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ABSTRACT

Unperturbed two-body, or Keplerian motion is transformed from the
time domain into the domains of two unique three dimensional vector
harmonic oscillator systems. One harmonic oscillator system is fully
regularized and hence valid for all orbits including the rectilinear
class up to and including periapsis passage. The other system is fully
as general except that the solution becomes unbounded at periapsis pas-
sage of rectilinear orbits. The natural frequencies of the oscillator
systems are related to certain Keplerian orbit scalar constants, while
the independent variables are related to well-known orbit angular
measurements, or anomalies. The solutions to both systems are uni-
versally applicable functionally to all types of orbits (elliptic,
parabolic, hyperbolic, and rectilinear). 1

Perturbed two-body motion is then presénted in the fr;mework of
perturbed harmonic oscillators. Nonlinear and linearized Encke per-
turbation equations, in vector form, are developed for both perfurbed
orbit oscillator systems, and the linearized véctor perturbation
equations are demonstrated to be directly solvable by quadrature in
the domains of the respective oscillator systems.

The linearized analysis of general rectilinear orbits perturbed
either by an external body or by the second spherical harmonic (Jz)
is presented. Albebraic expressions are developed which represent
the perturbation state vector referenced to the reference rectilinear

orbit.

- iii -



An analysis of near-parabolic transfer trajectories between the
moon and the cislunar libration point Ll is presented. Approximate
formulae are developed which represent the velocity requirements at

the moon and Ll for passage in either direction on either side of

the moon.
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Chapter I
INTRODUCTION

The physical basis for celestial mechanics was established more
than 300 years ago with the publication of Kepler's three laws of
planetary motion, based on the observations of Tycho Brahe. Subse-
dquently, Newton established the mathematical foundation of modern
celestial mechanics by postulating the law of gravitational attrac-
tion between two bodles as the force of attraction being proportional
to the product of the masses of the two bodies and inversely propor-
tional to the square of the distance separating them. In vector form,
this famous mathematical relationship appears as

- Ho_ -
r = - ;g.r ‘ | | (1~-1)

In spite of its apparent simplicity, it is a singular nonlinear dif-
ferential equation of the motion whose scalar components are repre-
sented by coupled second order differential equations. First inte-
grals of (1-1) are readily obtainable by elementary means, and the

well-known transformation of the dependent variable r to u = l/r

results in the differential equation
. 1
uw’to+u = = 1-2
s (2-2)

where (-)” denotes differentiation with respect to the true anomaly
f . Although it may appear trivial at this point, the vector equa-
tion which affords the complete vector solution to (1-1) in conjunc-
tion with (1-2) is

r“+r = 0 _ (1-3)



where r is the unit radius vector.

The system of equations (1-2) and (1-3) is the introduction to
the representation of Keplerian motion as an harmonic oscillator
system and is referred to herein as the "classical' orbit oscillator
system. Thus it would appear that the undesirable mathematical charac-
teristics of (1-1) do not appreciably affect the development of a
meaningful solution.

There exist two regions of mathematical interest associated
with the general solution to (1-1); these regions are related to
near-parabolic and near-rectilinear orbits. Rectilinear orbits may
be elliptic, parabolic, or hyperbolic and are characterized by the
particle encountering the singularity of (1-1) at periapsis.
Geometrically, they are straight lines connecting the orbit foci.

Representation of the solution to (1-1) in terms of the true
gnomaly has the advantage that there is a natural smooth transition
between the elliptic and hyperbolic regions of motion. However, the
description of motion would appear (at this time) to break down for
rectilinear orbits if the true anomaly is regarded as an angular mea-
surement. This disadvantage becomes distinct in the analysis of
perturbed Keplerian motion in which the instantaneous, or osculating,
conic passes through the rectilinear region of motion. It will be
subsequently shown that, for pure rectilinear orbits, an "effective"
trﬁe anomaly related to the particle speed results in a valid solution.

If the solution to the unperturbed two-body problem is repre-
sented in terms of the eccentric or hyperbolic anomaly as opposed to

the true anomaly, the resulting solution is then compatible with the



simplest and most convenient form of Kepler's time equation. Further-
more, the solution is directly valid for rectilinear orbits (geometrically,
an "eccentric circle" may still be circumscribed about a rectilinear
ellipse). However, the penalty is the lack of a functionally smooth
transition between the mathematical representation of elliptic and
hyperbolic motion. This disadvantage would manifest itself in the
analysis of perturbed Keplerian motion in which the osculating conic

passes through the pargbolic region of motion.

History of Universal Orbit Formulae

The difficulty of analysis of the continucus transition region
between the elliptic and hyperbolic regions of Keplerian motion has
led to the universal orbit formulae of numerous investigators such as
Stumpff, Sperling, Herrick, Battin, etc. The formulation of the uni-
versal orbit solution is obtalned by a gene;alization of the Keplerian
solution to the various regions of motion and effectively describes
the general orbit by means of an energy parameter and the appropriate
"universal® anomaly (e.g., eccentric anomaly for eccentric orbits).
The resulting solution functionally affords the necessary smooth
transition between the various regions of motion and, in addition,
is capable of handling the rectilinear béundary of the motion up to
and including periapsis passage at the center of attraction. The
derivation of the universal orbit solution was subsequently obtained
by Pitkin [1] from a regularized form of Eq. (l-l), yielding a dif-
ferential equation as the basis of the universal solution, but also

establishing the relation between the universal orbit formulae and

the mathematical process of regularization.
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History of Regularization

Regularization may be described as a procedure for removing the
singularities of a mathematical expression by means of, say, a change
of varisbles. As referred to in this research, we will be concerned
with the regularization of the differential equation (1-1). Although
the mathematical objective is to obtain a well-behaved solution for
a particle which passes through the singularity, it will be shown that
a computational advantage is obtailned for particles which pass near
the singularity.

The history of regularization of the classical two-body problem
is usually traced to Levi-Civita (1906). The regularization that bears
his name is a relatively complicated procedure which transforms the
time and coordinates of the two-dimensional two-body p;bblem into a
three dimensional space. This is accomplisﬂed by means of a theory
of conformal mapping and representation of the two-dimensional posi-
tion vector as a complex number. The Levi-Civita transformation has
the important property that it is capable of removing the singularity
at more than one center of attraction and is thus referred to as a
Y"global" regularization. Szebehely makes extensive use of this theory
in reference [2].

Recently, Kustaanheimo and Stiefel [3] succeeded in generalizing
the ILevi-Civita transformation to three dimensions by means of the
generalization of complex numbers to spinors, thus effectively trans-
forming the three-dimensional Cartesian space problem into a four-
dimensional space with the appropriate time transformation. This

method is referred to as the K~S transformation.




Local Regularization

A regularization procedure which eliminates the singularity at
only one center of attraction is referred to as a ;local" regulariza-
tion. Application of the K-S transformation to the problem of local
regularization reduces the equations of motion in four-space to a
éecond order, linear, constant coefficient set for the unperturbed
Keplerian problem.

Pitkin [1] uses only the time transformation of the Ievi-Civita
transformation (which he refers to as the Sundman transformation) to
obtain a regularized set of a vector and scalar equation of motion.
From this he eventually obtains the universal orbit formulse. In
his derivation, one of the integrals of the Keplerian problem
(energy) is used to simplify the resulting scalar orbitméquation,
which then becomes that governing the behavio; of a simple harmonic
oscillator. The regularization appearing in this research introduces
a vector integral of the inverse square two-body problem that has the

effect of simplifying Pitkin's complicated vector equation to that of

a vector harmonic oscillator in three dimensions. The resulting three-
dimensional regularization of the inverse-square two-body problem thus

achieves all the advantages of the K-S transformation applied to local

regularization without the transformation of the coordinates. More
importantly, it supplies a simple orbit oscillator system analogous
to the classical oscillator system but with the modified eccentric

(hyperbolic) anomaly as the independent variable.
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Contributions of this Research

The aforementioned regularization of the inverse-square two-body
problem, obtained first by Burdet_[h] and subsequently and independently
by the author, yields the differential equations of a vector harmonic
oscillator which leads directly to a modified form of universal orbit
formulae. Following Burdet's terminology, this system is referred to
as the "central oscillator" system. Since the central oscillator
system arises directly from regularization, it is automatically valid
for rectilinear orbits, up to and including periapsis passage at the
center of attraction. The solution to the central oscillator system
is identical to the orbit description using the eccentric or hyper-
bolic anomaly, but in a more general form.

At this point, the term "universal" must be given a precise
meaning. This term will be used to designate a solution which may
be expressed functionaliy in a form applicable to orbits of arbitrary
energy and angular momentum (including zero for either or both) and
including the time domain singularity of periapsis passage for recti-
iinearity. In spite of the obvious singularity of the term l/p in
(1—2), it will be shown that the classical oscillator system also
admits a well defined solution to the'general rectilinear orbit,
where the independent variable is related to velocity and is unbounded
only at periapsis passage. Thus the classical oscillator system might
be regarded as quasi-universal. During the course of this research,
however, Burdet [5] introduced the author to a subtle modification of
the classical oscillator system and referred to as the "focal" oscil-

lator, which uses a modified true anomaly as the independent variable.

-6 -




This system will also be shown to be quasi-universal and admits the
identical solution of the cléssical oscillator. However, it differs
in one major respect in that it contains no terms which are unbounded
for rectilinear orbits. The same will be shown to be true of the
central oscillator system. Thus a perturbation analysis will not be
concerned with perturbations of unbounded terms, and therein lies the
primary reason for use of the focal and central oscillators in this
research.

The primary purpose of this research is to establish a method
of general perturbations based on the presentation of the unperturbed
two-body problem as two distinct harmonic oscillator systéms. The
perturbed two-body equations of motion are developed for both systems
and nonlinear Encke perturbation equations are then defeloped, along
with comments on the numerical computation &spects.

The linearized Encke perturbation equations are developed for
both oscillator systems and demonstrated to be directly solvable by
quadrature in the domains of the respective systems for a large class
of perturbing forces. The general solutions are presented along with
a delineation of regions of applicability with respect to the structure
of the perturbing force.

The solution to the problem of perturbations of a circular orbit
due to the second spherical harmonic (Jz) term is obtained using the
perturbed harmonic oscillator system solutions and is compared to a
solution obtained from the Euler-Hill equations. Perturbations of a
general rectilinear orbit are obtained for two forms of perturbing
fcrce: 1) the aforementioned J, oblateness term and 2) a fixed

2
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external perturbing body. Finally, an analytical treatment of near-
parabolic trajectories between the moon and the cislunar libration

_point Li is presented, using the perturbed central oscillator

system. The results are presented as approximate analytic formulae

for velocity requirements at Ll or the moon for transfer between

Ll and the moon.




Chapter IT
THE UNPERTURBED TWO~BODY PROBLEM

The motion of a particle about an attracting primary mass whose
force of attraction varies inversly as the square of the distance

between the two bodies is governed by
- B
r = - '—3 r (l-l)
r

where p = Gm , m = mass of the attracting body, and G is the
universal gravitational constant. It is advantageous at this point

to review the elementary derivation of the first integrals of (1-1).

Conservation of Energy

By constructing the scalar product of (1-1) with the vector r
1]

we obtain

a (?' j..%) - 0 (2-1)

reéulting in the energy integral

g = = r__'% = constant (2-2)

2

It can be shown that, for motion in an inverse square field, €& = -n/2a,

where a is the semimajor axis of the resulting conic section. For

the purpose of this analysis, a modified energy parameter @ 1is defined

as the reciprocal of the semimajor axis, or

o &L _ 22 _2_ x.x
T oa [V o )

(2-3)




The use of an energy-related parameter in the description of an orbit
eventually affords the desired smooth transition between the elliptic

and hyperbolic regions of motion, recalling that

ellipse a>0 , & < 0, >0
parsbola 8= o , & , @ = 0
hyperbola a< 0 , & >0, < O

This description is also uniformly valid for the rectilinear class of
orbits. An energy integral may be obtained for any conservative force

field, not necessarily central.

Conservation of Angular Momentum

A vector integral of the two-body problem, valid only for central
force fields, is obtained by constructing the vector cross product of

]
(1-1) with the position vector r , which leads to

L (TxT) = 0 (2-1)
leading, in turn, to the law of conservation of angular momentum,
h = T Xr = constant (2-5)

The invariance of the length of this vector is another statement of
Kepler's second law, namely, that the particle sweeps out equal areas

in equal times, while the invariance of the direction is an alternate
statement of the law that Keplerian motion takes place in a fixed plane.
For rectilinear motion (h=0) , both arguments are still valid, although

the orbit plane is indeterminate and the area is zero.

- 10 -




An alternate statement of Kepler's second law is

1. 2 d4f
‘é‘ = h = r at (2"6)
where A is the rate at which the area of the orbit is swept by the
position vector T , and f is the true anomaly. The expression for
the scalsr angular momentum is used as an independent variable trans-

formation equation to establish the following well-known differential

equation
. 2
u +u = l/p = p/h (2'7)
where u = 1/r , p is the semilatus rectum and (.)’ denotes the

derivative with respect to the true anomaly. The integral of (2-7)

is the familiar conic section relation _

P .

r = ————— (2-8)
1+ ¢ Cf
where the abbreviated notation Cf is used to represent cos f (equivalently,
S, would be used to represent sin f).

The sbove transformation of variables from the time t to a new
independent wvariable £ 1is an example of the general method to be
subsequently outlined which transforms both the unperturbed and perturbed
two-body problems out of the time domain into more convenient domains

of integration defined by new independent variables.

Eccentricity Vector

Another vector integral may be obtained which is unique to the
inverse square central force field and is variously known as Laplace's

first vector, Hamilton's ¢ vector, or the apsidal vector; throughout

- 11 -
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this research it will be referred to as the eccentricity vector.

From
aGF/r)/at = [E - D - (7 TR/
= [TxT) xT)/r3
= .H X ;/I‘B
- T xb/u (2-9)
we obtain

r/fr = rxh/y - € | (2-10)

where e is the vector constant of integration. Construction'of the
dot product of (2-10) and r and coﬁparison with (2-8) indentifies
the vector ¢ as directed along periapsis with length-equal to the
numerical eccentricity of the conic section. It might also be noted
that the eccentricity vector is well defined for rectilinear orbits,
for which h=0 and e=-7%, or ¢ =1, and also for circular
orbits.

