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' PREFACE

This project has developed along two separate but related lines. (1)
The calculation and measurement of accumulation of damage in viscoelastic
media and (2) the theoretical and experimental study of adhesive failure.
Both studies have been progressing satisfactorily with particuiar success
in the adhesive fracture area. Aspects of the other study have been re-
ported in previous reports,and research now in progress will be reported
at a later date.

We would Tike to briefly mention the interesting "spin off" from
these efforts initially undertaken with NASA support. For example, the
principles and methods developed under NASA have been used to develop a
device and techniquesto determine (under NIDR sponsorship) the quality of
dental adhesives.

From the standpoint of continuum mechanics, there is an essential
similarity between cohesive and adhesive failure. Continuum mechanics
can therefore be used to analyze adhesive fracture including certain cases
of interfacial debonding, by applying an extension of the Griffith cohe-
sive fracture energy balance concept. Present researches permit a consid-
eration of the influence of material behavior such as viscoelasticity and
plasticity, and geometric parameters such as interlayer bond thickness.
These advances and quantitative predictions of failure are reviewed with
special reference tc the characteristic adhesive fracture energy and its
connection with the macro- and micro-constitution of the media. The de-

- termination of the adhesive fracture energy using a pressurized bubble or

blister specimen is described in conjunction with experimental results
from various materials using this test. The need for cooperation between
continuum mechanics and chemistry is required as a matter of technological
necessity in understanding the quality and efficiency of adhesive bonds. A
method for associating the mechanical and chemical structure parameters,
called the Interaction Matrix, is described as a device through which the
required collaboration can be effectively channeiled.



TABLE OF CONTENTS

INTRODUCTION
ANALYTICAL DETERMINATION OF ADHESIVE FRACTURE ENERGY-ELASTIC
The Basic Concept
Centrally Unbonded Thick Plate of Finite Thickness
Centrally Unbonded Block of Infinite Extent
Centrally Unbonded Thin Plate of Finite Thickness
Membrane strip
Thermal Debonding of a Membrane
Localized Modulus Variation near the Interface
The Effect of an Intermediate Adhesive Interlayer
Interlayer Between Two Different Media
APPLICATIONS TO NON-ELASTIC FAILURE

Adhesive Debonding of an Elasto-Plastic Plate from a
Rigid Substrate

Time Dependent Adheisve Fracture
Theoretical Formulation
Centrally Unbonded Pressurized Viscoelastic Strip
THE PRESSURIZED BLISTER EXPERIMENTAL CONFIGURATION
Pressurized Blister Test
APPLICATIONS
Thermal Debonding of a Rubber Cylinder from its Container
Material Shear-Out in a Cylinder under Axial Acceleration
Explosively Bonded Blister Steel Specimens
Evaluation of Dental Adhesives
THE MECHANICS-CHEMICAL INTERFACE
Interaction Matrix for Deformation
Chain Stiffness and Transition Slope
An Interaction Matrix for Fracture
Molecular Considerations
CONCLUSION
ACKNOWLEDGEMENT
REFERENCES
FIGURES

10
11
14
15
18
21
22

[Sx I SIS & T & QR =S SN 7% B 7 B ¢
T T = N ST & s



INTRODUCTION

There appears to be a growing appreciation of the interdependence of
mechanics and physical chemistry in the analysis and design of adhesive
joints. The point of view of the present paper is from that of mechanics,
with the objective of indicating how a wide variety of the characteristic
features appearing in adhering systems can be analyzed with particular
attention to predicting the debonding threshhold. Further, it is intended
to focus attention upon those two material properties, namely deformation
modulus and specific fracture energy, which are most directly associated
with the chemistry and molecular structure of the material in order to
encourage polymer and physical chemists to provide the analysts and materials
engineers with the fundamental data required.

Since the early experimental work of de Bruyne(]) and the adhesive
joint stress analysis proposed by Reissner and Go]and,(z) there have been
many contributions providing a more scientific background to assist the
technological development. The review by Patrick(3) is typical of the
state of the art, and in particular includes a discussion of the use of
fracture mechanics ideas developed by Griffith for cohesive fracture of
brittle materials. The adhesively bonded test specimen used by Ripling,
et.a].(4) was one of the first to incorporate an energy criterion of
failure as compared to the earlier ones using an allowable maximum stress or
strain criterion.

Generally speaking, adhesively-bonded joints involve sharp corners and
voids between adjacent different media which act as stress concentrators,
particularly after a crack or imperfection arises at such a location. In
a typical case consisting of two adherends and a third interlayer material
as the bonding adhesive, there are several potential loci of failure, a
cohesive failure in any of the three materials, or an adhesive failure at
either of the two interfaces. The engineering problem is to determine the
location of the weakest Tink and the magnitude of stress which is required
to cause failure. The assessment proceeds from either of two points of
view, depending upon whether or not inherent flaws or sharp corners are
considered to be present.




In the first case the material is thought of as continuous, as in the
normal tensile specimen, and a maximum tensile stress is obtained from the
materials laboratory. Actually there is of course some reasonably uniform
distribution of small voids present, whose size is related to the method
of material fabrication. A simple example is a polymer which is mixed
rapidly and contains finely dispersed air bubbles. Even with de-gassing,
some distribution of flaws will exist on some dimensional scale. The
average tensile strength therefore reflects their presence, and the dis-
persion of strength data about the norm describes the uniformity of the
flaw distribution. Because most standard materials are made under reason-
ably controlled conditions, it is not surprising to find that some sort
of consistent (average) stress or stress-functional criterion can be used
to predict failure.

Under more complicated conditions, such as the multi-axial stressing
of a turbine disk, it is customary to assume that the failure criterion is
based on the octahedral shear stress (Toct) containing all three principal

stresses (Ui)’ and defined as

_ 2 -
Toct KQ (01 - o)t (62 93

T

in which i =1, 2, 3. Assuming the criterion applies, one predicts failure
whenever this combination of principal stresses at any point in the part

exceeds 1 . And how is t determined? If (1) is a universal failure

oct oct
criterion, it must also apply to the failure of a simple uniaxial tensile
specimen having stresses oy =

(1), find that

_ 2 | 3
Toct = KV 20%¢ens (2)

so that upon solving for the desired constant K and resubstituting into (1),
one finds that failure is expected under a multi-axial principal stress
combination whenever at some point in the body

Otens® and o, = o3 = 0. Thus substituting into

\/ (07 = 3))° + (05 = 93)° + (o - "1)2 > /2 Giens (3)



or in the more general case, denoted as Region I (Figure 1), whenever

Floys 0ps 03) > Oyapg
The octahedral stress criterion, which has been found by experience to
work well for steel, is only one of several possibilities. Furthermore, the
type of failure criterion, (4), is best used for smoothly varying stress
fields with no exaggerated stress concentrations present and for materials
having a uniform distribution of reasonably small micro-flaws.

The difficulty with many adhesive joints however is that they can
possess very high stress concentration at corners or along bond lines, and
usually contain substantially larger than average internal flaws, frequently
as the result of absorbing water or poor wetting of the interfaces. In any
event, the flaw distribution becomes denser and/or of larger size than the
average size for which an average tensile strength would be appropr%&té,%
Thus the maximum permissible allowable stress is decreased. Griffith (5)
provided the first estimate of the degradation as a function of the flaw
size by considering the problem of a small, through, line crack in a thin
sheet of brittle material. While theoretically the stress at the crack

(6) thus giving rise

tips is (mathematically) infinite for an elastic body,
to an infinite local stress at even small applied loadings - a degree of
concentration for which (4) is useless - Griffith avoided this problem by
considering the strain energy in the sheet, which, as an integration of the
stress, remained finite. He proposed that cohesive fracture would commence

at a critical applied stress o_ _, when the incremental loss of strain eneray

cr
of deformation with increasing fracture area just exceeded the work reguired
to create new fracture surface. Hence, in his case, with the strain energy
of deformation due to U = ﬂaZOCE/E, the presence of the crack of Tength
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from which the finite critical applied stress was determined.
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in which E is Young's modulus, a the half-crack Tength, and Ye the cohesive
fracture energy density (1n-1bs/in2).

The combination of these two criteria, one flaw insensitive (Region I)
and the other dependent upon flaw size (Region II) thus permits the designer
to select a maximum allowable design stress providing he knowsi, or determines
by tests in the laboratory on pre-cracked thin sheet tensile specimens with
known crack size, the critical crack size, a*, shown in Figure 1. This cri-
tical size is deduced by the intersection of normal, nominally unflawed,
tensile data (GFcr) and initially pre-cracked sheet data which follows
the Griffith curve (GGcr)’ Once it is recognized that (4) and (5) are
not competing failure criteria, but instead are complementary, it is possible
to approach the design against failure in a more direct manner.

Turning now from cohesive to adhesive failure, it is merely necessary
to establish that in principle and from the standpoint of a continuum
mechanics analysis, cohesive and adhesive fracture are similar. Cohesive
failure in any of the three materials of our earlier 3-layered bond example
can thus be treated by (4) or (5). The new feature is how to treat an
adhesive debonding at an interface. If there is no flaw at the interface,
e.g., no surface roughness or air bubble, and no end to the joint, an
unlikely situation, then in principle (4) can be applied on the basis of
normal tensile testing of layered specimens - providing they do fail essent-
ially at the bond line.

This situation would therefore correspond to a Region I type, aver-
age stress, adhesive failure. On the other hand, when voids and sharp
corners are present - as is more customary - degradation of adhesive strength
corresponding to a Region II type failure will occur and must be incorporated
in the analysis.

As discussed more extensively in an earlier paper,(7) there is indeed
a direct association between stress singularities, adhesion, and fracture.
Consider for example the elastic analysis of a thin sheet in the neighbor-
hood of a sharp geometric discontinuity such as a wedge point or crack
tip, for which it is well known that a singularity in stress exists at the
point of discontinuity and depends upon the local boundary conditions,

¥ The technically important problem of measuring the inherent flaw size in
a part, preferably by some non-destructive test (NDT) method as ultra-
sonic wave reflection, X-ray, etc., will not be covered in this paper.
Obviously if the inherent flaw size is unknown, a priori, the analyst does
not know whether to choose Region I or Region II criteria.

4



(8-11) In the case of a central

loading, and properties of the material.
finite Tength crack in an infinite sheet subjected to tension, the classic
Griffith problem gives a local stress variation which is proportional to
the inverse square root of the distance from the crack tip.

