VOLUME INONAME SYSTEM DESCRIPTION
Contract No.: NAS 5-11736 MOD 92PCN 550-24217
Prepared By:
R.G. Williamson
C.F. MartinM.L. Dutcher
Wolf Research and Development CorporationRiverdale, Maryland
For
Goddard Space lilight CenterGreenbelt, Maryland
15 February 1971
REPRODUCED BY
NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMER SPRINGFIELD, VA. 22161

TABLE OI: CONTIENTS

PAGE
1.0 INFRODUCTION TO THE SYSTIEM 1. . 0-1
2.0 THE NONAME PROGRAM 2.-0-1
2. 1 INTRODUCTION TO THI: NONAME PROGRAM 2.1-1
2.2 THE ORBIT AND GEODETIC PARAMFTER ESTIMATION PROBLEM 2.2-1
2.2.1 The Orbit Prediction Problem 2.2-2
2.2.2 The Parameter Estimation Problem 2.2-5
2.3 THE MOTION OF THE EARTH AND RDLATED COORDINATE SYSTIMS 2.3-1
2.3.1 The Truc of Date Coordinate System 2.3-2
2.3.2 The Inertial Coordinate System 2.3-2
2.3.3 The Earth-Fixed Coordinate System 2.3-3
2.3.4 Transformation Between Earth- Fixed and True of Date Co- ordinates 2.3-4
2.3.5 Computation of: θ_{g} 2.3-6
2.3.6 Precession and Nutation 2.3-9
2.3.6.1 Precession 2. 3-12
2.3.6.2 Nutation 2.3-16
2.4 LUNI-SOLAR EPHEMERIDES 2.4-1
Preceding page blank : ii
PAGI:
2.5 THE OBSERVER 2.5-1
2.5.1 Geodetic Coordinates 2.5-2
2.5.2 Topocentric Coordinate Systems 2.5-14
2.5.3 Time Reference Systems 2.5-15
2.5.3.1 Time System Trans- formations 2.5-16
2.5.4 Polar Motion 2.5-18
2.6 MEASUREMENT MODELING AND RELATED DERIVATIVES 2.6-1
2.6.1 The Geometric Relationship 2.6-7
2.6.2 The Geometric Partial Derivatives 2.6-15
2.6.3 The Time Derivatives 2.6-21
2.7 DATA PREPROCESSING 2.7-1
2.7.1 Time Preprocessing 2. 7-2
2.7.2 Reference System Conversion To True of Date 2.7-4
2.7.3 Transponder Delay and Gating Effects 2.7-4
2.7.4 Diurnal Aberration 2.7-5
2.7.5 Refraction Corrections 2.7-6
2.7.6 Tranet Doppler Observations 2:7-10

TABLE OF CONTENTS (CONT.)

PAGE

2.8 FORCE MODIEL AND VARIATTONAI, EQUATIONS 2.8-1.
2.8.1 Equations of Motion. 2.8-1
2.8.2 The Variational Equations 2. 8-3
2.8.3 The Earth's Potential 2.8-11
2.8.4 Solar and Lunar Gravitational Perturbations 2.8-26
2.8.5 Solar Radiation Pressure 2.8-27
2.8.6 Atmospheric Drag 2. 8-30
2.8.7 Atmospheric Density 2. 8-34
2.8.7.1 The Assumptions of the Model 2.8-39
2.8.7.2 The Exospheric Tempera- ture Computations 2. 8-42
2.8.7.3 The Density Computation 2.8-52
2.8.7.4 Density Partial Deriva- tives 2.8-56
2.9 INTEGRATION AND INTERPOLATION 2.9-1
2.9.1 Integration 2. 9-1
2.9.2 The Integrator Starting Scheme 2.9-7
2.9.3 Interpolation 2.9-10

TABLE OF CONTENTS (CONT.)

PAGE
2.10 THE STATISTICAL ESTIMATION PROCEDURE 2.10-1
2.10.1 Bayesian Least Squares Estimation 2.10-2
2.10.2 The Partitioned Solution 2.10-8
2.10.3 Data Editing 2.1.0-25
2.11 GENERAL INPUT/OU'TPUT DISCUSSION 2.11-1
2.11.1 Input 2.11-1
2.11.2 Output 2.11-5
2.11.3 Computations for Residual Summary 2.11-12
2.11.4 Kepler Elements 2.11-16
2.11.4.1 Node Rate and Perigee Rate 2.11-24
2.11.4.2 Period Decrement and Drag Rate 2.11-26
3.0 NONAME ANALYSES AND GRAPHICS SUPPORT PROGRAMS 3.0-1
3.1 DELTA 3.1-1
3.2 GEORGE 3.2-1
3.3 GROUNDTRACK 3.3-1
3.4 WOLF SC4020 PLOT PACKAGE 3.4-1

TABLE OF CONTENTS (CONT.)
PAGE
4.0 NONAME DATA HANDLING SUPPORT PROGRAMS 4.0-1
4.1. DODS SORT'MERGE 4.1-1
4.2 GEOS SORT-MERGE 4.2-1
4.3 ORB1 CONVERSION (9-7 TRACK) 4.3-1
5.0 REFERENCES 5.0-1
APPENDIX A INDEX OF SUBROUTINE REFERENCES FOR NONAME PROGRAM A-1

Symbol	Description	Page First Used
A	Matrix partition of $\mathrm{U}_{2 \mathrm{C}}{ }^{+D_{r}}$ associated with position partials.	2.9-4
A	Matrix partition of ($\left.B^{T} W B+V_{A}^{-1}\right)$ associated with a	2.10-11
$\bar{A}_{\text {D }}$	Acceleration of satellite due to drag	2.8-2
A_{k}	Matrix partition of $\left(B^{T} W B+V_{A}^{-1}\right)$ accounting for effects between a and k.	2.10-11
A_{p}	Daily planetary geomagnetic index	2.8-51
$\bar{A}_{\text {R }}$	Acceleration of satellite due to solar radiation pressure	2.8-2
A_{1}	Matrix partition of A associated with the $r^{\text {th }}$ arc	2.10-13
$A^{\text {rk }}$	Matrix partition of A_{k} associated with the $r^{\text {th }}$ arc	2.10-14
A_{s}	Cross sectional area of satellite	2.8-51
A_{z}	Azimuth of satellite (measurement type)	2.6-15
a	Semi-major axis of reference ellipsoid	2.5-3

	GLOSSARY OF SYMBOLS (Cont.)	
Symbol.	Description Fir	Page First Uscd
a	Semi-major axis of orbit	2.11-16
$\underline{\text { a }}$	Vector of parameters associatcd with individual arcs, partition of x	2.10-9
\bar{a}_{d}	Acceleration of satellite due to a third body potential	2.8-27
${ }^{\text {a }}$ e	Earth's mean equatorial radius	2.6-10
${ }^{a_{p}}$	Three-hourly planetary geomagnetic index	2.8-44
$\stackrel{\mathrm{a}}{ } \mathrm{r}$	Partition of a associated with the $\mathrm{r}^{\text {th }}$ arc	2.10-13
B	Matrix partition of $U_{2 C}+D_{r}$ associated with velocity partials	2.9-4
B	Matrix of partial derivatives of computed measurements with respect to the parameters being determined	d 2.10-5
b	A constant measurement bias	2.6-2
$C_{\text {D }}$	Satellite drag factor	2.8-4
C_{R}	Satellite emissivity factor	2.8-4

GLOSSARY OF SYMBOLS (cont.)

Symbol	Description	$\begin{gathered} \text { Page } \\ \text { First Used } \\ \hline \end{gathered}$
$\mathrm{C}_{\text {a }}$	$\begin{aligned} & \text { Matrix partition of } B^{T} W \underline{d m} \\ & \quad+V_{A}^{-1}\left(\underline{x}^{(n)}-\underline{x}_{A}\right) \end{aligned}$	2.10-11
C_{i}	Computed measurement value corresponding to O_{i}	2.2-5
C_{i}	Coefficients of spheroid height polynomial for natural log of density, themselves polynomials in exospheric temperature	2.8-56
C_{k}	Matrix partition of $\left(B^{T} W_{d m}+V_{A}^{-1}{\left(x^{(n)}\right.}_{(\underline{x}}\right.$ associated with k	$\left.E_{A}\right) \cdot 2.10-11$
C_{nm}	Gravitational harmonic coefficient of degree n, order m	2.6-22
C_{r}	Matrix partition of G_{a} associated with the $r^{\text {th }}$ arc	2.10-1.4
$\mathrm{C}_{t+\Delta t}$	The computed observation at time $t+\Delta t$	2.6-1
c	Velocity of light.	2.7-10
D	Mean elongation of the Moon from the Sun	2.3-9
D_{r}	$\text { Matrix containing } \frac{\partial \bar{A}_{D}}{\partial \bar{x}_{t}}$	2.8-8

jymbols	Description	Page First Used
do_{i}	Error of observation associated with 0_{i}	2.2-5
da	Partition of $\mathrm{dx}^{(\mathrm{n}+1)}$ associated wi.th a (correction vector for arc parameters)	2.10-11
$\underline{\mathrm{da}} \mathrm{r}$	Partition of da associated 'with the $r^{\text {th }}$ arc (correction vector for the $r^{\text {th }}$ arc parameters)	2.10-15
$\underline{d a}^{\prime}{ }^{\prime}$	Correction vector to $r^{\text {th }}$ arc parameters not including common parameter solution effects	2.10-16
dk	Partition of $d x^{(n+1)}$ associated with the common parameters k	2.10-11
dm	Vector of residuals ($0-C$) from the $n^{\text {th }}$ approximation to \hat{X} (same as $d_{z}{ }^{(n)}$)	2.10-8
$\mathrm{dx}^{(n+1)}$	Vector of corrections to the parameters X	2.10-7
$\underline{d z}^{(n)}$	Vector of residuals ($0-C$) from the $n^{\text {th }}$ approximation (same as dm)	2.10-7
玉	Eccentric anomaly of the orbit	2.11-16
$\widehat{\mathrm{E}}$	East baseline vector in the topocentric horizon coordinate system	2.5-14

GLOSSARY OF SYMBOLS (Cont.)

Symbols	Description	$\begin{gathered} \text { Page } \\ \text { First Used } \end{gathered}$
E ()	Expected value	2.11-13
E_{M}	Input multiplier for editing criterion	2.10-20
E_{R}	Weighted RMS of previous outer iteration. Input for first outer iteration	. 2.10-20
E_{2}	Elevation of the satellite (measurement type)	2.6-15
e	Eccentricity of the reference ellipsoid	2.5-3
e	Eccentricity of the orbit	2.11-16
$\overline{\mathrm{e}}$	Constant of integration - a vector of a magnitude equal to the eccentricity of the orbit and pointing toward perihelion	2.11-20
F	Mean angular distance of the Moon from the Sun	2.3-19
F	Matrix containing $\frac{\partial \ddot{\bar{r}}}{\partial \overline{\bar{\beta}}}$ (same as \ddot{Y})	2.8-8
F_{B}	Base frequency for Doppler measurements	2:7-10
F_{M}	Measured frequency for Doppler observations	2.7-10
$\mathrm{F}_{10.7}$.	Mean of the 10.7 cm . solar flux values for a given day	2.8-45

GLOSSARY OF SYMBOLS (Cont.)

Symbols	Description	Page First Used
$\dot{\mathrm{F}}_{10.7}$	Average 10.7 cm . solar flux value over 2 or 3 solar rotations	2.8-44
	Flattening of the Earth	2.5-3
	Matrix containing the direct partial derivatives of \bar{x}_{t} with respect to $\bar{\beta}$	2.8-8
f	The true anomaly of the orbit	$2.11-16$
f_{t}	The geometric relationship defined by the observation type at time 't.	2.6-1
G	The universal gravitational constant	2.6-22
g	Mean anomaly of the Moon	2.3-19
g^{\prime}	Mean anomaly of the Sun	2.3-19
H	Hour angle of the Sun	2.8-49
$\mathrm{H}_{\text {alt }}$.	Altimeter height (measurement type)	2.6-9
h	Spheroid height	2.5-3
h_{s}	Hour angle of the satellite	2.7-6
I	Identity matrix	2.9-5
i	Inclination of the orbit	2.11-16

GIJOSSARY OF SYMBOLS (Cont.)

Symbols	Description.	$\begin{gathered} \text { Page } \\ \text { First Usod } \\ \hline \end{gathered}$
J	Julian Ephemeris Date of dosired nutation calculation	2.3-18
J_{0}	Julian Ephemeris Date correspondong to 1900 January 0.5 Ephemeris lịme	2.3-18
K	Partition of $\left(B^{T} W B+V_{A}^{-1}\right)$ associated with \underline{k}	2.10-11
k	Vector of parameters common to all arcs; partition of \underline{x}	2.10-9
$L_{j}()$	Lagrange polynomial	2.9-11
2	Direction cosine (measurement type)	2.6-13
M	Mass of the Earth	2.6-22
M	Number of parameters in x	2.10-2
M	Mean anomaly of the orbit	2.11-16
m	Direction cosine (measurement type)	2.6-13
m_{d}	Mass of the disturbing body for third body perturbations	2.8-26
m_{i}	Computed equivalent of the $i^{\text {th }}$ measurement $\left(\operatorname{see} C_{i}\right.$ and $\left.C_{t+\Delta t}\right)$	2.10-9

GLOSSARY OF SYMBOLS (Cont.)

Symbols	Description	Page Used First
m_{s}	Mass of the satellite	2.8-28
N	Number of observations in \underline{z}	2.10-2
$\hat{\hat{N}}$	North baseline unit vector in the topocentric horizon coordinate system	2.5-14
n	Direction cosine (measurement type)	2.6-13
n_{s}	Surface index of refraction	2.7-8
0_{i}	The $i^{\text {th }}$ observed measurement value	2.2-5
$\overline{\mathrm{P}}$	Vector of parameters to be determined (same as x)	$2 \cdot 2-5$
$P(t)$	Hermite polynomial	2.9-10
P_{a}	Parallactic angle	2.7-6
$\mathrm{P}_{\mathrm{m}}^{\mathrm{n}}$ ()	Legendre polynomial	2.6-22
P_{S}	Solar radiation pressure in the vicinity of the Earth	2.8-28
p (x)	Joint probability density function for x	2.10-2
$p(\underline{z})$	Joint probability density function for \underline{z}	2 2.10-2

Symbols	Description	$\begin{gathered} \text { Pago } \\ \text { First Used } \\ \hline \end{gathered}$
$p(\underline{x} \mid \underline{z})$	```Joint conditional probability density function for x, given that z has occurred```	2.10-2
$p(\underline{z} \mid \underline{x})$	```Joint conditional probability density function for z given that x has occurred```	2.10-2
$\mathrm{R}_{\text {d }}$	Third body disturbing potential	2.8-26
R_{i}	$\text { Residual valuc }\left(\mathrm{dm}_{\mathrm{i}}\right)$	2.11-12
\bar{r}	Geocentric satcliite position vector	2.5-11
\bar{r}_{d}	True of date position vector of third body for third body gravitational effects	2.8-26
r_{ij}	Aitken-Neville factors for integrator starting scheme	2.9-9
$\bar{r}_{o b}$	Geocentric position vector of a tracking station	2.2-8
\hat{r}_{s}	True of date unit vector pointing to the Sun	2.8-28
S	The cosine of the enclosed angle between \bar{r} and \bar{r}_{d}	2.8-26

GLOSSARY OF SYMBOLS (Cont.)

Symbols	Description	Page First Used
$S_{n m}$	Gravitational harmonic coefficiont of degree n, order m	2.8-4
s^{2}	Sample variance	2.11-13
T	Exospheric temperature	2.8-48
T_{0}	Global nighttime minimum temperature corrected for semi-annual variation	2.8-46
T0 ${ }_{0}$	Global nightime minimum temperature. for a given day	2.8-45
\bar{T}_{0}	Avcrage global nighttime minimum temperature for a given period	2.8-44
U	Geopotential field of the larth	2.6-22
$\mathrm{U}_{2 \mathrm{C}}$	Matrix containing the second partial derivatives of the gravitational potentials with respect to the truc of date position coordinates	2.8-8
u	Central angle between the satellite vector and a vector pointing toward the ascending node of the orbit	2.11-21
$\hat{\mathrm{u}}$	Unit vector in the direction of $\bar{\rho}$	$2.6-8$
V	Covariance matrix of \hat{x}	2.10-6

Symbols	Description F	$\begin{gathered} \text { Page } \\ \text { First Used } \\ \hline \end{gathered}$
$\mathrm{V}_{\text {A }}$	a priori covariance matrix associated with \bar{x}_{A}; same as \sum_{A}^{-1}	2.10-8
V_{a}	Matrix partition of V_{A}; a priori covariance matrix associated with a	2.10-10
V_{k}	Matrix partition of V_{Λ}; a priori covariance matrix associated with k	2.10-10
$\mathrm{V}_{\mathrm{r}}{ }^{\text {- }}$	Matrix partition of V_{a} associated with the $r^{\text {th }}$ arc	2.10-13
W	Weighting matrix for observations; same as Σ_{z}^{-1}	2.10-8
X	Coordinate system direction:	2.2-4
	a) Direction in the equatorial plane pointing toward the Greenwich meridian (Earth-fixed systcm)	
	b) In the direction of the true equinox of date at o. h . of the epoch day (inertial system)	
	c) In the direction of the true equinox of date (true of date system)	
$X(t)$	Position, velocity, and variational partials at time t	2.9-10

glossary of symbols (Cont.)

Symbols	Description	Page First Usec
$x^{(i)}(t)$	$i^{\text {th }}$ derviative of $\mathrm{X}(\mathrm{t})$	2.9-10
x_{a}	The X angle of the satellite (measurement type)	2.6-13
x_{e}	Earth-fixed position component	2.3-3
x_{i}	True of date position component	2.3-3
X_{m}	Matrix containing the variational partials	2.8-8
x	True of date X position component of the satellite	2.2-8
x	Rotation angle for polar motion	2.5-22
\underline{x}	Vector of M parametors	2.10-2
$\underline{\hat{x}}$	The "best" estimate of \underline{x}	2.10-3
$\hat{\underline{x}}^{(\mathrm{n})}$	The $\mathrm{n}^{\text {th }}$ approximation to $\underline{\hat{x}}$	2.10-3
x_{A}	The a priori estimate of \underline{x}	2.10-3
\bar{x}_{t}	The vector describing the true of date position and velocity of the satellite	2.2-8

GLOSSARY OF SYMBOLS (Cont.)

Symbols	Description	$\begin{gathered} \text { Page } \\ \text { First Used } \\ \hline \end{gathered}$
Y	Coordinate system direction (associated with the X and Z direćtions)	2.2-4
Y	Partition of X_{m}; a matrix containing $\frac{\partial \bar{x}}{\partial \bar{\beta}}$	2.9-4
\dot{Y}	$\begin{aligned} & \text { Partition of. } X_{m} ; \text { a matrix containing } \\ & \frac{\partial \dot{\bar{x}}}{\partial \bar{\beta}} \end{aligned}$	2.9-4
\ddot{Y}	Matrix containing $\frac{\partial \ddot{\bar{r}}}{\partial \bar{\beta}}$; same as matrix F	2.9-4
Y_{a}	The Y angle of the satellite (measurement type)	2.6-13
Y_{e}	Earth-fixed position component	2.3-3
Y_{i}	True of date position component	2.3-3
y	True of date Y position component of the satellite	2.2-8
y	Rotation angle for polar motion	2.5-22
2	Direction of the spin axis of the Earth for Z direction of coordinate systems. (Taken at oho of epoch day for inertial coordinate system.) Compare X	2.2-3

GLOSSARY OF SYMBOLS (Cont.)

Symbo1s	Description	$\begin{gathered} \text { Page } \\ \text { First Used } \end{gathered}$
$\hat{\mathrm{Z}}$	The zenith baseline unit vector in the topocentric horizon coordinate system	2:5-14
Z_{e}	Earth-fixed component; same as z	2.5-6
Z_{0}	Observed zenith angle	
2	True of date Z position coordinate of the satellite	2.2-8
z	A precession angle	2.3-14
\underline{z}	A vector of N independent observations	2.10-2

GLOSSARY OF SYMBOLS (Cont.)

Symbols	Description	Page First Used
α	Topocentric right asconsion of the satellite (measurement,type)	2.6-11
α	The set of parameters not affecting the dynamics of satellite motion	2.2-7
$\bar{\beta}$	The set of parameters affecting the dynamics of satellite motion	2.2-7
$\left.{ }^{\beta_{\mathrm{qp}}}, \beta_{\mathrm{qp}}^{*}\right)$		
$\left.\gamma_{\mathrm{qp}}, \gamma_{\mathrm{qp}}^{*}\right\}$	Cowell integration scheme coefficients	2.9-2
$\Delta \ell$	Correction to measurement of direction cosine \&	2.7-9
$\Delta \mathrm{m}$	Correction to measurement of direction cosine m	2.7-9
$\Delta \mathrm{R}$	Differential refraction	2.7-7
ΔT	Geomagnetic heating correction to T	2.8-50
Δt	Measurement timing bias	2.6-2
ΔX_{a}	Correction to measured X ang1e	2.7-10
ΔY_{a}	Correction to measured Y angle	2.7-10

Symbols	Description	Page First Used
$\Delta \alpha$	Equation of the equinoxes	2.3-7
$\Delta \alpha$	Right ascension measurement correction	2.7-5
$\Delta \delta$	Declination measurement correction	2.7-5
$\Delta \varepsilon$	Nutation in obliquity	2.3-19
$\Delta \rho$	Correction to range measurement	2.7-4
$\Delta \psi$	Nutation in longitude	2.3-16
δ	Topocentric declination of satellite (measurement type)	2.6-11
δ_{0}	Declination of the Sun	2.8-49
ε_{T}	True obliquity of date	2.3-16
${ }^{\text {¢ }}$ M	Mean obliquity of date	2.3-16
ζ	Precession angle	2.3-14
θ	Precession angle	2.3-14
θ_{g}	Greenwich hour angle	2.2-4
λ	East longitude	2. 5-2
${ }^{\mu}{ }_{c}$	Mean of residuals	2.11-12

Symbols	Description	$\begin{gathered} \text { Page } \\ \text { Fjrst Used } \\ \hline \end{gathered}$
.		
- ν.	Satellite eclipse factor	2.8-28
	- 1	
$\bar{\rho}$	The station-satellite vector	2.6-8
ρ_{D}	Atmospheric density at the satellite position	2.8-30
- ρ_{5}	Specular reflectivity of the satellite	2.8-29
$\Sigma^{\text {A }}$	a priori covariance matrix associated with the a priori parameter vector x_{A}	2.10-4
Σ_{z}	Covariance matrix associated with the observations \underline{Z}	2.10-3
σ	Standard deviation	2.11-13
\cdots	Vector of noise on the obsorvations. \underline{z}	2. 10-2
ϕ	Geodetic latitude	2.5-2
-	- .	
ϕ^{\prime}	Geodetic Iongitude	2..5-2
Ω	Longitude of the ascending node of the Moon's orbit	2.3-19
		2
Ω	Longitude of the ascending node of a satellite orbit	2.11-16
ω	Argument of perigee of a satellite orbit	t 2.11-16

SECTION 1.0
 INTRODUCTLON TO THE
 NONAME ORBIT DETERMINATION SYSTEM

- The NONAML Orbit Determination and Geodetic Parameter Estimation System consists of a set of computer programs designed to determinc and analyze definitive satellite orbits and their associated goodetic and measurement parameters.

The heart of the system is the NONAMD program itself, which possesses the capability of estimating that set of orbital elements, station positions, measurement biases, and a set of force model parameters such that the orbital tracking data from multiple arcs of multiple satellites best fits the entire set of estimated parameters. In any given run, little or all of this capabi-. lity may be exercised according to the type of orbit, the amount and type of data available, and the purpose for which the run is being madc.

NONAME ancillary analysis programs may be grouped into three different categories according to the function which they perform:

1: Orbit Comparisons The DELTA program performs the function of differencing satellite orbits and transforming the differences in position and velocity into the more physically meaningful along track, cross track, and radial components. This program is useful for
comparing orbjts generated using difeorent. data sets, using different.gravity models, using different modes of data reduction, etc.
2. Data Analysis using Reference Orlbits. The GEORGE program is used to analyze residuals from measurements not used in an orbita solution, but computed on the basis of a reference orbit determined by measurements of known quality. Measurement biases and timing errors are computed on a pass by pass basis. The results of this analysis may be given different interprotations, dopending upon the quality of the unweighted data and the . quality of the reference orbit.
3. Pass Geometry Computation The GROUND TRACK program plots the subsatellite points of orbits at station measurcment times. A graph is produced for each station giving the total geometric coverage achieved during a spccified data pèiod.

All the above three programs use onc or more tapes written by the NONAME program in either a data reduction or orbit generator run. Although it is not necessary, these programs are generally run immediately following the associated NONAME run, thus minimizing tape handiing problems. In addition all three programs usc the WRDC PLOT PACKAGE and can produce a graphical depiction of their results both on printer plots and on SC40:20 micro-. film or hardcopy plots.

In addition to the above analysis programs, the NONAME System contains thrce data management routines:

1. SORT-MERGE Programs
a. NGSP Format
b. DODS format

There are two programs for merging multiplc data tapek, which may not be in time order, and producing a single tape with the data in time order. These two programs differ only in the format of the data tapes.
2. 9-7 TRACK Conversion Program

This program converts a 9 -track ORBI tape written by the IBM System 360 computers into a 7 -track tape which can be read by the GSFC 7094 computer.

NONAME SYSTEM FLOWCHART

SECTION 2.0
THE NONAME PROGRAM

The original version of the NONAME Program was written for GSFC by WOLF in 1967. Since that time NONAME has undergonc:extensive development to enhance its capability, accuracy, and versatility.

NONAME has become one of the most widely used orbit and geodetic parameter estimation programs in the world. It is currently operational at GSFC on the IBM 360 '95, '91, and '75; at the Goddard Institute for Space Studies in New York on an IBM 360 ' 95 ; at Wallops Island on the GE 625; and at the institut für Physik und Plasmaphysik, Garching, West Germany on an IBM 360 ' 91.

NONAME has been used for

- determination of definitive orbits
- tracking instrument calibration
- satellite operational predictions
- geodetic parameter estimation
and many other items relating to applied research in satellite geodesy using virtually all types of satellite tracking data.

The NONAME Program is an orbit and geodetic parameter estimation program utilizing the Bayesian least squares process for determining the set of parameters which makes the measurements most consistent with the satellite orbits. Multiple arcs of multiple satellites may be used in a simultaneous solution whon adjustments are desired for geodetic parameters.

The NONAME Program is designed around the concept. that the determination of definitive satellite orbits will be affected by small errors.from three different sources: measuroment errors (biases, ctc.), station position errors, and force model errors. Accordingly, the program has the capability of adjusting these types of parameters along with the satellite orbital elements. In general, this process leads to an improved orbit and improved values for the measurement and geodetic parameters.

The parameter adjustment features of NONAME provide a large number of options and thus great flexibility in the use of the program. The manner in which independent parameters are assigned is based upon the physical and statistical independence expected, with some latitude left to the user for certain parameters. The types of parameters; along with limitations (through program dimensioning) on the number of each. are:
A. . Individual arc parameters.

1. Orbit elements - one sct of six for cach arc which must always be adjusted (a priori information can be used to elfectively constrain them if no adjustment is desired).
2. Measurement biases - limit of 50, optionally applicd with assignments normally made on a pass by pass basis. The same bias may be applied for any period of time up to the . length of the arc.
3. Station timing crrors - samo as for moasurement biases. The limjt of 50 applies to the sum of measurcment and timing biases.
4. Atmospheric drag coefficient - optionally, one drag cocfficient per arc may be adjusted.
5. Solar radiation pressure reflectivity optionally, one reflectivity paramoter may be adjusted.
B. Parameters common to all arcs
6. Station positions - optionally, up to 21 independent stations may be adjusted. In addition, any number of stations in the tracking complement may be constrained to move with a fixed relative location to one of the independent stations.
7. Gcopotential coefficients - Limit of 20, with the adjustment of any cocfficient whose degrec is less than or equal to the maximum degree coefficient used in the orbit integration.

In addjtion to the above restrictions, the following overalj parameter limitations must be observed:

1. The total number of adjusted parameters affecting any one arc may not exceed 70.
2. The total number of force model parameters affecting any one arc may not exceed 20 .

The NONAME program is configured to iterate on the adjustment of orbital elements with fixed station positions and geopotential model. After this iteration process has converged, the common parameters of station positions and geopotential parameters are adjusted and the process is repoated.

Many features are designed into NONAME to facilitate ease of usage and to assist in interpretation of the results. These features are discussed as a part of the detailed program description in this volume and in the Operations Manual.

SECIIUN Z.Z
THE ORBIT 'AND GEODETIC PARAMETER IESTTMATION PROBLEM

The purpose of this section is to provide an understanding of the relationship between the various elements in the solution to the orbit and geodetic parameter estimation problem. As such, it.is a general statement of the problem and serves to. coordinate the detailed solutions to each element in the problem presented in the sections which follow.

The problem is divided into two parts:

- the orbit prediction problem, and
- the parameter estimation problem.

The solution to the first of these problems corresponds to NONAME's orbit generation mode. The solution to the latter corresponds to NONAME's data reduction mode and of course is based on the solution to the former.

- The reader should note that there are two key choices which dramatically affect the NONAME solution structure:
- Cowell's method for integrating the orbit, and
- a Bayesian least squares statistical estimation procedure for the parameter estimation problem.

2.2.1 The Orbit Predjction Problem

There are a number of approaches to orbit prediction. The NONAME approach is to use Cowoll's method, which is the direct numerical integration of the satcllite equations of motion in rectangular coordinates. The initial conditions for these differential equations are the epoch position and velocity; the accelerations of the satellite must be cvaluated.

The acceleration producing forces which are currently modelled in NONAME are the cffects of

- the geopotential,
- the luni-solar potentials,
- radiation pressure, and
- atmospheric drag

Perhaps the most outstanding common feature of thesc forces is that they are functions of the position of the satellite relative to either the Earth, Sun, or Moon. Only atmospheric drag is a function of any additional quantity,* specifically, the relative velocity of the satellite with respect to the atmosphere.

The accurate evaluation of the accelcration of a ssatellite therefore involves the solution to two concomitant problems:
*Not to be confused with the "fixed" parameters in the models.

- the accurate modeling of each force on the satellite - Larth - Sun - Moon relationship, and
- the precise modeling of the motions of the Earth, Sun, and Moon.

The specific details for each model in these solutions are given clsewhere in Sections 2.3, 2.4, and 2.8. The question of how these models fit togethor is in effect the question of appropriate coordinate systems.

The key factor in the sclcction of coordinate systems for the satellite orbit prediction problem is. the motion of the Earth. For the purposes of NONAME, this-motion consists of:

- precession and nutation, and
- rotation.

We are considering here the motion of the solid body of the Larth, as versus the slippage in the Earth's crust (polar motion) which just affects the position of the observer.

The precession and nutation define the variation in

- the direction of the spin axis of the Earth $(+Z)$, and
- the direction of the true cquinox of date (+X).

These directions define the (geocentrịc) true of date coordinate system.

The rotation rate of the farth is the time rate of change of the Crecnvich hour angle 0_{g} between the Greenwich meridian and the truc equinox of datc. Thus the Earth-fixed system differs from the true of date system according to the rotation angle θ_{g}.

The equations of motion for the satcllite must be integrated in an inertial coordinate system. The NONAME inertial system is defincd as the true of date system corresponding to 0.0 of the day of epoch.

The coordinate systems in which the accelerations due to each physical effect are cvaluated should be noted. The geopotential effects are evaluated in the Earth-fixed system, and then transformed to true of date to be conbined with the other effects. The others are evaluated in the true of datc system. The total acceleration is then transformed to the incrtial system for use in the integration procedure.

The integration procedure used in NONAME is a predictor-corrector type with a fixed time step. There is an optional variable step procedure which will halve or double the step size. As the integration algorithms used provide for output on an even step, an interpolation procedure is required.

2.2.2 The Parameter Estimation Problcm

Let us consider the relationships between the observations O_{i}, the i.r corresponding computed values C_{i} and \bar{P}, the vector of parameters to be determined. Ihese relationships are given by

$$
\begin{equation*}
o_{i}-C_{i}=\sum_{j} \frac{\partial C_{i}}{\partial P_{j}} d P_{j}-d o_{i} \tag{1}
\end{equation*}
$$

where
i denotes the $i^{\text {th }}$ observation or association with it,
dP_{j} is the correction to the $\mathrm{j}^{\text {th }}$ parameter, and
d_{i} is the error of observation associated with the $i^{\text {th }}$ observation.

The basic problem of parameter cstimation is to determine a solution to these equations.

The role of data preprocessing is quite apparent from these equations. First, the observation and its computed equivalent must be in a common time and spatial reference systcm. Second, there are certain physical effects such as atmospheric refraction which do not significantly vary by any likely change in the parameters represented by \bar{P}.

These computations and corrections may equally well be applied to the observations as to their computed

$$
2.2-5
$$

values. Furthermore, the relationship between the computed value and the model parameters \bar{P} is, in general, nonlinear, and hence the computed values may have to be evaluated several times in the estimation procedure. Thus a considerable increase in computational officiency may be. attained by applying thesc computations and corrections to the observations; i.c., to preprocess the data.

The preprocessed observations used by NONAMI are directly related to the position and/or velocjty of the satellite relative to the obscrver at the given obscria-. tion time. These relationships aro geonetric, henco computed equivalents for these obscrvations are obtained by applying thesc geometric relationships to the computed values for the positions and velocities of the satcllite and the observer at the desjred time.

Associated with each measurement from each observing station is a (known) statistical uncertainty. This uncertainty is a statistical property of the noise on the observations. This uncertainty is the reason a statistical estimation procedure is required for the NONAME parameter determination.

It should be noted that $d O_{i}$, the measurement error, is not the same as the noise on the observations. The $d O_{i}$ account for all of the discrepancy $\left(O_{i}-C_{i}\right)$ which is not accounted for by the corrections to the parameters $\overline{\mathrm{dP}}$. These dO_{i} represent both

- the contribution from the noise on the observation, and
- the incompleteness of the mathematical model represented by the parameters \bar{P}.

$$
\therefore \quad 2.2-6
$$

By this last we mean either that the parameter set being determined is insufficient or that the functional form of the model is inadequate.

NONAME has two different ways of dealing with these crrors of observation:

1. The measurement model includes both a constant bias and a timing bias which may be determined.
2. There is an automatic oditing procedure to deletc bad (statistjcally unlikely) measuremonts.

The naturc of the parameters to be detormined has a significant effect on the functional structure of the solution. In NONAME, these parameters are:

- the position and velocity of the satcllite at epoch. These are the initial conditions for the equations of motion.
- force modei parameters. These affect the motion of the satcllite.
station positions and biases for station measurement types. These do not affect the motion of the satellite.

Thus, the parameters to be determined are implicitly. partitioned into a set $\bar{\alpha}$, which are not concerned with the dynamics of the satellite motion and a set $\bar{\beta}$ which are.

The computed value C_{i} for each observation O_{i} is a function of
$\bar{r}_{o b}$. the Earth-fixed position vector of the station, and
\bar{x}_{t} the true of date position and velocity vector of the satej]jtc $\{x, y, z, x, y, z\}$
at the desired observation time. When measurement biases are used, C_{i} is also a function of \sqrt{B}, the biases associated with the particular station measurement type.

Let us consider the effect of the given partitioning on the required partial derivatives in the observational equations. The $\frac{\partial C_{i}}{\partial \bar{P}}$ become

$$
\left.\begin{array}{l}
\frac{\partial C_{i}}{\partial \bar{\alpha}}=\left\{\frac{\partial C_{i}}{\partial \bar{r}_{o b}}, \frac{\partial C_{i}}{\partial \bar{B}}\right.
\end{array}\right\}
$$

The partial derivatives $\frac{\partial \bar{x}_{t}}{\partial \bar{\beta}}$ are called the variational partials. While the other partial derivatives on the right-hand side of the equations above arc computed from the measurement model. at the given time, the variational partials must be obtained by integrating the variational equations. As will be shown in Section 2.8 , these equations are similar to the equations of motion.

The need for the above mentioned variational partials obviously has a dramatic cffoct on any solution to the observational equations. In addition to integrating the equations of motion to gencrate an orbit, the solution requires that the variational equations be integrated.

We have heretofore discussed the elements of the obscrvational equations; we shall now discuss the solution of these equations; i.c.., the statistical estimation scheme.

There are a number of cstimation schemes that can be used. The method used in NONMMI: is-a batch scheme that uses all observations simultancously to estimate the parameter set. Tho alternativo would be a sequential scheme that uses the obscrvations sequentially to calculate an updated set of parameters from each additional obscrvation. Nlthough batch and sequential schemes are esscntially equivalent, practical numerical problems often occur with sequential schenes, especially when processing highly accurate observations. Therefore, a batch scheme was chosen.

The particular method selected for NONAML is a partitioned Bayesian least squares mothod as detailed in Section 2.10. A Bayesian method was seloctod because such a scheme utilizes meaningful a priori information. The partitioning is such that the arrays which must be simultaneously in core are arrays associated with parameters common to all satellite arcs, and arrays pertaining, to the arc being procesșed. Its purpose is to dramatically reduce the core storage requirements of the program without any significant cost in computation time.

$$
2.2-9
$$

There is an interesting aside related to the use of a priori information in practice. The use of ariori information for the parameters guarantees that the cstimation procedure will mechanically operate (but not necessarjly converge). The user must ensure that his data contains information relating to the parameters he wishes determined.

SECTION 2.3
THE MOTION OF THE EAR'TH MND RLLATED COORDINATE SYSTEMS

The major factor in satellite dynamics is the gravitational attraction of the Earth. Because of the (usual) closencss of the sutellite and its primary, the Earth cannot be considered a point mass, and henco. any model for the dynamics must contain at least an implicit mass distribution. The concern of this section is the motion of this mass distribution and its relation to coordinate systems.