For the unperturbed problem, we are apparently confronted with

seven constants of integration (one scalar and two vectors) for a sixth

order system. However, it is obvious and may be verified that the h

and ¢ vectors are orthogonal, or
h-e = 0 (2-11)

Also it may be shown that

ah-h = p(l-¢-¢€) (2-12)



or
p = a(l- ¢2) (2-12a)

Thus Eq. (2-11) and (2-12) represent two constraint equations or
side conditions, and the quantities a,'E and ¢ effectively repre-
sent five constants of integration. The sixth constant of integration

is the time of periapsis passage.

Hodograph of Keplerian Motion

By constructing the cross product of e and h
exh = {(vxh)xh/u-%xh (2-13)
one finds that -
-— — — - L
v = -exh/p-F%xh/p (2-14)

Thus the velocity vector is the sum of two vectors of constant‘magnitude,
one orthogonal to the € vector and one orthogonal to the instantaneous
unit radius vector, This is the famiiiar hodograph of Keplerian motion;.
reference [7] presents diagrams of Eq. (2-14) for elliptie, paraboliec,

and hyperbolic motion.

Regularization and the Central Oscillator System

Having reviewed the fundamental integrals of the two-body problem,
we are now in a position to proceed with a regularization of (1-1).
The procedure to be employed is a change in the independent variable

from time to a new variable x , the defining relation being

é—‘fﬁ‘ - ‘—{E (2-15)

- 13 -



The variable x is occasionally referred to as the fictitious or artificial
time variable; however, it attains a more significant meaning by noting
the equations for the scalar radius and time expressed in terms of

the eccentric anomaly E
r = a(l- ¢ CE) (2-16)

b= P2 (E-es) (2-17)

Differentiation of (2-17) with respect to time and substitution of

(2-16) leads to

B o= (/)2 /r (2-18)
which may be compared to (2—15) to obtain

x = Na (E-E). (2-19)
for the ellipse, and equivalently

x = [a] (F - F,) (2-20)

where F 1is the hyperbolic anomaly for the hyperbola, and where the
variable x is assumed to vanish at the initial values E0 and Fo

A more general quadrature may be obtained by using the erergy equation

(2-3)
a = —i— - -& (in2 + 10 92) (2-21)

- 14 -



and the angular momentum equation (2-6) to obtain

2 2u/r - up/r2 - ua (e-22)

Substitution of (2-22) in (2-15) yields an integral form

r

t r
dr
x_f_"/l_:l_d_t_ff‘_/—Lfi_E____-[ (2_23)
- r - rr .2 \1/2
(2r-p-ar )
t r r
o o o
For the general parabola (0:=0)
1/2 1/2
x = (2r - p)M2 - (e, - )Y (2-2h)
and for the rectilinear parabola (o = p = 0)
x = ()% - (er )Y/ " (2-25)

The relations (2-19) and (2-20) may be obtained from the more general
quadrature of (2-23) for a # O
An alternative form for the general parabola may be obtalined

by using (2-6) and (2-8) in (2-23), yielding

f f
Ju ar Jp af
R Bl B o (2-26)
£ f
0 (o]
which results in
x = Np [tan (£/2) - tan (£,/2)] (2-27)

- 15 -



Regularization of (1-1) is then accomplished by taking twice

derivatives of r

= a ~ydat o=,
r = (r) o - Tt (2-28)
—_— i ;2 = .
r = r t +rt” ' (2-28a)
where
t7 = E (£ = T - -.;/u (2-29)
dat

Substitution of (1-1) and (2-29) into (2-28a) results in

—

- (T Th)T- (2-30)
From (2-10) we obtain -,
€ = T x hfy - & * (2-31)
Substitution of (2-5) yields
T - G-TE-F-Th)T-F (2-31a)

and the second term in the RHS of (2-31la) is recognized as the second
term in (2-30); substitution yields

27
—

r + (2/r - T Lr/p) r = -¢ (2-32)

The scalar factor of T is recognized as the modified energy « ,

thus establishing a regularized vector orbit equation

—

r +adr = - € | (2-33)

- 16 -
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The resulting equation is not only nonsingular (as expected), but also

" & linear, constant coefficient vector equation. Since «a is a scalar
constant, the éomponents of T are governed by uncoupled second-order
differential equations. Moreover, both constants of (2-33) are orbit
constants, and the type of conic (i.e., ellipse, parabola, hyperbola)
directly corresponds to the type of (2-33) according to the signed value
of o .

Constructing the dot product of (2-33) with T , and noting that

r- = T -T/r (2-34)
and
aF - F)fax = T -T+T -T
= r” r+ e (2-3k4a)

-we obtain a similar equation for the scalar radius
r’+ar = 1 ‘ (2-35)

The system of equations (2-33) and (2 35), together with the inverse

of the transformation equation (2-15) are summarized as

’r

T +Qr = -¢ (2-36)
r” +ar = 1 (2-36a)
t° = rAh (2-36b)

and comprise what is referred to as the central orbit oscillator

- 17 -



system. It will be noted that the system is completely regular and

well-defined for all types of orbits. Also, the necessary orbit constants

are represented in bounded form (i.e., the term o as opposed to its

reciprocal a).

The Focal Oscillator System

As stated previously, the defining equation (2-6) for the scalar

angular momentum is used as an independent variable transformation

equation to obtain (2-7) in the same sense (2-15) was used to obtain

the central oscillator system. To review,

af/at

where u = 1/r and

to the true anomaly

and

Noting that

u’ =

7

u | =

(-)’

h/r°, or t- = r°/h (2-6)

ot (2-37)
12 i

it’ +at (2-38)

~

now denotes the derivative with respect

£ . Also,
- T . T/3 ‘ -

r - r/r (2-39)
(- T+T T3 +37T . T/ (2-40)

L= a(t’)/at - &7

- 217 . T/ (2-11)
= - u/r (2‘h2)
P T- G- T/r)R] (2-43)




we obtain

— 2\2
n r| . . r.pr > i
= —=-—| r . r- = = -u
2 | h2

=2
=2

(2-4%)

The vector equation which is used in conjunction with this scalar

equation may be obtained through the same transformation mechanics. From

#0 = Ptr (2-15)
g - FtP bt (2-46)
and
L]
—I-: = rf‘ (2-,4'7)
we obtain
= ~ .2 - LA
r = ¥f+2r+2f = -—5F (2-48)
r
where, noting that
o .2 - = s = g =
r¥+f = r.r+r.r = -T+r-r (2-49)
and
- . 3. 12
t = 2rr‘'/h = 2 r’t/h (2-50)
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we obtain

rh " . . 2 rBi .
Fro= — --gf-ff-?ff>+ — §
h r h
o woor.rT i
= ~;§ <?-;§ T+ ;5 T - =z T+ ;5 f>
r,+ h2
(2-51)
It could be easily verified that
r = e Cp + (h x E)sf (2-52)

leads directly to (2-51); however, the more elaborate derivation using
the independent variable transformation facilitates the inclusion of

L)
perturbing forces in the next chapter.

Thus the following analogous harmonic oscillator system is obtained

for unperturbed Keplerian motion:

¥ + ¢ = 0 ‘ (2-53)
u// + u = l/P (2-533.)
t° = r°/n (2-53b)

where the new independent variable is the true anomaly for all
nonrectilinear orbits. Due to its origins, this system has been

previously referred to as the classical oscillator system. For
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rectilinear orbits, the inverse of the time equation may be compared
. . 2 .
to Newton's equation along the rectilinear orbit (¥ = # p/r”) to obtain

an expression for the independent variable analogous to the true

anomaly as

£oor = % hV/u ' (2-54)

However, h = O for rectilinear orbits, and the classical oscillator
system would not appear to be applicable for this class of orbits.

It is, however, since a particular solution to (2-53a) is given by

]
I

(r - Cf)/p + constant (2;55)

and, by series expansion, using (2-54),

22 -
1 hv
u = = <——> + constant

p ou .

= y2/2p + constant (2-56)

where the constant is /2 from the energy integral (2-3).

The aforementioned algebraic difficulty may be avoided by modifying

the transformation equation (2-6) to

ay/at = p/r° (2-57)

where y = f/Jb for nonrectilinear orbits. Taking the independent
variable to vanish at the initial value fo results in

y = (f-£,)Np | (2-58)
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for nonrectilinear orbits. TFor rectilinear orbits, using (2-3) and

(2-22) in (2-57),

Ju at dr dr v-v
o
‘[ r2 '[ o II\/Qr— e M

where the + sign is taken for the particle approaching the singularity.
Using the (y)’ notation to denote derivatives with respect to
the independent variable y , the resulting system of equations of

unperturbed Keplerian motion may be obtained as

£ + pf = 0 (2-60)
u” + pu = 1 (2-602)
t° = rz/JL B (2-60b)

end is referred‘to as the focal oscillator system. Interestingly,
the natural frequency of this system is related to the angular momentumn,
'whefeas the natural frequency of the central oscillator system is
related to energy.

The solution to the focal oscillator system is identical to that
of the classical oscillator system; the advantage of the focal oscillator
system is that a perturbation analysis of the focal oscillator will be
concerned with variations of the bounded quantity p , whereas a
perturbation analysis of the classical oscillator system would involve

variations of the unbounded term 1/p .
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Solution to Central Oscillator System

The general solution to the central oscillator system (2-36) may

be expressed by

r(x) Uy (x) Uy(x) . -Uy(x) r(0)
= (2-61)
T (x) U, () U (x)  -Uy(x) 7(0)
e
r(x) = Ul(x)r(o) + Ug(x)r’(o) + U3(x) (2-61a)
\/-u(t-to) = Uy(x)r(0) + UB(x)r'(O) + Uy (x) (2-61b)
where
Uo(x) = - & sin o x -
Ul(x) = cos o x
U2(x) = «a sin Vo x
U3(x) = a (1 - cos va x)
ULL(x) = a (x - Ja sin Jo x) (2-62)
and where the UJ. have been defined such that
S UG = U0, 5=0, .3 (263)

The Uj are a form of universal functions, or variables, in that
they are valid for all type of orbits. This is directly obvious for
elliptic orbits (@ > 0), and can be verified for hyperbolic orbits by

noting that the circular functions convert to hyperbolic functions
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for o (and a) <O . To render the solution universal in the
computational sense for arbitrary values of O the Uj may be

represented by their series expansions

- ox + o x3/38 - ...

1-a x2/23 £ of xh/hi - ...

0, (%)
U, (x)
U,(x) = x-0 $/30 + & 2[5 - ...

B/ - a o+ xBer - ...

U, (x)

Uh(x) x3/3! - x5/5! + o x7/7£ -

(2-64)
Tt is important to observe that the universal functions may be used
in their circular function form of Eq. (2-62) for analytical manuipulation,
such as differentiation and integration, for arbitrary values of o H

the result of such manipulation may then be converted to hyperbolic

functions for hyperbolic motion or be represented by the more general
series expansions of (2-64). This precludes the necessity of developing f
a special table of derivatives and integrals of say, the series functions |
(2-64).

' The universal solution (2-61) differs from the better known
universal orbit formulae (such as that of reference (6]) in that the
final and initial state vector are presented in the regularized domain,
where the regularized velocity r’ [or r“(0)] approaches zero as
the particle approaches the center of attraction whereas the physical,
or time domain, velocity becomes unbounded. The final state vector

is related to the initial state vector and the constant eccentricity
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vector by a state transition matrix of scalar gquantities which is
explicitly free of either»initial or terminal values of either the
scalar radius or time. The convenience of analytical manipulations
in the domain of the oscillator systems (here the regularized domain
of the central oscillator) is carried forth in the perturbation

analyses.

Solution in Time Domain

The universal orbit solution (2-61) may be transformed to the

time domain by noting from (2-15) that

.;" = ?/}.{ = -LI‘I‘/\[I:L ‘ (2"65)
and from (2-34) -.
r’ = FT-F/r = 1. 1A (2-66)
resulting in
T(x) U, (x) x(9) y (x)

’;F(x)/ ?%_;%Uo(x) | {%UI(X)

€

(2-67)
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and

T(0) ';7(0)
r(x) = Ui(x) r(0) + Uz(x) —_— UB(x)

Ju
(2-67a)

r(0) - ?(o)

Ju (t-to) = Ué(x) r(0) + Us(x) + Uh(x)

)
(2-67b)

This manipulation necessarily introduces values of the scalar
radius in the state transiton matrix of (2-67), and possibly singularities
at r(x) = 0 . It demonstrates the ease of operating entirely in the
regularized domain with the well-behaved regularized velocities, and

transforming to the time domain (if at all necessary) only as a final

LY

step.

Modificetion of Solution

It is instructive to investigate the substitutions required to
modify the foregoing universal orbit solution to a more familiar form,
for instance, the solution presented in reference [6],'which‘is based
on an alternate set of universal functions S(ax2) and C(ax2) s

defined Dby

s(ozxz) = 1/3! - O‘x2/5! + ale‘/r(z - e (2-68)

c(ozxg) 1/2: - axz/lp.' + d2x6/6£ - ... (2-68a)

- 26 -




In terms of the Uy of (2-64), these functions appear as

sm%=(%+mm%2=u-%m£=xwé
(2-69)
or inversely,
U, = -ax+ Px> S(Otx2)
Ul = 1- o C(axg)
U, = x- s s(axe)
U3 - % c(o:xz)
Uﬁ - x3 S(axe)
(2-70)

Substitution of (2-70) into (2-67a) and (2-67b) directly yields
the universal time equation of reference [6] :

(0 ‘-'.;O)
i (t-t) = O O 2 @)+ 11 - ar(0)1 s(@d) + (0)x

Ju
(2-71)

and the universal scalar radius equation

T(0) - T(0
r(x) = W %';E{ = _(—)T/'_(——) [x - o3 S(Cxx2)] + [1 - CZr(O)]x2 c(ax2)+r(o)
u

(2-72)
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Evaluating (2-31a) at the initial conditons results in

) ¥ _ 7o) ¥ . 3
7(0) - —————T(0) - T (2-73)

B B

m |
I

which, when substituted along with (2-70) into (2-67), results in

— = = x2 _ - -~ 7
T(x) 1- clax) r{0)-r(0) Lo(ax®) + 1 [x-ax3s(ax®)1{|T(0)
| r(0) H
2
-~ Ju 3 o) ) x 2 -
Lr(x)d ;'37;3%(67 [x-ox”8(ox")] 1l ) C(ax™) r(0)
(2-74)

By substituting from the universal time equation (2-71) into the upper

right element of the above matrix, we may obtain a further modification
: ;

| ~ R
) 2 3
T(x) 1o = ¢ (o) b - — () 7(0)
r(0) m
. Ju | 2 ' 3
T(x) Y k- ed3s@d)] 1 —— c@®)| | F(0)
r(x)r(0) r(x) 3
L - .

