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SUMMARY

This report, prepared under NASA Contract NAS8-21250, describes a

procedure for estimating the fatigue life of fluttering panels by using

both theoretical and experimental data. The procedure includes techniques

for estimating panel flutter onset dynamic pressure and for estimating sur-

face stresses of panels deep in flutter. Application of this procedure should

yield conservative ree.ults because of the following assumptions made in its

formulation: panels are luaded to buckling; no static pressure differential

exists across panel; boundary layer has negligible effect; local aerodynamic

conditions are assumed equal to freestream.

The procedure was applied to skin panels typical of those on the

Saturn V launch vehicle using the Apollo lunar trajectory. Even though

panels of several different geometries were found tc'penetrate into the

flutter region, no fatigue failures were predicted. The predicted level of

fatigue damage due to flutter was low enough for all the geometries examined

to ensure at least five missions before a skin panel failure.
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DEFINITION OF SYMBOLS

Symbol Definition Units

3
D =	

2	
flexural rigidity of panel Pound-Inch

12 (1-u }

E Modulus of elasticity Pounds/Inch2

3F = E—° { t4	 , non-dimensional flutter function
-----

H = EDH, Miner's fatigue damage index -----

f K = qon/qo 	 buckling correction factor -----

L Panel stream direction dimension Inches

M Freestream Mach number -----

N Number of stress cycles required for fatigue
failure -----

n Number of stress cycles at a given stress
condition -----

4
P ^Dt=	 , static pressure parameter -----

q Freestream dynamic pressure Pounds/Inch2

q 
Flutter onset dynamic pressure for unloaded 2
Panel Pounds/Inch

qon
Flutter onset dynamic pressure for buckled 2
panel Pounds/Inch

(q - qon ) W

q Dt	
, flutter penetration factor -----

t Panel thickness Inches

W Panel cross-stream dimension Inches

w 
Flutter frequency Radians/Second

0
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Definition	 Units

7 - 1, supersonic compressibility factor 	 -----
(wf/n) At

N	 , fatigue damage at a given

stress condition

Differential pressure across panel

Time interval

Freestream dynamic pressure over flutter
onset dynamic pressure

Poisson's ratio

wf2pt0W

D	
, flutter frequency parameter

Panel mass density

Maximum peak-to-peak surface stress

Pounds/Inch2

Seconds

Pound-Second2

Inch4

Pounds/Inch2

Pounds/Inch2

Pounds/-Anch2

Pounds/Inch2

oB	
Maximum panel bending stress

aM	
Maximum panel membrane stress

•max	
Maximum panel surface stress

a	 (l_u2)

Q	 = 
max	

, non-dimensional maximum
E (t/W)2

surface stress

MCOO/YN=LL OOLOOLAS CORrORATJON
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1. INTRODUCTION

The design of skin panels that are subject to fluttfi^ has traditionally

been governed by flutter onset criteria (see Reference 1 for example) which

require that panel flutter be avoided. It was suspected about five years ago

that some panels on the Saturn launch vehicle , and particularly on the S-IVB

stage, might be flutter critical. However,no rational approach existed to

assess whether or not panel failure might result. Recently however, efforts

have been made both theoretically (Reference 2) and experimentally (Reference

3) to determine the behavior of panels that are deep in flutter thereby offer-

ing the possibilities of predicting panel stresses and of predicting panel

fatigue life.

This report describes a procedure that has been developed by the

McDonnell Douglas Corporation (MDC) to assess the fatigue life of panels char-

acteristic of the S-V vehicle and trajectory and presents the results of its

application. The overall procedure involves (1) the estimation of panel flut-

ter onset boundaries, (2) the estimation of stress time histories of flutter-

ing panels as a function of Mach number and dynamic pressure, and (3) the use

of Miner's cumulative fatigue concept to estimate fatigue life. The estimates

of panel stress during flutter are derived mainly from wind tunnel tests re-

ported in Reference (3) with theoretical extrapolation to panels of different

thickness and length-to-width ratio. Detailed explanation of procedures is

given later in this report.

