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ABSTRACT

The classical limit of the "infinite order" generalized phase
shift (GPS) treatment of rotationally inelastic atom-molecule collisions
was put into computationally feasible form in paper XV of this series.
It is now applied to a model problem intended to approximate thermal
scattering of the Ar-N, system (collisional energy of~% kT at 300°K),
at the same time comparing its predictions with exact classical
trajectory (CT) results. This comparison indicates that the present
version of the GPS method overestimates the rotational excitation and
underestimates the de-excitation, while maintaining the total inelasticity

at approximately the correct (CT) value. An approximate ‘'quantization'
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of the classical results leads to an estimate of the quantal cross

sections corresponding to changes by + 2, + 4 and + 6 from an initizl

rotor quantum state % = 10. It is found that most of the total inelastic

o]
cross (of some 32 Az) arises from the first—order-allowed transitions

(0% = + 2).




In paper XV of this series,l the classical limit of the so-c

PR . , 2 Qs . s
"infinite order" approximation” of the generalized phase shiftc (GPS)

treatment3 of rotational inelasticity was applied to the case of ai

rigid rotor scattering. The method of calculation consisted of 2

a specified arbitrary number of moments of the rotational inel

probability density function @(A\ Emﬁ“) at variocus impact

s s . ,?"';‘} I A i
b . Inversion of a given set of moments then yielded & (4> &
a function of b . These curves could then be integrated over

obtain rotational inelasticity cross sections 5{@Qﬁﬁu"

functions of A E rot .

Although paper XV demonstrated the computational feasibilitv and

economy of the classical GPS treatment and established that it pr

qualitatively correct trends, it was not possible to assess the

of the approximations inherent in the method. One purpose of
paper is to provide such an assessment.

Utilizing a model anisotropic interaction potential,

chosen to simulate the Ar—N2 system, scattering results are

at "thermal" conditions using the classical limit of the "infini

order" GPS treatment. These results are then compared with those ok

from an exact classical trajectory (CT) Monte Carle study for the

case, The comparison thus obtained serves as a direct test of

validity of the approximations entering the present version of the GFS

treatment, the principal one being that of a curved, planar t:

governed by the central (orientation-averaged) portion of the an

interaction potential,




In Section I, the interaction potential and parameters chosen for
the AruNz system are discussed; in Section IL, the computational pro-
cedures are described. Section III presents a comparison of results
obtained from the GPS and CT studies. Comments and conclusions regarding
the validity of the GPS method are summarized in Section IV. In addition,
results obtained from the first-order approximation of the semiclassical
limit of the GPS treatment (as described in paper XIV of this series4)
are presented in the Appendix.

The overall purpose of this paper is twofold. First, as noted above,
it serves as a direct comparison of the GPS approximation method with
the exact CT results for the same model problem. Second, it is an
attempt at predicting realistic rotational inelasticity cross sections
for an experimentally accessible system, viz., the scattering of Ar by

Nza

I. INTERACTION POTENTIAL AND Ar-«N2 PARAMETERS

The interaction potential chosen to represent the Ar-N, system is

2

the simplest one consistent with the available information on this

atom-molecule pair, It consists of a Lennard-Jones (12,6) central
. . -12 ] -6

potential with r Pz(cos ® ) repulsive and r Pz(cos @@ )

attractive anisotropies:

Vino) - [k R 0)] - & [M%waﬂ

As usual, r is the Ar—N2 c.m. separation, @@ is the angle be-

tween the line joining the centers of mass and the N, axis, and Pz(x)

2
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is the Legendre polynomial. 1In addition, Ciz. = € ¢ and
CG o L/é o b , where € and U are, respectively,
the usual L-J(12,6) well-depth and size parameters.
Estimated values used for the parameters in Eq. (1) wereS:

€ =1.65 (+0.05) x 107 erg, O =3.5 (+0.1) x 107 cm.,

+ 0.2

= 0.13 ( +0.01) and b, = 0.5 <_ o 1

a, ). The value of ¢ is

taken from a recent analysis of molecular beam scattering data.’ The
size parameter a is estimated from molecular beam scattering
data6 and transport properties.7 The attractive anisotropy parameter
5 is taken from the polarizability anisotropy8 of NZ' All these

quantities are rather well-known. Unfortunately, the repulsive aniso=-

a

tropy parameter b2 is quite uncertain, yet it plays a strong role

in the predicted inelastic scattering. The value used for b2 was
based on a modification of the well-known ”dumbbell-—model",9 The rota-
tional constant for N,, Be = 2.010 cm’l, and its equilibrium bond
length, r, = 1.094 x 10‘8 cm, were taken from Herzberg.lo Using these
quantities one obtains /X* = 0.1993 for the deBaer quantum parameter

and f?U“%//I = 24,07 for the moment of inertia parameter.l

For the present computations, the initial translational energy,

Etrans’ and rotational energy, Erot” were taken to be the average
classical values at 300°K., Thus, E =32 kT = 6,212 x 10~14 erg
trans 2
= - -14
and Erot = kT = 4.141 x 10 erg.

II. COMPUTATIONAL PROCEDURES

The computational procedures employed to obtain rotational inelasti-

city probability density functions by the GPS method were identical




to those used in paper XV. For each set of initial conditions, i.e.,

for given Etrans’ Erot’ and b) the required generalized

action integrals 8(2) were evaluated as described in paper XIV. The
3 2

first ten moments Mn (n =1, ..., 10) of the density function were

then calculated fromll Eq. (XV. Cl) by use of the 16,000 point method

of optimal coefficients quadrature. Inversion of the moments was
accomplished by the Gram-Charlier technique (cf. Eqs. (XV. 29) and

(XV. 30)). As in paper XV, convergence tests established the validity
of the moments to about 3 significant figures and the "inverted" density
function curves to better than about 107Z.

For the exact CT Monte Carlo computations, the classical equations
of motion were integrated, by techniques described elsewhere}2 to an
accuracy of 3 or 4 figures in the coordinates and momenta. Initial
conditions for the trajectories were selected by use of a set of number
theoretical lattice points.13 Depending on the impact parameter,
batches of either 98, 135 or 222 trajectories were used in the deter-
mination of the moments of the density functions. Convergence tests
indicated that the integrations over the trajectories to obtain the
moments were at least as accurate as the trajectories themselves (i.e.,
validity to 3 or 4 figures). As for the GPS results, inversion of the
first ten CT moments was carried out by the Gram-Charlier technique.

For both the GPS and CT methods, integrations of the density
function curves over b to obtain cross sections were performed
graphically (density curves had been computed at increments in b*(= b/d‘)
of 0.1 over the range 0.3 < b;'c < 1.3) with a resulting accuracy of a few

percent.
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IIT. RESULTS AND DISCUSSION

Values obtained for the second through the sixth moments (Mzamé}

of the rotational inelasticity probability density functions are plotted

vs. b"  in Fig. 1; here Fig. 1(a) illustrates the GPS calculations and

1(b) the CT results. As expected, the moments rapidly approach zero

A

¥% %
for large b . At moderate and small impact parameters (b 1.0y,

the GPS method consistently overestimates the magnitudes of the moments.
It should be noted that while the GPS moments are all positive, the CT
values for the odd moments, MB and MS’ are negative. TFig.2 presents
comparative plots of M. and M, showing the rather marked discrepancy

1 2
between the GPS and CT results at low b“

i

Fig. 3 shows probability density functionsl ,6)(Af) at b = 0.3

and 1.0 (as in paper XV, Af = AErot/Etrans is the fractional energy

transfer) obtained in three different ways. TFirst, CT histograms, wh
establish directly the rotational inelasticity probability density

function Qp’(Af), are shown. Second, a curve (labelled CT), which

was obtained by inversion of the first ten CT moments, is superimposed,
The results in Figs. 3(a) and 3(b) correspond respectively to 222 and
135 total trajectories (histogram intervals have approximately equal
statistical weights). It is apparent that 42 (Af) curves obtained from
the CT moment inversions provide quite accurate representations of

the histogram data. This agreement attests to the accuracy of the
Gram-Charlier moment inversion technique. Third, for comparison, proba-
bility density function curves obtained by inversion of the first ten

GPS moments are shown.




