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ABSTRACT

a

An overstress life test is a life test in which the

factors /Stresses) which induce failures in a structure or

i
a component are allowed to assume values much above their

nominal or useage values. This has an effect of reducing

the test times, an obvious economic advantage. The objective

in such life tests is to be able to make an inference about

the failure behavior of the device at use conditions.

Overstress life tests are feasible both from a

practical and an analytical point of view if one chooses

an appropriate model relating the failure behavior with

the stresses, and given such an appropriate model, one has

well developed analytical techniques to yield good extrapo-

lations. This presentation mainly addresses itself to the

latter question although it briefly hints at the criteria

for the selection of an appropriate test model and references

pertinent literature to assist the reader in his choice.

To the knowledge of this author, there do not exist satis-

factory techniques for the design and the analysis of

overstress life tests, and hence, the significance of the

results presented here. There is no claim made to the

optimalit} of the results.

Next, this paper points out some accelerated life

test models, currently used in practice, and briefly



discusses criteria for their selection. The general

procedure is applied to each one of the specific models and 	
1

a summary of the results is presented, keeping the

mathemat i cal details to a minimum.

The results of each model comprise of a formula

which gives an estimate of the mean life at use conditions

environment and confidence limits for the mean life.

The significance of the results are their . direct useability

in the practice of reliability.

t



CRITERIA FOR, AND EXTRAPOLATIONS IN

OVERSTRESS TEST MODELS

1.	 Int- ,duction

In many situations it is impossible or undesirable

to perform a life test on components under the environment

in which they will be used. This is true in our space-

related industries where testing must be simulated at

laboratories here on earth. It is also a fact of life in

economic enterprises where the duration of the test may

determine the costs. In such cases, the shorter the test

time, the more economical the procedure. In view of these

considerations, accelerated life testing takes on great

value.

In this paper, as is ascertained by Pieruschka [5],

it is assumed that the type of the life-time distribution

is not changed with the introduction of greater stresses,

but that the parameters of the distribution may vary.

For example, if the life-time distribution is normal with

mean u, and standard deviation a, at u8e conditions,

then it remains normal as we introduce more stresses but

the overstressed life-time distribution may have mean

U and standard deviation a 	 This assumption is not
2	 2

unreasonable when you consider the difficulties encountered

if a quantum change in behavior were to occur at a certain

level of stress.
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The general procedure used here is to express the

parameters of the life-time distribution in terms of the

environmental stresses. Perhaps the mean varies propor-

tionally with the temperature or the standard deviation

varies with the sum of the squares of the voltage and

pressure, etc. We need know only the form of the relation

between the parameters and the environmental stresses,

for example linear, quadratic, exponential and so on.

For illustrative purposes, suppose that the failure

distribution has two parameters a and S and the environ-

ment consists of only two stresses, say s
1 
and s . Then

2

one may have, for example

a= a + a s + a s
0	 1 1	 2 2

S = b + b
1 
log s + exp (b s ) .

0	 1	 z 2

One can obtain point estimates and confidence intervals

(interval estimates) for the a  and b  as well as point

and interval estimates of a and 0 for fixed values of

s
1	 z
and s which are of interest. A joint prediction

region for a and $ can also be obtained. Having obtained

the point estimates of a and a, one can plug these in

the life-time distribution and study its properties under

various values of the stresses. The procedure is to run
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life tests at different combinations of values of s
1

and s
2 
and to obtain point estimates of a and	 If

the distributions of the estimates of a and 6 are known,

one can use the method of maximum likelihood to obtain the

estimates of the a. and b..

Some well known results about the eNponential distri-

bution which are useful in the subsequent development of

the text are presented here. Details about these results

can be found in [2].

Let f(t; X i ) = X i exp(- a it) be the time to failure

distribution of a device when it is subjected to the

constant application of a single stress Vi. X. is the
1

hazard rate, and 0i = 1/A i is the mean time to failure.

If n  items are put on test under an environment

Vi and if the test is terminated when r i items fail noting	
4

the times to failure t 
lit 

t 2i , ... t ri 
i t then the maximum

likelihood estimator of 0 is given by

r.
i

Ai =	 t.i + (n i-r i ) tri ' / ri	 (1)
j=1

Let Xi = 1/0i be an estimate of the hazard rate a,	 The	 'k
i

mean and -ariance of X  can be easily computed [5] as,

E [A	 = a ir i/ (r i -1)	 ri > 1

R2

	

VAR[a , ] = a ?r?/(r.-1)	 (r.-2)	 r. > 21	 1 1	 1	 1	 1



i
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Thus, 
Xi 

is a biased estimator of a i , but if r  is large,

then E [x , ] = a , and VAR [a , ] 	 a , /r. .

