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ABSTRACT

The homogeneous integral solution procedure of Sams and Kouri is
applied to integral equations derived using the coupled channel operator
formalism. It is shown how one may obtain Volterra integral equations
of the second kind for solving the equations for a "modified channel
wavefunction" (or the channel amplitude density). The modified channel
wavefunction is found to behave like the scattered portion of the wave-~

function.

This research was completed during a visit to the Theoretical Chemistry
Institute, University of Wisconsin, Madison, Wisconsin, July 1971. The
support of this research by National Science Foundation Grant GP-18872
and National Aeronautics and Space Administration Grant NGL 50-002-001

is gratefully acknowledged.



I. INTRODUCTION

This paper continues a series of studies the aim of whiéh is the
development and application of various techniques for calculdting scat-
tering amplitudes for rearrangement collisions.l In I the homogeneous
integral solution procedure of Sams and Kouri2 was employed to discuss
tincoupled integral equations for the amplitude density function for
fearrangement scattering. In a subsequent analysis,3 it was found that
the uncoupled rearrangement channel operator equation requiréd that
éareful account of the dissociative continuum be taken in order for
results to be obtained which conserved flux. As a consequence, numerical
dpplications recently reported have been based on coupled integral equa-
tions for the channel operators (or their associated amplitude densities).1
These procedures have been based not on a solution of the equations by
using Volterra equations but rather by algebraic techniques. It is,
however, still of interest to see if procedures using the Volterra
éQuation formalism may be derived since they have been demonstrated to
be of considerable value in treating nonreactive inelastic scattering
ptoblems4_5 and since they have much better convergence propefties with
respect to iterative solutions than de the equations previousiy considered.

In the present paper we begin with a consideration of nofireactive
stattering to develop our notation and interpretation of new quantities .
ihtroduced in the course of the derivation of the Volterra inéegral
eéuations. Then the procedure is applied to generate coupled integral
equations for amplitude densities and "modified channel wavefiunctions."

It is then shown how these coupled equations may be employed to obtain the

Vélterra integral equations of the second kind.



IT. NONREACTIVE SCATTERING INTEGRAL EQUATIONS

We begin our discussion with the Lippmann-Schwinger integral equation

. . ‘ ¥ .
for the scattering wavefunction LP :7 given by

P> = 1> +GZVN/+> (1)
= (> + C‘ITDT: Lo

(2)
Gty T
where o is the usual causal Green's operator; is the
. o s . . 1
channel operator and IQO is the incident noninteracting state.

Following Johnson and Secrest6 and Sams and K.ouri,2 we define the ampli-

tude density as

12> = VIgt> (3)
= T le>

(4)
such that the scattering amplitude is given by
f =<ely>. (5)
It is readily verified that

£y = VIeYy +VGLIZ 2. (6)

We may now define a "modified channel wavefunction" as

T*> = G, 15>

(7)



which is seen to satisfy the integral equation

T "> = giviey + gTvIE). ®

The above equation is, of course, reminiscent of the originai Lippmann-
échwinger equation except in place of the inhomogeneity [@7:> one
has C‘[: \/ l(ﬁ> . Indeed, if we recall the definition of ”f>
it is trivially seen that (Ti?*-t7 is simply the scattered wave
portion of \4)'*?7 . As such, it is seen from either Eqs. (7) or
(8) that ]‘¥7+j> asymptotically contains only outgoing scéttered
w;ves (with no plane wave inhomogeneity). Even though Eq. (é) is no
more convenient to employ for calculations than Eqs. (1) or (6) from
Wé’li(:h it was derived, it is still imstructive to carry the analysis

of Eq. (8) further since it will aid in interpreting the meaning of the

médified channel wavefunctions in the general case where reactive col-~

lisions are possible.

