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ABSTRACT 

Unperturbed two-body, o r  Keplerian motion is transformed from the  

1;inie domain i n to  t he  domains of two ur,ique th ree  dimensional vector  

harmonic o s c i l l a t o r  systems. One harmoriic o s c i l l a t o r  system i s  f u l l y  

regularized and hence va l id  f o r  a l l  o r b i t s  including t h e  r e c t i l i n e a r  

c l a s s  up t o  and including per iaps i s  passage, The other  system is  f d l y  

a s  general  except t h a t  t he  so lu t ion  becomes unbounded a t  pe r iaps i s  pas- 

sage of r e c t i l i n e a r  o rb i t s .  The na tu ra l  frequencies of t h e  o s c i l l a t o r  

systems are  r e l a t ed  t o  ce r t a in  Keplerian o r b i t  s ca l a r  constants, while 

t h e  independent var iables  a re  r e l a t ed  t o  well-known o r b i t  angular 

measurements, o r  anomalies. The solut ions  t o  both systems a re  uni- 

ve r sa l l y  applicable funct ional ly  t o  a l l  types of o r b i t s  ( e l l i p t i c ,  

parabolic, hyperbolic, and r e c t i l i n e a r ) .  
C 

Perturbed two-body motion is  then presented i n  t he  framework of 

perturbed harmonic o sc i l l a t o r s .  Nonlinear and l inear ized  Encke per-  

tu rba t ion  equations, i n  vector form, are  developed f o r  both perturbed 

o r b i t  o s c i l l a t o r  systems, and t h e  l i nea r i zed  vector per turbat ion 

equations a re  demonstrated t o  be d i r e c t l y  solvable by quadrature i n  

t h e  domains of t h e  respective o s c i l l a t o r  systems. 

The l inear ized  analysis  of general  r e c t i l i n e a r  o r b i t s  perturbed 

e i t h e r  by an ex te rna l  body o r  by t he  second spher ica l  hamonic (J~) 

is presented. Albebraic expressions a r e  developed which represent 

the  per turbat ion s t a t e  vector referenced t o  t he  reference r e c t i l i n e a r  

o rb i t .  



An analys is  of near-parabolic t r a n s f e r  t r a j e c t o r i e s  between the  

moon and t h e  cislurinr l i b r a t i o n  point  L1 is presented. Approximate 

formulae are developed which represent  t h e  ve loc i ty  requirements a t  

t he  nioon and L f o r  passage i n  e i t h e r  d i r ec t i on  on e i t h e r  s i de  of 
1 

t h e  moon. 
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Chapter I 

INTRODUCTION 

The physical  bas i s  f o r  c e l e s t i a l  mechanics was established more 

than 300 years ago with the publication of Kepler's three laws of 

planetary motion, based on the observations of Tycho Brahe. Subse- 

quently, Newton established the  mathematical foundation of modern 

c e l e s t i a l  mechanics by postulat ing the law of grav i ta t iona l  a t t r ac -  

t i o n  between two bodies as the  force of a t t r ac t ion  being proportional 

t o  the  product of the  masses of the  two bodies and inversely propor- 

t i o n a l  t o  the square of the  distance separating them. I n  vector form, 

t h i s  famous mathematical re la t ionship appears as 

I n  s p i t e  of i t s  apparent simplicity, it i s  a singular nonlinear d i f -  

f e r e n t i a l  equation of the motion whose sca la r  components are repre- 

sented by coupled second order d i f f e r e n t i a l  equatians. F i r s t  in te -  

g ra l s  of (1-1) are read i ly  obtainable by elementary means, and the  

well-known transformation of the  dependent var iable  r t o  u = l / r  

r e su l t s  i n  the d i f f e r e n t i a l  equation 

where ( * )  ' denotes d i f fe ren t ia t ion  with respect t o  the  t rue  anomaly 

f . Although it may appear t r i v i a l  a t  t h i s  point, the  vector equa- 

t i o n  which affords t h e  compl-ete vector solut ion t o  (1-1) i n  conjunc- 

t i o n  with (1-2) is 

.. * 
r " + r  = o (1-3) 



c. 

where r is t he  un i t  radius  vector.  

The system of equations (1-2) and (1-3) i s  the  introduction t o  

t h e  representa t ion of Keplerian motion as  an harmonic o s c i l l a t o r  

system and i s  re fe r red  t o  herein  a s  t he  "c lass ical"  o r b i t  o s c i l l a t o r  

system. Thus it would appear t h a t  the  undesirable mathematical charac - 

t e r i s t i c s  of (1-1) do not appreciably a f f ec t  the  development of a 

meaningful solution.  

There ex i s t  two regions of mathematical i n t e r e s t  associated 

with t he  general  so lu t ion  t o  (1-1); these  regions a re  r e l a t ed  t o  

near-parabolic and near - rec t i l inear  o rb i t s .  Rect i l inear  o r b i t s  may 

be e l l i p t i c ,  parabolic, o r  hyperbolic and are  characterized by t he  

p a r t i c l e  encountering the  s i ngu l a r i t y  of (1-1) a t  pe r iaps i s  . 
Geometrically, they a re  s t r a i g h t  l i n e s  connecting t he  .orbit  f oc i .  

Representation of t he  sol.ution t o  (1-11 i n  terms of tlie t r u e  

anomaly has t h e  advantage t h a t  the re  is  a na tu r a l  smooth t r a n s i t i o n  

between t he  e l l i p t i c  and hyperbolic regions of motion. However, t he  

descr ipt ion of motion would appear ( a t  t h i s  time) t o  break down f o r  

r e c t i l i n e a r  o r b i t s  i f  t he  t r ue  anomaly i s  regarded as  an angular mea- 

surement. This disadvantage becomes d i s t i n c t  i n  the  analysis  of 

perturbed Keplerian mot ion i n  which the  instantaneous, o r  osculating,  

conic passes through the  r e c t i l i n e a r  region of motion. It w i l l  be 

subsequently shown tha t ,  "or pure r e c t i l i n e a r  orbi ts ,  an "effective" 

t r u e  anomaly r e l a t ed  t o  t he  p a r t i c l e  speed r e s u l t s  i n  a v a l i d  solut ion.  

If t he  so lu t ion  t o  the  unperturbed two-body problem is repre- 

sented i n  terms of t he  eccentr ic  o r  hyperbolic anomaly as  opposed t o  

t h e  t r u e  anomaly, t-he r e su l t i ng  so lu t ion  is  then compatible with the  



simplest and most convenient form of Kepler' s time equation. I'urther- 

more, the solution i s  d i r e c t l y  va l id  f o r  r e c t i l i n e a r  o r b i t s  (geometrically, 

an "eccentric c i r c l e "  may s t i l l  be circumscribed about a  rect i l i -near  

e l l i p se ) .  However, the  penalty i s  the  lack  of a  functionally smooth 

t r a n s i t i o n  between the mathematical representation of e l l i p t i c  and 

hyperbolic motion. This disadvantage would manifest i - tse l f  i n  the  

analysis  of perturbed Keplerian motion i n  which the osculating conic 

passes through the parabolic region of motion. 

History of Universal Orbit Formulae 

The d i f f i c u l t y  of analysis of the  continuous t r a n s i t i o n  region 

between the e l l i p t i c  and hyperbolic regions of Keplerian motion has 

l e d  t o  the  universal  o rb i t  formulae of numerous invest igators  such as  

,-- 
Stumm, Sperling, Herrick, Battin, e t c .  The formulation of the  uni- 

* 
ve r sa l  o rb i t  solut ion is  obtained by a  general izat ion of the Keplerian 

solut ion t o  the various regions of motion and e f fec t ive ly  describes 

the  general o rb i t  by means of an energy parameter and the  appropriate 

"universal" anomaly (e.g., eccentr ic  anomaly f o r  eccentr ic  o rb i t s ) .  

The resu l t ing  solut ion funct ional ly  affords the  necessary smooth 

t r ans i t i on  between the various regions ,of  motion and, i n  addition, 

i s  capzble of handling the  r e c t i l i n e a r  boundary of the  motion up t o  

and including per iapsis  passage a t  the  center of a t t rac t ion .  The 

der ivat ion of the universal  o rb i t  solut ion was subsequently obtained 

by P i tk in  [ l ]  from a regularized form of Eq. (1-l) ,  y ie lding a  d i f -  

f e r e n t i a l  equation as the  bas i s  of the  universal  solution, but a l so  

es tabl ishing the r e l a t i on  between the universal  o rb i t  formulae and 

the mathematical process of regular izat ion.  

- 3 -  



History of Regularization 

Regularization may be described as  a procedure f o r  removing the  

s i n g u l a r i t i e s  of' a  mathematical expression by means of, say, a change 

of var iables .  As re fe r red  t o  i n  t h i s  research, we w i l l  be concerned 

with the  regular izat ion of the  d i f f e r e n t i a l  equation (1-1). Although 

t h e  mathematical object ive  i s  t o  obtain a well-behaved so lu t ion  f o r  

a p a r t i c l e  which passes through t h e  s ingular i ty ,  it w i l l  be shown t h a t  

a computational advantage is  obtained f o r  p a r t i c l e s  which pass near 

t h e  s ingu la r i ty .  

The h i s t o ry  of regular izat ion of the  c l a s s i c a l  two-body problem 

is  usual ly  t raced t o  Levi-Civita (1.906). The regular izat ion t h a t  bears 

h i s  name i s  a r e l a t i v e l y  complicated procedure which transforms t he  

time and coordinates of the  two-dimensional two-body problem i n t o  a 

three  dimensional space. This is  accomp1isk:ed by means of a theory 

of conformal mapping and representa t  ion of t h e  two-dimensional posi-  

t i o n  vector as a complex number. The Levi-Civita transformation has 

t h e  important property t h a t  it is capable of removing t he  s ingu la r i ty  

a t  more than one center of a t t r a c t i o n  and is  thus re fe r red  t o  as a 

"global" regular izat ion.  Szebehely makes extensive use of t h i s  theory 

i n  reference [2  1 . 
Recently, Kustaa~heimo and S t i e f e l  [3] succeeded i l l  generalizing 

the  Levi-Civita transformation t o  three  dimensions by means of t he  

general izat ion of complex numbers t o  spinors, thus e f f ec t i ve ly  t rans-  

forming t he  three-dimensional Cartesian space problem in to  a four- 

dimensional space with t h e  appropriate time transformation. This 

mcthod is  re fe r red  t o  as the  K-S transformation. 



Local Regulari.zation 

A regular izat ion procedure which elimrinates the  s ingu la r i ty  a t  

only one center  of a t t r a c t i o n  is  re fe r red  t o  a s  a "local" regular iza-  

t i on .  Application of the  K-S transformation t o  the  problem o f  l o c a l  

regular izat ion reduces the  equations of motion i n  four-space t o  a 

second order, l inear ,  constant coef f ic ien t  s e t  f o r  the  unperturbed 

Keplerian problem. 

P i t k in  [ l ]  uses only the  time transformation of the  Levi-Civita 

transformation (which he r e f e r s  t o  as t he  Sundman transformation) t o  

obta in  a regularized s e t  of a vector and s ca l a r  equation of motion. 

From t h i s  he eventually obtains the  universal  o r b i t  formulae. I n  

h i s  derivation, one of the  i n t eg ra l s  of the  Keplerian problem 

-. 
(energy) is  used t o  simplify t he  resu l t ing  s ca l a r  o r b i t  equation, 

C 

which then becomes t h a t  governing t he  behavior of a simple harmonic 

o s c i l l a t o r .  The regular izat ion appearing i n  t h i s  research introduces 

a vector i n t e g r a l  of t he  inverse square two-body problem t h a t  has t he  

e f f e c t  of simplifying P i t k in ' s  complicated vector equation t o  t h a t  of 

a vector harmonic o s c i l l a t o r  i n  th ree  dimensions. The r e su l t i ng  three- 

dimensional regular izat ion of t he  inverse-square two-body problem thus 

achieves a l l  the  advantages of the  K-S transformation applied t o  l o c a l  

regular izat ion without the  transformation of t h e  coordinates. More 

importantly, it supplies a simple o r b i t  o s c i l l a t o r  system analogous 

t o  t h e  c l a s s i c a l  o s c i l l a t o r  system but  with t he  modified eccentr ic  

(hyperbolic) anomaly as  t h e  independent var iable .  



Contributions of t h i s  Research 

The aforementioned regular izat ion of the  inverse-square two-body 

problem, obtained f i r s t  by Burdet [4] and subsequently and independently 

by the author, y ie lds  the  d i f f e r e n t i a l  equations of a vector harmonic 

o s c i l l a t o r  which leads d i r ec t ly  t o  a modified form of universal  o rb i t  

formulae. Following Burdet's terminology, t h i s  system is referred t o  

as  the  "central  osc i l l a tor"  system. Since the cen t r a l  o s c i l l a t o r  

system ar i ses  d i r ec t ly  from regularization,  it i s  automatically va l id  

f o r  r e c t i l i n e a r  orbi ts ,  up t o  and including per iapsis  passage a t  the  

center of a t t rac t ion .  The solut ion t o  the  cen t ra l  o sc i l l a to r  system 

is ident ica l  t o  the o rb i t  descr ipt ion using the eccentr ic  o r  hyper- 

bo l i c  anomaly, but i n  a more general form. 

A t  t h i s  point, the term "universal" must be given a precise  

meaning. This term w i l l  be used t o  designate a solut ion which may 

be expressed functionally i n  a form applicable t o  o rb i t s  of a rb i t r a ry  

energy and angular momentum (including zero f o r  e i t he r  o r  both) and 

including the time domain s ingular i ty  of per iapsis  passage f o r  r e c t i -  

l i nea r i t y .  In s p i t e  of the obvious s ingular i ty  of the term l /p  i n  

(1-2), it w i l l  be shown t h a t  the c l a s s i ca l  o s c i l l a t o r  system also 

admits a well defined solut ion t o  the general r e c t i l i n e a r  orbi t ,  

where the independent variable is re la ted  t o  veloci ty  and i s  unbounded 

only a t  per iapsis  passage. Thus the c l a s s i ca l  o s c i l l a t o r  system might 

be regarded as quasi-universal. During the course of t h i s  research, 

however, Burdet [51 introduced the author t o  a subt le  modification of 

the  c l a s s i ca l  o sc i l l a to r  system and referred t o  as the "focal" osc i l -  

l a tor ,  which uses a modified t r u e  anomaly as the  independent variable.  



This system w i l l  a l so  be  shown t o  be quasi-universal  and admits t he  

i den t i ca l  so lu t ion  of t he  c l a s s i c a l  o s c i l l a t o r .  IIowever, it d i f f e r s  

i n  one major respect  i n  t h a t  it contains no terms which are  unbounded 

f o r  r e c t i l i n e a r  o rb i t s .  The same w i l l  be shown t o  be t r u e  of t he  

c e n t r a l  o s c i l l a t o r  system. Thus a per turbat ion analysis  w i l l  not be 

concerned w i t h  per turbat ions  of unbounded terms, and there in  l i e s  the  

primary reason fo r  use of the  foca l  and c e n t r a l  o s c i l l a t o r s  i n  t h i s  

research.  

The primary purpose of t h i s  research is t o  e s t ab l i sh  a method 

of general  per turbat ions  based on t h e  presenta t ion of t he  unperturbed 

two-body problem as two d i s t i n c t  harmonic o s c i l l a t o r  systems. The 

perturbed two-body equations of motion a re  developed f o r  both systems 

and nonlinear Encke perturbatj-on equations a re  then developed, along 

with comments on t he  numerical c o q ~ t a t i o n  Aspects. 