Hence, a large number of failures at each stress leval is

desirable.

2.	 How to Conduct the Accelerated Life Test

Suppose that Vi , i = 1, 2, ... , k are the k values

of V. at which it is desired to conduct an acceleratedI
life test. These k values should be sufficiently high

so that each item can be tested until failure. To ensure

that there is no correlation among the tests conducted

at the different values of the V i , it is necessary to have

some randomization scheme. A reasonable procedure is to

arrange the V 
i
,'s according to a table of random numbers,

and then to conduct the life tests according to this

random-sequence. Now having observed the values of r i , n 

and tij corresponding to each Vi , one can calculate estimates

of Oi from the formula (1) in the preceding paragraphs.

Now let us see how to use these estimates to determine

point and interval estimates of the mean time to failure

at use conditions stress under different assumptions about

the relationship between the hazard rate and the stress.

*A model of the form Xi = A + BVi P has been conjectured
in the literature by Adams [1], and could be reduced to
the linear model if A and P were known.
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3.	 The Linear-Stress Failure Model

Suppose that the device under consideration is

subjected to the constant application of a single stress

Vt and that its failure distribution is given by f(t; Xi)

X exp(-a i t i ). Furthermore, it is assumed that Xi =

BVi where B is an unknown parameter. One needs to estimate

B and subsequently obtain point and interval estimates of

a u , the hazard rate at some use condition stress Vu.

21

A model of the form A i = A + BViP has been conjectured in

the literature by Adams [1], and could be reduced to the

linear model if A and P were known. Based on accelerated

life tests conducted a k different values of V i , the maximum

k	 k

likelihood estimate of B is B = 	 r 
	 riVi0i where

i-=1	 i=1

Vi is the stress level, : i is the number of failures noted

at each V. and 0. i
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The exact small sample distribution of this estimator

of B is an inverted gamma. It is easy to verify [6] that

E [B] = B.,,`J-1 and VAR[B] = B 2 J 2 / ( j- 1) 2 (J-2) , where J =

Er i . If J is large, E[B] = B and VAR(B] = B 2 /Eri . Note

that the variance of the estimator is independent of the

choice of the V.. Confidence limits for B can be obtained
1

by observing that 
2JB 

follows the chi-squared distribution
B

with 2J degrees of freedom.

Now let the estimated hazard rate be denoted by A i =
A

BVi . For large values of J, E[A i ] = BV and 	VAR[Ai]

A 2 /J for all i, i=1, 2,	 k.

For prediction purposes, A u = B Vu is an unbiased

estimator of X at some use condition stress V 	 It can
11
	 u

be verified [6] that A u follows the chi-squared distri-

bution with (2J 2+2J) degrees of freedom and hence a X

100(1-a) % perdiction interval for a u is given by:

A	 A 1
Pr Xi_ a/2 (2J (J+1) ) 2J < Xu < X 2	 (21 (J+1) ) 2J r = 1 - a

Note: X 2 (2J(J+1)) represents the point of a X 2 distri-

bution with 2J(J+1) degrees of freedom which cuts off an

area a/ 2 from the right hand tail of the distribution.

This value can be found in almost any book of tables

relating to statistics. This concludes estimation and

inference under the linear-stress failure model.

i
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4.	 The Power Rule Model

The Power Rule Model is a second model frequently

used in practice. Its application to the accelerated life

testing of paper capacitors has been discussed by Levenback,

G. J. [5]. The Model can be written as Oi= Cp where C

1V.

is a constant of proportionality and needs to be determined.

In order to obtain estimators of P and C that are

asumptotically independent, the Power Rule Model has to

be amended slightly, without changing its basic character,
r./Er.

as O i =	 C. P where V = ni=l (Vi ) 1	 1, i.e., it 	 is the

(Vi/V)

weighted geometric mean of the V i 's. The estimator of P, P

must satisfy the equation

V. P
Er101 V logr^vV = 0 .

Since it is non-linear, its solution has to be numerically

obtained. The Newton-Raphson method (Hildebrand, F. [31)

was tried on this equation for various sets of data that

were simulated on a computer. In all instances, it was

found that the solution converged to a unique value in

5 to 10 iterations of the method.