We now write the Green's function G+o in the foz:'m7
(3 + = ‘Eg -+ d%
o 0 (9
Wﬁere the operator &/ produces a constant when acting oﬁ; any

st:%ate {>
C = 01>, (10)

Then in place of Eq. (8), we may write

[Ty = G Viey + G,VITT any



where
-~

l(_-{/}> = Golt). (12)

‘Tt is obvious that

Ty = G Ve +/C:0V']"C?> + é’,,v; ct

(13)

- where '

" Then following Sams and Kouri,2 we can write

FY = 1T (Tt

(15)

‘where

T >

ZVIp> + G VI

f

(16)

and §
~‘»=|€Ia> = ao\/? + G VIF, . (17

(Pdrenthetically, We'notélthatbfor:hon%eactive collisiohs, ?5 [qf)
and from the uniqueness of the solutions of Eqs. (16) - (17), it follows

~ N\
that [1:170 > = l(‘?’l > ) . The constant C+’ is the

solution of

ct = (}lm |
= OUIEY + VT,

: (18)

(19)



Then by Eq. (15), we finally obtain

Ct = OVie> +OVIT,> +8UIF, >t

(20)

Except for the particular inhomogeneity in Egqs. (16) - (17), the above
expressions are identical to those in Sams and Kouri's2 treatment of the
N
nonreactive Lippmann-Schwinger equation. The equations for the {T§1\>
P
and (1§?1 :? in the coordinate representation are Volterra integral
equations of the second kind and therefore the same quadratuge procedure

can be applied in their solution.

III. AMPLITUDE DENSITY AND MODIFIED WAVEFUNCTION EQUATIONS EOR REACTIVE

SCATTERING

In direct analogy with the preceeding discussion, we now consider
the amplitude density equations for rearrangement collisions. However,
in contrast to the preceeding approach, we shall no longer define the
amplitude density by direct recourse to the Lippmann-Schwinger equation6

-(l " 3
for S(+)“ (L)t? but rather we use the approach of Eq. (4) which is
based on the channel operator.l Again, we do not employ the definition
of channel operators as is implied by Eqs. (3) - (4) but instead use the

definitionl’

/Z/bzp( = Vo{ *Vx(E'H—(‘/L‘é)diV .

(21)

I£, for simplicity we restrict attention to a problem with twe arrange-

—

ment channels, it has been shown that the channel operators Cg,( and

E]

ﬂ:gx satisfy coupled integral equations given by



. -1
Cow = Ve *Va %;Wm/(g’Kx*‘é) Ty

(22)
and /
G = Ve ¥ Ve ;WFV (E-Kywe) Ty, (23)
Then the amplitude densities |7 (i) > and |/ » [({)> satisfy
coupled equations of the form
80 @1 = V> o+ o ZWy Gy 18,607
15/M Wy = g W) +V %;WFY Gyl ()7 s

We then easily write

£, W7 = Vel P+ Y LWy aob’}gxqu Y ;W‘x 3’&3’ 47
¥

(26)

and
o — L7 G
IK/M(U) = V(00> + Vi ;WN G,,X)KWUDH//S%M; % % Iz, 6>,

(27)

-+
It is natural to define a "modified wavefunction"8’9 )IF o L)y by

P WY = GL L 07,

(28)

Furthermore, from the fact that the scattering amplitude for going

from D(//(: —> T)j is



?(jje—aa) = <zpz(j)]fw(£)>)

(29)
it readily follows that in the asymptotic limit of /?Z 2 a0 R
+ [4
ITE?'FX.LL) :> is identical with the scattered wavefunction.8 Thus,

the interpretation of the preceeding section can be carried over even
though a different definition of the channel operator has been used to
define the modified channel wavefunction.
~
We now operate on Eq. (26) with Csox and Eq. (27) with

Fad
CSO to obtain

I%X&D = &, Vo Q)Y + G, Yy ;lefﬁmub

+ ,C:,,x Ve 2 Wy jx CHyate] o0
v
and - >y
I%F,((L)> = G"ﬁ Vo( /(pp(([}> -+ 60{5 V[‘ ; WMIIPW(“>
(31)

+ Grgg Vg LWy 9y Ce )
5
The major difference between Egs. (30) - (31) and Eq. (13) is the presence

of the coupling between the two chammels ¢ and /3’ . It is

convenient to express these equations in matrix form by

~ -~ . -~ e
VW) = Ger 2 60+ G, V¥ )
~ = -
+G,- gc'g’;u') (32)

L
where (3



[gO]W - 5&5/ G,y

and

[@jﬂ/ = gn’ Jr

the matrix j[ is of the form

o

[\:{ ]n’ /= Vy Wy

and the vectors’ -ijo({l.) , %o( Y  agae™

p—

[E]y =, @

given by

oo Ve,

and

(33)

(34)