The l inear ized  Encke per turbat ion equations a re  developed f o r  

both o s c i l l a t o r  systems and dexconstrated t o  be d i r e c t l y  solvable by 

quadrature i n  t he  domains of the  respective systems f o r  a l a rge  c l a s s  

of perturbing forces .  The general  solut ions  a re  presented along with 

a del ineat ion of regions of app l i cab i l i t y  with respect  t o  t he  s t ruc tu r e  

of t he  perturbing force.  

The so lu t ion  t o  the  problem of per turbat ions  of a c i r c u l a r  o r b i t  

due t o  the  second spher ica l  harmonic ( J ~ )  term is obtained using the  

perturbed harmonic o s c i l l a t o r  system solut ions  and i s  compared t o  a 

so lu t ion  obtained fr.om the  Euler-Hill  equations. Perturbations of a 

general  r e c t i l i n e a r  o r b i t  are obtained f o r  two forms of per turbing 

fcrce:  1) the  aforementioned J2 oblateness term and 2 )  a f ixed 



external perturbing body. Finally, an  analyt ical  treatment of near- 

parabolic t ra jec tor ies  between the moon and the cislunar l i b ra t ion  

point L1 is  presented, using the perturbed central  o sc i l l a to r  

system. The resu l t s  are presented as approximate analytic formulae 

fo r  velocity requirements a t  L1 or' the moon fo r  t ransfer  between 

L1 and the moon. 



Chapter I1 

THE UNPERTURBED TWO- BODY PROBLEM 

The motion of a pa r t i c l e  about an a t t r ac t ing  primary mass whose 

force of a t t r ac t ion  var ies  inversly as  the  square of the  distance 

between the two bodies i s  governed by 

where p = Gm , m = mass of the  a t t r ac t ing  body, and 6 i s  the  

universal  g rav i ta t iona l  constant. It i s  advantageous a t  t h i s  point 

t o  review the elementary derivation of the  f i r s t  in tegra l s  of (1-1). 

Conservation of Energy 

- 
By constructing the  scalar  product of (1-1) with the  vector r 

b 

we obtain 

resu l t ing  i n  the energy in t eg ra l  

- - 
e = -.- ' 2 = constant 

2 r (2-2 

It can be shawn tha t ,  f o r  motion i n  an inverse square f i e l d ,  C = -j-~/2a, 

where a i s  the semimajor axis  of the  resul t ing conic section. For 

the  purpose of t h i s  analysis,  a modified energy parameter a i s  defined 

as  the  reciprocal  of the  semimajor axis, o r  



- 
The use of an energy-related parameter i n  t h e  descr ipt ion of an o rb i t  

eventually affords  the  desired smooth t r a n s i t i o n  between the  e l l i p t i c  

and hyperbolic regions of motion, reca l l ing  t h a t  

e l l i p s e  a >  0 ,  & < 0 ,  a >  0 

parabola a = c ~ ?  & , a = O  

hyperbola a <  0 , & > 0 ,  a <  0 

This description i s  a l so  uniformly va l id  f o r  t he  r e c t i l i n e a r  c l a s s  of 

o rb i t s .  An energy in t eg ra l  may be obtained f o r  any conservative force 

f i e l d ,  not necessari ly central .  

conservation of Angular Momentum 

A vector i n t eg ra l  of the  two-body problem, va l id  only f o r  cen t r a l  

force f i e ld s ,  i s  obtained by constructing the  vector c ross  product of 
b - 

(1-1) with the  posi t ion vector r , ,which leads  t o  

d 
( X )  = 0 
d t  

leading, i n  turn,  t o  the  law of conservation of angular momentum, 

- - - 
h = r x r  = constant ( 2 - 5 )  

The invariance of the  length of t h i s  vector i s  another statement of 

Kepler's second law, namely, t h a t  the  p a r t i c l e  sweeps out equal areas  

i n  equal times, while the  invariance of t he  d i rec t ion  i s  an a l t e rna t e  

statement of the  law tha t  Keplerian motion takes  place i n  a f ixed plane. 

For r e c t i l i n e a r  motion (h=0) , both arguments a re  s t i l l  valid,  although 

the  o rb i t  plane i s  indeterminate and the  area i s  zero. 



An a l te rna te  statement of Kepler's second law i s  

where i s  the r a t e  a t  ,which the area of the  orb i t  i s  swept by the 

- 
position vector r , and f i s  the t rue  anomaly. The expression fo r  

the scalar  angular momentum i s  used as  an independent variable trans- 

formation equation t o  establ ish the following well-known d i f f e ren t i a l  

equation 

uO' + u = l / ~  = p/h2 (2-7 

where u = l/r , p i s  the semilatus rectum and ( ) ' denotes the 

derivative with respect t o  the t rue  anomaly. The in tegra l  of (2-7) 

i s  the  familiar conic section re la t ion  - 

.where the abbreviated notation Cf i s  used t o  represent cos f (equivalently, 

Sf ,would be used t o  represent s in  f ) .  

The above transformation of variables from the time t t o  a new 

independent variable f i s  an example of the general method t o  be 

subsequently outlined ,which transforms both the unperturbed and perturbed 

t-wo-body problems out of the time domain in to  more convenient domains 

of integration defined by new independent variables. 

Eccentricity Vector 

Another vector in tegra l  may be obtained which i s  unique t o  the 

inverse square cent ra l  force f i e l d  and i s  variously known as  Laplace's 

f i r s t  vector, Hamilton's E vector, o r  the apsidal vector; throughout 

- 11 - 



t h i s  research it w i l l  be r e f e r r ed  t o  a s  t he  eccen t r i c i t y  vector. 

From 

- - - - 
d(;/r)/dt = [(F . r); - (F . r ) r ] / r 3  

we obta in  

- 
where E i s  t he  vector constant  of in tegra t ion .  Construction of t he  

dot  product of (2-10) and and comparison with (2-8) i nden t i f i e s  
- 

t he  vector E a s  di rected along pe r i aps i s  with length-equal  t o  t h e  

numerical eccen t r ic i ty  of t he  conic sectionc It might a l so  be noted 

t h a t  t h e  eccen t r i c i t y  vector i s  well defined f o r  r e c t i l i n e a r  o rb i t s ,  
- 

A 

fo r  which 1 = 0 and E = - r , o r  E = 1 , and a l so  f o r  c i r c u l a r  

o rb i t s .  

For t h e  unperturbed problem, we a r e  apparently confronted ,with 

seven constants of in tegra t ion  (one s ca l a r  and two vec tors )  f o r  a  s i x t h  

- 
order system. However, it i s  obvious and may be v e r i f i e d  t h a t  t he  h  

and 2 vectors  a r e  orthogonal, or  

Also it may be shown t h a t  

- - - - 
a ! h * h  = p ( 1 - € .  E) 



Thus Eq. (2-11) and (2-12) represent two constra int  equations or  

side conditions, and the quant i t i es  a, h and e f fec t ive ly  repre- 

sent f i v e  constants of integrat ion.  The s ix th  constant of integrat ion 

i s  the  time of per iapsis  passage. 

Hodograph 'of Keplerian Mot ion 

- 
By constructing the  cross  product of E and 

one f inds  t ha t  

Thus the  veloci ty  vector i s  the  sum of two vectors of constant magnitude, 
- 

one orthogonal t o  the  E vector and one orthogonal t o  the  instantaneous 

un i t  radius  vector. This i s  the  fami l ia r  hodograph of Keplerian motion; 

reference [7 ]  presents diagrams of Eq. (2-14) f o r  e l l i p t i c ,  parabolic, 

and hyperbolic mot ion. 

Regularization and the  Central  Osci l la tor  System 

Having reviewed the fundamental i n t eg ra l s  of the  two-body problem, 

we a re  now i n  a posit ion t o  proceed with a regular izat ion of (1-1). 

The procedure t o  be employed i s  a change i n  the  independent variable 

from time t o  a new var iable  x , the  defining r e l a t i on  being 



The var iable  x i s  occasionally re fe r red  t o  a s  t he  f i c t i t i o u s  o r  a r t i f i c i a l  

time var iable ;  however, it a t t a i n s  a more s ign i f ican t  meaning by noting 

t h e  equations f o r  t h e  s ca l a r  radius  and time expressed i n  terms of 

t he  eccentr ic  anomaly E . 

Different ia t ion of (2-17) with respect  t o  time and subs t i tu t ion  of 

(2-16) l eads  t o  

.which may be compared t o  (2-15) t o  obta in  

fo r  t he  e l l i p se ,  and equivalently 

where F i s  t he  hyperbolic anomaly f o r  t he  hyperbola, and ,where t h e  

var iab le  x i s  assumed t o  vanish a t  t he  i n i t i a l  values Eo and Fo . 
A more general  quadrature may be obtained by using t h e  epergy equation 



and the  angular momentum equation (2-6) t o  obtain 

.2 2 r = 2 - p r  - cia: 

Substi tution of (2-22) i n  (2-13) y ie lds  an in t eg ra l  form 

For the  general parabola (a=0) 

and f o r  the  r ec t i l i nea r  parabola (a = p = 0)  

The r e l a t i ons  (2-19) and (2-20) may be obtaiaed from the more general 

quadrature of (2-23) f o r  a # 0 . 
An a l te rna t ive  form f o r  the  general parabola may be obtained 

by using (2-6) and (2-8) i n  (2-23), yielding 

.which r e s u l t s  i n  

x = & [ tan  (f/2) - t an  ( f o p ) ]  



Regularization of (1-1) i s  then accomplished by taking twice 

der iva t ives  of 

where 

Subst i tu t ion of (1-1) and (2-29) i n t o  (2-28a) r e s u l t s  i n  

- 88 - 
r = (Y . rip) F - F (2- 30 

From (2-10) -we obtain - - 

Subst i tu t ion of (2-5) y i e ld s  

and t h e  second term i n  t he  RHS of (2-31a) i s  recognized a s  t he  second 

term i n  (2-30); subs t i tu t ion  y i e ld s  

The sca l a r  f ac to r  of r i s  recognized a s  t he  modified energy a. , 
thus es tabl ishing a regularized vector o rb i t  equation 



The resu l t ing  equation i s  not only nonsingular (as  expected), but  a l so  

a l i n e a r ,  constant coef f ic ien t  vector  equation. Since a i s  a s ca l a r  
- 

constant, t h e  components of r a r e  governed by uncoupled second-order 

d i f f e r e n t i a l  equations. Moreover, both constants  of (2-33) a r e  o r b i t  

constants, and the  type of conic ( i . e . ,  e l l i p s e ,  parabola, hyperbola) 

d i r e c t l y  corresponds t o  t he  type of (2-33) according t o  the  signed value 

of a . 
Constructing t h e  dot product of (2-33) with ? , and not ing t h a t  

- #  - 
r. = r r/r (2-34 

and 

we obtain a s imilar  equation f o r  t he  s ca l a r  radius  

The system of equations (2-33) and (2 35), together with t h e  inverse 

of t he  transformation equation (2-15) a r e  summarized as  

and comprise ,what i s  r e f e r r ed  t o  a s  t h e  c e n t r a l  o r b i t  o s c i l l a t o r  



system. It w i l l  be noted tha t  the  system i s  completely regular and 

well-defined for  a l l  types of o rb i t s .  Also, the  necessary o rb i t  constants 

a re  represented i n  bounded form ( i .e . ,  the term a a s  opposed t o  i t s  

reciprocal  a) .  

The Focal Osci l la tor  System 

A s  s ta ted  previously, the  defining equation (2-6) f o r  the  scalar  

angular momentum i s  used as  an independent var iable  transformation 

equation t o  obtain (2-7) i n  the same sense (2-15) was used t o  obtain 

the  cen t r a l  o sc i l l a to r  system. To review, 

u* = h t '  

I* 
2 

u . = ii t + h t "  

where u = l/r and ( )  now denotes the  der ivat ive with respect 

t o  the  t r u e  anomaly f . Also, 

and 

Noting tha t  



we obtain 

The vector equation which i s  used i n  conjunction with t h i s  sca la r  

equation may be obtained through t h e  same transformation mechanics. From 

and 

we obtain 

where, noting t h a t  

and 



we obtain 

It could be easi ly  ver i f ied  tha t  

1 = 6 Cf + (fi x ;)sf 

leads d i rec t ly  t o  (2-51); hawever, the more elaborate derivation using 
-. 

the independent variable transformation f a c i l i t a t e s  the  inclusion of 

perturbing forces i n  the next chapter. 

Thus the following analogous harmonic osc i l l a to r  system i s  obtained 

fo r  unperturbed Keplerian motion: 

where the  new independent variable i s  the t rue  anomaly f o r  all 

nonrectil inear orbi ts .  Due t o  i t s  origins,  t h i s  system has been 

previously referred t o  as the c l a s s i ca l  o sc i l l a to r  system. For 



r e c t i l i n e a r  orb i t s ,  the  inverse of the time equation may be compared 

2 t o  Newton's equation along the  r e c t i l i n e a r  o rb i t  (i = + p/r ) t o  obtain 

an expression f o r  the  independent var iable  analogous t o  t he  t r u e  

anomaly a s  

However, h = 0 fo r  r e c t i l i n e a r  orb i t s ,  and the  c l a s s i c a l  o s c i l l a t o r  

system would not appear t o  be applicable f o r  t h i s  c l a s s  of orbi ts .  

It is, however, since a pa r t i cu l a r  solut ion t o  (2-53a) i s  given by 

u = ( 1  - cf)/p + constant (2- 55 ) 

and, by se r i e s  expansion, using (2-54), 

2 2 
h v 

u = ( )  + constant 

= </2p + constant 

'where t he  constant i s  a/2 from the energy in t eg ra l  (2-3). 

The aforementioned algebraic d i f f i c u l t y  may be avoided by modifying 

the  transformation equation (2-6) t o  

where y = f/Jp f o r  nonrect i l inear  orb i t s .  Taking the  independent 

variable t o  vanish a t  the  i n i t i a l  value fo r e s u l t s  i n  



f o r  nonrectil inear orbi ts .  For r ec t i l i nea r  orb i t s ,  using (2-3) and 

(2-22) i n  (2-57),,  

where the  + sign i s  taken f o r  the pa r t i c l e  approaching the  singularity.  

Using the ( 0  ) ' notation t o  denote der ivat ives  with respect t o  

the  independent variable y , the  resu l t ing  system of equations of 

unperturbed Keplerian motion may be obtained a s  

and i s  referred t o  as  the  foca l  o sc i l l a to r  system. Interestingly,  

the  natural  frequency of t h i s  system i s  r e l a t ed  t o  the angular momentum, 

whereas the natural  frequency of the cen t ra l  o sc i l l a to r  system i s  

re la ted  t o  energy. 

The solution t o  the foca l  o sc i l l a to r  system i s  ident ica l  t o  tha t  

of the  c l a s s i ca l  o sc i l l a to r  system; the  advantage of the foca l  o sc i l l a to r  

system i s  tha t  a  perturbation analysis of the  foca l  o sc i l l a to r  w i l l  be 

concerned .with var iat ions of the bounded quantity p , whereas a  

perturbation analysis of the c l a s s i ca l  o sc i l l a to r  system would involve 

variat ions of the unbounded term llp . 



