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ABSTRACT

The effects of bandlimiting on the performance of various
digital transmission systems corrupted by additive white
Gaussian noise are analyzed using two methods, the averaging
method and the series expansion method: The results from both
methbds agree,

The performance of an ideal bandlimited NRZ (Non-Return-
to-Zero) baseband transmission system is examined using cor-
relation detection and sampling. The explicit expression
for the degradation of the signal and the intersymbol inter-
ference as a function of system parameters is derived. The
average, lower bounds and upper bounds of the probabilitics
of bit-error are computed for both detectors. It is shown
thaf the correlation detector performs better than the sample
detector for BT»D0.6 and worse for BT=0.5.

A Split-Phase baseband system is also analyzed following
the same steps used for analyzing the NRZ system. It is
shown that a Split-Phase baseband system requires less
than twice as much bandwidth as the NRZ system to have the
same probability of bit-error for the same value of signal-
to~noise ratio using the correlation detector;

An NRZ baseband system using Gaussian filters is also
analyzed employing correlation detection. It is found that

the system introduces more intersymbol interference and performs

v



poorly compared to the ideal bandlimited NRZ system.

The effects of bandlimiting on the performance of modulation
the Phase~Shift-Keying (PSK) System, the Amplitude-Shift-Keying
(ASK) system, and the Frequency-Shift-Keying (FSK) System are
analyzed assuming a correlation receiver and usiﬁg ideal filters
as well as correlation detection. The explicit expression for
the degrédation of the signal and the intersymbol interference
as a function of bandwidths of the filters, signal-to-noise
ratio and carrier frequencies is given. It is found that the
aliasing effect can be neglected if thé carrier frequency is
more than three times the bit rate. It is also found that PSK
requires 3 db less on an average power basis than ASK. If the
spacing between the two carrier tones in FSK is less than
three times the bit rate, FSK shows a better performance than
that of ASK. The optimum setting of the tone spacing of FSK
is shown to be equal to the bit rate. However, PSK always
gives the best performance. Thus for a coherent system, PSK
should always be used.

Finally, a tapped-delay-line (TDL) filter is introduced

‘at the receiver of the NRZ baseband system in conjunction with
the correlation detector as én intersymbol eliminator. On an
average probability of bit-error basis, and using only three
taps, it is demonstrated that the pefformance of this system

is near optimum.

vi
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CHAPTER I
INTRODUCTION

Today the advances in the fields of digital computers
and electronic circuits have resulted in an enhanced interest
in communication systems which transfer binary data from one
location to another.

The data communication systems can generally be considered
aé consisting of three basic blocks, the transmitter, the
channel and the receiver. The transmitter has the task of
assigning an electrical waveform to each possible sequence
of digits received from the information source. The electri-
cal waveform is then passed through the channel, which may
typically be a wire link, a satellite link, a microwave sys-
tem, or a radio link. In passage through the channel the
transmitted waveform is invariably corrupted by unwanted,
random signals known as noise. Because of these random sig-
nals, the received waveform does not correspond exactly to
‘any of the possible transmitted waveforms. Nevertheless,
the receiver must make a decision as to which of the sequence
df digits is most likely to have given rise to the particular
received waveform.

For binary communication systems, the most popularly
'used today, the possible electrical waveforms consist of two,

one is used for a binary "one" and the other is used for a



'binary "zero." Throughout this dissertation only the
binary systems will be considered. 1In passing through the
channel, these signals are corrupted by additive white
Gaussian noise.

The measure of the performance of a digital communica-
tion system is the bit error probability at the output of
the receiver bit detector. The bit detector which achieves
the lowest possible error probability for a given signal-to-
noise ratio is generally considered optimum. For ideal
(infinite system bandwidth) binary éommuniéatibns over an
additive Gaussian noise channel, the optimum bit detector
is a correlation detector which turns out to be a matched
filter.

In practice, the restriction of the system bandwidth is
inevitable. Transmitter filtering, bandlimited channel, or
receiver filtering are the usual sources. Bandwidth limiting
will not only cause the energy loss of the desired signal,
but more importantly will introduce interference. This
iﬁterference consists of intersymbol interference (signal
waveforms smearing in time) and intermodulation interference
(aliasing effect). The performance of the optimum linear
bit detector then will be degraded.