(2-75)

which is the form presented in reference [6].

The particular form of the solution and/or form of universal functions
to be used is a matter of choice. The purpose of the foregoing was
to demonstrate a development of the universal orbit formulation from

the regularized central orbit oscillator system equations to a well-known
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solution which is expressed in the time domain. Some of the advan-

tages of the basic solution in the regularized domain (Eq. (2-61))

are the explicit dependence of the vector solution on a constant vector

integral of the two-body problem, namely, the eccentricity vector,
and the explicit independence of the state transition matrix on

either the instantaneous scalar radius or time.

Initial Conditions at Periapsis

The general solution (2-61) to the central oscillator system may
be particularized by referring the initial conditions to periapsis and
expressing the solution in the orbit coordinate system defined by

(6, Aixé, A) . In this frame, using (2-62) and

=]

T
=(rp,0,0)

p
— T
rp = (O P) Jb p) O)
e = (e, 0, 0)*
we obtain
T(x) =[x - Uy(x) , VB UE) , o (2-76)
T x) = [- U, Jpu(x), o) (2-76a)
Noting that
r’ = f . ;, = 0 >
p P p
we obtain
r(x) = T, Ui(x) + U3(x)
= I‘p + € UB(X)
= all - e U (x)] (2-717)
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and

Ju (t-tp) = T, X+ € Uh(x) (2-718)

In this form the independent variable is taken to vanish at periapsis.
A11 the well-known expressions for the solution to the inverse square
problem (for the ellipse, say, in terms of the eccentric anomaly) are

directly obtainable.

Solution to Focal Oscillator System

The general solution to the focal oscillator system (2-60) is

F(y) v, (¥) v, (¥) £(0)

(2-79)
£(y) Vo (y) v, () £(0)
uly) = Vy(¥) w(0) +V,(¥) ur(0) + V5(¥) (2-792)

where, following the pattern established in the definition of the
universal functions Uj of the central oscillator, it is convenient

to define similar functions

Vo(y) = -p sinvpy

Vy(y) = cospy

V,(y) = = sinvpy

v, ) - %pu-- cos \p ¥)  (2-80)

for the focal oscillator system, noting that

%v:jﬂ. (v) = Vj(y)-, i =0,1,2 (2-81)
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As stated before,.this solution may be regarded as a quasi-
universal solution in that it is applicable to any type of orbit
(elliptic through hyperbolic), which may not be surprising recalling
the "universal" definition of the true anomaly. Unlike that of the
central oscillator system the solution is valid as it stands for
parabolic motion, but must be modified for rectilinear motion through
series expansions of the Vj and the slternate definition of y for
rectilinear orbits. The independent variable y 1is still unbounded
at periapsis for rectilinear orbits, whereas x 1is well defined.

The solution for rectilinéar orbits is

r(y) constant (2-82)

u(y) = u(0) + u’(0) y + yo/2 . (2-82a)

where y =% (v - vo)/Jh. A general solution to the time equations

for both the rectilinear orbit and the general orbit (2-79) is more

convéniently obtained by referencing the solution to periapsis.
Regarding the mechanics of the solution (2-79) it will be

recalled that u = 1/r and hence

Ws e = e = - (2-83)

The position vector r is obtained from r = ¥/u , and from

(2'9):

. s hxt
£/ = fo- = = Jp (Ax¥%) (2-8Y4)
Ju
resulting in
Fo- 0 = p (2-85)

- 31 -




' The velocity vector r is obtained from

T =T (2-86)
where
T = rF o+ ke (2-87)
and
re = - 1°u’ (2-83)

Initial Conditions at Periapsis

A

For the general orbit at periapsis, rI; is orthogonal to fp

and the solution, expressed in (¢, f x &, h), is

~ T
r = (Cf 3 Sf > 0) ] (2—88)
T 2, T
for ¥ =(1, 0, 0)° and £ =p (0, 1, 0)". since
—— -_— 2
w’ = ~-r_ e-.rj/r_ = 0
b Y P/
we obtain
1 1
Up = ;— Ce +—§ (1 - cf) (2-89)
P
_ 1+ (-:Cf
b

The solution is identical to the classical orbit oscillator system
(Eq. (2-8)). Hence, the time equation for the focal oscillator is

identical to the standard forms obtained from the classical system.
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For instance, for parabolic motion

[,3
t-t = = f— [tan (£/2) +% tand (£/2)] (2-90)

o

For nonparabolic nonrectilinear motion, it is convenlent to appeal

to the identities

l- ¢
tan L \/ tan ;s
2 2
1+ e€
1l -c€
tanh = =\/ tan L. (e > 1)
2 1 2

+ €

(e <1) ‘ (2-91)

(2-91a)

and use the resulting values for E(or F) in the universal time equation

(Kepler's equation).

For rectilinear orbits, F¥(y) constant (as before) and

L3

w = y°/2 + /2 (Energy)

where

ed
1l
+
<

5
I
4+

y
£ -t =if%§=

which agrees with the corresponding result

oscillator (Eq. (2-61) for r(0) = r’(0) =

Jou - o

(er)3/?

(2-92)
&u

obtained using the central

0). For a£0 , it is

most straightforward to obtain time from the central oscillator, or

Kepler, time equation by obtaining u ,

a function of y .
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Chapter III
THE PERTURBED TWO-BODY PROBLEM -

The perturbed two-body problem is defined in the time domain by
the differential equation
= o
r = -~ —=7r+f (3-1)
.

where f = ?(;;;;E) is the force per unit mass of the particle.
The differential equation for the modified energy is directly

obtained by differentiation of (2-3) and use of (3-1) to obtain

. oA —
A = -7 .F -2
LT (3-2)
In like manner, from (2-5), -
. — — L
h = rxXTt (3-3)
and from (2-10)
2 1~ — = — —
€=E[th+rX(r><f)] (3-4)
or, alternatively,
= 1 - 2~ = — —
€ = 4 (2rr ~-rr - - x I]f (3-ka)

Perturbed Central Oscillator System

Repeating the derivation of the central oscillator system (2-36)

using (3-1) leads directly to the perturbed central oscillator system

2
r”+alx)r = - e(x) + I‘F—f (3-5)

e b At e




r“+o(x)r = 1+ E_f . (3-5a)
i (3-5%)

t7 = — 3-5b
Vi

where O(x) and <(x) are now varying orbit parameters whose

differential equations are given by modified forms of (3-2) and

(3-4) as

a’ = -%;’ '.‘E (3"6)
< = %1-[255’ S Fr -3 .FIF (3-6a)

where
T = f(r,r’/t’,t) 3 (3-6b)

The above system of equations (3-5) and+«(3-6) is regular and
unaffected by the sign or numerical value of the energy parameter
a(x) . The system may be solved by numerical techniques directly
as a thirteenth order system, although the instantaneous values of
o(x) and €(x) may be calculated directly from the osculating
element formulas (2-3) and (2-10), reducing the system order to nine.
The one exception would be if the perturbed particle should pass
through the singularity; at this point, ©(x) is indeterminate due
to the unboundedness of both terms on the RHS of (2-3). Thus it ié
necessary to appeal to the regularity and continuity of the dif-
ferential equation (3-6) through the singularity. The eccentricity
vector is still theoretically well defined from (2-10), since

n(x) =0 if r(x) =0 and hence €(x) = -r(x) . In a subsequent
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discussion concerning numerical computation, however, it will be shown
that the direct computation of all orbital elements from osculating
conic formulae is numerically inaccurate near the singularity and it
is preférable to use the corresponding differéntial equations for the

elements.

The order of the system may be further reduced by two by dis-

pensing with the scalar radius eguation (3-5a) and using
- - 1/2
r() = [6) - 7)1 (3-7)

resulting in a total system order of seven. The scalar radius is
used not only in the integrand of the time equation but also in the
transformation of velocities in the regularized domain to physical

velocities through

4

x (3-8)

r = T

Perturbed Focal Oscillator System

Repeating the derivation of the focal oscillator system (2-60)

using (3-1) results in the perturbed focal oscillator system

R R 3 " ma
r” +p(y)r = {r {f - (f-v)r] (3-9)
a2 _ .
u’ + p(y)u = 1 - %I for (3-9a)
2
r

1t = — -
T (3-9v)

where p(y) is now a varying orbit parameter whose differential

equation is related to the perturbing force by

» = %r3 £ T (3-10)

v i e e




~

The latter expression is obtained by differentiating (2-85) and substi-
tuting (3-9), noting that r - r* =0 . In a numerical computation
the instantaneous value of p(y) 1is obtained directly from (2-85),
resulting in a total system order of nine. Also it is necessary to
retain the unil vector nature of _; at each step in the computation;
this could be apcomplished by a normalization. Note that the scalar

equation of the system is not redundant as is its counterpart in the

central oscillator system.

Numerical Computsation

Burdet [7] investigates the numerical integration of both oscil-
lator systems as presented, and demonstrates the numerical stability
and adaptability of the systems in comparison to compqzation in the
time domain. One of the results of his numerical experiments is that
a greater degree of accuracy is achieved by‘numerical integration of
the differential equation for the orbital elements O&,h (or p )
and € s as opposed to direct computation using the osculating
element formulae. The numerical difficulty with the energy parameter
& near periapsis arises‘from the unboundedness of both terms on the
RHS of (2-3) and may result in the subtraction of large qﬁantities.

A different numerical problem near periapsis may occur in the computa-
tion of the angular momentum vector h s to which € and P are
related. The problem would be associated with the cross product
nature of h s> Which is obtained from the product of a very large

quantity (velocity) and a very small quantity (the component of the

radius vector orthogonal to T ). The author's own experience with

_37_



the evaluation of these quantities has led to the same conclusion.
Burdet also advises against using any constraint relation (such as
the unit vector nature of r or the orthogonality of * and 1)
to reduce the order of the system. In the interest of accuracy, he
advocates solving the highest order system prior to imposing con-
straints. Burdet also compares the numerical integration of unper-
turbed focal and central oscillators with varlous time step size

regulators, such as
At = rAx (3-11)

and automatic time-step size regulators defined during the process
of integration which use some error criteria to either halve or
double the time-step size. His results generally indi;;te lower
numerical errors over a large number of revolutions of unperturbed
circular orbits using either the oscillator systems'or the time-
step size regulators corresponding to the time transformation equa-
tions of the oscillators. He claims the accuracy increase is more
pronounced for noncircular orbits.

For noncircular orbits, Burdet claims greater accuracy for the
focal oscillator thén for the central oscillator near periapsis, and
Just the reverse at apoapsis. Hence he proposes a mixed numerical
procedure which uses the perturbed focal oscillator system near
periapsis and the perturbed central oscillator near apoapsis. The
reason for the increased accuracy of the focal oscillator near
periapsis may be explained by examining a rectilinear orbit; the
focal oscillator itself is not a regular sysfem, since the corre-

sponding independent variable is proportional to speed (Eq. (2~59))
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and is unbounded at the singularity (periapsis), as is the reciprocal
radius u . Therefore, fixed step sizes in the independent variable
correspond to fixed increments in velocity, and the numerical procedure
could theoretically take an unbounded number of steps reaching periapsis
(which is equivalent to evaluating the unbounded quantity u ). For
the more realistic cese of finite periapsis radius, the perturbed focal
oscillator would then be expected to result in greater accuracy near
periapsis, and an automatic step size regulator might be inclined to
increase the step size near periapsis, just as it would decrease the
step size in time if time were the independent variable.

The relation between the two oscillators and step size regulation
is apparent from (3-11), where n = O corresponds to the time domain,
and n = 1,2 correspond to the central and focal oscillators res-
pectively. The lack of ambiguity of the ceptral oscillator or its
equivalent transformation equation used as a time-step siie regulator
would appear to make it the best general choice for numerical analysis.
Use of the perturbed central oscillator system with fixed step size
increments in the independent variable x results in a smooth numerical
integration of the system state vector and a natural propagation of the

system time at all regions of the orbit.

Cowell's Method

The equations of motion of the perturbed two-body problem have
been presented in the time domain by (3-1) and in the domains of the
central and focal oscillators in what is classically known as the

. Cowell form. This form of numerical computation is characterized by
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the determination of the total perturbed system state vector and
generally requires a high degree of nuherical precision. A much
greater degree of numerical accuracy for the same precision is
obtained by representing the total perturbed system state vector as
the sum of a reference unpertﬁrbed conic state vector and a perturba-
tion state vector, if the perturbation itself is small. Thus the
major portion of the total perturbed state vector is obtainable from
an analytic solution to the Kepler problem, and the method attailns
its greatest degree of utility when the particle is near periapsis.
This method of representation of the perturbed two-body problem is

referred to as Encke's method.

Encke's Method

The Encke perturbation differential equations of motion describe
.

the difference in the perturbed system and the unperturbed reference
system at the same instanﬁ of time, or possibly for the same value of
the particular independent variable of the perturbation equations.
The Encke perturbation equations, or variational equations, in the
time domain are obtained in reference [6]. Linearization of these
equations results in a time-varying system, which does not offer
significant advantages over the nonlinear equations themselves. One
important exéeption to the above is the linearized Encke equations
in the time domain referenced to an unperturbed circular orbit;
expressed in the rotating coordinate system which rotates with the

particle (or at the same angular velocity as the particle about the

primary body), the Encke perturbation equations reduce to a linear
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constant coefficient system known as the Euler-Hill equations. The
extension to the noncircular case, however, reintroduces time-varying
terms in the fbrm of the angular velocity and angular acceleration of
the reference coordinate system. |

- In the next chapter it will be shown that the representation of
the pertufbéd two-body problem as perturbed harmonic oscillator
systems leads to linearized variational equations which, although
not constant coefficient systems of equations, are integrable in the
domains of the oscillator systems (that is to say, using the inde-
pendent variable and associated state vector representations of the
oscillator systems). By their vector nature, the variational equa-
tions may be expressed in any nonrotating coordinate sysfem and are

valid for any value of eccentricity of the unperturbed féference conic.