We will first consider the meanjeng of this motion of the Earth in terms of the requisitc coordinate systems for the orbit prediction problem:

The choice of appropriato coordinate systoms is controlled by several factors:

- In the case of a satcllite moving in the Earth's gravitational field, the mosl suitable reference system for orbit computation is a system with its origin at the Earth's center of mass', referred to as a geocentric reference system.
- The satellite equations of motion must be integrated in an inertial coordinate system.
- The Earth is rotating at a rate $\dot{\theta}_{g}$, which is the time rate of change of the Greenwich hour angle. This angle is the hour angle of the true equinox of date with respect to the Greenwich meridian as measured in the equatorial planc.
- The larth both precesses and nutates, thus changing the directions of both the larth's spin axis and the truc equinox of date in incrtial space.

The motions of the Earth referred to here are of course those of the "solid body" of the larth, the motion of the primary mass distribution. The slippage of the Earth's crust is considered elsewhere in Section 2.5.4 (polar motion).

2.3.1 The True of Date Coordinate Systom

Let us consider that at any given time, the spin axis of the Earth $(+Z)$ and the direction of the true equinox of date $(+X)$ may be used tu define a right-handed geocentric coordinate system. This system is known as the true of date coordinate system. The coordinate systems of NONAME will be defincd in terms of this system.

2.3.2 The Inertial Coordinatc System

The inertial coordinate system of NONAML is the true of date coordinate system defined at 0.0 of the epoch day for each satellite. This is the system in which the satellite equations of motion are integrated.

This is a right-handed, Cartesian, geocentric coordinate systom with the X axis directed along the true equinox of 0.0 of the epoch day and with the Z axis direct ed along the Earth's spin axis toward noth at the same time. The Y axis is of course defined so that the coordinate system is orthogonal.

It should be noted that the inertial system diffors from the true of date system by the variation in time of the directions of the Earth's spin axis and the true equinox of date. This variation is described by the effects of precession and nutation.

2.3.3 The Earth-fixed Coordinate Systom

The larth-fixcd coordinato systom is geocontrjc, with the Z axis pointing north along the axis of rotation and with the X axis in the equatorial planc pointing toward the Greenwich meridian. The system is orthogonal and right-handed; thus the Y axis is automatically defined.

This system is rotating with respect to the true of date coordinate system. The Z axis, the spin axis of the Earth, is common to both systems. The rotation rate is equal to the Earth's angular velocity. Consequently, the hour angle θ_{g} of the true equinox of date with respect to the Greenwich meridian (measured westward in the equatorial plane) is changing at a rate $\dot{0}_{g}$ equal to the angular velocity of the Earth.

2.3.4 Transformation Between Earth-fixed and True of Date Coordinates

The transformation between Earth-fixed and true of XEFIX date coordinates is a simple rotation. The Z axis is common to both systems. The angle between X_{i}, the true of date X component vector, and X_{e}, the Earth-fixed component vector, is θ_{g}, the Greenwich hour angle. The Y component vectors are similarly related. These transformations for $X_{e}, Y_{e}, X_{i}, Y_{i}$ which are accomplishod in

NONAME by the functions XEFIX, YEFIX, XINIERT, and YINERT GRHRAN are:

$$
\begin{array}{lll}
0 \quad X_{c}=X_{i} \cos 0_{g}+Y_{i} \sin 0_{g} & X 11: X \\
0 & Y_{c}=X_{i} \sin 0_{g}+Y_{i} \cos 0_{g} & \text { YLI: XX } \\
0 & X_{i}=X_{e} \cos \theta_{g}-Y_{c} \sin 0_{g} & \text { XINER'J } \\
0 & Y_{i}=X_{e} \sin 0_{g}+Y_{e} \cos 0_{g} & \text { YINERT }
\end{array}
$$

The transformation of velocities requires taking into account the rotational velocity, $\dot{0}_{g}$, of the liarth-. fixed system with respect to the true of date reforence frame. The following relationships should be noted:

$$
\begin{array}{ll}
\frac{\partial X_{e}}{\partial \theta_{g}}=Y_{e} & \frac{\partial Y_{e}}{\partial \theta_{g}}=-X_{e} \\
\frac{\partial X_{i}}{\partial \theta_{g}}=-Y_{i} & \frac{\partial Y_{i}}{\partial \theta_{g}}=X_{i} \tag{2}
\end{array}
$$

$$
\begin{aligned}
& \dot{X}_{e}=\left[\dot{X}_{i} \cos \theta_{g}+\dot{Y}_{i} \sin \theta_{g}\right]+y_{c} \dot{\theta}_{g} \\
& \dot{Y}_{e}=\left[-\dot{X}_{i} \sin 0_{g}+\dot{Y}_{i} \cos 0_{g}\right]-x_{c} \dot{\theta}_{g} \\
& \dot{X}_{i}=\left[\dot{X}_{e} \cos \theta_{g}-\dot{Y}_{e} \sin \theta_{g}\right]-Y_{i} \dot{0}_{g} \\
& \dot{Y}_{i}=\left[\dot{X}_{e} \sin 0_{g}+\dot{Y}_{e} \cos \theta_{g}\right]+X_{i} \dot{\theta}_{g}
\end{aligned}
$$

The brackets denote the part of each transform which is a transformation identical to its coordinate equivalent.

These same transformations are used in the
PREDCTT transformation of partial derivatives from the barthfixed system to true of date. For the $k^{\text {th }}$ measurement, C_{k}, the partial derivative transformations are explicitly:

$$
\begin{align*}
& \frac{\partial C_{k}}{\partial X_{i}}= {\left[\frac{\partial C_{k}}{\partial X_{e}} \cos \theta_{g}-\frac{\partial C_{k}}{\partial Y_{e}}\right.} \tag{3}\\
&\left.\sin \theta_{g}\right] \\
&+\left[\frac{\partial C_{k}}{\partial \dot{X}_{e}} \sin \theta_{g}-\frac{\partial C_{k}}{\partial Y_{e}} \cos \theta_{g}\right] \dot{\theta}_{g}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial C_{k}}{\partial Y_{i}}= {\left[\frac{\partial C_{k}}{\partial X_{c}} \sin \theta_{g}+\frac{\partial C_{k}}{\partial Y_{c}} \cos 0_{g}\right.} \tag{1}\\
&+\left[\begin{array}{lll}
\frac{\partial C_{k}}{\partial \dot{X}_{c}} & \cos 0_{g}-\frac{\partial C_{k}}{\partial \dot{Y}_{c}} & \sin 0_{g} \\
& \cdot \\
\frac{\partial C_{k}}{\partial \dot{X}_{i}}= & {\left[\frac{\partial C_{k}}{\partial \dot{X}_{e}} \cos \theta_{g}-\frac{\partial C_{k}}{\partial \dot{Y}_{c}} \sin \theta_{g}\right.}
\end{array}\right] \\
& \frac{\partial C_{k}}{\partial \dot{Y}_{i}}=\left[\frac{\partial C_{k}}{\partial \dot{X}_{e}} \sin \theta_{g}+\frac{\partial C_{k}}{\partial \dot{Y}_{e}} \cos 0_{g}\right] \tag{5}
\end{align*}
$$

The brackets have the same meaning as before.
XLIF1 ${ }^{\prime}$
Yerfl
XINERT using the functions XEFIX, YEFIX, X[NENT", or YJN\&R'J' in three NONAME subroutincs: GRIRAN, OBSDO'T, and YINERT GRIRAN PREDCT.

2.3.5 Computation of 0_{g}

The computation of the Greenwich hour angle is quite GRIRAN important because it provides the orientation of the Earth F relative to the true of date system. The additional effects; i.e., to transform from true of date to inertial, of precession and nutation are sufficiently small that early orbit analysis programs neglected them. Thus, this angle is the major variable in relating the Earth-fixed system to the inertial reference frame in which the satellite equations of motion are integrated.

The evaluation of ${ }_{g}$ is discussed in detail in the Explanatory Supplement, Reference $1_{i} 0_{g}$ is computed in subroutines GRHRAN and F from the expression:

$$
\begin{equation*}
\theta_{\mathrm{g}}=\theta_{g_{0}}+\Delta t_{1} \dot{\theta}_{1}+\Delta t_{2} \dot{\theta}_{2}+\Delta \alpha \tag{1}
\end{equation*}
$$

where
Δt_{l} is the integer number of days since January 0.0 of the reference year,
Δt_{2} is the fractional part of a day for the time of interest,
$\theta_{g_{0}}$ is the Greenwich hour angle on January 0.0 of the reference year,
$\dot{\theta}_{1}$ is the mean advance of the Greenwich hour angle per mean solar day,
$\dot{\theta}_{2}$ is the mean daily rate of advance of Greenwich hour angle $\left(2 \pi+\theta_{1}\right)$, and
$\Delta \alpha$ is the equation of equinoxes (nutation in right ascension).

The initial θ_{g} is obtained from a table of JANTHG values containing the ${ }^{g_{0}}$ Greenwich hour angle on January 0.0 for each year. This table is in Common Block CGEOS and is accessed in JANTHG.

The equation of equinoxes, $\Delta \alpha$, is obtained from subroutine EPHIM, which calculates the quantity from the ephemeris tape data according to the liverett fifthorder interpolation scheme used for the 7 unar and solar ephomerides.2.3.6 Precossion and ivutation
The incrtial coordinate system of NONMML, in
which the equations of motion are integrated, is defined by the truc equator and equinox of date for 0.0 of the day of epoch. However, the harth-fixed coordinate system is related to the true equator and equinox of date at any given instant. Thus, it is. necessary to consider the effects which change the orientation in space of the equatorial plane and the ecliptic plane.

These phenomena are

- the combined gravitational offect of the moon and the sum on the Earth's equatorial sulgc, and
- the effect of the gravitational pulls of the various planets on the liarth's orbit.

The first of these affects the orientation of the equatorial plane; the second affects the orientation of the ecliptic plane. Both affect the relationship between the inertial and Earth-fixed reference systems of NONAME.

The effect of these phenomena is to cause precession and nutation, both for the spin axis of the Earth and for the ecliptic pole. This precession and nutation provides the relationship between the inertial system defined by the true equator and equinox of date for epoch and the "instantaneous" inertial system defined by the truc equator and equinox of date at any
given jinstant. Let us consider the effect of each of these phenomena in greater detail.

The luni-solar effects cause tho Warth's axis "obliquity of the ecliptic") but will affect the position of the equinox in the ecliptic planc. Thus the effect of luni-solar precession is entirely in celestial longitude. The nutation will affect both, consequently we have nutation in longitude and nutation in obliquity.

The offect of the plancts on the larth's orhit will cause both secular and periodic deviations. However, the ecliptic is defined to bo the mean planc of the Earth's orbit. Periodic effects are not considered to be a change in the oriontation of the ecliptic; they are considered to be a perturbation of the Earth's celestial latitude. (See Reference 1.)

The secular effect of the planets on the ecliptic plane is separated into two parts: planetary precession and a secular change in obliquity. The effect of planetary precession is entirely in right ascension.

In summary, the secular effects on the orientations of the equatorial plane are:
!
$0 \quad$ luni-solar precession,
$0 \quad$ planctary procession, and
$0 \quad$ a secular change in obliquity.

As is the convention, all of these secular affects are considered under the heading, "precession." the periodic effects are

- nutation in longitude, and
- nutation in obliquity.

In terms of the NONAME system, subroutine PRLCES determines the secular effects; $i . c .$, the rotation matrix wisch will transform coordinates from tho mean equator and equinox of date to the mean equator and equinox of 1950.0.

Subroutine NUTATE dotermines the rotation matrix
PRECES to transform from true equator and equinox of date to mean equator and equinox of datc. This accounts for the periodic effects.

NONAME has two different routincs for transforming from one epoch to another. These are EQUATR and EQUATR REFCOR REFCOR. Both will take either mean or true coordinate imput and output in mean or true coordinates as requested. The same general algorithm is used in both:

- Rotate from true to mean equator and equinox of input date if required.
- Rotate from mean of imput date to mean of 1950.0.
- Rotate from mean of 1950.0 to mean of output date.
- Rotate from mean to true of output date if required.

Al1 of thesc rotations are of course donc with rotation matrices.

Subroutine REFCOR will fransform between any
time of day and 0 h. on a given reference day. This reference day and time are the epoch of the incrital coordinate system of NONAME. It performs this transform by interpolating linearly between the rotation matrices for the day of the input and that day plus one.

2.3.6.1 Precession

The precession of coordinates from the mean
PRECES equator and equinox of one epoch t_{0} to the mean equator and equinox of t_{I} is accomplishod very simply. Examine Figure 1 and consider a position described by the vector \bar{X} in the X_{1}, X_{2}, X_{3} coordinate system which is

$$
\begin{aligned}
& P_{1}=\text { Direction of Mean Axis of Motion at } t_{0} \\
& P_{2}=\text { Direction of Mean Axis of Motion at }{ }_{1} \\
& \gamma_{1}=\text { Direction of Mean Equinox at } \dagger_{0} \\
& \gamma_{2}=\text { Direction of Mean Equinox at }{ }_{1}{ }_{1}
\end{aligned}
$$

Fig. 1: Rotation Between Mean Equator \& Equinox of Epoch to and

Mean Equator \& Equinox of Epoch th

defined by the mean equator and equinox of t_{0}. likewise, consider the same position as described by the vector Y in the Y_{1}, Y_{2}, Y_{3} system defined by the mean equator and equinox of t_{1}. the expression relating these vectors,

$$
\begin{equation*}
Y=R_{3}(-z) R_{2}(0) R_{3}(-\zeta) \bar{X} \tag{1}
\end{equation*}
$$

follows directly from inspection of Figure 1.

It should be observed that $90^{\circ}-\zeta$ is the right ascension of the ascending node of the equator of epoch t_{0} reckoned from the equinox of $t_{0}, 90^{\circ}=2$ is the right ascensjon of the node rockoned from the equinox of t_{1} and 0 is the inclination of the equator of t_{1} to the epoch of t_{0}.

Numerical expressions for these rotation angles z, θ, ζ were derived by Simon Newcomb, based partly upon theoretical considerations but primarjly upon actual observation. (Sce References for the derivations.) The formulae used in NONMME are relative to an initial epoch of 1950.0:

$$
\begin{align*}
\zeta= & \mathrm{R}_{305} 95320465 \times 10^{-6} \mathrm{~d}+\mathrm{R}_{109} 7492 \times 10^{-14} \mathrm{~d}^{2} \tag{2}\\
& +\mathrm{R}_{1} 78097 \times 10^{-20} \mathrm{~d}^{3} \\
\mathrm{z}= & \mathrm{R}_{305} 95320465 \times 10^{-6} \mathrm{~d}+\mathrm{R}_{397} 2049 \times 10^{-14} \mathrm{~d}^{2} \tag{3}\\
& +\mathrm{R}_{191} 031 \times 10^{-20} \mathrm{~d}^{3}
\end{align*}
$$

$\theta={ }^{R} 266103999754 \times 10^{-6} d^{-}-{ }^{R} 1548118 \times 10^{-14} d^{2}$
(4) PRECES

- ${ }^{R} 413902 \times 10^{-20} \mathrm{~d}^{3}$

The angles are in radians. The quantity d is the number of elapsed days since 1950.0.

The nutation of coordinates between mean and true equator and equinox of date is readily accomplished. using rotation matrices. lixaminc jijgure 1 and consider a position described by the vector X in the X_{1}, X_{2}, X_{3} system which is described by the mean equator ant equinox of date. Likewisc, consider the same position as described by the vector \bar{Z} in the Z_{1}, Z_{2}, Z_{3} system defined by the true equator and equinox of date. The expression relating these vectors,

$$
\begin{equation*}
\bar{Z}=R_{1}\left(-\varepsilon_{T}\right) R_{3}(-\Delta \psi) R_{1}\left(\varepsilon_{3 n}\right) \bar{x} \tag{1}
\end{equation*}
$$

follows direct]y from inspection of Figure 1.

The definition of thesc angles are:
$\varepsilon_{T}-$ true obliquity of date
ε_{m} - mean obliquity of date
$\Delta \psi$ - nutation in longitude

Note that $\varepsilon_{T}-\varepsilon_{m}$ is the nutation in obliquity.

The remaining problem is to compute the nutations
NUTATE
in longitude and obliquity. The algorithm used in NONAME was developed by Woolard and is coded in subroutine EQN.

$$
\begin{aligned}
& { }^{{ }^{\epsilon} M}=\text { Mean Obliquity of Date } \\
& { }^{\epsilon} T=\text { True Obliquity of Date } \\
& \gamma_{M}=\text { Direction of Mean Equinox of Date } \\
& \gamma_{T}=\text { Direction of Time Equinox of Date }
\end{aligned}
$$

Figure 1: Rotation Between Mean Equator \& Equinox of Date and
True Equator \& Equinox of Date

Woolard's solution as it appears in reforences 3 through 4 is reproduced in Tables lia, lb, and 1c. The periodic terms have been rearranged in descending order of magnitude. The subprogram BQN computes the mutation in longitude and obliquity by using the algorithm in Tables $2 a, 2 b$, and $2 c$. In Table $2 a$ thic angular units of the fundamental argunents have been charged to radjans and the time units have been charged to days. Tables $2 b$ and $2 c$ are identical to Tables 1 b and 1 c often neglecting all periodic terms with cocfficionts less than ! 001 and all secular portions of the coefficient which are less than ! 001 . The expressions for true obliquity of date and nutation in right ascension appear in Table 2 d .

The definitions of the variables used in these solutions and additional notation are as follows:
$J=$ Julian Ephemeris Date of desjred calculation
$J_{0}=2415020.5$ (Julian Epheneris Date corresponding to 1900 January 0.5 Ephomeris Time)
$T=\left(J-J_{0}\right) / 36525=$ Julian ephemeris centuries of 36525 Ephemeris Days elapsed from J_{o} to J
$d=J-J_{0}=$ Ephemeris Days elapsed from J to J_{0}

COORDINATE SYSTIM: Geocentric, ecliptic and mean equinox: of date:

```
g = mean anomaly - Moon
g' = meain anomaly - Sun
F = mean angular distance of the Moon from jts
    asconding node
D = mean elongation of the Moon Srom the Sun
\Omega= longitude of the mean asconding node of the
        Moon's orbit
    \varepsilon
    \varepsilon
    \Delta\varepsilon = nutation in obliquity
    \Delta\psi = nutation in longitude
    \Delta\alpha= nutation in right ascension
        (equation of the equinoxes)
```

TABLI: 1 a FUNDAMIENTAL ARGUABATS

$$
\begin{aligned}
& g=296^{\circ} 06^{\prime \prime} 16^{\prime} .59+1325^{\mathrm{r}} 198^{\circ} 50^{\prime} 56^{\prime} \cdot 79 \mathrm{H}+33^{3} 09 \mathrm{~T}^{2}+40518 \mathrm{H}^{3} \\
& g^{\prime}=3358^{\circ} 28^{\prime} 33^{4} 00+99^{\mathrm{r}} 359^{\circ} 02^{\prime} 599^{\prime} 10 \mathrm{~T}-459 \mathrm{~T}^{2}-40120 \mathrm{~T}^{3} \\
& \mathrm{~F}=11^{\circ} 15^{\prime} 03^{\prime \prime} 20+1342^{\mathrm{r}} 82^{\circ} 01^{\prime} 30!54 \mathrm{~T}-11!56 \mathrm{~T}^{2}-10012 \mathrm{~T}^{3} \\
& \mathrm{D}=350^{\circ} 44^{i} 14^{\prime} .95+1236^{\mathrm{r}} 307^{\circ} 06^{\prime} 51.118 \mathrm{~J}-5!17 \mathrm{~J}^{2}-40068 \mathrm{~J}^{3} \\
& \Omega=259^{\circ} 10^{\prime} 59^{\prime \prime} 79-\quad 5^{r} 134^{\circ} 08^{1} 31.423 \mathrm{~J} .+7!18 \mathrm{~T}^{2}+40080 \mathrm{~T}^{3} \\
& \varepsilon_{\mathrm{M}}=23^{\circ} 27^{.0} 08^{\prime!} 26-\quad 46!845 \mathrm{~T}-\quad \because 0059^{2}+!0080 \mathrm{~T}^{3}
\end{aligned}
$$

TABLE Ib NUTATION IN OBLTQUSTY

TABLIF 1 b (Cont.)

TABLE ic NUTATLION in LONGitude

TABII: 1 c (Cont.)

TABLE Ic (Cont.)

TABLE 2a FUNDAMENTAL ARGUMENTS

$$
\begin{aligned}
& g=5^{\mathrm{r}} 168000345745+\mathrm{r}_{228} 027134959576 \mathrm{~d}+\mathrm{r}_{120} 251689 \times 10^{-12} \mathrm{~d}^{2}+5^{\mathrm{T}} 153 \mathrm{~S} 76 \times 10^{-21} \mathrm{c} \\
& \mathrm{~g}^{\prime}=6.256583580497+\text { T017 } 201969766646 \mathrm{~d}-\stackrel{\mathrm{r}}{\mathrm{r}} 001966037 \times 10^{-12} \mathrm{~d}^{2} \quad \mathrm{I}^{\mathrm{r}} 19504 \mathrm{~S} \times 10^{-21} \\
& \mathrm{~F}=\mathrm{r}_{1} 196365054887+\mathrm{r}_{2} 330895723235372 \mathrm{~d}-\mathrm{r}_{0} 042009958 \times 10^{-12} \mathrm{~d}^{-2}-\quad{ }^{\mathrm{r}} 119395 \times 10^{-21} \\
& D=6{ }^{\mathrm{r}} 121523942807+{ }^{\mathrm{r}} 212768711675140 \mathrm{~d}-{ }^{\mathrm{r}} 018788191 \times 10^{-12} \mathrm{~d}^{2}+{ }^{\mathrm{r}} 676571 \times 10^{-21} \\
& \Omega=4^{\mathrm{r}} 523601514852-\mathrm{r}_{0} 000924220294225 \mathrm{~d}+\mathrm{r}_{027} 182914 \times 10^{-12} \mathrm{~d}^{2}+\frac{\mathrm{r}}{795} 965 \times 10^{-21} \mathrm{c}
\end{aligned}
$$

TABLE 2b NUTATYON 1 N OBILQUETY

TABIE 2c NUTATION IN I,ONGITUMI:

TABLI: Lc (Cont.)

Table ad: True obliquity of Date and Nutation in right ascension

$$
\begin{aligned}
& \varepsilon_{\mathrm{T}}=\varepsilon_{\mathrm{M}}+\Delta \varepsilon \\
& \Delta \alpha=\Delta \psi \cos \varepsilon_{\mathrm{T}}
\end{aligned}
$$

SECTION 2.4

LUNI-SOLAR EPHIEMIRRIDISS
' NONAME uses procomputed equi-spaced cphomeris data EPHIEN jn true of date coordinates for both the Sun and the Noon. The actual ephemerides are computed using livereti's firthorder interpolation formula. The interval between ephemerides; j.e., the tabular interval h, is 0.5 days.

The NONAMF ephemeris tape contajns the lumar and solar ephemerides in true of date coordinates and the equation of equinox. The format of this tape is presented in Volume III of the NONAME System Documentation.

This ephemeris tape was propared from a JPL planetary ephemeris tape corresponding to "Jpi, Bevelopment liphemeris Number 19," Reforence $1 . \quad J P L$ provided subroutines RISADE and GETTAP which obtain the ophomerides from the Jple tape. NONAME subroutine EQUATR was used to process and nutate the ephemerides to the truc of date systom. The interpolation differences d_{j} were also recomputed, using the equations given on page 6 of the above report.

The formulation for Everctt's firth-order interpoIation is

$$
\begin{align*}
y\left(t_{. j}+s h\right)= & y_{j} F_{0}(1-s)+d_{j}^{2} F_{2}(1-s) \tag{1}\\
& +d_{j}^{4} F_{4}(1-s) \\
& +y_{j+1} F_{0}(s)+d_{j+1}^{2} F_{2}(s) \\
& +d_{j+1}^{4} F_{4}(s)
\end{align*}
$$

$$
\begin{aligned}
& F_{0}(s)=s \\
& F_{2}(s)=[(s-1)(s)(s+1)] / 0 \\
& F_{4}(s)=[(s-2)(s-2)(s-1)(s)(s+1)(s+2)] / 120
\end{aligned}
$$

The quantity s is of course the fractional interval for the interpolation. The quantities d_{j} are obtained from the ephemeris tape.

SHCIION 2.5
THE OBSERVIRR

This section is concorned with the position and coordinate systems of the obscrver. Thus it will cover

- geodetic station position; coordinates,
- topocentric coordinate systoms,
(3) time reference systoms, and
- polar motion.

The geodetic station posjtion coordjmates are a convenient and quite common way of describing station positions. Conscquently, NONAME contains provisions for converting to and from these coordinates, including the transformation of the covariance matrix for the determined Cartesian station positions.

The topocentric coordinate systoms are coordinate systems to which the observer references his observations.

The time reference systems are the time systoms in which the observer specifies his observations. The transformations between time relerence systems are also given. These latter are used both to convert the observation times to Al time, which is the independent variable in the equations of motion, and to convert the NONAME output to UTC time, which is the generally recognizel system for output.

The positions of the observers in NONABll are referred to an Earth-fixed system defined hy the mean pote of f400. 5 and Grecnwich. They are rotated into the larth fixed system of date at each observation time by applying "polar motion", which is considered to be slippage of the larth's crust.

2.5.1 Gcodetic Coordinates

Frequently, it is more convenient to define the station positions in a spherical coordinate system. The spherical coordinate system uses an oblate spheroid or an ellipsoid of revolution as a model for the geometric shape of the Earth. The farth is flattened slightly at the poles and bulges a littlo at the equator; thus, a cross scction of the larth is approximately an cllipse. Rotating an ellijpse about its shorter axis forms an oblate spherejd.

An oblate spheroid is uniquely defined by. specifying two dimensions, conventionally, the semi-major axis and the flattening, f, where $f=\frac{a-b}{a}$. (See Figure 1)

This model is used in the NONAML system. The spherical coordinates utilized are termed geodetic coordinates and are defined as follows:

- $\quad \phi$ is geodetic latitude, the acutc angle between the semi-major axis and a line through the observer perpendicular to the spheroid.
- $\quad \lambda$ is east longitude, the angle measured eastward in the equatorial plane betweon the Greenwich meridian and the observer's meridian.
- h js spheroid hoight, the perpendicular. hejght of the obscrver above the refercnce spheroid.

Consjder the problem of converting from ϕ, λ, and
h to X_{e}, Y_{e}, and Z_{e}, the Larth-fixed Cartosian coordinates.
The geometry for an $X-Z$ plano is illustratod in Figure 1. The equation for this ellipsc is

$$
\begin{equation*}
x^{2}+\frac{z^{2}}{\left(1-e^{2}\right)}=a^{2} \tag{1}
\end{equation*}
$$

where the eccentricity has been determined from the flattening by the familiar relationship

$$
\begin{equation*}
e^{2}=1-(1-f)^{2} \tag{2}
\end{equation*}
$$

Figure 1: Diagram of Geodetic and Gcocentric Latitudes

The equation for the normal to the surface of the elipse yiclds

$$
\begin{equation*}
\tan \phi=-\frac{\mathrm{d} x}{\mathrm{~d} z} \tag{3}
\end{equation*}
$$

By taking differentials on equation (1) and applying the result in equation (3), we arrive at

$$
\begin{equation*}
\frac{z}{x}=\left(1-c^{2}\right) \tan \phi \tag{4}
\end{equation*}
$$

The simultaneous solution of equations (1) and (1) for X yields

$$
\begin{equation*}
x=\frac{a \cos \phi}{\sqrt{1-e^{2} \sin ^{2} \phi}} \tag{5}
\end{equation*}
$$

From inspection of Figure 1 we have:

$$
\begin{equation*}
\cos \phi=\frac{X}{N} ; \tag{6}
\end{equation*}
$$

and hence, applying equation (5),

$$
\begin{equation*}
N=\frac{a}{\sqrt{1-e^{2} \sin ^{2} \phi}} \tag{7}
\end{equation*}
$$

For an observer "at a distance h from the refer. ence ellipsoid, the observer's coordinates (x, z) become

$$
\begin{equation*}
X=N \cos \phi+h \cos \phi \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
Z=N\left(I-c^{2}\right) \sin \phi+h \sin \phi \tag{9}
\end{equation*}
$$

The conversion of ϕ, λ, and h to X_{c}, Y_{c}, and Z_{c} is then

$$
\left[\begin{array}{l}
X_{c} \tag{10}\\
Y_{e} \\
Z_{e}
\end{array}\right]=\left[\begin{array}{ll}
(N+h) & \cos \phi \cos \lambda \\
(N+h) & \cos \phi \sin \lambda \\
\left(N+h-c^{2}\right. & N
\end{array}\right]
$$

In the NONAME system this conversion is performed in subroutine SQUANT.

The problem of converting from X_{e}, Y_{e}, and Z_{e} to ϕ, λ, and h is more complex as we cannot start with a point on the reference ellipsoid. For this rcason the determination of accurato values for ϕ and h roquires an iterative technique.

Conversion to Geodetic Coordinates

For the problem of converting station coobdinates finow
in X_{e}, Y_{e}, and Z_{e} to ϕ, λ, and h we know that N is on the order of magnitude of an Earth radius, and h is ar fow meters. Hence

$$
\begin{equation*}
h \ll N \tag{11}
\end{equation*}
$$

The Earth is approximately a sphere, hence

$$
\begin{equation*}
\mathrm{e} \ll 1 \tag{1.2}
\end{equation*}
$$

Therefore, again working in our $X-Z$ planc (sec Figure 1),

$$
\begin{equation*}
N \sin \phi \approx z \tag{13}
\end{equation*}
$$

From Figure 1 (see also equation (9)) wo have

$$
\begin{equation*}
t=N e^{2} \sin \phi \tag{14}
\end{equation*}
$$

or, for an initial approximation,

$$
\begin{equation*}
t \tilde{\sim} e^{2} z \tag{15}
\end{equation*}
$$

The serjes of calculations to be performed on each iteration is:

$$
\begin{align*}
& Z_{t}=Z+t \tag{1.6}\\
& N+h=\left(X_{e}^{2}+Y_{c}^{2}+Z_{t}^{2}\right)^{1 / 2} \tag{17}\\
& \sin \phi=Z_{t} /(N+h) \tag{18}\\
& N=a /\left(1-c^{2} \sin ^{2} \phi\right)^{1 / 2} \tag{19}\\
& t=N^{2} \sin \phi . \tag{20}
\end{align*}
$$

When t converges, ϕ and h are computed rrom sin ϕ and $(N+h)$. The computation of λ is obvious; it bcing simply

$$
\begin{equation*}
\lambda=\tan ^{-1}\left(\mathrm{Y}_{\mathrm{e}} / \mathrm{X}_{\mathrm{c}}\right) \tag{2}
\end{equation*}
$$

This procedure for determining ϕ, λ, and h is that coded in subroutine PLHOUT.

There is a different procedure in subroutine min: PREDCT for computing ψ, λ, and h for satellitc. This PR:T is because the accuracy requirements are less stringent.

This different procedure iss also used in subrombine DRAG to evaluate the satellite height for subroutine minsily.

Because c << 1, we may write an approximation to equation (9):

$$
\begin{equation*}
z=(N+h)\left(1-e^{2}\right) \sin \phi=z_{c} \tag{22}
\end{equation*}
$$

From Figure 1,

$$
\begin{equation*}
X=(N+h) \cos \phi=\sqrt{X_{c}^{2}+Y_{c}^{2}} \tag{23}
\end{equation*}
$$

and by remembering equation (2),

$$
\begin{equation*}
\phi=\tan ^{-1}\left[\frac{z_{c}}{(1-f)^{2} \sqrt{\widehat{x}_{e}^{2}+Y_{c}^{2}}}\right] \tag{24}
\end{equation*}
$$

The equation for the ellipsc, equation (1),
DRACi
yields the following formula for the radius of the
pRE日C" ellipsoid:

$$
\begin{equation*}
{ }^{r} \text { ellipsoid }=\sqrt{x^{2}+z^{2}}=\frac{a(1-r)}{\left.\sqrt{1-\left(2 \Gamma-r^{2}\right)\left(1-\sin ^{2}\right.} \psi^{-}\right)} \tag{27}
\end{equation*}
$$

where ϕ^{\prime} is the geocentric Jatitude. Nfter applying the Binomial Theorem, we arrive at

$$
\begin{equation*}
r_{\text {ellipsoid }}=a\left[1-\left(f+\frac{3}{2} f^{2}\right) \sin ^{2} \phi^{\prime}+\frac{3}{2} f^{2} \sin ^{4} \phi^{\prime}\right] \tag{28}
\end{equation*}
$$

wherein terms on the order of f^{3} have been neglectod. 'ihe (spheroid) height may then be calculated from r, the geocentric radius of the satellite:

$$
\begin{align*}
& h=r-r e 11 i p s o i d, \text { or } \tag{29}\\
& h=\sqrt{X_{e}^{2}+Y_{e}^{2}+Z_{e}^{2}}-a+\left(a f+\frac{3}{2} a f^{2}\right) \sin ^{2} \phi-\frac{3}{2} a \varepsilon^{2} \sin ^{4} \phi \tag{30}
\end{align*}
$$

The sine of the geocentric latitude, sin ϕ^{\prime}, is of course $\frac{Z_{\mathrm{e}}}{\mathrm{r}}$.

Subroutine VIival also requires the partial
vi:VAl.
derivatives of h with respect to position for the drag variational partials computations:

$$
\begin{align*}
\frac{\partial h}{\partial r_{i}} & =\frac{r_{i}}{r}+2 \sin \phi^{\prime}\left[\left(\text { af }+\frac{3}{2} a f^{2}\right)\right. \tag{31}\\
& \left.-3 a f^{2} \sin ^{2} \phi^{\prime}\right]\left[\begin{array}{l}
z_{e} r_{i} \\
r^{3}
\end{array} \frac{1}{r} \frac{\partial z_{c}}{\partial r_{i}}\right]
\end{align*}
$$

where the
$r_{i} \quad$ are the Earth-fixed components of \bar{r}; i.e.,
$\left\{X_{e}, Y_{e}, Z_{e}\right\}$.

In addition to the conversion of the coordinates
INOUPT
themselves, NONAME also converts covariance matrices for SQUANT the station positions to either the ϕ, λ, h system or piHOU': the Earth-fixed rectangular system. This is accomplished VCONV in INOUPT, SQUANT, and PLHOUT by calling VCONV to compute 1

$$
\begin{equation*}
\mathrm{V}_{\text {OUT }}=\mathrm{p}^{\mathrm{T}} \mathrm{~V}_{\mathrm{IN}} \mathrm{P} \tag{32}
\end{equation*}
$$

where $\mathrm{V}_{\text {OUT }}$ is the output covariance matrix, $\mathrm{V}_{\text {IN }}$ is the. input covariance matrix, and p is the matrix of partials relating the coordinates in the output system to the coordinates in the input system.

These partial derivatives (in p) which NONAME
requires are for X_{c}, Y_{c}, Z_{e} with respect to ϕ, λ, h and vice versa. These partials are:

$$
\begin{aligned}
& \frac{\partial \phi}{\partial X_{e}}=-X_{e} Z_{c}\left(1-e^{2}\right) /\left(\left(1-e^{2}\right)^{2}\left(X_{e}^{2}+Y_{e}^{2}\right)+Z_{c}^{2}\right)\left(X_{e}^{2}+Y_{e}^{2}\right)^{\frac{1}{2}} \\
& \frac{\partial \phi}{\partial Y_{e}}=-Y_{e} Z_{e}\left(1-c^{2}\right) /\left(\left(1-e^{2}\right)^{2}\left(X_{e}^{2}+Y_{c}^{2}\right)+Z_{c}^{2}\right)\left(X_{c}^{2}+Y_{c}^{2}\right)^{\frac{1}{2}} \\
& \left.\frac{\partial \phi}{\partial Z_{e}}=\left(X_{e}^{2}+Y_{e}^{2}\right) /\left(1-e^{2}\right)^{2}\left(X_{e}^{2}+Y_{c}^{2}\right)+Z_{e}^{2}\right)\left(X_{e}^{2}+Y_{c}^{2}\right)^{\frac{1}{2}} \\
& \frac{\partial \lambda}{\partial X_{e}}=-Y_{e} /\left(X_{e}^{2}+Y_{e}^{2}\right) \\
& \frac{\partial \lambda}{\partial Y_{e}}=X_{e} /\left(X_{e}^{2}+Y_{e}^{2}\right) \\
& \frac{\partial \lambda}{\partial Z_{e}}=0 \\
& \frac{\partial h}{\partial X_{e}}=\frac{\partial \phi}{\partial X_{e}}\left(-e^{2} a\left(1-e^{2}\right) \sin \phi \cos \phi /\left(1-c^{2} \sin ^{2} \phi\right)^{\frac{3}{2}}-Z_{e} \cos \phi / \sin ^{2} \phi\right) \\
& \frac{\partial h}{\partial Y_{e}}=\frac{\partial \phi}{\partial Y_{e}}\left(-e^{2} a\left(1-c^{2}\right) \sin \phi \cos \phi /\left(1-3^{2} \sin ^{2} \phi\right)^{\frac{3}{2}}-Z_{e} \cos \phi / \sin ^{2} \phi\right) \\
& \frac{\partial h}{\partial Z}=\frac{\partial \phi}{\partial Z}\left(-e^{2} a\left(1-3^{2}\right) \sin \phi \cos \phi /\left(1-3^{2} \sin ^{2} \phi\right)^{\frac{3}{2}}-Z_{e} \cos \phi / \sin ^{2} \phi\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial x_{e}}{\partial \phi}=-\sin \phi \cos \lambda\left[N+h-\frac{N c^{2} \cos ^{2} \phi}{1-e^{2} \sin ^{2} \phi}\right] \\
& \frac{\partial X_{e}}{\partial \lambda}=-(N+h) \cos \phi \sin \lambda \\
& \frac{\partial \chi_{e}}{\partial h}=\cos \phi \cos \lambda \\
& \frac{\partial Y_{c}}{\partial \phi}=-\sin \phi \sin \lambda \cdot\left[N+h-\frac{N^{2} \cos ^{2} \phi}{1-c^{2} \sin ^{2} \phi}\right] \\
& \frac{\partial Y e}{\partial \lambda}=(N+h) \cos \phi \cos \lambda \\
& \frac{\partial Y_{e}}{\partial h}=\cos \phi \sin \lambda \\
& \frac{\partial Z_{e}}{\partial \phi}=\cos \phi\left[h+N\left(1-e^{2}\right)\left(1+\frac{e^{2} \sin ^{2} \phi}{1-e^{2} \sin }\right)\right] \\
& \frac{\partial Z_{e}}{\partial \lambda}=0 \\
& \frac{\partial Z e}{\partial h}=\sin \phi
\end{aligned}
$$

The partials for converting from X_{c}, Y_{e}, Z_{e} to ϕ, λ, h are computed in subroutine PLHOUT. Those for converting from ϕ, λ, h to X_{e}, Y_{c}, Z_{e} are computed in subroutine SQUANT.