The final results from the application of the fatigue criterion cover

panels with the following ranges of physical characteristics:

Thickness: 0.02 to 0.055 inch

Length: 6.7 to 33.5 inches

Length-to-width ratio: 1 to 5

Material: 7075-T6 Aluminum

MODONP46LL OCWOLA• cORIORArsom
1
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2. OVERVIEW OF CRITERTON

This section presents a general approach that is used to assess the

panel flutter integrity of Saturn V panels for both current and future mis-

sions. For extrapolation to future applications it is assumed that:

a. Structural configurations of skin panels will be similar to the

present configuration (i.e. edge restraints (simulate the clamped

condition, and panel curvature effect is negligible)

b. Flow sweep angle with respect to panels remains small

c. Cavity volume behind panels is large

d. Each panel has uniform thickness and rectangular (or nearly rectan-

gular) plariform

e. Boundary layer influence is negligible

f. Panels do not have damping treatment

g. No differential pressure: across panel

h. Panel compressive load is at or very near buckling

i. Freestream q and 11 are used for local values

The last three assumptions add conservatism and were employed to simplify the

application of the criterion.

2.1 Background

In a broad sense, the development of the fatigue criterion involved the

following requirements:

a. Define the aerodynamic environments and the structural characteris-

tics for each panel or each class of panels

b. Determine which panels will flutter and eliminate non-fluttering

panels from further consideration

c. For panels that will flutter, determine the time history of flutter

penetration for the trajectory to be flown

d. Determine maximum oscillatory bending and membrane stresses corres-

ponding to flutter penetrations in (b) above. Determine correspond-

ing frequencies; transform to cycles of oscillating stress

e. From the cumulative stress-cycle calculations apply Miner's fatigue

criteria to assess panel fatigue damage

Details of the step-by-step procedure are covered in the following para-

graphs.

MQOOMNELL 00VOLAS CORrOOArtaiw
2
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2.2 Detailed Procedure
f'

Step 1. Define Structural Input Information - The following structural input

information is required:

a. Panel material properties

Modulus of elasticity - E

Poisson's ratio - u
Mass density - p

Fatigue curves

b. Panel geometry

Thickness - t

Width (cross stream) - W

Length (streamwise) - L

c. Stress concentration factor

Step . 2. Define Trajectory - Prepare trajectory information in the formats

shown in the following sketches. For typical Saturn trajectories, maximum

q occurs in the low supersonic region where panel flutter is most critical.

0	 z ime	 -11	 1n

A factor of safety can be incorporated during the trajectory definition stage by

increasing the trajectory dynamic pressure the desired percentage.

Step 3. Determine Flutter Onset - Determine flutter onset dynamic pressure

qo at zero in-plane compressive load from Figure 1 for Mach range of trajec-

tory. Calculate corresponding flutter onset dynamic pressure qon at buckling

by multiplying qo by the buckling correction factor given in Figure 2. Super-

impose qon so obtained on the M versus q plot. The following sketch typifies

such plots for two panels. Panel 1 will not flutter throughout the flight

trajectory and all such panels are dropped from further treatment. Panel 2

will flutter throughout that part of the trajectory corresponding to the

OWDONNSLL oONOLAO CORtONATRON
3
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shaded area. Such panels require further study to assess whether or not

CJ	 fatigue failure will result.

Ste_ p 4. Panel Stresses at M, - It is convenient to consider the trajectory
as a finite series of segments of constant M and constant q (see sketch in

Step 2). Designate the Mach number M i . Then calculate the flutter penetra-

tion factor qi = (qi - qon, ) W4 where the dynamic pressures are the trajec-

Dt ^—

tory and buckled flutter onset values corresponding to M i . Enter the left

hand portion of Figure 3 at the value corresponding to the penetration factor

qi and project upward to the L/W under consideration. This determines

non-dimensional surface stress parameter (v) needed in the expression for

determining the total surface stress amax [: ;E(w)2/(1-u2)). This total our-

face stress (ate ) is then resolved into its component bending stress (a B )

and induced membrance stress (aM) by projecting to the right hand part of the

chart and reading the stress percentages directly.