é?(Af) curves for various b* obtained by both the GPS and CT

methods are displayed in Fig. 4. (As usual, the é?)(Af) curves were
obtained by inversions of the first ten moments.) Fig. 4(a) shows the
GPS and 4(b) the CT results. The GPS curves deviate from the CT ones
mainly by their persistence to large positive values of Af (rotational
excitation).

Also shown in Fig. 4 are representative plots of 27b éb vs
b for various values of Af, the left and right panels corresponding
to de-—excitation and excitation respectively. As in Paper XV, the partial

inelastic contribution to the total cross section is defined:

od Q(aF)
A(af)

= 277[/@/63?//& (2)

so that the total inelastic cross section for energy transfer exceeding

some minimum value of ]Afll is given by:

at, |
@5@(&”@5{&%)\ o

9l1as1 >]a81) = |

A% &{{Af) H
g
where Afz is determined by the energy conservatiopn limit. The area
under each such curve of Zﬂb,ép vs b thus gives Q%%%%% in units

dQ(Af)

of A2. Fig. 5 presents these integrals, dagy ° 2s functions of Af.

To be noted is the "tail" of the GPS curve extending to high Af.
Integrated values of the curves in Fig. 5 as functions of the lower

limit Afl (cf. Eq. (3)) are shown14 in Fig. 6. Thus, having specified

a value of Afl, the total inelastic cross section for energy transfer
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greater than this lower limit can be obtained directly from the ordinates
15, . . . . -
of the curves™ in Fig. 6. Consistent with the preceding results of
Fig. 5, and regardless of the choice of Afl s, the GPS method overesti-
mates the cross section for positive Af (rotational excitation) and
underestimates it for negative Af (rotational de-excitation).
All the results described thus far ave of a purely classical
nature. Nowhere has the concept arisen of a direct state-to-state
transition probability or cross section. For purposes of obtaining an
impression of the importance of the deviations of the GPS from the CT
results, however, it is interesting to attempt to ''quantize' the results,
even though the correspondence is not rigorous (however, based on the work
. 16 17 . . . N
of Miller™ and Marcus a well-defined classical correspondence can be
established).

For quantal rotor scattering, the initial N, rotational energy used

2
in the present calculations would correspond to an initial quantum
number £ of 9.69. In the classical treatment, only the product of

£ with the deBoer quantum parameter /%*(= h/0"/2Me) enters the problem.
Thus, it is convenient to change /\* slightly (i.e., reduce it by

some 3%) so as to make % an integer, i.e., 10. (This slight alteration

in A * would correspond to varying the L-J (12,6) parameters
slightly.) One may then calculate Af values corresponding to integer
changes in the rotational quantum number. In anticipation of this
analysis, such "quantized" values of Af have been indicated by marks

on the abscissae of Figs. 4-6. Moreover, since by symmetry only even

A% changes are allowed for N,, it is assumed that the cross section

2’




dQ(A£f)
d(Af)

values corresponding to the odd quantum numbers which bracket the even

for a specified A change is given by integrating between Af
final number (i.g., the cross section for a 10 - 8 transition is
obtained by integrating between states 7 and 9, etc.). The immer region
near Af = O corresponding to 9 < & < 1l is considered elastic scattering.
For the present problem, this procedure leads to essentially four
allowed de—excitation and three allowed excitation channels for Nz
The results obtained from Fig. 6 are summarized in Table 1.
Adding together the contributions from excitation and de-excitation
leads to a total inelastic cross section18 of 33.222 for the GPS methed

compared to 31.4 from the CT results. In the Appendix a comparison is

made with the first-order semiclagsical GPS prediction of this quantity.
IV, SUMMARIZING DISCUSSION

