | 267.80 | 268.50 | 269.20 |
| 5 | 1.20 | 204.90 | 205.10 | 205.30 | 205.50 | 205.60 | 206.50 | 207.40 |
| 5 | 1.25 | 167.50 | 167.70 | 167.90 | 168.20 | 168.40 | 169.50 | 170.50 |
| 5 | 1.75 | 67.15 | 67.71 | 68.25 | 68.79 | 69.31 | 71.84 | 74.22 |
| 5 | 1.50 | 92.40 | 92.80 | 93.20 | 93.59 | 93.99 | 95.90 | 97.74 |
| 5 | 2.00 | 54.50 | 55.09 | 55.75 | 56.41 | 57.04 | 60.05 | 62.79 |
| 5 | 2.50 | 41.46 | 42.36 | 43.22 | 44.05 | 44.86 | 48.52 | 51.75 |
| 5 | 3.00 | 34.84 | 35.91 | 36.93 | 37.89 | 38.81 | 42.91 | 46.43 |
| | | | | | | | | |

TABLE II
($\mathrm{n}, \mathrm{\delta}_{1}$) VALUES AS SOLUTION OF (6) WHEN $\mathrm{P}^{*}=.95, \mathrm{k}=2$ AND $t=1$ FOR DETERMINING COMMON SAMPLE SIZE REQUIRED TO SETECT THE BEST OF TWO SYSTEMS IN THE CASE OF UNKIVOWN COVARIANCE MATRICES

δ_{2}	$n 8_{1}$	$p=4$		$p=10$	
		n	δ_{1}	n	δ_{1}
2.00	40.0	0.000	0.000	0.000	0.000
	50.0	74.997	0.667	99.458	0.503
	- 60.0	57.674	1.040	73.598	0.815
	70.0	49.593	1.411	62.310	1.123
	80.0	44.928	1.781	55.964	1.430
	90.0	41.890	2.148	51.915	1.734
	100.0	39.747	2.516	49.094	2.037
	110.0	38.162	2.882	47.027	2.339
	120.0	36.934	3.249	45.437	2.641
	130.0	35.965	3.615	44.180	2.943
	140.0	35.171	3.981	43.166	3.243
	150.0	34.514	4.346	42.323	3.544
	160.0	33.961	4.711	41.618	3.845
	170.0	33.485	5.077	41.013	4.145
	180.0	33.077	5.442	40.498	4.445
	190.0	32.720	5.807	40.042	4.745
	200.0	32.407	6.172	39.647	5.044

TABLE II (Continued)					
δ_{2}	$n \delta_{1}$	$p=4$		$p=10$	
	20.0	0.000	0.000	0.000	0.000
30.0	45.540	0.659	90.854	0.330	
	40.0	28.147	1.421	45.171	0.886
	50.0	23.091	2.165	35.256	1.418
	60.0	20.679	2.901	30.919	1.941
	70.0	19.268	3.633	28.491	2.457
	80.0	18.344	4.361	26.939	2.970
	100.0	17.690	5.088	25.860	3.480
	17.202	5.813	25.067	3.989	
	120.0	16.826	6.537	24.460	4.497
	16.526	7.261	23.979	5.004	
	130.0	16.281	7.985	23.590	5.511
	140.0	16.077	8.708	23.269	6.017
	150.0	15.905	9.431	22.999	6.522

1. K. ALAM AND M. H. RIZVI, "Selection from multivariate normal populations," Annals Inst. Stat. Math. $\underset{\sim}{18}, 307-318$ (1966).
2. W. J. HALL, "The most-economical character of some Bechhofer and Sobel decision rules," Annals Math. Statist. 30, 964 -. 969 (1959).
3. R. C. MIITON AND M. H. RIZVI, "Integrals involving non-central chi-squared and non-central F distributions", to be published (1971).
4. M. H. RIZVI, "Some selection problems involving folded nomal dis.e tribution," Technometrics 13, (May 1971).