Inasmuch as this (mathematically) infinite stress exists here for even
the smallest loading, it appears that instantaneous fracture would occur
and that a Region I criterion could not be used for predicting a finite
stress which the sheet could withstand before fracture. The essential
contribution of Griffith, however, was to develop the overall energy
balance between the reduction in the deformational strain energy in the sheet
and the energy required to create the new fracture surface. His result,
(5), was the prediction of a finite applied tensile stress, 0. Needed
o C /§E§Z7F5l It is apparent, therefore
that the use of the integrated energy balance neatly circumvented the
question of how infinite the infinite stress need become before fracture!
It furthermore suggests the way in which other problems in stress analysis

having stress singularities can be attacked in order to predict a finite

to initiate fracture, namely, o

stress at failure notwithstanding an infinite stress at the crack tip.
The character of elastic stress singularities to be expected for
various geometric discontinuities was investigated by w1111ams<8’9} and
later extended to the first analysis of the character of the stress sing-
(02) 10 this
case too, when a crack existed along the line of demarcation of the fwo

ularities along the interface between dissimilar media.

materials, the stress singularity was likewise singular, although not

-1/2 type*. It subsequently became attractive

necessarily solely of the r
to inquire whether the same approach as Griffith used could be applied to
predict the stress required to further separate or fracture the (adhesively
bonded) interface between two different media, again notwithstanding the
predicted existence of an infinite stress at the crack point for even small
applied Toads. /

The phenomenological similarity in the two cases becomes clear. In the

Griffith problem the finite length of the central crack 2a, lies, say,

* Actually in most cases a new characteristic oscillatory stress singular-
ity arises although for a rigid-elastic incompressible interface it
becomes identical to that for cohesive failure, i.e., o ~ r-1/2,
(Reference 12.)




along the x axis, with the upper and lower half planes occupied by the same
material; in the second problem, the materials above and below the x axis are
different. For the purposes of discussion, we shall assume the material in
the lower half plane to be infinitely rigid (e.g., glass) with respect to
that in the upper half plane (e.g., rubber), and assume perfect adhesion
over |x| > a. (Figure 2.) The stresses at the crack ends, |x| = a, are
both singular. In the first case (Figure 2a) the Griffith critical stress
is the classic example of cohesive fracture and well known; in the second
(Figure 2b) the example of perfect adhesive failure is not.

Before looking into the second problem in more detail, it is pertinent
to comment upon the distinction between the mechanics and chemistry view-
points. As structured above, the mechanics approach is straightforward and
consists of two parts: (1) conduct the stress analysis for an edge-bonded
specimen having a central finite crack at the interface with a rigid
boundary, and (2) express the incremental new surface energy generated a
the crack extends. This latter part, however, requires interpretation.*
In the cohesive fracture problem, with the same material on both sides of
the extending crack, Griffith used Ar = 4yCAa as the incremental energy per
unit thickness. The factor four arises because both ends of the crack are
assumed to extend equally, and each end creates two new surfaces, one above
and one below the crack. The specific energy e has been subscripted to
denote the value associated with cohesive failure. For adhesive failure,
it would be appropriate, although not necessarily unique to write ar = Eyﬁﬁ&
to denote that only two new free surfaces are formed in the elastic material.
While this leaves open to surface chemists the question of any gquantitative
relation between Y, and Yoo 88 long as Ya is a fundamental material constant,
it can be used subsequently for predicting adhesive failure in a different
geometric or loading configuration. Further discussion of this point will
be delayed until later.

* It should be clear that a continuum mechanics analysis does not, of
itself, differentiate between a cohesive or adhesive mechanism of
failure. The distinction lies in the behavior implied by using a part-
icular one of the respective energies in the formulas, namely Ya
(cohesive) or y,; (adhesive). Furthermore there appears to be ne direct
association between the critical surface tension and the continuum
mechanics analysis of the unstable infinitesimal deformation of a solid,
although for special cases the critical-surface stress to cause a SD%@?‘*
cal flaw to become unstable has been deduced by Williams and Schapery. (1
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We are able to conclude therefore, phenomenologically, that there is
an equivalent Griffith-type adhesive fracture problem for which the continuum
mechanics analysis is essentially the same as for cohesive fracture, The
difference lies in the interpretation attached to the specific fracture
energy, v, and, in some cases, possible additional material modulus
properties on either side of the crack. The analogy is complete and results
similar to (5) can be obtained, except that the adhesive fracture energy
must be used in the criticality condition, i.e., (Figure 2b)

o = \/g_EIQ (6)
cr T a

to predict adhesive fracture between a rigid-incompressible material com-
bination. Hence with this connection formally established, the entire body
of analytical knowledge in cohesive fracture mechanics can be transferred
to analyze adhesive debonding.

The following examples will serve to illustrate the point on both an
approximate and exact basis.

ANALYTICAL DETERMINATION OF ADHESIVE FRACTURE ENERGY - ELASTIC

The Basic Concept

The simplest illustration of the concept involved borrows from the
Obreimoff(]s) proposition for determining cohesive fracture energy by using
a split cantilever beam. (Figure 3) The strain energy stored in the top

linear elastic beam, assumed clamped at the end of the split, is one half
of the work done by the applied force (F) acting through the equilibrium
displacement.

R (7)

AL 15

1
2
in which I = b(2t)%/12 is the moment of inertia. Also the incremental
increase in the new area, counting only that associated with the top beam
in order to be consistent with (7), is or = yca(L°b). Thus, equating the
two, one finds



3T 3U Fe 2 6F2L2

= = = - ig‘%i

Y
c 3(L b) (L b)  2bEI Eb2(2t)3

or in terms of the maximum outer fiber stress % developed at the bonded end
o, = 3V E/t (8a)

from which Y. can be deduced from the measurable quantities in (8) at the
instant of fracture. ,

If now the geometry of Figure 3 is changed such that the top beam is
bonded to a rigid substrate instead of to its mirror image, a little
reflection indicates that within the approximation of elementary beam theory
the analysis is identical to (8) except that the quantity which will be
deduced is Yqo the adhesive fracture energy required to separate the beam
from its attachment.

Centrally Unbonded Thick Plate of Finite Thickness. (Figure 4a)

Another fairly simple example, and one which permits a reasonable
degree of generality for illustrating several other characteristics later,
is an elastic strip plate of width 2a, infinite length, and thickness, h.
Depending upon the thickness of the plate, it may be analyzed as one con-
taining predominantly bending energy ("thick plate"), stretching energy
with Tittle bending energy ("membrane"), or a combination of the two
("thin plate"). The elementary ca1cu1ation(]6) paralleling (8) above would
be for a thick plate in which case the classical strip plate equation for a

uniform pressure loading is

4
dW foh
D—% = p (9)
dx4
from which, for clamped ends at |x| = a,
242 .
wix) = S0 [a% - %] 10)
: . (17)
Again utilizing Clapeyron's Theorem
8 25
= P P (2. 22 _ pfa’
u :[ 2 [240 (2 - x0)7 | dx = 45 )



and assuming debonding at both ends such that for a unit length of the
strip, one finds that

2
_oau | phat [_(_2 1-..v_2).<i)3]..__pcra (12)

Ya il
3(2a) 18D 3 h E

The above simple illustrations incorporate several approximations which
do not exactly reflect the actual plate behavior, namely: (a) plane sections
do not remain plane especia11y near the end of the crack; (b) there will be
some stress and some strain energy stored in that part of the beam past the
assumed fixed end at L; (c) there will be (mathematically) infinite stresses
at the point of the crack; (d) plastic flow probably occurs at the crack tip;
and (e) the fracture criticality condition is only a necessary one.
Nevertheless, information useful in design is obtained, mainly because the
values of Ve and Y, SO obtained are used in analyzing applications incorpor-
ating the same approximations.

Centrally Unbonded Block of Infinite Extent. (Figure 4b)
It is not necessary however, as far as continuum mechanics stress

analysis is concerned and the problem demands, to accept all of these
confining assumptions. If the thickness of the plate of the previous example
increases, it finally becomes so thick that simple plate theory is nc

longer applicable. In the 1imit therefore, one considers a semi-infinite half
space which is unbonded over a width 2a and infinite length. Unfortunately
this analysis is not as simple to reproduce, but suffice it to say that a
biharmonic boundary value problem in elasticity is formulated from which the o
stresses, strains, and strain energy density in the medium can be ca?cu?@ﬁedaa}gg
The singular stresses are automatically incorporated in the analysis,

and no plane section simplifying assumptions are needed. Plasticity so far
however has not been included. After integrating the strain energy of
deformation over the volume, and equating its change with respect to

increased debond area to the adhesive fracture energy, one finds that

Ey

- _8._.__i . = 19y
pCY‘ - 3 a -V 1/2 (13)
or in terms of Yy
2 2
= ..3_Tr___.__pcra = _3_£.'.p_.c_;v.:.' a f?/.@k
Ya g8 E 8 E Vi)




which can be compared with (12).

Centrally Unbonded Thin Plate of Finite Thickness.
Another related geometry can also be easily dealt with. When the
plate thickness becomes rather small, the stretching energy due to in-

plane stresses increases compared to the bending energy. Indeed, in

the limited case of a very thin plate or membrane, the bending energy is
vanishingly small compared to the energy of stretching. A rubber ballcon
falls into this category and its non-linear increase in size with internal
pressure is a matter of common experience. In this case, one finds it
necessary to consider both the stretching displacement, u(x), as well as
the normal bending deflection, w(x). Two differential equations are
involved, but the solution for an infinite length strip unbonded over a

(19,20) actually for both

length 2a, and clamped at both ends is available;
a pressure and temperature loading. The latter solution may be expected to
be of some value in conjunction with estimating debonding due to the curing
stresses after polymerization. '

The governing differential equations are (for constant material pro-

perties, plate thickness, pressure, and temperature drop, AT)

4 2
.dw d™w
D*"=— - N—5 = p. (15)
dx4 dx2
du , 1 (dw ‘ - (1 +v) oaT = ﬁl—:¥3£iLli (16)
dx 2 \dx/ v Eh

along with boundary conditions, assuming clamped ends, of
u(za) = w(za) = dw(xa)/dx = 0 (17)

the solution scheme is to solve (15) for w(x), then insert it into (16) to
integrate for u(x). The constant in-plane stress, il = o - h, is determined as
the boundary conditions (17) are applied. For our purposes, the two phy-
sically interesting cases are (i) when the bending rigidity is vanishingly
small, thus corresponding more to a thin, very flexible, film bonded to

the substrate, and (ii) when the bending and stretching energies are

10




comparable, as might be the case for certain dimensions of a paint blister
or an automobile metal part.

From these basic formulas, it is straight forward to calculate the
energy balance. The input work, I, must be balanced by the strain energy
of deformation, U, stored within the body and the work to create new fracture
surface I. (Kinetic effects are neglected.) Hence one finds, for uniform
pressure and constant temperature change, AT,

a
I = pw (x) dx (18)
“a
U=f3____E_h____,_[(dV)+J_(g_v1)] CEhoaaT |dv
ta (2(1 —\)2) dx, 2 \dx T - _dX

N

2 a 42
1(dw)]$ fD 4w
+ (W) Hay + L {19)
2 \dx “a 2 dx2

in which the first and second terms of U represent stretching and bending
contributions respectively, and

T =f vdx ' (20)

w111iams(]9’20) has given the general solutions for this problem,
actually including varying pressure, temperature, and material properties,
as well as for both clamped and simply supported plate bondary conditions.
(Note for example that if the cover sheet shrunk less than the substrate,
a buckling condition in the sheet could arise!) From these more general
solutions and graphs of the results, it is a sufficient illustration for our
present purpose to extract only one of the simpler results to show the
extent of more sophisticated analysis which is available if desired or

necessary.