2.5.2 Jopocentric Coordinate Systoms

The obscrvations of a spacecraft are usually referenced to the obscrver, and therefore an additional set of reference systems is used for this purpose. Whe origin of these systems, referred to as topocentrie coordinate systems, is the obscrver on the surface of the earth.

Topocentric right ascension and dectination are measured in an incrijal system whose Z axis and fundamental. planc arc parallel to those of the geocentric incrtial system. The X axis in this case also points toward the vernal equinox.

The other major topocontric system is the larthfixed system determined by the zenith and the observer's horizon planc. This is an orthonormal system defined by \hat{N}, \hat{E}, and \hat{Z}, which are unit vectors which point in the same directions as vectors from the observer pointing north, cast, and toward the zenith. Jheix definitions are:

$$
\begin{align*}
& \hat{\mathrm{N}}=\left[\begin{array}{c}
-\sin \phi \cos \lambda \\
-\sin \phi \sin \lambda \\
\cos \phi
\end{array}\right] \tag{1}\\
& \hat{\mathrm{E}}=\left[\begin{array}{c}
-\sin \lambda \\
\cos \lambda \\
0
\end{array}\right] \tag{2}\\
& \hat{Z}=\left[\begin{array}{c}
\cos \phi \cos \lambda \\
\cos \phi \sin \lambda \\
\sin \phi
\end{array}\right] \tag{3}
\end{align*}
$$

where ϕ, , $/$ s the geodetic latitude and A is the cast longitude of the obscrver (sec Section 2.5.t).
 \&QUANT for use in PREDCT and OBSIOT.

This latter system is the one to which such measurements as azimuth and clevation, X and Y angles, and direction cosines are related.

It should be noted that the reference systems for range and range rate must be larth-fixed, but the choice of origin is arbitrary. In NONNil, range and range rate are not considered to be topocentric, but rather geocentric.

2.5.3 Time Reference Systems

Three principal time systoms are currently in
use: ephemeris time, atomic time, and univorsal time.

Ephomeris time is the independent variable in the equations of motion of the sun; this time is the uniform mathematical time. lhe corrections that must be applicd to universal time to obtain ephemeris time are published in the American Lphomeris ancl Natical Almanac or alternatively by BlH, the "Burcal International de I'Heure."

Atomic time is a time based on the oscillations of cesium at zero field. In practice Al time is based on the mean frequency of oscillation of several cesium standards as compared with the frequency of ephemeris time. This is the time system in which the satellite equations of motion are integrated in NONAME.

Universal time js determined by the rotation of the Earth. UT], the time reference system used in NONAMI: to position the Earth, is universal time that has been corrected for polar motion. UMC is the ime of the transmitting clock of any of the synchronized transmitting time signals. The frequency of a uTC clock is pro-set to a predicted rrequency of u't2 time, where UT2 time is universal time correceed for observed polar motion and cxtrapolated scasonaj variation in the speed of the carth's rotation.

The reader who is unfamiliar with those time systems should refer to one of the annual reports of BII.

2.5.3.1 Time System Transformations

The time system transformations are between any combination of the Al, UT1, U'2, or UTC reference systems. These transformations are computed in the NONAME system by subroutine TDTF.

The time transformation between any imput time system and any output time system is formed by simple addition and subtraction or the following set of time differences:

```
- UT2 - UT1.
    0 A1 - U'T]
    - Al - UTC
```

The following equation is used to calculate (UT2-UTJ) for any yoar:

$$
\begin{align*}
\text { (UT2-UTI) }= & +\stackrel{S}{0} 22 \text { sin } 2 \pi t-.012 \cos 2 \pi t \\
& -\stackrel{S}{5} 006 \sin 4 \pi t+5007 \cos 4 \pi t \cdot \\
t= & \text { Eraction of the tropical year } \\
& \text { clapsed from the beginning of the } \\
& \text { Bessclian year for which the } \\
& \text { calculation is made. } \\
& (1 \text { tropical year }=365.2422 \text { days) }
\end{align*}
$$

This difference, (UT2-UTI), is also known by the name "seasonal variation."

The tjme difference (Al-IIPl) is computed by linear interpolation from a table of values.
The spacing for the table is every 10 days, which matches the increment for the "final time of enission" data published by the U.S. Naval Observatory in the bulletin, "Time Signals." The differences for this table are determined by

$$
(A 1-U T 1)=(\Lambda L-U T C)-(U T 1-U T C)
$$

The values for (UT1 - UTC) are obtajned from "Circular D", BIH. The differences (A1 - UTC) are determined according to the following procedure.

The computation of (A1-UTC) is simple, but not so straightforward. UTC contains discontinujties both in epoch and in frequency because an attempl is made to keep the difference between at UTC clock and a UT2 clock less than $\stackrel{\text { S }}{ } \mathrm{J}$. When adjustments are made, by international agrecment they are made in steps of S_{L} and only at the beginning of the month; i.e., at oho wJ of the first day of the month. The general formula which is used to compute (A1-UTC) is

$$
\begin{equation*}
(A 1-U T C)=a_{0}+a_{1}\left(t-t_{0}\right) \tag{2}
\end{equation*}
$$

Both a_{0} and a_{1} are recovered from tables. The values in the table for a_{0} are the valucs of ($\wedge 1-$ UlC $)$ at. the time of each particular stop adjustment. The values in the table for a_{1} are the values for the now rates of change between the two systems after cach step adjustment.

Values for a_{0} and a_{1} are published both by the U.S. Naval Observatory and BIH.

2.5.4 Polar Motion

Consider the point p which is defined by the intersection of the Earth's axis of rotation at some time t with the surface of the Earth. At some time $t+\Delta t$, the intersection will be at some point P^{\prime} which is different that P. Thus the axis of rotation appears to be moving relative to a fixed position on the Earth; hence the term "motion of the pole."

Let us establish a rectangular coordinate system centered at a point fixed on the surface of the larth with F near the point P around 1900, and take measurements of the rectangular coordinates of the point p during the period 1900.0-1906.0. It is observed that the point P moves in roughly circular motion in this coordinate system with two distinct periods, one period of approximatcly 12 months and one period of 14 months. We definc the mean position of P during this period to be the point P_{0}, the moan pole of 1900.0-1906.0.

The average is taken over a six ycar period in order to average out both the 12 month period and the 14 month period simultaneously (since 6 times 12 months $=$ 72 months and $72 / 14=5$ periods approximately of the 14 month term). The radius of this observed circle varies between 15-35 feet.

In addition to the periodic motion of p about P_{0}, by taking six ycar moans of p in the ycars after 1.900 1906, called P_{m}, there is seen to be a secular motion of the mean position of the polc away from its original mean position P_{0} in the years 1900-1906 at tho rate of
approximately 0.'0032/year in the direction of the meridan $60^{\circ} \mathrm{W}$, and a libration motion of a period of approximately 24 ycars with a cocfficiont of about 0!022. The short pexiodic motions over a period of. six years average about 0!'2-0!3.

Effect on the Position of a Station

This motion of the pole moans that the observing stations are moving with respect to our "barth-fixed" coordinate system used in NONAME. The station positions must be corrected for this effect.

The position of the instantaneous or true pole is computed by linear interpolation in a table of observed values for the truc pole relative to the mean pole of 1900 - 1905. The table increment is 10 days; the current range of data is from December $], 1960$ to August 1, 1970. The liser should be avare of the fact that this table is expanded as new information becomes available. If the requested time is not in the range of the table, the value for the closest time is usod.

The data in the table is in the form of the coordinates of the true pole relative to the moan pole measured in seconds of arc. This data was obtajnod from "Circular D" which js published by BII. The appropriate coordinate system and rotation are illustrated in Figures 1 and 2.

$$
\begin{aligned}
P_{A}= & \text { Center of Coordinate System } \\
= & \text { Adopted Mean Pole } \\
X_{1}= & \text { Direction of } 1 \text { st Principal Axis (along meridian } \\
& \text { directed to Greenwich) } \\
X_{2}= & \text { Direction of } 2^{\text {nd }} \text { Principal Axis (along } 90^{\circ} \\
& \text { West meridian) } \\
P_{T}= & \text { Instantaneous Axis of Rotation } \\
x, y= & \text { Coordinates of } P_{T} \text { Relative to } P_{A} \text { Measured } \\
& \text { in seconds of arc }
\end{aligned}
$$

Figure. 1: Coordinates of the Instantaneous Axis of Rotation

$x, y=$ Rectangular Coordinates of P_{T} Relative to P_{A} $X_{1} X_{2}$ Plane $=$ Mean Adopted Equator Defined by Direction of Adopted Pole P_{A}
$Y_{1} Y_{2}$ Plane = Instantaneous Equator Defined by Direction of Instantaneous Pole P_{T}
:igure 2: Rotation of Coordinate System from Adopted Mean Pole System to Instantaneous Pole System

$$
2 \cdot 5-21
$$

Consider the station vector \bar{X} in a system at tached to the Earth of the mean pole and the same vector \bar{Y} in the "Earth-fixed" systom of NONAM1. The transformation between \bar{Y} and \bar{X} consists of a rotation of x about the X_{2} axis and a rotation of y about the X_{1} axis; that is

$$
\begin{align*}
\bar{Y} & =R_{1}(y) R_{2}(x) X \tag{1}\\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos y & \sin y \\
0 & -\sin y & \cos y
\end{array}\right]\left[\begin{array}{ccc}
\cos x & 0 & -\sin x \\
0 & 1 & 0 \\
\sin x & 0 & \cos x
\end{array}\right] \bar{X}
\end{align*}
$$

Because x and y are small angles, their cosines are set to l and their sines equal to their values in radians. Consequently,

$$
\bar{Y}=\left[\begin{array}{ccc}
1 & 0 & -x \tag{2}\\
x y & 1 & y \\
x & & 1
\end{array}\right] \bar{X}
$$

In the NONAME system, the position of the true pole is computed by subroutine POLE. The station vectruep tors are referenced to the truc pole by subroutinc TRUEP.

SECTION 2.6
MEASUREMENT MODELING AND RELATED DIRTVATTVES

The observations in NONAMI are geocentric in nature. The computed values for the observations are obtained by applying these geometric relationships to the computed values for the relative positions and velocitics of the satellite and the observer at the desired time.

In addition to the geometric relationships, NONAME: allows for a timing bias and for a constant bias to be associated with a measurement type from a given station. Both of these biases are optional.

The measurement model for NONAME is thercfore

$$
\begin{equation*}
c_{t+\Delta t}=f_{t} \cdot\left(\bar{r}, \dot{\bar{r}}, \bar{r}_{o b}\right)+b+\dot{f}_{t}\left(\bar{r}, \dot{\vec{r}}^{\prime}, \bar{r}_{o b}\right) \cdot \Delta t \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
C_{t+\Delta t} \quad \begin{array}{l}
\text { is the computed equivalent of the ob- } \\
\\
\text { servation taken at time } t+\Delta t,
\end{array} \\
\bar{x} \quad \begin{array}{l}
\text { is the Iarth-fixed position vector of } \\
\text { the satellite, }
\end{array} \\
\overline{\mathrm{r}}_{\mathrm{ob}} \quad \begin{array}{l}
\text { is the Earth-fixed position vector of } \\
\end{array} \quad \begin{array}{l}
\text { the station, }
\end{array}
\end{array}
$$

$\sum_{t}\left(\bar{r}, \bar{r}, \bar{r}_{\text {ob }}\right)$	is the geometric relationshjp derined by the particular obscrvation type at time t,
b	is a constant bias on tho measurcment, and
Δt	is the timing bias associated with the measurement.

The functional dependence of f_{t} was explicitly stated for the general case. Many of the moasuronents are functions only of the position vectors and are honce not functions of the satellitc velocity vector $\dot{\bar{r}}$. Wo will hereacter recer to f_{t} without the explicit functional dependence for rotitional convenience.

As was indicated carlicr in Section 2.2 .2 , we require the partial derivatives of the computed valucs for the measurements with respect to the parametcrs being determined (sce also Section 2.10.1). These parametcrs axe:

- the true of date position and velocity of the satcllite at epoch. Thesc correspond to the incrtial position and vclocity which are the initial conditions for the equations of motion,
- force model parameters,
- the Earth-fixed station positions,
- measurement biases.

These parameters are implicilly divided into at set $\bar{\alpha}$ which are not concorned with the dynamics of satellite motion, and a set $\bar{\beta}$ which are.
*The partial derivatives associated with the parameters $\bar{\alpha} ; i . e .$, station positions' and measurement biases are computed directly at the given observation times. The partial dorivatives with respect to the parameters $\bar{B} ;$ i.e., the fepoch position and velocity and the force model parameters, must be detcrmined according to a chain rule:

$$
\begin{equation*}
\frac{\partial C_{t+\Delta t}^{\prime}}{\partial \bar{\beta}}=\frac{\partial C_{t+\Delta t}^{\prime}}{\partial \bar{x}_{t}} \frac{\partial \bar{x}_{t}}{\partial \bar{\beta}_{\bar{\beta}}} \tag{2}
\end{equation*}
$$

where
\bar{x}_{t} is the vector which describes the satellite position and velocity in true of date coordinates.
The partial derivatives $\frac{\partial C_{t}+\Delta t}{\partial \bar{x}_{t}}$ are computed directly at the given observation times, but the partial derivatives $\frac{\partial \bar{x}_{t}}{\partial \bar{\beta}}$ may not be so obtained. These latter relate the true of date position and velocity of the satellite at the given time to the parameters at epoch through the satollite dynamics.

The partial derivatives $\frac{\partial \bar{x}_{t}}{\partial \bar{\beta}}$ are callad tho variational partials and aro obtained by disect mumerical integration of the variatjonal equations. As will be shown in Section 2.8 .2 , these equations, are analogous to the equations of motion.

Let us first consider the partial derivatives of the computed values associated with the parameters in $\bar{\beta}$. We have

$$
\begin{equation*}
\frac{\partial C_{t}+\Delta t}{\partial \bar{B}}=\frac{\partial F_{t}}{\partial \bar{x}_{t}} \frac{\partial \bar{x}_{t}}{\partial \bar{\beta}_{\bar{\beta}}} \tag{3}
\end{equation*}
$$

Note that we have dropped the partial dexivative with respect to $\bar{\beta}$ of the differential product: $\dot{f}_{t} \Delta t$. This is because we use first ordor faylor sories approximation in our error model and hence higher order terms are assumed neglj.gible. This linearization is also completely consistent with the linearization assumptions made in the solution to the estimation equations (Section 2.10.1).

The partial derivatives $\frac{\partial f_{t}}{\partial \bar{x}_{t}}$ are computed by transforming the partial dexivatives $\frac{\partial \mathcal{f}_{t}}{\partial \bar{r}}$ and $\frac{\partial E_{t}}{\partial \bar{x}}$
from the Earth-fixod system to the true of date system (see Section 2.3.4). These last are the partial derivatives of the geometric relationships given later in this section (2.6.2).

In summary, the partial derivatives requirod for computing the $\frac{\partial C_{t}+\Delta t}{\partial \bar{\beta}}$, the partial derivatives of the computed value for a given measurenent, are the variational partials and the Earth-fixed geometric partial derivatives.

The partial dexivatjves of the computed values with respect to the station positions are simply related to the partial derivatives with respect to the satcllite position at time t :

$$
\begin{equation*}
\frac{\partial C_{t+\Delta t}}{\partial \bar{x}_{o b}}=\frac{\partial F_{t}}{\partial \bar{r}_{o b}}=-\frac{\partial E_{t}}{\partial \bar{r}^{\prime}} \tag{4}
\end{equation*}
$$

where \bar{r} is of course the satcllite position vector in Earth-fixed coordinates. This simple relationship is a direct result of the symmetry in position coordinates. The function f is a geometric function of the relatire position; i.e., the differences in position coordinates which will be the same in any coordinato system.

The partial derivatives with respect to the biases are obvious:

$$
\begin{align*}
& \frac{\partial C_{t+\Delta t}}{\partial b}=1 \tag{5}\\
& \frac{\partial C_{t+\Delta t}}{\partial(\Delta t)}=\dot{f}_{t} \tag{6}
\end{align*}
$$

In the romainder of this section, wo will be concerned with the calculation of the geometric function f_{t} and its derivatives. These derivatives have beon shown above to be the partial derivatives with respect to satellite position and velocity at time t and the time rate of change of the function, r_{i}.

The subroutine breakdown for the calculation of PRIBCT these quantities in NONAME is as follows: The geometric OBSDOT relationships and the geometric partial derivatives aro implemented in subroutine PRLDCT. The time rates of change are coded in subroutino OBSDOT.

The data proprocessing also roquires some use PROCES of these formulas for computing measurement oquivalents. These are then also implemented in subroutine pROCES.

2.6.1 The Geonctric Relationships

The current types of observation in NONAME are:

- right ascension and declination
- range
o. range rate
- $\quad 2$ and m direction cosines
- X and X angles
- azimuth and elcvation.
- altimeter height and rato*

The geometric relationship which corresponds to each of these observations is presented below: It should be noted that in addition to the Rarth-fixed or incrtial coordinate systems, some of these utilize topocentric coordinate systems. Thesc last are presented in Section 2.5.2.

[^0]Range: •

Consider the station-satellite vector:

$$
\begin{equation*}
\bar{\rho}=\bar{r}-\bar{r}_{o b} \tag{1}
\end{equation*}
$$

where
$\bar{r} \quad$ is the satcllite posjtion vector (x, y, z) in
the geocentric larth-fixed system, and
$\bar{x}_{o b}$ is the station vector in the same systom.

The magnitude of this vector, ρ, is the (slant)
range, which is one of the measurements.

Range rate:

$$
\begin{array}{ll}
\text { The time rate of change of this voctor } \bar{\rho} \text { is } & \text { GRHRAN. } \\
\text { EREDCI } \\
\dot{\bar{\rho}}=\dot{\bar{r}} & \text { (2) OBSNOT }
\end{array}
$$

as the velocity of the obscrver in the larth-fixed system is zero. Let us consider that

$$
\begin{equation*}
\bar{\rho}=\hat{\rho u} \tag{3}
\end{equation*}
$$

where
\hat{u} is the unit vector in the direction of $\bar{\rho}$.

Thus we have

$$
\begin{equation*}
\dot{\bar{\rho}}=\dot{\rho} \hat{u}+\rho \hat{u} \tag{4}
\end{equation*}
$$

4 -
The quantity $\dot{\rho}$ in the above equation is the computed vatuo for the range rate and is determined by

$$
\begin{equation*}
\dot{\rho}=\hat{u} \cdot \dot{\bar{r}} \tag{5}
\end{equation*}
$$

Altimeter height:

The altimeter height and rate are unjque in that the satellite is making the obscrvation. While these are actually measurements from the satclijte to the surface of the Earth, they are taken to be measurements of the spheroid height and the time rate of change of that quantity for obvious reasons. Using the formula for spheroid height previously dotermined in Section 2.5.1, we have:

$$
\begin{align*}
H_{a l t}= & r-a_{e}-\frac{3}{2} a_{e} f^{2}\left(\frac{z}{r}\right)^{4} \tag{6}\\
& +\left(a_{e} f+\frac{3}{2} a_{e} f^{2}\right)\left(\frac{z}{-}\right)^{2}
\end{align*}
$$

where
a_{e} is the Earth's mean equatorial radius,
f . is the Farth's flattening, and
z, is r_{3}, the z component of the Larth-fixed satellite vector

Altimeter ratc:

$$
\begin{align*}
& \text { The altimeter rate is determined by a chain rule: } \\
& \dot{H}_{a l t}=\nabla H_{a l t} \cdot \dot{\bar{r}} \tag{7}
\end{align*}
$$

The required partial derivatives are given in the scction on geometric partials.

Right ascension and declination:
The topocentric right ascension α and dectination δ are inertial coordinate system measurements as illustrated in Figure 1. NONAME computes these angles from the components of the farth-fjxed station-satellite vector and the Greonwich hour anglo 0_{g}.

$$
\begin{align*}
& \alpha=\tan ^{-1}\left(\frac{\rho_{2}}{\rho_{1}}\right)+0_{g} \tag{8}\\
& \delta=\sin ^{-1}\left(\frac{\rho_{3}}{\rho}\right) \tag{9}
\end{align*}
$$

The remaining measurements are in the topocentric horizon coordinate system. These all require the \hat{N}, \hat{Z}, and \hat{E} (north, zenith, and cast base line) unit voctors which describe the coordinate systom.

FIGURE 1. Topocentric right ascension \mathcal{G} decijnation angles

There are three direction cosincs associated with PREDCT the station-satellite vector in the topocentric system. These are:

$$
\begin{align*}
& 2=\hat{u_{i}} \cdot \hat{E} \tag{10}\\
& m=\hat{u} \cdot \hat{N} \\
& n=\hat{u} \cdot \hat{Z}
\end{align*}
$$

The ℓ and m diroction cosines are observation types for NONAME.
X and Y angles:

The X and Y angles are illustrated in Figure 2. They are computed by

$$
\begin{align*}
& x_{a}=\tan ^{-1}\binom{\ell}{\mathrm{n}} \tag{11}\\
& Y_{a}=\sin ^{-1} \quad(\mathrm{~m}) \tag{12}
\end{align*}
$$

FIGURE 2. X and Y Angles

Figure 3 illustrates the measurements of a\%imuth and elcvation. These angles are computod by:

$$
\begin{align*}
& A_{z}=\tan ^{-1} \frac{2}{m} \tag{1.3}\\
& E_{\ell}=\sin ^{-1}(n) \tag{14}
\end{align*}
$$

2.6.2 The Gcometric Partial Derjvatives

The partial derivatives for each of the calculated geometric equivalents with respect to the satellite positions and velocity are given here. All are in the geocentric, Earth-fixed systen. (The r_{i} refer to the larth-fixod components of $\overline{\mathrm{r}}$.)

Range:

$$
\begin{equation*}
\frac{\partial \rho}{\partial x_{i}}=\frac{\rho_{i}}{\rho} \tag{1}
\end{equation*}
$$

Range rate:

$$
\begin{align*}
& \frac{\partial \dot{\rho}}{\partial r_{i}}=\frac{1}{\rho}\left[\dot{r}_{i}-\frac{\dot{\rho} \rho_{i}}{\rho}\right] \tag{2}\\
& \frac{\partial \dot{\rho}}{\partial \dot{r}_{i}}=\frac{\rho_{i}}{\rho} \tag{3}
\end{align*}
$$

FIGURE 3. Azimuth and Elcvation Anglos

Altimeter rangc.

$$
\begin{aligned}
\frac{\partial 1_{a l t}}{\partial r_{i}}= & \frac{r_{i}}{\dot{r}}+\frac{1}{r}\left[\left(2 a_{c} s+3 a_{e} s^{2}\right)\left(\frac{z}{r}\right)\right. \\
& \left.-6 a_{e} f^{2}\left(\frac{z}{r}\right)^{3}\right] X \\
& {\left[\frac{\partial z}{\partial r_{i}}-\frac{\dot{z}_{j}}{r^{2}}\right] }
\end{aligned}
$$

Altimeter Range Rate:

$$
\begin{align*}
& \frac{\partial \dot{H}_{a 1 t}}{\partial r_{i}}=\frac{\partial}{\partial r_{i}}\left(\nabla H_{a 1 t}\right) \cdot \dot{\bar{r}} \tag{5}\\
& \frac{\partial^{2} H_{a l t}}{\partial r_{i} \partial r_{j}}=\frac{1}{r}\left[\frac{\partial r_{j}}{\partial r_{j}}-\frac{r_{i} r_{j}}{r^{2}}\right] \tag{6}\\
& +\left[\left(2 a_{c} f+3 a_{c} f^{2}\right)\left(\frac{z}{r}\right)-6 a_{e} f^{2}\left(\frac{z}{r}\right)^{3}\right] X \\
& {\left[\frac { 1 } { r ^ { 2 } } \left(\frac{r_{j}}{r} \frac{\partial z}{\partial r_{i}}-\frac{r_{i}}{r} \frac{\partial z}{\partial r_{j}}+\frac{3 z r_{i} r_{j}}{r^{3}}\right.\right.} \\
& \left.\left.-\frac{z}{r} \frac{\partial r_{i}}{\partial r_{j}}\right)\right]+ \\
& \text { 2.6-17 }
\end{align*}
$$

$$
\begin{gathered}
{\left[\left(2 a_{c} f+3 a_{e} f^{2}\right)-18 a_{e} f^{2}\left(\frac{z}{\frac{r}{r}}\right)^{2}\right] X} \\
{\left[\frac{1}{r} \frac{\partial z}{\partial r_{i}}-\frac{z r_{i}}{r^{3}}\right]\left[\begin{array}{lll}
1 & \partial z \\
r & \frac{z}{\partial r_{j}}-\frac{r_{j}}{r^{3}}
\end{array}\right]} \\
\frac{\partial \dot{H}_{a l t}}{\partial \dot{r}_{i}}=\frac{\partial H_{a l t}}{\partial r_{i}}
\end{gathered}
$$

Right Ascension:

$$
\begin{align*}
& \frac{\partial \alpha}{\partial r_{1}}=\frac{-\rho_{2}}{\sqrt{\rho_{1}^{2}+\rho_{2}^{2}}} \tag{7}\\
& \frac{\partial \alpha}{\partial r_{2}}=\frac{\rho_{1}}{\sqrt{\rho_{1}^{2}+\rho_{2}^{2}}} \tag{8}\\
& \frac{\partial \delta}{\partial r_{3}}=0 \tag{9}
\end{align*}
$$

Declination:

$$
\begin{equation*}
\frac{\partial \delta}{\partial r_{1}}=\frac{-\rho_{1} \rho_{3}}{\rho^{2} \sqrt{\rho_{1}^{2}+\rho_{2}^{2}}} \tag{10}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial \delta}{\partial r_{2}}=\frac{-\rho_{2} \rho_{3}}{\rho \sqrt{\rho_{1}^{2}+\rho_{2}^{2}}} \\
& \frac{\partial \delta}{\partial r_{3}}=\frac{\sqrt{\rho_{1}^{2}+\rho_{2}^{2}}}{\rho^{2}} \tag{12}
\end{align*}
$$

(11) PRLDCT

Direction Cosines:

$$
\begin{align*}
& \frac{\partial \ell}{\partial r_{i}}=\frac{1}{\rho}\left[E_{i}-\ell u_{i}\right] \tag{13}\\
& \frac{\partial m}{\partial r_{i}}=\frac{1}{\rho}\left[N_{i}-m u_{i}\right]
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial n_{i}}{\partial r_{i}}=\frac{1}{\rho}\left[z_{i}-n u_{i}\right] \tag{15}
\end{equation*}
$$

X and Y Angles:

$$
\begin{align*}
& \frac{\partial X_{a}}{\partial r_{i}}=\frac{n E_{i}-\ell Z_{i}}{\rho\left(1-m^{2}\right)} \tag{16}\\
& \frac{Y_{a}}{\partial r_{i}}=\frac{N_{i}-m u_{i}}{\rho \sqrt{1-m_{i}^{2}}} \tag{17}
\end{align*}
$$

Nzimuth and Elevation:

$$
\begin{align*}
& \frac{\partial A_{z}}{\partial r_{i}}=\frac{m E_{i}-\ell N_{i}}{\rho \sqrt{1-n^{2}}} \tag{18}\\
& \frac{\partial E_{\ell}}{\partial r_{i}}=\frac{Z_{i}-n u_{i}}{\rho\left(1-n^{2}\right)} \tag{19}
\end{align*}
$$

The derivatives of each measurement type with respect to time is presented below. All arc in the Earth-fixed system.

Range:

$$
\begin{equation*}
\dot{\rho}=\hat{u} \cdot \dot{\bar{r}} \tag{1}
\end{equation*}
$$

Range Rate:

The range rate derivative deserves special attention. Remembering that

$$
\begin{equation*}
\dot{\bar{\rho}}=\dot{\bar{r}} \tag{2}
\end{equation*}
$$

We write

$$
\begin{equation*}
\dot{\rho}=\hat{u} \cdot \dot{\bar{\rho}} \tag{3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\ddot{\rho}=\hat{\mathrm{u}} \cdot \dot{\bar{\rho}}+\dot{\hat{u}} \cdot \ddot{\ddot{\rho}} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\stackrel{\rightharpoonup}{\rho}}=\frac{d}{d t}(\rho \hat{u})=\rho \dot{\hat{u}}+\dot{\rho} \hat{u} \tag{5}
\end{equation*}
$$

we may substitute in Equation 4 above' for \hat{u} :

$$
\begin{equation*}
\ddot{\rho}=\frac{1}{\rho}(\dot{\bar{\rho}} \cdot \dot{\bar{\rho}}-\dot{\rho} \hat{u} \cdot \dot{\bar{\rho}})+\hat{u} \cdot \ddot{\bar{\rho}} \tag{6}
\end{equation*}
$$

or, as

$$
\begin{equation*}
\dot{\rho}=\hat{u} \cdot \frac{\dot{\rho}}{} \tag{7}
\end{equation*}
$$

we may write

$$
\begin{equation*}
\ddot{\rho}=\frac{1}{\rho}\left(\dot{\bar{\rho}} \cdot \dot{\bar{\rho}}-\dot{\rho}^{2}+\bar{\rho} \cdot \ddot{\ddot{\rho}}\right) \tag{8}
\end{equation*}
$$

In order to obtain $\ddot{\bar{p}}$, we use the lImited gravity potential (see Section 2.8.3):

$$
\begin{equation*}
=\frac{G M}{x}\left(1-\frac{\mathrm{C}_{20}{ }^{a^{2}} e^{2}}{r^{2}} p_{2}^{0}(\sin \phi)\right) \tag{9}
\end{equation*}
$$

The gradient of this potential with respect to the Earthfixed position coordinates of the satellite is the part of $\stackrel{\ddot{\rho}}{\rho}$ due to the geopotential:

$$
\begin{equation*}
\frac{\partial U}{\partial r_{i}}=-\frac{G M}{r^{3}}\left[1-\frac{3 a_{e}^{2} C_{20}}{2 r^{2}}\left(5 \sin ^{2} \phi-1-2 \frac{z}{r_{i}}\right)\right] r_{i} \tag{10}
\end{equation*}
$$

We must add to this the effect of the rotation of the coordinate system. (The Earth-fixed coordinate system rotates with respect to the crue of date coordinates with a rate θ_{g}, the time rate of change of the Greenwich hour angle.)

The components of $\ddot{\ddot{\rho}}$ are then

$$
\begin{align*}
& \ddot{\rho}_{1}=\frac{\partial U}{\partial r_{1}}+\left[\dot{x} \cos \theta_{g}+\dot{y} \sin \theta_{g}\right] \dot{\theta}_{g}+\dot{r}_{2} \dot{\theta}_{g} \tag{11}\\
& \ddot{\rho}_{2}=\frac{\partial U}{\partial r_{2}}+\left[-\dot{x} \sin \theta_{g}+\dot{y} \cos \theta_{g}\right] \dot{\theta}_{g}-\dot{r}_{1} \dot{\theta}_{g} \tag{12}\\
& \ddot{\rho}_{3}=\frac{\partial U}{\partial r_{3}}=\frac{\partial U}{\partial z} \tag{1.3}
\end{align*}
$$

The bracketted quantities above correspond to the coordinate transformations coded in subroutines XEFIX and YEFIX. These XEFIN transforms are used on the true of date satellite velocity YEnIX components \dot{x} and \dot{y}. The interested reader should refer to Section 2.3.4 for further information on transformations between Earth-fixed and true of date coordinates.

It should be noted that all quantities in this formula, with the exception of those quantities bracketted, are Earth-fixed values. (The magnitude r is invariant with respect to the coordinate system translormations.)

The remaining time derivatives are tabulated here:

Right ascension: $\quad \dot{\alpha}=\frac{u_{1} \dot{r}_{2}-u_{2} \dot{r}_{1}}{\rho\left(1-u_{3}^{2}\right)}$

Declination:

$$
\begin{equation*}
\dot{\delta}=\frac{\dot{r}_{3}-\dot{\rho} u_{3}}{\rho \sqrt{1-u_{3}}} \tag{15}
\end{equation*}
$$

Direction Cosines: $\dot{i}=\frac{\dot{\bar{\rho}} \cdot \hat{E}-\ell \dot{\rho}}{\rho}$

$$
\begin{equation*}
\dot{m}=\frac{\dot{\bar{\rho}} \cdot \hat{N}-\dot{m} \dot{\rho}}{\rho} \tag{17}
\end{equation*}
$$

$$
\begin{array}{ll}
X \text { and } Y \text { angles: } & \dot{X}_{a}=\frac{\dot{\bar{\rho} \cdot(n \tilde{\Gamma}-\ell \ddot{Z})}}{\rho\left(1-m^{2}\right)} \\
& \dot{Y}_{a}=\frac{\dot{\bar{\rho} \cdot \hat{N}-m \rho}}{\rho \sqrt{1-m^{2}}} \\
\text { Azimuth: } & \dot{A}_{z}=\frac{\dot{\bar{\rho}} \cdot(m \hat{\mathrm{E}}-\ell \hat{N})}{\rho\left(1-m^{2}\right)} \\
\text { Elevation: } & \dot{E}_{\ell}=\frac{\dot{\bar{\rho}} \cdot \hat{Z}-m \dot{\rho}}{\rho \sqrt{1-m^{2}}}
\end{array}
$$

SECTION 2.7

DATA PREPROCESSING
i.

The function of data preprocessing is to convert and correct the data. These corrections and conversjons relate the data to the physical model and to the coordinate and time reference systems used in NONAMI!. The data corrections and conversions implomonted in NONAME are to

- transform all observation times to Al time at the satellite
- refer right ascension and declination observations to the true equator and equinox of date.
- correct range measurements for transponder delay and gating effects
- correct SAO right ascension and declination observations for diurnal aberration
- correct for refraction
- convert TRANET Doppler observations into range rate measurements.

These conversions and corrections are applied to the data on the first iteration of each arc. Each of these preprocessing items is considered in greater detail in the subsections which follow.

2.7.1 Time Preprocessing

The time reference system used to specify the time of each observation is detcrmincd by a time identifier on the data record. This identifier also specifies. whether the time rccorded was the time at the satellite or at the observing station.

The preprocessing in NONAME transforms all

DODSRD
giEOSRD
PROCES

There is special preprocessing for right ascension and declination measurements from the GBOS satellites when input in National Space Science Data Center format. If the observation is passjve, the image recorded is an observation of light rcflected from the satclilite and the times are adjusted for propagation delay as abovc. If the observation is active, the image recorded is an observation of light transmitted from the optical beacon on the satellite. The beacons on the GEOS satcllites are programmed to produce a sequence of seven flashes at four second intervals starting on an even minute. For the active observations, the times are set equal to the programmed flash time with a correction applied for known clock errors (Reference 1), plus half a millisecond, the time allowed for flash buildup.

The: corrections for the active observations are applied in GEOSRD, which calls SATCLC and SATCl. 2 to spectively. These routines compute the correction by simple linear interpolation in a table of known errors ? in the satellite on-board clock.

2.7.2 Reference System Conversion to True of Date

The camera obscrvations, right asconsion and. declination, may be input referred to the mean equator and equinox' of date, to the true equator and equinox of date, or to the mean equator and equinox of some standard epoch. The NONAME system transforms these observations to the true cquator and equinox of date in subroutines GEOSRD and DODSRD. The necessary precession 'and nutation is performed by subroutine EQUATR.

2.7.3 Transponder Delay and Gating Effects

The range observations may be corrected for.
PROCES
transponder delay or gating errors. If requested, the NONAME subroutine PROCBS applies the corrections.

The transponder delay correction is computed as a polynomial in the range rate:

$$
\begin{equation*}
\Delta \rho=a_{0}+a_{1} \dot{\rho}+a_{2}(\dot{\rho})^{2} \tag{1}
\end{equation*}
$$

where a_{0}, a_{1}, and a_{2} depend on the characteristics of the particular satellite.

A gating error is due to the fact that actual range measurements are either time delays between transmitted and received radar pulses or the phase
shifts in the modulation of a received signal. with respect to a coherent transmitted signal. Thus thero is the possibility of incorroctly identifying the returned pulse or the number of integral phasc shifts. The difference between the obscrved range and the computed range on the first iteration of the arc is used to determine the appropriate correction. The correction is such that there is less than half a gate, where the gate is the range equivalent of the pulse spacing or phase shift. The appropriate gate of course depends on the particular station.
2.7.4 Diurnal Aberration

Right ascension and declination may be corrected for diurnal aberration, which is an effect due to the rotation of the Earth. The corrections for thesc are given by

$$
\begin{align*}
& \Delta \alpha=0.0213 \mathrm{r}_{\mathrm{ob}} \cos \phi^{\prime} \cos \mathrm{h}_{\mathrm{s}} \sec \delta \tag{1}\\
& \Delta \delta=01320 \mathrm{r}_{\mathrm{ob}} \cos \phi^{\prime} \sin \mathrm{h}_{\mathrm{s}} \sin \delta \tag{2}
\end{align*}
$$

where

$$
\begin{aligned}
& r_{o b} \text { is the geocentric distance in units of } \\
& \text { Earth radius (assumed to be } 1 \text {). } \\
& \phi^{\prime} \text { is the geocentric latitude of the station, } \\
& , \text { and }
\end{aligned}
$$

h_{s} is the hour angle
δ as shown in the formula is the observed declination.

