

SPACE SHUTTLE

AERODYNAMIC CHARACTERISTICS OF THE NASA-MSC S-4 ORBITER IN CRUISE AND LANDING

by E.B. Chambliss, MSC R.H. Moore, MSC D. Millikan, T A&M

WIND TUNNEL TEST RESULTS DATA REPORT

> CONTRACT NAS8-4016 SCHEDULE II DRL 184-58 AMENDMENT 130 MARSHALL SPACE FLIGHT CENTER

N71-35096

ACCESSION NUMBE

OR TMX OR

ACIUITY FORM 602

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE U SiDepartment of Commerce Springfield VA 22151

(THRU)

(CATEGORY)

DMS-DR-1060 March, 1971

SADSAC/SPACE SHUTTLE

WIND TUNNEL TEST DATA REPORT

NASA - MSC TEST SERIES SVIII - PHASE 1

CONFIGURATION: NASA - MSC AUGUST 1969 BASELINE ORBITER MODEL S-4

TEST PURPOSE: DIFINE THE CRUISE AND LANDING AERODYNAMIC CHARACTERISTICS

OF THE NASA - MSC AUGUST 1969 BASELINE ORBITER CONFIGURATION

TEST	FACILITY:	TEXAS	А	AND	М	UNIVERSITY	TOW	SPEED	WTND	TTINNET.
			**		T.T.		2011			

TESTING AGENCY: NASA - MSC

TEST NO. & DATE: NASA - MSC TEST S-VIII--PHASE 1 - JUNE, 1970

MODEL SCALE: 0.05

MACH NUMBER: 0.25 TEST CONDUCTOR(S): <u>NASA - MSC --- EDMOND B. CHAMBLISS AND ROBERT H. MOORE</u> TEXAS A & M --- DAVID MILLIKAN

FACILITY COORDINATOR: RAY NELSON

DATA	MANAGEMENT	SERVICES
------	------------	----------

LIAISON:

DATA OPERATIONS:

W. R. Morgan

RELEASE APPROVAL:

Kemp, Supe visor

Aero Thermo Data Group

This report has been prepared by Chrysler Corporation Space Division under a Data Management Contract to the NASA. Chrysler assumes no responsibility for the data presented herein other than its display characteristics.

TABLE OF CONTENTS

,

•

-

.

· · · · · · · · · · · · · · · · · · ·	PAGE NUMBER
LIST OF FIGURES	111
LIST OF TABLES	iv
CONSOLIDATED DATA PLOT INDEX	v
ABSTRACT	1
AXIS SYSTEM AND NOMENCLATURE SUMMARY	2
TEST FACILITY DESCRIPTION	4
TEST CONDITIONS	5
DATA REDUCTION	6
CONFIGURATIONS INVESTIGATED	7
DATA SET COLLATIONS SHEETS	9
MODEL SKETCHES	18
MODEL COMPONENT DESCRIPTIONS	32
TEST NOMENCLATURE	36,
TABULATED DATA LISTING	45
PLOTTED DATA	46
APPENDIX A COMPREHENSIVE PLOTTED DATA DISPLAY INDEX	Al

. .

LIST OF FIGURES

-

FIGURE NUMBER	TTTLE	NUMBER
l	Axis system showing direction and sense of force and moment coefficients, angle of attack and sideslip angle.	2
2	Configuration mounted on single strut with mirrow image system	18
3	Model Geometry. Configuration $B_1 W_2 H_6 V_3$	19
<u>4</u>	Fuselage B _l	20
5	Wing W2	21
6	Horizontal Tail H ₆	22
7	Vertical Tail V3	23
8	Spoiler Configuration	24
9	Model Spoilers	25
10	Flap Configuration	28
11	Landing Gear Configuration	29
12	Model Pressure Orifices	30
13	Location of External Balance Center, Model Trunnion Position, and Aerodynamic Data Reduction Position; Moment Transfer Diagram	31

iii

•

.

-

LIST OF TABLES

.

TABLE - NUMBER		PAGE NUMBER
I	Summary of SADSAC Nomenclature	3
. II	Test Conditions	5
III	Model Component - (Body (B ₁)	32
IV	Model Component - Wing (W2)	' 33
v	Model Component - Horizontal Tail (H ₆)	34
VI	Model Component - Vertical Stabilizer (V_3)	35

.

TITLE NUMBER	ТТТТЕ	PLOTTED COEFFICIENTS SCHEDULE,	CONDITIONS VARYING	PAGES
l	Component Buildup - Longi- tudinal Effectiveness MSC S-VIII	(A)	Component Buildup	1-3
2	Component Buildup - Lateral - Directional Effectiveness	(B)	Component Buildup	4 - 5
3	Elevator Effectiveness - Positive Deflections	, (A)	Elevator Deflection	6 - 8
4	Elevator Effectiveness - Negative Deflections	(A)	Elevator Deflection	9 - 11
5	Rudder Effectiveness	(B)	Rudder Deflection	12 - 13
6	Flap Effectiveness, 60 Per- cent Exposed Span	(A)	Flap Deflection	14 - 19
7	Flap Effectiveness, Full Exposed Span	(A)	Flap Deflection	20 - 25
8	Horizontal Stabilizer Effec- tiveness	(A)	Horiz. Stab. Deflection	26 - 28
9	Longitudinal Spoiler Effec- tiveness, X/C Location of 0.50	(A)	Spoiler Deflection	29 - 31.
10	Lateral-Directional Spoiler Effectiveness, X/C Location of 0.50	(B)	Spoiler Deflection	32 - 33 -

TITLE NUMBER	TTTE	PLOTTED COEFFICIENTS SCHEDULE	CONDITIONS VARYING	PAGES
11	Longitudinal Spoiler Effec- tiveness, X/C Location of 0.70	(A)	Spoiler Deflection	34 - 36
12	Lateral-Directional Spoiler Effectiveness, X/C Location of 0.70	(в)	Spoiler Deflection	37 - 38
13	Horizontal Tail Downwash	(A)	Horiz. Tail Deflection	39 - 41

.

CONSOLIDATED DATA PLOT INDEX (Continued)

Plotted Coefficients Schedule

- (a) CN; CA, CLM vs α
- (b) CY, CYN vs β

NOTE:

See Appendix A for Comprehensive Plotted Data Display Index

\$

ABSTRACT

A 5.0 percent scale model of the NASA/MSC August 1969 Baseline Orbiter (Model S-4) was tested in the Texas A & M Low Speed Wind Tunnel during June, 1970, (MSC Test Series VIII, Phase 1), to define the cruise and landing aerodynamic characteristics. These tests were conducted at a Mach number of 0.25, Reynolds number of 1.7×10^6 per foot, and dynamic pressure of 70 psf. Variables applicable to this test were component buildup, horizontal tail incidence angle, elevator deflection, rudder deflection, flap configuration and deflection, spoiler configuration, and landing gear deployment. Notes:

- 1. Positive directions of force coefficients moment coefficients, and angles are indicated by arrows.
- 2. For clarity, origins of wind and stability axes have been displaced from the center of gravity.