The twofold purpose of this paper has been mentioned in the
Introduction. With regard to the assessment of the GPS approximation,
it is hoped that the results presented here for the model problem
are typical of the accuracy which may be expected from the classical
limit of the "infinite order" GPS treatment of rotational inelasticity,
using the linearized expression for the generalized phase shift given
by Eq. (XII1.72). As is evident from Figs. 4~6, this approximation of
the GPS method consistently favors excitation at the expense of de-
excitation. Any attempt to categorize the GPS approximation is
complicated by the many leveis at which comparison with the exact CT

results may be made. If attention is restricted to the observables,



: o
TABLE 1. "Quantized" Rotational Transition Cross Sections (AZ)

De-excitation: Excitation:

Q@+~ ) GPS CT QL > 1) GPS T
10 ~ 8 1.7 13.2 10 » 12 9.8 9.6
10+6 3.3 4.8 10+ 14 4.8 1.0
10 »~ 4 0.8 2.2 10 »~ 16 2.0 0.0
10 >~ 2 0.6 0.6
Total 16.4 20.8 Total 16.8 10.6

Total Inelastic Cross Section:
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i.e,, cross sections, predicted by the theory, the situation is not
clear-cut. Although the Q(]Af|>lAfl|) curves for the GPS and CT methodg
presented in Fig. 6 differ significantly, the total inelastic crosé
section is well-predicted by the GPS method. In addition, considering
the present level of uncertainty in knowledge of atom-molecule inter-
action potentials, the comparison obtained for the '"quantized" cross
sections (Table 1) is perhaps encouraging. It is to be expected,
however, that an exact application of the GPS method3 of Paper XII,
using the full expression for the generalized phase shift, Eq. XII-89,
would lead to results identical with the CT results. More exact
computational applications of these methods will be considered in
later papers.

With regard to the problem of prediction of "observable" inelastie
cross sections for an actual system it is believed that until further
and more accurate information on the interaction potential for the
Ar-N, system becomes available, the present (CT) calculations are to

2

be considered of predictive, if only semi-quantitative, value.
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APPENDIX

It is of interest to consider the predictions of the first-ocrder
semiclassical GPS treatment for Ar~N2. As given by Eq. (XIV.13),
the first-order tramsition probability for an interaction potential
containing a pure Pz(cos @® ) anisotropy, P%;)Cﬁff + 2), is a simple
combination of the generalized action integrals (which are required
in the "infinite order" classical GPS treatment). Fig. 7 presents a
plot of B%l)(E;Z'i;z) obtained via Eq. (XIV.13) vs b* (In all calcu-
lations presented in the Appendix, /N¥ has been set equal to that
(0.1933) used in the '"quantized" version of the classical results,)
It has been shown19 that for large b"¢ (i.e., weak coupling) the fol-
lowing relationship exists between P%l)(iff‘i_Z) and the second moment

of the "infinite order" classical GPS rotational inelasticity probability

density function M2 :

v, . . _
P:l (}3/212) - /\*zrl (A1)

%
where Eb( = Etrans/e) is the reduced initial translational energy and
J’ is defined by Eq. (XIV.27). Values of P%l)(ﬁfz + 2) obtained

from Eq. (Al) are also presented in Fig. 7. The extent of agreement
between the two calculations at low impact parameter is somewhat
surprising (however, see Footnote 11 of Paper XV.)

It is also of interest to attempt to estimate the total inelastic
cross section from the first-order transition probability, following

the approximation of Fenstermaker and Bernsteinzo. Thus, in Fig. 8,
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the sum P%l)(lo; 8) + P%l)(IO; 12) (i.e., 29§l)(§{§‘i 2)) is plotted

VS . ﬂbz. This transition probability sum attains a value of 0.5 at
o

a sz of about 43A2. This gives a first—order estimate of the total

inelastic cross section, which is seen to be about 25% in excess of

the correct value (cf. Table 1).