Membrane strip. In this case when bending energy can be neglected,
the basic equations (15) and (16) reduce to

11



N (dPw/dx®) = p (21)
2 2
du 1 [(dw I N T 1 (55
x V f(?i—)?) - (1 4+ v)aaT = = ES (22)
Eh
with boundary conditions
w(+xa) = u(za) = 0 (23)
Upon integrating (21)
w(x) = Wy [1- (xz/az)] ;oW = pa2/2N (24)

and insertion into (22), one finds
2.3

2 2 WX
- 2 N
u(x) =[u+vmm.+12v g%]x-g.ﬁf. (25)

whereupon after applying the boundary conditions, (23), the (constant)
stress in the membrane becomes*

2
2 2[fw 2
_ 2t (n 3 ,.
s T Wh S G 30 - V9 (5> Kho) A v)"‘AT<%} }2@»)

It is now straightforward to compute the energies (18) - (20) as

]
i

a
J. pw, [1- (x2/a2)] dx = (4/3) pw,a
“a

2 .- 2
W W
8 0 20 Eh ;.
3(?)[§G9‘(‘*”Mﬂ1_vz €

fa)
e
f—rg

* This expression denoting equilibrium positions for maximum membrane
deflection for various combinations of pressure and temperature can
be cast into the following form and plotted (see Reference 19)

2
W 29w 2 4
oy - 3 a o _ 3(1 -v7) pa op
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U= .[a Eh [(]'VZ)N + (1+v)aAf]2 _ EhodT [(]'VZ)N + (]+v)uAT}§ dx
2 VZ) Eh T-v Eh

w w\?2
S BEY - o] 2 ,

1]

From these expressions one finds after a bit of algebraic manipula-

tion, that
WA2 [/W\2
1-u = 5 Eh2, (32> [(59> - (1+v)aAT] (30)
1-v

Upon computing for the criticality condition at constant pressure

a/ea = 2y, = 3(I - U)/sa (31)
in which from (26) one finds

oWy [(1 - v)pa/En] + (wy/a)(1 + v)aaT (32)

2 p (wo/a)2 - (1 + v)aaT/2

The result is

2 2
4 w 27 /w
4Eh h 7 3
Ya © "3‘(]'—;_\)?)— (E) ['6" (ch_) -2 (1 + “)“AT(%> ](EQ> (33)

where in terms of ready comparison with the thick plate results (wofh)
must be eliminated from (33) using (26). In the simple case, for example,
of no heating AT = 0, and

Ya/al = L 3‘/3(1 - %) (a Per)’ (

E 6 4 h/\ E '
AT=0

or in terms of the critical pressure for a known adhesive fracture energy

L3
.
S
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/4

3

p 1/4 /v_/a

_%ﬁ. = ___§§§———§-<2> < E ) ; membrane (35)
344(1 - v7)

which values are of interest to compare to the previously derived ones

: 2V2(13- V) (2>3/
1/2

3 Ya/a .. ; .
- = \/'§E' +— ; infinite block (37)

As all the numerical constants are of order unity, it is interesting to

2 Ya/a 1/2
E ; thick plate  (36)

Mo
1
1}

k=)
O
-

note that for the same materials the critical stress predicted for thinner
membranes is substantially above that predicted using plate theory. The
specific transition from the thick plate through the thin plate regime to
the membrane can be deduced if desired using the appropriate thin plate
expressions from Reference 19.

Thermal Debonding of a Membrane. Another simple calculation can

also be made as an outgrowth of the foregoing analysis, and illustrates

the type of estimates which can be made for blisters which debond from
surfaces, as in paint, when subjected to too much heat. While the hasic
solution for an arbitrarily variable temperature distribution through a thin
plate is given in Reference 20, it is particularly easy to see the nature of
the result from the criticality condition (33), in which the value of

wo/h to be inserted is taken from the possible equilibrium conditions of

the strip in (26a). For example, if there is no imposed pressure, and

the temperature is uniformly distributed through the, in this case, mem-
brane, (26) gives

wp/a | = [(3/2) (1 + v)aet] /2 (8)
T
thus in (33) ATCr to cause unbonding is
2 2
4 kh [7(% 3 "o\ _ Eh 1+v, o2
Ya = § T vz [_6—(5_)'[’— 5 (] + \))OLAT](-a-—)T = -2— T 5 &O&AT?}



- - v} 'a ¢
ATy ‘J T+v o (39)

which should give a reasonably good estimate for very thin polymer films.
For thicker or metallic films for which the product Ea is characteristi-

(19) must be used.

cally larger, the more complete analysis
In any event, the point of this section is to show that continuum
mechanics can in principle be developed to treat the rather complicated
problem of adhesive debonding of a heated or, what is the same thing, cure
shrunk bond. The only real question is the practical one of required

accuracy for time invested within the economical necessity.

Localized Modulus Variation near the Interface

It frequently happens that there are localized changes in the material
properties of two different materials when they are placed in contact. On
the one hand they can be due to chemical interaction, or frequently more
mechanical as when a liquid polymer is cast and cured against a fixed
surface. In this latter case, the random growth of the polymer chains is
inhibited as they approach the fixed boundary and tend to bend and Tie
parallel to its surface. The net result is a localized boundary laver or
"skin effect", which is expected to produce a different result than if the,
say, material modulus was uniform directly up to the interface.

Again we find there are two ways of approaching this problem from the
point of view of continuum mechanics. First of all, it makes little
difference in principle to a stress analysis as to whether the material pro-
perties are isotropic, anistotropic, or irhomogeneous. In practice however,
it is usually more desirable to obtain a qualitatively correct answer and
improve it to the degree required. This philosophy is pertinent here, and
the problem could be formulated as one of two dissimilar orthotropic
materials bonded along the abscissae x > 0 and free along x < 0. Actually
this was done several years ago in one case in conjunction with analyzing the
‘characteristic stresses which might arise in the vicinity of a geophysical
(12). In that case however, the material properties
above and below the fault were assumed individually and separately iso-

fault between two strata

tropic and homogeneous. An analytical extension of this problem based upon

15



(10,11) and now being completed, assumes that there are

our earlier work
orthotropic properties in the media, essentially such that the Young's
modulus E = E(y), to account for a harder or softer material near the inter-
face than in the interior.

A more direct way of exhibiting the general effect however is to use
the simpler case of a split beam, in order to show again that this varia-
tion can be treated - and improved upon in accuracy as the circumstances
warrent. Consider, therefore, the plate strip shown in Figure 5, where
the origin of the axis of y is at the bottom of the thickness, h. After
assuming plane sections remain plane under bending, only two conditions are
required. First, by assumption, the sum of the x-forces integrated with
respect to y, Nx, are zero, and the moment of the internal stresses must
equal the external moment. Hence if N is the force per unit width of the
strip in the z-direction

h

N (x) = .f o, j‘ -—JQLL- (y) dy (40)
0
whereas the moment per unit strip width is
h
M=s o (y)ydy j——(ﬂ— (y) vy dy {47)
0

where the factor 1 - v2 arises because an infinite stress p width has been
assumed. Now assuming that plane sections remain plane,
- .2
oW
5 (y) = (y - h) X

8X2

o
N
™3

R

where y = h is the zero extensional fiber, and selecting a representative
modulus variation which can represent any rather arbitrary localized skin
effect or boundary layer, namely

[ OS]
S

E = E, + Ejexp (-ry/h) (43)

one can substitute (42) and (43) into (40) and (41), and first find
h by the condition that NX = 0, viz.
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where is may be noted that B/h 1/2 as it should if E1 is zero, i1.e.,
no anisotropic modulus.

Secondly, the moment relation from (41) becomes

3
2 2 E h _E
M = 9_%. p = 4 g 0 — g O by El’) (45)
dx dx ]2(] -V ) 0
where
. E - E
1 1 1h 11/1 2 2 - 2
R L T | (ST A P
E, 3°7h E, \V 73273 3
1 1> h a1 r_w]
-l t—=) e+t — (46)
(A ‘ AZ h AZ h {

Note that any further analysis for this plate strip can proceed as hefore
except that now D = D [x, h(x)] = D(x).

In most cases of adhesive joints the chemical or mechanical effect
dies away very rapidly such that the decay constant, x, in (43) is quite
large, typically of the order of 10-20 and E]/EO < 1. Under these conditions
(44) and (46) may be further approximated by

- E
h 1 1.1
=l " = { - '~—] (44a)
h .. 2 E, A
E
371 .
gA) | T+ = (46a)
A>>1 A Eo
If, therefore, we consider the centrally unbonded pressurized strip,
(12), the first approximation accounting for a skin effect would be
2.4 2.4 E
= E—-@'_ = a _.?l__]_ "'] (A7)
Ya = T80 %‘80‘0 [] YE T \47)

There are two questions to be answered here however. First, whether
the formula is being used to measure v, from (47), or second, whether '

17




is known from, say, an independent measurement and the effect of a change
in the surface modulus, ES = E0 + E], upon bond strength is being examinad.
In the Tatter form, with Yy fixed by the interface conditions, the inver-

sion of (12) to £ 1/2
E +E) v./2 /. \3 R
- -‘/3_ 0 1/ Ya/? h 0 (48)
Per 2 (1 - 2) a E Ve
\Y ]+_E.__
0

The correction factor in brackets is plotted in Figure 5 and shows for
example, that if the stiffness in the interior is substantially less than
the interface stiffness, measured by the decay constant A, the bond
strength will drop off according to (48). Contrarily, if any softening
lies at the interface, with complete (harder) cure in the interior, the
bond strength will increase.

To rejterate however the first point, if the test is being used to
deduce Yy and the bulk property away from the interface, i.e., EO, is
being used in the formulas, then only an apparent value of Y, will be
calculated, within the factor g(A],E]/EO).

The Effect of an Intermediate Adhesive Interlayer.
While in some cases it is sufficient to consider only a bimaterial
system, such as a plate or block cast onto a substrate, it more freguently

happens that two pre-formed materials are bonded together with a third,
adhesive, material. There has been frequent discussion on the relative
merits of this interlayer material, such as it should have a high modulus,
or be very thin. It is possible to analyze a model of such a multi-Tayer
bonded joint, and the one chosen for illustrative purposes consists of a
centrally unbonded elastic strip plate bonded to a rigid substrate by an
elastic adhesive of different material properties (E', v') and thick-

(2]). The same elementary plate theory approach can be used in

ness (h')
which it is assumed the adhesive interlayer behaves as a common Winkler
foundation of modulus, k. It proves possible to estimate rather easily the
effect of the interlayer, as shown in Figure 6, for a long, centrally de-
bonded, sheet(Z]) (22)

section shown in Figure 6 would be the same in either case, although in

or for a circular blister specimen. (The cross-
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practice the centrally unbonded strip geometry is of course more diffi-
cult to test because it is not easy to seal the ends when the specimen is
pressurized).

For illustrative purposes however, because the formulas are simpler,
consider the centrally bonded strip as a clamped beam (Figure 6). The
solution of the field equation for [x| < a

D(d*w/dx?) = p (49)
is

D(x) = 2 4 -

wix) = C o+ (Cx7/2) + (px7/24) (50)

For the external region, |[x| < a, one assumes an elastic foundation with
modulus k, giving

p(d*w/dx*) + kw = 0 (51)

with solution

S

wix) = (C3 cos Ax + Cy sin ax) exp (-ax) (

in which the definitions

4

p = en’/ D20 -vH)] 5 x =t 5 Lz o (53)
have been used. The solution as obtained ear]ier(Z]) gives
4 T 3 2
C = pa ]2—- + +35“ t bu ¥ 3] (54)
° i T2u” (1 + u)
- 2 —]_ 2“ + 3 oy
CZ = pa g + U T+ u ] (wg(
c. = pa4 [ﬁZuz + 6y + 3) cos p + (2u2 - 3) sin ?E
3 D exp(-ka) -12“3 (-I + U) E%@X
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c, = Pa4x) [(2u2+6u +3) sinu - (2u° - 3) cos u
-Ad

Upon calculating the strain energy of deformation, and assuming uniform
pressure
[ a® 5 4u> + 124° + 18y + 9 |
u= = 'f pw dx = gﬁﬁ' 1+ L 3 i 2 (58)
-a (1 + )
Then upon equating aU/sa (for a unit length of the plate strip) to
ar/aa = Zya, where the factor 2 accounts for simultaneous debonding at
both ends, one finds the critical pressure at incipient debonding as*
3 (g>3 B 3 (h/a)® Eva
2- 201 -4\ @ _ 20 -08) 8 a0
e et 56+ el v e wig T Tl
nd (14 u)?

where it may be noted that for zero thickness bond layers, i.e., k = h'= 0,
the zero interlayer solution corresponding for example to polymer being
cast directly onto the substrate, is recovered.