Figure 1. Axis systems, showing direction and sense of force and moment coefficients, angle of attack, and sideslip angle

S

TABLE	Ι
-------	---

		SADSAC NOMENCLATURE			
COEFFICIENT	COEFFICIENT NAME	BODY AXIS	STABILITY AXIS	WIND AXIS	
C _A C _{AB} CAF	Total Axial Force Base Axial Force Forebody Axial Force	CA CAB CAF			
$egin{array}{c} C_{D} \ C_{DB} \ C_{DF} \end{array}$	Total Drag Force Base Drag Force Forebody Drag Force	- - -	CD CDB CDF	CDTOTL CDBASE CDFORE	
C _L	Lift Force	-	CL	CL	
C _N C _Y	Normal Force Side Force	CN CY	- CY	, – CC	
cĮ	Rolling Moment	CBL	CSL	CWL ·	
$\mathbf{c}_{\mathbf{m}}$	Pitching Moment	CLM	CLM	СРМ	
Cn	Yawing Moment	CYN	CLN	CLN	
L/D	Lift-To-Drag Force Ratio	• <u> </u>	L/D	CL/CD	
L/D	Lift-To-Forebody Drag Force Ratio		L/DF	CL/CDF	
N/A	Normal-To-Axial Force Ratio	N/A	. , -	– ·	
N/A	Normal-To-Forebody Axial Force Ratio	CN/CAF	-	'	

SUMMARY OF SADSAC NOMENCLATURE - AERODYNAMIC FORCE AND MOMENT COEFFICENTS

ო

•

TEST FACILITY DESCRIPTION

The Texas A&M University Low Speed Wind Tunnel is a continuous closed circuit horizontal single return facility. The overall circuit length is 397.5 feet; the tunnel is constructed of steel supported above the ground on concrete pillars. The rectangular 7 foot by 10 foot test section is 16 feet long, and it is operated at atmospheric pressure through a speed range from zero to 300 feet per second. The tunnel is powered by a 1250 KVA synchronous electric motor which drives a 122-foot diameter Curtiss Electric propeller; the controls for the motor and its auxiliaries are located in the control room. Cooling of the tunnel circuit during warm weather is accomplished by spraying the outside of the tunnel shell with water; this keeps the tunnel circuit temperature within 10°F of ambient temperatures to protect models and to maintain tolerable test section working conditions for model configuration changes. The 7 x 10 test section incorporates an external pyramid balance system which separates and independently measures the aerodynamic components; a variety of support systems for this balance are available. Internal balances are also available for use in this tunnel. For a more detailed description of this tunnel refer to the Low Speed Wind Tunnel Facility Handbook published by the Space Technology Division, Texas A&M University, College Station, Texas.

· TABLE II

			والمتحد والمستجمع والمستجم والمستخلف والمستجمع والمتحد والمتحد والمتحد والمتحد والمتحد والمستحد والمستحد والمست
MACH NUMBER	REYNOLDS NUMBER	DYNAMIC PRESSURE (pounds/sq)	STAGNATION TEMPERATURE (degrees Fahrenheit)
0.25	1,700×106	70.0	95.0
	· · · · · · · · · · · · · · · · · · ·		
		· •	
•			
			·
	·		
			4
			*
			-

TEST CONDITIONS TEST SVIII - PHASE 1 NASA - MSC

BALANCE UTILIZED: Dynametrics Inc. - External Pyramid Balance

CAPACITY:

RESOLUTION:

÷

Ŧ

± 0.1 lb

0.1Ó.

0

0.

0.1

.

ТЬ

lb

COEFFICIENT TOLERANCE:

LF	<u>–1000 to 30</u> 00 lb
SF	-1000 to 1000 lb
DF	-1000 to 1000 lb
PM	-2000 to 2000 ft-1b
YM	- <u>1000 to 10</u> 00 ft-lb
RM	-2000 to 2000 ft-lb

COMMENTS:

.

- 45 ftt-1b ft-lb ft-lb

+	0.008	
Ŧ	0.002	_
1	0.0021	_
<u> </u>	<u>0.041</u>	
<u></u>	0.002	_
	0.016	_

DATA REDUCTION

An external pyramid balance was utilized to measure data for this test and the measured data were reduced relative to the body axis system. Listed below are the dimensional data used to reduce the measured data to coefficient form:

> Sref = Wing W2 planform area = 2.3 ft² lref = Wing W2 mean aerodynamic chord = 0.6121 ft b_{ref} = Wing W2 span = 3.9946 ft

The moment reference point (MRP) applicable to the reduced moment coefficients in 41.396 inches aft of the fuselage nose, on the fuselage lateral centerline, and 6.396 inches above the bottom of the fuselage. Corrections applicable to tunnel blockage and flow alignment were utilized in the data reduction.

No roll data was plotted due to its questionable values. These data may be found in the tabulated listing.

Base pressures were measured, but are not presented for this report. See Figure 12 for pressure orifices location. A base pressure coefficient is available in the tabulated data.

CONFIGURATIONS INVESTIGATED

NOMENCLATURE

Bl = Orbiter fuselage

- W2 = Orbiter wing
- H6 = Horizontal tail

V3 = Vertical stabilizer

- L = Landing gear
 - S = Spoilers

Refer to Figures 3 through 11 for detailed information on the above components.

COMBINATIONS TESTED

5 V 3
5 V 3L
5v3s
SV3SL
-

The above configurations were tested at an angle of attack range of -13° to 11° at fixed sideslip angles of -5° , -1° , 0° , 1° , and 5° , an angle of attack range of -14° to 25° at zero sideslip, and an angle of sideslip range of ∓ 15 at zero pitch angle. Two flap configurations (see Figure 10) and six spoiler configurations at two locations were tested (see Figures 8 and 9); these spoilers were installed normal to the wing surface. Control deflections applicable are listed below: -

- 1. Elevator deflections of -30° , -25° , -20° , -15° , -10° , -5° , -2.5° , 0° , 2.5° , 5° , 7.5° , 10° , 15° , 20° , 25° , and 30°
- 2. Rudder feflections of 0° , 5° , 10° , and 20°
 - 3. Flap deflections of 0° , 15° , 25° , and 45°
 - 4. Horizontal tail incidence angles of 0° , -2° , -4° , and -6°

NASA - MSCTEST SVIII - PHASE 1 DATA SET COLLATION SHEET

D PRETEST

🕱 POSTTEST

DATA SET		PTON .	SCI	iυ.	CON	ſROĹ	DE	FLE	СТІ	ON	NO.				Ň	IACH	UMBE	RS			 -	· · · · ·	
DENTIFIER	CONFIGURA		α	β	LH	8	2 8	<u>5r</u>	δ	£	RUNS	0.25					L	<u> </u>	<u> </u>				
RG6001	B, W, h	16/3	AP	0	0	0		0	C)		50		_									
002			AN	0	Ņ							52			-	-]				· ·		
003			AP	-1								53											
004			AN	-1					Ш			54											
005		· · · · ·	AP	-5								55											
006			AN	-5				_				56											
007			AP	1								57											
008			AN						\prod			58								ļ			
009			AP	5								59						<u> </u>		<u> </u>			
010			AN	5			_	1_				60					<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>
011		<u> </u>	A1	0	\square			1				62			,				<u> </u>		<u> </u>		ļ
012		·	0	BI		\square		L				63					<u> </u>	<u> </u>		<u> </u>	<u> </u>	ļ	<u> </u>
013			AI	0				5			,	64											
014			0	BL		\downarrow		+				65											<u> </u>
015			AL	0			_	Q	\square			67										ļ	<u> </u>
016			0	3)								68					ļ			Ļ		ļ	<u> </u>
017			A1	0			4	15				69								<u> </u>			<u> </u>
018			0	BL				¥				70				<u> </u>	L	<u> </u>	_ <u>_</u>	<u> </u>		<u> </u>	<u> </u>
019			41	0	Ц			20	Ц			72				<u> </u>					<u> </u>		<u> </u>
020	*		0	BI				*				73]]	<u> </u>	<u>]</u>		<u>l</u>		L	
1	7	13	19			25			31			37	43		4	9	5	5	6	1	67		
CN	I.CA	I CLM	L	(Δ)	(YX		۲.	B	L	CPB	SF.				<u> 1</u>		<u></u>	و منامی ا	<u></u>	<u></u>	
COEFFICIE	INTS: AP-	0254	50	5.5	6.0	6.	5.	7.	7. :	5.	8.8	1.5.9					<u> </u>]I	DPVAR	(1) ID	PVAR(2) N
α or β	AN-	-131	2.5	-1	2	11.	Ł	21	<u></u>	1	5.5	-10	-9.5	-9	-8	5-	87	.5	6.5.	-4,5	-2.5	5-1	. 0
SCHEDULES	à <u>ai</u> -		10,-	-8,	-6,	-¢,	- 2	,0	<u>,</u>	<u>,</u>	2,3,	4,5,	6, Ť,	8,9	î <u>, 10</u>	,14	12,	14, 1	6,20),ZŚ	-	· · · ·	
ANA	BI -	<u></u> ís	_/	0,-	-5		1.	-3	<i>;</i>	1	ź, -	·í, ć), j, Z	· 3	.4.	51	0,1	5	-				

NASA - MSC TEST SVIII - PHASE 1 DATA SET COLLATION SHEET

.....