13

FOOTNOTES
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J. H. Tait and A, J. Taylor, J. Phys. B, 2, 1155 (1969). Briefly,
the procedure employed in the present work was as follows: The
dumbbell-model was used to calculate b2 values for both ArwNZ
and He—H2 at r = @ . A "correction factor'" was then defined
by taking the ratio of the dumbbell b2 for He~H2 to that cbtained
from the ab initio calculation of the He—H2 interaction potential
by M. D. Gordon and D. Secrest (J. Chem. Phys. 52, 120 (1970)).
This factor was applied to the above-estimated dumb-bell b, for

2

Ar—Nz.
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Eq. (XV.Cl) denotes Eq. (Cl) of paper XV of this series, etc.

R. A. La Budde and R. B. Bernstein, Wisc. Theor. Chem. Inst. Rept.
WIS-TCI-433 (in preparation; to be submitted to J. Chem. Phys.).
For a discussion of the theory of this method see N. M. Korobov,
Sov. Math. Dokl. 1, 696 (1960). The quadrature points were calcu-

lated to maximize the trigonometric degree of the formula.

dQ(Af)
d(Af)

curves extending past the conservation limits have been included

For the sake of consistency, the small “"tails" of the

in the integrals.

0f course, Q(IAf2]>]Afll) for arbitrary lAfz' may be obtained

by simply taking the difference between the appropriate two points
on the curve,

W. H. Miller, J. Chem. Phys. 53, 1949 (1970).

R. A. Marcus, J. Chem. Phys. 54, 3965 (1971).

It is interesting to note that the results obtained here are not
inconsistent with the total inelastic cross section of ca. 75122

obtained from the dominant coupling approximation for Ar-N, by

2
R. B. Bernstein, A. Dalgarno, H. Massey and I. C. Percival, Proc.
Roy. Soe. A274, 427 (1963), if one takes into account that their
assumed interaction potential was more anisotropic (az = 0.16,

b, = 0.7).

C. F. Curtiss (unpublished notes).

R. W. Fenstermaker and R. B. Bernstein, J. Chem. Phys. 47, 4417 (1967).
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FIGURE LEGENDS

E3

Mys My ooe s Movs b (a) GPs, (b) CT. Note that in
(b), - M3 and - M5 have been plotted.
Comparison of M. and M, values obtained by the GPS and CT

1 2
methods. (a): M, (b): M, .
Comparison of CT histograms for {P(Af) with curves obtained
by inversions of the first ten CT and GPS moments of éﬁ(&f},
(a): b* = 0.3, (3): b* = 1.0. Energy conservation limits
are given by marks on the abscissae at Af = - 0.67 and + 1.0.
46)(Af)‘g§ Af obtained by inversions of the first ten

S o O
moments for various b . Insets give 27b 42 (Af) in A vs b(A)

for the indicated values of Af. (a) GPS (b) CT. Marks

at Af = -0.67 and 1.0 give energy conservation limits.
Marks at Af = ... , - 0.35, - 0.24, - 0.13, 0 , 0.14, 0.30,
0.46, ... etc. denote Af values corresponding to transi-

tions from £ = 10 to rotor states with quantum numbers £

of ... , 7, 8,09, 10, 11, 12, 13, ... ete. at A'= 0.1933.
%%ﬁ%%l in 22 vs Af from the GPS and CT methods. Markings
on abscissa identical to Fig. 4.

Q(lAf|>¥Afll) in KZ vs Af from the GPS and CT methods.
Markings on abscissa identical to Figs. 4, 5.

P%l)(fgz‘i.z) from Eqs. (XIV.27) and (Al) vs. b

—— — . O
P{-l)(lO;S) + P;\(—D(lO;lZ) equal to 2]?-5(\-1) @:% + 2) veth %),
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