Indeed for many practical geometrical combinations, u tends to be

rather large, in which case (20) can be approximated by
Y 4

3 t Sy -
[1+e 1= 1- 4&@—(2) E o =1-41 #(m m-zvzi |

3(T=-v")(1-u") &

in which the primed quantities refer to the interlayer. For this situation,
for example, the critical pressure to cause failure decreases with either

a stiffer interlayer modulus or a reduced interlayer thickness.
"

) ;‘/3(h/a)3 a |, _,h J(1 £ ') (1-20) E/h |
cr 201 - V) @ 2 W31 -v) (1 -V EV/h

* In reference (21), equation (14) is improperly described as the result for
a plate strip. It is actually that for a beam strip of unit width. The
plate stﬁip solution is derived from the beam strip by replacing E by
E/(1 - y7), which 1atte5 value for an incompressible material is 4E/3.
Replacing E by E/(1 - %) in that equation (14) gives the result in (59)
to follow.

20



i
z (o) [ S ey
= pCY‘ ] - C E| + ?\@E{

It should also be noted that it is the ratio of h'/E' that is the major
controlling parameter, not the modulus or thickness separately. This
point probably has more general practical implications.

Interlayer Between Two Different Media. The previous case can be

further extended to include the situation in which the substrate is not
rigid. Providing only that the Winkler type foundation hypothesis used in
(51) is still valid, i.e., the adhesive reacting force is essentially pro-
portional to the deflection, f = kw, thus neglecting shear stress in the
adhesive interlayer, one can allow for an elastic interlayer between two
sheets of different material properties and thickness (Figure 7).

Denoting the upper cover sheet by unprimed quantities, the interlayer
properties by primes, and the lower sheet quantities by bars, one can deduce
the strain energy in the combined system. There are three possible Toci of
failure. First at the interface between the top sheet and interlayer
(pcr), second, at the interface between the bottom sheet and interlayer
(Bepr
can be summarized as follows:

), and third, a cohesive failure in the adhesive itself. The results

(62a)

Per T+ ¢(n)

-&-1-6-

=
o

T
o,
o
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cr
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+|+
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=i

e

oo

= )
T+ ¢(u) 1+ i

The lower of (62) and (63), which depends not only upon the appropriate

adhesive fracture energies Yy Or ;a but also upon the other material pro-

perties and thickness, thus give the criticality estimate and location.
It could also happen that the interfacial strengths are both sufficiently

high such that cohesive failure may arise in the interlayer itself.

An approximation to the stress field for this pressurized blister geometry

gives the maximum tensile stress at the edge of the interlayer, x = a, as

el !

fla) - : i L es
a) g T [21_1 + 6u + 3] + .—(_]_:_—5 [2 6U + \,f]é) 63)
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which magnitude may also be compared to those in (62). If the free edge

of the interlayer (Figure 7) has a crack in it of depth c, then the magnitude
of (63) will be further concentrated. Using again fracture theory in the
form of the critical (assumed average) uniform tensile stress %(a) to

cause cohesive fracture in an edge notched tensile strip of incompressible
material subjected to plane strain, one finds

_ EI,YI
‘/2 I
fa)| =Y5 CC (64)
cr

in which Yc| refers to the cohesive fracture energy of the interlayer

material.

These Tatter results, (62-64), have not been confirmed by experiment.
At the present time therefore, they should be viewed as illustrations of
the manner in which an adhesively bonded joint might be simply analyzed,
providing other independent tests, e.g., rigid pressurized blister, have
yielded design data for Yqo ;a’ and YC'.

APPLICATIONS TO NON-ELASTIC FAILURE
There are two other adhesive debonding variations that appear amenable
to analytical treatment. The first includes plasticity, and the second,

viscoelasticity.

Adhesive Debonding of an Elasto-Plastic Plate from a Rigid Substrate.

In another paper, DeVries(ZS) presents some early results and experi-
mental data, for the debonding of a metal plate strip or beam from a rigid
substrate. A bi-material combination is considered, with no interlayer,
and deformations of the substrate are neglected. The problem is a direct
analog to the first one considered in this paper based upon the classical
Obreimoff calculation. Whereas this previous case, and most others en-
countered in the literature assume elastic deformations and classical beam
bending theory - even when the assumptions are patently violated as in a
90 degree bend in a bend: - DeVries has carried through the calculations for
a material whose stress-strain curve is assumed to be elastic-purely plastic
with the Timiting plastic stress being Oy While many materials do not
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completely follow such an ideal non-strainhardening material behavior,
the results are important because it exhibits the qualitative effects to
be expected due to plasticity, and moreover, has some direct applications to
a double pressurized blister test in which, for example, two explosively
welded beams or plate strips having an initially small area of central
unbonding can be separated. (In principle, if the materials were identical
and chemically clean, then the measured adhesive fracture energy between them
should approach the cohesive fracture energy in either of the two separately.
In some of our tests to date, we have achieved values of Ya of the order
of 90 percent the v_ values in steel.)

The elasto-plastic analysis proceeds in essentially the same manner
as before, with the basic assumption that plane sections remain plane after
straining even though the stress distribution changes from Tinear up to
the elastic 1imit to a truncated triangle as the outer beam fiber, and
subsequently the inner fibers, reach the (maximum) yield stress. Figure &
shows the progressively developing stress distributions across the beam depth.
It should be mentioned, incidentally, that it is not necessary for the beam
to debond from the substrate, if it is so "soft" that a fully developed
plastic hinge develops at the clamped end before the adhesive strength of
the bond is reached.

From Figure 8 it is seen that plasticity will develop gradually over
the Tength of the beam beginning at the clamped end, and at any section the
central portion near the neutral axis |y| < &, will be in an elastic state,
while near the outer portions £ < |y| <h, will have pure plastic flow. Hence®
taking the beam thickness as 2b, the moment at a point along the length, x,
will be

P
o
[33]

Pt

h
M.(x) 2b Jh o (X;y) y dy

h

3
= 2b - 2jox(x,y) ydy +2b - 2] o, (xsy) y dy
0 e~

£ 2 h
4bJE [zy 9—"21] y dy + 4bj o, ¥ dy
0 dx 3

+ To maintain consistency with Reference 25, the notation of 2h and 2b
for the thickness and width of the beam is different than in other
examples in this paper.
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2 3
- dw & T - ;2
= 4bE 3" 4bo, » (h° - £°) (

where the strain in the elastic portion is e, =Y dzw/dxz, and the stress
is constant o = o  for £ < |ly|] < h. So assuming that the problem to be
solved is an end loaded cantilever beam such that M(x) = P(s - x), with
the origin of g_at the bonded end, one has the differential equation for

the beam
acb 3 4P 2 2
-—3"—2';' ——é—+2b00(h'g)=P(2-X)I0<X_<_X* (@3}
dx

which holds in the region 0 < x < x*, where x* is the length at which the
outer fiber at y = h has just attained the plastic limit, and

3 2
Eb(2h) dw _ P(s - x) : x* < x < 1 (68)
12 q 2 X<
X
Continuity of deflection and slope must be maintained at x = x*, and of
course a bonded end at x = o implies that
w(o) = dw(o)/dx = o (69)

Circumventing the calculation of the deflection and the energies which
are given elsewhere, one finds upon deducing the criticality condition in
the usual form

eI . a3y 9 70
3r - ar ooy (gt (70)
o 2h —
) 0 2 Py i
that y, = = (I-U) = —/—|(1-= 1 - (71)
a Y E [ N ‘/ 200bh2] N
Now if enough load, Pe’ is applied to just cause the yield stress, 04 to

be reached at the outer fiber at the bonded end, i.e., all elastic, then the
developed moment at the support can be expressed as

) Pezh 3 P
g = &£ = 2

4
1 3 bh
1520 (2n)
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leading to
vy, = —3g (elastic, compare 8a) (73

On the other hand, if a fully developed plastic hinge is developed at
the support ’

) 2 -
Ppl = ZGObh (78)
and in this case (P can never exceed Pp)
oozh
Ya - E (completely plastic hinge) (75)

Assuming therefore that debonding does occur prior to exceeding elastic
conditions, i.e., P <P, = (4/3)cogh2/2 , elastic conditions, (8),

will apply; if Pe <P 5_Pp = Zoobh /% , then the elasto-plastic formula

(71) may be used for an elasto-purely plastic material to measure the adhesive
fracture energy.

Qur preliminary experiments on bonded bonded aluminum beams have been
encouraging, although structural bonding adhesives (3M Co. - 2216B/A) were
used rather than explosive welding. Values of Yy 29X 105ergs/cm2 =
5 1‘n—1bs/1‘n2 were obtained in the experiments reported more fully in
Reference 25. As emphasized earlier however, the important point to make
in this paper is that another engineering material parameter, this time
plasticity, can be incorporated quantitatively into a continuum mechanics

analysis.

Time Dependent Adhesive Fracture
In none of the examples described to date has it been necessary to

introduce explicitly time or temperature dependence of the material
properties. In many polymers however, and certain metals at elevated temp-
eratures, these effects can have a profound effect upon cohesive or adhesive
fracture. Our present understanding permits some quantitative deductions
providing the material behavior is linearly viscoelastic and providing
linear viscoelastic material properties are involved. By utilizing a
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spherical flaw model of a flaw in an incompressible but linearly visco-
elastic medium subjected to uniform external tension, w1111ams(]4)
able to deduce an exact extension of Griffith brittle fracture theory. It

Was

verified the intuitive feeling that the time dependent critical stress
) required to initiate fracture was of the qualitative form

oer(te) = K V/_E___.___.__“%c ) e

a

(Ucr

“d
95
S

P

where a was the flaw size. E*(tf) is a time dependent modulus which may be
different for each loading history. However, for qualitative purposes it
may be thought of as a relaxation modulus (Figure 9) which decreases from a
high short time, glassy value (Eg) to a low, long time, rubbery modulus (EQ}
over several decades of time. For a constant value of Yoo the time to frac-
ture (tf), would be given implicitly by (76). Since this paper(14)
et.al. (26) have shown that Ye is also time dependent*, which leads one to
suspect that the adhesive fracture energy should also be time dependent.
This latter suspicion has just recently been verified on a polyurethene-
quartz material combination. Hence the expected debonding behavior would be

, Bennett,

of the qualitative form

(T )y (€0
oo (te) = k‘/ fla ’f (77)

a

Theoretical Formulation. In order to describe this time-temperature

dependent fracture within a more formal framework, consider the energy
balance concept within a thermodynamic framework in terms of the power equa-
tion for a continuum(]4)' In this form, the meanings of the various con-
tributions are more readily apparent. The conservation of energy reguires
that the rate of doing work upon a system, is equal to that absorbed in the

system. Thus one has

.
m
poe—s

I = F + 2D + K + T (7

* Actually reduced time dependent, t/a.., in which ar is one WLF time
temperature shift factor. (See Reference 27)
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in which I is rate of work input which usually consists of applied forces
or displacements at the surface of the body plus any contribution of body
forces. Using the notation of Soko]nikoff(]7)

: f\) : :
=, T.u,dS +fv FLu dv
\%

v
where Ti are the components of the applied (vector) force T distributed

e,
|
i

E—

over the surface (S), F. the components of any body force over the volume

th direction

(V), and us the components of the displacement rate in the i
(i=1, 2, 3).