This and related topics are discussed in great dotail in the Explanatory Supplement.

This correction is appJicd ịn subroutine PROCES. It should be noted that this applies only to $\mathrm{S} \Lambda 0$ network stations.

2.7.5 Refraction Corrections

The NONAME system can apply corrections to all of the observational types significantly affected by refraction. The corrections requested are applicd by subroutine PROCES.

Right Ascension and Declination:
The right ascension and declination measurenents for SAO stations may require correction for parallactic refraction:

$$
\begin{align*}
& \alpha=\alpha^{\prime}-\Delta R \sec \delta^{\prime} \sin P_{a} \tag{1}\\
& \delta=\delta^{\prime}-\Delta R \cos P_{a} \tag{2}
\end{align*}
$$

where
Procl:S
$\Delta R \quad$ is the differential refraction;

Pa. is the parallactic angle; i.e., the angle at the object in the pole - object zenith; and
α^{\prime} and δ^{\prime} are the observed values of the right ascension and declination.

The differential refraction $\Delta \mathrm{R}$ is computed by (Reference 2)

$$
\begin{equation*}
\Delta R=435!0 \frac{\tan Z_{0}}{\rho \cos Z_{0}}\left|1-\exp \left(-0.1385 \rho \cos Z_{o}\right)\right| \tag{3}
\end{equation*}
$$

where
Z_{o} is the observed zenith angle,
$\rho \quad$ is the topocentric range in kilometers, and
ΔR is the differential refraction in minutes of arc

Range:

The refraction corrections $\Delta \rho$ applicd to range observations is computed as follows:

$$
\begin{equation*}
\Delta \rho=\frac{2.77 n_{s}}{328.5\left(0.026+\sin \mathrm{E}_{\ell}\right)} \tag{4}
\end{equation*}
$$

where
E_{ℓ} is the elevation angle computed from the
initial estimate of the trajectory
and
n_{s} is the surface index of refraction; if this value is not specified, it is assumed to be 1 .

Range Rate:

For range-rate, the correction $\Delta \dot{\rho}$ is derived from the range correction:

$$
\begin{equation*}
\dot{\Delta \rho}=\frac{2.77 n_{s} \cos E_{\ell}}{328.5\left(0.026+\sin E_{\ell}\right)^{2}} \dot{E}_{\ell} \tag{5}
\end{equation*}
$$

\dot{E}_{ℓ} i.s the computed rate of change of clevation.

For observations of rango or range rate from certain stations, there is a correction to account for the mean daily variation of the surface index of refraction. This correction, which is a correction to the product $\left(\frac{2.77}{328.5} n_{s}\right)$, is computed by subroutine RFFION by Iinear interpolation in an hourly table.

Elevation:

For elevation obscrvations the correction Δl_{ℓ}
is computed as follows:

$$
\begin{equation*}
\Delta \mathrm{E}_{\ell}=\frac{\mathrm{n}_{\mathrm{s}} 10^{3}}{16.44+930 \tan \mathrm{E}_{\ell}} \tag{6}
\end{equation*}
$$

Azimuth is not affected by refraction.

Direction Cosines:

The corrections Δl and Δm are derived from the elevation correction:

$$
\begin{align*}
& \Delta \ell=-\sin A_{z} \sin \left(E_{\ell}\right) \Delta E_{\ell} \tag{7}\\
& \Delta m=-\cos A_{z} \sin \left(E_{\ell}\right) \Delta E_{\ell} \tag{8}
\end{align*}
$$

where A_{z} is the azimuth angle computed from tho initial PROCliS estimate of the trajectory.
X and Y Angles:
For X and Y angles the corrections ΔX and ΔY are computed as follows:

$$
\begin{align*}
\Delta X_{a} & =-\frac{\sin A_{z} \Delta E_{\ell}}{\left(\sin ^{2} E_{\ell}+\sin ^{2} \Lambda_{z} \cos ^{2} E_{\ell}\right)} \tag{9}\\
\Delta Y_{a} & =-\frac{\cos A_{z} \sin E_{\ell} \Delta E_{\ell}}{\sqrt{1-\cos ^{2} A_{z} \cos ^{2} E_{\ell}}} \tag{10}
\end{align*}
$$

Note that these are also derived from the clevation correction.

2.7.6 Tranet Doppler Observations

TRANET Doppler observations are received as a
GEOSRD. series of measured frequencies with an associated base frequency for each station pass. Using the following rolationship, the NONAME system converts thesc obscrvations to range rate measurements in subroutine GEOSRD:

$$
\begin{equation*}
\dot{\rho}=\frac{c\left(F_{B}-F_{M}\right)}{F_{M}} \tag{1}
\end{equation*}
$$

where
F_{M} is the measured frequency,
F_{B}. is the base frequency,
and
c is the velocity of light.

SECTION 2.8

FORCE MOIJ:L AND VARTAT'TONAL EQUATIONS

A fundamental part of the NONAMI system requires computing positions and velocities of the spacecraft at each observation time. The dynamics of the situation are expressed by the equations of motion, which provide a relationship between the orbital elements at any given instant and the initial conditions of. epoch. There is an additional requirement for variational partials, which are the partial derivatives of the instantaneous orbital elements with respect to tho parameters at epoch. These partials are gencrated using the variational equations, which are analogous to the equations of motion.

2.8.1 Equations of Motion

In a geocentric inertial rectangular coordinate system, the equations of motion for a spacecraft are of the form

$$
\begin{equation*}
\frac{\bar{r}}{}=-\frac{\mu \bar{x}}{r^{3}}+\bar{A} \tag{1}
\end{equation*}
$$

where
\bar{r} is the position vector of the satellite. is GM, where G is the gravitational constant and M is the mass of the Earth.
\bar{A} is the acceleration causcd by the asphericity of the liarth, extraterrestrial gravitational forces, atmospheric drag, and solar radiation. :

This provides a system of second order cquations which, given the epoch position and velocity components, may be integratod to obtain the position and velocity at any other time. This direct integration of these accelerations in Cartesian coordinates is known as CoweIl's method and is the techniquc used in NONAME's orbit generator. This method was selected for its simplicity and its capacity for easily incorporating additional perturbative forces.

There is an alternative way of exprossing the above equations of motion:

$$
\begin{equation*}
\ddot{\bar{r}}=\nabla U+\bar{A}_{D}+\bar{A}_{R} \tag{2}
\end{equation*}
$$

where

U is the potential field due to gravity,
\bar{A}_{D} contains the accelerations due to drag, and
\bar{A}_{R} contains the accelerations due to solar radiation pressure.

This is, of coursc, just a regrouping of terms coupled with a recognition of the existence of a potential ficld. This is the form used in NONAME.

The inertial coordinate system in which these equations of motion are integrated in NONAMD is that system corresponding to the truc of date system of 0.0 of the epoch day. The completc definitions for these coordinate systems (and the Earth-fixed system) aro presented in Scction 2.3.

The evaluation of the accolerations for $\ddot{\vec{r}}$ is F controlled by subroutine F. This cvaluation is performed REFCOR in the truc of date system. Thus there is a requirement that the inertial position and velocity output from the integrator be transformed to the true of date system for the evaluation of the accelerations, and a requirement to transform the computed accelerations from the true of date system to the inertial system. These transformations are performed by subroutine REFCOR (which controls the precession and nutation routines, PRECES and NUTATI) and is controlled by subroutine F.

2.8.2 The Variational Equations

The variational equations have the same relationship VEVAL to the variational partials as the satellite position vector does to the equations of motion. The variational partials are defined as the $\frac{\partial \bar{x}_{t}}{\partial \bar{\beta}}$ where \bar{x}_{t} spans the true of date position and velocity of the satellite at a given time; i.e.,

$$
\bar{x}_{t}=\{x, y, z, \dot{x}, \dot{y}, \dot{z}\} ;
$$

and $\bar{\beta}$ spans the epoch parameters; j.c.,
$x_{0}, y_{0}, z_{0} \quad$ the satellite position vector at
epoch
$\dot{x}_{0}, \dot{y}_{0}, \dot{z}_{0} \quad$ the satellite velocity vector at
epoch
$C_{D} \quad$ the satellite drag factor
$\mathrm{C}_{\mathrm{R}} \quad$ the satel1ite emissivity factor
$\mathrm{C}_{\mathrm{nm}}, \mathrm{S}_{\mathrm{nm}} \quad$ gravitational harmonic coefficionts
for each n, m pair being deter-
mined.

Let us first realize that the variational partials may be partitioned according to the satellite position and velocity vectors at the given time. Thus the required partials are

$$
\frac{\partial \bar{r}}{\partial \bar{\beta}}, \frac{\partial \dot{\bar{r}}}{\partial \bar{\beta}}
$$

$$
\begin{aligned}
& \overline{\mathrm{r}} \quad \text { is the satellite position vector }(x, y, z) \\
& \text { in the true of date system, and } \\
& \dot{\bar{x}} \text { is the satellite velocity vector }(\dot{x}, \dot{y}, \ddot{z}) \\
& \text { in the same system. }
\end{aligned}
$$

The first of these, $\frac{\partial \bar{r}}{\partial \bar{\beta}}$, can be obtained by the double integration of

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}\left(\frac{\partial \bar{r}}{\partial \bar{B}}\right) \tag{2}
\end{equation*}
$$

or rather, since the order of differentiation may be exchanged,

$$
\frac{\partial \ddot{\bar{r}}}{\partial \bar{\beta}}
$$

Note that the second set of partials, $\frac{\partial \dot{\bar{r}}}{\partial \bar{\beta}}$, may be obtained by a first order integration of $\frac{\partial \ddot{\bar{r}}}{\partial \bar{\beta}}$. Hence we recognize that the quantity to be integrated is $\frac{\partial \overline{\bar{r}}}{\partial \bar{\beta}}$. Using the second form given for the equations of motion in the previous subsection, the variational equations are given by

$$
2.8-5
$$

$$
\begin{equation*}
\frac{\partial \ddot{\bar{r}}}{\partial \overline{\bar{B}}}=\frac{\partial}{\partial \overline{\bar{\beta}}}\left(\nabla U+\bar{A}_{R}+\bar{A}_{\mathrm{D}}\right) \tag{4}
\end{equation*}
$$

VEVAL,
where
U is the potential ficld due to gravitational effects
$\overline{\mathrm{A}}_{\mathrm{R}}$ is the acceleration due to radiation pressure
\bar{A}_{D} is the acceleration due to drag

The similarity to the equations of motion is now obvious.

At this point we must consider a fow items:

- The potential ficld is a function only of position. Thus we have i

$$
\begin{equation*}
\frac{\partial}{\partial \bar{\beta}}\left(\frac{\partial U}{\partial r_{i}}\right)=\sum_{m=1}^{3}\left(\frac{\partial^{2} U}{\partial r_{i} \partial r_{m}}\right) \frac{\partial r_{m}}{\partial \bar{\beta}} . \tag{5}
\end{equation*}
$$

- The partials of solar radiation pressure with respect to the geopotential co' efficients', the drag cocfficient, and the satellite velocity are zero, and the partials, with respoct to satellite position, are negligible.
- Drag is a function of position, velocity, and the drag coefficient. The partials, with respect to the geopotential cocfficients and satellite emissivity, are zero, but we have

$$
\begin{equation*}
\frac{\partial \bar{A}_{D}}{\partial \bar{\beta}}=\frac{\partial A_{D}}{\partial \bar{x}} \frac{\partial \bar{x}_{t}}{\partial \bar{\beta}}+\frac{\partial \bar{A}_{D}}{\partial C_{D}} \tag{6}
\end{equation*}
$$

Let us write our variational equations in matrix
n to be the number of epoch parameters in $\bar{\beta}$
F is a $3 \times n$ matrix whose $j^{\text {th }}$ column vectors $\operatorname{arc} \frac{\partial \ddot{\bar{r}}}{\partial \beta_{j}}$
$\mathrm{U}_{2 \mathrm{C}}$ is a 3 x 6 matrix whose last 3 columns are zero and whose first 3 columns are such that the $i, j^{\text {th }}$ element is given by $\frac{\partial^{2} U}{\partial r_{i}} \frac{\partial r_{j}}{}$

X_{m} is a $6 \times{ }^{n}$ matrix whose $j^{\text {th }}$ row is
given by $\frac{\partial \bar{x}_{t}}{\partial \beta_{j}}$. Note. that X_{m} contains the variational partials.
f is a $3 \times \mathrm{n}$ matrix whose first six columns are zero and whose last $n-6$ columns are such that the $i, j^{\text {th }}$ element is given by $\frac{\partial}{\partial \beta_{j}}\left(\nabla U+\bar{A}_{D}+\bar{A}_{R}\right)$. Note that the first six columns correspond to the first six elements.. of $\bar{\beta}$ which are the epoch position and velocity. (This matrix contains the direct partials of \bar{x}_{t} with respect to $\bar{\beta}$.)

$$
\begin{equation*}
F=\left[U_{2 c}+D_{r}\right] X_{m}+f \tag{7}
\end{equation*}
$$

This is a matrix form of the variational equations.

Note that $U_{2 c}, D_{r}$, and f are cvaluatod at the current time, whereas X_{m} is the output of the integration. Initially, the first six colums of X_{m} plus the six rows form an identity matrix; the rest of the matrix is zero (for $i=j, X_{m_{j, j}}=1$; for $i \neq j, X_{m_{i, j}}=0$).

Because each force enters into the variational equations in a manner which depends directly on its model, the specific contribution of cach force is discussed in the section with the force model. We shall, however, note a few clerical details here.

The task of computing these variational equations in the NONAME system is largely accomplished by subroutine VEVAL. The matrix dimensions given were for notational convenience; empty rows and columns are not programmed.

The above equation is also applied in subroutine
PREDCT PREDCT to "chajn the partials back to opoch," that is, to relate the partials at the time of each set of measurements back to epoch.

The matrix for $\frac{\partial \bar{x}_{t}}{\partial \beta}, X_{m}$ above, is initializod in ORBIT subroutine ORBIT.

The contributions of subroutines DENSTY, DRAG,
DENSTY
EGRAV, F, and RESPAR will be discussed as part of tho DRAG
following subsections. The matrices $U_{2 c}$ and f will F be referred to in each subsoction as though the par- RESPAR ticular force being discusscd had the only contribution.

2.8.3 The Earth's Potential

The Earth's potential is most convenientily expressed in a spherical coordinate system as is shown in Figure 1 . By inspection:

- ϕ^{\prime}, the geocentric latjtude, is the angle measured from $\overline{O A}$, the projection of $\overline{O P}$ in the $X-Y$ plane, to the vector $\overline{O P}$.
- $\quad \lambda$, the east longitude, is the angle measured from the positive direction of the X axis to $\overline{O A}$.
- $\quad x$ is the magnitudc of the vector $\overline{O P}$.

Let us consider the point P to be the satelilite EGRAV position. Thus, $\overline{O P}$ is the goocontric Earth-fixed satellite vector corresponding to \bar{r}, the true of date satellite vector, whose components are (x, y, z). The relationship between the spherical coordinates (Earth-fixed) and the satellite position coordinates (true of date) is then given by

$$
\begin{align*}
& x=\sqrt{x^{2}+y^{2}+z^{2}} \tag{1}\\
& \phi^{\prime}=\sin ^{-1}\left(\frac{z}{x}\right) \tag{2}\\
& \lambda=\tan ^{-1}\left(\frac{y}{x}\right)-\theta_{g} \tag{3}
\end{align*}
$$

Figure 1: Spherical Coordinates
2. 8-12
where θ_{g} is the rotation angle between the true of dato system and the Iarth-fixed system (see Section 2.3.4).

The Earth's gravity field is represented by the normal potential of an ellipsoid of revolution and small irregular variations, expressed by a sum of spherical harmonics. This formulation, used in the NONAME system, is
$U=\frac{G l-1}{r}\left\{1+\sum_{n=2}^{n \max } \sum_{m=0}^{n}\left(\frac{a_{c}}{r}\right)^{n} p_{n}^{m}(\sin \psi)\left|c_{m m} \cos m \lambda+s_{n m} \sin m \lambda\right|\right\}$
where

G is the universal gravitational constant,

M is the mass of the earth,
r is the geocentric satellite distance,
max is the upper limit for the summation (highest degree),
a_{e} is the Earth's mean equatorial radius,
ϕ^{\prime} is the satellite geocentric latitude,
λ is the satellite east longitude,
$p_{n}^{m}(\sin \phi)$ indicate the associated six Legendre functions, and
$C_{n m}$ and $S_{n m}$ are the denormalized gravitational coefficients.

The relationships betwecn the normalized co-
efficients ($\overline{\mathrm{C}}_{\mathrm{nm}}, \overline{\mathrm{S}}_{\mathrm{nm}}$) and the denormalized coefficients are as follows:

$$
\begin{equation*}
C_{n m}=\left[\frac{(n-m)!(2 n+1)\left(2-\delta_{o m}\right)}{(n+m)!}\right]^{1 / 2} \bar{C}_{n m} \tag{5}
\end{equation*}
$$

where
$\delta_{o m}$ is the Kronecker deita,
$\delta_{o m}=1$ for $m=0$ and $\delta_{o m}=0$ for $m \neq 0$.

A similar expression is valid for the relationship between $\bar{S}_{n m}$ and $S_{n m}$. This conversion factor is computed by the NONAME system function DENORM.

The gravitational accelerations in true of date co- EGRAV ordinates ($\ddot{x}, \ddot{y}, \ddot{z}$) are computed from the geopotential, $U\left(r, \phi^{\prime}, \lambda\right)$, by the chain rule; e.g.,

$$
\begin{equation*}
\ddot{x}=\frac{\partial U}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial U}{\partial \phi^{\prime}} \frac{\partial \phi^{\prime}}{\partial x}+\frac{\partial U}{\partial \lambda} \frac{\partial \lambda}{\partial x} . \tag{6}
\end{equation*}
$$

The accelerations \ddot{y} and \ddot{z} arc determined likewise. The partial derivatives of U with respect to r, ϕ^{\prime}, and λ are given by

$$
\begin{align*}
\frac{\partial U}{\partial r} & =\frac{G M}{r^{2}}\left[1+\sum_{n=2}^{n m a x}\left(\frac{a}{r}\right)^{n} \sum_{m=0}^{n}\left(C_{n m} \cos m \lambda\right.\right. \tag{7}\\
& \left.\left.+S_{n m} \sin m \lambda\right)(n+1) P_{n}^{m}\left(\sin \phi^{\prime}\right)\right] \\
\frac{\partial U}{\partial \lambda} & =\frac{G M}{r} \sum_{n=2}^{n \max }\left(\frac{{ }_{m}}{r}\right)^{n} \sum_{m=0}^{n}\left(S_{n m} \cos m \lambda-C_{n m} \sin m \lambda\right) \tag{8}
\end{align*}
$$

$$
m P_{n}^{m}(\sin \phi)
$$

$$
\begin{equation*}
\frac{\partial U}{\partial \phi^{\prime}}=\frac{-}{r} \sum_{n=2}^{n m a x}\left(\frac{a}{r}\right)^{n} \sum_{m=0}^{n}\left(C_{n m} \cos m \lambda+s_{n m} \sin m \lambda\right) \tag{9}
\end{equation*}
$$

$$
\left[\mathrm{p}_{\mathrm{n}}^{\mathrm{m}+1} \quad\left(\sin \phi^{\prime}\right)-\mathrm{m} \tan \phi^{\prime} \mathrm{P}_{\mathrm{n}}^{\mathrm{m}}\left(\sin \phi^{\prime}\right)\right]
$$

The partial derivatives of r, ϕ, and λ with respect to the true of date satellite position components are

$$
\begin{align*}
& \frac{\partial r}{\partial r_{i}}=\frac{r_{i}}{r} \tag{10}\\
& \frac{\partial \phi^{\prime}}{\partial r_{i}}=\frac{1}{\sqrt{x^{2}+y^{2}}}\left[-\frac{z r_{i}}{r^{2}}+\frac{\partial z}{\partial r_{i}}\right] \tag{11}\\
& \frac{\partial \lambda}{\partial r_{i}}=\frac{1}{\sqrt{x^{2}+y^{2}}}\left[\frac{\partial y}{\partial r_{i}}-\frac{y}{x} \frac{\partial x}{\partial r_{i}}\right] \tag{1,2}
\end{align*}
$$

The Legendre functions are computed via recursion BGRAV formulae:

$$
\begin{align*}
& \text { Zonals: } m_{n}=0 \\
& \quad \cdot \tag{13}\\
& P_{n}^{0}\left(\sin \phi^{n}\right)=\frac{1}{n}\left[(2 n-1) \sin \phi^{\prime} P_{n-1}^{0}\left(\sin \phi^{n}\right)-\right. \\
& \left.(n-1) p_{n-2}^{0}\left(\sin \phi^{\prime}\right)\right] . \tag{14}
\end{align*}
$$

Tesserals: $m \neq 0$ and $m \leq n$

$$
\begin{equation*}
p_{n}^{m}\left(\sin \phi^{\prime}\right)=P_{n-2}^{m}\left(\sin \phi^{\prime}\right)+(2 n-1) \cos \phi^{\prime} p_{n-1}^{m-1}\left(\sin \phi^{\prime}\right) \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
P_{1}^{I}\left(\sin \phi^{\prime}\right)=\cos \phi^{\prime} \tag{16}
\end{equation*}
$$

Sectorals: m=n

$$
\begin{equation*}
p_{n}^{m}=(2 n-1) \cos \phi^{\prime} p_{n-1}^{n-1} \quad(\sin \phi) \tag{1.7}
\end{equation*}
$$

$$
\begin{align*}
& \text { The derivative relationship is given by } \\
& \frac{d}{d \phi^{\prime}}\left(p_{n}^{m}(\sin \phi)\right)=P_{n}^{m+1}(\sin \phi)-m \tan \phi^{\prime} p_{n}^{m}(\sin \phi) \tag{1.8}
\end{align*}
$$

It should also be noted that multiple angle
formulas are used for evaluating the sine and cosine of $m \lambda$.

These accelerations on the spacecraft arc computed in subroutine EGRAV. Arrays containing cortain intermediate data are passed to subroutine Vnval for use in the computations for the variational equations. These contain the values for:

$$
\begin{equation*}
\frac{G M}{r}\left(\frac{a_{c}}{r}\right)^{n} \tag{19}
\end{equation*}
$$

$$
\begin{gathered}
p_{n}^{m}\left(\sin \phi^{\prime}\right) \\
\sin m \lambda \\
\cos m \lambda \\
m \tan \phi^{\prime} \\
\text { for each } m \text { and/ox } n .
\end{gathered}
$$

The following discussion relates primarily to
VISUAL the mathematical formulations utilized in subroutine VEVAL.

The variational equations require the computation of the matrix $U_{2 c}$, whose elements are given by

$$
\begin{equation*}
\left(U_{2 c}\right)_{i, j}=\frac{\partial^{2} U}{\partial r_{i} \partial r_{j}} \tag{20}
\end{equation*}
$$

where
$r_{i}=\{x, y, z\}$, the true of date satellite position.
U is the geopotential.

Because the Earth's field is in terms of $r, \sin \phi^{\prime}$, and λ, we write

$$
\begin{equation*}
U_{2 c}=c_{1}^{7} U_{2} C_{1}+\sum_{k=1}^{3} \frac{\partial U}{\partial e_{k}} c_{2 k} \tag{2I}
\end{equation*}
$$

where
e_{k} ranges over the elements $r, \sin \phi^{\prime}$, and λ
U_{2} is the matrix whose $i, j^{\text {th }}$ element is given by $\frac{\partial^{2} u}{\partial e_{i} \partial e_{j}}$
C_{1} is the matrix whose $i, j^{\text {th }}$ clement is given
by $\frac{\partial c_{i}}{\partial r_{j}}$
and
$C_{2 k}$ is a set of three matrices whose $i, j^{\text {th }}$ elements are given by $\frac{\partial^{2} c_{k}}{\partial r_{i} r_{j}}$

We compute the second partial derivatives of the potential U with respect to r, ϕ, and λ :

$$
\begin{aligned}
\frac{\partial^{2} U}{\partial r^{2}}= & \frac{2 G M}{r^{3}}+\frac{G M}{r^{3}} \sum_{n=2}^{n m a x}(n+1)(n+2)\left(\frac{a}{r}\right)^{n} \sum_{m=0}^{n} \\
& \left(C_{n m} \cos m \lambda+S_{n m} \sin m \lambda\right) p_{n}^{m}(\sin \phi)
\end{aligned}
$$

$$
\frac{\partial^{2} U}{\partial r \partial \phi^{\prime}}=-\frac{G M}{r^{2}} \sum_{n=2}^{n m a x}(n+1)\left(\frac{a}{e}\right)^{n} \sum_{m=0}^{n}\left(c_{n m} \cos m \lambda\right.
$$

$$
\left.+S_{n m} \sin m \lambda\right) \frac{\partial}{\partial \phi^{\prime}}\left(\mathrm{P}_{\mathrm{m}}^{\mathrm{n}}\left(\sin \phi^{\prime}\right)\right)
$$

$$
\frac{\partial^{2} U}{\partial r \partial \lambda}=\frac{G M}{r^{2}} \sum_{n=2}^{n \max }(n+1)\left(\frac{a}{r}\right)^{n} \sum_{m=0}^{n} m
$$

$$
\left(-C_{n m} \sin m \lambda+S_{n m} \cos m \lambda\right) P_{n}^{m}\left(\sin \phi^{\prime}\right)
$$

$$
2.8-20
$$

$$
\begin{align*}
& \frac{\partial^{2} j}{\partial \phi^{2}}=\frac{G M}{r} \sum_{n=2}^{n n a \lambda}\left(\frac{a_{0}}{r}\right)^{n} \sum_{m=0}^{n}\left(c_{n m} \cos m \lambda+s_{m m}=3 n m \lambda\right) \tag{25}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial^{2} U}{\partial \phi \partial \lambda}=\frac{G M}{r} \sum_{n=2}^{n m a x}\left(\frac{a_{c}}{r}\right)^{n} \sum_{m=0}^{n} m\left(-C_{m m} \sin m \lambda\right. \tag{26}\\
& \left.+S_{n n} \cos m \lambda\right) \frac{\partial}{\partial \phi^{\prime}}\left(\int_{n}^{m}\left(\sin \phi^{\prime}\right)\right) \\
& \frac{\dot{a}^{L} u}{\partial \lambda^{2}}=-\frac{G M}{r} \sum_{n=2}^{\sum_{n=2}}\left(\frac{a}{r}\right)^{14} \sum_{m=0}^{n} m^{2}\left(C_{n m} \cos m \lambda\right. \tag{27}\\
& \left.+S_{m m} \sin m \lambda\right) p_{n}^{m}\left(\sin \psi^{\prime}\right)
\end{align*}
$$

where

$$
\frac{\partial}{\partial \phi^{\prime}}\left(p_{n}^{\mathrm{m}}\left(\sin \phi^{\prime}\right)\right)=p_{n}^{m+1}\left(\sin \phi^{\prime}\right)-m \tan \phi^{\prime} p_{n}^{m}\left(\sin \phi^{\prime}\right)
$$

$$
\begin{align*}
& \frac{\partial^{2}}{\partial \phi^{\prime 2}}\left(p_{n}^{m}\left(\sin \phi^{\prime}\right)\right)=p_{n}^{m+2}\left(\sin \phi^{\prime}\right)-(m+1) \operatorname{an} \phi^{\prime} p_{n}^{m+1}\left(\sin \psi^{\prime}\right) \\
& -m \tan \phi^{\prime}\left[p_{n}^{m+1}\left(\sin \phi^{\prime}\right)-m \tan \phi^{2} p_{n}^{m}\left(\sin \phi^{\prime}\right)\right] \\
& -m \sec ^{2} \phi^{\prime} P_{n}^{m}\left(\sin \phi^{\prime}\right) \tag{29}
\end{align*}
$$

The elements of U_{2} have almost been computed. What remains is to transform from ($r, \phi^{\prime}, \lambda$) to ($r, \sin \phi^{\prime}, \lambda$). This affects only the partials involving ф':

$$
\begin{align*}
& \frac{\partial U}{\partial \sin \phi^{\prime}}=\frac{\partial U}{\partial \phi^{\prime}} \frac{\partial \phi^{\prime}}{\partial \sin \phi^{\prime}} \tag{30}\\
& \frac{\partial^{2} U}{\partial \sin \phi^{\prime 2}}=\frac{\partial \phi^{\prime}}{\partial \sin \phi^{\prime}}\left(\frac{\partial^{2} U}{\partial \phi^{\prime 2}}\right) \frac{\partial \phi^{\prime}}{\partial \sin \phi^{\prime}}+\frac{\partial U}{\partial \phi^{\prime}} \frac{\partial^{2} \phi^{\prime}}{\partial \sin \phi^{\prime 2}} \tag{31}
\end{align*}
$$

where

$$
\begin{align*}
& \frac{\partial \phi^{\prime}}{\partial \sin \phi^{\prime}}=\sec \phi^{\prime} \tag{32}\\
& \frac{\partial^{2} \phi^{\prime}}{\partial \sin \phi^{\prime 2}}=\sin \phi^{\prime} \sec ^{3} \phi^{\prime} \tag{33}
\end{align*}
$$

For the C_{1} and $C_{2 k}$ matices, the partials of r, sin ϕ^{\prime}, and λ are obtained from the usual formulas:

$$
\begin{align*}
& x=\sqrt{x^{2}+y^{2}+z^{2}} \tag{34}\\
& \sin \phi^{\prime}=\frac{z}{x} \tag{35}\\
& \lambda=\tan ^{-1}\left(\frac{y}{x}\right)-\theta_{g} \tag{36}
\end{align*}
$$

We have for C_{1} :

$$
\begin{equation*}
\frac{\partial r}{\partial r_{i}}=\frac{r_{i}}{r} \tag{37}
\end{equation*}
$$

$\frac{\partial \sin \phi^{\prime}}{\partial r_{i}}=\frac{-z r_{i}}{r^{3}}+\frac{1}{r} \frac{\partial z}{\partial r_{i}}$

$$
\begin{equation*}
\frac{\partial \lambda}{\partial r_{i}}=\frac{1}{x^{2}+y^{2}}\left[x \frac{\partial y}{\partial r_{i}}-y \frac{\partial x}{\partial r_{i}}\right] \tag{38}
\end{equation*}
$$

The $C_{2 k}$ are symmetric. The necessary elements are given by

$$
\begin{align*}
& \frac{\partial^{2} r}{\partial r_{i} \partial r_{j}}=\frac{r_{i} r_{j}}{r^{3}}+\frac{1}{r} \frac{\partial r_{i}}{\partial r_{j}} \\
& \frac{\partial^{2} \sin \phi^{2}}{\partial r_{i} \partial r_{j}}=\frac{3 z r_{i} r_{j}}{r^{5}}-\frac{1}{r^{3}}\left[r_{j} \frac{\partial z}{\partial r_{i}}+r_{i} \cdot \frac{\partial z}{\partial z_{j}}+z \frac{\partial r_{i}}{\partial r_{j}}\right] \tag{40}\\
& \frac{\partial^{2} \lambda}{\partial r_{i} \partial r_{j}}=\frac{-2 r_{j}}{\left(x^{2}+y^{2}\right)^{2}}\left[\begin{array}{ll}
\left.x \frac{\partial y}{\partial r_{i}}-y \frac{\partial x}{\partial r_{i}}\right] \\
+\frac{1}{x^{2}+y^{2}}\left[\frac{\partial x}{\partial r_{j}} \frac{\partial y}{\partial r_{j}}-\frac{\partial y}{\partial r_{j}} \frac{\partial x}{\partial r_{j}}\right]
\end{array}\right. \tag{4.1}
\end{align*}
$$

If gravitational constants, $C_{n m}$ or $S_{m m}$ are being RESPAR estimated, we require their partials in the f matrix for the variational equations computations. These partials are

$$
\begin{align*}
& \frac{\partial}{\partial C_{n m}}\left(-\frac{\partial U}{\partial r}\right)=(n+1) \frac{G M}{r^{2}}\left(\frac{a e^{e}}{r}\right)^{n} \cos (m \lambda) p_{n}^{m}\left(\sin \phi^{\prime}\right) \tag{42}\\
& \frac{\partial}{\partial C_{n m}}\left(-\frac{\partial U}{\partial \lambda}\right)=m \frac{G M}{r}\left(\frac{a}{r}\right)^{n} \sin (m \lambda) p_{n}^{m}(\sin \phi) \tag{43}
\end{align*}
$$

$$
\begin{gathered}
\frac{\partial}{\partial C_{n m}}\left(-\frac{\partial U}{\partial \phi^{\prime}}\right)=-\frac{G M}{r}\left(\frac{a}{r}\right)^{n} \cos (\operatorname{m} \lambda)\left[P_{n}^{1 \mathrm{~m}+1}\left(\sin \phi^{\prime}\right)\right. \\
\left.-m \tan \phi^{\prime} P_{n}^{\mathrm{m}}\left(\sin \phi^{\prime}\right)\right]
\end{gathered}
$$

The partials for $S_{n m}$ are identical. with $\cos (m \lambda)$ replaced by $\sin (m \lambda)$ and with $\sin (m \lambda)$ roplaced by $-\cos (m \lambda)$.

These partials are converted to incrtial to true of date coordinates using the chain rule; e.g.,

$$
\begin{aligned}
& \frac{\partial}{\partial C_{n m}}\left(-\frac{\partial U}{\partial x}\right)=\frac{\partial}{\partial C_{n m}}\left(\frac{-\partial U}{\partial r}\right) \frac{\partial r}{\partial x}+\frac{\partial}{\partial C_{n m}}\left(\frac{-\partial U}{\partial \lambda}\right) \frac{\partial \lambda}{\partial x} \\
& +\frac{\partial}{\partial C_{n m}}\left(\frac{-\partial U}{\partial \phi^{\prime}}\right) \frac{\partial \phi^{\prime}}{\partial x}
\end{aligned}
$$

This particular set of computations is performed by subroutine RESPAR. The items which EGRAV computes for VEVAL are also available to RESPAR and are therefore utilized.

2.8.4 Solar and Lunar Gravitational Perturbations

The perturbations caused by a third body on a satellitc orbit are treated by defining a function, R_{d}, which is the third body disturbing potential. This potential takes on the following form:

$$
\begin{equation*}
R_{d}=\frac{\operatorname{Gim}_{d}}{r_{d}}\left[\left(I-\frac{2 r}{r_{d}} s+\frac{r^{2}}{r_{d}^{2}}\right)^{-1 / 2}-\frac{r}{r_{d}} \quad s\right] \tag{1}
\end{equation*}
$$

where
m_{d} is the mass of the disturbing body.
\bar{r}_{d} is the geocentric true of datc position vector to the disturbing body.
S is equal to the cosine of the enclosed angle between \bar{r} and \bar{r}_{d}.
$\bar{r} \quad$ is the geocontric true of date position vector of the satellite.

G is the universal gravitational constant, and
M is the mass of the Earth.

The third body perturbations considered in NONAME are for the Sun and the Moon. Both are computed in subroutine SUNGRV by'.

$$
\begin{equation*}
\overline{\mathrm{a}}_{\mathrm{d}}=-G M m_{\mathrm{d}}\left[\frac{\overline{\mathrm{~d}}}{\overline{\mathrm{D}}_{\mathrm{d}}}+\frac{1}{\mathrm{r}_{\mathrm{d}}} \cdot\left(\frac{\overline{\mathrm{r}}_{\mathrm{d}}}{\mathrm{r}_{\mathrm{d}}}\right)\right] \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \overline{\mathrm{d}}=\overline{\mathrm{r}}-\overline{\mathrm{r}}_{\mathrm{d}} \\
& \mathrm{D}_{\mathrm{d}}=\left[\mathrm{r}_{\mathrm{d}}{ }^{2}-2 r r_{\mathrm{d}} \mathrm{~S}+\mathrm{r}^{2}\right]^{3 / 2}
\end{aligned}
$$

These latter quantities, \bar{d} and D as well as $D^{2 / 3}$
VEVAL for the Moon are passed to subroutine VEVAL for the variational equation calculations. VEVAL computes the matrix $U_{2 C}$ whose i, $j^{\text {th }}$ elements is given by

$$
\begin{equation*}
\frac{\partial^{2} R_{d}}{\partial r_{i} \partial r_{j}}=-\frac{G M m_{d}}{D_{d}}\left[\frac{\partial r_{i}}{\partial r_{j}}+\frac{3 d_{i} d_{j}}{D_{d}^{2 / 3}}\right] \tag{3}
\end{equation*}
$$

This matrix is a fundamental part of the variational equations.

2.8.5 Solar Radiation Pressure

The force due to solar radiation can have a significant effect on the orbits of satellites with a large area to mass ratio. The accelerations due to solar radiation pressure are formulated in the

$$
\begin{equation*}
\bar{A}_{R}=-v C_{R} \frac{A_{s}}{m_{s}} p_{s} \hat{r}_{s} \tag{1}
\end{equation*}
$$

where
v is the eclipse factor, such that
$v=0$ when the satellite is in the Darth's shadow
$v=1$ when the satellite is illuminated by the Sun
C_{R} is a factor depending on the reflective characteristics of the satellite,
A_{s} is the cross sectional area of the satellite;
m_{s} is the mass of the satellite,
P_{s} is the solar radiation pressure in the vicinity of the Earth, and
\hat{r}_{s} is the (geocentric) true of date unit vector pointing to the Sun.

The unit vector \hat{r}_{s} is determined as part of the lunisolar ephemeris computations.