□ PRETEST

🖾 POSTTEST

NASA - MSC TEST SVIII - PHASE 1 DATA SET COLLATION SHEET

•

D PRETEST

N POSTTEST

DATA SIT	CONTRACTORINA	SCL07.	CONTROL 1	DEFLECTION 30.				M	ACH 4	UNDER	(5			· · · · · · · · · · · · · · · · · · ·		,
IDEGUTTER	COMPTONALION	1	Lybe	Sr St	0.25	_	-									
RG6041	B, W2 H6V3	ALO	0 -7,5	00	104			-								
_42		0 3!	-2.5		105		/		•]					
. 43		AI O	2.5		106		.				ļ ,					
44		0 BI	2.5		107		-		. ~	-			ļ	 		
45		AIO	1		108			-						!		
. 46		0 <u>B</u> I			101						••••		Ì) •	i 	· _
47		AIO			//0	· -		•		•				ļ -		
		03	1-5-		///	· ·			• • •		<u></u>	 				
	***		-7.5		// Z-											
			17.2		- 11-2		····				↓ • • • • • •	· !	• •			
50				· · · · · · · · · · · · · · · · · · ·	· // †		•	,				.	ļ.			
	· · · · · · · · · · · · · · · · · · ·			┫╍╼╅╍╼┨╼╶┨╴┫╴╺╍ ┙╴┙╷╴┨╶┨╴┫	- 11.2 112		••••		-	·	-	}]				
	· · · · · · · · · · · · · · · · · · ·	0 3	-10		117			•••	·				! 		<u> </u>	
Sit		410	10		IIR		,						<u></u>			
56		0 4	110		119											
57		Alla	-15		120											
se		O_E!	1. 1.		121											
54		ALO	115) 	122							 		ļ]	
4 60	<u> </u>	OBI	11/5		176]]		l	1	<u> </u>	<u> </u>
<u>_!</u>	<u>7 – Ei</u>	1.9	• • •	<u>s I</u>			!	، _ا ر	}	• •	۱. 	i, <u>j</u>		<u>.</u>		<u></u>
· · L_CN_	I.C.A. I.C.I.M.		<u>Li Ci</u>	ManacRea	(PA)		لابدها بدفس		بغربر الدرميس	<u>.</u>	و به و	. 1,	•	:		I

WALLER LEADER

.

.

.

NASA - MSC TEST <u>SVIII - PHASE1</u> DATA SET COLLATION SHEET

•

🔲 PRETEST

🐼 POSTTEST

DATA SET	CONRTEIDATION	SChD.	CONTIN	n de	MLEC.	\mathbf{n}	NO.				· · · · · ·	MACH 1	NUMBER	<u> </u>	r		·		 .
IDESTIA H.R		14 13	1.11	<u>5e [5</u>	<u>S</u> r_	δç.	PPN:	C.25				ļ							
R66061	B, W2 H6K3	AIO	0	-20	0	0		127]		Ì	.	.]
62		OBI	-	-20]_			123						.	•.				
63		110	1	20			1	129	-	-].].].				
64		OBI		20				130									l t		
65		AI O		-25				1:31		.			 -				, ,		
66	·	0 E)	∦ ↓ •	-25],		-		132				-							
		AIO		25			, .	133											
66.		<u>0</u> <u></u>		25				134				.						ļ	
69		AI 0	-	-30		-	1	135	-					ļ			 \		
	······································	O BI		<u>- 20</u> .				136.	·				· [·			┨╌━━━	<u> </u>	+-
	·	AI 0		흸.				131			·								
	·	0.51	9.1	<u>-</u>	+			1.50			•	-		-	. -	,			-
73	····	AIO		$\left \right $				157	•			-{ -				·		+	•
		00					ļ	140			•				·	<u> </u>		<u> </u>	
		AIO		•-{{-	- -	-		191			-	-{	·{·	·				<u>├</u> ──	+-
16	·	12 31	-1-			·		135									· [•	
				<u>.</u>		-		1:4								·/			+-
75	B Wa Va	NI O		E . 				115						+	·	-			1
		DB			4	⊥. ¥		146			-			1					+
0						└ <u>──</u> ╃── १३		37		L	ان ا	"1 69 1	ـــــــــــــــــــــــــــــــــــــ	.',	 1,	J	 1,/		 ,
		<u>, r</u>	$\sqrt{1}$	CYN	1	CE	31.	CPB.	1515			· · · · · · · · · · · · · · · · · · ·	 I			· · · · · · · · · · · · · · · · · · ·	1		-7

•

• 1

NASA - MSC TEST SVIIL - PHASE 1 DATA SET COLLATION SHEET

.

۰.-

D PRETEST

.

Ø POSTTEST

.