The primary concern of this diésertation will be to
systematically analyze the effects of bandlimiting on the

performance of various baseband transmission systems as



"well as modulation systems.

In Chapter II the optimum receiver structure in the
case of infinite bandwidth and Gaussian noise for a minimum
probability of error performance criterion Will be derived.

In Chapter III the performance of an ideal bandlimited
NRZ (Non-Return-to-Zero) baseband transmission system will
be examined very closely. PFirst, the explicit expressions
for the degradation of the signal and intersymbol interfer-
ence will be derived as a function of system parameters.
Second, the average probability of bit error will be computed
by using the averaging method. This ﬁethod makes an assump-
tion thét the intersymbol interference is limited to a finite
nunmber of symbols preceding and following the symbol under
detection. The conditional error probabilities are computed
for each of the fruncated pulse sequences and then averaged
with respect to the probability of occurrence of those
sequences. Third, an aﬁalytical expression for the proba-
bility of error based on the series expansion of the charac-
'téristic functions of the intersymbol interference and
Géussian noise wiil be introduced. This expression can be
divided into two terms, one term corresponds to detecting
the degraded signal itself, and the other corresponds to
the influence of the intersymbol interference. The methods
discussed in this chapter then will be generalized to any

data transmission system.
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In Chapter IV the results of Chapter III will be applied
to three practical baseband systems: (1) Split-Phase using
a correlation detector, (2) NRZ using a filter and sample
detector, (3) NRZ (Gaussian filtering) using-a correlation
detector. In each case the explicit expressions for the de-
graded signal and intersymbol interference will be presented.
The probability of bit error is also determined and calculated.

In Chapter V the results of Chapter III will be applied
to three practical modulation systems, Phase Shift Keying
(PSK), Amplitude Shift Keying (ASK) and Frequency Shift
Keying (FSK). The explicit expressions for the intermodula-
tion interference will be derived. The probability of error
will be computed for each case,

In Chapter VI a modified Tapped-Delay-Line (TDL) filter
will be proposed to alleviate the intersymbol interference
for the bandlimited NRZ baseband system. The results then
will be generalized for any system,

In Chapter VII some conclusions aré drawn. Some recom-

mendations for future research studies are also put forth.



CHAPTER II

VPTIMUM DETECTION OF BINARY SIGNALS

IN THE PRESENCE OF WHITE GAUSSIAN NOISE

2.1 PFormulation of the Optimum Solution

The binary message is assumed to be carried by either
of two. signals sl(t) (corresponding to information "1") and
so(t) (corresponding to information "0") of arbitrary and
different shape over an ideal channel (infinite bandwidth)
with additive white Gaussian noise n(t) with zero mean and

spectral density N0/2 (two sided) as shown in Figure 2.1.

‘ | |l1ll
s; () '

RECEIVER
i=1,0

I lloll

n(t)

Figure 2,1 A Binary Transmission System

‘The basic problem of detection then is to find a receiver
to distinguish between either of these two wave shapes sl(t)
and so(t); each defined over the bit interval T sec in length
in an optimum way to minimize the probability of error,

This can be formulated as a statistical hypothesis testing
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problem, i.e., test the hypothesiS'Hl that sl(t) was transmit-
ted versus the hypothesis H, that so(t) was transmitted; Since
the performance criterion is taken to be the minimum average
probability of error; Bayes' solution with equal cost yields
the optimum decision rule [8];. This solution leads to the
likelihood ratio teSt;

Given a sequence of random variables XqrXgyeeeXy the
likelihood ratio test is formed by finding the ratio of the
conditional joint probability density function of XyrXgreeeX, o
given hypothesis Hl or Ho.. This ratio is compared to a
threshold d and the decision Hy rendered if the likelihood
ratio is greater than 4 and Hy otherwise. The likelihood
ratio can be expressed as

f(x1,x2,o0'xn I Hl) 1 a (2 1)

oAV I

f(xl'xZ’.I.Xn | HO)