MCOOMMSLL OCWOLAM aawwowATOCW
4
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Step 5. Fatigue Damage at M4 - From a fatigue standpoint, the peak to peak

induced membrane (tensile) stress is treated as a steady stress (as explained

elsewhere in this report). This should be combined with the applied compres-

sive Atress to arrive at a net steady stress for fatigue calculations. The

bending stress alone is treated as the cyclical stress in the fatigue calcu-

lations ( as explained elsewhere). Using a standard fatigue curve for the

parcel material under consideration, enter the curve after applying the desired

stress concentration factor,at the net steady stress and twice the bending

stress cB (since the reversing stress in fatigue curves is peak -to-peak rather

than zero-to-peak .-.as determined from Figure 3). See sketch below. Read off

number of cycles to failure, Ni.

2aB

i

^\1 I

a^

ti

au
a

I
I

I

1

1

I

Net Steady Stress

10000 psi compression

5000 psi
0 psi

5000 psi

10000 psi tension

Ni

Cycles to Failure - N

MRO01YMSLL OONSLAS COns•ORArtow
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The fatigue damage at the Mach number M  is computed from

AH = (w f/?r) Ati

N.
1

where w  is the panel flutter frequency ( rad/sec) determined from Figure 4

and At  is the time at the Mach number Mi.

Step 6. Assess Panel Integrity During Tr iectery - Repeat the procedure for

the complete trajectory and form the sum

H =j:AH = of ^ Ati
(^ N.1

If H is less than 1.0, panel will not fail; if greater than 1 . 0, failure

will result.
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3. DEVELOPMENT OF PREDICTION METHOD

Miner's Cumulative Damage Rule (Reference 4) is used to predict the

fatigue life of fluttering skin panels. The rule is based on the value of

the summation n/N where n represents the number of cycles at given mean stress

and alternating stress levels and N represents the number of cycles to fail-

ure at those stress levels. The rule says that a fatigue failure can be ex-

pected if the summation exceeds 1.0. The Cumulative Damage Rule generally

gives conservative predictions of fatigue life.

Application of this rule requires the following advance information:

1. The anticipated stress history during the structure service life

(including both the mean and reversible stresses)

2. The number of cycles at each stress condition

3. The S N plot of the structure material.

In terms of the panel flutter problem this first requires a means of predict-

ing panel stresses as a function of dynamic pressure and Mach number. Obviously

the prediction of these stresses is closely related to the prediction of

flutter onset dynamic pressure since significant panel stresses (in the ab-

sence of excitation other than that due to airflow over the panel) occur only

when the panel is fluttering; furthermore, onset dynamic pressure is needed

as a reference for determining the depth of penetration into the flutter re-

gion. Once the stress during flutter is determined it must be represented in

terms of alternating and mean stress components. The flutter frequency multi-

plied by the time duration at each panel M-q condition determines the number

of stress cycles. Finally the material S-N plot is used to determine N at each

corresponding stress condition. The sections below discuss each of these

areas (prediction of flutter onset, stress during flutter, flutter frequency,

and the material S-N plot) that are used to predict the fatigue life of Saturn

V skin panels. The underlying assumptions are presented in Section 2.

3.1 Determination of the Flutter Onset Dynamic Pressure

The flutter onset criterion presented here is based on previously reported

experimental flutter data (Reference 3, 5, 6, 7, 8). Theoretical trends were
used to supplement available experimental data. The criterion is used to pre-

dict the buckled panel flutter onset dynamic pressure qon for a panel with

material modulus E, length L, width W and thickness t at a Mach number M. The

flutter onset dynamic pressure is determined from the relation

Ag"ONAMLL OOUOLAS CONSOORAT/ON
7
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qon=FE (L)3K
where F and K are parameters discussed below.