Solution t o  Central  Osci l la tor  System 

The general solut ion t o  the  cen t r a l  o s c i l l a t o r  system (2-36) may 

be expressed by 

where 

u0(x) = - Ja s i n  Ja x 
U1(x) = cos Ja x 

t 

u2(x) = J a  s in  J&. x 

U (XI = a ( 1  - cos Ja X) 3 
u4(x) = a (x - J a  s i n  Ja x )  

and ,where the U have been defined such t h a t  
j 

The U are  a form of universal  Punctions, or variables,  i n  t ha t  3 
they a re  va l id  f o r  a l l  type of o rb i t s .  This i s  d i r ec t ly  obvious f o r  

e l l i p t i c  o r b i t s  (a > o), and can be ve r i f i ed  f o r  hyperbolic o rb i t s  by 

noting t h a t  the  c i r cu l a r  functions convert t o  hyperbolic functions 



f o r  a (and a )  < 0 . To render the solution universal i n  the 

computational sense fo r  a rb i t ra ry  values of a the U may be 3 
represented by t h e i r  ser ies  expansions 

It i s  important t o  observe tha t  the universal functions may be used 

i n  t h e i r  c i rcu lar  function form of Eq. (2-62) f o r  analyt ical  manuipulation, 

such as  d i f fe rent ia t ion  and integration, f o r  a rb i t ra ry  values of a ; 

the r e su l t  of such manipulatron may then be converted t o  hyperbolic 

functions f o r  hyperbolic motion or be represented by the more general 

s e r i e s  expansions of (2-64). This precludes the necessity of developing 

a special  tab le  of derivatives and in tegra ls  of say, the se r i e s  M c t i o n s  

(2-64). 

The universal solution (2-61) d i f f e r s  from the be t t e r  known 

universal orb i t  formulae (such as tha t  of reference [6]) i n  t h a t  the 

f i n a l  and i n i t i a l  s t a t e  vector are  presented i n  the  regularized domain, 
- - 

where the regularized velocity r '  [or  r ' (0) I  approaches zero as 

the pa r t i c l e  approaches the center of a t t rac t ion  whereas the  physical, 

o r  time domain, velocity becomes unbounded. The f i n a l  s t a t e  vector 

i s  re la ted  t o  the i n i t i a l  s t a t e  vector and the  constant eccentr ic i ty  



vector by a  s t a t e  t r ans i t i on  matrix of sca la r  quant i t i es  which i s  

exp l i c i t l y  f r e e  of e i t he r  i n i t i a l  o r  terminal values of e i t h e r  the  

sca la r  radius or time. The convenience of ana ly t ica l  manipulations 

i n  the  domain of the o s c i l l a t o r  systems (here t he  regularized domain 

of the  c e n t r a l  o s c i l l a t o r )  i s  ca r r i ed  for th  i n  the  perturbation 

analyses. 

Solution i n  Time Domain 

The universal  o rb i t  solut ion (2-61) may be transformed t o  t he  

time domain by noting from (2-13) t h a t  

and from (2-34) 

resu l t ing  i n  



and 

This manipulation necessarily introduces values of the scalar  

radius i n  the s t a t e  t ransi ton matrix of (2-67), and possibly s ingular i t ies  

a t  r (x )  = 0 . It demonstrates the ease of operating ent i re ly  i n  the 

regularized domain with the well-behaved regularized veloci t ies ,  -. and 

transforming t o  the time donain ( i f  a t  a l l  necessary) only as a f i n a l  
b 

step. 

Modificetion of Solution 

It i s  instruct ive t o  investigate the subst i tut ions requlred t o  

modify the foregoing universal o rb i t  solution t o  a more familiar form, 

f o r  instance, the solution presented i n  reference [ 6 ] ,  which i s  based 

on an al ternate  set  of universal fbnctions s(&) and ~ (d )  , 
defined by 



I n  terms of the U.  of (2-64), these functions appear as 
3 

2 2 2 
s(ax ) = (uo + m ) / a x  = (x - u2)/m3 = u4/x3 

or  inversely, 

- - (2-70) 

Substitution of (2-70) in to  (2-67a) and (2-67b) direct ly yields 

the universal time equation of reference [6] ,b 

and the universal scalar radius equation 



Evaluating (2-3la) a t  the i n i t i a l  conditons r e su l t s  i n  

which, when substi tuted along with (2-70) in to  (2-67), r e su l t s  i n  

(?-74 

By subst i tut ing from the  universal time equation (2-71) i-nto the upper 

r ight  element of the  above matrix, we may obtain a fur ther  modification 
b 

2 
X X 

3 
1 - - c (a2 1 t - -  

r (0 )  4 
Ji 2 

X s(m2) ] p:] 
[X - m2s(m2)] 1 - - c(&) 

r (x )r ( 0  1 4 x 1  

(2- 75 ) 

which i s  the form presented i n  reference [6]. 

The part icular  form of the solution and/or form of universal functions 

t o  be used i s  a matter of choice. The purpose of the foregoing .was 

t o  demonstrate a developnent of the universal o rb i t  formulation from 

the regularized cent ra l  o rb i t  o sc i l l a to r  system equations t o  a well-known 



solution which i s  expressed in  the time domain. Some of the advan- 

tages of the basic solution in the regularized domain ( ~ q .  (2-61)) 

are  the  exp l i c i t  dependence of the vector solution on a  constant vector 

in tegra l  of the two-body problem, namely, the eccentr ic i ty  vector, 

and the exp l i c i t  independence of the s t a t e  t r ans i t ion  matrix on 

e i the r  the  instantaneous scalar  radius or  time. 

I n i t i a l  Conditions a t  Periapsis 

The general solution (2-61) t o  the cent ra l  o sc i l l a to r  system may 

be part icular ized by referr ing the i n i t i a l  conditions t o  per iapsis  and 

expressing the solution i n  the orb i t  coordinate system defined by 

(2 , fi x t , fi) . In t h i s  frame, using (2-62) and 

.we obtain 

Noting tha t  

we obtain 



and 

In t h i s  form the independent variable i s  taken t o  vanish a t  periapsis. 

A l l  the well-known expressions for  the  solution t o  the inverse square 

problem (for  the e l l ipse ,  say, i n  terms of the eccentric anomaly) .z!.re 

d i rec t ly  obtainable. 

Solution t o  Focal Oscillator System 

The general solution t o  the focal  o sc i l l a to r  system (2-60) i s  

where, following the pattern established i n  the defini t ion of the 

universal f'unct ions of the cent ra l  osc i l la tor ,  it i s  convenient 

t o  define similar functions 

v0(y) = - Jp s in  Jp Y 

v,(Y) = cos Jp Y 

s in  Jp y v*(Y> = - 
$P 

f o r  the focal  osc i l la tor  system, noting t h a t  



A s  s ta ted  before, t h i s  solut ion may be regarded as  a quasi- 

universal  solution i n  t h a t  it i s  applicable t o  any type of o rb i t  

( e l l i p t i c  through hyperbolic), which may not be surprising reca l l ing  

the  "universal" def in i t ion  of the  t r u e  anomaly. Unlike t h a t  of t he  

cen t r a l  o sc i l l a to r  system the solution i s  va l id  a s  it stands fo r  

parabolic motion, but must be modified f o r  r e c t i l i n e a r  motion through 

se r i e s  expansions of the Vj and the  a l te rna te  def in i t ion  of y f o r  

r e c t i l i n e a r  orbi ts .  The independent variable y i s  s t i l l  unbounded 

a t  per iapsis  f o r  r ec t i l i nea r  orb i t s ,  ,whereas x i s  ,well defined. 

The solut ion f o r  r ec t i l i nea r  o r b i t s  i s  

?(y) = constant (2-82 ) 

u(y)  = u(0) + u'(0) y + y2/2 - - (2-82a) 

where y = f (v - v )/&. A general  solution t o  the  time equations 
0 

for  both the  r e c t i l i n e a r  orb i t  and the general o rb i t  (2-79) i s  more 

conveniently obtained by referencing the  solution t o  periapsis.  

Regarding the mechanics of the  solution (2-79) it w i l l  be 

reca l led  tha t  u = l / r  and hence 

- - 
The posit ion vector r i s  obtained from r = ?/u , and from 

(2-91, 

resu l t ing  i n  



- 
The velocity vector r i s  obtained from 

where 

and 

- ' 
r = r'? + r f '  

kitid Condit ions a t  Periapsis 

A 

For the general orb i t  a t  periapsis,  ' i s  orthogonal t o  r 
P P 

and the solution, expressed i n  (2, fi X E ,  fi), i s  - - 

f o r  ? = (1 , 0 , OIT and f '  = & (0, 1, o ) ~ .  Since 
P P 

we obtain 

The solution i s  ident ica l  t o  the c l a s s i ca l  orb i t  o sc i l l a to r  system 

( E ~ .  (2-8)). Hence, the time equation f o r  the focal  o sc i l l a to r  i s  

ident ica l  t o  the standard forms obtained from the c l a s s i ca l  system. 



For instance, fo r  parabolic motion 

P' 
t - t = $d- [tan (f/2) +?j tan3 (f /2)]  (2- 90 

P CI 

For nonparabolic nonrectil inear motion, it is convenient t o  appeal 

t o  the i d e n t i t i e s  

1 -  E 

t a n  \ ( E  > 1) 
1 + E  

and use the resul t ing values f o r   o or F) i n  the universal time equation 

( ~ e ~ l e r ' s  equation). - - 
For r ec t i l i nea r  orb i t s ,  ?(y) constant (as before) and 

b 

where 

and yo = a t  perapsis. For a = 0 , 

which agrees with the corresponding r e su l t  obtained using the cent ra l  

o sc i l l a to r  (~q. (2-61) for  r (0 )  = r ' (0) = 0). For Cl # 0 , it i s  

most straightforward t o  obtain time from the cent ra l  osc i l la tor ,  o r  

Kepler, time equation by obtaining u , hence r and x as a 



Chapter I11 

THE PERTURBED TWO-BODY PROBLEM 

The perturbed two-body problem i s  defined i n  t h e  time domain by 

t h e  d i f f e r e n t i a l  equation 

L 

- - - - -  
where f = f ( r , r , t )  i s  t h e  fo rce  p e r  u n i t  mass of t h e  p a r t i c l e .  

The d i f f e r e n t i a l  equation f o r  t h e  modified energy is d i r e c t l y  

obtained by d i f f e r e n t i a t i o n  of (2-3) and use of (3-1) t o  obta in  

I n  l i k e  manner, from (2-?), 

and from (2-10) 

or, a l t e rna t ive ly ,  

Perturbed Centra l  O s c i l l a t o r  System 

Repeating t h e  de r iva t ion  of t h e  c e n t r a l  o s c i l l a t o r  system (2-36) 

us ing (3-1) l eads  d i r e c t l y  t o  t h e  per turbed c e n t r a l  o s c i l l a t o r  system 

- - 2  
r - r " +  a(x)F = - E ( X )  + - f 
P 

(3-5) 



- 
where ~ ( x )  and E(X)  are  now varying o r b i t  parameters whose 

d i f f e r e n t i a l  equations a re  given by modified forms of (3-2) and 

(3-4) as  

where 

The above system of equations (3-5) and k(3-6) is  regular and 

unaffected by t he  s ign o r  numerical value of t he  energy parameter 

a (x)  . The system may be solved by numerical techniques d i r e c t l y  

as a t h i r t e en th  order system, although the  instantaneous values of 

a (x)  and T(x) may be calcula ted d i r e c t l y  from the  osculating 

element formulas (2-3) and (2-lo), reducing t he  system order t o  nine. 

The one exception would be i f  t h e  perturbed p a r t i c l e  should pass 

through tfie s ingu la r i ty ;  a t  t h i s  point, ~ ( x )  is indeterminate due 

t;o t he  unboundedness of both terms on t h e  RHS of (2-3). Thus it i s  

necessary t o  appeal t o  the  regu la r i ty  and cont inui ty  of t he  d i f -  

f e r e n t i a l  equation (3-6) through t h e  s ingu la r i ty .  The eccen t r i c i t y  

vector i s  s t i l l  t heo re t i c a l l y  wel l  defined from (2-lo), s ince  
- 

h(x) = 0 i f  r ( x )  = 0 and hence E(X)  = -G(x) . I n  a subsequent 



discuss ion concerning numerical computation, however, it w i l l  be shown 

t h a t  t h e  d i r e c t  cornputat ion of a l l  o r b i t a l  elements from oscula t ing 

conic formulae i s  numerically iriaccurate near t h e  s i ngu l a r i t y  and it 

is  pre fe rab le  t o  use the  corresponding d i f f e r e n t i a l  equations f o r  t he  

elements. 

The order of t he  system may be  fu r the r  reduced by two by d i s -  

pensing with the  s ca l a r  radius  equation (3-5a) and using 

r e su l t i ng  i n  a t o t a l  system order of seven. The s ca l a r  radius i s  

used not only i n  the  integrand of t he  time equation bu t  a l so  i n  t h e  

transformation of v e l o c i t i e s  i n  the  regular ized domain t o  physical  
a - 

ve loc i t i e s  through 

Perturbed Focal Osc i l l a to r  System 

Repeating t h e  der iva t ion  of t he  foca l  o s c i l l a t o r  system (2-60) 

using (3-1) r e s u l t s  i n  t he  perturbed foca l  o s c i l l a t o r  system 

where (Y) i s  now a varying o r b i t  parameter whose d i f f e r e n t i a l  

equation i s  r e l a t ed  t o  t he  per turbing force by 



The l a t t e r  expression j.s obtained by d i f f e r e n t i a t i n g  (2-95) and s u b s t i -  
A A 

t u t i n g  (3-g), not ing  t h a t  r r' = 0 . I n  a  numerical computation 

t h e  instantaneous value  of  P ( ~ )  is obtained d i r e c t l y  from (2-95), 

r e s u l t i n g  i n  a  t o t a l  system orde r  of  nine. Also it is necessary t o  
A 

r e t a i n  t h e  u n i t  vec to r  na ture  o f  r a t  each s t e p  i n  t h e  computation; 

t h i s  could be accomplished by a normalizat ion.  Note t h a t  t h e  s c a l a r  

equat ion  of  t h e  system is  not redundant a s  i s  i t s  counterpar t  i n  t h e  

c e n t r a l  o s c i l l a t o r  system. 

Numerical Computation 

Burdet 171 i n v e s t i g a t e s  t h e  numerical i n t e g r a t i o n  o f  both  o s c i l -  

l a t o r  systems a s  presented,  and demonstrates t h e  numerical s t a b i l i t y  

and a d a p t a b i l i t y  of  t h e  systems i n  comparison t o  computation i n  t h e  - - 
t ime domain. One of t h e  r e s u l t s  o f  h i s  numerical experiments is t h a t  

I 

a  g r e a t e r  degree of  accuracy is achieved by numerical i n t e g r a t i o n  of 

t h e  d i f f e r e n t i a l  equation f o r  t h e  o r b i t a l  elements , ( o r  p  ) 
- 

and E , a s  opposed t o  d i r e c t  computation using t h e  oscu la t ing  

element formulae. The numerical d i f f i c u l t y  wi th  t h e  energy parameter 

CX near p e r i a p s i s  a r i s e s  from t h e  unboundedness of both  terms on the  

RHS of (2-3) and may r e s u l t  i n  t h e  s u b t r a c t i o n  of  l a r g e  q u a n t i t i e s .  