The optimum value of d under the equal cost assumption can be
given by the ratio of the a priori probability P, and Pl

of occurrence of H1 and HO, respectively. Thus we have

£(x) 1 Xy 000X, | H;) B

H -
gl 2 (2.2)
£(xy Xy p000x) | Hy) o P

It is readily seen that any monotonic function will yield the

decision and hence the test is usually implementéd in the form



of logarithm of the likelihood ratio and the threshold

£ (Xy Xy 00X | B H B .
In —2 2" "'n 1 ﬁl in -2 (2.3)
Elxprxyreeexy | Hy) By P1

2.2 Determination of the Likelihood Ratio

The input to the receiver under either hypothesis can be

written as

“ {sl(t) £ nee) 0<t<T : Hy (2.4)
Z —

s (t) + n(t) 0<t<T }  Hy (2.5)’

Since both signals sl(t) and so(t) are defined over the same
interval 0<t<T, we can expand each into an orthonormal series

which has the form:

©0 -

s; () = .Z 8 9 (B) i=1,0 (2.6)
k=1
with the coefficients given by
T
Spq = jo s; (t) g (t) &t i = 1,0 (2.7)

and the orthonormality condition implies:

g, (t) g.(t) dt = 6, = - (2.8)
o 73 o le 143
The coefficients can be referred as the generalized Fourier

coefficients,
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The noise n(t) can also be expanded into the orthonormal

series:
nie) = 1o ) (2.9)
with
T
n, = [ n(t) q(t) dt (2.10)
o)

Since n(t) is Gaussian distributed, the Fourier coefficients
n, are also Gaussian distributed. By proper choice of the
orthonormal functions the coefficients can be made uncorrelated
and hence statistically independent. The condition for
statistically independent coeﬁficienﬁs in the case of Gaussian
noise is given by the solution of the integral equation [9], [24]
T o 2
fo R(t-s) q(t) 4t = o} g (s) (2.11)
Here R(T) is the autocorrelation function of the noise n(t),
and Gi is the ensemble average of nﬁ or the variance of n, .
Under the assumption that n(t) is white Gaussian noise

with two sided spectral density NO/Z,'we have
R(T), = (Np/2)6 (1) (2.12)
Thus from Equation (2,11), we have

oy = Ny/2 (2,13)



The probability density function of N, then is given by
2.

(2.14)

Therefore, instead of dealing with the continuous time functions
sl(t), so(t) and n(t) defined over 0<t<T; we can now represent
each by its Fourier coefficients so that the Bayest! likelihood ratio
test (Equation (2;3)) can be applied;

Recall that
z(t) = Si(t) + n(t) i=10, 0<t<T

we can also expand z(t) into a generalized Fourier series

0

z, q, (t)
kzl k "k

z(t)

[}

<]
= § sy q(t) + § noq(t) (2.15)
k=1 kl k k=1 k "k
Comparing the coefficients of qk(t), we obtain

+ n

Z) Sii K i=1,0 (2.16)
Since the noise coefficients n, are Gaussian distributed
independent random variables with zero mean, the coefficients

Z) are also Gaussian distributed and independent with mean at
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Syj+ Therefore the density function of 2z, can then be given
o 2
e N
) 0.
£(zp) = e i=1,0 (2.17)
MNOH

Now we can apply Bayes' likelihood ratio test, The receiver
measures z (t) over the interval 0<t<T and from this measurement
generates the generalized Fourier coefficients 2y s It then

performs the test

P
. £(z'| Hy) H, . Py
n - g ln — (2.18)
£(z | Hy) 0 Py
where
-3
zZ = [zl,z2,23...]
2
-(z, =s, ;)
But , e L Nkl
- - o .70
f(z | H,) =7 £(2z, | Hy) =7 — (2.19)
1 _ k 1 -
k=1 k=1 x5
4]
and
2
=z =8y )
: N o© . . © NO
f(z | Hy) =7 £(z | Hyd =7 —_ (2,20)
k=1 k=l /IT—’I_T.—
0

Substituting into Equation (2.18), we have

(o]

% H P |
4 2 2 Hy 0
o (Z-5,,)° - ¥ (z,-s,..)° 3T N. 1n -2 (2.21)
WL Px%ko IR W 31 ﬁo 0 b
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Recall that

, ©

S;(8) = 1 Sk %)
and

o
z (t) = kzl 2y qy (&) ’
then
o
z(t) - s;(t) = kzl () = Sp;) G (t) (2.22)
Squaring and averaging in time

T T o
2
(z(t) - s,(t))" dt = . ( (z, = s,..) g, (t)
!o i fo kzl k ki k .