The non-dimensional flutter parameter F is shown in Figure 1 as a func-

tion of Mach number with parametric variation in panel L/W and can be inter-

preted as the ratio of freestream dynamic pressure at flutter onset to panel

stiffness for zero inplane edge load. The experimental points were obtained

by introducing the experimental data into the equation given previously

for F with K set equal to 1.0. The minimum value of F occurs between
Mach 1.3 and 1.6 which implies that the minimum flutter onset dynamic
pressure also occurs in this Mach number range. The values of F shown

in the figure are conservative for the experimental data; that is, a qon
which is equal to or lower than the experimental flutter onset dynamic pres-

sures will be predicted when using this criteria. The dotted extensions of

the lines were extrapolated from the nearest experimental data by assuming

that the flutter function increases with Mach number at the same rate as

0 (= M2 - 1). That is, if B increases 50% between two Mach numbers the ex-

trapolated value of F increases 50% between the same two Mach numbers.

The buckling correction factor K accounts for the decrease in flutter
onset dynamic pressure due to panel buckling. The value of K is equal to
1 when the panel is not compressively loaded. Figure 2 gives K as a function

of panel L/W when the panel is loaded tc the rcint of buckling. The scatter

of the data plotted on Figure 2 necessitated a heuristic approach to detfWr-

mine the variation of K with L/W. The Reference 3 data was favored over
the Reference 6 data for L/W's in excess of 3.0 because of the better repeat-

ability of the flutter onset points.

3.2 Prediction of Stresses During Flutter

The maximum surface stress during flutter is shown in non-dimensional

form in Figure 3a as a function of flutter penetration factor q with para-

metric variation in panel L/W. This plot was obtained by combining experi-

mental data with theoretical data given in Reference 9. Using the L/W =

4.48 flutter penetration data of Reference 3 as a firm base, curves for tre

other values of L/W were determined by employing theoretical trends given

in Reference 9.

The experimental data given it Reference 3 was obtained from the flutter
test of a single panel geometry: L = 30 inches, W = 6.7 inches, t = .032

inches. Stress data as a function of dynamic pressure (q exceeding q on ) was

MCOONNSLL MPOVOLAS CONtONATION
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given for the test panels when they were subjected to an inplane compressive

edge load equal to 96% of buckling. Since Reference 3 does not give surface

stress directly, it was necessary to "synthesize" a surface stress from the

given values of induced axial and bending stress. During flutter the axial

and bending stresses vary with time roughly as shown in the sketches below.

The bending stress alternately takes on equal compressive and tensile values

while the induced axial (membrane) stress is always tensile and varies at

twice the bending stress frequency. Thus the maximum surface stress (neglect-

ing static inplane applied stress) is equal to the sun of one-half of the

peak-to-peak bending stress (a/2) and the peak-to-peak axial stress (b).

Notice that the peak-to-peak surface stress is equal to the peak-to-peak

bending; stress (a). The maximum surface stress , so synthesized, is shown

in Figure 5 along with the experimental bending and axial stresses used in

MCOO/YNAML OONOLAS CORPORATION
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the synthesis. It is replotted in Figure 6 in the non-dimensional format of

Figure 3a. Figure 6 is actually the base curve of Figure 3a. The following

paragraphs present details of the theoretical approach for determining the

curves for other values of L/W.

The theoretical stress data resulting from a non-linear analysis of

clamped panels under a uniform static pressure is given in Figure 7. The

dotted lines show linear analysis data As can be seen in the figure, one

value of the static pressure parameter (P) results in different surface

stresses depending on the panel L/W. As a first step in arriving at a rela-

tionship between the panel stresses occurring during flutter and those occur-

ring under static differential pressure, a curve approximating L/W = 4.48

.is sketched on Figure 7 between the ?./W = 2 and L/W = 0 lines. Correspon-

dence between P and q can be established by matching the experimental L/W =

4.48 data from Figure 6 with sketched 4.48 data on Figure 7. The flutter

penetration.parameter q is gust P with the static pressure differential

replaced by the dynamic pressure incremAnt q-q on . When values of q

have been established for several values of F' on Figure 7, the figure can be

used to determine Q as a function of q for values of L/W other than 4.48.