(35)

C:{&’) are

o

(36)

(37

(38)

Very similar equations hold for the amplitude densities as obtained from

Eqs. (26) - (27):

1 . + -
5 ) = F )+ V-G L) +Y g Sl

where

(39)



[Ei], = & . (40)

Because of the essential similarity of the Eqs. (32) and (39) for the
modified channel wavefunctions and amplitude densities respe:ctively, it
is convenient to proceed in our discussion by considering a general
matrix integral equation of the form

(-V * * » - .
F i = s v B T v 4+ S
—' - (41)
where obviously, for the amplitude density, {K (« ) is f'a(“:) s
J is V. g v and 4 is V. ‘O}L ; whereas

= 0 =

for the modified channel wavefunction, _9_2(‘( (¢) is G(, . ;!Eo( (1:) s
. =

is go'\/ anduﬁz is G V. % . (The vector
= - O

) - —
X e sl

C,o( ({) is of course the same in both equations).
In order to effect the solution of Eq. (4l), we begin by analogy

with Sams and Kouri2 to write

(1)

~— (e} . .

F i)y = F, 6+ F L C )

— = (42)
W’ihere

(o)

A oy i+ 4 Fd.

g @) = i'_(az A 2o Yo

— - (43)
It immediately follows that

) (1)
Fo= /} & F
= - - (44)
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and the elements of the array _g o (L) are found from

gx([) = g'go(/[)

(45)
with
- &, .

[&Q]Xy’ - b’b’/ ¥ 46

Then by Eq. (42) for the choice Ty Li) = ég:‘(() » we have
(o]

c.iv = & [Fw « FVoc ]
- = (47)

which genefates a set of algebraic equations for the constant elements
of _(; o «) . On the other hand, if we are dealing with modified
wavefunctions, then noting Egqs. (28) and (39), we have

QV(L-) :(f . [fxli) +¥'Ed(£)+!‘§=‘§_x(£)j

(48)

and again using Eq. (42), we arrive at the algebraic equations

C M) //0 [$ (i)« V- Tff o)+ V- ? c Y- g Cu)]

(49)

-

for determining the €;o<{‘] array.
Up to this point in our discussion, the analogy with the nonreactive
case has been relatively strong. However, at this stage it is important

to stress that unlike Eqs. (16) - (17), Eqs. (43) - (44) are not Volterra
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integral equations of the second kind. Rather they are stiil of a mixed
variety (neither purely Fredholm nor Volterra).

In order to display this more clearly, it is convenient to express
the equations in the coordinate representation. However, bécause both
'Eqs. (43) - (44) have the same basic structure, we shall dedl only with
. ?(i) o
Eq. (43). (In order to treat the equation for J , it is con~

.. (12)
venient to split it up into columns labeled Szf(ii) and EF‘ .

i (11) ~(12) (o) ., L ,
Then ;f , F and :9:* (¢) are treated in essentially

— —

—

%he same fashion). We take the coordinate representation of céc((f)

to be

Jo(o( («) = 0)6/4 (Zo(///?«)

/ (50)

Ay (0 = Sou 25, fg) (51)

where [}x denotes the coordinates for internal degrees of freedom
in the p¢ configuration and fix denotes the relative scat-
téring vector in the « configuration. For purposes of concreteness,

i

1
if we consider an atom-diatom collision, then " deseribes the

/T

o
orientation and vibration of the diatom and Z?«’ is the vector
from the incoming atom to the diatom center of mass. (The coordinate
répresentation of <>€5“(i) is written as a function of o con-
figuration coordinates if one is treating the amplitude density. In the
modified channel wavefunction equations, it is a function of g/g p /%6 ]
0f course, one may readily transform from one set of coordinates to

another without undue difficulty in the case of the inhomogeﬁeity.) The

. ) . (e} . .
coordinate representation of E}T {a ) is given by
«
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o} foy R
’3'/( «) = 9’;‘,{ (L“}d),ﬂid)

oK (52)
and
(o) r ¢ [°)
9: (0) = }/ ﬂﬂ) K )
« A= (53)
Finally, the form taken for the quantity Qﬁ o is given by