The eclipse factor, $\dot{\nu}$, is determined as follows:

Computo

$$
\begin{equation*}
\mathrm{D}=\overline{\mathrm{r}} \cdot \hat{\mathrm{r}}_{\mathrm{S}} \tag{2}
\end{equation*}
$$

where \bar{r} is the truc of date position vector of the satellite. If D is positive, the satellitc is always in sunlight. If D is negative, compute the vector \bar{P}_{R}.

$$
\begin{equation*}
\bar{P}_{R}=\bar{r}-D \hat{r}_{s} \tag{3}
\end{equation*}
$$

This vector is perpendicular to \hat{r}_{S}. If jts magnitude is less than an Jarth radjus, or rathor if

$$
\begin{equation*}
\overline{\mathrm{P}}_{\mathrm{R}} \cdot \overline{\mathrm{P}}_{\mathrm{R}}<\mathrm{a}_{\mathrm{e}}^{2} \tag{4}
\end{equation*}
$$

'the satellite is in shadow.

The satellite is assumed to be specularly
reflecting with reflectivity ρ_{s}; thus

$$
\begin{equation*}
C_{R}=1+\rho_{S} \tag{5}
\end{equation*}
$$

When a radiation pressure coefficient is being determined; i.e., C_{R}, the partials for the f matrix
in the variational equations computation must be computed. The $i^{\text {th }}$ element of this column matrix is given by

$$
\begin{equation*}
f_{i}=-v \frac{A_{s}}{m_{s}} p_{s} r_{s_{i}} \tag{6}
\end{equation*}
$$

These computations for the effects of solar radiation pressure are done in subroutine F.
2.8.6 Atmospheric Drag

A satellite moving through an atmosphere ex- DRAG periences a drag force. Tho acceleration due to this force is given by

$$
\begin{equation*}
\bar{A}_{\mathrm{D}}=-\frac{1}{2} C_{\mathrm{D}} \frac{\mathrm{~A}_{\mathrm{s}}}{\mathrm{~m}_{\mathrm{s}}} \rho_{\mathrm{D}} \mathrm{v}_{\mathrm{r}} \overline{\mathrm{v}}_{\mathrm{r}} \tag{1}
\end{equation*}
$$

where
C_{D} is the satellite drag coefficient
A_{s} is the cross-sectional area of the satellite
m_{s} is the mass of the satellite,
ρ_{D} is the density of the atmosphere at the satellite position, and
\bar{v}_{r} is the velocity vector of the satellite relative to the atmosphere:

Both A_{s} and C_{j} are treated as constants in NONANB: Although A_{s} depends somewhat on satellite attitude, the use of a mean cross-sectional area does not lead to significant errors for geodetically useful satellites. The factor C_{D} varies slightly with satellite shape and atmospheric composition. However, for any geodetically useful satellite, it may be treated as a satellite dependent constant.

The relative velocity vector, \bar{v}_{r}, is computed assuming that the atmosplicre rotates with the Earth. The true of date components of this vector are then

$$
\begin{align*}
\dot{x}_{r} & =\dot{x}-\dot{\theta}_{g} y \tag{2}\\
\dot{y}_{r} & =\dot{y}-\dot{\theta}_{g} x \tag{3}\\
\dot{z}_{r} & =\dot{z} \tag{4}
\end{align*}
$$

as is indicated from Section 2.3.4, the subsection on transformations between Earth-fixed and true of date systems. The quantities \dot{x}, \dot{y}, and. \dot{z} are of course the components of $\dot{\bar{r}}$, the satellite velocity vector in true of date coordinates.

The drag accelerations are computed in the
NONAME system by subroutine DRAG, with the atmospheric density ρ_{D} being evaluated by subroutine DENSTY. In addition, subroutine $D R A G$ computes the direct partials for the f matrix of the variational equations when the drag cocffjeient C_{D} is being determined. These partials are given by

$$
\begin{equation*}
f=-\frac{1}{2} \frac{A_{S}}{m_{S}} \rho_{D} \dot{v}_{r} \overleftarrow{v}_{r} \tag{5}
\end{equation*}
$$

When drag is present in an orbit determination
VEVAL run, the D_{r} matrix in the variational equations must also be computed. This matrix, which contains the partial derivatives of the drag acceleration with respect to the Cartesian orbital elements, is constructed in subroutine VEVAL. We have

4

$$
\begin{equation*}
D_{r}=-\frac{1}{2} C_{D} \frac{A_{S}}{m_{S}}\left[\rho_{D} v_{r} \frac{\partial \bar{v}_{r}}{\partial \bar{x}_{t}}+\rho_{D} \frac{\partial v_{r}}{\partial \bar{x}_{t}} \bar{v}_{r}+\frac{\partial \rho_{D}}{\partial \bar{x}_{t}} v_{r} \bar{v}_{r}\right] \tag{6}
\end{equation*}
$$

where

$$
\bar{x}_{t} \text { is }(x, y, z, \dot{x}, \dot{y}, \dot{z}) ; \text { i.e., } \bar{x}_{t} \operatorname{spans} \overline{\mathrm{r}} \text { and } \dot{\vec{r}} .
$$

$$
\begin{align*}
& \frac{\partial \bar{v}_{r}}{\partial \bar{x}_{t}}=\left[\begin{array}{ccc}
0 & \dot{\theta}_{g} & 0 \\
\dot{\theta}_{g} & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \tag{7}
\end{align*}
$$

and
$\frac{\partial \rho_{D}}{\partial \bar{x}_{t}}$ is the matrix containing the partial deriva- DENS'TY
to \bar{x}_{t} and is partially computed in subroutine
DENS'ry (see section 2.8 .7 .4 on atmospheric
density partial derivatives). Because the density
is not a function of the satellite velocity,
the required partials are $\frac{\partial \rho_{D}}{\partial \bar{r}}$.

2.8.7 Atmospheric Densi.ty

The atmospheric density is the factor which is DENSTY least well known in the computation of drag; however, it is essential to the computation of realistic perturbations due to drag. The NONAME solution is to use the Jacchia-Nicolct model, which is porhaps the most descriptive model presently available. This model gives densities betwcen 120 km and 1000 km with an extrapolation formula for higher altitudes.

The NONAME mode1, as implemented in subroutine DENSTY, is bascd on Jacclia's 1965 report, "Static Diffusion Models of the Upper Atmosphere with Empirical Temperature Profiles" (Reference 2). The formulae for computing the exospheric temperature have in some cases been modified according to Jacchia's later papers. The density computation from the exospheric temperature is based on density data provided in that report, reproduced herein as Table 1 , which presents density distribution versus altitude and exospheric temperature.
, The discussion which follows will cover basically the assumptions behind the model and the formulae actually used in subroutine DENSTY. It will also cover the procedure for computing the density which was developed by WOLF.

The reader who is interested in the developinent of these empirical formulas and the reasoning behind them should consult the above mentioned report and Jacchia's later papers. For the convenience of this

Table 1 （Jacchia，Reference 2）

Densities as a function of height and exospheric temperature．

 Decimal logarithms，g / cm^{3}| | 210 | 2050 | 100n | 1150 | 1000 | 1．sso | 1603 | 1750 | 1700 | 1050 | 1000 | 1550 | 500 | 1459 | 1400 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | | | |
| 120 | $-10.0 .34$ | －10．509 | －10－60： | －10．t34 | －16．639 | －13．1507 | －10．004 | －14．603 | －10．3C9 | －11．1任 | | | | | |
| 13. | 11．1：\％ | －11．11： | －il．1：${ }^{\text {a }}$ | －11．114 | －14．117 | －11．117 | －11．111 | －11．117 | －11．117 | －1i．116 | 118 | 33 | | | |
| 140 | 11．4．4＇ | －11．443 | －1！ 1 444 | | | | | | | | | | | | |
| 50 | ה | 7 | ＋h | －11．035 | S | | | | | | | | | | |
| 160 | 11．こと： | 1．3．2 | －1．0．8． | －11．ぎロ | －11．67\％ | －12．376 | －11．8．5 | －12．074 | －11．93 | ， | －1．310 | －11．965 | -11.567 | | |
| | －12．2－2 | －1 | －1． | －12．54 | －12．c34 | －12．63s | －12．237 | －12．035 | －12．23 | －12．032 | －12．331 | －12．330 | 29 | 3 | －12．029 |
| 130 | －12．12？ | －12．131 | －12．1ここ | －12．ido | －12．179 | －12．178 | －12．173 | －12．175 | －12． 17 | 3 | | | | | |
| 190 | －12．754 | －12．304 | －12．354 | －12．373 | －12．302 | -12.301 | －12．302 | －12．284 | ． | | | | | | |
| 0 | 12．－15 | －12．415 | -12.415 | －1？．414 | －12．414 | －13．413 | －12．412 | | | | | | | | |
| 210 | －12．915 | －12．515 | －17．516 | －12．5ib | －12．510 | | －12．515 | －12．515 | －12．515 | －12．Si | 15 | 7 | －12．519 | －12．523 | |
| ， | 12.602 | －12．809 | $-1: 50$ | －12．310 | －12．610 | －12．610 | －12．611 | －12．611 | －12．611 | －12．612 | －12．614 | －12．616 | －12．620 | | |
| 330 | 12.604 | －11．096 | －12．6．77 | －12．499 | －17．640 | －12．679 | －12．70： | －12．701 | －12．702 | －12．704 | －12．706 | －12．710 | 4 | 2 | |
| 240 | －12．715 | 1．．ir | －iP．77 | －12．25：2 | －12．782 | －12．783 | －i2．754 | －12．796 | －12．78 | －12．791 | －12．794 | －12．790 | 5 | I | |
| 250 | 12．052 | 3_{5}^{6} | | 57 | －12．365 | 362 | -12.855 | 67 | －12．073 | | | | | | |
| 260 | －12．723 | －12．12？ | －12．430 | | －12．035 | －12．438 | －12．94！ | －12．044 | 12.94 | －12．953 | 2．950 | 66 | | | |
| 270 | 12．34． | －12．908 | －17．001 | －13．254 | －13．00\％ | －13．011 | －13．015 | －13．029 | 13.024 | －13．030 | 638 | | | | |
| 280 | $13.03:$ | 13．こ55 | －11．0，$=$ | －1． 3 3 ${ }^{\text {a }}$ | －13．077 | －13．021 | －13．25\％ | －13．091 | －13．007 | 04 | 12 | 21 | －13．133 | | |
| 290 | 13．12三 | 13．124 | －：3．134 | -13.139 | 13.144 | -13.147 | －13．154 | －13．160 | 67 | 75 | 85 | $1{ }^{\text {c }}$ | －13．207 | 13.224 | |
| 32 | -33.198 | －13．17＝ | | -13.203 | 13．209 | 13 | －13．221 | | －13．236 | 45 | 56 | A | －13．233 | | |
| | －13．248 | －13．252 | －13．259 | －13．265 | －13．271 | －13．273 | －13．255 | －13．273 | －13．303 | －13．313 | 3.325 | | | | |
| 320 | －13．304 | －13．311 | －13．316 | －13．325 | －13．332 | -13.340 | －13．349 | －13．357 | -13.368 | -13.870 | －13．393 | －13．409 | －13，425 | | |
| | 13．36 | －13．36： | －13．376 | －17．384 | －13．392 | －13．401 | -13.410 | －13．420 | －13．431 | 13.644 | | | | | |
| 40 | －13．415 | -13.424 | －13．433 | -13.461 | －13．650 | -13.460 | -13.470 | －13．481 | －13．4c4 | －13．528 | 23 | －13．541 | | | |
| 50 | 13.46 | －13．413 | | | | 13.517 | 524 | －13．541 | 54 | | | | | | |
| | －13．522 | －13．932 | －13．54？ | －13．552 | －13．563 | －13．574 | －13．54s | －13．597 | －13．614 | －13．631 | | | | | |
| 370 | －13．573 | －13．534 | －13．595 | －13．566 | -13.317 | －13．629 | －13．363 | －13．657 | －13．673 | －13．692 | －13．710 | －13．732 | 7 | | |
| 380 | -13.223 | － 13.635 | －13．446 | -13.651 | －13．671 | 13.68 | －13． | －13．713 | －13．730 | －13．747 | ． 773 | -13.796 | －13．329 | | |
| 390 | -13.6 ± 3 | －13．503 | －： 3.597 | -13.710 | -13.723 | 13.734 | 3.752 | －13．787 | 7 | | | | | | |
| 400 | －13．321 | 4 | | | | | | | | | | | | | |
| | －13．754 | －13．732 | －13．7ヶh | －$:$ ：${ }^{\text {a }}$ | －13．826 | -13.842 | －13．857 | －13．977 | －13－2 | 13.729 | －13．944 | －13．972 | 02 | 14．23： | |
| 420 | －13．Eis | －13．33 | －13．0．64 | － 13.860 | －13．375 | －13．392 | -13.910 | －13．730 | －13．95！ | －13．975 | －14．09 | －14－029 | | | |
| 430 | 13. | i3．47 | －13．ri47 | －13．702 | －13．725 | －13．742 | －13．761 | -13.352 | －14．004 | －14．027 | －14．056 | －14．085 | 14．117 | 5 | |
| 440 | 13.78 | $-13.7{ }^{\circ}$ | － 3.932 | －13．759 | －13．973 | －13．992 | －14． 212 | －14．033 | －14．057 | －14．082 | －14．110 | 4.141 | 14.175 | | |
| 450 | 13．35： | 13．75： | | | | | | | | | | | | | |
| | -13.947 | －14．012 | －14．030 | －14．049 | －14．668 | －14．098 | －14．110 | －14．133 | －14．157 | －14．187 | －14．217 | －14．251 | 14．288 | 14．32－ | ＋ |
| 470 | $-14.23=$ | $-14.3>6$ | －14．076 | －14．5，94 | －14．115 | －14．135 | －14．158 | $-14-103$ | －14．209 | －14． 638 | －14．273 | －14．302 | －14．342 | －14．354 | |
| 480 | －14．${ }^{2}=1$ | －14．103 | －1＇－11， | －：．．134 | －14．169 | －14．182 | －14．294 | －14．231 | －2 | 33 | －14．321 | | | | |
| 495 | -14.121 | －14．143 | －14．163 | －14．123 | －14．205 | -14.228 | -14.253 | －14．279 | －14．348 | ． 33 | 4 | | | | |
| 503 | -14.11% | 14．144 | 14.206 | －14．227 | － | | | ． 326 | | | | | | | |
| 510 | －14．3¢ | －14．72l | －14．248 | －14．271 | －14．294 | －14．319 | －14．365 | －14．373 | －14．404 | －14．434 | －14．473 | －14．512 | 4.555 | 2 | |
| 420 | －14．24t | －16．2\％s | －14．270 | －14．313 | -14.317 | -14.363 | －14．347 | －14．419 | －14．451 | －14．4．85 | －14．522 | －14．552 | 4.507 | 14.355 | |
| 330 | $-14.2{ }^{-1}$ | －14．3（3） | －14－317 | －14．15h | 14．341 | －14．407 | 4.435 | －14．465 | －14．497 | －14．533 | －14．571 | －14．612 | 52 | 4.705 | |
| 540 | －14，＇12 | －14．142 | － 4.4 ： 13 | －1\％．3．7 | | | ， | －14．319 | | | | | | | |
| | | | | | | | | | | | | | | | |

Table I（continued）

							1050	1000	950	900	950	800	750	700	850
	1350	1300	：250	1200	1150	1100	1050								
		－10．60＇	－1：60\％	-10.609	－12．004	－12．809	-12.500	－10．609	－10．609	－10．509	-10.609 -11.089	-10.809 -11.061	10.609 11.054	-10.609 -11.045	$\begin{aligned} & -10.609 \\ & -11.030 \end{aligned}$
130	－11．ill	－11．100	－11．15s	－11．103	－11．${ }^{\text {a }}$－	－12．093	－il．39	－11．035	-11.031 -11.407	－11．403	－11．399	－11．305	11.390	－11．368	－11．382
140	－1i．43i	$-11+5^{-2}$	－11．22？	－11．424	－11．42！			－11．42	－11．4．662	－11．063	－11．804	－11．565	688	－11．851	575
150	－11．6：1	－11．53\％	． 56		5．5			（	．${ }^{\text {a }}$						
	－11．564	－11．nos	－1： 5	－11－523		－1：．90\％	－11．560	11．872	-12.876 -12.063	-11.862 -12.075	－11．598	-11.898 -12.104	-11.908 -12.123	-11.920 -12.145	-11.934 -12.169
170	－12．072	-12.92	－！． 3 ？	－1：心33		－12．04＊	－1，${ }^{\text {anc }}$	－12．21\％	－12．232	－12．249	-12.260	-12.232	－12．320	－12．351	－12．336
140	－12．172	－12．17．	1，－i	－12．19				－12．363	－12．387	-12.410	－12．436	－12．467	－12．502	42	8
190	－12．302	－12－309	－12．311	-17.313				－12．36s	－12．532	－12．561	－12．593	－12．631	－12．674	－12．722	
200	$-12+422$	－12．52i	－12．435	－12．64．4	－12．453			－12．503							
210	－12．533	－12．541	－12．550	－12．582	－12．577	－12－505	－12．615	12.641	-12.669 -12.800	$\begin{aligned} & -12.703 \\ & -12.037 \end{aligned}$	$\begin{aligned} & -12.741 \\ & -12.883 \end{aligned}$	$\begin{aligned} & -12.786 \\ & -12.933 \end{aligned}$	-12.830 -12.090	-12.893 -13.055	－12．938
220	－12．639	－12．04？	－12．55s	－12．67\％	－12．692	－12．713	－12．735		1	－12．959	－13．0：9	－13．074	－13．138	－13．210	－13．291
230	-12.73°	－12．14	：2．？ 3 ？	－12．98	12.301	－12．826	－12．954	－13．003	－13．045	－13．093	4	－13．210	－13．290	-13.358	－13．641
240	-12.833	－12．4．6	$12.2 y^{2}$	2.			． $26 \begin{aligned} & \text { ar } \\ & \end{aligned}$	－13．00．	－13．101	－13．214	74	141			
253	-17.02	－12．743	17											－23．637	－13．741
260	－13．013	－17．031	－！9，0ヶ2	－： 3.575	－13．107	－13．141	179	-13.224 -13.327	－13．383	$\begin{aligned} & -13.331 \\ & -13.444 \end{aligned}$	－13．5i2	－12．549	－13．575	－13．772	-13.850
270	－13．8．0）	－13．1：	－13．：43	－3．1．12	13．202	13.239 -13.335	-13.29 -13.33 .3	－13．43i	－i3．489	－13．553	-13.526	－13．707	－13．799	－13．731	－14．015
z20	－13．102	－13．2こ5	13．23！	－13．26：	13.276 13.385	-13.335 -13.429	－13．387	$-13.53 i$	-13.582	－ 13.660	3 ：	－13．822	．918	－14．026	$\begin{aligned} & -14.147 \\ & -14.275 \end{aligned}$
290	-13.263	13.22 \％	13．31\％	11．349	－13．385	－13．429	-13.977	29	－13．092	64	5		． 035		275
300	－13．343	－367										044	－14．149		－14．402
31.0	－13．433	－13．442	－13．4i：	－13．317	－13．551	-13.600 -13.876	-13.562 -13.752	$\begin{aligned} & -13.723 \\ & -13.815 \end{aligned}$	-13.790 -13.386	-13.868 -13.965	-13.950 -14.052	-14.151	-14.261	－14．334	-14.526
320	－13．inn	－13．525	－13．501	3.641	13.645	-13.676 -13.731	-13.752 -13.340	$\begin{aligned} & -13.815 \\ & -13.706 \end{aligned}$	$\begin{aligned} & -13.386 \\ & -13.979 \end{aligned}$	-13.965 -14.051	－14．153	－14．255	－14．370	－14．437	－16．645
330	－13．572	－13．6．33	－13．53\％	－i 3.48 P	13.23 13.357	-13.831 -13.864	26	－13．094	－14．371	－14．156	－14．25i	-14.358	-14.477	14.611	-14.763 -14.380
340	-13.643	-13.577	－13．71～	－13．750	3.307	-13.834 -13.565	T20	－13．05i	－14．101	－14．249	-14.343	45	5ez	22	380
350	14	50							－14．249	－14．341	－14．443	－14．557	－14．686	－14．831	－14．995
360	－13．754	－13．322	-13.505	－13．913	－i3．765	-14.025			-14.249 -14.336	－14．3431	－14．536	－14．055	－ 14.788	－14．937	－15．109
370	－13．35？	－13．092	－13．037	－13．78 7	－14．043	-14.125 $-14-132$		－14．233	421	－14．519	－14．529	－14．751	－14．889	5.045	－15．221
320	－13．72\％	－13．962	－14．cus	－14．059	－14．118	－14．132	-14.253 -14.332	－14．4314	14.535	－14．506	－14．719	－14．946	－14．938	149	－15．332
390	－13．43\％	－14．030	14.073	32			－14．332	－14．4．94	14.587	－14．692	－14．309	－14．040	－15．087	3	
400	－14．051	14.206	－14．1．7												
	－14．110	－14．152	－1．0．214	，	－14．336	－14．407	－14．295	－14．572	-14.669	－14．777	－14．897	-15.032 -15.124	$\begin{aligned} & -15.184 \\ & -15.280 \end{aligned}$	$-15 \cdot 453$	－15．654
420	－14．170	－14．227	－1．7．23i	－14．342	－14．405	－14．419	550	－14．852	827	$\begin{aligned} & 14.861 \\ & -14.943 \end{aligned}$	$\begin{aligned} & -14.985 \\ & -15.071 \end{aligned}$	－15．214	－15．375	－15．555	－15．758
430	－14．24！	－14．291	－14．34	－14．409	－14．475	－14．551			，	－15．025	－15．156	－15．303	－15．468	－15．653	15.850
440	－14．30）	－16．356	4.41	i．i．474	－14．564	－14．622	-14.707 -14.780			－ 15.105	－15．241	－15．392	－15．561	－15．750	15.957
450	－14．303	－ 14.415					－								
	－14．423	－1＋64．79		－14．605	-14.577	－14．74：	－16．351	－14．951	－15．062	-15.186 -15.266	$\begin{aligned} & -15.325 \\ & -15.407 \end{aligned}$	$\begin{array}{r} -15.479 \\ -15.565 \end{array}$	$\begin{aligned} & -15.652 \\ & -15.742 \end{aligned}$	$\begin{aligned} & -15.844 \\ & -15.937 \end{aligned}$	$\begin{aligned} & -15.255 \\ & -15.150 \end{aligned}$
472	－14．45？	－14．53ct	－14．601	－14．640	－14． 145	－14．872	－14．922				－15．489	－15．850	－15．830	－15．028	－13．242
480	－14．54\％	－14．59\％	－14．562	－14．73	－14．8！	－14．096	－14．792	－15．277	$\begin{aligned} & -15.212 \\ & -15.289 \end{aligned}$	-15.422	－15．570	－15．734	－15．917	－16．11？	－16．330
490	－14．574	－14．63？	－14．72：	－14．709	14.375 -14.737			15.240 -15.20	－15．367	－15．499	－15．650	－ 15.81	－16．002	－16．203	－15．414
500	－14．655	－16．713	－14．75 ${ }^{\text {a }}$	4.151											
510	－14．7il	－14．714	－14．4．4	－14．71\％	－13．903	-15.075	－15．197	－15．310	$\begin{aligned} & -15.436 \\ & -15.508 \end{aligned}$	$\begin{aligned} & -15.574 \\ & -25.650 \end{aligned}$	-15.728 -15.206	$\begin{aligned} & -15.899 \\ & -15.979 \end{aligned}$	$\begin{aligned} & -16.086 \\ & -16.167 \end{aligned}$	-15.287 -16.363	-15.495 -18.572
520	-14.75	－14．1 31	－14．4＇\％	－14．780	－15．006	1 60	15.2 15.3	－15．4	－15．58\％	－15．124	－15．883	－16．05	-16.247	－16．44．7	-16.565
530	－14．82	－14．1	14． H					15．518	－15．550	－15．797	－15．758	-16.13	－16．324	16.522	714
543	-14.717 -14.411	－14．7		－15．15	-15.189 -15.751	－15．351	$-15.4{ }^{\text {a }}$	－15．345	－15．770	－15．8．69	－16．032	－16．210	－16．339	16.594	778

Table I（continued）

	$21 \because$	こ0かけ	？ 000	1750	：「ヘ＾	lis		：50，	：702	1053	1800	1550	1500	1450	2400
400	－14．．がと	－14．429	－14．0．54	－1ヶ．．8゙ン	－14．5i＊	－14．912	－1ヶ．${ }^{\text {an }}$	－14．537	－14．635	－14．023	－14．714	－！ム．アき？	－14．908	－14．852	4.921
	－14．4．4	－14．cts，	－1．0．4＊3	－1，－，		－14．5．74	－14．らこ？	${ }^{-}$	14.3 13	－14．110		－1－301	${ }^{7}$		
280	－14．4．91		－14．3：	－1＋350	－1．0．ist	－16．58：	－14．2：	7	－：4．7E：	－14．16		－！－． $\mathrm{S}_{5} 5$	－：4．909	14.2	$\begin{aligned} & 54 \\ & 575 \end{aligned}$
303	－17．3：	－1．0．．．3	$-1-3.5$	－1 1－E	\％3\％										
403	－14．55，	14.533	－14．s！0		ה？	37									
6：3	－14．503	－14．020			－14．72：			14		3		5	50	－15．115	5
522	－17．6：	14．05	－！－，－\％	－14．${ }^{\text {a }}$	－14．750	70		564	－14．＊ข：	－14．44，	$=$	－120．34			
630	－17．066	－14．6．	－1．．7：${ }^{\text {a }}$	－14．155	－14．720	－ 4.8 R 2	－1．0．¢	－14．094	－14．040	－14．785	－15．23：	－5．0ミ	44		
040	-1×301	－14．731	－1～7si	－14．793	－14．82\％	－14．352	－1．．さد：	－14．23＝	－：4．78？	－15．j2s	－15．0＊＊	1：！	$3{ }^{3}$		12
65\％	－14．7．7	－14．35	－su	－14．23？	6	－14．y2：									
660	－14．772	－14．9゙）	－14．335	－14．9ñ	－14．203	－15．7：0	－14．070	－15．022	－15．055	－15．1：3	－15．：35	－15．221	－15．232	－15．345	7
673	－14．327	－14．ち3i	－i4．ci	－14．735	－14．34	－14．275	$-15 \times 3=$	－15．ce：	－15．105	－15．155	－15．255	－：5．325	－15．327	－15．354	7
659	－14．en？	－14．2．74	－．4．3゙7	－16．04？	－14．0＇8	－15．215	－ 5.25	－15	－ 5.14 ？	－15．177					5
692	－in．c＇＊	－14．サご	$-1,1.743$	－1：7\％	－ib．0！5	－15．35－	－15．：23	15．1－2	－15．197	－15．232		15．3 5.30			
$70:$	－i4．${ }^{\text {a }}$ ！	？ 1. ．${ }^{\text {a }}$	－：4．97\％	5．9！	－15．352	－15．532	－15．17＊		－5j－220	－15．232	5				
710	－14．94	－14．775	－15．6：4	－15．050	－15．5えタ	－15．120	－15．173	－15．218	－ 25.23 .3	－． 5.325	－15．3：	4？	525	－15	
720	－14．ify	-15.013	－19．2－0	－15．085	－15．125	－15．15	－15．2：	－15．75 ${ }^{\text {² }}$	－15．307	－15．351	－15．－ic	今，	549	15．62：	0
730	－15．c：	－15．E4		－15．12：	－15．10：	－15．203	－15．2．5	－15．275	－ $25-3 \mathrm{c}$ ？	－15．46i	－15．65	－ 5.583	－15．592	－15．660	15．746
140	-15.045	－15．092	$-14 .!1{ }^{\text {a }}$	－15．15s	－15．： 97	－15．24＝	－13．2Es	－19， 334	－ 5 5－3－5	－15．441	－15．52：	－15．505	$\cdots+535$	－15．716	－5．791
750	－15．07\％	－15．114	－i5．15	－15．：91	－15．235	－15．7is	－15．32？	－15．372							
780	－15．111	－15．148	－：3．1．h	－ib．236	－15．25	-15.313	－15．3s＝	－15．－10	~ 15.253	－15．520	－15．532	－15．649	-15.720	－：5．797	$?$
770	－15．1．3	－15．12：	－ij．226	－15．743	－15．303	$-15.340 \hat{0}$		－15．647	－25．5：2	－15．550	－15．$=2$ ？	637	¢2	－15．840	
780	－15．17s	－15．214	－15．253	－：5．．75	－： 5.338	－15．354	$-15 \cdot-37$	$-: 5.434$	－15．5＝	－15．577	15．8：2	： $2=$	5．ミニ3	：5．93？	
790	－15．2 5	－15．2．03	－15．287	-5.320	－15．373	-15.619	－15．4：	-15.521	－15．5：7	－15．537	－15．7\％		¢ 4 ¢	24	
300	-15.340	－15．279	－15．322	-15.352	15．437	$: 5.455$	－15．525	－15．559	－ 15.815	－15．670					
	－15．271	－15．311	－15．35？	－i5．3つら	－15．4．2	－15．670	－19．ご年	－15．575	－15．05？	-15.714	－：5．730	－15． 550	-15.320	－：5．003	－is． 275
820	－ 5.5 .323	－15．343	－！5．3ミ\％	－ 15.42^{2}	－15．47	－15．53－	－ 5 －5：	$-15.6 \geq 1$	－15．827	－15．751	－15．Ei2	－1j－sac	－15．905	－15．069	-26.137
330	－17．374	-15.315	－15．414	－is－45\％	－15．5i2	－：5．550	－15．b：	－15．65	15．723	15.797	7	？			
040	$-15 \cdot 3=$	－15．407	－15．455	－15．：05	－15．543	－：5．593	$-15 \cdot h=$	-15.752	－15．752	－15．275	35	－			
550	$-: 3.3 \cdot 4$	$-15.43=$	$-15.4 .32$	- － －$^{\text {2 }}$				7 \％		3				¢9	7
369	－15．4：	－15．454	－：3．5：4	－15．931	－15．00：	－15．65：	－15．715	-15.773	－15．334	－15．900	－：5．372	－15．64：	－16．126	－13．203	－16．293
いけn	－15．1；	－12．50：	－！ 9.544		－15．642	－15．335	－15．75i	－15．388	－ 5.5050	－15．，？ 4	－14．3i7	－1ヶ． 5 － 2	－16．102	－15．247	－4．333
490	－15．4．7	－10．512	－15．4．77	－15．025	－1c．aty	－15．725	－15．754	$-15 \cdot 8.3$	-15.435	－15．${ }^{-15}$	－13．64	－： 5.117	－15．204	－ir．3＝5	－1t．37i
3 30	－ $15.41 \pm$	－1，${ }^{\circ}$ ， 362	－10．52\％	－14．557	-15.758	－ 15.15		$-15+\mathrm{E}^{-7}$	－15．74：	－15－722	－ 230	－1\％．155	－15．237	－15．324	16．4：5
900	－15．54	－15．3＊3	－1：．646	$-13-2$ ）	－：5．740	テ＝	－1¢－c．	－15．71！	－ 5.075				4		－15．652
	－15．577	－15．6．23	-15.675	－15．72＾	－15．77？	－15．527	－15．925	－i5．－45	－15．019	－is．：79	－is．15！	－15．227	－12－3！	－15．？${ }^{\text {a }}$	－15．437
720	-15.537	－：9．1．33	－15．7．	－19．51	－15．8\％	－15．259	－15．714	－15．978	－16．9－4	－：$=113$	－1b．137	－12． 265	： 0.347	－15．43－	－15．528
＋30	－15．036	－1：4583	－15．732	$-1, .723$	－15．035	－15．371	-15.55	－！ 5.512	－1ヶ．37d	－16．14a	－15．22？	－1：305	1h． $3=3$	－15．473	13－551
340	－ 15.464	－15．713	－17． 167	$-15--13$	-15.45	－15．5123	－¢－72＂	－19．344	－13－112	－15．182	－13．235	－16．335	16．513	－it．5こう	：5．537
＂5．9	－1；．6\％	－14．74	-15.7%	－15．144	－15．893	：9．955	$-16 .: 15$	－15．379	$-15.1<5$	－18．2is	－15．2＋1	15．375	－16，453	－15．54\％	－is．a31
	－11．124	－：5．174	－17．023		－：5．7で	－5，4\％？	－14．6l	－65．111	－16．179	－14．242	－15．：26	－12．434	－19．4E7	－15．574	-15.325
170	－15．75i	－1．，－，1		－：＞\％	－15．315	－1\％．3i＝	－14．72	－1ヶ．143	－15．211	$-15 . ?=2$	－\％．35z	－16．437	－12．5p！	－15． 533	－b． 578
\％ m	－15．1：1	－1\％ 0	－iち．к．．	－1＇．335	－i4．tM，	－15．5．a．	－1＇．1：5	－：י．175	－1：．253	－5．315	1ヵ．3\％	12．：3？	：6． 55.	15.	12．：35
	－13．．．	－1．．．：		－1．－．	－11．${ }^{\text {a }}$	－1tabir	－16．14）	－10．7：	－3i4	－15．54	－1s，424	1t．5＊3			
うe：	－15．：	1 15	－1י．	14	－1／atis！	110	－1e．t＇	1！4	107			¢3）			

Table 1 （continued）

	135%	130.	125！	12.5	1150	1100	にらす	1000	950	708	550	820	750	700	650
					1	－15，4i4	－15．4こ！	－15．3い	－15．740	－：5．74＾	－16．105	－10．283	－16．472	15．052	－16．810
570	－12．834	－：3，in：	－1－1年	－！	－15－17：	－15．47s	－ 29.509	－：5．7．3	－ 4.354	－1：．J11	－13．i＞7	－14．355	0.541		－15．575
$\square 9 \mathrm{C}$	－ $\mathrm{c}_{\text {cosi }}$	－i¢－is．	－1 ． $2 \times-$	－13．134	－15．4：	－15．1．78	－15．55．5	－15．$=4$	－：5．．is	－10．043	－10．24？	－ito $=$ ？	6.809	－10．79？	
vec．	－12．14；	－15．	－： $1.3 \cdot 9$	－： 3.281	－15．478	－15．5m	－15．＂${ }^{15}$		－：7．02\％	－10．147	－：3．315	-16.072	$-16.6{ }^{7} 3$	-18.307	
	－15．135	－	－10．3sa	－i5．447	－15．45：	－15．6．5	15．＇3：								
6it	－．．2い	－：5．35，	－15．4：	，	15．504			－14．0？	12？	？	－1：0．445	20	9\％	\checkmark	55
620	－19．2wn	－15．27\％	－： 2 － 4 a	－：－－5．3	15.054	$-13.7=$	－：6．$=22$	－10．635		n5	－				
336	－15．34：	－17．－5＊	－15． $3:-$	3，213	13．130	－15．5\％	․ $=5 \%$	－：0．033	－：5．34	へ5	3		1		
	－15．27．0	－1ヶ．45．	7 ？	$3+67$	－				－－3．30：	－10．SE4	－16．885	46	1	17．1：	－17．239
	－15．4＊t	－15．5こ3	－7ヶ．6＊	－15．777	－15．837	－16．007	－10．13\％	－10．2－7	－15．225	-15.591	－15．74c	－10．896	－17．043	－	：
870	－15．44	－1； $2 \times 3:$	－1：	－1）．435	－15．04：	－15．ce3	－10．194	－15．334	－16．402	－19．636	－16．742	－1．2．944	－17．0こ5	7．2Cs	！
S50	3．5．5	－15．80：	－－9．739	-15	-15.736	$-10.11=$	－1s．？ 57	－－3 $=7$	－is．s37	－	－：3．262				
68.	！－942	－ib，is：	－．${ }^{\text {a }}$		－15．34～	-13.172	－324	．4：4	A．591	．74	970 730	237	－		
70こ	¢5．$=$ ：	－15．：3	5.31			． 225				，					
	－：5．780	－\＆${ }^{\text {ana }}$	－15．9	－－4．？37	－10．153	－15．27\％	－16．4．0	－15．544	－13．023	－is． 339	-13.980	－：5－113	－17．23i	－i．35：	－17．3F7
	－15．－	－－7．0．	－	－$=$－${ }^{\text {a }}$	－1．2．23	-10.320	$-: 3.651$	－10．85：	－iv．7－2	－ 10.350	－11．2こ	－17．150	－17．25	17	：
	－ 515.23	－15．720	－：ヶ．2？	－is．：30	12． 254	16.370	－1～512	－10．6．0	－10．723	－：0．735	－17． 352	－17．19	－17．275	－1	
740	－15．53＊	－15．724	」くご	－：n．ist	－10．32＂	-16.429	551	－10．EP7	－：3．83＝						
750	－15．7i4	－1ニ．nご2	1？：	23－	15．35：	－10．472	－13．j24	－13．i43			－17．136				
	－15． 77 ？	－ 10.38 －	－1！－： $7^{\text {n }}$	－ 54.782	－16．4．3	$-16.5 \geq 5$	－13．259	－1t．73 ${ }^{\text {P }}$	－15．750	－1－シ～3	－17．175	－17－22i	－17．330	7.	
	－15．2： 9	－ib．lis	－16．2：－	－12．322	－13．447	－：6．571	－16．120	－1＊．331	－it．75：	－17－285	－17．203	－17．31\％	23	－1 $\sim_{\text {co }}$	
785	－16．05\％	-10.15^{7}	－16．2\％？	－15．374	15.473	－16．617	－10．744	－15．ai3	－15－ミヲ	－17．i21	－17．236	-17.338	－17．432	$1-517$	4
790	－15．102	－20．202	1．3．3：	20	． 538	－16． 0^{161}	137	-10.013	－17．33－	7.154	26：	－17．3ns	57	3	
800	－15．146	－1tarn			592	6．734									
	－10．149	－16．257	－こム－ジ・	－tヶ．รヵ7	－13．625	－15．745	－！－－2̇y	－16．027	－17．105	-17.217	－17．32：	－17－4：7	-17.554	7	
820	－16．23！	－10．332	－10．435	－14．¢5	-16.567	－18．735	$-!\leq .350$	－17．025	－17．：29	7.247	－17．343	－17．441	－17．527	－17．589	\％
820	－16． 273	$-1 t+17 m$	－ $56.4 \% 5$	－1ヶ．5：2	－10．75：	－15．325	－16－744	－17．0ss	7．172	7.275	7．373	7.455			
140	－ 36.316	－ir．．．	－14．3？	－1c．53三	-16.74%	－15．554	－16．770	－17．292	2ご	：32	22	9			
35う	13．3：						． Cl			27		1			
	－！	－16．434	－：$-: 2$	－15．－11	－15．3こ4	－10．734	－17．0～7	－17．155	－． $2.25{ }^{7}$	－： $7.35 *$	－17．445	－17．533	－17．614	-17.655	－：-14
070	－16．434	－10．335	－！．．，	－：，Thu	－is．es：	－16．77i	－ 57.295	－1：．134	－17．20．	－17．378	－17．458	－17．555	－17．635	－17．723	－1？？こ？
カอ9	－1：．473	－15．534	－16．0 ？$^{\circ}$	－16．735	－15．0；	－17．034	$-17+11$	－17．2：3	－17．316	$-17+32$	－17－－75	-17.576	－17．65s	－17．723	－17．75：
890	－1r－511	$-10-312$	－15．715	－i¢．ą？	-15.732	-17.037	－ 7.140	－11．243	－！7．335	－17．425					
909	$-16.54 .4$	－20．343	－13．15\％	－16．	－16 743	－17．068	－17．169	－17．26t							
710	－15．cict	－15．644	－1n．75i	－10．r 32	－15．73	－17．09a	－： 7.177	－1：374	-17.3 ± 2	－17．450	-17.534	－17．538	-17.717	－17．7E2	－17．804
－ 2 ก	－14．521	-10.720	－14．23	－15． 225	－17．7．27	－17．127	－： 2.223	－17．313	－： 7.402	－17．470	－17．574	－17．659	－17．737	－17．8こ2	－17．821
930	－15．547	－14．355	－14．05	－12．757	－1：2ち7	－17．155	－- ？ 49	－17．343	－17．425	－17．81！	－17．534	－17．677	－17：75	-17.817	－17． 233
24．9	－16．1．7：	－16．734	－incts	$-1 / .102$	17．c34	-17.162	－17．274	－17．302	－17．443	－17．531	－17．614	－17．679	－17．776	－17．832	-17.354
750	－i6．12\％	－10．322	－16．07：	¢7．81	：7．114	17．29e	－17．27E	3こ5	－	51	－17．534	16	－17．795		－17． 7 \％i
360	－！	－ 56.03		－11．047	－17．142	－17．233	17.321	－17．406	－ 7 ，4 37	－17．570	－17．633	-17.725	－17．914	－17．275	－i7．98t
718	－14．1）1	－14，＝＝	-1% ¢a！	－17．375	－17．${ }^{\text {do }}$	－17．258	－17－304	17.427	$17.52=$	598	－17．672	－17．754	－17－833	17．573	7．9\％${ }^{\text {\％}}$
ジリ	－14．．－423	－15－715	－17．13،	－：7．103	－17．194	－17．231	-17.382	－17．947	$17.52=$	bcy	7.670	-17.773	－17．ES2	11	17． 917
79	－18．554	－19．4．4＊	－17．	17.130	－1．21\％	-17.384	－17．337	－17．467	\cdots－ $7 .>4$ ？	－17．＊27	－17．750	－17．792	－17． 510	－17．927	－17．335
Ouc				－： 1.254	17．24？	－17．3＞6	－17．4\％7	－17．453	17．5t，5	－ 7.245	－17．777	-17.810	17．897	－17．76）	－17．85：

intercsted reader, the reforences" for this section form a reasonably comprehensive bibliography.
2.8.7.1 The Assumptions of the Mode1

The Jacchia-Nicolct model is based on certain simplifying assumptions and on cmpirically detcrmined formulae. This is primarjly due to the complexity and varied nature of the processes occurring in different regions of the atmospherc and the gencral lack of anything resembling a complete understanding of the fundamental mechanisms involved. The actual dorivation of the model is based upon assumptions first proposed by Nicolet (see Reference 8) ; Jacchia selected the Nicolet approach to generate a model suitable for satellitc dynamjcs.