Two assumptions made for the extrapolation procedure are:

1. Measured surface stresses were maximum (measured near panel trail-

ing edge)

2. The ratio of ;'s for different L/W at constant P (Figure 7) estat

blishes the ratio of F's for different L/W.at a constant q (Figure

3a)

The latter assumption establishes the variation with L/W of maximun surface

stress during flutter.

Figure 3a allows the total surface stress to be determined for any q.

This total surface stress must be separated into its axial and bending stress

components for estimating the fatigue life. Since Reference 9 also includes

linear analysis data,i.e. bending stresses only,which are directly propor-

tional to the panel displacement, the ratio of bending stress to total stress

can be calculated as a function of v for the different L/W's. The theoreti-

cal data from Reference 9 can be plotted to show panel displacement as a

function of surface stress. Thus at any panel deflection the ratio of bend-

ing stress to surface stress (surface stress is equal to membrane or axial

plus bending stress) can be obtained by dividing the linear theory surface

MOOONNELL OONOLAS CONMROJWAT/ON
10
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stress by the non-linear theory surface stress (See sketch).

Linear Theory

	

os - 	Non-Linear Theory

	

aB _0	 am

Ata=a1
aB

Stress Ratio = Q
--	 s

This stress ratio is then plotted as a function of total surface stress as

shown in Figure 3b.

3.3 Estimation of Flutter Frequency

The flutter frequency is estimated by solving the equation:
I nD
	

1/2
W tL^

The non-dimensional flutter frequency parameter Q, which is a function of

L/W, was determined from experimental flutter frequencies using the above

equation. (See Figure 4). This formulation of the frequency parallels the

development presented in Reference 10 for prediction of "still air" natural

frequencies. The current application of the frequency equation replaces an

analytical expression given for Q in Reference 10 with an empirical function

of L/W based on experimental flutter frequency data: This flutter frequency

calculation procedure assumes that the frequency is independent of Mach

number, dynamic pressure, and compressive edge load.

The stress frequency can deviate from the flutter frequency as noted in

Reference 3. This reference pointed out that during flutter the response

amplitude of the downstream half of a buckled panel was dominated by the first

harmonic component of the flutter frequency. To account for this odd behavior

it was assumed in the fatigue criterion that the stress frequency was twice

the fundamental flutter frequency.

3.4 S-N Di!Ar_

The S-N diagram for 7075-T6 aluminum is shown in Figure 8. As is ex-

pected the number of cycles to fatigue failure increases as the alternating

stress decreases; in addition, the fatigue life increases when the meat, stress

MOOONN&LL OONOLAS CORPOORATOON
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( is compressive and decreases when the mean stress is tensile. In this appli-

C--`	 cation the alternating stress is the peak-to-peak bending stress as discussed

in Section 3.2. The mean steady state stress is the peak-to-peak induced mem-

brane stress combined with applied compressive stresss.

Before entering the S-N diagram at a given stress condition, an appro-

priate stress concentration factor is applied to both the alternating and

mean stresses to account for the effects of rivet hole size and layout along

the panel edges. Reference 11 develops a technique for calculating stress

concentration factors. Detail of the fatigue life calculation using Miner's

rule is presented in Section 2.

3.5 Conservatism

Conservatism has been incorporated in this fatigue prediction procedure

in several respects, namely:

• The method used to predict onset dynamic pressure is known to be

conservative to account for uncertainties in panel and/or flow

characteristics.

• Although boundary layer thickness is known to be stabilizing (Refer-

ence 14), the boundary layer thickness on the Saturn vehicle is

neglected.

• Differential pressure across the panels is assumed to be zero even

though it is anticipated that non-zero pressures (strongly stabilizing,

see Reference 3) will exist during portions of the trajectory.

• It is generally accepted that the Miner's cumulative fatigue

criterion is conservative.