El(zm - s;;) g (t)) dt
m=

(2.23)

Using the orthonormal property (Equation (2.8)), Equation (2.23)

can be simplified as
e - s en?ae = :
(z(t) = s, (£))° at = )} (z.-s..) (2.24)
o 1 k=1 k “ki

Substituting into Equation (2,21), the desired likelihood

ratio test becomes

T - 2 T 2 Hy . Py
[ (z(t) = s,(£))° dt = [ (z(t) = s, (£))° dt 2~ N, 1n —
0 0 o e Ry © B,
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For equal a priori probabilities, we then decide sl(t) was
transmitted with smallestprobability of being in error, if
the difference between z(t) and the known wave éhape sl(t)
is smaller than the corresponding difference between z(t)

and so(t) in the mean-square sense and decide so(t) otherwise,

2.3 Structure of the Optimum Receiver

The mathematical structure of the optimum receiver is
completely specified by Equation (2;25); In this section,
this equation will be used to yield a model for the optimum
receiver.,

Under the assumption of equal cost and equal a priori
probabilities of occurrence of the signalling states, Equation
(2.25) can be reduced to

T H
[ z(e)Is (t) = sp(E)] dt 2

o R

0

L1z @ - Ry (2.26)

T T
where El = f slz(t) dt and E0 = I soz(t) dt, represent the
(o} o

energy in the signals sl(t) and so(t) respectively.

The optimum receiver structure now can be realized by a
multipliexr cascaded with an integrator (memoryless correlation
detector) in series with a threshold device as shown in
Figure 2.2. The message will be decided to be a "1", if the
signal plus noise at the output of the integrator samples at

t=T is larger than the threshold d = (E; - EO)/Z, and a "0"
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otherwise.

o ve e e me oame  w e ,

Correlation Detecto%

|
|
| 6
e
| v . E _E
' | Operating <d= 170 no»
| ! Every T2 ’
'
' i T sec Threshold
e | ; Device
n(t) s (B)-sg(t) ______j

Figure 2,2 Optimum Receiver Structure

| The dotted block can also be viewed as a matched filter
with an impulse response h(t) = sl(TAt) - sy (T=t) N1]. A
matched filter of this soft is called an integrate-and-dump
circuit [32], [42]. It is well known that the matched
filter will give maximum signal-to~-noise ratio at the output.
Thus for white Gaussian noise, both maximization of the signal-
to-noise ratio and minimization of the probability of error

lead to the same optimum receiver structure.

2.4 Probability of Error

The optimum procedure for distinguishing between two
known signals sl(t).and so(t) has been discussed, Now the

probability that an error will be made in such a decision
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process will be derived,
The output of the integrator at t=T due to both signal

and noise is given by

T
y = [ z(t) (s (t) = s5(t)) at
© (2.27)
=wi +nl
where -
T :
w, = fo s; (t) (s () - s4(t))dt i=12,0 (2,28)
and
T .
n, = fo n(t) (sq(t) = sy(t)) at (2.29)
Clearly, n, is still Gaussian distributed with mean zero and

-

. 2
variance 04" , where

T- ' T
E(n?) = B(f n(1) (s (1)=50 (1)) &1 [ n(t) (s, ()-5, (£))dt)

Q
(]
Il

T 7T
| ] E(n(TIn(t)) (51 (1)=s, (£)) sy (£)=5, (t))dT dt (2.30)
(o] (o]

But for white Gaussian noise as assumed here,
E(n(tin(t)) = Ny/2 §(r-t) (2,31)

Thus Equation (2.30) becomes

-T

0, =Ny/2 [ (s, (0)-sy ()P at (2.32)
o)
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Now the output of the integrator can be described by two
Gaussian distributions with mean values at w, and w, and
variance 012 ; where one dsitribution is for a "1" decision
and the other for a "O" decisipn: The probability that an

error will be made can be written as

P, = P(y>d[Hjy) P, + P(y<d|H,) Py (2.33)
With P0 = Pl = 1/2 we have
2 2
. o = (x=w,) .. a - (x-w,)
P=2 (=2 [ e—l— ax+—— [ e—3 dx)
/270 da 20 Y27 0, = 20
1 1 1 1
(2.34)
Changing variables and simplifying, we obtain
P, = 1/2 (1/2 (1-erf(zo)) + 1/2 (1—erf(zl))) (2.35)
- o b4 -u2
where erf(x) = <= [ e du, the error function
/T o '
and
z2g = o ’ zy = o
°1 %1