A d i f f e r e n t  numerical problem near p e r i a p s i s  may occur i n  t h e  computa- 

- 
t i o n  of  t h e  angular  momentum v e c t o r  h  , t o  which and p a r e  

r e l a t e d .  The problem would be assoc ia ted  with t h e  cross  product  

na ture  of , which is obtained from t h e  product  o f  a  very l a r g e  

q u a n t i t y  (ve loc i ty )  and a  ve ry  smal l  quan t i ty  ( t h e  colnponent of t h e  

- 
r ad ius  vec to r  orthogonal  t o  r ) The a u t h o r ' s  own experience with 



t h e  evaluation of these  quan t i t i e s  has l ed  t o  t he  same conclusion. 

Burdet a l so  advises against  using any cons t ra in t  r e l a t i o n  (such as  
A 

t he  un i t  vector  nature of o r  t h e  orthogonali ty of r and G' ) 

t o  reduce t he  order of t he  system. In  t he  i n t e r e s t  of accuracy, he 

advocates solving t he  highest  order system p r i o r  t o  imposing con- 

s t r a i n t s .  Burdet a l s o  compares the  numerical in tegra t ion  of unper- 

turbed foca l  and cen t r a l  o s c i l l a t o r s  with various time s t ep  s i z e  

regulators,  such a s  

and automatic time-step s i z e  regu la to rs  defined during t he  process 

of in tegra t ion  which use some e r r o r  c r i t e r i a  t o  e i t h e r  halve or  - - 
double t he  time-step s ize .  H i s  r e s u l t s  general ly  ind ica te  lower 

b 

numerical e r ro r s  over a l a rge  number of revolutions of unperturbed 

c i r c u l a r  o r b i t s  using e i t h e r  t he  o s c i l l a t o r  systems o r  t he  t h e -  

s t e p  s i z e  regulators  corresponding t o  t h e  time transformation equa- 

t i ons  of the  o s c i l l a t o r s .  He claims t he  accuracy increase is more 

pronounced fo r  noncircular orb its. 

For noncircular  orbi ts ,  Burdet claims g rea t e r  accuracy f o r  t h e  

foca l  o s c i l l a t o r  than f o r  t h e  c e n t r a l  o s c i l l a t o r  near per iapsis ,  and 

j u s t  t he  reverse a t  apoapsis. Hence he proposes a mixed numerical 

procedure which uses t he  perturbed foca l  o s c i l l a t o r  system near 

per iaps i s  and t he  perturbed c e n t r a l  o s c i l l a t o r  near apoapsis. The 

reason f o r  the  increased accuracy of t he  foca l  o s c i l l a t o r  near 

per iaps i s  may be explained by examining a r e c t i l i n e a r  o r b i t ;  t he  

foca l  o s c i l l a t o r  i t s e l f  i s  not a regular  system, s ince  t he  corre-  

sponding independent var iab le  is propor t ional  t o  speed ( ~ q .  (2 -59) ) 



and is  unbounded a t  t he  s i ngu l a r i t y  (per iapsis) ,  as  is t he  reciprocal  

radius  u . Therefore, f ixed s t ep  s i ze s  i n  t he  independent var iable  

correspond t o  f ixed increments i n  velocity,  and t he  numerical procedure 

could t heo re t i c a l l y  take an unbounded number of s teps  reaching per iaps i s  

(which is equivalent t o  evaluating t he  unbounded quant i ty  u ) For 

t he  more r e a l i s t i c  case of f i n i t e  pe r i aps i s  radius, t he  perturbed foca l  

o s c i l l a t o r  would then be expected t o  r e s u l t  i n  g rea te r  accuracy near 

per iaps i s ,  and an automatic s t ep  s i z e  regulator  might be inclined t o  

increase t h e  s t e p  s i z e  near per iapsis ,  j u s t  as  it would decrease t he  

s t e p  s i r e  i n  time i f :  time were the  independent var iable .  

The r e l a t i on  between t he  two o s c i l l a t o r s  and s t e p  s i z e  regulat ion 

is apparent from (3- l l ) ,  where n = 0 corresponds t o  t he  time domain, 

and n = 1,2 correspond t o  t h e  cen t r a l  and foca l  osciTlators  res-  

pect ively .  The lack of ambiguity of t he  ceg t r a l  o s c i l l a t o r  o r  i t s  

equivalent transformation equation used as  a time-step s i z e  regulator  

would appear t o  make it the  b e s t  general  choice fo r  numerical analysis .  

Use of the  perturbed cen t r a l  o s c i l l a t o r  system with f ixed s t e p  s i ze  

increments i n  t he  independent var iab le  x r e s u l t s  i n  a smooth numerical 

in tegra t ion  of the  system s t a t e  vector and a na tura l  propagation of the  

system time a t  a l l  regions of t he  o r b i t .  

Cowellts Method 

The equations of motion of the perturbed two-body problem have 

been presented i n  t he  time domain by (3-1) and i n  the  domains of t he  

cen t r a l  and foca l  o s c i l l a t o r s  i n  what i s  c l a s s i c a l l y  known as  the  

. Cowell form. This form of numerical computation i s  characterized by 



t h e  determination of the  t o t a l  perturbed system s t a t e  vector and 

generally requires a high degree of numerical precis ion.  A much 

g rea t e r  degree of numerical accuracy f o r  the  same precis ion i s  

obtained by representing the  t o t a l  perturbed system s t a t e  vector as 

t he  sum of a reference unperturbed conic s t a t e  vector and a perturba- 

t i o n  s t a t e  vector, i f  t he  per turbat ion i t s e l f  is small. Thus the  

major por t ion of t he  t o t a l  perturbed s t a t e  vector  is  obtainable from 

an ana ly t ic  so lu t ion  t o  the  Kepler problem, and the  method a t t a i n s  

i t s  g rea t e s t  degree of u t i l i t y  when the  p a r t i c l e  is near per iaps i s .  

This method of representa t ion of the  perturbed two-body problem is  

re fe r red  t o  as Encke's method. 

Encke' s Method - - 
The Encke per turbat ion d i f f e r e n t i a l  equations of motion describe 

I 

t h e  di f ference i n  the  perturbed system and t h e  unperturbed reference 

system a t  the  same ins tan t  of time, o r  poss ibly  f o r  t he  same value of 

t h e  pa r t i cu l a r  independent var iab le  of t he  per turbat ion equations. 

The Encke per turbat ion equations, o r  va r i a t i ona l  equations, i n  the  

time domain a re  obtained i n  reference [61. Linearization of these  

equations r e s u l t s  i n  a time-varying system, which does not o f f e r  

s i gn i f i c an t  advantages over the  nonlinear equations themselves. One 

important exception t o  t he  above i s  t he  l inear ized  Encke equations 

i n  t he  time domain referenced t o  an unperturbed c i r cu l a r  o rb i t ;  

expressed i n  t he  ro t a t i ng  coordinate system which ro t a t e s  with t he  

p a r t i c l e  (or a t  the same a n g d a r  veloci ty  a s  t he  p a r t i c l e  about t h e  

primary body), the  Encke per turbat ion equations reduce t o  a l i n e a r  



constant  c0effj.cien-b system known as t h e  Euler-Hill  equations. The 

extension t o  t he  noncircular case, however, reintroduces time-varying 

terms i n  t h e  form of t he  angular ve loc i ty  and angular accelera t ion of 

t h e  reference coordinate system. 

I n  t he  next chapter it w i l l  be shown t h a t  the  representation of 

t h e  perturbed two-body problem as  perturbed harmonic o s c i l l a t o r  

systems leads  t o  l inear ized  va r i a t i ona l  equations which, although 

not constant coef f ic ien t  systems of equations, a re  integrable i n  t h e  

domains of t he  o s c i l l a t o r  systems ( t ha t  is t o  say, using the  inde- 

pendent var iable  and associated s t a t e  vector representations of  t he  

o s c i l l a t o r  systems). By t h e i r  vector nature, t he  va r i a t i ona l  equa- 

t i ons  may be expressed i n  any nonrotating coordinate system and a r e  
- - 

va l id  f o r  any value of e ccen t r i c i t y  of t he  unperturbed reference conic. 



Chapter I V  

VARIATIONAL EQUATIONS 

The development of Encke perturbation equations, o r  var ia t iona l  

* equations, is bused on a vector iden t i ty  of the  form 

- - 0 
where r represents the  perturbed system radius vector, r the 

unperturbed system radius vector, and 6 r  the vector difference of 

the two systems a t  the same value of the independent variable.  The 

term 6; i s  referred t o  as the  "fixed x " variation,  (e.g., f o r  

- 0 
the cen t r a l  o s c i l l a t o r  system) o r  perturbation i n  r due t o  the  

- - - 
general  perturbing force vector f (r, r', t )  . This igZcontrasted 

t o  the  "fixed t " variation,  which compares the two systems a t  

the  same ins tan t  of the time. Since the preceding chapters have 

es tabl ished the representation of perturbed Keplerian motion as two 

unique perturbed harmonic o s c i l l a t o r  systems, we are  l ed  natural ly  

in to  the establishment of fixed x (or f ixed y ) var ia t iona l  

equations using the new independent var iables  x and y of the 

cen t r a l  and foca l  o sc i l l a to r s  respectively.  Since the  derivations 

f o r  both systems are  e s sen t i a l l y  the  same, the  var ia t iona l  equa-. 

t i ons  of the  cen t ra l  o sc i l l a to r  w i l l  be examined i n  d e t a i l  and the 

corresponding r e su l t s  f o r  the focal. o s c i l l a t o r  w i l l  be presented 

without elaboration. 



Centra l  Osc i l l a to r  System 

From the  vector  i den t i t y  (4-1) a corresponding s c a l a r  i den t i t y  

may be  obtained f o r  t he  s c a l a r  va r i a t i on  6 r  . Constructing the  dot  

product of (4-1) with i t s e l f ,  

- - 2 0 
2 - 

r - r  = r = r +2G0 8 r + 6 r a  8 r  (4-2 1 

0 
where r and r a r e  t h e  perturbed and unperturbed s c a l a r  r a d i i .  

Defining the  s ca l a r  equivalent  t o  (4-1) as  

we obta in  

Since (4-4) involves the  di f ferencing of n e h l y  equal  quan t i t i e s ,  

a more convenient form f o r  computation is 

Hence, f o r  t he  cen t r a l  o s c i l l a t o r  system only, a va r i a t i ona l  equa- 

t i o n  f o r  t he  s ca l a r  radius  is redundant; regardless  of t h i s ,  the  

s c a l a r  radius  va r i a t i ona l  equation w i l l  be  included i n  t h e  c e n t r a l  

o s c i l l a t o r  descr ip t ion f o r  t he  sake of completeness and poss ible  

computational convenience. A s  w i l l  b e  subsequently shown, the  

s c a l a r  radius  va r i a t i on  i s  required t o  obta in  t he  va r i a t i on  i n  time 

along t he  perturbed system (s ince  time is  now regarded as a dependent 

va r iab le  of t he  system). 



With regard t o  the  future  development of l inear ized  var ia t iona l  

equations, it might be noted that ,  t o  f i r s t  order, 

^O - 
6 r  = r 6 r  (4-5) 

which iden t i f i e s  the  f i r s t  order sca la r  var ia t ion  as  the  r a d i a l  compo- 

nent of the  vector var ia t ion.  

Time Variation 

Since time i s  now regarded as a  dependent var iable  of the  motion, 

it may be grea te r  o r  l e s s  along the  perturbed system than along the  

unperturbed system. Defining the  perturbed system time as  

along with the transformat ion equation (3-5b) 
C 

r 
t ' = - 

JI1 9 

subs t i tu t ion  of (4-3) along with 

leads t o  

Variation of Orb it Elements 

To f a c i l i t a t e  the  establishment of the  system va r i a t i ona l  equa- 

t i ons  of motion, it is necessary t o  obtain the  var ia t ions  of the o rb i t  

elements Cr and E from t h e i r  nominal o r  unperturbed values. The 



- 
var ia t ions  i n  a! and E are  represented a s  

A d i r e c t  ca lcu la t ion  of t he  va r i a t i ons  6 a  and 6; using t he  

oscula t ing conic formulas (2-3) and (2-10) would involve t he  sub- 

t r a c t i o n  of s izeable  quan t i t i e s  and v io l a t e s  t h e  s p i r i t  of a  var ia-  

t i o n a l  treatment. Alternatively,  t he  d i f f e r e n t i a l  equations f o r  the  

var ia t ions  would be appropriate and a re  i den t i ca l  t o  (3-6); 

The i n i t i a l  values 6a(0) and ~ T ( o )  t o  bek used i n  solving (4-10) 

a re  nonlinear functions of t h e  i n i t i a l  value of t h e  per turbat ion 

s t a t e  vector  6;(0) and 6;'(0) and must be obtained from (4-g), 

however. 

Nonlinear Var ia t ional  Equations 

The fixed x  va r i a t i ona l  equations may be obtained d i r e c t l y  by 

di f ferencing the  perturbed and unperturbed systems through t he  afore- 

mentioned i den t i t i e s ,  r e su l t i ng  i n  



where 

- - - -  
f = f ( r , r ' , t )  

The t o t a l  system, consist ing of (4-11) and the  d i f f e r e n t i a l  equations 

fo r  the  o r b i t a l  elements (4-lo), may be evaluated d i r e c t l y  as a 

th i r teen th  order system. The order of the.system may be reduced by 

two by dispensing with the redundant equation (4- l la)  and computing 

6 r  from (4-4). 

Regularity of Variational Equations 

Inspection of the  va r i a t i ona l  equations (4-10) and (4-11) reveals 

0 
them t o  be e n t i r e l y  f r ee  of any s ingu la r i t i e s  a t  r, r , or  6 r  = 0 

- 
(except, of course, when f has s ingular  nature).  The r e su l t  is a 

well-behaved system of d i f f e r e n t i a l  equations up t o  a id  including 

per iapsis  passage a t  the  s ingular i ty .  I n  addition, there  is a natural  

smooth t r ans i t i on  between e l l i p t i c  and hyperbolic motion, including 

r e c t i l i n e a r  motion. Since the theory is cas t  en t i r e ly  i n  the  regu- 

l a r i zed  domain, using the  well-behaved regularized ve loc i t i e s  and 

variations,  transformation t o  the  possibly unbounded physical  veloc- 

i t i e s  i s  accomplished only as  an end r e su l t  through the unbounced 

transformation equation. 

Another advantage i n  use of the cen t r a l  o s c i l l a t o r  system is 

the  r e l a t i ve ly  simple e x p l i c i t  dependence of the  unperturbed system 

conic s t a t e  vector and time on the independent var iable  x . I n  

the  time domain, given some pa r t i cu l a r  value of t , it is  necessary 

t o  r e so r t  t o  some i t e r a t i o n  technique t o  e s t ab l i sh  x and hence the 

reference conic s t a t e  vector. 



This brings us t o  another i n t e r e s t i ng  feature  of the  cen t r a l  

o s c i l l a t o r  system, namely, the  "automatic" s t ep  s i z e  regulation 

feature of the  cen t r a l  o s c i l l a t o r  transformation equation (2-13). 

I f  one chooses t o  use var ia t iona l  equations i n  the  time domain, a 

var iable  s tep s i z e  in  time may be generated through a fixed s tep  

s i z e  i n  x through 

At = t (x + Ax) - t (x) 

which reduces t o  

0 r 
l i m  d t  = -dx (4-13 

d x + o  A 
Thus the  reference conic s t a t e  vector  is obtained from the  fixed- 

- - 
s t ep  incremented var iable  x while the numerical in tegrat ion of 

the  t be-based var ia t iona l  equations proceeds' using the var iable  

s tep  s i z e  i n  time. This s t ep  s i z e  var ia t ion  i n  time tends t o  

decrease the  s tep  s i z e  near the  s ingular i ty  and e f fec t ive ly  smooths 

the numerical in tegrat ion about per iaps i s .  