DATA SUI	CONFICURATION	SC10.	. ec	ATPOL	DEF)	ECTION	20.	[, .,			:	iACH :	UMBFE	ts					,
I DUNTI FILR	CONFIGERATION	14	ľ /	11 50	· [81	·δ _£	PUX -	C.26											
R660 B1	B, WzHG.	AI	0	20		0		147											
. 082	······································	01	31	8		•		148	· • ·			<u>.</u>		-					
083	B, W2	AI	0.	-	-	:]]	· ·	147		-									
0.84		01	5/ "	-		_ _∦_		150	••	_		-							-
1085		A1	0 -		•	·		151			l					ĺ	1		
086		0	31	_ -	:].==] _	152	-	-							-		
087	B1V3H6	A	0	<u>2 0</u>	0	-		153			 -	- ·		,			· ·		
0.99		01	BIĮ.	k	-┥╌┼-			154		· ,								·	ļ
089		AJ	0 -	2		-		1 <u>55</u>				<u></u>							 _
0 <u>90</u>		0	3/	¥				15.6	· •	•							·		F
091		91 9	0 [-	6				157						ļ		-			- 1
0.92;	PULLIE	10_ 1	21	Ŷ				158											
093	D1W2 H6V3 21.5	AI	0	? .		0		159								ļ. <u></u>		 	
094		Q I	5 ,1 .		- -		-	160					,	ļ	·				
095	B, W2 H613217	AI C			-			161											
	DULINE		21 .	$\left \cdot \right $		_		166				<u> </u>		<u> </u>					
09/	B, W2 HG V3 J2.5	A	\underline{O}	┝╸╷╿╍╍╂				163											
	DULI V.C				• • -			167											
091	21 W2 H6 V3 22.7	AI C	2.	<u>-</u>				165							<u></u>			[
V 100	<u> </u>		<u>il 1</u>			<u> </u>	l:	1/20	¦			<u> </u>		<u> </u>	L	L	I	L	<u> </u>
			~~~ ?		21	<u> </u>	3!	24	<u>"</u>	; 		1			· · ·				$-\frac{\gamma_1}{1}$
·	L. LA. I LLM	- <b></b>		-la ha	I aller an	- L	· · · · · · · · ·	11.2.2.	: 	سەۋەت يىلەر يەۋە			<b>_</b>	· · · · · · · · · · · · · · · · · · ·	··		<u> </u>		<u> </u>

.

#### NASA - MSC TEST <u>SVIII - PHASE1</u> DATA SET COLLATION SHEET • .

•

## □ PRETEST

X POSTTEST

	· ·															1	XI PC	STT	EST
DATA SLT	CONFICURATION	SCHD.	CONT	ROL I	DEFLE	CTION	NO.				ľ	IVCH V	UMBER	S		*			
TRANTIFICR		11 K	LH	5.	Sr	Sr_	01 190X 3	c.25											
RG,6 .101	B, W2 Hav3 53,5	AIO	0	0	0	0		167											
102	+	OB						168				   .					· • •• •		
103	B, W2 H6 V3 53.7	MC						169											
		0 131						170	•		; 		٠						*****
	B, W2. H6V354.5	AI O						171								• ••	• •		
		OB						182			-	-		- • •					·
	B. W2 H6 354.7	A  Q					_	180			1								
[53	<u> </u>	<u> 0</u>  3]					·	181				····						·	• •
109	B, W2 H6V3 S5.5	AIQ						173											
1]0		0 [3]						174									• •		
	B1 W2 HOV3 565	410						176			ļ								
		0 3						17.Z							-				 
	B, W2. H6V356.7.	AI O						178											
		0.13				1		179											
	B, W2H6V3555	A10				45.6		183											
116		<u>0_81</u>						184											
_ <b>_</b>	B, W2 H6 V3 555 L	ALQ						185	;				•						
		23	<b> </b>		¥			186											
	·	A1 2			10			187			<b>_</b>			<u></u>					
120		0 3		Ý	*	v i		188	<u> </u>					l					
<u>ما</u>	/ 13	<u> </u>	·	<u>'.</u>		<u>()</u>		17	······	1	4	1	131		61		62		7.5
<u></u>	<u> </u>		/ المعال	<u>.C.</u> Y.	<u>d</u>	<u>C</u> B		(PE)	<u>S.h</u>	- A	- 		L		`		1		T

# NASA - MSC TEST SVIN - PHASE1 DATA SET COLLATION SUBET

### D PRETEST

### S POSTTEST

.

DATA SIT	CONRECTION	sc	ш.	CON'I	ROLI	)EFLE	CTION	NO.					MACH 1	UMBÉE	<u>≀S</u>	r		<del></del>		
IDENTIFULR	OVAL TOURT FOR	11	13	<u>L</u> 11	<u>8</u> c	Sr.	$\delta_{\mathrm{f}}$	<u>1 (185</u>	0.25		. STatha			-				<u> </u>		
RG6 121	B, W2 H61/355.5L	AI	0	0	Q	20	45.6		189											
		0	BI						190			]	]		-	]	<u> </u>	]		
		41	0	-	-30				19 <u>1</u>		-									
124		0	<u>BI</u>			1			192					ļ					Į	
		A	0			10			193											-
- 126	·····	0.	BI						194     194	• •	-				-			- i		´-
124		AI	BI	-		ĥΤ		· · ·	195			<u> </u>					··	1		
124		<u>0</u>	0		-15				197	*-• <b>-</b>		}	+ ·		<b></b>		·	+ 	<u> </u>	†
		0	B		Ţ			· · ·	193									· · · · ·		T
[3]		AI	0		25	. _			199							1.			<b></b>	
132	·	0	B]						200											
		AI	0	-	.	20			301										ļ	ļ
	·	0	B		. <u>.</u>				202				.		<b>}</b>		.	·{·		
		HI 0			17-	-	.  .		203	·		·								
	·	10- 14-			1-+-	1.8-			205				_			·	· <u> </u>	┥╌╴╼╌	+	+
138		0	Ĭ.	Į		ľŤ			200	·						·	·	1	·†	╏
• 139	B.W2 H6V31	A	0						207											
140		0	21			¥			218									]		
1	/ 13	19	-		<u>,</u>		•1		37	.,4	·		F.9	5	1 ~~~~	<u>fi</u>	l	ŧ./		,

# NASA - MSC TEST SVIII - PHASE 1 DATA SET COLLATION SHEET

## D PRETEST

.

S POSTTEST

DATA SET		Scho, CO	NTROL DEFLECTI	0:120.			MACH	NUMBERS	·		······
DUNTIFIER	CONFIGURATION	11 11 1	4150 Sr 8	e PPSS	0.25						
66.141	BiW2H6V3L	AI 0 C	2 5 20 4	6	204					· · · · · ·	
		<u>0 B</u> I .		· .	210						
- 143		A1 0			211			. .		- İ	
144		OBI	. V.		216			.   -			
		<u>410</u>		- ·	213						
	· ····································		-15		219	-				• • • •	
	•	OB		•	216						
144		AL O	-30	-	217						
150	·	03		-	218						
151		AI 0	10 _		219						
		0 81			220				.		
153		AI 0			221						
154	·	O BI			22					_	
1.55		<u>AI 0 -</u>		2	223		·				
156	· · ·	OB			229			··		╾┟┈╺╍╼╄╸	
150		914			275				<del>,   </del>		
159	······	AI D .	-5 20	•••	277			-			
160	••••••	O BI			225	-	· · · · · · · · · · · · · · · · · · ·				
- <del></del>	7 13	19	24 - 14 - 14		37	43	49	<u>к</u> 51,	61		75 A.
C.H.	I. CA. ICIM.	L.C.Y.	ICYN (	<u>F1</u>	<u>(PENEF</u>			منتب الم			

-----

# NASA - MSC TEST SVIII - PHASE 1 DATA SET COLLATION SHEET

.

.

PRETEST

🛛 POSTTEST







Figure 3 - Model geometry. Configuration  $B_1W_2H_6V_3$  (all dimensions in inches)



.

Figure 4 - Fuselage  $B_1$  (all dimensions in inches),

•





Figure  $5 - Wing W_2$  (all dimensions in inches)

.



Figure 6 - Horizontal tail  $H_6$  (all dimensions in inches)



Figure 7 - Vertical Tail V3 (all dimensions in inches)



Figure 8 - Spoiler configuration. (all dimensions in inches)