LY
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Chapter IV
VARTATIONAL EQUATIONS

The development of Encke perturbation equations, or variational

equations, is based on a vector identity of the form

r = 0+ 87 (4-1)

where r represents the perturbea system radius vector, ;o the
unperturbed system radius vector, and &r the vector difference of
the two systems at the same value of the independent variable. The
term ®r is referred to as the "fixed x " variation, (e.g., for
the central oscillator system) or perturbation in ;o due to the
general perturbing force vector f(r,r’,t) . This is-contrasted
to the "fixed t ' variation, which compares the two systems at
the same instant of the time. Since the preceding chapters have
established the representation of perturbed Keplerian motion as two
unique perturbéd harmonic oscillator systems, we are led naturally
into the establishment of fixed x (or fixed y ) variational
equations using the new independent variables x and y of the
central and focal oscillators respectively. Since the derivations
for both systems are essentially the same, the variationél equa- .
tions of the central oscillator will be examined in detail and the
corresponding results for the focal oscillator will be presented

without elsboration.
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Central Oscillaltor System

From the vector identity (4-1) a corresponding scalar identity
may be obtained for the scalar variation &r . Constructing the dot

product of (4-1) with itself,

2
T % = £ = 1r° +25° .87 + 87 - b7 (4-2)
where r and rO are the perturbed and unperturbed scalar radii.

Defining the scalar equivalent to (4-1) as
o
r = r + 87 (4-3)

we obtain

2 1/2
Br = (ro +27° + 5T + Br - ®r) - r° -. (4-k)

Since (4-4) involves the differencing of nedrly equal quantities,
a more convenient form for computation is

2¥° . &7 + 5T - BT
dr = > (4-4a)

(r° + 2%° - 8T + BT - 6?}1/2 + r°

Hence, for the central oscillator system only, a variational equa-
tion for the scalar radius is redundant; regardless of this, the
scalar radius variational equation will be included in the central
oscillator description for the sake of completeness and possible
computational conveniencé. As will be subsequently shown, the

scalar radius variation is required to obtain the variation in time
along the perturbed system (since time is now regarded as a dependent

‘variable of the system).

- 43 -




With regard to the future development of linearized variational

equations, it might be noted that, to first order,
8r = r =« Br (4-5)

which identifies the first order scalar variation és the radial compo-

nent of the vector variation.

Time Variation

Since time is now regarded as a dependent variable of the motion,
it may be greater or less along the perturbed system than along the

unperturbed system. Defining the perturbed system time as
o]
t = t° + 8t (}'l""6)

along with the transformation equation (3-5b)

substitution of (4-3) along with

. (5-7)
Ju
leads to
) 5r
ot = ;ﬁf (4-8)

Variation of Orbit Elements

To facilitate the establishment of the system variational equa-
tions of motion, it is necessary to obtain the variations of the orbit

elements & and ¢ from their nominal or unperturbed values. The
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Bom,

variations in (O and € are represented as

|}

50(x) a(x) - o (4-9)

Be (x) e(x) - €° (4-9a)

A direct calculation of the variations 8@ and &e¢ using the
osculating conic formulas (2-3) and (2-10) would involve the sub-
traction of sizeable quantities and violates the spirit of a wvaria-
tional treatment. Alternatively, the differential equations for the

variations would be appropriate and are identical to (3-6);

50’ = ' = -=1’ . F (4-10)

g~

s’ = ¢ 111 [277’ - 77 - 7 - TI] F .. (4-10a)

The initial values &0(0) and 5ec(0) to be* used in solving (4-10)
are nonlinear functions of the initial value of the perturbation
state vector 5r(0) and &r’(0) and must be obtained from (4-9),

however.

Nonlinear Variational Equations

The fixed x variational equations may be obtained directly by
differencing the perturbed and unperturbed systems through the afore-

mentioned identities, resulting in

: 2
5r” + (@° + 8Q) BT +850 ¥ + Be = _1_;1_ T (4-11)
o O . O = - :
5r” + (@ + 8Q) &r +8dr = - f °r (4-11a)

8t7 = (4-11v)

or
Vi
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where

f = f(r,r’,t) (4-11c)

The tofal system, consisting of (4-11) and the differential equations
for the orbital elements (4~10), may be evaluated directly as a
thirteenth order system. The order of the -system may be reduced by
two by dispensing with the redundant equation (4-1la) and computing

5r from (L-k).

Regularity of Variational Equations

Inspection of the variational equations (4-10) and (4-11) reveals
them to be entirely free of any singularities at r,ro, or &r =0
(except, of course, when f has singular nature). The result is a
well-behaved system of differential equations up to and including
periapsis passage at the singularity. In addition, there is a natural
smooth transition between elliptic and hyperBolic motion, including
rectilinear motion. Since the theory is cast entirely in the regu-
larized domain, using the well-behaved regularized velocities and
variations, transformation to the possibly unbounded physical veloc-
ities is accomplished only as an end‘result through the unbounced
transformation equation.

Another advantage in use of the central oscillator system is
the relatively simple explicit dependence of the unperturbed system
conic state vector and time on the independent variable x . In
the time domain, given some particular value of t , it is necessary
to resort to some iteration technique to establish x 'and hence the

reference conic state vector.
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This brings us to another interesting feature of the central
oscillator system, namely, the "automatic'" step size regulation
feature of the central oscillator trahsformation equation (2-15).
If one chooses to use variational equations in the time domain, a
variable step size in time may be generated through a fixed step

size in x through
At = t(x + Ax) - t(x) (4-12)

which reduces to

o]
r

lim 4t = —adx | (4-13)
dx - 0 Ju '
Thus the reference conic state vector is obtained from the fixed-
step incremented variable x while the numerical integfétion of
the time-based variational equations proceeds*using the varisble
step size in time. This step size variation in time tends to

decrease the step size near the singularity and effectively smooths

the numerical integration gbout periapsis.

Linearized Variational Equations

A set of linearized variational equations may be obtained
directly from the nonlinear variational set. The nonlinearity due
to the structure of the perturbing force is removed by expanding the
perturbing force in a Taylor series about the unperturbed system and
retaining only the first term; this is equivalent to simply evaluating
T along the unperturbed system. (The first order terms of the Taylor

series expansion of the forcing function could also be retained in
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some cases and still result in a linear system, although quite
complicated.)
Retaining only the first order term in the differential equa-

tions for the orbit elements && and 82 results in

s’ = -2 F . (4-1k)
n
=, l:,-0-0° =-0’-0 -0’ -0 =
de’ = H-[Zr r -r r -r .1 I]f (4-1ka)
. where
f = 7(x°,1°,t%

The linearized variational equations may be written down by

inspection as

2 -z
o]
s O.— -0 - T -—
Br”+ Br +8G&r + de = 3 (4-15)
’ B
o}
, O (o] r -0 -
dr” + & Bdr +d3dr = — 71> . T (4-15a)
V)

or

Ja

ot ”* (4-15b)

The resulting linearized variational equations are nonsinguiar,
as expected, and involve functions of parameters of the unperturbed
system, all of which may be expressed as polynomials in the inde-
pendent variable x . Moreover, the structure of the resulting
integrands are of a particularly simple form for a specific class

of perturbing forces, to be discussed later.
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Solution to Linearized Equations

The vector variational equation (4-15) may be written along with

the auxiliary equations (4-14) as

1 0 o© 0
- 2o
0 -1 -r r'f/u
a
e . + . - - - - - - -—
dx 0O 0 O [2r r’-r? r-r’-rI]f/u
0O 0 © -2r’.f/u

(4-16)

where the superscript O has been removed from the representation
of the unperturbed system parameters. Expressing (4-16) in the

abbreviated form

or or

a o’ ) 5T -, -

o = = F [r] - + g [r,r%e]  (4-17)
s 8

the general solution to this linear, variable-coefficient system is




given by i_
& (x) or x %a
87 (x) o 57 o
- = ol (x-0),r(0),r"(0)]1| _° |+ o (x-0),7(a),r"(0)1g [o)do
de (x) Be
da olod
(x) o 0 f'w
(4-18) L
|
where =

Ui(x-z) Ué(x—z) -Ué(x-z) ¢ra[(x-z),§(z),f'(2)] ? é

o (ee2), 5 (2), 57(2)] = | 00T TG Tplren) B2, F @), (2)]

0 0 1 0 {ﬁ

0 0 0 \ 1 Ei

N \, g%

(%-19)

and j
Brol (-2),5(2),2°(2)] = - F(z) E2 U, (x-2)

+ 1r’(z) g[(x-z) Ui(x—z) - Ué(x-z)]
- aE'[5§5-u2(x-z) - Us(x—z)] %
(4-20) ]

Brrl (-2),7(2), 5 (2)] = o2 B_[[(x-2),5(2),5°(2)]  (h-21)




The fixed x

be written as

scalar perturbation equation (4-15a) may similarly

or 0 1 0 dr 0
.é‘};[. 51" = -Q 0 =TI Sr' + r[; ° .f]/lJ.
5 0O 0 o s -2r” - f/u
(4-22)
or
5r or
S| e | =F (2] or’ | + g [r,r, ] (4-23)
tsle 01 -
with the resulting solution *

.///
or(x) dr x //f
d5r’(x) = ¥[(x-0),r(0),r’(0)] Bré + Y[(#-G),r(c),r'(c)]é;[a]dd
8a(x) 50 o

(4-24)
ﬁhere
Up(x-z)  Uy(x-z) Vol (x-2),7(2),r7(2)]
¥ (x-2),r(z),r"(2)] = | Uy(x-2z) U (x-2) Vool (x-2),x(2),r7(2)]
0 0 1 »

(4-25)
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and

- r(z) zé—EUz(x-z)

i

¥, ol (5-2), £(2), 27 (2)]
+ r’(z) % [(x-z)Ul(x-z) - Ué(x-z)]

+ a[izéz-Ué(x—z) - U3(x—z)] (4-26)

Vool (6-2),2(2),27(2)] = ¥ o (x-2),x(2), 1" (2)] (u-27)

As stated before, the scalar variation Odr may be obtained directly

from (4-5); it is included here primarily for the sake of completeness.

Relation Between Fixed x and Fixed t Variations

The solution to the fixed nonlinear or linearized variational
equations, including the time variation &t 2 is sufficient to estab-
lish the state vector of the perturbed system at the mutually common
value of the independent variable x . It may be desirable, however,
or even necessary to obtain a comparison of the perturbed and unper-
turbed systems at the same time, hence requiring evaluation of the
corresponding fixed t wvariations. For example, in the next chapter,
several examples are analyzed using both the focal and central oscil-
lator systems. For comparison purposes, the fixed x variations of
the central oscillator and the fixed y variations of the focal
oscillator are converted to a common variation, namely, the fixed -t
variations. It would be possible to directly convert the fixed x
variations to fixed y variations and vice versa; however, this

would involve a more detailed discussion of the relationship between

the independent variables.
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The perturbed system radius vector T at some value of x and

corresponding time t° 4 5t has been given as
— _.0 . - ‘
r = r +0dr . (4-1)

Expanding r in a Taylor series about t® in powers of ©®t results

in the perturbed system radius vector at time £° , which is r°

plus the fixed t wvariation Ar , or

2_
- dr
r+g£(—5t)+:—L-———(-6t)2+ . . = P 4 AT (4-28)
dt 2 2
dat
Therefore
2_
- dr
Ar = ar-d—rat+l———5t2-... (4-29)
dt 2
at
where -
L Y
ar 7’ ot
& - v T T r , (+-30)

Note that &t measures perturbed system time minus unperturbed system
time from (4-6), while the Taylor series expansion (4-28) is in powers

of unperturbed time minus perturbed time. N\

AN
It should be apparent from (4-29) that while the fixed x varia-

tions and the time variation of the central oscillator are at all times
well behaved, the fixed t variations may possibly be unbounded or
ill-behaved for passage of the perturbed system arbitrarily near the
singularity. Thus the advantages that were obtained by expressing

the unperturbed two-body problem in the regularized domain as opposed
to the time domain are reflected in the behavior of the corresponding

variations. The unboundedness of the fixed t wvariations occurs only
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near r = 0 , since only unbounded derivatives are involved.

The fixed t wvariation (4-29) may be approximated to first order

by

- e o’ M
AT = BT - 10 —‘/—;—at (%-31)
r

substitution of (4-8) for &t’ results in

4

AT = 8T + r° 8x (4-32)
and, equivalently,
Ar = Br + r° Bx (4-322a)
where
1 3 ot
]
Bx = - — -[ dr(o)doc = - o (4-33)
r X
o

The quantity ©8x represents the first order variation in the inde-
pendent variable x along the perturbed system corresponding to the

time variation &t

\\\
Focal Oscillator System '

An entirely analogous procedure is used to obtain the fixed y
variational equations for the perturbed focal oscillator system.
Since the objective of a variational treatment is to- obtain variations
which may be added directly to the unperturbed system parameters, the

derivation must necessarily begin with the Jefinitions

r = 1°+8r (4-34)



u = u®+ &u , (4-3k4a)

The relation between the unit vectors and variations introduced for

the central oscillator are depicted in Figure 4.1, where

AO ~

_ " ~0 . r + or

r = rr = rr +r dr = P (4-35)
u + du

Br = rr - 10 = r(ro + &%) - 10 (4-36)

(8; is a fixed y variation in this case).

FIGURE 4.1. RELATION BETWEEN VECTOR VARIATIONS OF FOCAL OSCILILATOR
SYSTEM.

The results of the focal oscillator derivation are listed in
order corresponding to the order established in the derivation of

the variational equations of the perturbed central oscillator system.