—
—

Qg;bn = AJZ: Yy VX "’b’)"‘ )% (Ol//laf/)/t/, ()/ﬂ
k

[6} 1RY) ?(3“{)”) g[élﬂyz)?(me ]7(),ﬂxjkxl)% (()Utx')Rb(”gsm

if, for example, one is dealing with the amplitude density, and is

given by

&y = —LZ' WWV (23, Ry) X (J'ﬂz59(:((jlfﬁx)[?'<(jlﬂ;) ?Z(Jf)/z,)

(
()mx) (JIR )]Y%(J)n ,Ra)Z% (()lnw (55)

]
if one is treating the modified channel wavefunctions. Here, g is
2
the regular spherical Bessel function, is the spherical Hankel
function of the first kind, XX (a‘lﬂx ) is a vibrational internal

A
state function, %(J ll‘;w RB’ ) is a coupled representation
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total angular function and ,6/ b/b’/ is always an integral
operator on a function of its primed argument. In connectidn with the
integral operator nature of /67)’6// , it is stressed that the
integral over the primed radial scattering coordinate R 3: is
dlways from zero up to the unprimed radial scattering coordinate Ré’ .
In what follows, we shall now specifically treat the channel amplitude
density choice of )Z&y ’ but the procedure for analyzing the
gquations using jﬁzr , given by Eq. (55) is sufficiently similar
that no difficulties should arise in visualizing those results.

We therefore substitute Eq. (50) - (54) into Eq. (43) to obtain

Eaxfilad,ﬁg) ::<JLJ Ao Bu) «ﬂéjhgx (ﬂd, ﬂ((dkﬂg)%?%jﬁi//)
y;z fJR’ d« )( (jing )y (()lnx,ﬂ (%m QIE

-

. / /
Xo{(bl/’&x )ﬁh’)

(56)

and

St ty) = Bttt L)
J

%f i g ol e

([ﬂ'r' Vg ( }D? Glal, R2)

?()H’xx)? (Q’Rx) o0 UL Ry

)
(57)
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where we have denoted [j(JIRKJ?) (9 Ry)— ?(J{ﬂ )? () R/)] by
[-?(JIR 3 (JlRXJ-] . We then expand the functions

(L) )'33'/[\2/3’) in the ba31s of internal functions ){ Calﬂb 7(& MD’KXJ
to obtaln (upon substitution of the expansions into Eqs. (56) - (57)) the

equations

3’:@1(9‘,”:”{ fd/z fdﬂ 7((3 }10(?{0 WRU

(;Z: W”“’g gdﬂ X, ((y)n )% j /|r,, «)V«(ﬂx/ RNX, (y17y)

D’,J

%(Jlﬁ f C{R;[g‘(‘jlﬁg) (jz(é mb)}D 3, (Grilry)

(58)

:‘F ((') lkm ) = 50(/1 KO(R(; ;K (3 lﬂp)% (9 IN/,) f)o(/;x(/lwﬁoe/

iz ﬂfxn [de X}y ﬂ/g% (A RV RX G 100
5)

(59)

The above equations are interesting in that if one chooses for be’
and W,&K respectively g”/ and 5,3[ » then Volterra
equations immediately result for G’.bzo( (9. [+ {Ry ) . However,

the equation for the rearrangement function
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has been previously shown to violate conservation of flux if the dis-
sociative continuum eigenstates of KF, are neglected or not proeperly
t;reated.3 Since we do not propose in the above equations td include the
gontinuum, we cannot employ this particular choice of W?ﬂ’/

(However, the Volterra equation obtained for Gg(o( [4‘[4,'[ Rd ) with

this choice of Wn// does give results that conserve flux.

Of course, these results are reliable only if the rearrangement channel

is unimportant.)

Another choice of W Yy’ is that used by Baer and Kouri in
papers LI~V of this series. They take Wo( Y equal to é/-— c&m )
apd Wﬁb/ equal to (/' é}gb’ ) . In this case, we note that

triple integrals occur on the right hand side of both Eqs. (58) and (59),

» pR
the first being j”//'lo‘fdk"‘f /gp//?/f and the second is
o

fd}z ﬂ/ﬂf f C{/{’ . Fol].owingM::'.l.'l.er9 and Baer and Kouri,
we can transform 1ntegrals of the form fo//l fa‘/\’ f a’/Z'X/

to fdﬂf{[aw)n, [dkb,,[ dRy) where fal-Q. is an integral

over the three Euler angles defining the orientation of the system and

1

fd(m)””') is an integral over an internal angle
as;;sociated with the shape of the system. The significant intpgrals
are fdﬂ,/ (ﬂﬂo//q}/ which show that the integral equations are
of; thc:zJ pure Foredholm’ kind.