While it would be virtually impossible to establish a degree of conservatism

for the procedure, an experimental case has been checked. An aluminum panel

described in Reference 3 did not fail after fluttering for 20 minutes. The

present criterion predicted a fatigue life of less than 5 minutes for that

panel. As with all criteria, the judgment of the user provides the ultimate

assessment of results.

urcnoJ NN&L aovOa.A• COMPONArsom
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4. APPLICATION OF PROCEDURE TO SATURN V PANELS

The procedure described in Section 3 is applied in this section to

assess the flutter integrity of skin panels on the Saturn S-V launch

vehicles. The procedure was to first determine the panels that were flutter

susceptible and then to estimate the fatigue life of those panels.

4.1 Criterion Input Information

4.1.1 Launch Trajectory , - The Saturn/Apollo lunar trajectory (Figure 9)

is more critical from a panel flutter standpoint than other S-V trajectories

and was used in this study. The trajectory dynamic pressures were increased

by 33% in keeping with NASA design procedures. (The trajectory was subdivided

into 49 one-tenth Mach number increments between Mach 1.0 and Mach 5.0.

Computations were made at each of the 49 Mach numbers using the appropriate

trajectory time interval and dynamic pressure. The range time elapsing

between Mach 1.0 and 5.0 is 52 seconds).

4.1.2 Panel Material Properties - The Saturn V skin panels are all

7075-T6 sheet. The important properties of this alloy are:

Young's Modulus	 Tension:	 10,300,000 psi

Compression: 10,500,000 psi

Poisson's Ratio	 .35

Density	 .101 pounds/in3

Yield Stress	 66,000 psi

Endurance Limit	 20,000 psi alternating stress
for zero mean stress but
varies with mean stress

The SIN plot given in Figure 8 was used to determine fatigue damage at

each M-q condition.

4.1.3 Panel Geometries - Table I presents typical S-V skin

panel geometries. (The W - 6.7 inch panel selected for the investigation of

Reference 3 provides an upper limit in width and also a basis for extrapola-

ting ,stress prediction to other panels.) Panel thicknesses of greater than

.065 inches are not flutter susceptible in the lunar trajectory; only the .03,

.032, and .04 gauge skin panels are flutter susceptible. Thirty-five panels

each 6.7 inches wide with lengths of 6.7, 13.4, 20.1, 26.8, 33.5 inches

(L/W - 1,20,40) and thicknesses of .02, .025, .03, .032, .04, .05, .055

inches, were chosen as the basis of the study. Additional panels with widths

MCOONNSLL OOUOLAS CONDONATION
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other than 6.7 inches were also studied to determine the effects on fatigue
of altering the panel width. The selected geometries cover a large range of

panels and the conclusions concerning these panel geometries should extend

to all susceptible panels on the Saturn vehicle.

4.1.4 Stress Concentration Factor - A stress concentration factor of

3.0 was used in all stress calculations. Data presented in Reference 11

was used to establish the stress factor for typical Saturn panel rivet hole

layouts.

4.2 Results

4.2.1 Flutter Penetration - The maximum calculated dynamic pressure

penetration (A) during the launch trajectory is shown in Figure 10 as a

function of panel L/W and thickness for unloaded and buckled panels. When

A is equal to 1.0 the panel just begins to flutter. Maximum penetration

occurs for buckled panels having length width ratios of 2 and 3. The

duration of flutter for the panel geometries examined is shown in Figure 11.

As indicated on the figure some of the panels with thicknesses less than .03

inches were still fluttering at Mach 5.0. However, the stresses occurring

during this high Mach number flutter were always less than the endurance

limit so that the panel fatigue life would not be affected. (The flutter

parameter F for L/W = 5.00 was obtained by direct extrapolation from the

values given on Figure 1 for L/W = 3.0 and 4.0.)