1 1 1

ot = |- — (4-37)
vr; W2 uo2

o -y - B ot

g



577 + (p° + &p) 6T + Bp r° = % [F - (F.7)7) (4-37b)
(o] o I‘2 -
Su”’+ (p +8p) Bu+ dpu = - —E-f-r (4-37c)
where
1
r = =
u
f = f(r,r’,t)

L
e
e

Numerical computation of the foregoing nonlineé; variational
equations presents essentially the same difficulties noted for the
perturbed focal oscillator in Cowell form. One of these is the unit
vector nature of §(= r° + &7 s Where r® is also a unit vector);
as before, a normalization procedure would be appropriate. Also, it
will be recalled from Chapter IITI that the computation of u cannot
be accomplished in a straightforward manner if wu is unbounded. The
same is true in the variational system if w or u is unbounded ;
in either case, ®u 1is unbounded, although this is not directly
apparent from the differential equation (4-3T7c). This might be
explained as follows: if e is unbounded, the argument of Chapter III
would be applicable, since the effective variable of‘integration is pro-
portional to unperturbed system spéed. However, if the perturbed system
prarticle intersects the attracting mass (u - ) , this implies "instan-
taneous™ rectilinearity, or p =0 = p0 + 8p . Recalling that the semi-

latus rectum is positive semidefinite and ignoring I , (4-3Tc) may be

- 56 -



expressed as
5u” - pdu = O (%-38)

The solution to (4-38) is at least of exponential order relative to
v® for finite p
The foregoing discussion is probably of little practical interest

except for numerical analysis of near-pathological orbits.

Linearized Variational Equations

2 du
8t = - — (4-39)
Nuu®
0307 —=
5p’ = %ro ro . f TooE (4-392)
o> )
~ o~ ~0 T - = 20y %0
5r“+ p or + dpr. = — [f - (£-2°)r°] (4-3%)
K
2
o
’” O o} r "3 ~0
du“+ pdu + dpu = - —Ff o r (4-39¢)
!
where
T = T(E%7%t%)

Special attention is directed to (4-39) for &t’ , the time variation
along the perturbed focal oscillator. Comparison with the corresponding
equation (4-15b) of the central oscillator indicates the expression for

’

bt of the focal oscillator system contains a dependent varisble of the
unperturbed system in the denominator of the integrand. It will sub-
sequently be shown that this fact renders the integrand more complicated

in one basic sense than any other iutegrand associated with this research.
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Conversion of the linearized fixed y variations to fixed ¢

variations is obtained through

Ar = Br + 10 By (4-40)
M = Bu+ uo' Sy (4-40a)
where
By = =~ 5t/t’
- 2u°2-[y. 6u(0)/u°3(0) do (h-h1)
Yo

Solution to Linearized Equations

Entirely analogous to the solution presented for the linearized

central oscillator, the solution to linearized fixed y variational
| ]

equations may be represented by the state transition matrices

V(y-2)  Vply-z)  f[(y-2),7(2), 2 (2)]
o (y-2),7(2),7°(2)] = | Vo(y-2) Vi (y-2) B . [(r-2),7(2),7"(2)]

0 0 , 1

(4-42)

where

Bl (v-2),7(2),7"(2)] = - £(z) T2 v, (y-2)
+3(2) g5 L-2) yy-2) - Vp(v-2)]

B, oL 520, 3(2), 2 (2)] = 5 8, [ (3-2),7(2),27(2)] (-13)
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and

Vo) Ve v [-2)ue),u(e)]

¥ (y-2),u(2),0’(2)] = | Vo(r-2)  Vy(r2) ¥ [(y-2),u(z),u’(2)]
0 0 1
(b-bb)
where
Voo = - (2) BV, (-2)

+u'(2) 2 [s) ¥, (2) - V,(y-2)]

-

+ %.[xéa v, (y-2z) - V3(y—2)] ,

Vol -2, 0(2),07 ()] = 5 v [r=2),u(),0’ ()] (-4)

Relation Between lLinearized Variations

The expressions (4-35) and (4~36) identify the nonlinear rela-
tions between the variations in r ) r s, r, and u . Linearized

relations (fixed x,y or t) are obtained by

2. _ 3
su = &(1/r) = -br/r° = -¥° . 8r/r° (L-46)
s = &(ur) = odur’ + u'or (4-46a)
8r = &(rr) = Brro + r'or , etec. (4-46b)
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The relation between the variations of the rates is obtained by
differentiation. The linearized relations between variations of the
orbital elements and variations in the perturbation state vector

5; and S5V are

8h = &r X ¥v° + I° X &V (b-47)
2 — —
®p = T h - 8h (b-47a)
 .8er vO- v
8 = -2 7 - 2 (4-47p)
(o]
r B
pe = PLXD G XXM 57 (4-b7c)

Note that velocity v is related to the regularized velocity 1’

by (e.g., the central oscillator) - A
v o= % = Tifu/r (4-148)
Thus
— ﬁ o= -0’
v = —5 (r'®3r’ - r &r) (4-49)
o
r

Therefore, using the regularized velocities of the central oscillator

would yield, for example,

2v°.57 2r° 8%’ 2(x° -r° )(x°-57)

5 = - 3 - 5 + n (4-50)
O (o] [o)
r r r
- 1 -0-0 o -0 o’-o0 -0’ -0- 1 -
de = —?rr-—r-rI)+(rr - .r I) —grr -—3||8r
o o
T r r
l I'd P4
+[—2- (27°r° - ° -1 . % I)] 577 (4-50a)
0
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Fxpressions such as these are also needed to evaluate the initial
values for && , &p and B¢ in the linearized equations; in a later
chapter, (4-50) will be used to modify the system solution (4-18) to

the central oscillator to simplify quadrature.

Choice of Svstem: Numerical

The question may arise as to which representation, the perturbed
focal or central oscillator, is to be used in the numerical analysis
of some particular problem in celestial mechanics. From a numerical
standpoint, the nonlinear central oscillator system would appear to
be the best choice, due to the nonsingularity of the equations, and
also due fo the natural time step size regulation feature. It will
be recalled that, in either Cowell or Encke form, the transformation
equation of the céntral oscillator may be used to vary the step size

: .
in time relative to a fixed step size in x for close passage to the
primary body. The effect of this step size regulation will be to
decrease the step size in time and effectively "smooth" the numerical
~integration which uses time as the independent variable. Use of the
central oscillator directly with the fixed step size in x offers
the same numerical advantages. Modifications to this method would
be #he use of the focal oscillator system near periapsis or the
original time domain differential equations near apoapsis. Either
_ modification would result in finer integration steps in their respec-
tive regions and resulting higher accuracy. The primary emphasis of

this research has, however, been on the analytical solution to the

linearized variational equations.
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Choice of System: Analytic

From an analytic standpoint the linearized variational equations
are directly integrable as Poisson series in unique and distinct
regions. A Polsson series is defined herein as a series in which each
term of the series contains only positive powers of circular functions
of the independent variable. The definition of these regions is found
in the power series expansion of the perturﬁing force f and is best
demonstrated by comparing the linearized scalar variational equations

of the two systems:

(o)

sr* + &%r + 80 r° = T-r (4-51)

du’ + poau + &p u° Fer " (4-51a)

4

Since r° in the central oscillator system is represented by a Poisson
term in x , the expansion of the perturbing force T may contain
powers of the scalar radius > -2 and still retain the overall Poisson
series form. The resulting integrand is then integrable to almost any
degree of complexity. Conversely, if the perturbing force is expandable
as a convergent series in descending powers of the scalar radius > -2 ,
the RHS of (4-5la) will be in the form of a Poisson series of circular
functions of the independent variable y of the focal oscillator,

. 1 o . . . .
since —==u  in this system and is a Poisson type term

r
ity

b
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The same argument is true for the vector variational equations,
and both the scalar and vector variations are obtainable as Poisson
series. As stated before, this convenient delineation does not
extend to the time correction &t ; since ©&r of the central
oscillator is in the form of a Poisson series, the integral for
bt 1is straightforward, but the uw®  denominator in the integrand
for &t of the focal oscillator disrupts the established pattern.
Another advantageous aspect of the central oscillator system is that
a time varying force in the form of a power series in time may be
included in the analysis in a straightforward algebraic manner with-
out disrupting the Poisson series nature of the integrands. Of the
two types of perturbing force considered in the next chapter, the
type of f amenable to analysis by the perturbed focal oscillator
system is also time invariant by nature (i.a., the Jé term of the
earth's potential expansion), while the type associated with the
central oscillator (perturbation by external attracting body) is
time-varying by nature (although the time-varying natﬁre is not

included in the particular analysis of Chapter V).



Chapter V
ANAT.YSTS OF PERTURBED CIRCULAR AND RECTILINEAR ORBITS

The foregoing chapter has outlined a linearized perturbation
theory based on the representation of perturbed Keplerian motion as
perturbed harmonic oscillators. 1In this chapter, several applica-
tions of the perturbation theory are presented. The first example
is the perturbation of a nominal circular orbit due to the second
spherical harmonic (Jé) of the expansion of the primary body potential.
The solution is obtained using both harmonic oscillator systems and is
compared to the solution obtained from the Euler-Hill perturbation
equétions.

The second example considered is the general rec%ii{near orbit
perturbed by the Jé oblateness term, while %the third example con-
siders the perturbation of a general rectilinear orbit by a fixed
external perturbing body. It is interesting to note that although
the central oscillator system may appear to be the natural system
for the analysis of perturbed rectilinear orbits, the perturbed focal
oscillator system is simpler since not only the frequency p = 0 Dbut
also the first order variation in p can be shown to be equal to zero
for the general reference rectilinear orbit. Since the frequency
of the central oscillator system is zero for parabolic motion,'the
rectilinear parabola is used as the reference orbit for the analysis
of both types of perturbing forces using both perturbed oscillator

systems. The extension to the nonparabolic rectilinear reference
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orbit is then obtalned using one of the systems, the choice being

dictated by the particular structure of the perturbing force.

Perturbing Force due to Oblateness (Jél

The perturbing force due to the second spherical harmonic term,
or oblateness term of the expansion of the potential of a central body

may be expressed in vector form as

2
- 3RIaRs . -
£ o= -—3 [z + 2(r-n)n - 5(z-n)° Tl (5-1)
2r

-~

where n 1is a unit vector directed along the polar axis of symmetry,
r is the unit radius vector, and the remaining terms have their

standard meaning (see reference 10).

-~

Since € = O for the reference circular orbit, some liberty
L]
exists in the establishment of the reference coordinate system.

Referring to Figure 5.1,

(5-2)

=
]

(99 Si’ ci

(5-2a)

N

(Cel Se) 0

where the argument of latitude #© (= o+ £ , where o = argument

of periapsis) is measured from the line of nodes.

Euler-Hill Equations

The Euler-Hill equations are the linearized Encke perturbation
equations in the time domain referenced to a circular orbit and

expressed in the rotating coordinate system defined by f,ﬁ X f,ﬁ .
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FIGURE 5.1.

To review, in a

and the dyad product rr is time-varying, since r = (c

LINE OF NODES

EQUATOR

)

VECTOR GEOMETRY FOR REFERENCE CIRCULAR ORBITS.

nonrotating vector space

H ~— - -
—5 (ar) = = [3rr - I] Ar + T (5-3)
dt a

T
nt’snt’o)

in a typical coordinate system defined by (i,3,k) of Figure 5.1.

In the rotating

coordinate system, however, denoting derivatives in
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this system by the over-dot,

= - — — - H ~ —_ -
Ar + ©® X (0 X Ar) + 20 X Ar = '—5 [3rr - IJ Aar+ £ (5-4)
a
o = (O:O’n)T 2 ; = (1)O)O)T

‘and defining Ar =-(x,y,z)T results in

¥ - 2ny - 3n2x = f

T
.y. + 21’].)'( = fe (5-5)
Z + nzz = £

z

where n2 = p/a3 , so that the resulting system is linear and constant-

coefficient. In the rotating system,

2
3udpR 2.2
f. = - —2—;&— (1 - 35.84) (5-6)
2
BHJERS z
fg = - .k 2 8;5,C, (5-6a)
3uTR
£, = - ” 2 5,C.8, (5-6b)
where 6 =nt .
The solution may be represented by
) t
ar(t) = ¢rro(t,to)Ar(to) + ‘I’rfo(t’to)m(to> + ft ¢rio(t,7)f(T)dT
(o]
(5-7)
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where

- 3Cn(t—t ) + ,-l- 0 0
(o]
¢rro(t,to) = 6[sn(t_to) - n(t—to) 1 0 (5-8)
0 ° Cn(t-to)
and
1 2
n Sn(t—to) n <l ) Cn(t-to)) °
2 L
Oz (t’to) - n [cn(t—to) - 1} —3(t~to) * Sn(t-to) ©
1
© © n Sn(t-—to)
(5-8a)

The initial values of the perturbation state vector (Ar,Ar) in (5-T)
are assumed to be zero and the particular solution to the convolution

integral of (5-7) is

. .
3 JpRg 2|2 1 2 (5-9)
- - {1-c9+si[§ (c9-1)+3-se]

X =
2
3 J.R
Z2’s 213 3 1
y = = -, {} 20 + 289 + Si [2 g - 3 SG -8 SGC%J:}
a :
(5-9a)
2
3 J,.R
2°s
z = —== (6. -~ 8) (5-9%)
2a 6 ®

and represents the position variation as a function of time; with
regard to the discussions of the foregoing chapters, this solution

also represents a "fixed time" wvariation.
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For purposes of comparison with subsequent solutions obtained from

the perturbed harmonic oscillator systems, the solution (5-9) is expres-

AAA

sed in the nonrotating 1ijk reference frame of Figure 5.1 by

C9 —S6 0 b'd
Ar = Se Ce 0 y (5-10)
0 (0] 1 Z
and results in
2
_ 3 J_R
A = - —28 loes 40 -1-8 18
x ) ] ) i
2a
368
6 2 2.2 12
- " +3(l'ce)+3se+zsece
L
(5-11)
— 3J2R§ 2
Nr = - ——=(8 +8,C,-20C, + S,
y 2] e e e i
2a
340 200 Lo _lq.2 i}
Z 6C, 33909 3s9 5 8,C, (5-11a)
- 3J2R2
Aor = z = ——=(6C, - S,) (5-11b)
Zz 28 6 6

Perturbed Harmonic Oscillators

The Euler-Hill perturbation equations of the foregoing section
were reduced to a linear constant-coefficient set of equations by
expressing the differential equations in the rotation coordinate

system defined by f,ﬁ X ;,ﬁ . Thelr application is limited to
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circular reference orbits for which i = 0 . The perturbed harmonic
oscillator systems are linear constant coefficient systems of equations
in any nonrotating coordinate system and remain spplicable for non-
circular reference orbits. For the example problem being investigated,
the integrals of the oscillator systems are simplified somewhat by the
simplicity of the parameters of the reference circular orbit. However,
even disregarding the difficulty of the integral expressions, an addi-
tional subtle penalty is exacted by use of the perturbed oscillator
systems, that penalty being the time corrections to the resulting
solutions necessary to obtain the time wvariation or to convert to fixed
time variations in the state vector. The "fixed t" variations are only
required in this instance for comparison purposes. Although for the
circular reference orbit the unperturbed independent variables of all
three systems are effectively identical, th%.perturbed system inde-
pendent variables of the oscillator systems differ from their unper-
turbed counterparts (and from each other, of course); the resulting
time corrections are then based on these differences.