After P has been obtained C is given by

(2)



.,

a

a

T '

e

8 -

n

V. P

C = Erlol V
	

(3)
ri

n	 V.	 Z

VAR [P] = ap = k Er i [log l^

V

n	 n

VAR[C] = a' = C 2 (k Eri)-i

and
n n

Cov[C,P1 = 0 .

The standard large sample theory ensures that these

estimators are asymptotically approximately normal. To

ascertain the goodness of this approximation, the shape of

the relative likelihood function arising from the actual

sample should be examined. If the shape of the relative

likelihood function from the actual sample is skew, then

the likelihood is considered to be non-normal and further

sampling should be done. On the contrary, if the shape of

the relative likelihood function is symmetric, then one

can proceed with an application of the large sample approxi-

mation.

The Relative Likelihood Functions of P and C.

The relative likelihood function of P is given by

[71
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r.
P
	

P] 1
1 k	 -1	 ri^i	 Vi	 ri	 Vi	 ^U ^`i-1

RM (P*) = J 1t	 If ( r i ) J exp
i=1	 C(P*)	 V	 `C(P*)	 V

where

	

ri	 I

k	 1	 rioi Vi	

[—

Ci Vi P /^ )ri _1
P - 1J- iII 1 r (ri) ex	

V 	 V	 1

and

k	 V P* k.
C(P*) _	 ripi( 

i)	 ^ri
i=1	 V	 i=1

A plot of RM (P*) for different values of P* would

present the relative likelihood of P arising from the

actual sample. Since the likelihood of P is a function

of k, r i and Vi the user must check in each problem to see

if his parameters have suitable values to -insure a symmetric

relative likelihood.

Similarly the relative likelihood function of C is

[7]

^	 r.

^(C ) = 1 k	 1	 ex	
ri0i 

Vi ) P (C ) 
ri Vi P 

(C	 1^ ri-111^^ 
*	

P	
*	 !(C*-M 	 i=1 r(ri) 	 C	 VV	 1

J 

^

k	 V. V. P(C*)
where P(C*) is a sclution of 	 riCi 1n C )( 1,	 = 0 .

i=1	 V V
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Now an unbiased estimator of 02
P
	 given by reference

[7l

t

Ou
 = C1Vu^	

exp - 2 a 2 log(VU)
V	 V

,.	 V2P	 V	 z	 z '1I
VAR[0^] =	

u	
(cry+^z) expIGP(log C 	 C J

The distribution of O u cannot be analytically obtained.

In view of this it is difficult to obtain confidence

limits for 011 and hence the following alternative approach

is taken.

The relative likelihood of 0 P is given by [7]

z

RM (OU ) = exp
L
 2` u 1 1 

J 
where 0^ = C J -P .

LL
CT J --P^u

This function can be used as a measure of plausibility for

the unknown parameter. For example, all values of the

parameter which have at least 10% relative likelihood can

be considered as fairly plausible. Values of the unknown

parameter ol;.tside this range are fairly implausible since

there exist values of the unknown parameter for which the

observations are at least ten times more probable

Ii;-
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The methods discussed before will be illustrated here

via an example. The data for this example was generated

on a computer.

C = 1000, and P = 3 were arbitrarily chosen and 5

values of 0 i were generated using the Power Rule Model

Oi = CVi-P , i = 1, ... 5. Corresponding to each value of

Vi , the n  and r  were chosen as shown in the table below.

The 0 i were obtained using equation ( 7), and a point

estimator of P, P was obtained by solving equation (2)

using the Newton-Raphson method; P was found to be 3.09.

A value of C = .038 was next obtained from equation (3).

It is to be remarked here, that the amended model 0 i =

C(V i 1V) -P does not effect the value of P used in the model

i = CVi
-P
 but the C does get effected, as is reflected

by the estimate of C, C. Next, unbiased estimators of

^i were obtained using^i = Civi lV)
-P
 exp{- 2 QP log(VijV) 12.

The above procedure was repeated for k = 10, and k =

25, but for brevity the following table portrays the results

for k = 5 only.



- 12 -

V. n. r. 0. 01 0.

10 30 15 1.000 1.308 1.041

20 30 15 0.125 0.078 0.123

30 30 20 0.037 C.030 0.035

40 30 25 0.016 0.017 0.014

50 30 25 0.008 0.008 0.007

To assert the goodness of the large sample approxi-

mation of P and C, the actual relative likelihoods of P and

C, RM (P*) and RM (C*) respectively, were plotted for k = 5,

10 and 25. These are portrayed in the graphs below. From

these graphs, it appears that as ]: increases, their symmetry

is enhanced,and that their spread narrows. These graphs

assert the goodness of the normality approximation on

P and C respectively.