Using Equation (2,28), Equation (2,30) and the fact that

d =(E,~E,)/2, we have
170 P
B +Eq=2 [o sp (£} sy (t) dt :
zl = (2.36)
4N0

an—
=

20
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Finally, with E=(E; + Eo)/z;,the average energy per bit, the

probability of error is ... -

' age
P, = 1/2 (l-erf(|N, (2.37)

where o

] sy() sy(t) at

« = 1/2 At- o (2.38)

E1+E’.0

Thus with the correlation detection or matched filtering
incorporated in the decision process; it is the signal energy,
rather than the signal wave shape, that determines the probability
of error. However, the exact knowledge of sl(t) and so(t) are
required at the receiver end.

It is very important in this connection to note that a
large portion of the theoretical analysis in communications,
such as the analysis in this chapter and those following,
is based upon the assumption of perfect bit synchronization
(perfect knowledge of the time of arrival of the individual
-symbol waveform). Techniques for achieving and maintaining
synchronization are an important part of the communication
science [10], [45]. However, it appears to be a practical
truism that synchronization per se can be maintained well
under the conditions where the channel is already useless as
a communication link because of high error rate, Hence,

except where particularly specified otherwise, we assume
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perfect synchronization in the receiving process.

Case 1, - Antipodal signals

When sl(t) = -so(t);_the signals are called antipodal
signals. For this case;_oc is equal to one and the probability
of error is minimum and is given by

= E '
P, = 1/2(1-erf( ﬁa)) (2.39)

The NRZ (Non.~Return-to-Zero), Split-Phase and PSK (Phase-Shift-

Keying) signals are some examples of such signal sets.

A. NRZ
sl(t) = =8, (t) = A 0<t<T
_ _ _ a2
E = El = E0 = A"T
d=0
B. Split-Phase
sl(t) = -so(t) = A O:ﬁ T/2
sl(t) = -so(t) = =A T/2<t<T
_ _ a2
E =E =E, = AT
d=0

C, PSK
sl(t) = -sp(t) = A cos(znfct) 0<t<T
E=E, = E —AzTié
—.0_1—. /

d=20 - e
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' Case 2. - Orthogonal signalé . )
When fT s, (t) s, () dt = 0;_the'éigngls are called
orthogonal gignals. For this case « = 1/2 and the probability

~ of error is given by

P = 1/2(L-erf (|B— 1) (2.40)

€ 2N,
The On-Off binary signals, ASK (Amplitude Shift Keying) and
| FSK (Frequency Shift Keying) signals are some examples of
such signal sets.

A, On-Off binary sigﬁals

sl(t) = A, so(t) = 0, 0<t<T
E, =a’r , B, = 0, E = A%1/2
4 R AZT

B. ASK

sl(t) = A COSs (2nfct) ' so(t) =0, 0<t<T

E, = a%1t/2 , By =0, E = a’r/4
A2
—T_
C. FSK

sl(t) = A cos (2nfclt), sq(t) = A cos (Zﬂfcot) 0<t<T

E =E, = E, = A’T/2

1 0

d = A2T/2
It follows from Equations (2 39) and (2. 40) that antipodal



signals require 3dB less than the orthogonal signal on an

average power basis to have the same probability of error.
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CHAPTER III

THE PERFORMANCE OF A BANDLIMITED BASEBAND TRANSMISSION

SYSTEM IN THE PRESENCE OF GAUSSIAN NOISE

3.1  ‘Introduction

The performance of digital transmission systems in the
presence of white Gaussian noise is conveniently expressed by
the bit-error probability. In Chapter II, it was seen that
the optimum detector which achieves the lowest bit-erroxr
probability for a given signal-to-noise ;atio (SNR) can be
realized by a memoryless correlation detector if the system
bandwidth is infinite,

In practice, the restriction of the system bandwidth is
inevitable. Transmission filtering, channel bandlimiting
or receiver filtering usually cause the restriction of band-
width. Bandwidth limiting will not only cause degradation
of the desired signal (energy loss), but more importantly
will introduce intersymbol interference (overlapping in time
of successive signals). The performance of the optimum
detector discussed ih Chapter II then will be degraded. For
high signal-to-noise channel, the intersymbol interference
becomes the determining factor in the design of the higher
speed data transmission system, Intersymbol interference

can be minimized by careful shaping of the transmitted signal
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and equalization of the channel [4], [6 1, [13], [18], [26],

However, it m~y not be possible to eliminate the intersymbol
interference completely, and a measure of the degradation would
be extremely useful?