In the nonrotating fjﬁ coordinate system of Figure 5.1, the
perturbing force f due to the J, oblateness term (Bq. (5-1)), is

expressed as

2.2
2 o = 5 5;54C
3uJ R
= _ 2°s 2 2.3
f = . S, + 2 8,8, - 5 5,8 (5-12)

2 SiCiSG
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Solution to Perturbed Central Oscillator System

The vector perturbation equation for the perturbed central oscil-

lator system is given by Eq. (4-15)

2
8r® + A Br + &Ar + de = %f f

with the corresponding particular solution indicated by Eq. (4-18).
Substitution of the perturbing force f due to oblateness and solu-

tion of the resulting integrals leads to the fixed x variation

| 2 2 2 2
- - S(c.-1)- 28%¢C
1-0Cy- 08, +8; [ss9 + 3(Cp-1)- 38, 9]
2.
3 J_R
- _ 25 | _ 2 | .23 -
&r = Sy + 6Cy + S; [ 6C, + 85 - 3 Sa] (5-13)
2a -
sici(ece - Se) :

The time correction to the fixed x variation &r 5. necessary to
convert the result to a fixed time variation Ar , may be obtained by

first evaluating the fixed x scalar variation B5r through (4-5),
Br = r + ®T

where T = (Ce,SQ,O)T , resulting in

2
3 J,R >
- 28 - 212 ¢y _ 142 -
5r = . {Ce 1+ 31[3 (1 Ce) BISG]} (5-1k)

which is equal to (5-9). The time correction is then obtained through
- (4-33)

5x = =~ &t/t”’
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where

resulting in

2
3 J.R S,.C
2%s | : 2 (e 8’8 2
5x = _—————2a3,—2 ss-e+si<—2—+ -539) (5-15)

and results in the same solution (5-11) obtained from the Euler-Hill

equations.

Solution to Perturbed Focal Oscillator System

¥
The scalar perturbation equation for the perturbed focal oscil-

lator system is given by (4-39c)

2
Su”+pdu+dpu = - %r fer

and the variation in p is given by (4-39a)

Substitution of (5-1) and (5-2) in the general solution (4-LL4) for the
fixed y wvariation in u results in
2

| 3 J K
. __2s 212 ¢ _ g -
Su = - —3 {Ce - 1+8; [3 (1 -c) 3 Se]} (5-16)



which is equal to —5r/a2 from (5-14), or —x/a2 from (5-9).
The time correction term 8y 1is then directly obtainable from

(h-b1)

8y = - f% 5t
5t’ = -2 su//i u’
resulting in
2
3 J,R S,.C
_ 2's 2 (8 66 _2 _
dy = —-;575 Sg = 6 + 8 (2 + - 3 s;> (5-17)

which equals 28x/a (from (5-15)) for the circular reference orbit.

The vector perturbed focal oscillator system is given by (4-39b)

-

~ ~ ~ 3 ———  — ~ Cad
dr” + p dr + dp r = %r [f - (£ - x)xr]
with the resulting solution
2
2 (ese SGC9>
A e
2 2
2 2
. 3 J.R ec S.C
o0 = —2= | 5 (‘“‘9+ 69) (5-18)
2a 2 2
sici(ece - Se)

The‘total fixed t variation in position is then obtainable from

A-I_‘- = 8r+r'5y

887 - atbu * + ar’ oy (5-19)
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Substitution of (5-16), (5-17), and (5-18) in (5-19) yields a solution

for Ar identical to (5-11).

The results of the foregoing analysis have demonstrated the applica-

tion, for comparison purposes, of the harmonic oscillator.perturbation
theory to a problem which 1s solved directly in the time domain. The
solutions to both oscillator systems were corrected to yield the fixed
t variations between the perturbed orbit and the unperturbed reference
orbit. The fixed t wvariations were introduced only for the purpose
of comparing the three solutions. In a subsequent section, the fixed
t +variations are further used to compare the solutions to the per-
turbed harmonic oscillator systems for the problem of perturbed recti-

linear orbits.

Extension to Noncircular Reference Orbit

The exteﬁsion of the theory to the nonlircular reference orbit is
direct, using either the focal or central perturbed oscillator system.
The major difficulty lies in the analytical quadrature of the resulting
expressions, which are more complex due to the introduction of the
orbit eccentricity. For the case of the perturbing force associated
with the oblateness term, or for any force expandable in descending
powers of the scalar radius, the perturbed focal oscillator system
yields Poisson series as the integrand for 5r and ®u . However,

3

the time correction is not of the Poisson series form due to the u

term in the denominator of &t° of (%-39).
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A Tumnar Problem

Another problem is the perturbation of a satellite due to the
potential of an external attracting mass; the problem is termed the
"lunar"™ problem since a classical problem is cast in the framework
of the motion of the moon, perturbed by the sun, about the earth.

Idealizing the sun as stationary, a similar analysis of per-
turbed circular orbits could be accomplished using the Euler-Hill
equations or either perturbed harmonic oscillator system. The
distinctive feature of the lunar problem is that the perturbing
force is expandable as a convergent series in ascending powers of
the scalar radius. Thus the extension to noncircular orbits is
direct using the perturbed central oscillator system. Unlike the
focal oscillator system, the perturbed central oscillator system
yields Poisson series integrands not only for‘the variation B&r
but also for the required time correction integral necessary to
convert to fixed t variations. Moreover, the time-varying effect
of the motion of the perﬁurbing body may also be included by expan-
sion of f in powers of t ; time is a relatively simple function
(Kepler's or the universal time equation) of the independent variable
X , and additional terms of the integrandé would also be of Poisson

series form.

Perturbed Rectilinear Orbits

Although perturbed nonrectilinear orbits have been studied from
the time of Lagrange, the subject of perturbed rectilinear orbits has

apparently received little attention. This may be due not only to the




relatively awkward Qescription of rectilinear orbits in the more con-
ventional time domain but also more likely to the fact that such orbits
were a rare occurrence in astronomy.

The advent of modern space travel, however, suggests numerous
examples for possible rectilinear orbits, such as sounding rockets
or lunar ascent/descent vehicles. Regarding lunar operations, it
should be recalled that the earth (and even the sun) exert a much
greater perturbative force relative to the lunar gravity at tﬁe
surface than, say, the moon's and sun's effect relative to earth
' gravity at the earth surface.

Due to the regularized feature of the central oscillator system,
the perturbations of "complete" mathematical rectilinear orbits (here
defined as orbits in which the particle starts at or pé%ses through
periapsis) may be analyzed using the theory “of the perturbed central
oscillator system. The focal oscillator would be inapplicable since
its independent variable is unbounded at periapsis. However, both
Keplerian oscillator systems may be used to investigate rectilinear
orbits which do not involve periapsis passage.

In the following section, two forms of perturbing forces are
investigated: 1) perturbations due to the oblateness term, and
2) perturbations due to the attractibn of a fixed external body.

The variation of the pertﬁrbed orbit is first ‘obtained relative to
an unperturbed reference rectilinear parabola as the solution to

both harmonic oscillator systems; the extension to the nonparabolic
reference orbit is then obtained as the solution to the oscillator

system most appropriate to the particular perturbing force. Since
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the analysis of the rectilinear parabolic orbit is for the purpose of

comparison of the two systems, the fixed t variations are obtained.

Rectilinear Orbits Perturbed by Jé Spherical Harmonic

Referring to Figure 5.2, the reference rectilinear orbit relative
to the oblate central body may be described by its colatitude angle X ;

thus

[o B3
1

(-5,,C,,0)" (5-20)

(-1,0,0)T (5-20a)

r =

FIGURE 5.2. VECTOR GEOMETRY FOR REFERENCE RECTILINEAR ORBIT RELATIVE
TO OBILATE CENTRAL BODY.
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This particular orientation of the x-y coordinate system has been
chosen to be compatible with the natural coordinate system associated

- with the central oscillator. In this system, from Equation (5-1),

2

1 - BSX

3pJéR

zsxcx (5-21)

all
[}

2r

Solution to Perturbed Focal Oscillator

As noted in Chapter III, the independent variable of the focal
oscillator for the general rectilinear orbit is given (for the

particle progressing outward from the singularity) as
o
y = —F (5-22)

where y 1is taken to vanish at the initial velocity Vo 3 for this

definition of y ,

u = y2/2 + u;y +ug (5-23)

w= y+ ué (5-23a)

Alternatively, y may be defined as

(5-2k)

(5-2ka)

NPRENP
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and, from the last part of Chapter II,

2 (" + Q) (Enerey) (5-25)

c
"

u’ = y = —m (5‘253)

for this definition of y‘ ¢+ This form is more convenient for the
quadratures involved in the following section.

All rectilinear orbits are characterized by zero angular momentum
(p = 0) ; thus the variational equations of the focal oscillator
system are initially simplified. In addition, the first order varia-
tion for p also vanishes. This may be observed directly from the
defining equation (4-39a) by noting that r‘ is identically zero for
rectilinear orbits (i.e., the rate of change of the -unit radius vector
is zero). Therefore, the variational equations for du and 8T of

the focal oscillator system reduce to the relatively simple equations

2
su” = -~ *TF .1 (5-26)
N
or” = _f_ [T - (F. 1)1 (5-26a)
Using (5-21),‘(5-26) may be expressed as
2 2
3 R -380) o

su” = u (5-27)
. 2

Integrating between the limits of - Y, and ¥ (or u and u ,

-79_

TR T T R TR T T YT

oS

VR AR Iva i Ay i A A M e




noting that dy = -dwi/2u),the resulting solution is
3 LR -350) (v e o/ zuz/ 2
du = —_—-—_— + — (5-28)
2 15 5 3

The time correction term 8y may then be obtained from (4-41)

2 Y su(o)
dy = 2u 3 do
Yo u(o)
which results in
2 2 3 5/2
3 R -38)) ;2w 3w 1/2 1/2
dy = u 572 - 5+ 3 u’o - 2u
15v2 u u
(5-29)

The relative magnitude of the time correction ﬁayﬁ%e obtained
by comparing &u , say, and the corresponding time correction u‘sy .
in the expression for Au (Eq. (4-40a)). From (5-28) and (5-29),

and noting that uw’ =y = -,/2u ,

2 2\ 5/2 3
ou = - AL UN PR = (5-30)
2r3 LIS 5 r r0
2 2 1/2 5/2 3
wsy = 3R -38) 1y ¢ (_r_) L2 L) L
23 55\, 5\7, 5 \r,

(5-30a)
and it éan be seen that for r >> ry s the two terms are not only of
the same order but have the opposite sign. The predominant (r/ro)3

terms are of opposite sign, and the second most predominant terms

are equal and opposite. The vector variational equation (5-26a)
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reduces to

or = 0 (5-31)
577 = 3 IR S.C. u (5-31a)
y 27s A A

resulting in

. 2 uz 2 ul/auz/2 ui
8r. = 3 LK SC, |[— - ———+ —| (5-32)
Yy 2°s ATA 6 3 2
The total vector perturbation Ar is then given by
— -~ -~ l -~
Ar = r(dr + r’sy) - —§'(6u + u’sy)r (5-33)
u

Using (5-29), (5-30), and (5-32), and recalling that #¢ = (0,0)T

and T = (-1,0)T , We obtain

v

2 1/2
(1 - BSi) i.(.x_‘.) - .2_. r_°> + 3:(.5_)
o 15 r, 5\ r 3\r
- 3 JéRs
. 2= 5-34)
2r

© r L r 1/2 1 r
s.C,|l—-— | — + - [ —

Ad T, 3 Ty -3 T

Solution to Perturbed Central Oscillator

The vector variational equation for the perturbed central oscil-
lator is given by (4-15)

2
®r+ a &r + 80 r + .86 = %f T
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Unlike the variational equations of the focal oscillator, this equa-
tion does not simplify at all for general reference rectilinear orbits;
for a reference rectilinear parabola, at least the second term vanishes.
Noting this fact, and carrying out the quadratures for 81 and &e

in advance, (4-15) may be reduced to a trivial double integration for
the reference rectilinear parsbola.

The variational equation for O is

5@’ = -2£%’ . F

TN

or

£ .