On the inside of the body, there is the free energy (F), and any
dissipation resulting usually from the strain energy of deformation such
that

t

o

Here o5 and e.. are the components of the stress and strain rate respec-

tively, and it1gs important to note that at this point no constitutive
or stress strain law connecting them has been assumed. If the material is
elastic, o ~ e; but if for example, it is elastic-plastic or viscoelastic,
the appropriate relations can also be inserted into (80). The kinetic

energy rate (K) is expressed as

t
o d ff v @ d f . e
K = =+ pu.u, dtdv = = £ y.u, dv
dt V %o i1 dt v 2 171

o,
oo
]

e

leaving only the surface energy contribution, r, which will be the rate of
energy consumed in creating any new fracture surface area

I = & s Yo, 85 (82)

regardless of its source, where to be specific, the subscript c,a has

been added to y to denote cohesive or adhesive fracture. Thus this term would
include not on1y the energy to break primary bonds, but also secondary
chemical bonds as well as any viscous or mechanical work in untangling poly-
mer chains at the fracture surface. The interpretation of either of the
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specific fracture energies (y) is, therefore, the energy required to
create new fracture surface area regardless of the source or combination
of sources from which it may arise.

Centrally Unbonded Pressurized Viscoelastic Strip. As an example of
time dependent adhesive fracture, consider the response of a centrally
debonded pressurized strip of linear viscoelastic mater1a1(29). The
time dependent deflection (w) of the strip of length 2a(t) can be

deduced to be

26 1w [x,t; a()] = L7@(R)PD ()] [a(t) - ¥°1 2 (83)

Y

in which L'] indicates an inverse Laplace transform, and a(p) and 5cv (p)

indicate Laplace transforms of the time dependent loading per unit

P

width, g(t), and creep compliance, Dcrp(t) respectively. The center of the
strip is at x = 0 and the strip is assumed rigidly clamped at |x| = a(t).
The length of the beam, 2a(t) can change with time if debonding occurs at
these bonded ends. For this long strip the moment of inertia per unit length,
including the plane strain factor of (1 - v2) in the modulus can be expressed
as 1= n3/[1201 - v¥)].

From the general theorem (78) as specialized to classical beam theory,
one can write the strain energy of deformation (80) as

a(t),.t

: d
F+2D= 25 j.
at J

in which M is the bending moment in the beam. Hence

d alt) (¢ 2 2 2 3x2
- -, 4 _ T _ 9 . alt) - 3x
Fram=2% _£ _[ 9%—1 [a°(x) - 31 & [ L

o]

.
M X515 a(t)] %;—[} KT a(T)]] dedx  (84)
IxX

L’](apﬁcrp)} drdx  (85)

Similarly, the work input to the system is
a(t)

i = 2q(t) _[ %E-[w(x,t); a(t)] dx (86)
: (o
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.assuming the loading is uniformly distributed spacewise. Thereupon
neglecting any kinetic energy effects, and writing the change in surface
energy rate as

r = 2y a (87)

and inserting (85) - (87) into (78), one finds, for é # 0, the integro-
differential equation for the determination of the time dependent crack
position, a(t).
t
J ) - 301 .7 aPDery g {a(x) [a2(x) - 3a(t)Ijdx = 361y, (1)
° (88)

But up to the time of fracture initiation, t = tf, the Tength of the beam
has still not changed from its initial length a(0)= 3,5 SO that one can
write

th 2, -1 .= = .3 2
) -2 21 [qucrp] EE-[- 2a q(t)] dr = 36Iya(tf) (89)
from which the time to fracture, tf, is to be deduced. It is apparent
that the time to initiation of the unbond will depend upon the history of
the pressurization gq(t) and the viscoelastic material properties reflected
in the creep compliance.

As a simple illustration, assume the pressurization linearly increases
with time,

.
fre]

g(t) = mt

Inserting this loading into (89) and computing the inverse Laplace trans-
form from its convolution integral as

N La) " b By = mo{) (

540

1)

in which it is convenient to define
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p{t + Dy { 0P e)ee 5 o) =0, (1) (92)
one finds
4
18E Iy _(t
(mt)? = q%(t) B Rt (93)

ramp {D(Z)(tf)}
Dgtf/z
In the case of a very fast rise in pressurization, the debonding
will take place in vanishingly small times for which D(z)(tf > 0) Dgﬁffag

so that
g

2 18E 1y, 3 (.h_>3 Eqv, -
e
sharp ao4 2(1 - v2) % %
ramp

which approaches the elastic result, (12). For other, slower loadings, the
character of (93) is as expected from the qualitative considerations because
the creep compliance is approximately the inverse of the relaxation modulus,
and the double integration of the compliance characterization happens to

be that which corresponds to a ramp loading input, i.e., other loading his-
tories give a different number or combinations of integrals of the compli-
ance.

In any event, it has proven possible to include a time dependent
material behavior in the analysis, explicitly, including a time degemdemt
cohesive fracture energy, t/aT, as published by Bennett, et.a].(26 ; the
authors by an extension of the same technique have also shown a time

(28). It should be noted in passing that the WLF a.

dependence in ' (59)
27

T
time-temperature shift factor used in correlating the cohesive fracture
data was the same as that used in correlating the relaxation modulus data.
In the cohesive energy measurements, Yo Was found to vary by a factor of

(26).

approximately 50 over six decades of Tog time Similar major variations

have been found for the polyurethane-quartz adhesive unbond(zg).

It is also possible to deduce a fracture energy from a moving crack,
although to date we have had limited success except on an ad hoc or at
best pseudo-theoretical basis. For monotonic increasing loading in thin
sheets, for example, it appears that plasticity will have to be incorporated
in order to predict finite crack propagation velocities. Further effort

in this area is required because there are certain experimental advantages
30



in deducing the critical fracture energy from photographic measurements of
a moving crack as compared to somewhat subjectively deducing the "first"
motion of a small pre-cut flaw.

THE PRESSURIZED BLISTER EXPERIMENTAL CONFIGURATION

So far there has been considerable emphasis upon a centrally unbonded
infinite plate strip pressurized blister configuration. The reason is mainly
because of the relative ease with which the various changes in geometry
and materials could be dealt with analytically and thus exhibit the major
phenomenological features. From the experimental point of view, however,
this configuration is rather poor because of the difficulty in pressure
sealing the open ends of the strip. Several other practical matters also
impede a simple evaluation of the adhesive fracture energy. First, we have
found that it is difficult to construct a specimen for which the adhesive
bonding or glue does not accumulate at the crack ends or along the sides of
the specimen thus leaving a lump at precisely the point where the debond is
to initiate. Also, it is often not easy to control the atmospheric
environment surrounding the progressing debond. While these and other prac-
tical objections can be overcome, our search for an alternate simple test
specimen led to a consideration of the pressurized blister test originally
proposed by Dannenburg(30) for the adhesion of paint. A Griffith type
energy balance of this geometry, but with a central point loading, was next

(31) Our work consisted of combining

contributed by Malyshev and Salganik
these two features, i.e., a self centering uniform pressurization specimen
and a continuum mechanics energy balance, as into the pressurized blister
or circular pancake specimen(32’22).
The Pressurized Blister Test

Paralleling then the development in (9) et.seg., consider therefore a
thin elastic disk bonded to a rigid substrate (Figure 10) for which one

may write from the principle of energy conservation, that the work done by

the applied pressure moving through the virtual displacement must be
balanced by the change in internal strain energy plus the change in the
energy to create any new surface. Inasmuch as the change in internal energy
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is one-half the applied work for a linear load-deflection relation by

(17)

Clapeyron's theorem, one has

a

1/2 [Zn_[ P Gw(r)rdr'] = §(y naz) (95)
n O a v

From plate theory, one finds that the deflection of a uniformly

loaded clamped plate of radius a is given by(]6) ‘ N

2 2)2

wir) = (1/64) (p /D) (a° - r (96)

where D = Eh3/]2(1 - vz) is the plate flexural rigidity, so that upon
inserting (96) into (95) and calculating the criticality condition,
aU/a(naz) = v, One finds

2
= 3(] - \)2) pCY‘ . i 3 (5;%—;;,\%
Ya 32 E/a h s

It provéd experimentally convenient to observe the critical pressure,

Peps at the same instant as the radius increased, thus expressing
(97) in the form
512en° y_/[3(1 - vz)]$]/2 Ky

a AY

pCY‘ (za)Z (za)Z

e
oo

which thus Teads one to expect a hyperbolic type variation of the experi-
mental data of Pop Versus blister diameter squared. Typical results are
reproduced in Figure 11; the value of ' is deduced from (98) by a best fit
of the experimental data.

Actually it may be noted that at the right (lower) end of the curve,
there is an apparent departure of the data from the p -~ (2a)"2 variation
deduced in (98). In point of fact, the data are progressing through a
transition toward membrane behavior, as in the strip plate example discussed

(33) has also examined this paint for the circular

earlier, (35). Jones
blisters with which he has experimented, and found a consistent pattern
from which a closer agreement with the experimental data can be obtained if

warranted.
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In addition, we have now had some success with the circular
pressurized blister bonded to the substrate through an adhesive interlayer.
The plate strip correction factors for interlayers seems to be reproduced.
with a bit different numerical values, in the work of Burton, et.a29<22}a
Inasmuch as the infinite strip solution emerges in a simple power series in
the coordinate with clamped trigonometric functions at worst, i.e.,

(50) and (52), and the circular plate on an elastic foundation requires at
least modified Bessel functions(zz), one should verify the necessity for
improved correction factors before entering upon the calculations. In any
event, the philosophical point is believed established. Should the benefit
be sufficient, ever improved continuum mechanics solutions can be
developed. For the present purpose, however, the major point to reiterate
is the breath of parametric changes with which it is possible to deal,

if required.

APPLICATIONS

In the previous discussion, the major emphasis has been upon the
analytical and experimental ease with which a technically useful gquantity,
the potentially time-temperature dependent adhesive fracture energy,
Ya(t/aT)’ can be measured. It should be recognized however that the end re-
sult is not property measurement alone, but to use these data subsequently
to analyze other engineering configurations and to be able to predict,

a priori, when adhesive debonding will occur. Providing then only that

the interface conditions in the new design are identical to the laboratory
specimen for which Y, Was measured, e.g., surface roughness, cleanliness,
environment, and that numerical complexities of the stress analysis are

not insurmountable, which is unlikely in these days of high speed computers,
there is no reason why this engineering fracture assessment in Region I!

can not be made. It should be emphasized that this point is independent

of whether or not the physical chemist understands the connection, if

any, between the specific fracture energy, a2 and the interfacial

molecular structure.
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From an engineering standpoint, this measured Ya value is more useful
than the commonly obtained "peel strength" because as the fracture energy
is a fundamental material property, independent of being measured in
tension, shear, or torsion, it can be determined once, or as a function
of reduced time, t/aT as required, and then used in the subsequent stress
and fracture calculations much like the other material property data, e.g.,
Youngs' modulus, Poisson's ratio, or tensile strength.