Linearized Variational Equations 

A s e t  of l inear ized variati.ona1 equations may be obtained 

d i r e c t l y  from the nonlinear va r i a t i ona l  s e t .  The nonlinearity due 

t o  the  s t ruc ture  of the  perturbing force i s  removed by expanding the 

perturbing force i n  a Taylor s e r i e s  about the  unperturbed system and 

reta ining only the  f i r s t  term; t h i s  is equivalent t o  simply evaluating 
- 
f along the unperturbed system.  h he f i r s t  order terms of the  Taylor 

s e r i e s  expansion of the forcing function could a l so  be re ta ined in  



some cases and s t i l l  r e su l t  i n  a  l i n e a r  system, although qui te  

complicated.) 

Retaining only the first order term i n  the d i f f e r e n t i a l  equa- 

t ions  f o r  the  o r b i t  elements 6a and 6; r e s u l t s  i n  

. where 

The l inear ized  va r i a t i ona l  equations may be wr i t ten  down by 

inspection as 
2 - 5 - 0 

0 - r - 
6F"+ a 6r  + 6 a r 0  + 6; = -,f (4-15 

P 

The resu l t ing  l inear ized  va r i a t i ona l  equations are  nonsinguar, 

as expected, and involve functions of parameters of the  unperturbed 

system, a l l  of which may be expressed a s  polynomials i n  the  inde- 

pendent variable x . Moreover, the  s t ruc tu re  of the  resu l t ing  

integrands are  of a  pa r t i cu l a r ly  simple form f o r  a spec i f i c  c lass  

of perturbing forces, t o  be discussed l a t e r .  



Solution t o  Linearized Equations 

The vector  va r i a t i ona l  equation (4-15) may be wr i t t en  along with 

t h e  aux i l i a ry  equations (4-14) as  

where t he  superscr ipt  0 has been removed frkm the  representa t ion 

of t h e  unperturbed system parameters. E q r e s s i n g  (4-16) i n  t he  - 

abbreviated form 

t h e  general  solut ion t o  t h i s  l inear ,  var iable-coeff ic ient  system is  



' I  

' !  

- given by I-- 
I 

I 

I (  

' 
: 1 

X i 
f 

( x - u ) ~  ;(u),; '(o) l&[u]do I 1 
1 

where 

u2(x-z) -u (x-z) 
3 

uo(x-2) U (x-2) -u2 (x-z) 
a[ (x-z), a z ) ,  r #(z)  I 1 

0 0 1 

0 0 0 

and 



The fixed x sca la r  per turbat ion equation (4-13a) may s imi la r ly  

be wr i t ten  as 

with the  resu l t ing  solut ion 

where 



and 

As s t a t ed  before, the  sca la r  var ia t ion  6 r  may be obtained d i r ec t ly  

from (4-5); it is included here primarily f o r  the  sake of completeness. 

Relation Between Fixed x and Fixed t Variations 

The solut ion t o  the fixed nonlinear o r  l inear ized  yar ia t iona l  

equations, including the time var ia t ion  6 t  , is su f f i c i en t  t o  estab- 
b 

l i s h  the s t a t e  vector of the  perturbed system a t  the mutually common - - - 

value of the  independent variable x . It may be desirable, however, 

or even necessary t o  obtain a comparison of the  perturbed and unper- 

turbed systems a t  the same time, hence requiring evaluation of the  

corresponding fixed t var ia t ions .  For example, i n  the  next chapter, 

several  exmples are analyzed using both the focal  and cen t ra l  o sc i l -  

l a t o r  systems. For comparison purposes, the  fixed x var ia t ions  of 

the  cen t ra l  o s c i l l a t o r  and the fixed y var ia t ions  of the  focal  

o sc i l l a to r  are  converted t o  a common variation,  namely, the fixed t 

variations.  It would be possible t o  d i r e c t l y  convert the fixed x 

var ia t ions  t o  fixed y var ia t ions  and vice versa; however, t h i s  

would involve a more detai led discussion of the  re la t ionship between 

the independent variables.  



- 
The perturbed system radius vector r a t  some value of x and 

0 
corresponding time t + 6 t  has been given as 

- 
Expanding r i n  a Taylor s e r i e s  about to i n  powers of St  r e su l t s  

-0 
i n  the  perturbed system radius vector a t  time to , which is r 

p lus  the  f ixed t var ia t ion  hr , or 

Therefore 

where 

Note t h a t  S t  measures perturbed system time minus unperturbed system 

time from (4-6), while the  Taylor s e r i e s  expansion (4-29) i s  i n  powers 

of unperturbed time minus perturbed time. \ 
\ 
\ 

It should be apparent from (4-29) t h a t  while the  f ixed x var ia-  

t i ons  and the time var ia t ion  of the  cen t ra l  o sc i l l a to r  a r t  a t  a l l  times 

well  behaved, the fixed t var ia t ions  may possibly be unbounded o r  

ill-behaved f o r  passage of the  perturbed system a r b i t r a r i l y  near the  

s ingular i ty .  Thus the advantages t h a t  were obtained by expressing 

the  unperturbed two-body problem i n  the regularized domain as opposed 

t o  the  time domain are re f lec ted  i n  the  behavior of the  corresponding 

var ia t ions .  The unboundedness of the  fixed t var ia t ions  occurs only 



near r = 0 , s ince  only unbounded der iva t ives  a re  involved. 

The f ixed  t v ~ l r i a t i o n  (4-29) may be approximated t o  f i r s t  order 

subs t i t u t i on  of (4-8) f o r  6 t 0  r e s u l t s  i n  

and, equivalently, 

where 

The quant i ty  6x represents  t he  f i r s t  order va r i a t i on  i n  t he  inde- 

pendent var iable  x along t he  perturbed system corresponding t o  t he  

time va r i a t i on  8 t  . 

Focal Osc i l . l a t o r  System 
\ 

An e n t i r e l y  analogous procedure is  used t o  obta in  t h e  f ixed y 

va r i a t i ona l  equations f o r  t h e  perturbed foca l  o s c i l l a t o r  system. 

Since t h e  object ive  of a va r i a t i ona l  treatment i s  t o -  obta in  var ia t ions  

which may be added d i r e c t l y  t o  t h e  unperturbed system parameters, the  

der iva t ion  must necessar i ly  begin wit'n t h e  Jef  i n i t  ions 



The r e l a t i on  between the un i t  vectors and var ia t ions  introduced f o r  

t he  cen t ra l  o sc i l l a to r  are depicted i n  Figure 4.1, where 

(6; is a  fixed y  var ia t ion  i n  t h i s  case).  

FIGURE 4.1. RELATION BETWEEN VECTOR VARIATIONS OF FOCAL OSCILLATOR 
SYSTEM. 

The r e su l t s  of the  focal  o s c i l l a t o r  derivation are l i s t e d  i n  

order corresponding t o  the order established in  the derivation of 

the  var ia t iona l  equations of the  perturbed cen t ra l  o s c i l l a t o r  system. 



where 

Numerical computation of t h e  foregoing nonlinear va r i a t i ona l  

equations presents  e s sen t i a l l y  the  same d i f f i c u l t i e s  noted f o r  t he  

perturbed foca l  o s c i l l a t o r  i n  Cowell form. One of these  i s  t h e  u n i t  

*O vector  nature of ;(= ;O + 6; , where r is a l s d  a -&i t  vector) ;  

a s  before, a normalization procedure would be appropriate.  Also, it 

w i l l  be reca l led  from Chapter I11 t h a t  t he  computation of u cannot 

be  accomplished i n  a straightforward manner i f  u is  unbounded. The 

0 same is  t r u e  i n  t he  va r i a t i ona l  system i f  u o r  u is  unbounded; 

i n  e i t h e r  case, 6u is unbounded, although t h i s  is  not d i r e c t l y  

apparent from the  d i f f e r e n t i a l  equation ( 4 - 3 7 ~ ) .  This might be 

0 explained as  follows: i f  u is unbounded, t h e  argument of Chapter 111 

would be applicable, s ince  the  e f f ec t i ve  var iable  of in tegra t ion  is pro- 

po r t i ona l  t o  unperturbed system speed. However, i f  t h e  perturbed system 

p a r t i c l e  i n t e r s ec t s  t he  a t t r a c t i n g  mass (u -. 02) , t h i s  implies "instan- 

0 taneous" r ec t i l i nea r i t y ,  o r  p = 0 = p + 6p . Recalling t h a t  the  semi- 
- 

l a t u s  rectum is  pos i t i ve  semjdefinite and ignoring f , (4-37c) may be 



expressed as 

The so lu t ion  t o  (4-39) is  a t  l e a s t  of exponential order r e l a t i v e  t o  

0 u f o r  f i n i t e  p . 
The foregoing discussion is probably of l i t t l e  p r a c t i c a l  i n t e r e s t  

except f o r  numerical analysis  of near-pathological o rb i t s .  

Linearized Varia t ional  Equations 

where 

- - -0 -0' 0 
f = f ( r  , r  , t  ) 

Specia l  a t t en t i on  is di rected t o  (4-39) f o r  8 t '  , the  time var ia t ion  

along t he  perturbed foca l  o s c i l l a t o r .  Comparison with t he  corresponding 

equation (4-1311) of the  cen t r a l  o s c i l l a t o r  indicates  t h e  expression f o r  

6t8 of the  foca l  o s c i l l a t o r  system contains a dependent var iable  of t he  

unperturbed system i n  t h e  denominator of the  integrand. It w i l l  sub- 

sequently be shown t h a t  t h i s  f a c t  renders the  integrand more complicated 

i n  one bas ic  sense that1 any other  i l~ tegrand  associated with t h i s  research. 



Conversion of the  l inear ized fixed y var ia t ions  t o  fixed t 

var ia t ions  is obtained through 

where 

Solution t o  Linearized Equations 

Ent i re ly  analogous t o  the  solut ion presented f o r  $he l inear ized 

cen t r a l  osc i l l a tor ,  the  solution t o  l inear ized  fixed y var ia t iona l  
b 

equations may be represented by the  s t a t e  t r ans i t i on  matrices 

where 



and 

where 

Rela t ion Between Linearized Var ia t ions  

The expressions (4-35) and (4-36) i d e n t i f y  t h e  nonlinear r e l a -  
- A 

t i o n s  between t h e  v a r i a t i o n s  i n  r , r , r , and u . Linearized 

r e l a t i o n s  ( f ixed x,y o r  t )  a r e  obtained by 

- '-0 0 * 6 r  = 6(rG) = 6 r r  + r 6 r  , e t c .  (4 -4611) 



The re la t ion  between the variat ions of the ra tes  is obtained by 

different iat ion.  The l inearized re la t ions  between variat ions of the 

o r b i t a l  elements and variat ions i n  the perturbation s t a t e  vector 

6 r  and 6; are 

- 
Note tha t  velocity v  is  re la ted  t o  the regularized veloci ty  r8  
by (e.g., the cent ra l  o sc i l l a to r )  - - =  

Thus 

Theref ore, using the regularized ve loc i t ies  of the cent ra l  oscqllator 

would yield, f o r  example, 



Expressions such as these are a lso needed t o  evaluate t he  i n i t i a l  

values f o r  6 a  , 6p and 6; i n  the l inear ized equations; i n  a  l a t e r  

chapter, (4-50) w i l l  be used t o  modify the system solut ion (4-18) t o  

t h e  cen t ra l  o s c i l l a t o r  t o  simplify quadrature. 

Choice of System: Numerical 

The question may a r i s e  as t o  which representation, the perturbed 

foca l  o r  cen t r a l  osc i l l a tor ,  is t o  be used i n  the  numerical analysis 

of some pa r t i cu l a r  problem i n  c e l e s t i a l  mechanics. From a  numerical 

standpoint, the  nonlinear cen t r a l  o s c i l l a t o r  system would appear t o  

be the bes t  choice, due t o  the  nonsingularity of the equations, and 

a l s o  due t o  the  natural  time s tep  s i z e  regulation feature .  It w i l l  

be recal led that ,  i n  e i t h e r  Cowell o r  Encke form, the transformation 

equation of the cen t r a l  o s c i l l a t o r  may be used t o  vary the  s tep  s i z e  
t 

i n  time r e l a t i ve  t o  a fixed s tep  s i z e  i n  x f o r  close passage t o  the 

primary body. The e f f ec t  of t h i s  s tep  s ize  regulation w i l l  be t o  

decrease the s tep  s i z e  i n  time and e f fec t ive ly  "smooth" the numerical 

in tegrat ion which uses time as the independent variable.  Use of the  

cen t r a l  o s c i l l a t o r  d i r ec t ly  with the  fixed s t ep  s ize  i n  x of fe rs  

the  same numerical advantages. Modifications t o  t h i s  method would 

be the  use of the foca l  o sc i l l a to r  system near per iapsis  or  the  

or ig ina l  time domain d i f f e r e n t i a l  equations near apoapsis. Ei ther  

modification would r e s u l t  i n  f i n e r  integrat ion s teps  i n  t h e i r  respec- 

t i v e  regions and resu l t ing  higher accuracy. The primary emphasis of 

t h i s  research has, however, been on the ana ly t ica l  solut ion t o  the  

l inear ized  var ia t iona l  equations. 



Choice of System: Analytic 

From an a n d y t i c  standpoint  the  l i n e a r i z e d  v a r i a t i o n a l  equations 

a r e  direct]-y in tegrab le  as  Poisson s e r i e s  i n  unique and d i s t i n c t  

regions. A Poisson s e r i e s  i s  defined he re in  a s  a s e r i e s  i n  which each 

t e r m  of t h e  s e r i e s  contains only p o s i t i v e  powers of c i r c u l a r  funct ions  

of t h e  independent var iable .  The d e f i n i t i o n  of these  regions is found 
- 

i n  t h e  power s e r i e s  expansion of t h e  per turbing force  f and is  b e s t  

demonstrated by comparing t h e  l i n e a r i z e d  s c a l a r  v a r i a t i o n a l  equations 

of t h e  two systems: 

0 
Since r i n  t h e  c e n t r a l  o s c i l l a t o r  system is represented by a Poisson 

- 
t e r m  i n  x , t h e  expansion of  t h e  per turbing force  f may conta in  

powers of t h e  s c a l a r  radius  > -2 and s t i l l  r e t a i n  t h e  o v e r a l l  Poisson - 
s e r i e s  form. The r e s u l t i n g  integrand is  then in tegrable  t o  almost any 

degree of complexity. Conversely, if t h e  per turbing fo rce  i s  expandable 

a s  a convergent s e r i e s  i n  descending powers of t h e  s c a l a r  radius  > -2 , - 

t h e  RHS of (4-51a) w i l l  be i n  t h e  form of a Poisson s e r i e s  of c i r c u l a r  

funct ions  of t h e  independent va r iab le  y of t h e  f o c a l  o s c i l l a t o r ,  

1 
s ince  - 0 

0 
= u i n  t h i s  system and is a Poisson type term 

r 



The same argument is  t rue  f o r  the vector  var ia t iona l  equations, 

and both the sca la r  and vector var ia t ions  a re  obtainable as Poisson 

se r i e s .  A s  s ta ted  before, t h i s  convenient delineation does not 

extend t o  the  time correction 6 t  ; since 6r  of the  cen t r a l  

o s c i l l a t o r  is  i n  the  form of a Poisson ser ies ,  the in tegra l  fo r  
3 

6 t  is straightforward, but the  2 denominator i n  the  integrand 

fo r  6 t  of the  foca l  o s c i l l a t o r  d i s rup ts  the  es tabl ished pat tern.  