Figure 9 - Continued.



Figure 9 - Concluded.

1,126





Figure 30 - Flap configuration. (all dimensions in inches).




Figure 12. - Model Pressure Orifices (all dimensions in inches)



FIGURE 13. - Location of External Balance Center, Model Trunnion Position, and Aerodynamic

Data Reduction Position; 'Moment Transfer Diagram

# TABLE III 4

MODEL COMPONENT: BODY - B1		
GENERAL DESCRIPTION: 0.05 Scale Model of NASA - MSC August 1969 Baseline Orbiter Fuselage		
DRAWING NUMBER: <u>Texas</u> A and <u>M Research</u> and Number Orbiter - 1	Instrument Shops	Drawing
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length Max. Width Max. Depth Fineness Ratio (total length to max. width) Area Max. Cross-Sectional Planform Wetted	$1380 in.$ $229.92 in.$ $255.84 in.$ $6.002$ $324.0 \text{ ft}^{2}.$ $1919.6 \text{ ft}^{2}.$	<u>69.0 in.</u> <u>11.496 in.</u> <u>12.792 in.</u> <u>6.002</u> <u>0.810 ft².</u> <u>4.799 ft².</u>
Base (Horizontal Tail Off) (Horizontal Tail On)	$\frac{158.4 \text{ ft}^2}{146.0 \text{ ft}^2}$ .	0.396 ft ² . 0.365 ft ²

TABLE IV	• · · · · · · · · · · · · · · · · ·	·
MODEL COMPONENT- WING (W2)		
GENERAL DESCRIPTION- MSC OR	BITFR S-4, 0.05 SCA	LF
DRAWING NUMBER- ORBITER-7	TEXAS A+M UNIV	- <u>·</u>
DIMENSIONS		
· · · · · · · · · · · · · · · · · · ·		
<u>IUIAL UAIA</u>	(FT)	(IN)
AREA	920.0	331.200
SPAN (EQUIVALENT)	80.00	48-000
ASPECT RATIO	6.957	6.957
TAPER RATIO	0.353	0.353
DIEHEDRAL ANGLE.DEG	7.000	7.000
INCIDENCE ANGLE.DEG	4.000	4.000
SWEEP BACK ANGLE, DEG		
LEADING EDGE	14.000	14.000
	-1.400	-1-400
O 26 ELEMENT LINE	- I + 700 0 262	-1++00
	Jecur	94202
		40 000
KUUI (WIND SLA. U.U)		U+CUU
TIP, (EQUIVALENT)	6.00	3.600
MEAN AERODYNAMIC	12.38	
.25 MAC COORDINATES		
X (EROM BODY NOSE)	61.82	
Y (FROM BODY CL)	16.81	10.087
AIRFOIL SECTION		
ROOT	NACA DOI	4-64
TIP	NACA 001	10-64
		•
EXPOSED DATA		
	£40.0	227 156
	C 0 04	ZEJ + 190 ZE EBK
SPAN (EUUIVALENI)	<u> </u>	<u> </u>
ASPECT RAILO	5.9/1	5+9/1 0 147
IAPER_RATIO		U. 917
CHORDS		
	14.38	8.625
TIP, (EQUIVALENT)	6.00	3.600
MEAN AERODYNAMIC	10.77	6-461
.25 MAC COORDINATES		
X. (EROM BODY NOSE)	62.89	37.732
Y (FROM BODY CL)	22.71	13.623
	A <del>(1997)</del>	
DIMENSIONS OBTAINED	FROM MODEL DRAWIN	88
	g	
		,
· 33		

DRAWING NUMBER- ORBITFR-4 DIMENSIONS TOTAL DATA	TEXAS A+M UNIV	
DIMENSIONS TOTAL DATA	IEXAS A+M UNIV	
DIMENSIONS TOTAL DATA		
TOTAL DATA		· - · · · · · · · · · · · · · · · · · ·
	FULL SCALE	MODEL
********	(FT)	(IN)
AREA	390.4	140.562
SPAN (EQUIVALENT)	42.75	25.650
ASPECT RATIO	4.681	4-681
	<u> </u>	0.353
TNOTDENCE ANGLE, DEG		0.000
SWEEP BACK ANGLE. DEG		<u> </u>
LEADING EDGE	10.200	10.200
TRAILING EDGE	-12.900	-12.900
0.25 ELEMENT LINE	2.962	2.962
CHORDS		
	13.50	8.100
MEAN AERODYNAMIC	4•{(	2+86U 5 000
.25 MAG COORDINATES	3.03	2.900
X (FROM BODY NOSE)	113.09	67.855
Y (FROM BODY CL)	8.98	5.391
AIRFOIL SECTION		
ROOT	NACA 001	2-64
	NACA_UU1	2-64
EXPOSED DATA		
	270 E	86 207
SPAN (EQUIVALENT)	- 30.42	18,250
ASPECT RATIO	3.864	3.864
TAPER RATIO	0.434	0.434
CHORDS		
ROOT (WING STA. 0.0)	10.98	6.587
TIP, (EQUIVALENT)	. 4.77	2.860
	5.28	4.9/1
•25 MAG GOORDINATES X (FROM RODY NOSE)	113.39	68-031
Y (FROM BODY CL)	12.77	7.663
DIMENSIONS OBTAINED	D FROM MODEL DRAWING	S
·		

•--

1

•

		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
TABLE VI		
MODEL COMPONENT- VERTICAL STABLIZER	R (V3)	
GENERAL DESCRIPTION- MSC ORBITER	S-4, 0.05 SCA	LE
DRAWING NUMBER- ORBITER-6 TEXAS	S A+M UNIV	· · · · · · · · · · · · · · · · · · ·
DIMENSIONS		··· •
		KADEL
	FULL SCALE (FT)	(IN)
AREA	241.2	86.821
SPAN (EQUIVALENT)	15.42	9.250
ASPECT RATIO	0.985	0.986
TAPER RATIO	0.470	0.470
DIEHEDRAL ANGLE, DEG	0.000	0.000
INCIDENCE ANGLE.DEG	0.000	0.000
SWEEP BACK ANGLE, DEG		
LEADING EDGE	45.000	45.000
TRAILING EDGE	. 14.997	14.997
0.25 ELEMENT LINE	34.822	34.822
CHORDS		
ROOT (WING STA. 0.0)	21.29	12.772
TTP. (FOUTVALENT)	10.00	6.000
MEAN AFRODYNAMIG	16.33	9.798
-25 MAC COORDINATES		
Y (FROM BODY NOSE)	106.70	64.018
7 (FROM EXPOSED ROOT CHORD)	6.78	4,069
ATRENTI SECTION	0.10	40000
ROOT	NACA AA1	2-64
TTP	NACA DA1	2-64
DIMENSIONS OBTAINED FROM	M MODEL DRAWING	S
· · ·		
· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	

#### NOMENCLATURE

SYMBOL	SADSAC SYMBOL	DEFINITION
A j		base area; $m^2$ , $ft^2$ , $in^2$
a		speed of sound; m/sec, ft/sec
AR	ASPECT	aspect ratio, $b^2/S$
b	REFB	wing span or reference span; m, ft, in
С		wing chord; m, ft, in
Ċ.		wing mean aerodynamic chord or reference chord; m, ft, in (see $\ell_{\rm ref}$ or refl)
c.g.		center of gravity
C. P.		center of pressure
с _А	ĊA	axial force coefficient, $F_A/qS_{ref}$
с _А	CAB	see page 44
c_A_f	CAF	forebody axial force coefficient, $C_A - C_A_b$
с _р	CDTOTL	drag force coefficient in the wind axis system, ${ m F}_{ m D}/{ m q} { m S}_{ m ref}$

.

.

.

-

•

.

SYMBOL	SADSAC SYMBOL	DEFINITION
C'D	CD	drag force coefficient in the stability axis system, $F_{D}^{\prime}/q S_{ref}$
с _г	CL	lift force coefficient (stability or wind axis) $F_L/q S_{ref}$
° _l	CBL	rolling moment coefficient in body axis system, $M_{\chi}/q S_{ref}^{} b$
° _{L,s}	CSL	rolling moment coefficient in the stability axis system, $M_{x,s}/q S_{ref}^{b}$
° _{l,w}	CWL	rolling moment coefficient in the wind axis system, $M_{x,w}/q S_{ref}^{b}$ b
Ċ Ċ _m	CLM	pitching moment coefficient in the body axis system, $M_y/q S_{ref} \ell_{ref}$
C _{m,s}	CLM	pitching moment coefficient in the stability axis system, $C_{m,s} = C_m$