The following examples include some of those with which we have had
personal experience and a reasonable amount of quantitative success.

Thermal Debonding of a Rubber Cylinder From its Container
In this case a glass cylinder was filled with a polyurethane rubber

having a Tower coefficient of thermal expansion than the glass. After
curing, the temperature was to be dropped, tending to pull the rubber inward
from the container walls and debonding it at the ends. After measuring

Y4 for this material combination separately in a pressurized blister test,
the predicted design curve showing safe and unsafe operation is shown in
Figure 12 and a photograph of the adhesively bonded part is given in Figure
13 where cracks, recorded by X-ray analysis, were observed at the end of

the rubber at the glass interface.

Material Shear-out in a Cylinder Under Axial Acceleration

In a somewhat similar geometry except for the tube being steel and
the filling being a solid rocket fuel, it was desired to predict the maximum
axial acceleration which could be withstood without the fuel debonding

from the sides of the cylinder shearing out. Using a separate measurement
of ' between propellant and steel and the simple analysis given in
Reference 34, bounds upon the limiting acceleration could be estimated.

Explosively Bonded Blister Steel Specimens
Through the courtesy of a colleague, Dr. A. A. Ezra, University of

Denver, we obtained several explosively welded steel specimens. They were
essentially thick cubes approximately one inch on a side to which had been
explosively bonded on one side, a thin steel sheet of one-tenth inch in

thickness. After carefully tapping through the block perpendicular to the
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thin plate, pressurized oil was applied through the hole in an attempt

to 1ift off the sheet in a blister experiment. (Figure 14) After several
tries, a successful technique was developed and an adhesive fracture energy
approaching 90 percent of the cohesive fracture energy ("fracture
toughness") of the steel was attained. A photograph of the sectioned, frac-
tured specimen is shown in Figure 15. In a sense the ratio of va/ v, could
be viewed as a weld efficiency, although it is too early in our explor-
atory investigations to be definite. A recent report on this subject has

just been presented by DeVries(35).

Evaluation of Dental Adhesives
The analysis of the pressurized blister test was conducted assuming

that plate and/or membrane theory was adequate to handle the stress analysis,
even acknowledging other shortcomings in the analysis. Fortunately, the

block specimen does not contain many of these approximations, and furthermore,
is very appropriate for a series of tests in conjunction with our dental
research. For a very thick (infinite) block of elastic material, an exact
analysis can be made based upon the work of Mossakovskii and Rybka.

(Figure 4b) 1In this case the adhesive fracture energy between the two

materials can be evaluated as(]B)

Y, = 2 2

a Per [2(1 -

/ n] (a/E) (99)
including the effect of the stress singularities. Preliminary work in our
laboratory using the pressurized block, primarily in conjunction with our
dental adhesive evaluation has indicated such an experimental configuration
is feasible. A sketch of the assembly is shown in Figure 16, and the phy-
sical size of the experimental set-up is apparent in Figure 17.

One of the more useful things about this test is its relatively low
cost. Pressure was injected through the small flaw diameter and 'theyai
values for several commercial dental adhesives were measured against teeth,
ivory, and varibus other synthetic materials of interest in dentistryég@éu
It is believed that these data will not only be useful for relative rank-
ings and quality control, much in the same way as "peel strengths" are
used, but that they will have fundamental inherent value when it comes
to evaluate the efficiency of dental adhesion in filling optimized cavity
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shapes and assessing the economic advantages of one of the more intangible
variables in the oral cavity. It should not escape the reader that the
pressurizing fluid does not have to be air: environmental effects upon the
bonding efficiency often can be simulated by using o0il, inert gasses,
or controlled saline solutions.

By far the most fascinating adhesives project in which we have attempted
to use our pressurized block or blister technique has been in assessing the
relative in vivo efficiency of barnacle cement - attached under water. -

compared to various commercial preparations(37).

With the cooperation of

J. R. Saroyan and E. Lindner at the San Francisco Bay Naval Shipyard we were
able to grow live barnacles over wax filled holes in PMMA sheets. After a
three month submersion in salt water, during which time the barnacles
attached and grew, the recovered specimens and a cross-sectional sketch

are shown in Figure 17. The barnacles were then tested in essentially a
pressurized blister configuration to determine their specific adhesive
fracture energy. In all cases, the adhesive debonding occurred at the PMMA -
barnacle cement interface. Without discussing our detailed results, it may
be noted as a matter of some general interest that the lowly, unsophisticated
barnacle could develop as high an adhesive fracture energy in water as

our best commercial dental cements could obtain under dry conditions:

THE MECHANICS-CHEMICAL INTERFACE

So far this discussion has been entirely upon the continuum mechanics
aspects in order to illustrate the type of analysis which can be conducted,
and provide the chemists with some idea of the parameters with which con-
tinuum mechanics deal. Simultaneously, it is intended to encourage
their interdisciplinary assistance in obtaining, and better understanding,
the appropriate material properties needed by the analyst. Additional
parameters can also be included if the chemist deems them essential in
treating adhesive fracture. It could include for example, anisotropy of
the mechanical properties due to directional properties in rolled metal
or cured polymers. Such factors will oftentimes be mandatory, as for
example in analyzing teeth because of their strongly oriented modular con-
struction. On the other hand, there is no point in becoming too involved
in complexities for their own sake. It is thought more appropriate to
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provide physical and polymer chemists with an insight as to what
continuum mechanics can offer and await their requests regarding specific
missing links they need.

It has been pointed out several times that the mechanics analyst cares
little which symbol, Yo OF vgo he inserts in his equations, merely noting
that the first pertains to fracture in one material, and the second to
fracture between two. On the other hand, the engineer faced with the
design of an adhesive joint would be aided considerably if someone could
furnish him guidelines as to the major interactions or couplings between
mechanical properties such as modulus and fracture energy and the mole-
cular composition of the materials involved.

One of the more obvious ones is that known from the theory of
rubber elasticity. The long time modulus (Ee) is known to be proportional
to the cross-link density of the polymer, (ve). Specifically,

- (100)
Ee 3vekT (100}

in which k is the Boltzmann constant and T the absolute temperature. If
similar relations could be developed for more of the material structure
parameters, the engineer would have at his disposal direct, albeit some-
times ad hoc, answeré which should improve design efficiency.

An Interaction Matrix for Deformation

An attempt has been made in this direction by Kelley and Williams
in a series of papers dealing with the connection between the chemical
structure of polymers and their mechanical properties. The general idea
is to introduce an Interaction Matrix shown in tabular form (Table I).
It appears that the relaxation modulus and fracture energy, two quantities
of major concern to the analyst, can both be approximated by a modified

(38-41)

power law representation which is usually applied only to the spectrum of
viscoelastic relaxation times H(t) controlling the relaxation modulus,
i.e.,

n

E -E T
Hix) = 5y (?0") exp (- 1 /1) (101)
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which, upon incorporating the time-temperature shift factor, can be
converted into the relaxation modulus as
E - E

g e
(t) = E + (102)

© 0+ t/(arr )]

which is shown in a log-log plot in Figure 9. Figure 18 shows data for

Ere]

the relaxation modulus of a typical butadienne rubber, along with the Bennett,

(26)

*
et.al. cohesive fracture energy data for the same material. It is

tempting to adopt, at least on an ad hoc basis, a similar representation,
for Yo namely

Yg - Ye
[1 + t/aTré]n

and then inquire as to the sensitivity of the varijous constants, Egs E

(103}

vo(t/ag) = v ¢t

e‘»

n, t_s s Tg (glass temperature) to parametric changes in

Y
0 g 0
the major chemical parameters such as cross-link density, molecular weight,

chain stiffness, etc., and the others enumerated in Table I.

s 'Yen nls T

Chain Stiffness and Transition Slope. The success to date has been

rather limited, but can be illustrated by at Teast one example for which
an experimental correlation of chemical and mechanical properties has been

found - other than the aforementioned theoretical one between cross
1ink density and rubbery modulus, (100). This application, given

originally at the Rheology Conference in ]968,(38)
Tobo]sky(44) observation that the slope of the relaxation modulus through
the transition region, n, appeared to be related to the relative stiffrness

proceeded from the

of the polymer chains. In a mechanical sense, "chain stiffness" may be
associated with the number of atoms in the chain which would be required

to form a circular ring: a few atoms to complete the circle would corres-
pond to a very flexible chain, while a large number of atoms to form a ring
would be comparatively rigid.

* The similarity between n and n' is rather remarkable and may have more
than a coincidental significance. A suitable curve fit to the data of
Figure 19 yields, in the form of (103),

E (Eg/100) —(Ee/100)

e N
(103a)
3.5(t/aTTO|)]n

relt/er) = ot [1+10
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TABLE I

Molecular Sumbol - Mod1f1Ed Power Law ParimetersT
Characteristics M g e o ‘g
Cross Link Density Va N S(1) N M N(2)
Chain Stiffness NS N N U M(3) S
Monomeric Friction :

Coefficient ) U N S(4) U S(5)
Solubility Parameter Gp M(6) N U U S
Molecular Weight M N S(7) N(8) N(9) S{10)
Heterogeneity Index MM, N N M N M(11)
Molecular Weight

between Entanglements Me N s(12) N N N
Degree of Crystallinity A N S S S N(13)
Volume Fraction of

Filler ¢ N S M(14) S M
Volume Fraction of

Plasticizer Vp N 5 5(15) N s(16)

U = Unknown, N = Negligible, M = Moderate, S = Strong

Notes for Table I:

Equation (100)

N —t

of v

FiguFe 20
Reference (42)
Reference (43)

TN N T e T e o~
O O~NO O W
L N N e s

Except at very high values

References (38), (44)
Effect of entanglements
At high molecular weights
At high molecular weights

39

At Tow molecular weights only
Chain end effects from short

chain fractions

At high molecular weights pro-
ducing a plateau or pseudo-
equilibrium modulus

Except at very high A

Through WLF; Reference (45)
Through zg

Reference (46)




In a quantitative sense, the definition of polymer chain stiffness
chosen here is derived from the concept of an "equivalent random link" in the
statistical theory of rubberlike e]asticity(47’48). Since actual polymer
chains do not have freely orienting backbone bonds, in which each atom-
to-atom juncture is completely flexible, an accumulation of the Timited
flexibility of several bonds may produce a larger chain segment with
nearly free orientation of the vector joining the ends of the segment.
Those polymers in which the freely orienting segment (equivalent random
1ink) consists of fewer backbone bonds are then considered to be more flex-
ible than those which require a larger number of backbone bonds for free
orientation<49). The number of backbone bonds (atoms) per statistical
segment, Ns’ is the index of chain stiffness and is determined from

Mcnb

S N Mm

where MC is the average molecular weight of a network chain, n, is the
number of backbone bonds per monomer unit, N is the number of statistical
segments per network chain and Mm is the monomer molecular weight. An
approximate value for N may be obtained from the maximum extension ratioc of

the cross-linked polymer, A = N]/Z; based on the inverse Langevin

Functs : max . (47)
unction representation of the stress-strain curve by Treloar .