Another advantageous aspect of the  cen t r a l  o s c i l l a t o r  system i s  t h a t  

a time varying force i n  the  form of a power s e r i e s  i n  time may be 

included i n  the analysis i n  a straightforward algebraic manner with- 

out disrupt ing the Poisson s e r i e s  nature of the  integrands. O f  the 

two types of perturbing force considered i n  the next chapter, the  

type of 7 amenable t o  analysis by the  perturbed fbcaT o s c i l l a t o r  

system is  also time invariant by nature (i.a.,  the J2 term of the  

ear th '  s  po t en t i a l  expans ion), while the  type associated with the 

cen t r a l  o s c i l l a t o r  (perturbation by external  a t t r ac t ing  body) is 

time-varying by nature (although the  time-varying nature is not 

included i n  the pa r t i cu l a r  analysis  of Chapter v). 



Chapter V 

ANALYSIS OF PERTURBED CIRCULAR AND RECTILINEAR ORBITS 

The foregoing chapter has outl ined a l inear ized  perturbation 

theory based on the  representation of perturbed Keplerian motion as  

perturbed harmonic o sc i l l a to r s .  I n  t h i s  chapter, several  applica- 

t i ons  of the perturbation theory are  presented. The f i r s t  example 

is the  perturbation of a nominal c i rcu la r  o rb i t  due t o  the  second 

spher ica l  harmonic ( J ~ )  of the expansion of the  primary body poten t ia l ,  

The solut ion is obtained using both harmonic o s c i l l a t o r  systems and i s  

compared t o  the solut ion obtained from the  Euler-Hill  perturbation 

equations. 

The second example considered is  the  general  r ec i i f i nea r  o rb i t  

perturbed by the J2 oblateness term, while the  t h i r d  example con- 

s iders  the  perturbation of a general  r e c t i l i n e a r  o rb i t  by a fixed 

external  perturbing body. It is in te res t ing  t o  note t h a t  although 

the  cen t ra l  o sc i l l a to r  system may appear t o  be the natural  system 

f o r  the  analysis of perturbed r e c t i l i n e a r  orbi ts ,  the  perturbed focal  

o s c i l l a t o r  system i s  simpler since not only the  frequency p = 0 but 

a l so  the f i r s t  order var ia t ion  i n  p can be shown t o  be equal t o  zero 

f o r  the  general reference r e c t i l i n e a r  o rb i t .  Since the frequency a 

of the cen t r a l  o s c i l l a t o r  system is zero f o r  parabolic motion, the 

r e c t i l i n e a r  parabola is  used as the  reference o r b i t  fo r  the  analysis 

of both types of perturbing forces using both perturbed o s c i l l a t o r  

systems. The extension t o  the  nonparabolic r e c t i l i n e a r  reference 



orb i t  i s  then obtained using one of the systems, the choice being 

dictated by the par t icu lar  s t ructure of the perturbing force. 

Perturbing Force due t o  Obi-ateness ( ~ ~ 1  

The perturbing force due t o  the second spherical harmonic term, 

or  oblateness term of the  expansion of the potent ia l  of a central  body 

may be expressed i n  vector form as 

A 

where n i s  a uni t  vector directed along the polar axis of symmetry, 

A 

r i s  thk uni t  radius vector, and the remaining terms have t h e i r  

standard meaning (see reference 10). - -- - 
Since E = 0 f o r  the reference c i rcu lar  orbi t ,  some l i b e r t y  

b 

ex i s t s  i n  the establishment of the reference coordinate system. 

Referring t o  Figure 5 -1, 

where the argument of l a t i t ude  8 (= w + f , where cu = argument 

of per iapsis)  is  measured from the l i n e  of nodes. 

Euler-Rill Equations 

The Euler-Hill equations are the l inearized Encke perturbation 

equations i n  the time domain referenced t o  a c i rcu lar  orb i t  and 

expressed i n  the rotat ing coordi.nal;c system defined by G,; X ;,6 . 



OF NODES 

FIGURF: 5.1. VECTOR GEOMETRY FOR REFEmNCE CIRCULAR ORBITS. 

To review, i n  a nonrotat ing vector  space 

d2 * A  

- ( G )  = - [srr - I] G + 7 
dt2  a 3 

A A A 

and t he  dyad product rr is time-varying, s ince  r = (cnt, snt, 0 )  
T 

A A * 
i n  a t y p i c a l  coordinate system defined by ( i ,  j, k)  of Figure 5 .l. 

I n  t h e  r o t a t i n g  coordinate system, however, denoting der iva t ives  i n  



t h i s  system by the over-dot, 

and defining a; = (x,~, z ) ~  r e su l t s  i n  

2 
where n = p/a3 , so  t h a t  the  resu l t ing  system is l i nea r  and constant- 

coeff ic ient .  I n  the  ro ta t ing  system, 
- - -  

where 8 = nt  . 
The solut ion may be represented by 



where 

and 

- - 
The i n i t i a l  values of the  pe r tu rba t ion  s t a t e  vector  (Ar,Ar) i n  (5-7) 

are  assumed t o  b e  zero and the  p a r t i c u l a r  so lu t ion  t o  t h e  convolution 

i n t e g r a l  of (5-7) is 

and represents  the  p o s i t i o n  v a r i a t i o n  as  a  funct ion of time; wi th  

regard t o  t h e  discussions of t h e  foregoing chapters ,  t h i s  so lu t ion  

a l s o  represents  a "f ixed time" v a r i a t i o n .  



For purposes of comparison with subsequent solutions obtained from 

the  perturbed harmonic osc i l l a to r  systems, the solution (5-9) is expres- 

sed i n  the nonrotating 2;; reference frame of Figure 5.1 by 

and r e su l t s  i n  

Perturbed Harmonic Oscillators 

The Euler-Hill perturbation equations of the foregoing section 

were reduced t o  a l i nea r  constant-coefficient s e t  of equations by 

expressing the d i f f e ren t i a l  equations i n  the ro ta t ion  coordinate 

system defined by ;,< X G,; . Their application i s  l imited t o  



c i r cu l a r  reference o rb i t s  fo r  which = 0 . The perturbed harmonic 

o s c i l l a t o r  systems are  l i n e a r  constant coeff ic ient  systems of equations 

i n  any nonrotating coordinate system and remain applicable fo r  non- 

c i r cu l a r  reference o rb i t s .  For the example problem being investigated, 

the  in tegra l s  of the o s c i l l a t o r  systems are  simplified somewhat by the 

s implic i ty  of the  parameters of the  reference c i r cu l a r  o rb i t .  However, 

even disregarding the d i f f i c u l t y  of the  i n t eg ra l  expressions, an addi- 

t i o n a l  subt le  penalty i s  exacted by use of the perturbed osc i l l a to r  

systems, t h a t  penalty being the time corrections t o  the  resu l t ing  

solut ions  necessary t o  obtain the  time var ia t ion  or  t o  convert t o  f ixed 

time var ia t ions  i n  the  s t a t e  vector. The "fixed t" var ia t ions  a re  only 

required i n  t h i s  instance f o r  comparison purposes. Although f o r  the 

c i r cu l a r  reference o rb i t  the  unperturbed independent var iables  of all 

three systems are  e f fec t ive ly  identical ,  the  perturbed system inde- 
b 

pendent variables of the o s c i l l a t o r  systems d i f f e r  from t h e i r  unper- 

turbed counterparts (and from each other, of course); the  resu l t ing  

time corrections are  then based on these differenczs.  

I n  the  nonrotating rjc coordinate system of Figure 5.1, the  
- 

perturbing force f due t o  the  J2 oblateness term ( ~ q .  (5- l ) ) ,  is 

expressed as 



Solution t o  Perturbed Central Osci l la tor  System 

The vector perturbation equation f o r  the perturbed cen t ra l  osc i l -  

l a t o r  system is given by Eq. (4-15) 

2 
r - 6;Y+U6;+6&+6:  = - f  
CI 

with the corresponding pa r t i cu l a r  solut ion indicated by Eq. (4-19). 
- 

Substi tution of the perturbing force f  due t o  oblateness and solu- 

t i o n  of the  resul t ing in tegra l s  leads t o  the  fixed x var ia t ion  

- 
The t h e  correction t o  the fixed x var ia t ion  6r  , necessary t o  

convert the r e su l t  t o  a fixed time var ia t ion  , may be obtained by 

f i r s t  evaluating the fixed x sca l a r  var ia t ion  6 r  through (4-5), 

where ; = ( c ~ , s ~ , o ) ~  , resu l t ing  i n  

which is equal t o  (5-9). The time correction is then obtained through 

(4-33 



where 

st' = G r / f i  

r e s u l t i n g  i n  

The f ixed  t v a r i a t i o n  is  then obtained through (4-32) 

and r e s u l t s  i n  t h e  same s o l u t i o n  (5-11) obtained from t h e  Euler-Hi l l  

equations.  
- -- 

Solut ion t o  Perturbed Focal O s c i l l a t o r  System 

The s c a l a r  pe r tu rba t ion  equation f o r  t h e  perturbed f o c a l  o s c i l -  

l a t o r  system is  given by (4-39c) 

and t h e  v a r i a t i o n  i n  p is  given by (4-39a) 

Subs t i tu t ion  of (5-1) and (5-2) i n  t h e  genera l  s o l u t i o n  (4-44) f o r  t h e  

f i x e d  y v a r i a t i o n  i n  u  r e s u l t s  i n  

n 



2  
which i s  equal t o  -6r/a2 from (5-14), o r  -x/n from (5-9). 

The time correct ion term 6y is then d i r e c t l y  obtainable from 

(11-41) 

r e su l t i ng  i n  

which equals 2 f j ~ / ~  (from (5-15)) f o r  t he  c i r cu l a r  reference o r b i t .  

The vector perturbed foca l  o s c i l l a t o r  system is  given by (4-39)  

with t he  r e su l t i ng  so lu t ion  

s.c.(ec, - s,) 

The t o t a l  f ixed t var ia t ion  i n  pos i t ion  is then obtainable from 

- 
Ar = 6 r  + F' 6y 



Subst i tut ion of (5-16), (5-17), and (5-18) i n  (5-19) y ie lds  a solution 

f o r  hr iden t ica l  t o  (5-11). 

The r e su l t s  of the  foregoing analysis have demonstrated the applica- 

tion, fo r  comparisoli purposes, of the  harmonic o s c i l l a t o r  per turba t io~i  

theory t o  a problem which is solved d i r e c t l y  i n  the  time domain. The 

solutions t o  both osc i l l a to r  systems were corrected t o  y ie ld  the f ixed 

t varia t ions  between the perturbed orb it and the unperturbed reference 

o rb i t .  The fixed t var ia t ions  were introduced only f o r  the  purpose 

of comparing the three solutions.  In  a subsequent section, the  f ixed 

t var ia t ions  are  fhr ther  used t,o compare the solutions t o  the  per- 

turbed harmonic o s c i l l a t o r  systems f o r  the  problem of perturbed r e c t i -  

l i n e a r  orb i t s .  

- - -  Extension t o  Noncircular Reference Orbit 

The extension of the theory t o  the noneircular reference o rb i t  i s  

direct ,  using e i the r  the foca l  o r  cen t r a l  perturbed o s c i l l a t o r  system. 

The major d i f f i c u l t y  l i e s  i n  the  ana ly t ica l  quadrature of the  resu l t ing  

expressions, which are  more complex due t o  the  introduction of the  

o rb i t  eccentr ic i ty .  For the case of the  perturbing force associated 

with the oblateness tern, o r  f o r  any force expandable i n  descending 

powers of the  sca la r  radius, the perturbed foca l  o sc i l l a to r  system 

yields  Poisson se r i e s  as the  integrand f o r  6; and 6u . However, 

the  time correction is  not of the  Poisson se r i e s  form due t o  the  u 3 

term i n  the  denominator of 6 t '  of (4-39). 



A Lunar Problem 

Another problem is the perturbation of a s a t e l l i t e  due t o  the 

po ten t i a l  of an external  a t t r ac t ing  mass; the  problem is termed the 

"lunar" problem since a c l a s s i c a l  problem i s  cast  i n  the  framework 

of the  motion of the moon, perturbed by the sun, about the ear th .  

Idealizing the sun as stationary,  a  s imilar  analysis of per- 

turbed c i rcu la r  o rb i t s  could be accomplished using the Euler-Hill 

equations o r  e i t h e r  perturbed harmonic o sc i l l a to r  system. The 

d i s t i nc t ive  feature  of the  lunar problem is  t h a t  the perturbing 

force is expandable as  a  convergent s e r i e s  i n  ascending powers of 

the  sca la r  radius. Thus the extension t o  noncircular o r b i t s  i s  

d i r ec t  using the perturbed cen t r a l  o s c i l l a t o r  system. Unlike the 

foca l  o sc i l l a to r  system, the perturbed cen t r a l  o s c i i l A 6 r  system 
- 

yie lds  Poisson se r i e s  integrands not only f e r  the  var ia t ion  6 r  

but a l so  f o r  the  required time correction in tegra l  necessary t o  

convert t o  fixed t var ia t ions .  Moreover, the  time-varying e f f ec t  

of the  motion of the  perturbing body may a lso  be included by expan- 

s ion of i n  powers of t ; time i s  a  r e l a t i ve ly  simple function 

( ~ e p l e r ' s  o r  the  universal  time equation) of the  independent variable 

x , and addit ional terms of the integrands would also be of Poisson 

se r i e s  form. 

Perturbed Rect i l inear  Orbits 

Although perturbed nonrecti l inear o rb i t s  have been studied from 

the time of Lagrange, the subject of perturbed r e c t i l i n e a r  o rb i t s  has 

apparently received l i t t l e  a t ten t ion .  This may be due not only t o  the 



r e l a t i ve ly  awkward description of r ec t i l i nea r  o r b i t s  i n  the  more con- 

ventional time domain but a l so  more l i k e l y  t o  the f ac t  t h a t  such o rb i t s  

were a r a r e  occurrence i n  astronomy. 

The advent of modern space t ravel ,  however, suggests numerous 

examples f o r  possible r ec t i l i nea r  orbi ts ,  such as sounding rockets 

o r  lunar ascent/descent vehicles.  Regarding lunar operations, it 

should be recal led t h a t  the  ear th  (and even the  sun) exert  a much 

greater  perturbative force r e l a t i v e  t o  the lunar  gravi ty  a t  the 

surface than, say, the  moon's and sun's e f f ec t  r e l a t i ve  t o  ear th  

gravi ty  a t  the  ear th  surf ace. 

Due t o  the  regularized feature  of the  cen t r a l  o sc i l l a to r  system, 

t h e  perturbations of "complete" mathematical r e c t i l i n e a r  o rb i t s  (here 

defined as o r b i t s  i n  which the p a r t i c l e  s t a r t s  a t  o r  p^aLses through 

per iapsis)  may be analyzed using the  theory wf the perturbed cen t ra l  

o sc i l l a to r  system. The foca l  o s c i l l a t o r  would be inapplicable since 

i t s  independent variable i s  unbounded a t  per iapsis .  However, both 

Keplerian o s c i l l a t o r  systems may be used t o  invest igate  r e c t i l i n e a r  

o r b i t s  which do not involve per iaps i s  passage. 