C _{m,w}	СРМ	pitching moment coefficient in the wind axis system, $M_{y,w}/q \frac{S_{ref} \ell_{ref}}{ref}$
с _N	CN	normal force coefficient in the body axis system, F _N /q S _{ref}

.

•

.

•

SYMBOL	SADSAC SYMBOL	DEFINITION
C _n	CYN	yawing moment coefficient in the body axis system, $M_z/q S_{ref}^{} b$
C _{n,s}	CLN	yawing moment coefficient in the stability axis system, $C_{n,s} = C_n$
C _{n,w}	CLN	yawing moment coefficient in the wind axis system, $M_{z,w}/q S_{ref} b$
с _р	CP	pressure coefficient, $(p-p_{\infty})/q$
C _y	СҰ	side force coefficient (body or stability axis system), $F_y/q s_{ref}$
с _с	CC	side force coefficient (wind axis system), $F_y/q \stackrel{S}{_{ref}}$
$\mathbf{F}_{\mathbf{A}}$	-	axial force; N, 1b
$\mathbf{F}_{\mathbf{D}}$		drag force in wind axis system; N, 1b
F D		drag force in the stability axis system; N, lb
F _T ,		lift force (stability or wind axis system); N, lb
F _N		normal force; N, lb

.

38

-

SYMBOL	SADSAC SYMBOL	DEFINITION
FY		side force; N, lb
	N/A	normal to axial force ratio
$\ell_{ m ref}$	REFL	reference length; m, ft, in (see $\overline{c}$ )
L/D	L/D	lift-to-drag ratio, $C_L^{\prime}/C_D^{\prime}$ (stability axis system)
L/D	CL/CD	lift-to-drag ratio, $C_L^{/C}D$ (wind axis system)
M ·	MACH	Mach number
MRP	MRP	abbreviation for moment reference point
	XMRP	abbreviation for moment reference point on x-axis
	YMRP	abbreviation for moment reference point on y-axis
	ZMRP	abbreviation for moment reference point on z-axis
M ×		rolling moment in the body axis system; N-m, ft-lb
M x, s		rolling moment in the stability axis system; N-m, ft-lb

•

•

.

.

.

,

SYMBOL	SADSAC SYMBOL	DEFINITION
M x,w		rolling moment in the wind axis system; N-m, ft-lb
M y		pitching moment in the body (or stability) axis system; N-m, ft-lb
M y, w		pitching moment in the wind axis system; N-m, ft-lb
M _z		yawing moment in the body axis system; N-m, ft-lb
M z,w		yawing moment in the wind axis system; N-m, ft-lb
p		static pressure; N/m ² ; psi
P,		total pressure; N/m ² ; psi
q	Q( PSI) Q( PSF)	dynamic pressure; N/m ² , psi, psf
RN/L	RN/L	Reynold's number per unit length; million/ft.
S		wing area; $m^2$ , $ft^2$
S ref	REFS	reference area; $m^2$ , $ft^2$
Т		<ul><li>temperature; °K, °C, °R, °F</li></ul>
v		speed of vehicle relative to surrounding atmosphere; m/sec, ft/sec

•

•

•

-

	SADSAC	
SYMBOL	SYMBOL	DEFINITION
θ		pitch angle, angle of rotation about the body Y-axis, positive when the positive Z-axis is rotated toward the positive X-axis; deg
φ	PHI -	roll angle, angle of rotation about the body X- axis, positive when the positive Y-axis is rotated toward the positive Z-axis; deg
$\psi$	PSI	yaw angle, angle of rotation about the body Z-axis, positive when the positive X-axis is rotated toward the positive Y-axis; deg

SYMBOL	SADSAC SYMBOL	DEFINITION
ⁱ T		tail incidence positive when trailing edge down, deg
v		velocity of vehicle relative to surrounding atmosphere; m/sec, ft/sec
α	ALPHA	angle of attack, angle between the projection of the wind $X_w$ -axis on the body X, Z-plane and the body X-axis; deg
<b>β</b>	BETA	sideslip angle, angle between the wind X _w -axis and the projection of this axis on the body X-Z-plane; deg
γ		ratio of specific heats
Г	DIHDRL	wing dihedral angle; deg
δ	AILRON ELVATR RUDDER FLAP TAB	control surface deflection angle; deg positive deflections are: aileron - left aileron trailing edge down elevator - trailing edge down rudder - trailing edge to the left flap - trailing edge down tab - trailing edge down with respect to control surface
P		air density; K _g /m ³ , slugs/ft ³

SUBSCRIPTS	DEFINITION
a	aileron
b	base
c	canard
е	elevator or elevon
f	flap
r	rudder or ruddervator
<b>S</b> ·	stability axis system
t	tail, or total conditions
w ·	wind axis system
ref	reference conditions
ø	freestream condition

#### ADDITIONS OR CHANGES TO SADSAC NOMENCLATURE

Symbols used in NASA-MSC Tests S-VIII - Phase 1 which do not appear

in the Standard SADSAC Nomenclature.

.

SYMBOL	SADSAC SYMBOL	DEFINITION		
	· ·	horizontal tail incidence angle, positive with trailing edge down, degrees		
с _{рь}	CPBASE	base pressure coefficient, $(P_b - P_{\infty})/q$		
S _s	SPOLER	parameter name to denote spoiler, configuration and location, a parameter valve of 1.5 means spoiler SL was positioned at 50% of the wing chord, a parameter valve of 1.7 means spoiler SL was positioned at 70% of the wing chord (see Figures 8 & 9)		
S _f	FLAPS	parameter name to denote flap deflection angle and flap configu- ration. A parameter valve of 150° means the full exposed span flaps were deflected 15°, a parameter valve of 15.6 means the 60% ex- posed span flaps were deflected 15 (see Figure 10), a positive deflection in trailing edge down.		

-

#### TABULATED DATA LISTING

A tabulated data listing, consisting of all aero data sets, both original and those created in arriving at the plotted material to be presented subsequently, is available as an addendum to this report. The tabular listing is made up in two sections:

- (a) a brief summary list of all data sets containing the identifier, the descriptor, and the resident dependent variables.
- (b) the full list of all data sets containing all resident or selected aerodynamic coefficients of the data sets as well as the above mentioned information.