4.2.2 Maximum Alternating Stress - The maximum predicted alternating

stress (peak-to-peak bending stress) was about 38,000 psi obtained for the

L/W = 2.0 and 3.0 panels when the thickness was .05 inch. Alternating stress

data for the different panel geometries is shown on Figure 12. The data for

panels thinner than .03 inch is somewhat questionable because the penetra-

tion parameter q for these panels was far in excess of the experimental

q range (< 8,000) represented by the data given in Reference 3. A linear

extrapolation of data shown on Figure 3a was assumed for values of q in

excess of 8,000. It is interesting to note that maximum stress and maximum

flutter penetration do not coincide. This is because the alternating stress

is proportional to the product of a and the thickness squared. The decrease

in -o due to increase in panel thickness is not sufficient to offset the

thickness squared term.

MOOONNSLL OONOLAO OaROPONAT/ON
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ff	 4.2.3 Flutter Frequency - The calculated panel flutter frequenciest_ s

are plotted in Figure 13 as a function of panel thickness and L/W. For

constant L/W the criterion assumes on the basis of panel natural frequency

trends, that the flutter frequency increases linearly with panel thickness.

4.2.4 Panel Fatigue Life - The S-N plot for 7075-T6 aluminum presented

earlier ( see Figure 8) was used to predict panel fatigue life. Failure cycle

data was obtained by entering the plot at the calculated alternating stress

and mean stress ( mean stress within + 5,OUO psi of the nearest 10 , 000 psi

contour). No fatigue failure was predicted for any of the panels studied.

The final values of the Miner ' s fatigue summation ( E n/N) are given in

Figure 14. The trend closely resembles that found for the maximum alternating

stresses. The greatest fatigue damage estimated,which was about 20% of

failure, was for a panel with L/W of 2 and thickness of .05 inches.

4.2.5 Effect of Changing Panel Width - Decreasing the panel width

from 6.7 inches while holding L/W and thickness constant reduces fatigue

damage since the flutter onset dynamic pressure increases. Increasing the

width from 6.7 inches reduces the maximum panel stress even though the flutter

penetration is increased. The reduction in stress occurs because stress

varies as a divided by the width squared. When the width is increased,

the squared term increases faster than Q. The result of a lower maximum

stress is less fatigue damage. The maximum alternating stresses and fatigue

damage summations can be compered in Table 1 for the different width geometries

checked.

4.3 Conclusion

This application of the flutter fatigue criterion indicates that no

skin panel fatigue failure will occur on the Saturn V launch vehicle for

trajectories comparable to the Apollo lur.?r trajectory. The analysis further

indicates that the panels could survive at least 5 missions without danger

of fatigue failure ( note that the inverse of the failure index E n/N

represents the number of missions before failure). Thus in terms of a single

mission, the Saturn panels have at least a 400% margin of fatigue safety.

A stress factor of safety is defined for the Saturn as the ratio of

the maximum calculated alternating stress during the tra jectory to a refer-

ence failure stress. The reference failure stress is defined as the constant

alternating stress required to cause failure within the critical 52 second

MOOONNSLL OOMOLAW CORPORATION
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flight period. Figure 15 presents plots of the stress factor of safety versus

thickness for values of L/W between land 5. When this factor exceeds one,

the possibility of fatigue failure demands closer investigation. The largest

value for the S-V panels was .73 for a panel with L/W = 2 and a thickness

of about .045 inch.

C^
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Table I - Geometry of Representative Panels on the S-V, S-IB Vehicles

Location L(inchenj j L/W t (inches)

S-IVB Fwd Skirt 3.12-30.6 .96-5.12 '.032

S-IVD Art Skirt 8.34-18.3 2.98-6.54 .04

S-IVB/S-II Interstage 14.4-29.0 2.5-8.8 .04

S-II Fwd Skirt 22.0-33.9 6.3-17.8 .03-.04

S-II Aft Skirt 12.0-36.2 5.13-15.5 .071.

S-II/S-IC Interstage 17.86-38.5 7.7-16.5 .071

S-IC Fwd Skirt 32.0-36.0 14.7-16.6 .10

S--1C Aft Skirt e4.0-31.0 6.4-8.3 1	 .2-.45

This data is taken from Reference 13

MC MWNArLL XOOUOLAS COwAMORATIOM
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Panel Width = 6.7 inches

Figure 12 - Maximum Bending Stress as a Function of Panel Geometry
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