The model of the atmosphere proposcd by Nicolet considers that the fundamental parameter is the tomperature. Other physical parameters such as the pressure and density were derived from the temperalure. Thus the first concern is the tomperature variation in the atmosphere.

This temperature variation is controlled by the following conditions:

1. Above the thermopause, the temperature of the atmosphere does not vary with altitude. The thermopause varies with solar activity (and the time of day), ranging between about 220 km to 400 km . The

FReference 9, "U.S. Standard Atmosphere Supplements, 1966" contains a fairly comprehensive description and summary.
! temperature above the thermopause is called the exospheric temperation and is directly responsjue to solar effects.
2. At an altitude of 120 km , the temperature, density, and atmospheric conditions are independent of time. This is an obvious simplification. However, the variations of these parameters above 120 km are considerably larger than those occurring at 120 km , and, considering the other assumptiohs, this assumption represents a reasonably good 'approximation.
3. The atmosphere is assumed to be in static equilibriun. With the large day-to-night temperature variations, having a period of the same order of magnitude as the conduction time in the lower themosphere, and with the occasional occurrence of severe magnetic storms which give risc to fairly rapid and large temperature variations the validity of this assumption is open to question. The best argument for this assumption is its relative simplicity. It should be anticipatad, howover, that in times of rapid change of the solar or geophysical parameters the prodictions of this model will be in error due to the invalidity of this assumption.

The atmosphere is considered to be in diffusive equilibrium above 1.20 km ; that is, the density distributions of each atmospheric constituent with height aro
governed independently by gravity and temporafure. The governjng equations are the hydrostatic law, rolating the pressure variation with height to the acceleration of gravity, and the perfect gas law, which redates the pressure, density and temperature.

With this approach, Nicolot showed that: above 250 km the observed density profiles were reproduced satisfactorily if tho (cxosphoric) tomperature was assumed to be a different. constant. He also indicated that the problem of representing the densit:y between 120 km and the thermopause was largely a problen of deducing the vertical distribution of tomporature.

The contribution of Jacchia to the so-called Jacchia-Nicolet model is largely the development of empirical formulas to compute both the exospheric temperature and vertjcal tomporature distributjon as a function of exospheric tomporature. fhese formulac are based on satcllite obscrvatjons coupled with physical reasoning. In addition, Jacchia has updated tho boundary conditions of Nicolct. Thus in effect Jacchia has provided all but the basic assumptions behind the model.

The fundamental parameter of the model is therefore the exospheric temperature. This temperaturc, togethor. with the boundary conditions, inplics a particular vertical temperature profilc. Theso threc items - exospheric temperature, boundary conditions, and temperature profile define the density at any altitude over 120 km through the diffusive equilibrium equation.

Figure 1, which was taken from Reforence 3 , shows a comparison of density and exospheric 1 omperatures derived from observations of lixplorer 1 satellite with solar and geomagnetic parameters. Note the correspondence between the exospheric temperature and the density.

2.8.7.2 The Exospheric Tonperature Computations

To calculate the fundamental parameter, the exosphoric temperature, Jacchia considered four factors which could cause variations:

1. Solar activity variation
2. Semi-annual variation
3. Diurnal variation
4. Geomagnetic activity variation

Each of these variations was determined to be related to one or more observable parancters (sce piguro 1). The given empirical formulac arc based on these parametors.

Solar Activity

There are many indices of solar activity but the one whose variations most closely parallel those of atmospheric density is the 10.7 cm . (2800 Mc .) solar flux line. The intensity of this line has been measured continuously since 1947, by the National Research Council in Ottawa on a daily basis. The values of the 10.7 cm . flux line are published

monthly in the "Solar-Geophysical Data Reports" of the Environmental Science Services Administration in Boulder, Colorado (U.S. Department of Commerce).

Most of the time solar activity is much more intense in one solar hemisphere than the other so that the flux fine appears to vary with the rotation period of the sun, 27 days. This periodicity frequently persists for a year ox longer. In addition, there is a variation in the average flux strength with a period of about 11 yours which is related to the solar cycle.

From satellite drag data a linear relation between the average 10.7 cm . flux and the average global nighttime minimum exospheric temperature has bon obtained (Reference 2) and is expressed as

$$
\begin{equation*}
\overline{\mathrm{T}}_{0}=357^{\circ}+3.60^{\circ} \overline{\mathrm{F}}_{10.7} \tag{1}
\end{equation*}
$$

where
$\bar{F}_{10.7} \quad \begin{aligned} & \text { is the average } 10.7 \mathrm{~cm} . \text { flux strength over } \\ & 2 \text { or } 3 \text { solar rotations measured in units } \\ & \text { of } 10^{-22} \text { watts } / \mathrm{m}^{2} / \mathrm{cyc} / \mathrm{c} / \mathrm{sec} \text {. bandwidth. }\end{aligned}$
$\bar{T}_{0} \quad \begin{aligned} & \text { is the average global nighttime minimum } \\ & \text { temperature averaged over the same period. }\end{aligned}$

This formula gives the relationship for absolutely quiet geomagnetic conditions; i.e., when a_{p} is zero.

The varjation within one solar rotation is expressed (Refercnce 2) by

$$
\begin{equation*}
\mathrm{T}_{0}^{\prime}=\mathrm{T}_{0}+1.8^{\circ}\left(\mathrm{F}_{10.7}-\mathrm{F}_{10.7}\right) \tag{2}
\end{equation*}
$$

wherc
$\mathrm{F}_{10.7}$ is the mean of the 10.7 cm solar flur
for a given day in the same units as
${ }^{F} 10.7^{\circ}$ and
$\mathrm{T}_{0}{ }^{\prime}$ is the global nighttime minimun for the
same day.

This formula accounts (approximately) for the day to day temperature variation supeximposed on the average global nighttime minimum temperature determined by the previous formula.

There is some indication that tho coofeiciont 1.8° actually varies from sunspot maximum to sunspot minimum. The indicated range of variation is from about 2.4° down to 1.5°.

Semi-Annual Variation

The semi-annual variation is the least understood of the several types of variation in the upper atmosphere. Yearly, the atmospheric density above 200 km reaches a deep minimum in July followed by a high maximum in October-November, a secondaxy minimum in January, and a secondary maximum in April. Jacchia
(Reference I) Eound that the obscrved density variations could be cxplained by temperature variations in the thermopause, and are roughly proporitional to the 10.7 cm flux line. It has been noted that the height of the ionospheric F_{2} layer shows a semi-ammal variation almost exactly in phase with the observed density variations. Another suggestion by F.S. Johnson (Reforence 7) concerning the cause of the scmi-anmual variation, involves convective transfer at ionospherjc levels from the summer pole to the northern pole. This, as yet, does not seem to account correctly for all the details of this variation. The semi-annual variation is not as stable a feature as the diumal variation. Jacchia (Reference 2) accounted for this feature in 1965 but has, with the recent information of drag data from six satelIites, updated his empirical formula (Reforonce b) as follows:

$$
\begin{equation*}
T_{0}=T_{0}+2.41+\overline{F_{1}} 10.7\left[0.349+0.206 \sin \left(2 \pi r+226.5^{\circ}\right) \mid\right. \tag{3}
\end{equation*}
$$

$$
\checkmark \quad \sin \left(4 \pi \tau+247.6^{\circ}\right)
$$

where

$$
\tau=d / Y+0.1145\left(\left(\frac{1+\sin \left\lfloor 2 \pi(d / Y)+342.3^{\circ}\right]}{2}\right)^{2.16}-0.5\right)
$$

$\mathrm{d}=$ day of the year counted from January 1.
$Y=$ the tropical year, in days.
$\mathrm{T}_{0}=$ global nighttime minimun tomperature for that day corrected for semi-annual variation.

Jacchia, Slowey, and Campbell. (Reference 6) have more clearly defined this variation. As expected, the relationship between the temperature and the 10.7 cm flux Iine cannot be considered accurate. It. was concluded that the observed density variations are the result of temperature variations at essentially the same level as in the case of the solar effect. However, a variable. altitude shows that the semi-annual variation affects the whole atmosphere in the same manner, irrespective of latitude.

Diurnal Variation

The most regular of the variations is the diurnal variation. Onc can picture the density distribution as an atmospheric bulge with its poak 30° cast o[the subsolar point, degrading nearly symmetrically on all sides, but a little stecper on the morning side. The density peaks at $2 \mathrm{P} . \mathrm{M}$. local solar time and the minimum occurs at $4 \mathrm{~A} . \mathrm{M}$. The ratio of the maximum temperature at the center of the bulge to the minimum in the opposite hemisphere remains constant throughout the solar cyclo; the ratio is 1.28 in Jacchia's model atmosphere. The cause of the heating is in dispute. Some investigators believe it is duc entircly to extrome ultra-violet (lUV) radjations; others, to jon drift; and still others, to a combination of the two.

The tomperature, T, at a given hour and geographic location, can be computed in terms of the correct global nighttime minimum temperaturc for that day, T_{0}, using the following formula which approximates a mathenatical description of the atmospheric bulge (Reference 2):

$$
\begin{equation*}
T=T_{0}\left(1+R \sin ^{m_{0}}\right)\left(1+\frac{R\left(\cos ^{m} n-\sin ^{m} 0\right)}{1+R \sin ^{n} 0} \cos ^{n} \frac{\pi}{2}\right) \tag{5}
\end{equation*}
$$

$R=0.26$
$n=m=2.5$
$\tau=H+B+p \sin (H+\gamma) \quad(-\pi<r<\pi)$
$\cdot B=-45^{\circ}$
$\mathrm{p}=12^{\circ}$
$\gamma=45^{\circ}$
$\eta=\operatorname{ABS}\left[\left(\phi-\delta_{\Theta}\right) / 2\right]$
$\theta=A B S\left[\left(\phi+\delta_{\odot}\right) / 2\right]$
$\phi^{\prime}=$ geographic latitude
$\delta_{0}=$ declination of the sun.
$\mathrm{H}=$ hour angle of the sun
($\mathrm{H}=0$ occurs when the point considered,
the sun, and the earth's axis are coplanar.
11 is measured westward 0° to 360°)

Based on satellite information, Jacchia (Referonce 5) assumes a maximum day temperature 28% higher than the corresponding nighttime minimum. The variation is represented by R in the above equation. However, furthcr investigation by Jacchia, Slowey, and Campbell (Reference 6), revealed that the diurnal-variation factor (R) is somewhat variable. N value of 32% is considered valid for dates
prior to February 1963, and From Nugust 1963', onward, 1HESTY 26% variation is considered valid. Between these dates, R is made to decreaso linearly.

Although in these equations tho exponents mand n, which determine the mode of the longitudjnal and latitudinal Lemperature variations respectively, are kept distinct, it was found in practice that m $=\mathrm{n}$. These values are not really known accuratcly and could be as small as 2.0 .

The constant B determines the lag of the temperature maximum with respect to the uppermost point of the sum; p introduces an asymmetry in the temperature curve whose location is determined by γ.

Gecmagnetic Activity

To the temperature, r, which is calculatod above, a correction must be added which accounts for atmospheric heating related to changes in tho larth's magnotic ficld. The heating probably occurs in the li laycr of the ionosphere, but the mechanism involved is not well understood. The temperature correction, $\Delta \mathrm{I}$, is given by Jacchia, Slowcy, and Campbell (Reference 6):

$$
\begin{equation*}
\Delta T=1.0^{\circ} a_{p}+100^{\circ}\left[1-\exp \left(-0.08 a_{p}\right)\right] \tag{6}
\end{equation*}
$$

where
a_{p} is the three-hourly planetary goomagnetic index.

The quantity a_{p} is a measure of the variation in the earth's magnetic ficld in a given three hour period.

Duxing magnetic storms the temperature changes generally lag bchind tho variations in ap by about five hours, due to conduction. There is some evidence of. larger temperature changes for given valuos of a_{p} as one proceeds to higher geomagnetic latitudes. llowever, the amount of data indicating this is nogligible at this time.

The DENSTY subroutinc allows for the magnetic heating effects with onc modification. 'To minimize the input data for NONAME, the 3 -hourly index (ap) is replaced by a 24 -hourly or dajily index (Λ_{p}). Gencrally, magnctic storms last for 2 or 3 days so that the cemperature calculation using Λ_{p} will rerlect a daily change, but not the 3 -hourly fluctations which occur with a_{p}.

The quantity A_{p} and the solar flux data is available from E.S.S. $\Lambda .$, Boulder, Colorado. The publication is, "Solar Gcophysical Data, Part T."

Accurate daily values for both the solar and geomagnetic flux arc required for the computation of the exospheric temperature. In NONAME, these values are input via a BLOCK bNTA routine, INP'P. This information may be updated ($C \mathcal{I}$ subroutine $A D F L U X$) using the appropriate NONAME Input Cards. The user should be aware of the fact that these tables are expanded as new information becomes available.

At the beginning of cach run, a fite is gencrated for each satelljice are which confains the required flux data for the time span indicated. Subroutine JANFIG is the routine which sets up the flux rables, inctuding averaging the daily values of solar flux over two solar rotation periods. the reason for this is to froe the large amount of computer storage requifed for daily flux values over five and a half years. As a matter of reference, the associated COMMON BLOCK is priont.

2.8.7.3 The Donsity Computation

The density computation in NONAMI subroutinc
DENSTY is based on the density distribution versus altitude and exospheric temperature presonted in Table 1 , which is reproduced from Jacchia's 1965 papor (Reference 2). This data was obtained by mumerical integration of the diffusion equation using an cmpirical tomperature profile for each indicated exosphoric tomperature.

This vast quantity of information was fitted (by WOLF) to various degree polynomials of the form:

$$
\begin{equation*}
\operatorname{LOG}_{10} \rho_{D}=\sum_{i} \sum_{j} a_{i j} T(j-i){ }_{j}(i-I) \tag{7}
\end{equation*}
$$

where
ρ_{D} is the density,
T is the exospheric tomperature,
h is the spheroid height of the satellite (altitude), and
a is a set of appropriate coofficionts

Unfortunately, a single polynomial of the type presented is not completely descriptive. An cxamination of Table 1 reveals that density is neardy independent of tomperature for low altitudes, but becomes increasingly dependent for heights above 1.60 km . Accordingly, appropriate polynomiats wore chosen to account for the varying dependency of the variables. This necessitated the separation of Table 1 into threc parts.

The lower region ($1.20 \mathrm{kn}-160 \mathrm{~km}$) is exprossed as a second degree polynomial. which is solely a function of altitude. This is due to the fact that density is not appreciably dependent on temperature in this region. The remaining regions of 160 km to 420 km and 420 km to 1000 km are described by polynomials of fourth degree in both temperature and altitude.

The cocfficients for the selected pol. rmomiaj.s are presented in Table 2. These cocfficients have been modified to compute the natural log rather than the decimal \log of the density.

TABLI: 2
DENSITY POLYNOMIAL COEFFSCIBNTS (FOR NATURAL LOG OF DIENSI'Y)

	h^{0}	h^{1}	$\mathrm{l}_{1}{ }^{2}$	h^{3}
420-1000 KN				
T ${ }^{0}$	61.5177	48.60687	6.87280	0.305394
T^{1}	-173.970	93.4870	-14.1203	0.651270
T^{2}	111.908	-60.34177	9.349784	-0.440.330
T^{3}	-23.3864	12.64406	-1.989156	0.0950336
160-420 KM				
T^{0}	0.514627	-26.4622	6.28711	-0.604854
T^{1}	-36.8141	37.5137	-9.994692	1.00192
T^{2}	22.6334	-23.9095	6.780537	-0.695152
T^{3}	-4.47654	4.83017	-1.41853	0.118026
120-160 KM				
	1.1335948	-31.858560	8.7827269	

The densities produced by these fitted polynomials differ from the densities in Pable 1 by an RMS of 3.7 percent. However, the fit docs vary in different regions of the table. In the ragion of worst fit, where the temperature is relativel.y low ($700-1000^{\circ} \mathrm{K}$) and the a]titude varies from $620-840 \mathrm{~km}$, the RMS is somewhat greator being about 8.5 percent. The largest.jercent difference between densities is 13.2 percent and falls within tho region described.

The fits above could be improved by cither going to higher degree polynomials or by additional segmentation of the table. However, these fits are considered to be as accurate as the model being usod.

For satellite altitudes above 1000 km , the density is computed accoraing to the extrapolation formula given by Jacchia (Reference):

$$
\begin{equation*}
\rho_{D}=\rho_{\infty}+\left(\rho_{\left.1000-\rho_{\infty}\right)} e^{[b(h-1000)]}\right. \tag{8}
\end{equation*}
$$

where
b $\quad=\frac{d}{d h}\left(\ln \rho_{\mathrm{D}}\right)$ as evaluated at 1000 km .
ρ_{∞} - is a limiting value for the density.
This is zero in subroutine DINS'ly.
h - is the spheroid height.
9_{1000-} is the density evaluated at 1000 km .
$\rho_{\mathrm{D}}-\quad$ is the desired density at altitude h.

2.8.7.4 Density Partial berivatives

In addition to the density, NONMM: also requires the parijal derivatives of the density with respect to the Cartesian position coordinatos. Thesc parials are used in computing the drag contribution to the variational equations.

As demonstrated above, the density is given by

$$
\begin{equation*}
\rho_{\mathrm{D}}=\exp \left(\mathrm{C}_{0}+\mathrm{C}_{1} h+\mathrm{C}_{2} h^{2}+C_{3} h^{3}\right) \tag{1}
\end{equation*}
$$

where
h is the spheroid hoight, and the
C_{i} are coerficients which aro polynomials in temperature.

We then have

$$
\begin{equation*}
\frac{\partial \rho_{\mathrm{D}}}{\partial \overline{\mathrm{r}}}=\rho_{\mathrm{D}}\left(\mathrm{C}_{1}+2 \mathrm{C}_{2} \mathrm{~h}+3 \mathrm{C}_{3} \mathrm{~h}^{2}\right) \frac{\partial \mathrm{h}}{\partial \bar{r}} \tag{2}
\end{equation*}
$$

where
\bar{r} is the true of date position vector of the satellite (x, y, z). The partial derivatives $\frac{\partial h}{\partial \bar{r}}$ are presented along with the computation of spheroid height in Section 2.5.1.

The parial derivatives $\frac{\partial \rho_{\mathcal{D}}}{\partial \bar{r}}$ are computed in subroutinc VEVAL. The quantities h, ρ_{D}, and the C_{i} are computed in DEASTY and passed through COMMON BLOCK DRGBl_K.

NONAME uscs CONOLI's mothod for direct
numerical integration of both the equations of motion and the variational equations to obtain the position and velocity and the attendant variational partials at each observation time. The integrator output is not required at actual observation times; it is output on an even integration step. NONMML uses an interpolation technique to obtain values at the actual obscrvation time. The spocilic numerjcal methods used in NONADI for this integration ancl interpolation are presented below. Theso procedures are controlled by subroutine oRBFT.

2.9.1 Integration

Let us first consider the integration of the equations of motion. These equations are three second order differential equations in posjtion, and may be formulated as six first order equations in position and velocity if a first order integration schome were used for theix solution. For reasons of increased accuracy and stability, the position vect:or \bar{r} is obtained by a second order integration of the accelerations $\ddot{\bar{r}}$, whereas the velocjty vector $\overline{\bar{r}}$ is obtained as the solution of a first order system. These are both ten point multi-step methods requiring two derivative evaluations on each step.

To integrate the position components, a Stormer predictor

$$
\begin{equation*}
\bar{r}_{n+J .}=2 \bar{r}_{n}-\bar{r}_{n-1}+(\Delta h)^{2} \sum_{p=0}^{q} \gamma_{q p}^{*} \bar{r}_{n-p} \tag{1}
\end{equation*}
$$

is applied, followed by a Cowell corrector:

$$
\begin{equation*}
\bar{r}_{n+1}=2 \bar{r}_{n}-\bar{r}_{n-1}+(\Delta n)^{2} \sum_{p=0}^{q}, r_{q p}{\overline{r_{n-p}}}_{n-1} \tag{2}
\end{equation*}
$$

The velocity components are integrated using an Adams Bashforth predictor;

$$
\begin{equation*}
\dot{\bar{r}}_{n+1}=\dot{\bar{r}}_{n}+\Delta h \sum_{p=0}^{q} \beta_{q p}^{*} \ddot{r}_{n-p} \tag{3}
\end{equation*}
$$

followed by an Adams-Moulton corrector;

$$
\begin{equation*}
\dot{\bar{r}}_{n+1}=\dot{\bar{r}}_{n}+\Delta h \sum_{p=0}^{q} \beta_{q p} \overline{\bar{r}}_{n-p+1} \tag{4}
\end{equation*}
$$

In these integration formulae, Δh is the integration step size, q has the value 9 , and $\gamma_{q p}, \gamma_{q p}^{*}, \beta_{q p}$ and $\beta_{q p}^{*}$ are coefficients whose values are presented in Table 1.

TAB1, 1
INPIGRATION SCIHEMI COH:HEICDENTS

i							qi				$\mathrm{Dr}_{\mathrm{q}}{ }^{\text {i }}$			$\mathrm{Dr}_{q}{ }^{\text {i }}$.	
0	-	262	426	878		7	21.7	406		57	739	248	2	153	84.4
1	2	631	486	186	-	73	512	810	-	579	546	324	- 21	861.	104
2	-11	882	722	320		338	670	861	2	620	127	661	100	226	148
3	31	829	896	224	-	931	648	032	7	028	936	208	-273	727	440
4	-56	041	292	412	1	702	270	332	12	398	969	520	494	279	352
5	67	833	843	588	-	21.7	739	396	1.5	044	569	848	-618	300	14.1
6	-57	287	383	776	2	016	292	320	-12	743	542	224	540	351	504
7	33	507	517	680	-1	420	1.84	304	7	469	061	264	-242	1.02	448
8	-13	229	393	814	1.	190	664	342	- 2	840	368	608	875	698	740
9	3	814	933	122		262	426	878	1	453	091	220	57	739	248

where $D=9144457600$ and is the conmon donominatox

Let us next consider the integration of the variational equations. These equations may be written as

$$
\ddot{Y}=\left[\begin{array}{ll}
A & B
\end{array}\right]\left[\begin{array}{l}
Y \tag{5}\\
\dot{Y}
\end{array}\right]+E
$$

where

$$
\left[\begin{array}{l}
Y \\
\dot{Y}
\end{array}\right]=X_{m}
$$

and, partitioning according to position and velocity partials,

$$
\left[\begin{array}{ll}
A & B \tag{6}
\end{array}\right]=\left[U_{2 C}+D_{r}\right]
$$

Note that equation (5) is the same as equation (7) of Section 2.8.2, with Y corresponding to the matrix F. The variational particle X_{m} and the partial derivative matrices $U_{2 C}, D_{r}$, and f are completely defined in that section.

Because A, B, and f are functions only of the orbital parameters, the integration can be and is performed using only corrector formulae. (Note that A, B, and f must be evaluated with the final corrected values of \bar{r}_{n+1} and $\dot{\bar{r}}_{n+1}$.)

In the above corrector formulae, we substitute the equation for \ddot{Y} and solve explicitly for Y and \dot{Y} :

$$
\left[\begin{array}{l}
Y_{n+1} \\
\dot{Y}_{n+1}
\end{array}\right]=s_{1}^{-1}\left[\begin{array}{c}
c \\
\dot{c}
\end{array}\right]
$$

where

$$
\begin{aligned}
& S=\left[\begin{array}{cc}
I-\gamma_{q O} A & -\gamma_{q O} B \\
-\beta_{q O} \wedge & L-\beta_{q O} B
\end{array}\right] \\
& C=\left[2 Y_{n}-Y_{n-1}+\sum_{p=1}^{q} \gamma_{q p} \ddot{Y}_{n-p+1}+\gamma_{q O} r\right] \\
& \dot{C}=\left[\dot{\gamma}_{n-1}+\sum_{p=1}^{q} \gamma_{q p} \ddot{Y}_{n-p+1}+\beta_{q O} q\right]
\end{aligned}
$$

, Under cortain conditions, a roduced form of this solution is used. It can be secn from the variational and observation equations that if drag is not a factor and there are no range rate, dopplor, or altimeter rate measurements, the velocity variational partials are not used. Thore is then no need to integrato tho velocity variational equations. This represents a significant time saving. In the integration algorithm, the B matrix is zero and S is reduced to a threc by three.

Backwards integration involves only a rew simple modjfications to these normal or forwad integration procedures. These modifications are ton nestate the step size, invort tho time completion tosi, and invert the entirc table of back values.

- The above intcgration procedures are implemented

BAKJNT Comble DNVIRA for backwards integration are performed by BAKINT. The matrix inversion is performed by subroutine DNVFRRT.

The default step size for thesc integration procedures is selected on the basis of pexigee height and the eccentricity of the orbit. the default step size selection is explainod in detail in the Operations Manuat, Volume IJI of the NONAMJ: System locumentation. this may be reset to some other fixed value on input. (Sec the STEP control card description in the above manual.)

Vaxiable Step Mode

There is an optional variable step mode which is the default mode for high eccontricity orbits. The selection of this mode of operation, its decault initial step size, halving error bound, and doubling error bound are also explained in Volume III with the Sllmp control card.

In the variable step mode, the local error is compared against upper and lower crror bounds to determine whether the step size should be halved or doubled. This

COWELL REARG HIEMII local error is computed as the difference between the predicted and corrected values of position. Both the halving and doubling procedures require the tables of
back values to be modified so as to be compatible with the new step size. The halving requires a llermite interpolation for mid-points. This interpotation is of course on the back position, velocity and acceteration values. The doubling is achievod by discarding levery other time point in the table of back values.

It should be noted that twenty sets of back values are saved when NONAML is operating in variable step mode. Doubling of the step size is disabled for the following ton steps after a step sjze changc; i.c:, until the table of back values is again filled.

These halving and doubling procedures axe contained in subroutine REARG. In the case of halving, subroutinc HHEMTT is invoked to interpolate Eor the mid-points.

2.9.2 The Intcgrator Starting Scheme

The predictor-corrector combination employed to proceed with the main integration is not sclf-starting. That is, each step of the integration requires the knowlcdge of past values of the solution that are not available at the start of the integration. The method presented here is that implomented in the NONAML subroutjnc lNTGS'T.

A method first proposed by W. Romberg provides the ton values required to start the main predictorcorrector scheme. The Euler-Cauchy single step method is combined with Richardson's h^{2}-extrapolation to generate a sequence of approximate solutions, $X(h)$, for a fixed time interval h. Successive approximations
to $X(h)$ are formed by suldividing the interval into subintervals of lengths $\Delta t_{1}>\Delta t_{2}>\Delta t_{3} \ldots$ and by applying"the"Euler-Catuchy method to yield the soquence of approximations $X\left(\Delta t_{1}\right), X\left(\Delta t_{2}\right), X\left(\Delta t_{3}\right) \cdots$ An AitkenNeville interpolation scheme is then used to find succossive extrapolations to $X(\Delta t=0)!~ A ~ c o m p l e t e$ analysis of this very stable and accurate tochnique has been published by Rutishauser, istiefel, and Baucr (Reference 2).

The subintervals $\Delta t_{i}, i=1, \ldots, 7$ aro defined as \bar{s}_{i}, by step-ratios $s_{i}, i=1, \ldots, 7$, which must form a monotonic increasing scries. In the NONAME starting scheme this step-ratio scries is a fixed program parameter $\{1,2,3,5,8,12,17\}$, chosen to maintain the schene's accuracy by considering a broad range of step-ratios, without consuming the computation time needed for very large step~ratios.

- At each subinterval, an Euler-Cauchy scheme is used to predict a value of the position-vclocity vector X as the solution of a first order system of equations, using the Euler formula.

$$
\begin{gathered}
x\left[(j+1) \Delta t_{i}\right]=x\left[j \Delta t_{i}\right]+\Delta t_{i} \dot{x}\left[j \Delta t_{i}\right] \\
j=0, \ldots s_{i}-1, i=1, \ldots, 7
\end{gathered}
$$

This predicted vector is next refined using the formula

$$
\begin{gathered}
X\left[(j+2) \Delta t_{i}\right\rfloor=X\left\lfloor j \Delta t_{i}\right]+\Delta t_{i} \dot{X}\left\lceil(j+T) \Delta t_{i}\right\rfloor \\
j=0, \ldots s_{i}-2, i=1, \ldots, 7
\end{gathered}
$$

(2) INTGST
and finally corrocted using the equation

$$
\begin{gather*}
X\left[(j+1) \Delta t_{i}\right]=X\left[j \Delta t_{i}\right]+\frac{\Delta t_{i}}{2}\left\{\dot{X}\left[j \Delta t_{i}\right]+\dot{X}\left[(j+1) \Delta t_{i}\right]\right\}, \\
j=0, \ldots s_{i-1}, i=1, \ldots, 7 \tag{3}
\end{gather*}
$$

The approximations $X\left(s_{i} \Delta t_{i}\right), i=1, \ldots, 7$ to the position velocity vector $X(h)$ over a full step h, given by each sequence of subinterval integrations are then used in an Nitken-Neville interpolation scheme:

$$
\begin{gather*}
x(h)=x\left(\Delta t_{i}\right)+r_{j i}\left[X\left(j \Delta t_{i}\right)-X\left(j \Delta t_{j-1}\right)\right] \tag{4}\\
j=1, \ldots, s_{j}, i=1, \ldots, 7
\end{gather*}
$$

The Aitken-Neville factors $r_{j i}$ are computed from the monotonic increasing series $t_{1}, t_{2}, \ldots t_{7}$ from the formula

$$
r_{j k}=\left[\left(\frac{t_{k+1}}{t_{j}}\right)^{2}-1\right]^{-1} \quad \begin{array}{ll}
& k=1, \ldots, 6 \tag{5}\\
& j=1, \ldots k
\end{array}
$$

The final approximation $X(h)$ to the integrated
vector is then uscd to ropeat the atbove process for the next tine-step h, until nine vatues of the positionvelocity vector have been generated. Together with the epoch position-velocity vector, these values are used to start the much faster predictor-corrector sequence employed to integrate the remainder of the orbit.

2.9.3 Interpolation

NONAME uses Hermite interpolation for two
functions. The first is the interpolation of the himenit orbit elements and variational partials to the obscrvation times; the sccond is the interpolation for mid-points when the integrator is halving the stop'size. These functions are 'separato largoly because they have entirely different accuracy requirements. In particular, when the stop sizc is beinig halved, the accuracy of the interpolation for the nev points is critical because any errors introduced will build up in the subsequent integration.

The Hermite interpolation formula uses osculating polynomials of contact order n; i.e., they have the properties

$$
\begin{align*}
& x\left(t_{j}\right)=p\left(t_{j}\right) \tag{1}\\
& x^{(i)}\left(t_{j}\right)=p^{(i)}\left(t_{j}\right) \quad i=0,1, \ldots n \tag{2}
\end{align*}
$$

where the $X^{(i)}\left(t_{j}\right)$ are the $i^{\text {th }}$ derivatives of $X(t)$: evaluated at $t=t_{j}$. Also, the derivatives of $p(t)$ higher than in are zero.

These llomite polynomjals have the form (seo Referonce 3):

$$
\begin{equation*}
P\left(t_{j}\right)=\sum_{i=0}^{n} \sum_{j=j}^{k} h_{i j} x^{(i)}\left(t_{j}\right) \tag{3}
\end{equation*}
$$

where
n is the number of derivatives bẹing
utilized,
k is the number of values available for each $X^{(j .)}$, and
$h_{i j}$ is a polynomial having properties similar to those of the Lagrange polymomials.

Let us consider the case where n is one. This
HERMIT produces the usual Hermite interpolation formula in the literature. For this case, only the function and its first derivative are used. The two sets of coefficients.are given by

$$
\begin{align*}
& h_{0 j}=\left[1-2 L_{j}^{(1)}\left(t_{j}\right)\left(t-t_{j}\right)\right]\left[I_{j}\left(t_{j}\right)\right]^{2} \tag{4}\\
& h_{1 j}=\left(t-t_{j}\right)\left[L_{j}\left(t_{j}\right)\right]^{2} \tag{5}
\end{align*}
$$

Where the $L_{j}(t)$ are the familiar lagrange polynomials of degree k. This is the case for interpolating the. orbital clements and is implemented in NONAML subroutine HERMJT. Note that the same two sets of coefficients are used for all of the variables being interpolated. The variational partials are interpolated using the lagrange polynomials. This is also implemented in Illornlt.

We also take advantage of the fact that the data is evenly spaced according to the current integrator step size. The $h_{i j}$ are used as

$$
\begin{align*}
& h_{0 j}=\left[1-2(s-j) \sum_{i=0}^{n} \frac{1}{j-i \neq j}\right]_{1 j}=h(s-j)\left[L_{j}\left(t_{j}\right)\right]^{2} \tag{6}\\
& h_{1 j} \tag{7}
\end{align*}
$$

where h is the step size,

$$
s=\frac{t-t_{0}}{h}
$$

and the Lagrange polynomials take the form*

$$
L_{j}\left(t_{j}\right)=\frac{(-1)^{n-j} \pi^{-}(s-i)}{j!(n-j)!}
$$

${ }^{*} \pi^{\prime}(s-i)$ is a.standard notation for the derivative of

$$
\pi(s-i) \text { evaluated at } i=j ; \text { i.e., } \quad \prod_{i \neq j}^{o, n}(s-i) .
$$

let us now consider the casc where n is two, where the function and two derivatives are required. In this case there are threc sets of coefficients:

$$
\begin{align*}
h_{0 j}= & {\left[1+\sigma\left(t-t_{j}\right)^{2}\left\{\left[I_{1}^{(I)}\left(t_{j}\right)\right]^{2}-\frac{1}{4} L^{(2)}\left(t_{j}\right)\right\}\right.} \tag{8}\\
& \left.-3\left(t-t_{j}\right) L^{(1)}\left(t_{j}\right)\right]\left[L\left(t_{j}\right)\right]^{2} \\
h_{1 j}= & {\left[\left(t-t_{j}\right)-3\left(t-t_{j}\right)^{2} L^{(1)}\left(t_{j}\right)\right]\left[L\left(t_{j}\right)\right]^{2} } \tag{9}\\
h_{2 j}= & \frac{1}{2}\left(t-t_{j}\right)^{2}\left[1,\left(t_{j}\right)\right]^{2} . \tag{10}
\end{align*}
$$

This is the casc for the mid-point interpolation for position whẹ the integrator is halving the step size. It is implemented in subroutine HHBMTT, along with the \dot{n} equals one case for the velocity and variatjonal partials.