A plausibility interval for O u can be obtained from

a plot of the relative likelihood function of 0 	 Such a

plot for V.. = 7 is shown when k = 15 and when k = 25.
r

These plots give (2.5, 2.7) a.-0 (2.95, 3.05) respectively

as values of 0 which have a 10% re"lati e likelihood.
U



PLrn`r OF PJMATIVF LIY.ELIITOODS pF P & C
_-.	 J1

.8

.6

a
•	 ^ .4

.2

VALUES OF P*

	

2.6	 2.8	 3.0	 3.2	 3.4	 k=5

	

3;5	 2.8	 3,0	 3.2	 3 5 k=10, k=15.

i^ s

.6I,;	 u

.4

i
I 	 .2

4	 .

i

x=5

k=10
k=25

i

VALUES OF C*

.032	 .036	 .40	 .44	 .4!?	 k=5r
----^ 0,?O;	 030	 034	 . 0 38	 k=10

	.022 .024 .026 .028 . 3. 0 .032	 k=25



13

PLO`i' OF RELATIVE LIY.FLIfi0OD OF 0--u

1.

3t	 -

5	 k = 25

0 
4
	

k = 15

2

VALUES OF U
U

2.1	 2.2	 2.3	 2.4	 2.5	 2:6	 2.7	 2.8	 2.9	 2.0	
3.1 k = 15

2.52.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3-.5 k = 25

5.	 The Arrehenius Model

Next we turn to the Arrhenius Reaction Rate Model.

The applicability of the Arrhenius Model in accelerated

life testing has been discussed by several authors; see

for example Thomas, R. (5J.

A range of stress is prescribed and an exponential

model for failure times for all values of the stress

within this range is assumed. The two parameter exponential
-	 iX (t-Y)

distribution is f(t; X i ,Y i ) = aie i 
	 The exponential

scale parameter a is assumed to equal the exponent of

A - B/V, where V is a thermal stress and A and B are

unknown parameters. For the purposes of this paper, it is

assumed that the exponential location parameter Y equals

a - $V, where a and t are unknown parameters. The parameters

A, B, a, and B have to be estimated by conducting life

tests at k accelerated values of V i each of which are
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sufficiently high to induce failures.

The maximum likelihood estimators of A and B, A

and B are given by a solution of the following equations

ri -	 r i/	 - 1X i exp(A-B(VC -V)) = 0

and

a. (VK 1 -V) exp(A-B(Vi -t -V)) = 0

i

where

ri
V =	

Vl	
ri

The above equations being non-linear, their solution

can be numerically obtained by using the Newton-Raphson

method [3]. For various sets of data that were simulated

on a computer it was found that A and B could be obtained

in a few iterations of the method [8].

VAR[A] = a s = (k I ri) -1

VAR[B] = Qb = (k I ri(VC- 1-V)2)-i

and

Cov(A,B) = 0
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^ ^

Au = exp[A- B(VU -1 -V)] is the maximum likelihood

extimator of X at use conditions stress V 	 An unbiased
u	 u

estimator of a u is given by [8]

A^ = Au exp [- 2 (aa+J 1 0 2 l

where

J = V
	u 	 u

The estimators of a and S are

^	 ^

^	 A t 	
X  

(Vi-V) t li
a =	 and S = -

X ¢	 ai (V	 2l_.p) 

VAR [ a ] =	 k
^

(n C ^ l ) 2

	VAR[S]
	 (Vi-V) 2/n2

^	 2
^i (

Vi-V ) 2

In the light of the above results it follows that
^	 ^	 ^

Y u = a - $(VU-V) is an unbiased estimator of Yu at use

stress. An unbiased estimator of 0 is therefore
v

given by
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o il = y µ +	 exp{- (aa+JUQb)
u

with

VAR E)	 = S i + 12 {exp (aa+JUQb) - 1}
a

u

where

Si = VAR[a] + (VU -V) 2 VAR[S] .

As before a plausibility interval for 0P can be

obtained from a plot of the maximum relative likelihood

function of Ou.

The maximum relative likelihood function of 0 is
u

2
log A u + log(O u-y^) + z

FM(0^ = y + Q exp - 2	 S2
U

where

a2
+J

uab2
t = - 2
	

and S = 2-r
2

K.	 Such a plot for A = 5, B = 6, a = 35, B = 1,

Vu = 7 and k = 15 is shown. This plot gives 28.014 and

23.009 as values of 0 u which have a i08 relative likelihood.
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