In attempting to quantize Tobolsky's observation, a review of the
Titerature revealed that no theoretical relation had been deduced, although
the data available from several sources could be combined for such a pur-
pose. Figure 20 contains data on six different unfilled polymers from
six sources. One system (polyurethane) contains a variation in basic
structure due to systematic changes in catalyst-prepolymer ratio. Accepting
for the moment this interaction as being generally valid for all polymers,

we can propose an empirical expression for the curve in Figure 20
n = 1.5 [an N7 (105)
Thus we have the second connection between the chemical and mechanical

parameters in Table I; of the 5 x 10 or 50 possible interaction blocks
assumed to exist, two have been tentatively filled in:
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It is immediately obvious that a significant additional amount of work
is yet uncompleted. For the time being however, with the subjective
assistance of our colleagues, Table I was filled in with at least qualitative
estimates of what are expected to be the more important interactions. Even
as it stands, the results have been most useful in guiding the emphasis
of our research. It is worth reiterating however, that the main thrust of
this philosophical approach does not minimize specific research being presently
conducted in either chemistry or mechanics, but represents an attempt %o
spotlight those areas of interdisciplinary concern where even a small
amount of Tight may improve the engineering result through unexpected
synergism.

By way of emphasis, even at the risk of some repetition, a complete
idea of the engineering importance of the interaction can be seen by
considering the representation of the relaxation modulus in terms of the

(42). (38)

simple Rouse Theory As described earlier , if the Rouse repre-

sentation of the relaxation modulus is cast into the form
P 7T2 Ee 2 3
Ere1(t/aT) = E, L exXp (- 8 5 P t) (106)
p=0 0
which is to be approximated by the modified power law representation (102},
then the four parameters in (102) can be approximately associated with
the Rouse parameters in the following way

Ee = 3vekT (107)
E = 100U /r° (108)
g oo !
log E_JE Tog[ (100U _/r 3)/3v kT)]
n o= g ¢ = - o_0 € (109)
log(rmax/rmin) 2 Tog P /
bn

= = 0 . l. 104
o W Tmax min = 2 P (110)
™ vekT

in which U0 is the minimum potential energy at the molecular lattice level
at a separation distance o between a pair of isolated molecules, o is the
steady state viscosity at zero rate of shear between the polymer segment and

its surrounding medium, and P is the number of equivalent freely orienting
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segments per molecule. Hence, all the physico-mechanical parameters

have been represented in terms of chemical structure ones. It may even

be noted that to the extent that the number of backbone bonds (atoms) per
statistical segment, i.e., N, in (104), can be at least qualitatively
associated with the Rouse parameter, P, the number of freely orienting
segments per molecule, the emp1r1ca1 introduction of our inverse logarithmic
dependence in (105) is appropriate.

An Interaction Matrix for Fracture

In the foregoing illustration of the Interaction Matrix, the primary
emphasis was placed upon the influence of the time-dependent relaxation
modulus upon the deformation mechanisms in a polymer. If for illustrative
purposes we suppress for the moment the apparently similar time dependence
(26) (28), the fracture energy found by Bennett,

of the cohesive and adhesive
et.al., we would expect from (76) that the critical stress to induce
Region II cohesive fracture, would be

E¥(te)y
_ f''c
oerlte) = kK ¥—=—

where it is to be recalled that E*(tf) has the character of a relaxation
modulus. The introduction of (107) - (110), or more precise relations from
the Interaction Matrix, would then permit a calculation of the direct
dependence of the critical fracture stress (Gcr) upon the chemical structure,

viz., .
) k[Em(Eg, Egs > 73 Tp) YC:IUz -

o
ead
on

e

o.p(te) = I > 111a)

* It should be clearly understood at this point that N, the number of
equivalent random links per chain in the theory of rubberlike elasticity
is not the same as P, the number of Gaussian sub-molecules per chain in
the Rouse theory. _If, however, we assume that P is proportional to the
molecular weight M50, j.e., P; = K,M; for a molecule containing i mono-
mer units, we must conclude that P 1s proportional to N, since
Njy = K}Mi. Now Ko is usually taken at the Timit Kg > =, meaning the
molecules are infwnite}g flexible even at a very small molecular weight.
According to Peticolas ), a finite value of Ky would lead to stiffer
chains. This would indicate from Equation ( 109? that at decreasing values
of P, i.e. stiffer chains, n should be increased. This is in contra-
diction to the observed data as seen in Figure 20. This contradiction
probably arises from the inadequacy of the sub-molecule model when the
Rouse theory is applied to times shorter than those associated with t_
Recent unpublished refinements of the theory should provide a more
reasonable description of bulk polymer behavior over a wider range of
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0’ "0’ Ve 0 Tg’ Yc] (117¢)

and thus in principle, would permit the mechanics analyst and the chemist
to jointly appreciate the quantitative interaction between their fields.
Before concluding the discussion of this point, however, it is
obvious that the previous philosophical objective can be extended - to
include the dependence of the specific fracture energy, be it Yo OF vgo
upon the properties of the material. One could therefore assume the
validity of the semi-empirical relation (103) and seek theoretical or
empirical relations between the modified fracture power law parameters
Ygr Yo n', and ro' and the chemical structure. The analog to (76) would
be (77) which when expressed in terms of (103) would lead to the analog of

(111a),

; ' . 23 /e
(t ) = k §Ere1[Eg’ Ee’ n, To’ Yg: Ye’ n, TO . Tgﬁ tfi
Ter'tf 'l 3 (

and a "Rouse Theory" or Interaction Matrix for fracture would be reguired to
deduce a generalized fracture expression, say (112b), analogous to (111b).
As reported at this meeting last year 4]), a start has been made. From
the phenomenological standpoint it seems appropriate to inguire first if
the fracture energy would be expected to depend upon the same or different
molecular properties as the relaxation modulus. Because it has not been
commonly appreciated that both the modulus and fracture energy may independ-
ently be time dependent, experiments which have measured, for example, time
dependent fracture stress have attributed the time dependence to the
(51). On the other hand, Williams'
assumed the entire dependence lay in the modulus, with a

"tear energy" with a constant modulus
ana]ysis(]4)
constant fracture energy. Thus one must beware of previous intuition which
has perhaps been conditioned by a knowledge of only the time-dependent pro-
duct, i.e., ccr(t)’ when in fact it can arise from either or both the

modulus and fracture energy. This line of reasoning suggests that from the

energetic approach the deformation sensitive quantities are reflected in
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the modulus while the rupture or bond breakage is reflected in the fracture
energy, with the overall breaking stress characteristics being proportional
to the product of their respective square roots. From the basic molecular
structure viewpoint, however, in the quantum mechanics sense, such a complete
partitioning of the individual effects seems unlikely. Hence an Interaction
Matrix construction as shown in Table II is probably more appropriate.
Interactions occupying only the U, V, and W blocks along the main
diagonal represent mutually independent behavior such that there would be
no connection between deformation, cohesion, or adhesion as far as molecular
parameters were concerned. As this behavior seems unlikely, provision
for off-diagonal interaction is provided, although zeroes can always be
entered where appropriate. The additional molecular descriptors Vm and
wn are those needed to account specifically for quantities entering only
fracture and not deformation. At the present time the only characteristics
we choose to place in this category are the chemical bond energies them-
selves. On the other hand, several sources suggest, for example, that the
molecular weight and cross link density have a direct bearing on
cohesive fracture energy,* Yoo

(52) reports that there is a hundred-

Molecular Considerations. Benbow
fold increase in energy in polystyrene as the molecular weight, Mw’ is
raised from 60,000 to 260,000. These conclusions have been substantiated
by Broutman and Kobayashi(53) who report the following values deduced

from splitting a tapered cantilever beam

Mw yc(ergs/cmz)
53,211 3.5 x 10°
231,000 4.3 x 10°
246,148 4.0 x 10°

* Note, however, that according to our previous remarks, it may be
important to reassess the basic experimental data to ascertain that the
M, and ve influence attributed by the referenced authors to Yoo could

ndt equally as well have been attributed to the modulus.
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TABLE II

Mechanical
Molecular
Parameters

Deformation Parameters

Ee Eg n o Tg

Fracture Parameters

Ye Ya
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Berry(54) has suggested that the increase in fracture energy is due to
the greater degree of involvement of the longer chains (higher molecular
weight) in the plastically deformed area surrounding the crack tip. The
least amount of energy is dissipated if the chain is short enough to be
completely enclosed by the plastic enclave. Intermediate energy is absorbed
if the chain is partly inside and partly outside the region, while maximum
energy results if the chain passes through the plastically deformed enclave
and both chain ends terminate in the elastic region.

Broutman and Kobayash1(53) also examined the effect of cross-linking
in polystyrene, accomplished by gamma radiation using a Cobalt 60 scurce
in order not in introduce a second, and possibly complicating, cross-
1inking chemical species. At molecular weights of approximately 250,000,
the fracture energy was reduced by one-half after a dosage of 50 megarads.

The above typical results suggest a S (strong) interaction for mole-
cular weight and cross aningt with weaker and indeterminate effects
attributed to the remainder of the molecular parameters in the extended
Interaction Matrix, except for the inclusion of chemical bond energies as
the Vm and wn.

If the most gross correlation of the relaxation and fracture data were

to apply, i.e., constant proportionality*, then

e,
)
P
(V]

B

v () = wE (D)

and simultaneous measurement of E and \ would only be required at one
time. For example, in the rubbery or elastic long time region,

T In a private communication, J. R. Kinloch has obtained indications that
there would be no effect of molecular weight on yc if, for molecular
weights between cross Tinks in the range 4000-14,000, the data were
reduced to the same glass transition temperature.

* Such a hypothesis would lead to the not unreasonable conclusion that the
critical fracture stress ocp(tf) would be essentially proportional to the
first power of the modulus, i.e., o, vEpey . mEpel/@ = Epels OF
equivalently, a strain criterion for fracture, I;p Zocp/Epe] = u's which
expression has certain similarities to failure in metaqs.
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Yc(oo) = Yee T uEe = 3u\)ekT or u = /3\)ekT (114)

Yce
which might be further related to molecular weight or cross-link density
through the relationships proposed by Benbow(52)
thus eliminating any further need for Vm or wn quantities in the Inter-

or Brontman and KObayagh§§53}g

action Matrix, or our proposed additional dependence of y upon chemical
bond energy. These matters have proven quite interesting and intriguing
to us on strictly an ad hoc basis - sufficiently so to encourage further
study upon a more fundamental basis.

Accepting for the moment the analogy suggested in Figure 19 and the
above discussion relating the relaxation and fracture energy spectra,
we may construct an Interaction Matrix for fracture similar to that
described for the modified power law representation of the relaxation
modulus. The purpose of such an exercise, to reiterate our earlier
remarks, is to gain perspective on known relationships and to point cut
possible significant interactions for further study.

Time dependent fracture has been observed for both unfilled and

(55’56’57). The remarkable feature of this time

filled polymers
dependence has been the good agreement between the temperature dependence
of the shifting factor ars for both small deformation response and large
deformation fracture(ZG).
based on small-scale motion of molecular segments, which is dominated by
the temperature difference above the glass temperature (T-Tg)(Bg), these
same local segmental motions apparently govern the time dependence of

fracture. Most current molecular theories presume an ordering of the polymer

Since the molecular interpretation of ar is

chains in front of the advancing crack in which several chain segments
are oriented perpendicular to the direction of propagation. This process
dissipates considerable energy since it is opposed by the ordinary
viscous forces which restrict chain motion, i.e., segmental friction -
including chain entanglement. Of course, cross-1inking would be expected
to increase the difficulty of orientation and contributes additional
relaxation mechanisms in the long time portion of the spectra.