In intcrpolating for the mid-points advantage is taken of both the fact that the data is evenly spaced and that the mid-points are bejng determined. The quantity s becomes $\ell+\frac{1}{2}$; the $h_{i j}$ are therefore given by

$$
\begin{align*}
& h_{0 j}=\left[1+\frac{3}{2}\left(l-j+\frac{1}{2}\right)^{2}\left(\sum_{\substack{i=0 \\
i \neq j}}^{n} \frac{1}{j-i}\right\}^{2}+\sum_{\substack{i=0 \\
i \nless j}}^{n} \frac{1}{(j-i)^{2}}\right. \tag{1.1.}\\
& \left.\left.\left.-3\left(i-j+\frac{1}{2}\right) \sum_{\substack{i=0 \\
i \neq j}}^{n} \frac{1}{j-i}\right]\right]^{L_{j}\left(t_{j}\right)}\right]^{2} \\
& h_{1 j}=\left[h \left\{\left(l-j+\frac{1}{2}\right)-3\left(l-j+\frac{1}{2}\right)^{2} \sum_{\substack{i, j \\
i \neq j}}^{n}\right.\right. \tag{12}\\
& \left.\left.\left.\left.\frac{1}{j-1}\right\}\right]\right]^{L_{j}\left(t_{j}\right)}\right]^{2} \\
& h_{2 j}=\frac{h^{2}}{2}\left(l-j+\frac{1}{2}\right)^{2}\left[L_{j}\left(t_{j}\right)\right]^{2} \tag{1.3}
\end{align*}
$$

IIIIMM['T
for n equals two. For the case of n equal to one, the $h_{i j}$ become

$$
\begin{equation*}
h_{0 j}=\left[1-2\left(\ell-j+\frac{1}{2}\right) \sum_{\substack{i=0 \\ i \neq j}}^{n} \frac{1}{j-1}\right]\left[L_{j}\left(t_{j}\right)\right]^{2} \tag{14}
\end{equation*}
$$

$$
2.9-1 \dot{4}
$$

$$
\begin{equation*}
h_{I j}=h\left(\ell-j+\frac{1}{2}\right)\left[L_{j}\left(t_{j}\right)\right]^{\alpha} \tag{15}
\end{equation*}
$$

It should be noted that both interpolation 1II:RMTT schemes are tenth order. [HIEMLT

SECTION 2.10
THE STATISTICAL ESTIMATION SCHEME

The basic problem in orbit determination is to calculate, from a given set of observations of the spacecraft, a set of parameters specifying the trajectory of a spacecraft. Because there are generally more observations than parameters, the parameters are overdetermined. Therefore, a statistical estimation scheme is necessary to estimate the "best" set of parameters.

The estimation scheme selected for NONAME is a partitioned Bayesian least squares method. The complete development of this procedure is presented in this section.

It should be noted that the functional relationships between the observations and parameters are in general non-linear; thus an iterative procedure is necessary to solve the resultant non-1inear normal equations. The Newton-Raphson iteration formula is used to solve these equations.

2.10.1 Bayesian Least Squares listimation*

Consider a vector of N independent observations \underline{z} whose values can be expressed as known functions of M parameters denoted by the vector $\underset{\text {. The following }}{ }$ non-linear regression cquation holds:

$$
\begin{equation*}
\underline{z}=\underline{f}(\underline{x})+\underline{\sigma}, \tag{1}
\end{equation*}
$$

where σ is the N vector denoting the noisc on the observations. Given \underline{z}, the functional form of E; and the statistical propertios of $\underline{\sigma}$, we must obtain the estimate of x that is "hest" in some sensc. ${ }^{*}$ *

Bayes theorem in probability holds for prohability density functions and can be written as follows:

$$
\begin{equation*}
p(\underline{x} \mid \underline{z})=\frac{p(\underline{x})}{p(\underline{z})} p(\underline{z} \mid \underline{x}) \tag{2}
\end{equation*}
$$

where
$p(\underline{x} \mid \underline{z})$ is the joint condjtional probability density function for the parameter vector $\underset{x}{ }$, given that the data voctor \underline{z} has occurred -

FVector notation in this section is that usod by statisticians; i.e., an underscore denotes a vector. The symbol "n" denotes the "best" estimate of the superscripted quantity.
**For a complete discussion of the properties of estimators sec Maurice G. Kendall and Nlan Stuart, Reference .1
$p(x)$ is the joint probability density funcition for the vector x;
$p(\underline{z})$ is the joint probability density function for the vector Z;
and
$p(\underline{z} \mid \underline{x})$ is the joint conditional density runction for the vector \underline{z} given that x has occurred;
$p(x)$ is often referred to as the aprion'i density function of \underline{x}, and $p(\underline{x} \mid \underline{z})$ is reforred to as the a posterinfi conditional density, function, In any Bayosian ostimation schence, wo must dotormine this a posteriori density function and from this function cietcrmine a "hest" estimate of \underline{x}, which can be denoted x.

To obtajn the a posterjori conditional density function, we must make an assumption concernjng the statistical properties of the noise on the observations: the noise vector σ has a joint normal distribution with mean vector $\underline{0}$ and a variance-covariance matrix \sum_{z}. \sum_{z} is an NxN matrix and is assumed diagonal, that is, the observations are considered to be independent and uncorrelated. The "best" estimate of $\underline{x}, \underline{x}$, is defined as that vector maximizing the a posteriori density function; this is equivalent to choosing the mean value of this distribution. An estimator of this type has been referred to as the maximum like]ihood estimate in the Bayesian sense. (Reference 2)

A further assumption is that the a prior density function $p(x)$ is a joint normal distribution and is written as follows:

$$
\begin{equation*}
p(\underline{x})=\left[\frac{\operatorname{set}\left(\Sigma_{A}^{-1}\right)}{2 \pi}\right]^{\frac{M}{2}} \exp \left\{-\frac{1}{2}\left(\underline{x}^{-x_{A}}\right)^{T} \sum_{A}^{-1}\left(\hat{x}^{-x_{A}}\right)\right\} \tag{3}
\end{equation*}
$$

where
\underline{x}_{A} is the a priori estimate of the parameter vector,
\sum_{A} is the a prior variance-covariance matrix associated with tho a prior parameter vector. \sum_{A} is an MXM matrix, which may or may not be diagonal.

The conditional density function $](\underline{z} \mid \underline{x})$ can be written as follows:

$$
p(\underline{z} \mid \underline{x})=\left[\frac{\operatorname{Det}\left(\Sigma_{z}^{-1}\right)}{2 \pi}\right]^{\frac{N}{2}} \exp \left\{-\frac{1}{2}[\underline{z}-\underline{E}(\underline{x})]_{z}^{T}[\underline{z}-\underline{E}(\underline{x})]\right\}
$$

It can be shown that maximizing the a posterior density function $p(\underline{x} \mid \underline{z})$ is equivalent to maximizing tho product $p(\underline{x}) p(\underline{z} \mid \underline{x})$ because the density function $p(\underline{z})$ is a constan valued function. Further, this reduces to minimizing the following quadratic form:

This results in the following set of M non-linear equations:

$$
\begin{equation*}
B^{T} \sum_{z}^{-1}(\underline{z}-\underline{\underline{E}}(\underline{\hat{x}}))+\sum_{A}^{-1} \cdot\left(\underline{x}^{-x_{A}}\right)=0 \tag{6}
\end{equation*}
$$

where B is an NxM matrix with elements

$$
B_{N M}=\left.\frac{\partial f_{N}(\underline{x})}{\partial x_{M}}\right|_{\underline{x}=\underline{\hat{x}}}
$$

This equation defines the Bayesian least squaros estimation procedure. We have not stated how the a priorj parametcr vector and variancc-covariance matrix were obtained. In practice these a priori values are almost always estimates that have been obtained from some previous data. In these cases the Bayesian estimates are identical to the classical maximum likelihood estimates that would be obtained if all the data were uscd; in this context the a priori parameters can be considered as additional observations.

The variance-covariance matrix of $\hat{\underline{x}}, V$, is given by the following formula:

$$
\begin{equation*}
V=\left[B^{T} \sum_{z}^{-1} B+\sum_{A}^{-1}\right]^{-1} \tag{7}
\end{equation*}
$$

Solution of the Estimation Formula

Equation 6 defines a set of M non-linear equaltions in M unknowns \underline{x}; these equations are solved using the Newton-Raphson iteration formula. Equation 6 can be written as follows:

$$
\underline{\underline{E}}(\hat{x})=0 .
$$

The iteration formula is

$$
\begin{equation*}
\therefore \quad: \underline{\hat{x}}^{(n+1)}=\underline{\hat{x}}^{(n)} \cdot\left(\frac{\partial \underline{F}(\underline{x})}{\partial \underline{\hat{x}}}\right)^{-1} \cdot \underline{F}\left(\hat{\hat{x}}^{(n)}\right) \tag{8}
\end{equation*}
$$

where
$\quad \underset{\underline{x}}{\underline{x}}(\mathrm{n})$ is the $\mathrm{n}^{t \dot{\eta}_{2}}$ approximation to the true
solution \underline{x}.

Now

$$
\begin{equation*}
\hat{F}(\underline{\hat{x}})=B^{T} \sum_{z}^{-1}(\underline{z}-\underline{f}(\underline{\hat{x}}))+\sum_{A}^{-1}\left(\hat{\underline{x}}-\underline{x}_{A}\right)=0 \tag{9}
\end{equation*}
$$

Then differentiating and neglecting second derivafives,

$$
\begin{equation*}
\left(\frac{\partial \underline{F}(\hat{x})}{\partial \underline{\hat{x}}}\right)=\left[\left(B^{T} \sum_{z}^{-1} B\right)+\sum_{A}^{-1}\right. \tag{10}
\end{equation*}
$$

Substituting equation 10 in equation 8 gives

$$
\begin{align*}
& \underline{\hat{x}}^{(n+1)}-\hat{\underline{x}}^{(n)}=\left(B_{B}^{T} \sum_{z}^{-1} B+\sum_{A}^{-1}\right)^{-1}\left(B^{T} \sum_{z}^{-1}(\underline{z}-\dot{\underline{f}}(\underline{x})(n))\right. \\
& +\sum_{A}^{-1}\left(\begin{array}{ll}
\underline{x}_{x}(n) & -x_{A} \\
\vdots
\end{array}\right) \tag{11}
\end{align*}
$$

Now Let $\hat{x}^{(n+1)} \hat{x}^{(n)}$; the correction to the $n{ }^{\text {th }}$ approx motion, be denoted by $d(n+1)$, and let $\underline{\underline{z}}\left(\hat{x^{(}(n)}\right)$, the vector of residuals from the nth approximation; be . $\underline{\mathrm{d}}^{(n)}$. Equation 11 becomes.

In a multi-satellite, multi-arce estimation program such as NONAME, it is necessary to formulate the estimaLion scheme in a manner such that the information for all satellite arcs are not in core simultaneously. The procedure used in NONAME is a partitioned Bayesian Estimation Scheme which requires only common parameter information and the information for a single arc to be in core at any given time. The development of the NONAME solution is given here.

The Bayesian estimation formula has been leveloped in, the previous section as

$$
\begin{equation*}
\underline{a x}^{(n+1)}=\left(B^{T} \cdot W B+V_{A}^{-1}\right)^{-1}\left[B^{T} W d m+V_{A}^{-1}\left(\underline{x}^{(n)}-x_{A}\right)\right] \tag{1}
\end{equation*}
$$

where
${ }_{x}$ A is the a-priori estimate of x.
$V_{A} \because$ is the a prior covariance matrix associated with X_{A}.
W. is the weighting matrix associated with the. observations.
$\underline{x}^{(n)}$ is the $n^{\text {th }}$ approximation to $x^{\text {. }}$
dm. is the vector of residuals ($0-C$) from the $n^{\text {th }}$ approximation.
$\mathrm{dx}(\mathrm{n}+\mathrm{J})$ is the vector of corrections to the parameters; i.c.,

$$
\underline{x}^{n+1}=\underline{x}^{n}+\underline{d x}^{(n+1)}
$$

B is the matrix of partial derivatives of the observations with respect to the paramoters where the i, $j^{\text {th }}$ oloment is given by $\frac{\partial \mathrm{m}_{i}}{\partial \mathrm{x}_{\mathrm{j}}}$

The iteration formula given by this oquation solves the non-lincar normal equations formed by minimizing the sum of squares of the wejghted residuals.

We desire a solution wherein x is partitioned according to $a ;$ the vector of parameters associated only with individual arcs; and k, the vector of paraneters common to all arcs. For geodetic paramoter estimation a consists of the sets of orbital elements, satellite parameters; and measurement biases associated wi,th each arc, whereas k consists of the gcopotential coefficients and station coordinates:

As a result of this partitioning, we may write B, the matrix of partial derivatives of tho observations, as

$$
\begin{equation*}
\mathrm{B}^{\circ}=\left[\mathrm{B}_{\mathrm{a}}, \mathrm{~B}_{\mathrm{k}}\right] \tag{2i}
\end{equation*}
$$

$$
\left[B_{a}\right]_{i, j}=\frac{\partial n_{i}}{\partial a_{j}}
$$

and

$$
\left[B_{k}\right]_{i, j}=\frac{\partial m_{i}}{\partial k_{j}}
$$

We may also write V_{A}, the covarianco matrix of the paraneters as

$$
\mathrm{V}_{\mathrm{A}}=\left[\begin{array}{cc}
\mathrm{V}_{\mathrm{a}} & 0 \tag{3}\\
0 & \mathrm{v}_{\mathrm{k}}
\end{array}\right]
$$

where we have assumed the indepondence of the a priori information on the arc paramoters and common paramoters (in practice valid to an extremely high degree).

$$
\begin{aligned}
& {\left[\frac{d a}{\square}\right]=\left[\begin{array}{c:c}
B_{a}^{\prime J} W B_{a}+V_{a} & 13_{a}^{\prime} W_{k} B_{k} \\
\hdashline\left[\left.B_{a}^{T} W B_{k}\right|^{T}\right. & B_{k}^{T} W B_{k}+V_{k}
\end{array}\right] \quad X} \\
& {\left[\begin{array}{l}
B_{a_{a}} W_{d m}^{(n)}+V_{a}\left(\underline{a}^{(n)}-a_{n}\right) \\
B_{k}^{T} W^{T}{ }^{(n)}+V_{k}\left(\underline{k}^{(n)}-\underline{k}_{A}\right)
\end{array}\right]} \\
& {\left[\begin{array}{ll}
A & A_{k} \\
A_{k}^{T} & k
\end{array}\right]^{-1}\left[\begin{array}{l}
c_{a} \\
c_{k}
\end{array}\right]}
\end{aligned}
$$

The, requjred matrix invorsion is obtained by partitioning. We write

$$
\left[\begin{array}{cc}
N_{1} & N_{2} \tag{5}\\
N_{2}^{T} & N_{4}
\end{array}\right]\left[\begin{array}{cc}
\mathrm{A} & \mathrm{~A}_{\mathrm{k}} \\
\mathrm{~A}^{\mathrm{T}} & \mathrm{~K}
\end{array}\right]=1
$$

and, solving the resulting equations, detcrmine

$$
\begin{equation*}
N_{1}=A^{-1}+\left[\Lambda^{-1} A_{k}\right] N_{4}\left\lfloor\Lambda_{k}^{T} A^{-1}\right] \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
N_{2}=-\Lambda^{-1} \cdot \Lambda_{k} N_{4} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{4}=\left\lfloor K-\Lambda_{k}^{T} A^{-1} \Lambda_{k}\right\rfloor^{-1} \tag{8}
\end{equation*}
$$

There is no problem associated with inverting A because the existence of the a priori information alone guarantees this property. On the other hand, the inverse of $K-\Lambda_{k}^{T} A^{-1} \Lambda_{k}$ is not guaranteod to exist. High correlations betwoen the parameters could make the matrix near singular. In practice, howover, the use of a reasonable amount of a priori information eliminates any inversion difficultics.

The iteration formula may now be written as

$$
\therefore\left[\frac{\mathrm{da}}{\therefore}\right]=\left[\begin{array}{ll}
\mathrm{N}_{1} & \mathrm{~N}_{2} \tag{9}\\
\therefore & \therefore \\
\therefore \mathrm{~N}_{2}^{\mathrm{T}} & \mathrm{~N}_{4}
\end{array}\right] \quad\left[\begin{array}{l}
\mathrm{C}_{\mathrm{a}} \\
{[}
\end{array}\right]
$$

or

$$
\begin{align*}
& \underline{d a}=\left[A^{-1}+\left(A^{-1} \Lambda_{k}\right) N_{4}\left(A_{k}^{T} A^{-1}\right)\right] C_{a}-A^{-1} \Lambda_{k} N_{4} C_{k} \tag{10}\\
& \underline{d k}=-N_{4} A_{k}^{T} A^{-1} C_{a}+N_{4} C_{k} \tag{11}
\end{align*}
$$

Noting the similarities between dat and dh, we write

$$
\begin{equation*}
\underline{d a}=A^{-1} C_{a}-A^{-1} \Lambda_{k} \tag{1.2}
\end{equation*}
$$

and rewrite dik as

$$
\begin{equation*}
\underline{d k}=N_{4}\left(C_{k}-A_{k}^{T} A^{-1} C_{a}\right) \tag{13}
\end{equation*}
$$

Note that most of the elements of A are zoro because the measurements in any given arc are independent of the arc parametcrs of any other arc. Also, the covariances between the a priori information associated with cach arc is assumed to be zero. Thus both A and V_{a} are composed of zeroes except for matrices, " A_{r} and V_{r}. respectively, along the diagonal, where
r is a subscript denoting the $r^{\text {th }}$ arc,

$$
\begin{align*}
& \quad \because, g \cdot,{ }_{-r}^{a} \\
& {\left[A_{r}\right]_{j, j}=\sum_{\ell} \frac{\partial m_{\ell}}{\partial a_{r_{j}}} \frac{1}{\sigma_{\ell}^{2}} \frac{\partial m_{\ell}}{\partial a_{r j}}+\left[V_{r}^{-1}\right]_{i, j}} \tag{14}
\end{align*}
$$

where ℓ ranges over the measurements in the $r^{\text {th }}$ arc and i, j range over the parameters in the $r^{\text {th }} \operatorname{arc},{\underset{\sim}{r}}^{r}$.

$$
V_{r} \text { is the partition of } V_{a} \text { associated with the }
$$ $r^{\text {th }}$ arc.

The reader should note that Λ^{-1}, like Λ, is composed of zeroes except for matrices Λ_{r}^{-1} along the diagonal.

We shall also require tho partitions of Λ_{k} and C_{a} according to each arc. These partitions are given by

$$
\begin{equation*}
\left[A_{r k}\right]_{i, j}=\sum_{\ell} \frac{\partial m_{\ell}}{\partial a_{r_{i}}} \frac{1}{\sigma_{\ell}^{2}} \frac{\partial m_{\ell}}{\partial k_{j}} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[c_{r}\right]_{i}=\sum_{\ell}^{\sum_{\ell}} \frac{\partial m_{\ell}}{\partial a_{r_{j}}} \frac{1}{\sigma_{\ell}^{2}}{\overline{d n_{l}}}_{\ell} \tag{16}
\end{equation*}
$$

where the subscript r again denotes the $r^{\text {th }}$ arc and ℓ ranges over the measurement partials and residuals in the $r^{\text {th }}$ arc.

Let us now investigate the matrix partitions . in the solutions for da and dk. We consider A^{-1} to be a diagonal matrix with diagonal elements A_{r}^{-1} and C_{a} to be a column vector with elements C_{x}. Hence

$$
\begin{equation*}
\left[A^{-1} C_{a}\right]_{r}=A_{r}^{-I} C_{r} \tag{STu}
\end{equation*}
$$

is the $\mathrm{r}^{\text {th }}$ element of the product matrix. Λ_{k} is considered to be a column vector with elements. $\Lambda_{r k}$, thus

$$
\begin{equation*}
\left[A_{k}^{T} A^{-1} C_{a}\right]=A_{r k}^{T} \Lambda_{r}^{-1} C_{r} \tag{18}
\end{equation*}
$$

The elements in the product $\Lambda^{-1} \Lambda_{k}$ are given by

$$
\left[\begin{array}{cc}
A^{-1} & A_{k} \tag{1.9}
\end{array}\right]_{r}=A_{r}^{-1} \Lambda_{r k}
$$

We also require the product $\Lambda_{k}^{T} \Lambda^{-1} \cdot \Lambda_{k}$, \quad ts elements are given by

$$
\begin{equation*}
\left[A_{k}^{T} \Lambda^{-I} A_{k}\right]_{r, r}=\Lambda_{r k}^{T} \Lambda_{r}^{-1} A_{r k} \tag{20}
\end{equation*}
$$

The solutions for da and dk may now be rewritten taking into account the partitioning by arc:

$$
\begin{array}{r}
\frac{d a}{r}=\Lambda_{r}^{-1} C_{r}-\Lambda_{r}^{-1} \Lambda_{r k} \frac{d k}{} \\
\frac{d k}{}=N_{4}\left(C_{k}-\sum_{r} \Lambda_{r k}^{T} \Lambda_{r}^{-1} C_{r}\right) \tag{22}\\
2.10-15
\end{array}
$$

where

$$
\begin{equation*}
N_{4}=\left[K-\sum_{r} \Lambda_{r k}^{T} \Lambda_{r}^{-1} \Lambda_{r k}\right]^{-1} \tag{23}
\end{equation*}
$$

These solutions form the partitioned Bayosian estimation scheme uscd in NONAME.

Additionally, the covariance matrix for the arc parametexs must be updated to account for tho simultaneous adjustment of the common paramoters:

$$
\begin{equation*}
\left[N_{1}\right]_{r}=A_{r}^{-1}+\left(\Lambda_{r}^{-1} \Lambda_{r k}\right) N_{4}\left(\Lambda_{r k}^{T} \Lambda_{r}^{-1}\right) \tag{24}
\end{equation*}
$$

Summary

The procedure for computer implementation i : illustrated in Figure 1 . This procedure is:

1. Integrate through each arc forming the matrices A_{r}, $A_{r k}$, and C_{r}; and simmitan eously accumulatc into the common parameter matrices K and C_{k}.
2. At the and of each arc, form

$$
\begin{equation*}
\frac{\mathrm{da}_{\mathrm{r}}^{-}}{}=\Lambda_{r}^{-1} \mathrm{C}_{\mathrm{r}} \tag{25}
\end{equation*}
$$

and modify the common paramoter matrices as follows:

$$
\begin{equation*}
K=K-A_{r k}^{T} A_{r}^{-1} A_{r k} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{k}=C_{k}-A_{r k}^{T} \frac{d a}{r} \tag{27}
\end{equation*}
$$

The matrices $d_{-}^{-}, A_{r k}$, and A_{r}^{-1} must also be put in external storage.
3. Nfter processing all of the arcs; i.e., at the end of a global or "outer" iteration, determine dk . Note that K has become N_{4}^{-1} and C_{k} has been modified so that

$$
\begin{equation*}
\underline{d k}=K^{-1} C_{k} \tag{28}
\end{equation*}
$$

The updated values for the common parameters are of course given by

$$
\begin{equation*}
\underline{k}^{(n+1)}=\underline{k}^{(n)}+\underset{k}{k} \tag{29}
\end{equation*}
$$

The arc parameters are then updated to account for the simultaneous solution of the common parameters. Information for each arc is input in turn; that is, the previously
stored da ${ }_{r}^{\prime}, \Lambda_{r k}$, and Λ_{r}^{-1}. The correction vector to the updated arc parametcrs is given by

$$
\begin{equation*}
\underline{d a}_{r}=\frac{d a}{r}{ }_{r}^{1}-\left(\Lambda_{r}^{-1} A_{r k}\right) d \underline{k} \tag{30}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\underline{a}_{r}^{(n+1)}=\underline{a}_{-r}^{(n)}+\underline{d a}_{r} \tag{31}
\end{equation*}
$$

The covariance matrix for the arc parameters, A_{r}^{-1}, is updated by

$$
\begin{equation*}
\Lambda_{r}^{-1}=A_{r}^{-1}+\left(\Lambda_{r}^{-1} A_{r k}\right) K^{-1}\left(\Lambda_{r k} \Lambda_{r}^{-1}\right) \tag{32}
\end{equation*}
$$

This completes the global iteration.

It should be noted that if only the arc parameters are being determined, as is the case for "inner" iterations, the solution vector is dat and hence the updated arc parameters are computed by

$$
\begin{equation*}
\underline{a}_{r}(n+1)={\underset{a}{r}}^{(n)}+\underline{d a}_{r}^{\prime} \tag{33}
\end{equation*}
$$

Figure 1: Partitioned Estimation Procedure

Figure 1: Partitioned Estimation Procedure (Cont.) 2. 10-20

Figure 1: Partitioned Estimation Procedure (Cont.)

Figure 1: Partitioned Estimation Procedure (Cont.)

Figure 1: Partitioned Estimation Procedure (Cont.)

The common parametor matrix K is carried as a symmetric matrix. Jt is core-resident throughout the estimation procodure. Its dimension is set by the number of cominon parameters being determined and remains constant throughout the procedure.

The arc parameter matricos A_{r} are also carried as symmetric matrices. Their dimensions vary from arc to arc according to the number of arc paramoters being determined. Only one arc parameter matrix Λ_{r} and the corresponding covariance matrix $A_{r k}$ are resident in core at any given time. Thosc arc parameter matrices are stored on disk during stop 2 of the above summary and recovered during step 3.

The a priori covariance matrix V_{k} is not carried as a full matrix. The correlation coefficients between each coordinate of a given station position are carried. The position coordinates of different stations and the geopotential coefficients are considered to be uncorrelated.

The a priori covariance matrices v_{r} are also not carried as full matrices. The drag coefficient, radiation pressure coefficient, and each bias are considered to be uncorrelated. The covariance matrix for the opoch elements is'carried.

In terms of a subroutine breakdown within NoNAM', this entire section is implenented in subroutine lestla with the exception of the matrix inversions. these inversions are done by subroutinc SYM[NV.

2.10.3 Data Editing

The dita editing procedures for NONAME have two forms:

- hand editing using input cards to deleto specific points or sots of points, and
o automatic editing depending on the woighted residual as component to a given rejection level.

The hand editing is a simple matching of the GEOSRD appropriate NONAME control card information with the DODSRD set of obscrvations. This calling procedure is done in NONAME subroutines GLOSRD or DODSRD.

The automatic edjting of bad observations from
NONAME a set of data during a data reduction run is performed in the NONAME main program. Obscrvations are rejected. when

$$
\begin{equation*}
\left.\left|\frac{0-C}{\sigma}\right|\right\rangle k \tag{1}
\end{equation*}
$$

where

```
    0 is the observation
    C" is the computed observation
    \(\sigma\) is the a priories standard deviation
        associated with the observation (input)
    \(k\) is the rejection level.
```

 The rejection level can apply either for all
 observations of a given type or for all observations of a given type from a particular station. This rejection level is computed from.

$$
\begin{equation*}
k=E_{M} \cdot E_{R} \tag{2}
\end{equation*}
$$

where
E_{M} is an input multiplier, and
E_{R} is the weighted RMS of the previous "outer" or global iteration. The initial value of E_{R} is set on input.

It should be noted that both E_{M} and E_{R} have default values.

SECTION 2.11
GENERAL INPUT/OU'PPUT DISCUSSION

NONAME is a powerful yct flexible tool for investigating the problems of satelljte goodesy and orbit analysis. This same power and flexibility causes extreme variation in both input and output requirements. Consequently, NONAME contains a great deal of programming associated with input and output.

2.11.1 Input

There are two major functions associated with the input structure:

These are the input of
© Observation data, and

Q NONAME Input Cards.

The observation data utilized by NONAM? includes data from all the major satellite tracking networks. The observational types uscd to date, together with their originating networks and instrument types, arc:
© Right Ascension and Declination

SAO	Baker-Nunn cameras
STADAN	MOTS-cameras

USAF	PC-1000 cameras
USCGGS	BC-4 cameras
SPEOPT	AIl of above except Baker-Nunn
	cameras

- Range

STADAN	GRARR S-Band
	GSFC Laser
SAO	Laser
AMS	SECOR
C-Band	FPQ-6 Radar
	FPS-16 Radar
MSFN	S-Band Radar

- Range Rate

STADAN	GRARR S-Band
MSFN	S-Band Radar

- Frequency Shift

TRANET - Doppler

- Direction Cosines

STADAN Minitrack interferometer

- X and Y Angles

STADAN GRARR
MSFN S-Band Radars

: STADAN	GSFC laser
$:$ C-BAND	FPQ-6, Radar
	FPS-16 Radar

The observations are required to be in cither the format specified by the National Space Science Data Center (NSSDC) or the GSFC DODS System.

The NSSDC format includes indicators to identify
GEOSRD observation type, instrumentation source, reduction method, coordinate system, and information concerning tropospheric and ionospheric refraction corrections. Data in this format is input via subroutine GEOSRD.

The DODS \mid format includes indicators to identify corrections, transponder channel when applicable, timing correction, and time reference system information. It also contains flags to indicate the need for transit time correction or other types of preprocessing corrections. Data in this format is input via subroutines DODSRD and DATBSE.

The NONAME Control Cards are the complete
ADFLUX
specifications for the problem to be solved including INOUPT special output requests. Their input, controlled through subroutines ADFLUX and INOUPT, consists of data and perhaps variances for

- Cartesian orbital elements
- Satellite ḍrag coefficient
- Satelifite emissivity
- Zero set measurement biases to be adjusted
- Station positions
- Geopotential coefficicnts
and data for
- Satellite cross-sectional area
- Satellite mass
- Integration times for the orbit
- Epoch time of elements.
- Criteria for iteration convergence and data editing
- Solar and geomagnetic flux

Subroutine ADFLUX modifies the program internal data tables of solar and magnetic flux according to the input requests. It also generates the scratch file of flux information to be used with each arc.

Subroutine INOUPT interprets the NONAME Control Cards and sets the appropriate run parameters. It also generates the NONAME run description and the descriptions for all arcs.

Subroutine INOUPT references other rontines to
I Nourli STAINP BLKSTA

It should be noted that the starting orbital elements for some arcs may be recovercd from the DODS Data Base by subroutine DODELM.

2.11 .2 Output

Most of the output from NONAME, not counting the descriptions of the input or run parameters, is produced by the main program. The exception to this is the ORB1 tape output, which has a special subroutine, named ORB1, to produce the required output.

The printed output consists of a measurement and residual printout, residual summaries, and solution summaries as detailed below.

For each arc:

Measurement and Residual Printout

- Measurement date
- Measurement station
- Measurement type
- Measurement value
- Measurement residual
- Ratio to sigma
- Satellite elevation
Residual Summary by Station and Type
- Station
- Measurement type
- Number of measurements
- Mean of residuals
- Randomness measure
- Residual RMS about zero
- Number of weighted residuals
- Mean ratio to sigma for weighted residuals
- Randomness measure for weighted residuals
- RMS about zero for weighted residuals
Residual Summary by Type
- Measurement type
- Number of weighted residuals
- Weighted RMS about zero
o Weighted RMS about zero for all types together
Element Summary
- a priori Cartesian elements
- Previous Cartesian elements
- Adjusted Cartesian elements
- Adjustment to Cartesian elements (delta)
- Standard deviations of fit (sigmas)
- Position RMS
- Velocity RMS
- \quad a priori Kepler elements
- Previous Kepler elements
- Adjusted Kepler elements
- Adjustment to Kepler elements (delta)
- Double precision adjusted Cartesian elements (current best elements for arc)

Adjusted Force Model Parameter Summary for Mre

- Drag Coefficient and/or Solar Radiation Pressure Coefficient
- a priori coefficient value
- Adjusted coefficient value
- a priori standard deviations for coefficient
- Standard deviation of fit for coefficient

Adjusted Parameter Summary

- Instrument biases - timing bias and/or constant bias
- a priori bias value
- Adjusted bias value
- a priori standard deviation for bias
- Standard deviation of fit for bias
- Time period of coverage

The following items are printed on the last inner iteration of every outer i.teration.

- Apogec and perigec heights
- Node rate and perigee rate
- Period of the orbit
- Drag rate and period decrement if drag is being applied
- Updated covariance matrix for Cartesian arc elements
- Adjusted arc parameter correlation coefficients

After all arcs:

, Total Residual Summary

- Total number of weighted measurements for each measurement type
- Total weighted RMS for each measurement type
- Total number of weighted measurements
- Total weighted RMS

Station Summary

- Earth-fixed rectangular coordinates and geodetic (ϕ, λ, h) coordinates
- a priori coordinate values
- a priori standard deviations for coordinate values
- Adjusted coordinate values
o Standard deviation of fit for coordinate values
- Correlations bctween determined coordinate values

Geopotential Summary

- $\quad C_{n m}$ and $S_{n m}$ coefficients for each n, m set determined
- a priori values
- Adjusted values
- Ratios of a priori value to a priori sigma for each coefficient
- Standard deviations of fit for coefficientsArc Summary for Outer Iteration - For cach arc- Updated Cartesian elements for arc- Correlation coefficients between individualarc parameters
- Standard deviation of fit for arc parametors
- Correlation coefficients between individual arc parameters and parameters common to all arcs
Common Parameter Correlation Coefficients
- Geopotential coefficients
- Cartesian station positions

NONANE also produces an $X Y Z$ and Ground Track listing upon request. This is the normal printout for Orbit Generation Mode.

The tape output from NONAME consists of

- the ORB1 tape,
- the XYZ and Ground Track tape,
- a DODS formatted data tape, and
- a binary residual tape.

The XYZ and Ground Track tape and the binary residual tapes are used as input to NONAME support programs.

2.11.3 Computations for Residual Summary

The residual summary information is computed in STAINF subroutine STAINF for printing by the main progran. The formulas used in this subroutine for computing each statistic are presented below.

The mean is the familiar average:

$$
\begin{equation*}
\mu_{c}=\frac{1}{n} \sum_{i=1}^{n} R_{i} \tag{1}
\end{equation*}
$$

where
the R_{i} are the residuals and n is the number of residuals.

The RMS is the square root of the sample

$$
\begin{equation*}
\text { RMS }=\sqrt{s^{2}} \tag{2}
\end{equation*}
$$

where

$$
s^{2}=\frac{1}{n} \cdot \sum_{i=1}^{n}\left(x_{i}-\mu_{c}\right)^{2}
$$

The expected, value of the sample variance: differs from the population variance σ^{2} :

$$
\begin{equation*}
E\left(s^{2}\right)=\sigma^{2}-\operatorname{var}\left(\mu_{c}\right) \tag{3}
\end{equation*}
$$

or rather

$$
\begin{equation*}
E\left(s^{2}\right)=\sigma^{2}\left(1-\frac{1}{n}\right) \tag{4}
\end{equation*}
$$

Hence we may make a better estimate of σ^{2} by computing

$$
\begin{equation*}
\sigma^{2}=\frac{n}{n-1} s^{2} \tag{5}
\end{equation*}
$$

This is known as Bessel's correction. This computed value for the standard deviation, σ, is also called the RMS about zero.
: The randomness measure used in NONAM: is from a mean square successive difference test. Wo have

$$
\begin{equation*}
\mathrm{RND}=\frac{\mathrm{d}^{2}}{\mathrm{~s}^{2}} \tag{6}
\end{equation*}
$$

when

RND is the random normal deviate; our statistic;
s^{2} is the unbiased sample variance; and

$$
d^{2}=\frac{1}{2(n-1)} \sum_{i=1}^{n-1}\left(R_{i+1}-R_{i}\right)^{2}
$$

1

Note that d^{2} is the mean square successive difference. For each i the difference $R_{i+1}-R_{i}$ has mean zero and variance $2 \sigma^{2}$ under the null hypothesis that $\left(R_{1}, \ldots . R_{n}\right)$ is a random sample from a population with variance σ^{2}. The expected value of d^{2} is then σ^{2}. If a trend is present d^{2} is not altered nearly so much as the variance estimate s^{2}, which increases greatly. Thus the critical region RND constant is employed in testing against the alternative of a trend. (Reference 1)

```
In order to use this test, of coursc, it is
``` necessary to know the distribution of the RND. It can be shown that in the casc of a normal population the expected value is given by
\[
\begin{equation*}
E(\text { RND })=1 \tag{7}
\end{equation*}
\]
the variance is given by
\[
\begin{equation*}
\operatorname{var}(\mathrm{RND})=\frac{1}{n+1}\left(1-\frac{1}{n-1}\right) \tag{8}
\end{equation*}
\]
and that the test statistic, RND, is approximately normal for large samples (\(n>20\)).

\subsection*{2.11.4 Kepler Elements}

The Kepler elements describe the position of the satellite as referred to an ellipse inclincd to the orbit plane. This is shown in Figures 1 and 2 . The definitions of these ciements are:
a - semi-major axis ofi the orbit
e - eccentricity of the orbit
i - inclination of the orbit plane
\(\Omega\) - longitude of the ascending node
\(\omega\) - argument of perigee

M - mean anomaly

E - eccentric anomaly
f - true anomaly
1

Apogee height and perigee height are sometimes used
APPER in place of a and e to describe the shape of the orbit. As can be seen in Figure 1, the radius at perigee is a(1-e) and that at apogee is a(l+e). The heights are determined by subtracting the radius of the reference elipsoid at the given latitude from the spheroid height of the satellite. The computations of these last are detailed in section 2.5.1.