I n  the  following section, two forms of perturbing forces are  

investigated: 1 )  perturbations due t o  the oblateness term, and 

2)  perturbations due t o  the  a t t r ac t ion  of a f ixed external  body. 

The var ia t ion  of the  perturbed o rb i t  i s  f i r s t  obtained r e l a t i ve  t o  

an unperturbed reference r e c t i l i n e a r  parabola as the  solut ion t o  

both harmonic o sc i l l a to r  systems; the  extension t o  the  nonparabolic 

reference o rb i t  is then obtained as the  solut ion t o  the  o sc i l l a to r  

system most appropriate t o  the  pa r t i cu l a r  perturbing force. Since 



the analysis of the r ec t i l i nea r  parabolic o rb i t  i s  f o r  the purpose of 

comparison of the two systems, the fixed t variations are obtained. 

Rectil inear Orbits Perturbed by J2 Spherical Harmonic 

Referring t o  Figure 5.2, the reference r ec t i l i nea r  o rb i t  re la t ive  

t o  the oblate cen1;ral body may be described by i ts  colati tude angle h ; 

thus 

FIGURF: 5 .2 . VECTOR GEOIQCTRY FOR REFERENCE REXTILINEAR ORBIT RELATIVE 
TO OBLATE CENTRAL BODY. 



This p a r t i c u l a r  o r ien ta t ion  of the  x-y coordinate system has been 

chosen t o  be compatjble with t he  na tura l  coordinate system associated 

with t he  cen t r a l  o s c i l l a t o r .  I n  t h i s  system, from Equation (5-l),  

Solution t o  Perturbed Focal Osc i l l a to r  

As  noted i n  Chapter 111, the  independent var iab le  of t he  foca l  

o s c i l l a t o r  f o r  t he  general  r e c t i l i n e a r  o r b i t  is given ( fo r  t he  

p a r t i c l e  progressing outward from t h e  s ingu la r i ty )  a s  

where y i s  taken t o  vanish a t  t he  i n i t i a l  ve loc i ty  v ; f o r  t h i s  
0 

de f in i t i on  of y , 

2 
u = y / 2  + u;y + uo 

u' = Y + u; 

Alternatively, y lnay be defined as  



and, from the  l a s t  pa r t  of Chapter 11, 

f o r  t h i s  def in i t ion  of y . This form is more convenient f o r  the 

quadratures involved i n  the following section.  

All r ec t i l i nea r  o rb i t s  are characterized by zero angular momentum 

(p = 0) ; thus the var ia t iona l  equations of the  focal  o s c i l l a t o r  

system are i n i t i a l l y  simplified.  I n  addition, the  first order varia- 

t i o n  f o r  p a lso  vanishes. This may be observed d i r ec t ly  from the 

defining equation (4-39a) by noting t h a t  ;' is  ident ica l ly  zero f o r  

r ec t i l i nea r  o rb i t s  (i.e., t he  r a t e  of change of the  -un?t radius vector 

is zero). Therefore, the  var ia t iona l  equations f o r  6u and 6; of 

the foca l  o sc i l l a to r  system reduce t o  the r e l a t i ve ly  simple equations 

Using (5-21), , (5-26) may be ex-pressed as 

Integrating between the l i m i t s  of yo and y (or uo and u , 



noting tha t  dy = -du/&u), the resul t ing solution is 

The time correction term 6y may then be obtained from (4-41) 

which resu l t s  i n  

The re la t ive  magnitude of the time correction maybe obtained 

by comparing 6u , say, and the corresponding time correction uC8y 

i n  the expression f o r  Au ( ~ q .  (4-40a)). From (5-29) and (5-29), 

and noting tha t  u' = y = -6 , 

and it can be seen t h a t  f o r  r >> r , the two terms are  not only of 
0 

the same order but have the opposite sign. The predominant (r/ro) 3 

terms are of opposite sign, and the  second most predominant terms 

are equal and opposite. The vector var iat ional  equation (5-26a) 



reduces t o  

resul t ing in  

The t o t a l  vector perturbation is  then given by 

Using (5-29), (5-30), and (5-32), and reca l l ing  t h a t  G t  = (0,0) T 
A 

and r = ( - l , O I T  , we obtain b 

Solution t o  Perturbed Central Oscillator 

The vector var iat ional  equation f o r  the perturbed cent ra l  osci l -  

l a t o r  is given by (4-15) 



Unlike the  var ia t iona l  equations of the  foca l  osc i l l a tor ,  t h i s  equa- 

t i on  does not simplify a t  a l l  f o r  general  reference r e c t i l i n e a r  orb i t s ;  

f o r  a  reference r e c t i l i n e a r  parabola, a t  l e a s t  the  second term vanishes. 

Noting this fact ,  and carrying out the  quadratures f o r  6CY and 6E 

i n  advance, (4-15) may be reduced t o  a  t r i v i a l  double integrat ion f o r  

t h e  reference r e c t i l i n e a r  parabola. 

The va r i a t i ona l  equation f o r  a is 

which leads  t o  

- 
which is  v a l i d  fo r  a rb i t r a ry  Q! . The va r i a t i ona l  equation f o r  6~ 

is 



which reduces t o  

and 

which i s  a lso val id  fo r  a rb i t r a ry  . Combining these r e su l t s  
- A =  

leads t o  

2 2 Defining r = x /2 (correspondi.ngly, ro = xo/2 ) and integrat ing 

between the l imi t s  of x and x (or r and r ) r e su l t s  i n  
0 

- 
br = 



To obtain the time correction 6x , the sca lar  perturbation 6r  is 

first obtained from (4-5) as 

and is  simply the negative of the component of 6; ; 6x i s  then 

given by (4-331, 

,/ 
b 

Once again, a comparison i s  made of the time correction term t o  the 

fixed x variation of, say, 6r 

where r ' = and from (4-32a) 

From (5-40) and (5-41), 



and it is noted t h a t  the second most predominant terms are  equal and 

opposite, as  was a lso noted i n  a s imilar  comparison of (5-30), while 

the  predominant terms are  of the same order and opposite sign. 

The t o t a l  pos i t ion  var ia t ion  A; i s  then given by (4-32) 

where 

Combining (5-40) and (5-41) through (4-32) r e s u l t s  i n  

which is  ident ica l  t o  the solut ion (5-34) obtained from the perturbed 

foca l  o s c i l l a t o r  system. 

Nonparabolic Reference Rect i l inear  Orbit 

The extension t o  nonparabolic reference r e c t i l i n e a r  o r b i t s  using 

the  cen t r a l  ~ s c i l l a t o r  system may be indicated by inspection of the  

d i f f e r e n t i a l  equation (4-15), where the addi t ional  term 8; 

- 
appears on the LIIS and r would be expressed i n  the  more general 



form involving t h e  un iversa l  funct ions  U . The U would neces- 
j 3 

s a r i l y  appear i n  t h e  denominator of t h e  integrand and a d i r e c t  quadra- 

t u r e  would appear t o  be somewhat tedious, i f  not impossible. 

The f o c a l  o s c i l l a t o r  equations (4-39b) and (4-39c) a r e  s t i l l  

r e l a t i v e l y  t r a c t a b l e  however, f o r  nonparabolic reference  r e c t i l i n e a r  

o r b i t s ,  and furthermore t h e  genera l  expression f o r  u 

renders s t ra ight forward quadratures f o r  6u and 6; . Accordingly, 

where 

Unfortunately, bu t  a s  expected, t h e  time cor rec t ion  6y i s  more 

d i f f i c u l t  t o  obta in .  



Using (4-41) and the soluti.on f o r  6u , the  necessary quadratures 

may be expressed i n  the form 

Restr ic t ing the  so3.ution t o  a # 0 , the  integrals  may be evaluated 

through recursive integrat  ion by p a r t s  where 

-. 
By t h i s  manipulation, B and other in tegra l s  eventually may be 

reduced t o  standard forms, although the term Or occasionally appears 

i n  a denominator, thus rendering the solut ion invalid fo r  CY = 0 . 
For a! = 0 or  a! su f f i c i en t ly  small, Qe necessary integrals  

f o r  6y may be represented i n  s e r i e s  form (p = 3 i n  (5-47)) by 

Recti l inear Orbits Perturbed By External Body 

(- l)m (m + 2): $1 u 
n- (2m+5) 

m=O 21 m! [n - (2m + 5 ) l  

The or ientat ion of an unperturbed r e c t i l i n e a r  o rb i t  r e l a t i ve  t o  

(5-43) 

an ex te rna l  perturbing body (defined by p a t  some pos i t ion  vector 
E - 

R ) is  depicted i n  Figure 5.3; f o r  the purpose of t h i s  analysis the 

yo 

where convergence i s  assured f o r  r /a  < 1 . 

vector R is  assumed t o  be fixed.  



FIGURE 5.3. VECTOR GEOMETRY FOR REFERENCE RECTILINEAR OFBITS R3LATTVE 
TO FIXED EXTERNAL BODY. 

The a t t r ac t ion  of the  perturbing body is given by 

For R >> r , (5-49) may be expanded as  a convergent s e r i e s  i n  

ascending powers of r / ~  ; re ta ining only the first term i n  the  
- 

se r i e s  as the  approximation t o  f r e s u l t s  i n  



The fixed time variat ion i n  the posi t ion vector 6 r  is obtained fo r  

the reference r ec t i l i nea r  parabola using both perturbed Keplerian 

osc i l l a to r  systems, and the solut ion fo r  the general r ec t i l i nea r  

o rb i t  is then obtained using the cent ra l  o sc i l l a to r  system. 

Solution t o  Perturbed Focal Osci l la tor  

The same simplifying observation noted i n  the previous section on 

the perturbations due t o  the J2 spherical harmonic also apply t o  the 

analysis of perturbations due t o  the perturbing force of (5-50) along 

a reference r ec t i l i nea r  parabola. The r e su l t s  are  presented without 

elaboration as 

The time correction 6y is 



The t o t a l  var ia t ion i n  posi t ion i s  then given by (4-32), which reduces 

t 0 

Solution t o  Perturbed Central Osci l la tor  
- *= 

The solut ion t o  the  perturbed cen t ra l  o s c i l l a t o r  system f o r  the  
- 

perturbing force f  due t o  the  f ixed external  body is obtained i n  

the  same manner as t h a t  fo r  the  J2 perturbation force of the  previous 

section. The var ia t ion  i n  the  energy parameter is obtained from 

t h e  solut ion t o  (4-lba), resu l t ing  i n  

and the  var ia t ion  i n  the  eccent r ic i ty  vector is 



As with the corresponding r e su l t s  obtained f o r  the J2 perturbation, 

these r e su l t s  are  va l id  f o r  a rb i t r a ry  value of a of the  unperturbed 

reference conic. The d i f f e r e n t i a l  equation f o r  the  fixed x varia- 

t i o n  i n  the  posi t ion vector f o r  the  general reference r e c t i l i n e a r  

o rb i t  is obtained by subs t i tu t ing  (5-50), (5-54) and (5-55) i n  (4-15) 

t o  obtain 

For the  reference r ec t i l i nea r  parabola (a =, 0)  , the sca la r  radius 

2 2 r may be expressed as r = x 1 2  (a lso r2 = x 12 ), thus defining 
0 0 

the  independent variable t o  vanish a t  per iaps i s  ra ther  than a t  the  

i n i t i a l  conditions ( t h i s  redef in i t ion  is  done only f o r  convenience i n  

evaluating the i n t eg ra l  expressions) . The resu l t ing  f ixed x varia- 

t i o n  i s  



The time correction 6x is obtained d i r e c t l y  from (4-33), noting t h a t  
* - - 

6 r = r " 6 r = -  6rx and i s  

The r e su l t i ng  fixed t var ia t ion  is then obtained by combining (5-57) 

and (5 -58) through (4-32) ; the  resu l t ing  solut ion f o r  the  fixed time 

var ia t ion  is ident ica l  t o  (5-53). 

Solution f o r  Nonparabolic Reference Rect i l inear  Orbit 

I n  the  previous sect ion the  general expression f o r  the  s ca l a r  

radius is  - -: 

Thus the convolution integrand resu l t ing  from (5 -56) w i l l  appear as 

a Poisson se r i e s  i n  the  transcendental  functions cos(@x) and 

sin(&) and the general  solut ion t o  the  problem may be obtained 

r e l a t i ve ly  eas i ly .  The solut ion i n  i n t e g r a l  form is 



and i s  most ea s i ly  obtained by evaluating the  various component terms 

separately;  thus 

and 

Expressing the  lower l i m i t  of (5-61b) as  

L.L. = s~ x ~ s ( x 0 )  - cJ, x Kc(x0) 



I (x) may be simplified t o  3 

The resul t ing fixed x variat ion 6 r  may then be expressed as 

b 

The time correction is obtained through (4-33), where 6 r  is  the 

negative of the x component of 6; , resu l t ing  in  

where 



Noting tha t  F0 = (Ja S J ~  x, 0) , the r e su l t s  may be combined through 

(4 -32 

t o  yield the t o t a l  fixed t variation; the time correction enters 
b 

only i n  the x component, which may be expressed as 

- 2 (,, - sh 7 I (cr) (5-67') 
r 3 

Xo 

The above expression i s  not expanded further  due t o  the lack of any 

apparent simplification of the resul ts .  

It would be expected tha t  a ser ies  expansion of (5-67) and (5-64) 

i n  ascending powers of Cr would yield the solution fo r  the reference 

rec t i l inear  parabola (5-34) as the Q? term. This equivalence may be 

prac t ica l ly  demonstrated on only the simplest of examples, since it 

w 2 l . l  be noted tha t  the resul t ing CYO term is obtained from the fourth 



term of the expansion; a l l  preceding terms, which are negative powers 

of a! (posit ive powers of a ), w i l l  be expected t o  vanish. 

Thus the solution t o  the problem of the perturbation of a r e c t i -  

l i n e a r  o rb i t  due t o  an external body has been obtained f o r  both the 

parabolic and nonparabolic reference r ec t i l i nea r  orbi ts .  

It may be obvious t h a t  more extensive analyses could be effec- 

t i v e l y  performed using algebraic computer techniques; such techniques 

are  used extensively i n  the analysis of s imilar  problems i n  c e l e s t i a l  

mechanics, based on Harniltonian theory. 