X
oo = 381 -3f) [ I (5-35)
xo r oo
Te ar .
= 35,80 -3 [vg (5-352)
I‘or
which leads to
3 IR ( 3| - (5-36)
8 = -3 JR (1 - 38])— - — 5-3
2's A 3r3 3r2

which is valid for arbitrary Q . The variational equation for 5e

is

-y

sc’ = %[er -FF-F . FI]F
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which reduces to

ses = 0 (5-37)
-— 2 I"
Bey = -3 N chxr_B (5-37a)
and
r
f dr
— 2
se, = -3 LK 8,C, f — (5-38)
r r '
o)
5 1 1 (5-38a)
= 3J,R SC.|—-—= 5-38a
2s AA 2r2 2r2

which is also valid for arbitrary & . Combining these results

-~

leads to

( 2) 1 2r !
1-38 —s + —
o T
iy BJZRZ
sr¥ = —==2 (5-39)
2
1 1
S C |—=+—=
AT r2 rg

Defining r = x2/2 (correspondingly, r_ = xz/z ) and integrating

(o]

between the limits of X, and x (or T, and r ) results in

2 1/2
N B R R 1
@ BSx)9<r> 9(r> +9<r
_ 37 2 o] o)
or = 2
2r
° r L (]r;j/z Zl(?r )
s.Ci|l—-—-[— +—|—=
A
r, 3 ry 3\r




To obtain the time correction &x , the scalar perturbation ®dr 1is

first obtained from (4-5) as
&r = r - 5T

and is simply the negative of the component of 5T 3 dx 1is then

given by (4-33),

X
dx = -%— [‘ 5r(x) dax
x0
1 r
= - = — (5-41)
=
I‘
3J'R2(l z) 2r5/2 r 18 T
I el — -2 1/2+—ri/2-2-§_7°§(5-1&la)
18~/—21‘r0 5 r, ry 5 r
o

Once again, a comparison is made of the time correction term to the

s

fixed x variation of, say, Odr
where r’ = m and from (4-32a)
Ar = Br + r’ dx
From (5-40) and (5-41),

3J232(1'- 391 /r¥ 2/2V2 1/r
br = - —== Al —) -={—] +-[=2 (5-42)
‘ - . 2r 9 \r 9\r 9\r

(o] - (o]

- 3,81 - 355) [ 2 r)2 2(r )1/2 z<ro>1/2 2 (x,
Ir 5x = - - ] e— + - — JE + - —
ar 45 \ r 9\r 5\ r 9\ r
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and it is noted that the second most predominant terms are equal and
opposite, as was also noted in a similar comparison of (5-30), while
the predominant terms are of the same order and opposite sign.

The total position variation Ar is then given by (4-32)

where

r’ o= (" \/—Z_I‘_,O)T

Combining (5-40) and (5-41) through (4-32) results in

-— +—..:__

. 1/2
NENE; 2 (r 1fr
(AL -38)|—={— | - =

2 15 o 2

° r L r>l/2 l<ro>
scC|—-—-|—] +-[-=2
A2 r0 3\r 3\ r

r 3\ r

(5-43)

which is identical to the solution (5-34) obtained from the perturbed

focal oscillator system.

Nonparabolic Reference Rectilinear Orbit

The extension to nonparabolic reference rectilinear orbits using
the central oscillator system may be indicated by inspection of the
differential equation (4-15), where the additional term Q &y

appears on the LHS and r would be expressed in the more general
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form involving the universal functions U& . The Uﬁ would neces-
sarily appear in the denominator of the integrand and a direct quadra-
ture would appear to be somewhat tedious, if not impossible.

The focal oscillator equations (4-39b) and (4-39c) are still
relatively tractable héwever, for nonparabolic reference rectilinear

orbits, and furthermore the general expression for u

y2 a
u o= = (5-14)
2 2

renders straightforward quadratures for &u and 5T . Accordingly,

35,80 -39 [1/3° yy2 oF

du = Sl— -2 (5-45)
2 L \5.6 5 6
2 q -.
@ yh y yz yl; & [y yi ’
+ = | - +— ]+ —|—-yy +—
2 \3-k 3 4 4\ 2 Qo2
6;‘){ =0 (5"11'53)
2 1 ylL y y3 yh o y2 y2
oy o) [e)
or =3J2RS)\C)\————— Ll Bl Bl A0 N Sy
y S 2 \3-k 3 4 2\ 2 2
(5-45v)
where
v

Unfortunately, but as expected, the time correction 8y is more

difficult to obtain.
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Using (4-41) and the solution for &u , the necessary quadratures
may be expressed in the form

Yy & ao

—_— -46
fyo (o + )P o)

B(nyp)

Restricting the solution to @ # O , the integrals may be evaluated

through recursive integration by parts where

(n,2) 1 - Un—l Y Y (n-1) Gn-z do (5-47)
B(n, = - 5-47
A ey I P

~ yO Y
By this manipulation, B and other integrals eventually may be
reduced toistandard forms, although the term Q& occasionally appears
in a denominator, thus fendering the solution invalid for & =0 .
For ¢ =0 or & sufficiently small, the necessary integrals
for &y may be represented in series form (p =3 in (5-47)) vy

(- D)™ (s 2)t o o (@)Y

B(n,3) = 5-48)
(n,3) :Z 2! m! [n -~ (Gm + 5)] (

m=0
where convergence is assured for r/a <1l .

Rectilinear Orbits Perturbed By External Body

The orientation of an unperturbed rectilinear orbit relative to
an external perturbing body (defined by Hp at some position vector
R ) is depicted in Figure 5.3; for the purpose of this analysis the

vector R is assumed to be fixed.

23 . N
I R

s Ara e rin

Th ‘
L g s e i Ay A mn o e A nisiee 34

i e ras e e

b e = -
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FIGURE 5.3. VECTOR GEOMETRY FOR REFERENCE RECTILINEAR ORBITS RELATIVE
TO FIXED EXTERNAL BODY.

The attraction of the perturbing body is given by

pE R-71 R

5-7° 2

£ = (5-49)
For R>> r , (5-4G) may be expanded as a convergent series in
ascending powers of r/R s retaining only the first term in the

series as the approximation to f results in

2
38 -1
_ HpY '
f = - —;3- - 3 8,C) (5-50)
N (0]
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The fixed time variation in the position vector 8r is obtained for
the reference rectilinear parabola using both perturbed Keplerian
oscillator systems, and the solution for the general rectilinear

orbit is then obtained usihg the central oscillator system.

Solution to Perturbed Focal Oscillator

The same simplifying observation noted in the previous section on
the perturbations due to the Jé spherical harmonic also apply to the
analysis of perturbations due to the perturbing force of (5-50) along

a reference rectilinear parabola. The results are presented without

elaboration as

0
or = (5-51a)
3 7/2
SC.|r 6 r
(_“E) e 3
H R3 T Tr
The time correction 8y is
| (pE (32 -2 | 2 1 1 1
&y = -{— + - -
‘ n R3 va- h5u9/2 5u2/2u? h5uz/2 5uiu?/2
(5-52)
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The total variation in position is then given by (h—32), which reduces

to

l(r)lL l<r 2 r>l/2
-38.Cl—|—) - =—])+ -] —
Ax 21 \r 3 \r T\r
o

(5-53)

Solution to Perturbed Central Oscillator

-

The solution to the perturbed central oscillator system for the
L ]
perturbing force f due to the fixed external body is obtained in

the same manner as that for the Jé perturbation force of the previous
section., The variation in the energy parameter O is obtained from

the solution to (L-1ka), resulting in

(3s° - 1)
= - i) LR (5-54)
n

and the variation in the eccentricity vector is

8¢ = | (5-55)




As with the corresponding results obtained for the Jz perturbation;
these results are valid for arbitrary value of O of the unperturbed
reference conic. The differential equation for the fixed x varia-

tion in the position vector for the general reference rectilinear

orbit is obtained by substituting (5-50), (5-54) and (5-55) in (4-15)

to obtain
2
po\ (38] - 1)
-(-—E- —}‘—3— [21‘3 - r2 r]
m R ©
5r’‘+ adr = (5-56)

c
A 3 3
[4r”’ - ro]

El

N
|
SN—
w0

m

For the reference rectilinear parabola (& s 0) , the scalar radius
r may be expressed as T = x2/2 (also ri = xi/z .), thus defining
the independent variable to vanish at periapsis rather than at the

initial conditions (this redefinition is done only for convenience in
evaluating the integral expressions). The resulting fixed x varia-

tion is

2 L 22 1/2_7/2
_(EE_)(BS)L-:L) f—_rr0+2r T,
" E | 6 21

5T = | | | (5-57)
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The time correction &x is obtained directly from (4%-33), noting that

Sr =T « & = ~- 5;; and is

u) JZ B

+ -

1 “‘E) (352 - 1) <r9/2 P32 2 l/? 2 rg/z)
( 6 15 = 15

r
(5-58)

The resulting fixed +t variation is then obtained by combining (5—57)
and (5-58) through (4-32); the resulting solution for the fixed time

variation Ar is identical to (5-53).

Solution for Nonparabolic Reference Rectilinear Orbit

In the previous section the general expression for the scalar

radius is
r = a(l - C\/&;{) A (5"59)

Thus the convolution integrand resulting from (5-56) will appear as
a Poisson series in the transcendental functions cos(/0x) and
sin.Ja&) and the general solution to the problem may be obtained

relatively easily. The solution in integral form is

(3s% - 1)
X ‘ _(_PE —}‘—3——- [Zr(cr)3 - rir(cr)]
il R

5; = \/5 S\/&(x_o_) do
s.C '
(EE- _A§L [br (o) - rzl
vl R .

(5-60)



and is most easily obtained by evaluating the various component terms

separately; thus

IO(X) = [ Ja S\/’a(x_o_)dc = a[l - SJ'a xSJa x, - CJaxCJ‘a xo}

(5-61)
I, (x) = f Ja S\fa(x_c)‘r(c)dcr = af [1 - %J—a X Sfy &
X :
+ 8o x (Ja % "~ Na X + % Va X, Yo xo)
h C«/_a X <C~/—Ot xo + :c?l Sj—a xo>»} (5-—61a)

and

' b'4
I3(x) = f Ja SJ'a(x_U) r3(cr)dcr

X

L 1 17 3 1 3
a {S\/—a X [- —g'fa o+ 4 SJ-a s~ B SJ_a GC\/—a G—SJ—a st s\/—a UC\/—a 0_]
X
o

- Qo x [% (1 -.C/ @\L } -~ (5-61p)

Expressing the lower limit of (5-61b) as

L.L. = §f . Ks(xo). - Gl Kc(xo) (5-62)
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13 (x) may be simplified to
Wi 15 1.2
I3(x) = a [— -g-JaxSJax+2(l 'C»J—ax) -~ § 8a x4 x

+ sja ot S Ka(x) - Gy Kc(xo)] (5-63)

The resulting fixed x wvariation 5T may then be expressed as

‘ 3sf - 1)
- (EE> ———A—————'[ZI3(X) - ri Il(x)]

1) ‘RB
5r = (5-64)
e 5,6 3 |
<':> ? [413(1) - T IO(X)]

L]
The time correction is obtained through (h-33), where ®&r is the

negative of the x component of B&r , resulting in

(352 - 1) x x |
5x = %<i>_—L.3___ [2])’( I3(cr)d0'-ri / Il(cr)dch (5-65)

K R o xo
where
X
. 1 1 1
I =|NCQ =\ - = - = ;
L 1(0)(1(I \/— X+ 2 Vo x C's/—a X + C\/—Ol b'q ( 2 Vo xo + S'J-a X, 2 S'J—O! xoC\rOl xo)
o ‘

P 1.2 . 5/2
Saxlzt*Yax ¥2 Yax '“/—aon’s\/'ax a
o] [o] o]

(5-66)
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§ | |
fx I,(c)a0 = 2Ja x - 8/a x[%iJr Kc(xo)] - Gy 4 Ks(x,)

(o]

15 1 13 _5
+8Jachax 5 Sfax WYax - 2% Wax z‘faxo

5 9/2

5 | B 1 5 3
+280, Sax ~BVOX Cuy * T8y T Yux )P
- (0] (o] (e} (e} o]

(5-662)

Noting that r = Wa S/ ¥ 0) , the results may be combined through
(k-32)

Ar = 8r + r° 8x

-

to yield the total fixed t variation; the time correction enters
L]

only in the x component, which may be expressed as

2 _ J; | b 4 -
_ (EE_)(ZS_K_:L) 2 (Il V2 Vax f I, (0)do

X [0
H 3 r X,

R

Ja %ﬁi X - .
-2 13 - —r——x f Is(c)dc) (5-67)

X5

The above expression is‘not expandéd further due to the lack of any
apparent‘simplification of the iesults.

It would be expected that a series expansion of (5-67) and (5-6k)
in ascending powers of O . would yield the.solution for the reference
rectilinear parabola (5-34) as the o® term. This equivalence may be
practically demonstrated on only the simplest of examples, since it

will be hoted that the resulting o term is obtained from the fourth

- % -
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term of the expansion; all preceding terms, which are negative powers
of & (positive powers of a ), will be expected to vanish.

Thus the solution to the problem of the perturbation of a recti-
linear orbit dﬁe to an external body has been obtained for both the
ﬁarabolic and nonparabolic reference rectilinear orbits.

It may be obvious that more extensive analyses could be effec-
tively performed using algebraic computer techniques; such technigques
are used extensively in the analysis of similar problems in celestial

mechanics, based on Hamiltonian theory.



Chapter VI

ANALYSTS OF NEAR-PARABOLIC LUNAR

TRAJECTORIES BETWEEN L, AND MOON

The advent of extensive manned exploration of the lunar surface
has generated interest in the use of the cislunar libration point Ll
as the possible location of a staging space station. The (relatively)
. fixed location of the libration point Ll in the rotating earth-moon
space at approximately 15 per cent of the earth-moon distance from the
moon presents the distinct advantage of no time constraint on passage
between 'Ll and the moon or communication with the visible portion
of the lunar surface. The feasibility of and the stationkeeping

requirements for such a space station, or libration point satellite,
have been recently investigated by Farquhar T9] and others. 1In this

chapter, the analytical theory developed for'the perturbed central

oscillator is applied to the analysis of near-parabolic lunar trajectories

between the moon and Ll

The particular family of lunar'trajectories investigated are earth-
perturbed, near-parebolic lunar orbits with perilune at the lunar sur-
face. Although the theory may be extended to the elliptic or hyperbolic
class of orbits, the choice of such would necessarily involve some
considerations of available flight time vs available fuel and are beyond
the scope of this analysis. Also, it might be noted that minimum energy

transfer trajectories between the moon and Ll are necessarily near-

parabolic. The assumption of perilune at the lunar surface is justified
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by the patching of the Ll - moon trajectory to a low lunar circular
orbit ’ resulting in a more efficient overall coverage of the lunar
surface, as opposed to a direct ascent/descent modus operandi. The
analysis considers trajectories passing both in front of and behind
the moon and both to and from Ll
The application of the foregoing theory to the Ll-moon trajectory
analysis is depicted in Figure 6.1, where T represents an unperturbed
parabols with perilune at the lunar surface and 5T represents the
combined perturbation position vector due to both the perturbing

force and variations in the tangential perilune velocity 5V&, directed

glong 30

FIGURE 6.1 VECTOR GEOMETRY FOR REFERENCE PARABOLA RELATIVE TO EARTH-
MOON LINE



The reference parzbola is defined by the solutions (2-61)

for =0 ,

T o= (-2, Bt (6-2)
T = (-x, ¥p)F (6-1a)
r = pf2+x/2 (6-1b)

t = px/2 + x3/6 - (6-1c)

Since p = 2r_ for a parabola, soluticns obtained in terms of x

(o]

will be expressed through (6-Ib) in the nondimensiocnal form
' l/2
x = xpp = G/, - 1Y (6-2)

The state transition matrices (4-19) =nd (4-25) are simplified

-t

considerably by assuning the reference orbit to be a parabola, for

which =0 ., Thus i

2 e o . 3 o ah
1 x-z -~ jé%%l_ - r(Z}Lﬁi%l— -7 (z}(XB?) + t(th;
_ a3
0 1 - (X-Z) - r(z) (x~z) - r*(z 24‘-_1__ . QXBZ{"_
¢[ (x:.Z),;(Z),-r—'(z)} =
C 0 1 9
0 0 0 1
//
(6-3) .