The primary objective of this dissertation is to sys-
tematically analyze the intersymbol interference and its
effect on the performance of various bandlimited digital
transmission systems in terms of the bit-error probability;
In this chapter; the explicit expressions for the intersymbol
interference as a function of system bandwidth and bit position
for a bandlimited NRZ baseband system using a correlation
detector (an integrate-and-dump circuit) will be presented.
The detector performance in terms of bit-error probabilities
caused by the degradation of the signal and intersymbol
interference will be determined and calculated separately. The
basic approach developea for the analysis of this particular
system will be used to analyze various transmission systems

considered in the later chapters.

3.2  The Baseband Model

The bandlimited baseband transmission system can be
(-]
modeled as shown in Figure 3,1. Here 2 an(t) is the random

NRZ signal with amplitude A or -A, and bit duration equal to T,

n(t) is additive white Gaussian noise with zero mean and
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spectral density Ny/2. The ideal lowpass filter H(f) has a
transfer function equal to one for -B<f<B and zero elsewhere,
The receiver consists of an ideal lowpass filter in series
with a correlation detector: Since both lowpass filters are
the'same; the first lowpass filter can be removed as far as

the signals are concerned, and the results will be the same,

3.3~~Intersymbol-Interférence-for4NRZ~Signal

The nth bit of information can be represented by
\
A, NT<t< (N+1)T (3.1)
a_(t)=
n 0 elsewhere
where An = A or -A
The response of the lowpass filter due to the nth bit is
B~ ~j2mEx joamEt
b (t) = [ (f a (x)e dx) e as
n B - n
B (n+l)T s .
- f (f An e j2nfx dx) e32nft af
-B nT
_ IB A TKSinﬂfT ) e—jwa(len) af (3.2)
T ilg'n TET :

The integrator output Cn(T) sampled at t=T due to nth bit

alone can be found to be
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T B v et e oA .
f Af AnT(s:l.mrfT)e-31rfT(1+2n)e321rftdf at

T
c (T =:chn(t)dt

o ~B T£T
B SR B .
- sinmET, ~JTET (1+2n) o sinnfT _JwET
= !-B AnT(——-ﬁﬁ——)e B TET e at

B g ' .
I AnTz sin™mfT e-32nwa af (3.3)
~B (mfT)

1

Changing variables and simplifying, Cn(T) becomes

C,(T) = AT J(BT,n) (3.4)
where
., WBT _. 2
J(BT,n) = % / Eiﬂiﬁ cos2nx dx , (3.5)
o x

an even function of n.

Notice that

. ™BT .. 2
J(er,0) = 2 [ ZDE 4y (3.6)
(o] b4

can be simplified in terms of elementary functions and the

tabulated sine integral function, i.e.,

. 5 . 2WBT _.. et
3 (BT,0) = 2 (/ SiDX gy - EiN_TBY (3.7)
O .

Also J(BT,n) can be evaluated in terms of J(BT,0) as

J(BT,n) = E-;-l- Janl)BT}O] - nJ (nBT,0) +‘l‘§l J[ (n~1)BT,0]

(3.8)
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The output of the integrator sampled at T due to an infinite

bit train is

L4

! c,(m

T 00

W

A,T J(BT,0) + nzl(An+A_n)T J(BT,n) (3.9)

The first term is the desired signal and the second term is
the intersymbol interference caused by bandlimiting the
signal. Notice that J(BT,n) is less than or equal to one
for any n and BT. Thus J(BT,0) represents the degradation
of the signal and J(BT,n) represents the effect of inter-
symbol interference on the bit under detection. As B
J(8T,0)~>1,J3(BT,n)~0, w+A0T as expected.