Chapter V I  

ANALYSIS OF NEAR- PARABOLIC LUNAR 

TRAJECTORIES BEXW3EN L1 AND MOON 

The advent of extensive manned exploration of the lunar surface 

has generated in teres t  i n  the use of the cislunar l ib ra t ion  point L1 

a s  the possible location of a staging space station. The (relat ively)  

fixed location of the  l ib ra t ion  point Ll i n  the rotat ing earth-moon 

space a t  approximately 15 per cent of the earth-moon distance from the 

moon presents the d i s t inc t  advantage of no time constraint on passage 

between Ll and the moon or communication with the v is ib le  portion 

of the lunar surface. The f e a s i b i l i t y  of and the stationkeeping - a- 

requirements f o r  such a space station, or l ib ra t ion  point s a t e l l i t e ,  

have been recently investigated by Farquhar 191 and others. In t h i s  

chapter, the analyt ical  theory developed fo r  the  perturbed cent ra l  

osc i l la tor  i s  applied t o  the analysis of near-parabolic lunar t r a j ec to r i e s  

between the moon and L1 . 
The part icular  family of lunar  t r a j ec to r i e s  investigated are earth- 

perturbed, near- parabolic lunar orb i t  s .with perilune a t  the  lunar sur- 

face. Although the theory may be extended t o  the e l l i p t i c  or  hyperbolic 

c l a s s  of orbi ts ,  the choice of such would necessarily involve some 

considerations of available f l i g h t  time vs available fue l  and are beyond 

the scope of t h i s  analysis. Also, it might be noted tha t  minimum energy 

t ransfer  t r a j ec to r i e s  between the moon and L1 are necessarily near- 

parabolic. The assumption of perilune a t  the  lunar surface i s  jus t i f ied  



by the patching of the Ll - moon t ra jec tory  t o  a low lunar c i rcu lar  

orb i t ,  resul t ing i n  a more e f f i c i en t  overa l l  coverage of the lunar 

surface, as  opposed t o  a d i rec t  ascent/descent modus operandi. The 

analysis considers t r a j ec to r i e s  passing both i n  front  of and behind 

the  moon and both t o  and from L1 . 
The application of the foregoing theory t o  the  L1-moon t ra jec tory  

- 
analysis i s  depicted i n  Figure 6.1, where r represents an unperturbed 

parabola with perilune a t  the  lunar  surface and 6; represents the  

combined perturbation posit ion vector due t o  both the  perturbing 

force and variat ions i n  the tangent ial  perilune velocity 6v directed 
Y' 

d o n g  jo . 

FIGURE: 6.1 VECTOR GEOMETRY FOR REFERENCE PARABOLA FELATIVE TO EARTH- 
MOON LINE 



The reference parzbola i s  defined by the solutior-s (2-51) 

for a = 0 , 

Since p =. 2r, for a parabola, soltiticns abtained i n  terms of x 

will be expressed through (Cb) i n  the nondimensional form 

x = x/Jp = (r/ro - 1) 1/2 (6-2 

The s t a t e  t ransi t ion matrices (4-19) end (4-25) are sim_plified 
- -= 

considerably by acstviizg the reference orbit  t o  be a parabola, for  

. b 
which a = O . Thus 

x-z - (x- Z l 2  

2! 



and 

L1-Moon Trajectories 

r (x- Z l 2  (x-z)3 (x-z) 
4 

1 x-z - r(z)-- r'(z)-- 
2: 3: 4 ! 

(x- 2 l2 (x- z 13 
o 1 - r(z)(x-z) -r'(z)- - 

Since the ana1ysis.i~ considering only variations in the initial 
- 

velocity vector (i. e., 6ro = 0), expressed in the regular- 

ized domain as" 

- b 

the terms 6ao and in (4-50) and (4-50a) may be expressed simply 

Substitution of (6-3) and (6-6) into (4-18) results in a somewhat simpler 
- 

form for the integration of 6; , (recalling that ;" = - E for the 

parabola ) 



The a t t rac t ion  of the ear th i s  given by 

- 
Expanding (6-8) i n  ascending powers of r and assuming the ear th t o  

be fixed along the f i n a l  orientation of the earth-L moon l i n e  i n  the 
1- 

nonrotating lunar space (see Figure 6.1), the a t t rac t ion  of the ear th 
- - - 
f (r)  i s  approximated t o  f i r s t  order i n  r by 

- - 3 cos 2w + 1 - 3 s i n  2u, 

- 3 s i n  2w - 3 cos 2 0 +  1 

05-91 

- -= 
Using (6-2) and 

where 

the homogeneous part  of (6-7) reduces t o  

where 

Equivalently, changes i n  the  f i n a l  f ixed x regularized velocity 



vector are related t o  6 r '  by 
Y 

- 
6 r ( H ) ( ~ )  = [ ( P & ( x ) , T & ( ~ ) I ~ ~ ~ ~  Y 

where 

Using (6-l), the integrand of (6-7) may be expanded i n  ascending powers 

of & up t o  and including 8(-p3) , and the  in tegra l  may then be 

expressed i n  descending powers of the nondimensional parameter . 
Retaining only the highest power of ), (since x >> Jp i n  vic in i ty  

of L ~ ) ,  the part icular  solution t o  (6-7) i s  - -.= 

- 
= (.(3{ - x8[$ cos 2~ + 11/28 

r 8 
0 

s in  &/l4 

and 

-A7[) COS 2U + 1117 

& x7[2 s in  2a1/7 

The homogeneous solution t o  the  scalar perturbation equation (4-24) 

i s  simplified by noting tha t  f o r  



we obtain 

Thus, using (6- 4) we obtain 

where 

and 

The. particular solution t o  (4-24), retaining only the term of the highest 

p e r  of x , i s  given by 

The difference i n  time between the perturbed and unpsrturbed systems 

is then obtained from (4-15b) 

~ J P  Ve 
6 t  = L{~(,$ +$)Er; +T(--)(: J (3 cos a +  l+ 

4rn 252 l9 > 



Referring now t o  Figure 6.1, 

Using the expansion 

and 

where 

and the approximations 

Equation (6-26) becomes 

Ax + 6FF + r ' 
Y 

s in  o 



and the  terms 6 r '  and Ax are obtainable from 
Y 

- 

COS 

s i n  

From (6-16), (6-32), and noting tha t  

we obtain an approximate re la t ion  f o r  the  variat ion i n  perilune velocity 

a s  a function of the orientat ion angle u, 

6 r  ' s i n w -  (cos a,+ 1 )  
6v 

2 = Y =  L1 - + 

- I 
X 9 ( ~ ~ ~ ( ~ ~ [ ~  (3 cos 2u, + 1) - - s i n  2u 

m 14 1 



The term Ax may be expressed as 

The resul tant  velocity vector of a r r i v a l  a t  L1 i n  the nonrotating 

space i s  then 

where 

The time of a r r iva l  a t  L1 i s  obtained from 

where 6 t  i s  obtained from (6-25) 

All parameters have been normalized t o  the  dimensions of the  earth- 

moon system, namely, 

Length: R = l  

Mass: C I , + C I , = l  

Time: 
2 

n = 1 = G, + P ~ ) / R  
3 



Normalized veloci t ies  are then related t o  un-normalized ve loc i t ies  

I 
through I 

1/2 , 
Vun- norm. = [ ( V ~ + V ~ ) / R ]  norm. 

and a uni t  of time i s  equal t o  ~,/2n , or approximately 4 1/3 days. 

The value fo r  pm was taken t o  be 0.0121507, corresponding t o  

pm/7e = 81.3, with r = 0.151 and ro = .O&27 (1740 (40) [reference 91. 
L1 

All calculations were made f o r  the  idealized planar earth-moon system 

(i. e., both bodies i n  c i rcular  o rb i t s  about the  barycenter ). I 
The exact nonlinear perturbation equations 'were numerically 

integrated for  lunar o rb i t s  from the  moon t o  L1 , passing both i n  

f ront  of and behind the  moon. Due t o  the  ref lec t ion  property of earth- 

moon t r a j ec to r i e s  i n  the earth-moon l i n e  of the  rotat ing - - frame (exact), 

the  velocity vector of departure ( a r r iva l )  i n  the  rotat ing frame fo r  

passage behind the moon i s  the  ref lec t ion  of the  velocity vector of 

a r r iva l  (departure) f o r  passage i n  front  of the  moon. With regard t o  I 
the  analyt ical  theory, the simplifying assumption of the a x e d  earth I 
renders the  departure and a r r iva l  velocity vectors ident ical ,  fo r  I 
passage e i the r  i n  front  of or behind the  moon. I ' 

Figure 6.2 presents the  variat ion i n  6v as  a function of w , 
P I 

6v being re la ted  t o  parabolic velocity v a t  perilune through 
P P 

(6-34). The variat ion i n  t o t a l  t r a n s i t  time, (6-38), as  a function 

of w , i s  shawn i n  Figure 6.3. It might be noted tha t  the lunar 

longitude a t  the  time of perilune passage must necessarily be obtained 

from 

Longitude = x - a - t (a) 



FIGURE 6.2. VARIATION PAKABOLIC VELOCITY AT PERILUNE VS ORIENTATION 
ANGLE co . 



w ; deg 

FIGURE 6.3. TRANSIT TIME BETWEEN PERILUNE AND L1 VS ORIENTATION 
ANGLF: cu 



- '. 
-.. The velocity vector of arrival/departure i n  the  ro ta t ing  earth-moon 

space i s  

+ = a r r i v a l  

- = departure 

where 

cos w - s i n  w 
C R/O = ( 

f s i n  w + cos w 

+ = passage i n  f ront  ofmoon 

- = passage behind moon 

(6-41) - A= 

A 

The a r r i v a l  velocity component vx along iR i s  given i n  Figure 6.4 and 

the  l a t e r a l  a r r iva l  velocity component v i s  sham i n  Figure 6.5 f o r  
Y 

passage i n  front  of and behind the moon. The differences i n  t h ~  nu- 

merical integrations may be viewed ( in  the nonrotating frame) as  the 

difference i n  geometry of the ear th a t t r ac t ion  r e l a t ive  t o  the  lunar 

orb i t ,  .while i n  the rotat ing frame simply r e f l e c t  the  f a c t  t ha t  pas- 

sage i n  f ront  of the moon takes advantage of the  moon's motion about 

L1 . The degree of agreement between the approximate theory and e i ther  

of the numerically integrated data .would seem t o  depend on the  va l id i ty  

of t h e  approximate assumed geometry r e l a t ive  t o  e i the r  of the exact 

geometries of the ear th a t t rac t ion .  







Chapter V I I  

SUlQM?Y AND CONCLUSIONS 

Unperturbed Keplerian motion has been represented through a 

transformation of independent var iables  as e i t h e r  of two harmonic 

o s c i l l a t o r  systems, where t he  new independent var iables  are  r e l a t ed  

t o  t h e  t r u e  and eccentric/hyperbolic anomalies. The harmonic o sc i l -  

l a t o r  systems are  re fe r red  t o  respect ively  as the  foca l  and cen t r a l  

o s c i l l a t o r  systems. The cen t r a l  o s c i l l a t o r  system is dist inguished 

by t h e  f a c t  t h a t  it e f f ec t i ve ly  represents  a l o c a l  regular izat ion 

of t h e  two-body problem and is hence v a l i d  f o r  r e c t i l i n e a r  o r b i t s  

up t o  and including per iaps i s  passage a t  t h e  s ingu la r i ty .  The 

f o c a l  o s c i l l a t o r  i s  f u l l y  as general  except t h a t  t he  solut ion i s  

unbounded. a t  t he  s ingu la r i ty .  The na tura l  Srequencies of t he  

cen t r a l  and foca l  o s c i l l a t o r s  a re  r e l a t ed  t o  t he  o r b i t  energy and 

angular momentun respect ively .  The solut ions  t o  both o s c i l l a t o r  

systems a re  presented i n  universal  forms which a re  d i r e c t l y  applicable 

func t iona l ly  t o  a l l  types of o r b i t s .  

The d i f f e r e n t i a l  equations governing perturbed motion were then 

obtained as  perturbed harmonic oscj.lla-Lor systems, and nonlinear var ia-  

t i o n a l  equations are  developed i n  vector form f o r  both systems. Several  

computational aspects of use of e i t h e r  the  va r i a t i ona l  ( ~ n c k e )  equa- 

t i o n s  o r  the  t o t a l  perturbed system (cowell) equations of motion a re  

discussed. The most important fea tu re  of t he  perturbed cen t r a l  osc i l -  

l a t o r  system, i n  e i t h e r  t he  Cowell o r  Encke form, is  t h a t  it i s  a regu- 

l a r i z e d  system and y ie lds  a well-behaved numerical solut ion regardless 



of proximity t o  the s ingular i ty .  The advantage of use of the perturbed 

foca l  o sc i l l a to r  system i n  a numerical computation is  i n  the  v i c i n i t y  

of periapsis,  where a degree of accuracy grea te r  than t h a t  of the  

c e n t r a l  o s c i l l a t o r  resu l t s .  

Linearized var ia t iona l  equations have been developed i n  vector 

form f o r  both harmonic o s c i l l a t o r  systems. They are solvable by 

quadrature i n  the  domains of the  new independent var iables .  The 

general  solutions t o  the  l inear ized  va r i a t i ona l  equations have been 

presented as s t a t e  t r ans i t i on  matrices involving the universal  functions 

obtained f o r  the  unperturbed solut ions .  The Poisson se r i e s  nature of 

the  integrands suggests the  use of each o s c i l l a t o r  system fo r  par t icu-  

l a r  forms of the  perturbing force.  Examples of each type have been 

given t o  i l l u s t r a t e  the  se lec t ion  procedure. - -.= 

The l inear ized var ia t iona l  theory has bzen demonstrated i n  the  

analysis of a perturbed c i r cu l a r  o rb i t  and perturbed r ec t i l i nea r  

orb i t s .  The solut ion t o  the  perturbed c i r cu l a r  o rb i t  was obtained 

from the  Euler-Hill equations, and iden t i ca l  r e s u l t s  were obtained 

using the solutions t o  both perturbed harmonic o s c i l l a t o r  systems. 

The d i r ec t  extension t o  notlcircular reference o r b i t s  has been indi-  

cated. The analysis of perturbed r e c t i l i n e a r  o rb i t s  was accomplished 

using the theory developed f o r  both o s c i l l a t o r  systems f o r  two d i s t i n c t  

types of perturbing force.  The two types of perturbing force con- 

s idered were the a t t r ac t ion  of a f ixed ex te rna l  body and the a t t r ac -  

t i on  of the second spher ical  harmonic ( J ~ )  term of the  expansion 

of the  primary body poten t ia l .  Each perturbing force has been analyzed 

using both systems f o r  a reference r e c t i l i n e a r  parabola f o r  ver i f ica t ion .  



The extension t o  the  notparabolic reference r e c t i l i n e a r  o rb i t  has been 

obtained using the  o s c i l l a t o r  system appropriate t o  the  pa r t i cu l a r  

perturbing force.  

A s  a fur ther  demonstration of the theory, near-parabolic t r ans fe r  

t r a j ec to r i e s  between the moon and the c is lunar  l i b r a t i o n  point 
L1 

have been analyzed using the r e su l t s  of the l inear ized theory of the 

cen t r a l  o sc i l l a to r  system. The r e su l t s  have been presented as alge- 

bra ic  expressions r e l a t i ng  the  var ia t ion  i n  parabolic veloci ty  f o r  

perilune a t  t he  lunar surface necessary f o r  rendezvous a t  L1 as a 

function of perilune or ientat ion.  The r e su l t s  may be interpreted as 

the  veloci ty  requirements a t  
L1 or  the  moon f o r  passage i n  e i t he r  

d i rec t ion  and on e i t h e r  s ide of the  moon. The ana ly t ica l  r e su l t s  

agree qui te  closely with the numerical evaluation of corresponding - -=  

nonlinear equations of motion. Retaining only the f i r s t  term of the 
b 

ana ly t ica l  expressions accounts f o r  75 - 90 percent of the  nonlinear 

perturbation values. 

Several areas of invest igat ion ex i s t  i n  application of both the 

nonlinear and l inear ized theory t o  problems i n  c e l e s t i a l  mechanics. 

Among these would be other forms of perturbing force and numerous 

theo re t i ca l  and p rac t i ca l  applications.  The Poisson se r i e s  nature 

of the integrands of the  l inear ized var ia t iona l  theory also suggests 

extension t o  higher order perturbation theory using algebraic computer 

operat ions. 
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