N

\

A

\

/




and

(x-2)? (x-2)3  (x-2)*
1 x2z - r(z)— =~ r’(z)> -
2! 3! by
| Ce2)? (x2)
y[(xz),r(z),r(z)] =] o© h - r(z)(x~2z) -r’(z) -
2! 3!
0 0 1
(6-4)
Ll-Moon Trajectories

Since the analysis is considering only variations in the initial
(perilune) velocity vector (i.e., S;°.= 0), expressed in the regular-

jzed domain as"

4

BT, = oV [k, T (69)

(o]

]

the terms & and 820 in (4-50) and (4-50a) may be expressed simply

as
. = - 2 - &7 7 /x° | (6-6)
o ) o "o
—— __I‘ __'_ - — - - 2 _
de, = [2r oTo - TS Ty - T, rOI]Sro/ro (6 6a)

Substitution of (6-3) and (6-6) into (4-18) results in a somewhat simpler
form for the integration of 5T , (recalling that T =- € for the

parabola)
8 - {[r2 Ik SN SN
| + (3, T 2231 + [x] T, ]2x by ]8r/r
f (°(6) T)(x-0) + (% (o) (o) + T (0) - F(o) TIae0)Pe:

+#[F (o) 7 (cr)]e (x—cr)3/3' 77 (0) (o) (x0) YPEE() ] of,
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The attraction of the earth is given by

R-r

R
f(r) = Mo E:%I—B-§ (6-8)

Expanding (6-8) in ascending powers of r and assuming the earth to
be fixed along the final orientation of the earth-Ll—moon line in the
nonrotating lunar space (see Figure 6.1), the attraction of the earth

T(r) is approximated to first order in r by

- o 3 cos 2+ 1 - 3 sin 2 -
f(r) = —g r
2R -~ 3 sin 2w - 3 cos 2n+ 1
(6-9)
Using (6-2) and -
sr, = [0, ari]T (6-10)
where
5r§ = va/:;[o (6"'1_1)
the homogeneous part of (6-7) reduces to
Ty = [0, 00,0, (01 - (612)
where
2,0 =-vm'/3 (6-13)
o, (1) = VB’ +3)/3 (6-13a)

Equivalently, changes in the final fixed x regularized velocity
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vector are related to Srl; by

or(y(0) = Lo 00),0, ()1 %exy (6-14)

where
o () = - /3 (6-15)
o) = WP+1 . (6-15a)

Using (6-1), the integrand of (6-7) may be expanded in ascending powers
of \p up to and including 6(p3 ) , and the integral may then be
expressed in descending powers of the nondimensioﬁal parameter ) .
Retaining ;)nly the highest power of A (since x >>Jp in vicinity

of Ll), the particular solution to (6-7) is S

)\8 sin 2a/1k4

sr,. . (2) 1 r \ -)\8[3‘cos 2w+l]/28
—E®) (e} o

T, i R
(6-16)
and .
6_1‘-('1?2()\) 7] r -)‘7[3 cos 2w + 11/7
€ \y_o )
N —< pm) R ) 17[2 sin 2w]/7
(6-17)

The homogeneous solution to the scalar perturbation equation (4-24)

is simplified by noting that for

dr, = &r, = O , (6-18)
;0 . -I.‘-; = 0 ) (6- 185)
rocdr, = 0 (6-18p)
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we oObtain

I

r5 = For Tofry = O e
érl = (;c: sorg + e srg)/rg - [z - 8-;o)(;o ) ;;)]/rz =0
(6-192)

Thus, using (6-4) we obtain

STINCY R N % (6-20)
where
80 = - g;:.gzé/ri (6-21)
- -2dpar/l  (6-21a)
and -
5r(H)(1) = - pp(r/2 + 13/;!)605 : (6-22)

The particular solution to (4-24), retaining only the term of the highest

power of ) , is given by

3 .
m = (—EE><-1‘—°> (3 cos 20 + 1)18/28 (6-23)
r H R, . '

m
The difference in time between the perturbed and unperturbed systems

is then obtained from (4-15b)

3t = (ar(H) + ®r (F ) )/\/-[-J.m (6"2’-'»)

1 2}\3 é)\s ps/_p n r 3 )\9

5t = —— p<——-—+——— 5r'+——-—e<-—° (3 cos 20 + 1)}—
| Jﬁm 3 30 yoo2 n,/\R 252

| (6-25)
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Referring now to Figure 6.1,

;Ll(X) = ;(x) + 6-1:(H)(x) + 5.;(1?)(}()

Using the expansion

X = xLl + AX
and
r(x) = r(xLl) tr (xLl)ﬁx
where
- (er. - p)t/?
L ( T, p)

N
b xLl
and the approximations
sF(H)(x) = sE(H)(xLl)
B.I:(F)()\) ~ 5;(F)(}\Ll) ’

Equation (6-26) becomes

-r_ cos r_ - /2 -X
Ll o] xLl Ll _
= + A}C"‘SI‘F'F
r. sinow Ji X Jb
Ly L

ST

(6-26)

(6-27)

(6-28)

(6-29)

(6-292)

(6-30)

(6-30a)




and the terms 5r§ and Ax are obtainable from

ory oo
1
- ‘ y
P cva(xLl)+xqu>yv(xLl)
bx -CPyv(xLl) P (2 )
r -
O
- (6-32)
b %,
From (6-16), (6-32), and noting that .
2 (.2 2
Jp qnxv(xLl) *E fpyv(xLl) = prl(xLl+l) = E'rleLl ,
(6-33)

we obtain an approximate relation for the variation in perilune velocity

. as g function of the orientation angle o

- - A\, sino - (cos @ + 1)
'_x = = 1 ) +
Jp V. 2 ‘
r 3 r 18 lL
ue [0} (o} L 1
- = T —L (3 cos 20 + 1) - — sin 2w
B/ N Y/ L28 1
2
QKL
1

(6-34)
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The term Ax may be expressed as
(h)\i +3)[rL (cos w + 1) + p + S;F ]
1 1

Ax -

Vo 6rp, T

3 ; - -
xLl[rLl sin © prl dry, ]
T (6-35)

The resultant velocity vector of arrival at Ll in the nonrotating

space is then

v, = ;T: ko= ;T:ﬁ/rLl (6-36)

where

—

o, (xLl) - 7 (xLl) + T (xLl) Ax + 8-1:(H-)(xLl) +

ar(F)(ﬁl) . (6~37)
The time of arrival at Ll is obtained from
t = t(x, ) +st(x )+ ax(x )/3 (6-38)
L, I, 1 %, )53,

where 5t is obtained from (6-25)
All parameters have been normalized to the dimensions of the earth-

moon system, namely,

Length: R=1
Mass:. He + By = 1

. 2 3
Time: n~=1-= (ue + um)/R
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Normalized velocities are then related to un-normalized velocities

through

- L, +u )/RIY2 (6-39)

V.
un~-norm. norm.

and a unit of time is equal to Ph/2n , or approximately 4 1/3 days.

The wvalue for K was taken to be 0.0121507, corresponding to

pm/ye ~ 81.3, with rLl = 0.151 and r_ = .ook27 (1780 km) [reference 9].
All calculations were made for the idealized planar earth-moon system
(i.e., both bodies in circular orbits sbout the barycenter).

The exact nonlinear perturbation equations were numerically
integrated for lunar orbits from the moon to L passing both in
front of and behind the moon. Due to the reflection property of earth-
moon trajectories in the earth-moon line of the rotating frame (exact),
the velocity vector of departure (arrival) in the rotating frame for

. ] '
passage behind the moon is the reflection of the velocity vector of
arrival (departure) for passage in front of the moon. With regard to
the analytical theory, the simplifying assumption of the fixed earth
renders the departure and arrival velocity vectors identical, for
passage either in front of or behind the moon.

Figure 6.2 presents the variation in 6vp as a function of o ,
5vb being related to parabolic velocity vP at perilune through
(6-34). The variation in total transit time, (6-38), as a function
of o , is shown in Figure 6.3. It might be noted that the lunar
16ngitudezat the time of perilune passage must necessarily be obtained

from

Longitude = = - o - t. (w)
Ll
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APPROX IMATE THEORY
NUMERICAL (FORWARD)
NUMERICAL (REAR)
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~ FIGURE 6.2. VARIATION PARABOLIC VELOCITY AT PERILUNE VS ORIENTATION
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The velocity vector of arrival/departure in the rotating earth-moon

space is
v = +[C, v, +nx r -] (6-140)
®)"1 R/0(o)L1 ®) L1
+ = arrival
- = departure
where

cos w =~ sin w
C =
o .
R/ + sinw * cos

+ = passage in front of moon
- = passage behind moon
(6-41)
n = ]{R = k.o hd . (6"')4-2)
-; = I E (6-’4-28.)
(R)Ll Ll R

-~

The arrival velocity component Vo along i is given in Figure 6.4 and

R
the latgral arrival velocity component v& is shown in Figure 6.5 for
passage in front of and behind the moon. The differences in the nu-
merical integrations may be viewed (in éhe nonrotating frame) as the
difference in geometry of the earth attraction relative to the lunar
orbit, while in the rotating frame simply reflect the fact that pas-

~ sage in front of the moon takes advantage of the moon's motion about

Ll . The degree of agreement between the approximate theory and either
of the numerically integrated data would seem to depend on the validity

of the approximate assumed geometry relative to either of the exact

geometries of the earth attraction.
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Chapter VII
SUMMARY AND CONCIUSIONS

Unperturbed Keplerian motion has been represented through a
transformation of independent variables as either of two harmonic
oscillator systems, where the new independent variables are related
to the true and eccentric/hyperbolic anomalies. The harmonic oscil-
lator systems are referred to respectively as the focal and central
oscillator systems. The central oscillator system is distinguished
by the fact that it effectively represents a local regularization
of the two-body problem and is hence valid for rectilinear orbits
up to and including periapsis passage at the singularity. The
focal oscillator is fully as general except that the solution is
unbounded at the singulzrity. The natural ﬁ;equenciés of the
central and focal oscillators are related to the orbit energy and
angular momentum respectively. The solutions to both oscillator
systems are presented in universal forms which are directly applicable
functionally to all types of orbits.

The differential equations governing perturbed motion were then
obtained as perturbed harmonic oscillator systems, and nonlinear varia-
tional equations are developed in vector form for both systems. Several
computational aspects of use of either the variational (Encke) equa-
tions or the total perturbed system (Cowell) equations of motion are
discussed. The most important feature of the perturbed central oscil-
lator system, in either the Cowell or Encke form, is that it is a regu-

larized system and yields a well-behaved numerical solution regardless
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of proximity to the singularity. The advantage of use of the perturbed
focal oscillator system in a numerical computation is in the vicinity
of periapsis, where a degree of accuracy greater than that of the
central oscillator results.

Linearized variational equations have been developed in vector
form for both harmonic oscillator systems. They are solvable by
quadrature in the domains of the new independent variables. The
generai solutions to the linearized variational equations have been
presented as state transition matrices involving the universal functions
ébtained for the unperturbed solutions. The Polisson series nature of
the integrands suggests the use of each oscillator system for particu-
lar forms of the perturbing force. Examples of each type have béen
given to illustrate the selection procedure. T e

The linearized variational theory has been demonstrated in the
analysis of a perturbed circular orbit and perturbed rectilinear
orbits. The solution to fhe perturbed circular orbit was obtained
ffom the Euler-Hill equations, and identical results were obtained
using the solutions to both perturbed harmonic oscillator systems.

The direct extension to noncircular reference orbits has been indi-
cated.. The analysis of perturbed rectilinear orbits was accomplished

- using the theory developed for both oscillator systems for two distinct
types of perturbing force. The two types of perturbing force con-
sidéred were the attraction of a fixed external body and the attrac-
tion of the second spherical harmonic (J2) term of the expansion

of the primary body potential. Each perturbing force has been analyzed

using both systems for a reference rectilinear parabola for verification.
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The extension to the nonparabolic reference rectilinear orbit has been

obtained using the oscillator system appropriate to the particular
perturbing force.

As a further demonstration of the theory, near-parabolic transfer
trajectories between the moon and thg cislunar libration point Ii
have been analyzed using the results of the linearized theory of the
central oscillator system. The results have been presented as alge-
braic expressions relating the variation in parabolic velocity for
perilune at the }unar surface necessary for rendezvous at L1 as a
function of perilune orientgtion. The results may be interpreted as
the velocity requirements at Ll or the moon for passage in either
direction and on either side of the moon. The analytical results
agree quite closely with the numerical evaluation of cg;responding
nonlinear equations of motion. Retaining only the first term of the

.
analytical expressions accounts for 75 - 90 percent of the nonlinear
perturbation values.

Several areas of investigation exist in application of both the
nonlinear and linearized theory to problems in celestial mechanics.
Among these would be other forms of perturbing force and numerous |
theoretical and practical‘applications. The Poisson series nature
of the integrands of the linearized variational theory also suggests

extension to higher order perturbation theory using algebraic computer

operations.
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