In order to derive Volterra equations for describing reaétive plus
nonreactive scattering we can now choose Wb’b" to be 1/N where
N is the number of channel configurations (in the present case, two).

Equations (58) and (59) then are written as
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G’;M(a"!ilﬂ = M) 1R<)
- %ﬂﬁ;Vd(gv;(,'m,{)gdag[?’(&'m;) (1R TG UIRD)

DS

L o

od

dklggolk/, [jumf j(/zm,;)] F(21IRS )V (1l R, Ka)

m»

(60)

and

Fo (2/151Rs) = J/M (2 (Ry)

L+ 6, A Rf,)f JRFE?'CMR;)gZ(URF)JD Q%d(m [R:)
g\d&g AR} [g’(alﬁ/)j ((; '&()]D %L(A'IMRL )VF(X'IJRIK(,,R,()_
(61)

It is now apparent that in order to generate Volterra integral equations,
an analysis similar to that which lead to the original 3'/4(5) equations
may be employed. However, an impo;tant distinction now arises due to
e ¥ ,,7 i,. s 2,
the presence in the terms j\l’mxi dR) [g (J 'Kx) g (()IRX)]D
[+
5 ¢ * e -
(id (GRS YV, (4l 1Ry Ry,

The important point is that the quantity \/E, (1 IJ ! Rg’ ) Rb«) in
general is not a separable function of Rb" ) RY . If, however,
it is expanded in a complete set of functions (p)\ , then Egs.

(60) -~ (61) can be represented by



? (J’(,LJR ) =

o (51 Ry)

17

¢ Z il JRJ, g; d;z;, [ﬁ’amg,)?z(z/ﬂ,/)]l)%%w
@ L (el 1Ry ) @alRy )

végz' J\/lg Igfﬂx)g M?f[(j()mb)7(7 Ra’] 3? ([)M )

It immediately follows that constants B)'X/ (/\Ja )

defined by

B,

(Mg

AJZ L (i, S’aW

ﬂm%/) 7@”“'”1} ?x’x (314 &)

and therefore Eq. (62) becomes

? (g/[’“le’) = 0@’0((9\///23()

()ZTL

.,

O @ (Ry).

)

(62)

may be

(63)

‘cg‘um;)

. R e
Wy (15 1Re) g [ 18097 %)) Fra

(64)
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These equations are easily put in matrix form so that

, e o £
(5: = G‘Qo( ~& V' go. 9:‘,( +Z~ (‘PA.E)\
A =% 7= =7 = AT T (65)
% o\
where \/ and gi;: are diagonal matrices the definition of

—

which is easily inferred by comparison of Eqs. (64) and (65) and the

matrices IS'X have a structure given by

—_—

=4

(Ei]mf’ = (1= Szrzr’> Bw' . (66)

Then the solution of Eqs. (64) can be written as

¥ 7L TF B,
x T

I

= X =

= (67)
where
(el Y (c)
I =dy tVeg.,- T
== - (68)
and
o ~ Vs
i;j'\ = (6>>\ -4 V. Cso . F
=/ - = = — A
(69)
(e) —
Both EF% and J'% therefore satisfy Volterra integral

equations. This result completes the derivation of Volterra equations
describing reactive and nonreactive scattering. In conclusion, these
equations will again have the property that, in solving Eqs. (68) and

)
(69) for the EF ° and i}f s, no matrix inversions are
o =~ A
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~
required2 as a consequence of the particular form of éé & . Of
course, it is necessary to perform matrix inversions to obtain fg;x
c0)
from gf? and the Eii% but these are performed once and
the order of the matrix inverted does not'depend on the number of
quadrature points used to solve the integral equations. Also, because
these integral equations have a triangular kernal, it follows that
iterative solutions of the Egs. (68) - (69) converge under quite loose
conditions.lo Finally, it is realized that the present procedure for
obtaining Volterra equations from coupled channels operators is not the

only way this can be done and other approaches are presently under study.
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-+ ‘ . ~ S YK . Lo,
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