This view would support the connection between the relaxation and frac-
ture curves at longer times or higher temperatures. Since the maximum
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dissipation observed in cyclic (small strain) tests corresponds with the
transition region of the relaxation curve, one would expect increasing
fracture energy when moving to this experimental time scale from the longer

(63). At very short times the dissipation is greatly reduced since

times
the material exhibits glassy behavior, but the critical stress is so high
that the onset of crack growth would be governed by other factors such as

(64), or more likely, the greater number of

Van der Waal's bonding forces \
62 p.263)

primary chain backbone bonds holding the load in a given cross—secﬁion<
A Timiting critical fracture stress or fracture energy in the glassy
region of the fracture spectrum seems quite likely, although the data
are far too limited for generalization at present. It does appear, however,
that the long time, rubbery region has been given sufficient attention for
early speculation on the nature of chemical interactions. Lake and
Thomas(58) have advanced certain molecular explanations for a Timiting
tearing energy, TO, which is largely independent of viscoelastic processes
and varies slightly with chemical structure. In this case To might be
considered roughly equivalent to Yoo and the reported values for the two
quantities for similar polymers agree rather well (Lake and Thomas
]05 ergs/cm2 for butadiene-acrylonitrile copolymer and Bennett, et.ﬁig(gﬁga
1.3 x 105 ergs/cm2 for butadiene-acrylonitrile-acrylic acid terpolymer.)
Lake and Thomas derive the following relationship for To:

T, = (3/8)/2geunim ¥/ | )

where g is the stiffness factor related to our notation NS by NS =
gznb, % is the length of a monomer unit and is proportional to Np > U is
the energy required to rupture a backbone bond, N is the number of network
chains per unit volume, and n is the average number of monomer units per
chain. Although Lake and Thomas indicate that there is experimental evi-
dence that the type of cross-link has some effect on the variation of Y@
with cross-linking, Equation (115) may provide an initial basis for some
important interactions between molecular structure and Yo in Table III.
One of the most interesting features of Figure 19 is the displacement
of the fracture transition region along the time scale by three and one-
half decades as compared to the relaxation curve. It leaves open the

question of a possible generality of shifts to longer times for fracture

48



TABLE III

Molecular/Microstructural Sunbol Modified Power Law Parimetersw
Characteristics Y Yg Ye To 'g
Cross Link Density Ve M(1) S(2) N M M(3)
Chain Stiffness Ns N M(4) U M(5) S
Monomeric Friction

Coefficient %o u U S(6) U S
Solubility Parameter ap S M U U S
Molecular Weight M N S(8) N(9) N(10) | S(11)
Heterogeneity Index MW/M N N M N M{12)
Molecular Weight

between Entanglements Me N 5(13) N N N
Degree of Crystallinity A U S S S N
Volume Fraction of

Filler b S S M(14) S M
Volume Fraction of 71

Plasticizer Vp S S 5(18) N s(16)

U = Unknown, N = Negligible, M = Moderate, S = Strong

Notes for Table I1I:

(1) Reference (53)

(2) Reference (58)

(3) References (59), (60)
(4) Reference (58)

(5) Figure 20

(6) Reference (42)

(7) Reference (43)

(8)

(9)

Effect of entanglements
At high molecular weights

At high molecular weights

Reference (61)

Low M fractions may plasticize (62}
Plateau effect similar to cross-
Tinking

Reference (25) related to T

Plasticizer effect on Tg
and o
Reference (46)




of various polymers. The position of T should be determined to a lTarge
degree by the glass transition temperature, Tg. Since the fracture process
implies very large strains at the tip of the crack at Tes therein could be
the principal reason for differing time scales between the fracture energy
transition and the small strain relaxation transition. Some evidence is
available on the effect of strain induced anisotropy on Tg(65’66)
as the basic nonlinearity of the response due to finite strains
any further examination of this behavior must await the accumulation of
experimental fracture data on other polymers. (Smith and D1'c:k17e(68:B
recently examined aT—strain effects.)

Table III has therefore been filled in by assuming a correspondence
between the relaxation and fracture behavior of polymers. The inter-
actions with various molecular and microstructural features were assumed
to be similar with respect to the highly time-dependent phenomena, parti-
cularly those associated with the transition regions. Some information on
the fracture of glassy polymers clearly indicates a dependence of v _ on cross-
(83) (52) Certainly, many of the interactions

as well

(67)g However,

have

Tinking and molecular weight
assumed by analogy in Table III must be checked out experimentally, and
quantitative associations should be developed. In any case, the arrange-
ment of parameters in an array such as that provided by the Interaction
Matrix leads to a more direct assessment of the significance of molecular
variations with respect to the deformation and fracture requirements of a
polymeric material in its ultimate engineering application.
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CONCLUSION

Because of the growing technological need for a more cooperative
effort between continuum mechanics and physical chemistry in order to
improve the quality and understanding of adhesive bonds, this paper has
attempted to describe how adhesive failure would be treated from the
standpoint of a stress analyst. Two complimentary fracture criteria are in-
volved depending upon the size and distribution of inherent flaws in the
vicinity of the interface. In the more probable case of Region II or
flaw controlled failure, there are essentially two deformational mechanical
property descriptors required, e.g., shear modulus and bulk modulus,
which for rubbery (incompressible) polymers can be reduced to a relaxation
modulus. In addition,there are the specific fracture energies of
cohesjon of the individual component materials and of the adhesive interfaces.

With some minor reservations regarding the geometry of the assembly
because it affects the accuracy of predicting the stress and strain fields
in a practical computational sense, there are only two major impediments
to a technologically satisfactory solution to adhesive bonding problems.
First, it is necessary to know the size and location of any above average
size initial or inherent flaws in the part in order that an appropriate
mechanics analysis can be made. Massive, opaque, or inert parts give
problems because present non-destructive testing (NDT) techniques are
not wholly satisfactory. Second, in the absence of further help from
the chemist, a mechanics analyst presently relies upon the similarity
of conditions in his test specimen and engineering prototype as far
as surface preparation and bonding conditions are concerned. Then the
fracture energies measured in the laboratory can be used to predict
fracture in other configurations of the same material combinations -
without any knowledge of the chemistry involved!

Hence, the second part of this review has been directed toward encour-
aging a better fundamental understanding of those chemical structure para-
meters which control or influence the deformation and fracture energy
descriptors. In this way it is hoped that a technical knowledge of one inter-
face situation can be extrapolated to a somewhat different one without the
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necessity for extensive additional testing. It is believed that here,
cooperation between mechanics and chemistry is essential, and for discussion
purposes, the idea of an Interaction Matrix has been reiterated as &
possible approach.

There is one additional complexity that requires comment, and its
brevity should not detract from its importance. Somewhere between the levels
of continuum mechanics and quantum mechanics, it seems reasonable to anti-
cipate a working hypothesis associating the cohesive fracture energies yC{}}
and yc(2 of two solid materials and their combined adhesive fracture

energy vy (1’2), €.9., Y (1,2) . (v (1), Y (2))]/2 for certain cases of
a a c ¢ (73,74)

dispersion controlled interactions. Indeed Good, Fowkes and others
are intimately involved in this subject, and the latter author has published
a fairly recent paper whose title "Calculation of the Work of Adhesion
by Pair Potential Summation" neatly emphasizes the missing 1ink as far as
the continuum mechanics interest is concerned.

Thus while temporarily the mechanics analyst can circumvent a physics-
chemical understanding of adhesion by similarity testing, such as using
the pressurized blister or block specimen, additional contributions from
the chemists on even an ad hoc basis showing reasonably quantitative asso-
ciations between cohesive and adhesive fracture energy, albeit with
"interfacial environmental" qualifications, would be most welcome.
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Figure 1. Dominant fracture regions depending upon inherent
flaw size.
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(2) t(x,0) = G[lou(x,0)/8y + av(x,0)/ax] = (2) u(x,0) = o
or because of (1), equivalently,
du(x,0) _

(2a) 5y 0
Figure 2a. Cohesive fracture Figure 2b. Adhesive Fracture

Figure 2.
adhesive fracture.

e

Comparison of essential boundary conditions for cohesive and
The difference is slight and concerns only

whether the lateral displacement, u(x,0), or its normal

derivative, au(x,0)/s8y, is prescribed.

Both sets of boundary

conditions lead to singular stresses (References 9, 12)
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Figure 3. Double cantilever cleavage specimen.
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Figure 4da.

Figure 4b.

Rigid Sub-strate . a
— X
Pressurized blister specimen.

////////[/////

— X Or

Pressurized block specimen with penny-

shaped circular flaw or infinite strip

central unbond.
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Figure 5a. Skin effect modulus variation E(y) = EO + E]exp(-?y/h)
Curve (1) shows Ey > 0, curve (2) shows Ey < 0.
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Figure bb. Effect on increasing critical stress S times due to
skin effect modulus.
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Figure 6. Blister specimen with finite thickness adhesive interlayer
(Reference 21).
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Figure 8. Development of elasto-plasticity through the depth of a beam:
(a) elastic, (b) elasto-plastic, (c) fully developed plasticity.
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Figure 9. Modified power law approximation to the relaxation modulus. The

actual behavior at Tong reduced time (dotted) is not repro-
duced by (102).
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Figure 10.

Polyurethane Rubber Membrone
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Sketch of pressurized blister specimen
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Figure 11. Typical pressure p versus diameter 2a data for the
pressurized disk. E = 400 psi, h = 0.043 in., giving

v, = 1.4 in.-1b/in? (Reference 32).
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Figure 12. Predicted allowable temperature drop as a function
of crack length before debonding in a polyurethene
rubber tube in a quartz glass cylinder (Reference 7).
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Figure 13. Photo of X-ray inspected solid rubber cylinder in a
quartz glass tube subjected to temperature drop. HNote
cracks emanating from the end of the filler material
at the interface with the glass.

70



l—- PLATE THICKNESS PIPE THREADS

I
%/mmy

T . | FRACTURE LINE
0.5

[e—o— FLAW DIAMETER

Figure 14a. Explosively welded test sample configuration.
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Figure 14b. Preliminary test data demonstrating the relationship
between critical pressure and plate thickness which is
predicted by the theoretical model (Reference 35).
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Figure 15. Section specimen of an explosively bonded steel
blister (Reference 35).
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Figure 16. Dental adhesive blister test specimen showing
commercially available dental filling material adhered
to elephant tusk surface preparation to standard
dental practice.
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Figure 17a. Photograph of apparatus used to measure adhesive
energy of dental adhesives (Reference 36).

Figure 17b. Photograph of plugs used in adhesive energy apparatus
with bovine teeth, approximating analytical model of
Figure 4b (Reference 36).
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Figure 18a. Closeup of mature barnacle on PMMA after 3 months
growth in salt water (Reference 37).
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Figure 18b. Experimental arrangement for determination of
adhesive fracture energy of barnacle cement
(Reference 37).
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Figure 19. Log-log variation of a butadiene rubber relaxation
modulus and cohesive fracture energy (Reference 26).
A personal communication from S. J. Bennett reveals
that he has established a tentative short time, low 5
temperature 1imit value of approximately 100 in-Ibs/in”
for e at a reduced time of t/aT = 1079,
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