The listing is currently sent on limited distribution to the following organizations:

NASA	AMES	Mr.	٧.	Stevens
MASA	MSC	Mr.	R.	Nelson

.

If copies of this listing are desired, please contact the above or the cognizant SADSAC personnel who, for this data, is:

W. R. Morgan Department 2780 Chrysler Corporation Space Division New Orleans, La. 70129

(504) 255-2304

PLOTTED DATA





COMPONENT BUILDUP - LONGITUDINAL EFFECTIVENESS MSC S-VIII





COMPONENT BUILDUP - LATERAL-DIRECTIONAL EFFECTIVENESS



COMPONENT BUILDUP - LATERAL-DIRECTIONAL EFFECTIVENESS



ELEVATOR EFFECTIVENESS - POSITIVE DEFLECTIONS





MSC S-8 PART 1 S-4 SHUTTLECRAFT B1W2V3H6

(RG6011) 06 MAR 71



## ELEVATOR EFFECTIVENESS - POSITIVE DEFLECTIONS









1 PAGE

10

.





MSC S-8 PART 1 S-4 SHUTTLECRAFT B1W2V3H6

(RG6012) 06 MAR 71





MSC S-8 PART 1 S-4 SHUTTLECRAFT B1W2V3H6

(RG6011) 06 MAR 71

PAGE

14



•

FLAP EFFECTIVENESS, 60 PERCENT EXPOSED SPAN





(RG6011) 06 MAR 71 PAGE 16





FLAP EFFECTIVENESS, 60 PERCENT EXPOSED SPAN



FLAP EFFECTIVENESS, 60 PERCENT EXPOSED SPAN

PAGE 19

HACH

0.250




FLAP EFFECTIVENESS, FULL EXPOSED SPAN







0.250 ИА СН



FLAP EFFECTIVENESS, FULL EXPOSED SPAN

:



HORIZONTAL STABILIZER EFFECTIVENESS





HORIZONTAL STABILIZER EFFECTIVENESS





MSC S-8 PART 1 S-4 SHUTTLECRAFT B1W2V3H6S

.

(RG6093)

05 MAR 71 PAGE

30



LONGITUDINAL SPOILER EFFECTIVENESS, X/C LOCATION OF 0.50



MSC S-8 PART 1 S-4 SHUTTLECRAFT B1W2V3H6S

(RG6094) 05 MAR 71

PAGE

32





LONGITUDINAL SPOILER EFFECTIVENESS, X/C LOCATION OF 0.70









# LATERAL-DIRECTIONAL SPOILER EFFECTIVENESS, X/C LOCATION OF 0.70





насн 0.250



APPENDIX A

COMPREHENSIVE PLOTTED DATA DISPLAY INDEX

NOTE:

See Page v for Consilidated Data Display Index

DATA PLOT INDEX

### COMPONENT BUILDUP - LONGITUDINAL EFFECTIVENESS MSC S-VIII

### DEPENDENT VARIABLE VS INDEPENDENT VARIABLE, MULTIPLE DATASETS

	D	ATASETS PLO	TTED:				
		RG6011	RG607	9 RG6081	RG6083	RG6	085
1	. <u></u>	DEPENDE	NT	INDEPENDENT	PLC	T PAG	Ε
		VARIABL	.Ε	VARIABLE	BEGINNI	NG /	ENDING.
		CN		ALPHA		1	<u>1</u>
		CA		ALPHA		2	2
<u> </u>	·••	CL.M.	· · · · · · · · · · · · · · · · · · ·	ALPHA		3	3

### COMPONENT BUILDUP - LATERAL-DIRECTIONAL EFFECTIVENESS

#### DEPENDENT VARIABLE VS INDEPENDENT VARIABLE, MULTIPLE DATASETS

864012	964080	RGAng2	RG∡∏84	RG	60.06
	10000	N=005-			0080
 DEPENDE	NT I	NDEPENDENT	· PLO	T PA	GE
 VARIABL	<u>e</u>	VARIABLE	BEGINNI	NG /	ENDING
 Сү ·		BETA		4	+ 4
CYN	•	BETA		5	5

## ELEVATOR EFFECTIVENESS - POSITIVE DEFLECTIONS

## DEPENDENT VARIABLE VS INDEPENDENT VARIABLE, PARAMETRIC STUDY

	DATASETS PLOT	TED:				
	RG6011	RG6047	RG6055	RG6059	RG6063	RG6071
	DEPENDEN	IT IN	DEPENDENT	PLO	T PAGE .	······································
	VARIABLE	V	ARIABLE	BEGINNI	NG / ENDIN	G
	CN		ALPHA	· 	6 6	,
	CA		ALPHA	1	7 7	· · · · · · · · · · · · · · · · · · ·
·	CLM		АЦРНА		8	<b>_</b>

ELEVATOR EFFECTIVENESS -	NEGATIVE DEFLECTIONS
--------------------------	----------------------

# DEPENDENT VARIABLE VS INDEPENDENT VARIABLE. PARAMETRIC STUDY

	DATASETS PLOT	TED:	*			
	RG6011	RG6045	RG6053	RG6057	RG6061	RG6069
	DEPENDEN	T 1	NDEPENDENT	PLO	T PAGE	•
	VARIABLE	•	VARIABLE	BEGINNI	NG / ENDIN	G
	CN	-	ALPHA		<b>9</b> 9	
	CA		ALPHA	1	0 10	<u> </u>
••	CL_M		ALPHA	l	-1	*

RUDDER EFFECTIVENESS

## DEPENDENT VARIABLE VS INDEPENDENT VARIABLE, PARAMETRIC STUDY

	DATASETS PLOT	TED:				
	RG6012	RG6014	RG6016	RG6018	R660	120 .
	DEPENDEN	T IN	DEPENDENT	PLO	T PAGE	
· · · · · · · · · · · · · · · · · · ·	VARIABLE	V	ARIABLE	BEGINNI	NG / E	NDING
	CY.		BETA	1	2	12
	CYN		BETA	1	3	13
			<u> </u>	· · ·		

4.,

## FLAP EFFECTIVENESS, 60 PERCENT EXPOSED SPAN

	DEPENDENT VARIABLE V	INDEPEN	IDENT VAR	ABLE, PARAME	TRIC STU
	DATASETS PLOTTE	:D:			
	RG6011 F	RG6027	RG6035		
	DEPENDENT	INDEF	ENDENT	PLOT P	AGE
	VARIABLE	VARI	ABLE	BEGINNING	<u>L ENDING</u>
~	· CN	AL	PHA	14	14
	CA,	AL	PHA	15	15
· • · · · · · · · · · · · · · · · · · ·	CL.M	AL	.PHA		1.6-

DEPENDENT VARIA	BLE VS INDE	PENDENT V	ARIABLE, MUL	TIPLE	DATAS
DATASETS P	LOTTED:				
566011	SG6025	566033	SG6037		
DEPEN	DENT IN	DEPENDENT	' PLO	T PAGE	
VARIA	BLE V	ARIABLE	BEGINNI	NG / E	NDING
<u>CN</u>	· · ·	ALPHA	1	7	17
CA	Ĵ	ALPHA	- 1	8	18
······································		АГЬНА		9	19
P EFFECTIVENESS, FULL F	XPOSED SPAN	1			
DEPENDENT VARIABL	E VS INDEPE	ENDENT VAR	IABLE, PARA	ETRIC	STUD
DATASETS PL	<b>→</b> ΤΤΕΩ <b>!</b>				
	RG6021	RG6029			
DEPENDE	ENT INDE	PENDENI	PLUT	PAGE	n
VARIABL			BEGINNING		<u>n t M @</u>
<u>CN</u>	A		20		20
			21		21
CA	A	VERDA			
CA 	A A	\ <u>грна</u> \ <del>грна</del>	22	<u> </u>	22
CA CLM		ч <u>грна</u> 	22	<u>    .    .                           </u>	22
CA CLM	/ f	\⊾РНА \ <u>∟РНА</u>	22	<u>    .                                </u>	22
CA CLM ? PEFFECTIVENESS, FULL E	XPOSED SPAN	_РПА _РНА	22		
CA CLM PEFFECTIVENESS, FULL E DEPENDENT VARIABI	XPOSED SPAN	АЦРПА АЦРНА	LABLE. MULTI		22
CA CLM PEFFECTIVENESS, FULL E DEPENDENT VARIABL	XPOSED SPAN E VS INDEPE	NDENT VAR	IABLE, MULTI	PLE D	ATASET
CA CLM P EFFECTIVENESS, FULL E DEPENDENT VARIABL DATASETS PLO	XPOSED SPAN E VS INDEPE TTED:	NDENT VAR	IABLE, MULTI	PLE D	22 ATASET
CA CLM PEFFECTIVENESS, FULL E DEPENDENT VARIABL DATASETS PLO SG6011	XPOSED SPAN E VS INDEPE TTED: 5G6023	NDENT VAR	IABLE, MULTI SG6039	PLE D	ATASET
CA CLM PEFFECTIVENESS, FULL E DEPENDENT VARIABL DATASETS PLO SG6011 DEPENDE	XPOSED SPAN E VS INDEPE TTED: SG6023 NT INDE	NDENT VAR	IABLE, MULTI 566039 PLOT	PLE D	ATASET