Figure 1: Orbital Ellipse

Figure 2: Orbital Orientation

The computation of Kepler elements from the Cartesian positions and velocities \(x, y, z, \dot{x}, \dot{y}, \dot{z}\) is as. follows:

Compute the angular momentum vector per unit mass:
\[
\begin{equation*}
\bar{h}=\bar{r} \times \dot{\bar{r}} \tag{1}
\end{equation*}
\]
where \(\bar{r}\) is the position vector and \(\dot{\bar{r}}\) is the velocity vector. Note that \(v^{2}=\dot{\bar{r}} \cdot \dot{\bar{r}}\). The inclination is given by
\[
\begin{equation*}
i:=\cos ^{-1}\left[\frac{h_{z}}{h}\right] \tag{2}
\end{equation*}
\]

From the vis-viva or energy integral we have
\[
\begin{equation*}
\mathrm{v}^{2}=\mathrm{GM}\left(\frac{2}{r}-\frac{1}{a}\right) \tag{3}
\end{equation*}
\]
where \(G\) is the universal gravitational constant and \(M\) is the mass of the primary about which the satellite is.
orbiting. Thus we have
\[
\begin{equation*}
a=\left[\frac{2}{r}-\frac{v^{2}}{G M}\right]-1 \tag{4}
\end{equation*}
\]

Recalling Kepler's Third Law,
\[
\begin{equation*}
\mathrm{h}^{2}=G M a \cdot\left(1-\mathrm{e}^{2}\right) \tag{5}
\end{equation*}
\]
we determine
\[
\begin{equation*}
e=1-\left(\frac{h^{2}}{a G M}\right)^{1 / 2} \tag{6}
\end{equation*}
\]

The longitude of the ascending node is also determined from the angular momentum vector:
\[
\begin{equation*}
\Omega=\tan ^{-1}\left(\frac{h_{x}}{-h_{y}}\right) \tag{7}
\end{equation*}
\]

The true anomaly, \(f\), is computed next. Note that in integrating
\[
\begin{equation*}
\ddot{\bar{r}} \times \hbar=G M \dot{\mathrm{r}} / \dot{\mathrm{r}} \tag{8}
\end{equation*}
\]
one arrives at
\[
\dot{\bar{r}} \times \bar{h}=G M(\bar{r}+\overline{\mathrm{e}})
\]
(9) ELEM
where \(\bar{e}\) is a constant of integration of magnitude equal to the eccentricity and pointing toward perihelion. Thus,
\[
\begin{equation*}
\bar{r} \times \bar{e}=r e \sin f\left(\frac{-\bar{h}}{\bar{h}}\right) \tag{10}
\end{equation*}
\]
or, performing a little algebrá,
\[
\begin{equation*}
\sin f=\frac{a\left(1-e^{2}\right) \bar{r} \cdot \frac{\dot{r}}{r e h}}{r} \tag{11}
\end{equation*}
\]

The cosine of the true anomaly comes from
\[
\begin{equation*}
r=\frac{a\left(1-e^{2}\right)}{1-e \cos f} \tag{12}
\end{equation*}
\]
,
that is
\[
\begin{equation*}
\cos f=\frac{a\left(1-e^{2}\right)}{e r}-\frac{1}{e} \tag{13}
\end{equation*}
\]

The true anomaly is then
\[
\begin{equation*}
f=\tan ^{-1}\left(\frac{\sin f}{\cos f}\right) \tag{14}
\end{equation*}
\]
\[
2.11-20
\]

The eccentric anomaly is computed from the true anomaly:
\[
\begin{align*}
\cos E & =\frac{f+e}{1+e \cos f} \tag{1.5}\\
\sin E & =\frac{\sqrt{1-e^{2}} \sin f}{1+e \cos f}, \tag{16}
\end{align*}
\]
and
\[
\begin{equation*}
E=\tan ^{-1}\left(\frac{\sin E}{\cos E}\right) \tag{17}
\end{equation*}
\]

The mean anomaly is then computed from Kepler's equation:
\[
\begin{equation*}
M=E-e \sin E . \tag{18}
\end{equation*}
\]

The central angle \(u\) is the angle between the satellite vector and a vector pointing toward the ascending node:
\[
\begin{align*}
& \cos u=\frac{x \cos \Omega+y \sin \Omega}{r} \tag{19}\\
& \sin u=\frac{(y \cos \Omega-x \sin \Omega) \cos i+z \sin i}{r} \tag{20}\\
& u=\tan ^{-1}\left(\frac{\sin u}{\cos u}\right) \tag{21}
\end{align*}
\]

The argument of perigee is then
\[
\begin{equation*}
\omega=u-f \tag{22}
\end{equation*}
\]

In NONAME, this conversion from \(x, y, z, \dot{x}, \dot{y}, \dot{z}\) to \(a, e, i, \Omega, \omega, M\) is performed by subroutinc \(1 \mathrm{~L}, \mathrm{~L} \mathrm{M}\).

\section*{Conversion From Kepler Elements}

The input elements are considered to be a,e,i, POSVE \(\Omega, \omega\), and \(M\) and the Cartesian elements are required.

An iterative procedure, Newton's method, is. used to recover the eccentric anomaly, \(E\), from Kepler's equation (\(M=E-e \sin E\)).

The vectors \(\bar{A}\) and \(\bar{B}\) are computed. \(\bar{A}\) is a vector in the orbit plane directed toward peri center with a magnitude equal to the semi-major axis of the orbit:
\[
\bar{A}=a\left[\begin{array}{c}
\cos \omega \cos \Omega-\sin \omega \sin \Omega \cos i \tag{23}\\
\cos \omega \sin \Omega+\sin \omega \cos \Omega \cos i \\
\sin \omega \sin i
\end{array}\right]
\]
\(\bar{B}\) is a vector in the orbit plane directed \(90^{\circ}\) counter clockwise from \(\bar{A}\) with a magnitude equal to the semiminor axis of the orbit.
\[
\bar{B}=a \sqrt{1-e^{2}}\left[\left.\begin{array}{cc}
-\sin \omega \cos \Omega & -\cos \omega \sin \Omega \cos i \\
-\sin \omega \sin \Omega+\cos \omega \cos \Omega \cos i \\
\cos \omega \sin i
\end{array} \right\rvert\,(24)\right.
\]

The position vector \(\bar{r}\) is then
\[
\begin{equation*}
\overline{\mathrm{r}}=(\cos \mathrm{E}-\mathrm{e}) \overline{\mathrm{A}}+(\sin E) \bar{B} \tag{25}
\end{equation*}
\]

The velocity vector is given by
\[
\begin{equation*}
\dot{\bar{r}}=\dot{E}[(-\sin E) \bar{A}+(\cos E) \bar{B}] \tag{26}
\end{equation*}
\]
where \(E\) is given by
\[
\begin{equation*}
\dot{E}=\frac{\sqrt{\frac{G M}{a^{3}}}}{1-\mathrm{e} \cos E} \tag{27}
\end{equation*}
\]

This conversion procedure for converting \(a, e, i, \Omega, \omega, M\) to \(x, y, z, \dot{x}, \dot{y}, \dot{z}\) is performed in the NONAME system by subroutine POSVEL.

\subsection*{2.11.4.1 Node Rate and Porigec Rate}

The node rate \(\dot{\Omega}\) and perigec rate \(\dot{\omega}\) are computed from Lagrange's Planetary Equations. As these are for printout only, NONAME uses just the Earth oblateness term in the geopotential. From Reference 4, page 39, we have
\[
\begin{align*}
& \dot{\Omega}=\left[\begin{array}{ll}
3 \\
\frac{2}{2} & C_{20} \sqrt{\frac{G M}{a_{e}^{3}}}
\end{array}\right]\left(\frac{a}{a_{e}}\right)^{-3.5} \frac{\cos i}{\left(1-e^{2}\right)^{2}} \tag{1}\\
& \dot{\omega}=\left[\frac{3}{4} C_{20} \sqrt{\frac{G M}{a_{e}^{3}}}\right]\left(\frac{a}{a_{e}}\right)^{-3.5} \frac{\left(1-5 \cos ^{2} i\right)}{\left(1-e^{2}\right)^{2}} \tag{2}
\end{align*}
\]
in radians per second, or rather
\[
\begin{align*}
& \dot{\Omega}=-9.97\left(\frac{a}{a_{e}}\right)^{-3.5} \frac{\cos i}{\left(1-e^{2}\right)} \tag{3}\\
& \dot{\omega}=-4.98\left(\frac{a}{a_{e}}\right)^{-3.5} \frac{\left(1-5 \cos ^{2} i\right)}{\left(1-e^{2}\right)^{2}} \tag{4}
\end{align*}
\]
in degrees per day. The quantities used in the above equations are defined as:
\(a_{e}\) is the semi-major axis of the Earth

GM is the product of the universal gravitational constant \(G\) and the mass of the Earth \(M\)
\(C_{20}\) is the Earth oblateness term in the geopotential (see Section 2.8.3).
a semi-major axis of the orbit
e eccentricity of the orbit
i inclination of the orbit

\subsection*{2.11.4.2 Period Decrement and Drag kaic}

The period decrement and the drag rate are detcrmined from the partial derivatives of the position and velocity with respect to the drag coefficient at the final integrator time step in the given arc. Thesc (multiplied by the drag coefficient) represent the sensitivity of the position or velocity to drag effects. Let us definc
\[
\begin{equation*}
\overline{\Delta D}=\frac{\partial}{\partial C_{D}}(\bar{r}) \cdot C_{D} \tag{1}
\end{equation*}
\]
where
\(\stackrel{\rightharpoonup}{\mathrm{r}} \quad\) is the satellite (inertial) position vector
\(\mathrm{C}_{\mathrm{D}}\) is the drag coefficient

We also define
\[
\begin{equation*}
\dot{\overline{\Delta D}}=\frac{\partial}{\partial C_{D}}(\dot{\bar{r}}) \cdot C_{D} \tag{2}
\end{equation*}
\]

The (two-body) period of the orbit is
\[
\begin{equation*}
P=2 \pi \sqrt{\frac{\mathrm{a}^{3}}{\mathrm{GM}}} \tag{3}
\end{equation*}
\]
where
a is the semi-major axis of the orbit

GM is the product of \(G\), the universal gravitational constant, and \(M\), the mass of the Earth.

Thus
\[
\begin{equation*}
\Delta \mathrm{P}=3 \pi \sqrt{\frac{\mathrm{a}}{\mathrm{GM}}} \Delta \mathrm{a} \tag{4}
\end{equation*}
\]

The vis viva or energy integral has.
\[
\begin{equation*}
v^{2}=G M\left(\frac{2}{r}-\frac{1}{a}\right) \tag{5}
\end{equation*}
\]
hence
\[
\begin{equation*}
a=\frac{1}{\left[\frac{2}{r}-\frac{\left.\dot{\bar{r}} \cdot \frac{\dot{\bar{r}}}{\mathrm{GM}}\right]}{}\right.} \tag{6}
\end{equation*}
\]

Recognizing that \(\Delta(\bar{r})\) is \(\overline{\Delta D}\) and \(\Delta(\dot{\bar{r}})\) is \(\dot{\overline{\Delta D}}\),
\[
\begin{equation*}
\Delta \mathrm{a}=\frac{2}{\left[\frac{2}{-} \frac{\dot{\bar{r}} \cdot \dot{\bar{r}}}{\mathrm{GM}}\right]^{2}}\left[\frac{\bar{r} \cdot \overline{\mathrm{\Delta D}}}{\mathrm{r}^{3}}+\frac{\dot{\bar{r}} \cdot \dot{\overline{\Delta D}}}{\mathrm{GM}}\right] \tag{7}
\end{equation*}
\]

The effect of the drag on the period is then givon by
\[
\begin{equation*}
\Delta P=\frac{6 \pi}{a^{2}} \sqrt{\frac{a}{G M}}\left[\frac{\bar{r} \cdot \overline{\Delta D}}{r^{3}}+\frac{\dot{\bar{r}} \cdot \dot{\overline{\Delta D}}}{\overline{G M}}\right] \tag{8}
\end{equation*}
\]

The daily rate or perjod decrement is computed as \(\Delta \mathrm{p} / \Delta t\) where \(\Delta t\) is the elapsed time (in days) between the last integrator time point and epoch.

The drag rate is computed from the along track (actually normal) portion of \(\overline{\Delta D}\), that is \(\Delta D{ }_{N}\). We need to construct the unit vector along track, L. The velocity vector \(\dot{\bar{r}}\) may be resolved into a radial component and a component normal to the radius vector. The magnitude of the normal. component is found by the Pythagorean Theorem:

The unit normal vector \(\hat{L}\) is then
\[
\begin{equation*}
\hat{\mathrm{L}}=\left(\dot{\bar{r}}-\frac{1}{\mathrm{r}} \cdot \overline{\bar{r}} \cdot \dot{\mathrm{I}}\right) / \mathrm{A} \tag{10}
\end{equation*}
\]

The normal portion of \(\overline{\Delta D}\) is then
\[
\begin{equation*}
\Delta \mathrm{D}_{\mathrm{N}}=\hat{\mathrm{L}} \cdot \overline{\Delta \mathrm{D}} \tag{11}
\end{equation*}
\]

This \(\overline{\Delta D} N\) represents the along-track position effect due to drag over the integrated time span. The drag rate is computed as \(\Delta D_{N} / \Delta t^{2}\) where \(\Delta t\) is again the clapsed time in days.

\title{
SECTION 3.0 \\ NONAME ANALYSES AND GRAPHICS SUPPORT PROGRAMS
}

There exist threc ancillary program which are used with the NONAME program in the analysis of NONAME determined trajectories and residuals. Thesc programs are entirely independent of the NONAME program.

DELTA is used to print and/or plot along track, cross track and radial differences beiween two trajectories. GEORGE performs a regression analysis of the residuals for each pass of data about a trajectory to determine trends in possible timing 'and measurement biases. GROUNDTRACK simply plots the groundtrack of the satellite over a particular tracking station or stations to provide geometric insights into data trends.
3.1 DELTA

INTRODUCTION

The graphic support program DELTA prints and/or plots trajectory differences. The two trajectories enter the program from two magentic tapes in cither an \(R-V\) tape format or ORB1 Lape format. If the; tapes are in the ORBl format, the subroutinc READER is called to obtain each trajectory point; DELTA itself can read the R-V tapes. The subroutine READER is the driver for the sequence of calls to the Plot Package, which provides the plots of the trajectory differences.

The trajectory tapes input to mm, m consist of the satellite positions \((X, Y, Z)\) and velocities \((\dot{X}, \dot{Y}, \dot{Z})\) in the M: Cartesian system at given time intervals.

If \(X_{1}, Y_{1}, Z_{1}\) are the Cartesian coordinates of satedlite position from tape 1 and \(X_{2}, Y_{2}, Z_{2}\) are the coordinates from tape 2 then the position difference vector is
\[
\Delta \overline{\mathrm{P}} \dot{=}\left(\Delta X=X_{2}-X_{1}, \Delta Y=Y_{2}-Y_{1}, \text { and } \Delta Z=Z_{2}-Z_{1}\right)
\]

The velocity difference vector \(\Delta \bar{V}=(\Delta \dot{X}, \Delta \dot{Y}, \Delta \dot{Z})\) is computed similarly.

These vectors are then resolved into a radial vector, \(\underline{H}\), a cross track vector \(\underline{C}\), and an approximation to an along track vector, \(L\) (for nearly. circular orbits).

First, the distance from the geocenter to the satedlite, \(R\), is computed where
\[
R=\sqrt{X^{2}+Y^{2}+Z^{2}}
\]
and the square of the magnitude of the velocity vector (\(\overline{\mathrm{V}}\)),
\[
V^{2}=\dot{X}^{2}+\dot{Y}^{2}+\dot{Z}^{2}
\]

Thus the unit vector, \(\hat{U}\), in the radial direction is
\[
\hat{U}=\left(\frac{X}{R}, \frac{Y}{R}, \frac{Z}{R}\right)
\]
, 1M:L.T

Then to calculate the magnitude of the vector in our along track direction (normal to \(\hat{U}\) in the orbit plane), \(A\), we must compute \(\hat{U} \cdot \bar{V}\) because
\[
A=\sqrt{v^{2}-(\hat{U} \cdot \bar{V})^{2}}
\]

Now we compute the unit vectors in our along track direction \(\bar{A}=\left(a_{1}, a_{2}, a_{2}\right)\) where
\[
\begin{aligned}
& a_{1}=\left(\dot{x}_{2}-(\hat{U} \cdot \bar{V})\left(\frac{X}{R}\right)\right) / A \\
& a_{2}=\left(\dot{Y}_{2}-(\hat{U} \cdot \bar{V})\left(\frac{Y}{R}\right)\right) / A \\
& a_{3}=\left(z_{2}-(\hat{U} \quad \bar{V})\left(\frac{Z}{R}\right)\right) / A
\end{aligned}
\]
and the cross track direction \(\overline{\mathrm{C}}=\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{2}\right)\) where
\[
\bar{C}=\bar{A} \times \hat{U}
\]
or
\[
\begin{aligned}
c_{1} & =\left(a_{2}\right)\left(\frac{Z}{R}\right)-\left(\frac{Y}{R}\right)\left(a_{3}\right) \\
c_{2} & =\left(a_{3}\right)\left(\frac{X}{R}\right)-\left(\frac{Z}{R}\right)\left(a_{1}\right) \\
& =\left(a_{1}\right)\left(\frac{Y}{R}\right)-\left(\frac{X}{R}\right)\left(a_{2}\right)
\end{aligned}
\]

Finally we compute the position differences in radial, \(H_{p}\), cross track \(C_{p}\), and approximation to along track, \(L_{p}\);
\[
\begin{aligned}
& H_{p}=\hat{U} \cdot \Delta \overline{\mathrm{p}} \\
& C_{p}=\overline{\mathrm{C}} \cdot \Delta \overline{\mathrm{p}} \\
& L_{p}=\overline{\mathrm{A}} \cdot \Delta \overline{\mathrm{p}}
\end{aligned}
\]
and the velocity differences in the radial, \(H_{V}\), cross track, \(C_{V}\), and approximation to along track, \(L_{p}\) :
\[
\begin{aligned}
& H_{v}=\hat{U} \cdot \Delta \bar{V} \\
& C_{v}=\bar{C} \cdot \Delta \bar{V} \\
& L_{v}=\bar{A}^{\prime} \cdot \Delta \bar{V}
\end{aligned}
\]

The support program GEORGIJ analyzes NONANI: measurcment residuals. The residuals onter GloRGI: from a tape generated by NONAME and are analyzed on a pass by pass basis for either the station and/or measurement type specified by card input to GEORGE.

The main routine GEORGE selects the residuals to be analyzed and breaks them up into individual passes. GEORGE also controls which types of plots are to be made, if any.

REGANL performs the regression analysis and can edit. data points on the basis of their standard deviations from the mean.

The subroutines HISTO and PLOTER provide visual aids in analyzing the residuals. HISTO plots a histogram or either the residuals or the ratios to sigma for each pass and a grand summation histogram for all the passes analyzed. PLOTER plots either residuals versus time or measurement rate versus residuals for each pass of data. Both subroutines are drive routines for the Plot Package.

The subroutine DIFF computes the difference in days between any two dates, and the subroutinc RYMDI resolves a date in one word into three words; the year, the month, and the day. Both of these subroutines are members of the NONAME program.

The subroutine REGANL determines measurement biases (or zero-set errors) and timing eriors in each pass of data and then performs a regression and analysis of the residuals.

The zero-sct error, \(A\), and timing error, B, are RIGANI, determined by using a least squares method of solving the following equation:
\[
\begin{equation*}
Y=A+B X \tag{1}
\end{equation*}
\]
where
\[
Y \text { is the residual and }
\]
\(X\) is the measurement rate.

Taking the partials of (1) with respect to \(B\) and then with respect to \(A\) and setting them to zero, we get ,
\[
\begin{equation*}
\sum_{i=1}^{N} x_{i} Y_{i}-B \sum_{i=1}^{N} x_{i}{ }^{2}-A \sum_{i=1}^{N} x_{i}=0 \tag{2}
\end{equation*}
\]
\[
\begin{equation*}
\sum_{i=1}^{N} Y_{i}-B \quad \sum_{i=1}^{N} x_{i}-N A=0 \tag{3}
\end{equation*}
\]
where \(k\) is the number of points in the pass:
The iwo equations are solved simultancously for \(\Lambda\) and \(B\).

First REGANL computes the sums of the rates,
\[
\sum_{i=1}^{N} x_{i}
\]
and residuals,
\[
\sum_{i=1}^{N} y_{i}
\]
the products of \(X_{i}\) and \(Y_{i}\),
\[
\sum_{i=1}^{N} x_{i} y_{i}
\]
the squares of the rates,
\[
\sum_{i=1}^{N} x_{i}{ }^{2}
\]
\[
\sum_{i=1}^{N} Y_{i}{ }^{2}
\]

Then the corrected sum of the products, CSXY, and the corrected sums of the squares, \(\operatorname{CSX}^{2}\) and \(\operatorname{CSY}^{2}\), are compouted as follows:
\[
\begin{aligned}
& \operatorname{CSXY}=\sum_{i=1}^{N} x_{i}^{i} Y_{i}-\sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} Y_{i} / N \\
& \operatorname{CSX}^{2}=\sum_{i=1}^{N} x_{i}^{2}-\left(\sum_{i=1}^{N} x_{i}\right)^{2} / N \\
& \operatorname{CSY}^{2}=\sum_{i=1}^{N} Y_{i}^{2}-\left(\sum_{i=1}^{N} Y_{i}\right)^{2} / N
\end{aligned}
\]

Now, solving for \(B\) we get
\[
\mathrm{B}=\operatorname{csX} Y / \operatorname{cs} x^{2}
\]
and solving for \(A\) using \(B\) we get
\[
A=\left(\sum_{i=1}^{N} Y_{i}-B \quad \sum_{i=1}^{N} x_{i}\right) / N
\]

The regression analysis is performed next. (See Anderson, R.L., and Bancroft, J.^., Statistical Theory in Rescarch, 1952, McGraw-IIj.1. Book Co., Inc., New York, pp. 156-157.)

The regression sum of squares, RSS, is
\[
\operatorname{RSS}=\operatorname{cSXY}^{2} / \operatorname{csx}^{2}
\]
and the regression mean, RM, is
\[
R M=\left(C S Y^{2}-R S S\right) /(N-1),
\]
which is nothing more than the square of the standard deviation of the residual's about the trajectory.

The standard deviations of the zero-set error, SDZ, and timing error, SDT, are
\[
\mathrm{SDZ}=\sqrt{\mathrm{RM} \sum_{i=1}^{N} x_{i}^{2} / \operatorname{NCSX}^{2}}
\]
and
\[
\text { SDI. }=\sqrt{\mathrm{RM} /(\mathrm{N}-1)}
\]

The noise about the fitted line, 1), is
\[
D=\sqrt{R M}
\]

The residual mean square, RMSQ , is computed as
\[
\text { RMSQ }=\frac{\operatorname{CSY}^{2}-\operatorname{RSS}}{N-1}
\]

To test the randomness of the result, wo compute the residuals corrected for zero-sct and timing error biases, \(C R_{i}\), as
\[
C R_{i}=\operatorname{RESID}_{i}-A_{i}-B_{i} X_{i}
\]
where \(\mathrm{RESID}_{\mathrm{i}}\) is the residual.

Then we compute difference. sum of squares between subsequent residuals, \(D S Q\), as
\[
\mathrm{DSQ}=\sum_{i=1}^{N}\left(\mathrm{CR}_{i+1}-\mathrm{CR}_{i}\right)^{2}
\]

The random normal deviate, RND, is then
\[
\operatorname{RND}=\frac{\left(\frac{\mathrm{DSQ}}{2 \mathrm{RM}}\right)-1}{\sqrt{(\mathrm{~N}-2) /\left(\mathrm{N}^{2}-1\right)}}
\]

The noise is random if
\[
|\mathrm{RND}|<2.58
\]
and non-random if.
\[
|\mathrm{RND}|>2.58
\]

\section*{INTRODUCTION}

GROUNDTRACK provides gcometric insights into NONAME results by plotting the satellitc groundtrack for each pass over a particular station.

The main routine GROUNITRACK controls the type of plot (groundtrack only or groundtrack with land plots), fixes the size of the grid, roads the data required for the groundtrack requested, and makes the required calls to the Plot Package.

The subroutine CENTER centers the station position on the plotting grid. The subroutine LAND finds the required data in the WRLMAP block data to plot the land masses on the grid. WRLMAP is part of the Plot Package.

The subroutine DATIMI converts minutes into days, hours. and minutes. The subroutines ADDYMD, DIFF, and RYMDI are members of the NONAME program and are used to handle the dates and times in the program.
3.4 , WOLF SCAO20 PLOT P \(\wedge C K \wedge C I:\)

\section*{INTRODUCTION}

The WOLF Plot Package is a complete system for producing SC4020 and/or printer plots. The package has been designed to be highly flexible and casy to usc. Any plot from a quick simple plot (which requires only onc call to the package) to highly sophisticated plots (including motion picture plots) can be casily gencrated with only a basic knowledge of FORTRAN being necessary.

The SC4020 (Stromberg Carlson 4020) is a cathode ray plotter whose outstanding foature is its plotting speed. As such, any user who is producing sorics of plots should use this plotter. Film (35 mm and 16 mmi) and hardcopy are available and the WOLF plot package also allows for printer plots which can be used as a quick look for the SC4020 output.

A typewriter mode is available which conviently allows plotting of character information on the SC4020. This is especially useful as a printer substitude for large amounts of output.

The WOLF Plot Package is a system of fORTRAN callable subroutines which are used to create plots. It is structured into four major levels as follows:
1. Basic Level - The basjc level routines perform the primary functions of the plot package. Excopt for \(a_{\text {, }}\) few auxiliary routines, the basic level routines arc necessary for all other routines. However, fow of the basic routines are user called.

The primary basic routinc assembles the instructions for the SC4D20 tape. There is a printer simulation (of the SC4020) in this routine. This allows for SC4020 plots, printer plot or both simultaneously. The other major basic Ievel routine is used for injtialization and termination of the Plot Package.
2. Intermediate Level - The'intermediate level contains the major user called routine. Some of the functions of this level are
a. Grid Overlays (both Cartesian and Polar) with labels
b. Scaling functions
c. Plotting of vectors or characters in any of the following coordinate systems:

Linear
Semi-Log
Log-Log
Polar
3. High Level - This level is for quick plots with a minimum of programming effort. At this level, all of the other levels are called upon. Only one FORTRAN statement is necessary to produce a plot of any array of data complete with a labeled grid overlay.
4. Independent Level - These routjnes perform functions that are independent of all other lovels excopt the basic level. The following are among the functions of this level:
a. Labels: A string of characters can be plotted horizontally, vertically or diagonally (at any inclination anđ direction).
b. Graphic Letters: Letters can be output in any size and in any font design (i.e., standard block letters, mathematical symbols or even old English script).
c. Typewriter Mode: The typewriter function in the SC4020 plotter can be used by calling the various typewriter routines. These allow for information to be typed (strings of characters output in page format) on either the SC4020 or printer.

In addition to these four levels, there are also a number of auxillary routines. These perform such functions as conversion of decimal (binary) numbers to EBCDIC equivalents and dump of the SC 4020 plot tape.

The functional struction of the Plot Package is illustrated in Figure 1.

\title{
SIBCTION 4.0 \\ NONAME DATA HANIDITNG SUPPORT PROGRAMS
}
!
The three data handing programs are usod to morge or modify existing data tapes for use with the NONAME system.

DODS SORT-MERGE sorts and merges data from two data tapes in the DODS data tape format described in detail in Volume IIJ-NONAME SYSTEM OPERATIONS DESCRJPTION. GLOS SORT-MERGE performs the same task for tapes in the GBOS format described in section \(C .4\) of the above reference. The ORBI conversion program converts a NONAML generated ORBI tape of the format described in Section C. 6 of the same reference on a 9 -track tape to tho same format on a 7 -track tape.

No input cards are requircd for any of these programs as there are no options.

The GIOS SORT-MERGI progran sorts data from two Gl:OS format data tapes into chronological, station, and then measurement type order, eliminating duplicate data records.

SORT-MERGE first reads and sorts a block of 250 data records onto a scratch file. It then reads and sorts another block of 250 records and merges it with the first block. The same procedure is followed until all the data has boen sorted and merged. The output from the final morgc operation is an ordered magnetic data tape in the GEOS data format.

The DODS SORT-MÉRGE program suris data from two bons format data tapes by satellite idontilication nembers into chronological, station and then measurement type order, eliminatang duplicate data records.

SORT-MERGL first reads and sorts a block of 250 data records onto a scratch file. It then roads and sorts another block of 250 records and merges it with the first block. The same procedure is followed until all the data has been sorted and merged. The output from the final merge operation is an ordered magnetic data tape in the DODS data format in blocks by satellite.

The ORB1 CONVERSION program is used to convert a 9 -track 360 double-precision ORBI tape to a 7 -track 7094 single-precision ORBI tapc.

The main routine reads in 360 double-procision words and writes on a 7 -track tape the 7094 single-precision word.

The subroutine WORD94 does the conversion from the 360 64-bit floating point format to the 709436 bit floating point format.

\section*{GENERAL :}
1. Explanatory Supplement to the Nstronomical Ephemeris and the American Ephomeris and Nautical Almanac, Published by Her Majesty's Stationery Office, London, 1961.
2. William M. Kaula. "Theory of Satellite Geodesy," Blaisdell Publishing Company, Waltham, Massachusetts, 1966.

SECTION 2.3:
1. A Joint Supplement to the American Ephemeris and the British Nautical Almanac," Improved Lunar Ephemeris 1952-1959," pages IX and X.
2. Astronomical Papers Prepared for the Use of the American Ephemeris and Nautical N1manac, Volume 15, Part 1, page 153, "Theory of the Rotation of the Earth Around its Center of Mass," published by the United States Government Printing office, Washington, D.C., 1953.
3. Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac, published by Her Majesty's Stationery Office, London, 1961.

REFERENCLS (CONT.)

\section*{SECTION 2.3:}
4. S. Newcomb. "A New Determination of the Precessional Constant with the Resulting Precessional Motions," Astronomical Papers prepared for the use of the American liphemeris, 1897.
5. Edgar W. Woolard. "A Redevelopment of the Theory of Nutation," Astronomical Journal, February 1953, Vol. 58, No. 1, pages. 1-3.

SECTION 2.4:
1. C.J. Devine. "JPL Development Ephemeris Number 19,"
JPL Technical Report \(32-1181\), Pasadena, California,
Novenber \(15,1967\).

SECTION 2.5:
1. Bernard Guinot and Martinc Feissal. "Annual
, Report for 1968," Bureau International Dc L'Heure, published for the International Council of Scientific Unions, Paris, 1969.

\section*{RETERUNCES (CONT.)}

SECTION 2.7:
1. "GEOS-A C'lock Calibration for bays 321, 1965 to 50, 1966," Johms Hopkins Universiry Applicd Physics Laboratory Report, 1966.
2. C.A. Lundquist and G. Veis. "Geodetic Parameters for a 1966 Smithsonian Institution Standard Earth," Smithsonian Astrophysical Observatory Special Report No. 200, 1966.
3. S.J. Moss, R.L. Brooks and E. Hyman. "GEOS-A Preprocessjng Report," Wolf Research and Development Corporation Contract NAS 5-9756-8A.

SECTION 2.8:
1. L.G. Jacchia. "The Temperature Above the Thermopause," 1964, Special Report 150 , Smithsonian Institution Astrophysical Observatory (SAO), Cambridge, Massachusetts.
2. L.G. Jacchia. "Static Diffusion Models of the Upper Atmosphere with Empirical Temperatures Profiles," 1965, Special Report 170, SAO.
3. L.G. Jacchia. "Density Variation in the Hetrosphere, 1965, Special Report 184, SAO (September 20).

\section*{SECTION 2.8:}
4. L.G. Jacchia. "Recent Results in the Atmospheric Region Above 200 km and Comparisons with CIRA 1965," 1967, Special Report 245 SAO, (July 7).
5. L.G. Jacchia. "IV. The Upper ^tmospherc," Philosophical Transactions of the Royal Socicty, 1967, A, Vol. 262, pp. 157-171.
6. L.G. Jacchia, I.G. Campbell and J.W. Slowey. "Semi-annual Density!Variations in the Upper Atmosphere, 1958 to 1966," 1968, Special Report 265, SAO, (January 15).
7. F.S. Johnson. "Circulation at Tonospheric Levels," 1964, Southwest Center for Advancod Studies, Report on Contract CWb 10531, (January 30).
8. M. Nicolet. "Density of the Hetrosphere Related to Temperature," 1960, Special Report 75, SAO, Cambridge, Massachusetts.
9. U.S. Standard Atmosphere, 1966. Sponsored by National Aeronautics and Space Administration, U.S. Air Force and U.S. Weather Bureau, Washington, D.C. (December).

\section*{REFERENCIS (CONT)}

SECTION 2.9:
1. Peter K. Henrici. "Elements of Numerical Analysis," John Wiley \& Sons, Inc., New York, 1964.
2. H. Rutishauser, F.L. Bauer and E. Sticfel. "New Aspects in Numerical Quadraturc," Procecdings of the XV Symposium on Applied Mathomatics, 1962. C.E. Velez. "General Lagrangian Intcrpolation Formulas," NASA TND-4424, Goddard Space Filight Center, Greenbelt, Maryland. .

SECTION 2.10:
1. Maurice G. Kendal and Alan Stuart. "The Advanced Theory of Statistics," Vol. II, London, 1961.
2. Robert C.K. Lee. "Optimal Estimation, Identification and Control," Cambridge, Massachusetts, 1964.
3. "The GEOSTAR PIan for Geodetic Parameter Estimation," Wolf Research and Development Corporation, Contract No. NAS 5-9756-132, November 1968.

\section*{REPERENCES (CONT'.)}

SECTION 2.11:
1. B.W. Lindgren. "Statistical Theory," The Macmilian Company, New York 1968.
2. "Support Activity of the Geodetic Satellite Data Service," National Space Science Data Center Report, Goddard Space Flight Center, November 1965.
3. J. Topping. "Errors of Obsorvation and Their Treatment," Chapman and Hall, Ltd., Iondon, 1965 .
4. William M. Kaula. "Thcory of Satellite Geodesy," Blaisdell Publishing Company, Waltham, Massachusctts, 1966.

\section*{APPENDJX \(\wedge\)}

INDEX OF SUBROUTINE REFI:RINCI:S
FOR NONAME PROGRAM
\begin{tabular}{|c|c|}
\hline SUBROUTINE & SECTION \\
\hline ADFLUX & 2.8.7.2, 2.11.1 \\
\hline - BAKINT & 2.9 .1 1 1 \\
\hline BLKSTA & 2.11 .1 \\
\hline COWELL & 2.9 .1 \\
\hline DATBSE & 2.11 .1 \\
\hline DENORM & 2.8 .3 \\
\hline DENSTY & 2.8.2, 2.8.6, 2.8.7 \\
\hline DNVERT & 2.9 .1 \\
\hline DODELM & 2.11 .1 \\
\hline DODSRD & 2.7.1. 2.7.2, 2.10.3, 2.11.1 \\
\hline drág & 2.5.1, 2.8.2, 2.8.6 \\
\hline EGRAV & 2.8 .3 \\
\hline ELEM & 2.11 .4 \\
\hline EPHEM & 2.3.5, 2.4 \\
\hline EQN & \(2.3 .6,2.3 .6 .2\) \\
\hline EQUATR & 2.3.6, 2.7.2 \\
\hline ESTIM & 2.10 \\
\hline F & \(2.3 .5,2.8 .1,2.8 .2,2.8 .5\) \\
\hline GEOSRD & \(2.7 .1,2.7 .2,2.7 .6,2.10 .3,2.11 .1\) \\
\hline GRHRAN & 2.3.4, 2.3.5, 2.6.1 \\
\hline HERMIT & 2.9.3 \\
\hline HHEMIT & 2.9.1, 2.9 .3 \\
\hline INOUPT & 2.5.1, 2.11.1 \\
\hline INPT & 2.8.7.2 \\
\hline INTGST & 2.9.2 \\
\hline JANTHG & 2.3.5, 2.8.7.2 \\
\hline NUTATE & \(2.3 .6,2.3 .6 .2\) \\
\hline
\end{tabular}

\section*{APPENDIX A (CONT.)}
\begin{tabular}{|c|c|}
\hline SUBROUTINE & SECTION \\
\hline OBSDOT & \(2.3 .4,2.5 .2,2.6,2.6 .1,2.6 .3\) \\
\hline ORBIT & 2.8.2, 2.9-1 \\
\hline ORBI & 2.11.2 \\
\hline PLHOUT & 2.5.1, 2.11.1 \\
\hline POLE & 2.5.4 \\
\hline POSVEL & \(2.11 .4{ }^{\text { }}\) \\
\hline PRECES & 2.3.6, 2.3.6.1 \\
\hline PREDCT & \(2.3 .4,2.5 .1,2.5 .2,2.6,2.6 .1,2.6 .2,2.82\) \\
\hline PROCES & 2.7.1, 2.7.3, 2.7.4, 2.7.5 \\
\hline REARG & 2.9.1 \\
\hline REFCOR & 2.3.6, 2.8.1 \\
\hline REFION & 2.7 .5 \\
\hline RESPAR & 2.8.2, 2.83 \\
\hline SATCL2 & 2.7 .1 \\
\hline SATCLC & 2.7 .1 \\
\hline SQUANT & 2.5.1, 2.5.2, 2.11.1 \\
\hline STAINF & 2.11.3 \\
\hline STAINP & 2.11 .1 . \\
\hline SUNGRV & 2.8 .4 \\
\hline SYMINV & 2.10.2 \\
\hline TDIF & 2.5 .3 \\
\hline TRUEP & 2.5 .4 \\
\hline VCONV & 2.5.1 \\
\hline VEVAL & \[
\begin{aligned}
& 2.5 .1,2.8 .2,2.8 .3,2.8 .4,2.8 .5,2.8 .6, \\
& 2.8 .7 .2
\end{aligned}
\] \\
\hline XEFIX & \(2.3 .4,2.6 .3\) \\
\hline XINERT & 2.3 .4 \\
\hline YEFIX & 2.3.4, 2.6.3 \\
\hline YINERT & 2.3 .4 \\
\hline
\end{tabular}```

[^0]: * There is currently no input format set for these measurement types.