CA CLM PEFFECTIVENESS, FULL E DEPENDENT VARIABL DATASETS PLO SG6011 DEPENDE VARIABL	XPOSED SPAN E VS INDEPE TTED: SG6023 NT INDE E VAR	SG6031 PENDENT	IABLE, MULTI SG6039 PLOT BEGINNING	PLE D	22 ATASET
CA CLM PEFFECTIVENESS, FULL E DEPENDENT VARIABL DATASETS PLO SG6011 DEPENDE VARIABL	XPOSED SPAN E VS INDEPE TTED: SG6023 NT INDE E VAR	SG6031 PENDENT LABLE	IABLE, MULTI SG6039 PLOT BEGINNING 23	PLE D	22 ATASET
CA CLM PEFFECTIVENESS:, FULL 'E DEPENDENT VARIABL DATASETS PLO SG6011 DEPENDE VARIABL CN	XPOSED SPAN E VS INDEPE TTED: SG6023 NT INDE E VAR	SG6031 PENDENT JABLE	IABLE, MULTI SG6039 PLOT BEGINNING 23	PLE D	22 ATASET DING 23 24

FLAP EFFECTIVENESS. 60 PERCENT EXPOSED SPAN

DEPENDENT VARIA	BLE VS INDE	PENDENT VAR	TABLE, PAR	METRIC ST	UDY
DATASETS F	LOTTED:				
RG6011	RG6073	RG6075	RG6077		
DEPĘN	DENT IN	DEPENDENT	PLOT	PAGE	
VARIA	BLE	ARIABLE	BEGINNI	IG / ENDIN	<u> </u>
<u></u> <u>CN</u>		ALPHA	20	626	<del></del>
CA CI	·	ALPHA ALPHA	21	7 27 3 <u>28</u>	
	ECTIVENESS	Y (C LocATI		c	<del>_</del>
DEPENDEN'T VARIA	BIF VS INDE	PENDENT VAR	IABLES PARA	METRIC STU	DΥ
· · ·					<u> </u>
DATASETS P	LOTTED:				
DATASETS P RG6093	RG6097	R66101	RG6105	RG6109	RG6111
DATASETS P RG6093 DEPEN	RG6097 DENT IN	RG6101 DEPENDENT	RG6105 PLOT	RG6109 PAGE	RG6111
DATASETS P RG6093 DEPEN VARIA	RG6097 RG6097 DENT IN BLE V	RG6101 DEPENDENT ARIABLE	RG6105 PLOT BEGINNIN	RG4109 PAGE G / ENDING	RG611
DATASETS P RG6093 DEPEN VARIA CN	LOTTED: RG6097 DENT IN BLE V	RG6101 DEPENDENT ARIABLE ALPHA	RG6105 PLOT BEGINNIN 29	RG6109 PAGE G / ENDING 29	RG6111
DATASETS P RG6093 DEPEN VARIA CN CA CLM	LOTTED: RG6097 DENT IN BLE V	RG6101 DEPENDENT ARIABLE ALPHA ALPHA ALPHA	RG6105 PLOT BEGINNIN 29 30 -31	RG6109 PAGE G / ENDING 29 30 31	RG6111
DATASETS P RG6093 DEPEN VARIA CN CA CLM	LOTTED: RG6097 DENT IN BLE V	RG6101 DEPENDENT ARIABLE ALPHA ALPHA ALPHA	RG6105 PLOT <u>BFGINNIN</u> 29 30 31	RG6109 PAGE G / ENDING 29 30 31	RG6111
DATASETS P RG6093 DEPEN VARIA CN CA CLM 	LOTTED: RG6097 DENT IN BLE V	RG6101 DEPENDENT ARIABLE ALPHA ALPHA ALPHA VENESS, X/C	RG6105 PLOT BEGINNIN 29 30 31 : Location C	RG6109 PAGE G / ENDING 29 30 31 0F U.50	RG6111
DATASETS P RG6093 DEPEN VARIA CN CA CLM LATERAL-DIRECTIONAL SPOI DEPENDENT VARIA	LOTTED: RG6097 DENT IN BLE V LER EFFECTI	RG6101 DEPENDENT ARIABLE ALPHA ALPHA ALPHA VENESS, X/G	RG6105 PLOT BEGINNIN 29 30 31 : Location C Riable, Para	RG6109 PAGE G / ENDING 29 30 31 0F U+50 METRIC ST	RG6111
DATASETS P RG6093 DEPEN VARIA CN CA CLM LATERAL-DIRECTIONAL SPOI DEPENDENT_VARIA DATASETS P	LOTTED: RG6097 DENT IN BLE V LER EFFECTI BLE VS INDE LOTTED:	RG6101 DEPENDENT ARIABLE ALPHA ALPHA ALPHA VENESS, X/C	RG6105 PLOT BEGINNIN 29 30 31 CLOCATION C	RG6109 PAGE 6 / ENDING 29 30 31 9F Q+50 METRIC ST	RG6111
DATASETS P RG6093 DEPEN VARIA CN CA CLM LATERAL-DIRECTIONAL SPOI DEPENDENT_VARIA DATASETS P RG6094	LOTTED: RG6097 DENT IN BLE V LER EFFECTI BLE VS INDE LOTTED: RG6098	RG6101 DEPENDENT ARIABLE ALPHA ALPHA ALPHA VENESS, X/C PENDENT VAF RG6102	RG6105 PLOT BEGINNIN 29 30 31 CLOCATION C RIABLE, PARA RG6106	RG6109 PAGE G / ENDING 29 30 31 0F U+50 METRIC ST RG6110	RG6111
DATASETS P RG6093 DEPEN VARIA CN CA CLM LATERAL-DIRECTIONAL SPOI DEPENDENT_VARIA DATASETS P RG6094 DEPEN	LOTTED: RG6097 DENT IN BLE V LER EFFECTI BLE VS INDE LOTTED: RG6098	RG6101 DEPENDENT ARIABLE ALPHA ALPHA VENESS, X/C PENDENT VAF RG6102 IDEPENDENT	RG6105 PLOT BEGINNIN 29 30 31 CLOCATION C RIABLE, PARA RG6106 PLOT	RG6109 PAGE G / ENDING 29 30 31 0F Q.50 METRIC ST RG6110 PAGE	RG6111
DATASETS P RG6093 DEPEN VARIA CN CA CLM LATERAL=DIRECTIONAL SPOI DEPENDENT VARIA DATASETS P RG6094 DEPEN VARIA	LOTTED: RG6097 DENT IN BLE V LER EFFECTI BLE VS INDE LOTTED: RG6098 IDENT IN BLE V	RG6101 DEPENDENT ARIABLE ALPHA ALPHA ALPHA VENESS, X/C PENDENT VAF RG6102 IDEPENDENT (ARIABLE	RG6105 PLOT BEGINNIN 29 30 31 CLOCATION C RIABLE, PARA RG6106 PLOT BEGINNIN	RG6109 PAGE G / ENDING 29 30 31 0F U+50 METRIC ST RG6110 PAGE IG / ENDING	RG6111
DATASETS P RG6093 DEPEN VARIA CN CA CLM LATERAL-DIRECTIONAL SPOI DEPENDENT VARIA DATASETS P RG6094 DEPEN VARIA	LOTTED: RG6097 DENT IN BLE V LER EFFECTI BLE VS INDE LOTTED: RG6098 IDENT IN BLE V	RG6101 DEPENDENT ARIABLE ALPHA ALPHA ALPHA VENESS, X/C PENDENT VAF RG6102 IDEPENDENT VARIABLE BETA	RG6105 PLOT BEGINNIN 29 30 31 : LOCATION C RIABLE, PARA RG6106 PLOT BEGINNIN 32	RG6109 PAGE G / ENDING 29 30 31 0F U+50 METRIC ST RG6110 PAGE IG / ENDING 32	RG6111

.

-

A5

i.

•

ONGITUDINAL SPOILER EFFE	CTIVENESS,	X/C LocATI	ON OF 0.70		
DEPENDENT VARIAB	LE VS INDE	PENDENT VAR	TABLE, PAR	AMETR	Ic Stud'
DATASETS PL	OTTED:				
RG6095	RG6099	RG6103	RG6107	RG6	113
DEPEND	ENT IN	DEPENDENT	PLO	T PAG	E
VARIAB	LEV	ARIABLE	BEGINNI	NG /	ENDING
<u>CN</u>		ALPHA	3	4	34
· ća		ALPHA	3	5	35
CL.M				6	36
÷					
ATERAL-DIRECTIONAL SPOIL	ER EFFECT	VENESS X/0	LOCATION	OF D.	70
DEDENDENT VACIAS					
DEPENDENT VARIAB	LE VS INUE	FENDENT VAL	(TABLE, PAR	AMETR	IC STUD
DATASETS PL	OTTED:				•
RG6096	R66100	RG6104	RG6108	RG6	114.
DEPEND	ENT IN	DEPENDENT	PLO	T PAG	£
VARIAB	LE V	ARIABLE	BEGINNI	NG /	ENDING
<u> </u>	-	BETA	3	7	37
CYN		BETA	3	8	38
				· ·	
ARIZONTAL TATL DOWNWASH					
DEPENDENT VARIABI	<u>E VS INDE</u>	PENDENT_VAR	IABLE, MUL	TIPLE	DATASET
DATASETS PLO	TTED:				
AG6011	AG6087	AG6089	AG6091		
DEPENDE	INT IN	DEPENDENT	PLO	T PAG	E
VARIABI	<u>,εγ</u>	ARIABLE	BEGINNI	NG /	ENDING
CN		ALPHA	3	9	3.9
C A		AL DHA	4	n	40
		ALCHA	•	•	10