The influence of the adjacent bits can now be easily
calculated. Table 3.1 shows some values of J(BT,n) for
various bandwidths and bit positions.

The output of the integrator samples at t=T due to both

signal and noise can be given by

y =W+ n,

AqT J(BT,O)+h£1LAn+A_n)TJ(BT,n)+n2
(3.10)
T
where n, = / n, (t)dt and n, (t) is the output of the lowpass
o



Table 3.1

Some Values of J(BT,n)

BT J(BT,0) J(BT,1) J(BT,2) J(BT,3) J(BT,4) J(BT, 5)
0o5 0.7737 001291 -0,0222 040004  =0,0052 040033
0.6 0.8393 0.0673 0.0292  =0,0271 000152  =0,0028
0.7 0.8776 040441 040204 060030  =0,0107 00020
0.8 0.8960 0.0433 0.0033 0,005k 060031 . =0,0012
0.9 0.9021 0. 046k 0. 0007 00001 040003 040005
1,0 0.9028 000471 0,0011 040002 040001 0,0000
1.2 0,9066 0.0493 0,0002 -040024 ~0,0017 0.0003
1.5 0,9311  0,0353 ~0.0113 0,000  =0,0002 0.0001
2.5 0,9592 040206 -0,0003 0.0001  =040000 040000



filter due to the noise n(t) alone.
The probability that an error will be made can be given
by

P, = P(A,=A)P (y<0[A =R)+p (B,=-A)P (y>0|Ag=-A) (3,11)

The evaluation of P, represents a long-standing challenge in
digital commnnicafion problems, The main source of difficulty
is the fact that; with the exception of a few special cases;
the probability distribution of the!intersymbol interference
is typically highly complex and irregular. Using the convolution
method [27], [38] to obtain the probability density function
of the intersymbol interféfence and noise is very difficult.
Approximation of this distribﬁtion by a simpler function may
lead to gross misinterpretation.

For all practical baﬁdlimited transmission systems, one
can assume that intersymbol interference is limited to a
finite number of symbols preceding and following the symbol
under detection. The conditional error probabilities are
computed for each of the truncated pulse sequences and then
averaged with respect to the probability of occurrence of
these sequences [].]; [17]1, [36]; [37), [39), [40].

Using the basic property of the characteristic function
as suggested in [5], a new method, called the series expansion

method, is developed to obtain the explicit expression for the
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bit—error'probability Pe; Po is divided into two terms, one
corresponds to detecting the signal itself (in the absence
of intersymbol interference) and another corresponds to the
influence of the intersymbol inﬁerférence;

In the following two sections, the averaging method and

series expansion method will be examined and compared.

3.4 - Bit-Error Probability--Averaging Method

Recall that the output of the integrator samples at t=T
is given by

y=W+n,

oo .
AT J(BT,0)+ ] (A +A_ )T J(BT,n)+n,

n=1

Thus the output of the integrator can be described by a Gaussian

distributed function with mean at W and variance 022. 022
can be obtained as |
2 _ 2
b T
= E[[ ny(r)dt [ n,(t)at]
o o
T .T ‘
= [ [ E(,(t)n(t))dt 4t (3.12)
o o 1

Notice that E[nl(r) nl(t)] is the covariance of nl(t) and is

given by [25]

sin[ZnB(f—t)]
R T5Y Gy (3.,13)

Eﬁnl(r) nl(t)]'- No
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The expression for 022 can then be simplified as

N,T .. .TBT _. 2 N,T . B
0,2 =0 277 sinX gy o 0 5(sr,0) (3,14)
2 2 LIS xz - 2

Let the effects of the intersymbol interference on the
bit under detection be confined to N preceding and N sub-

2N

sequent bits, There is a total of 2.2°" different adjacent

bit pétterns around the bit under detection, which can be
numbered in such a way that the first 22N patterns around a
"in (A0 = A) and the second 22N patterns around a "0" (A0=—A).
Denote P,y 3S the probability that the center bit is detected

in error given that the ith

pattern is transmitted. Since
each pattern will occur with the same probability the average

bit-error probability Pe can be given by

2N+1
P_. (3.15)

Since the noise n, is Gaussian, Equation (3.15) can be

rewritten in a more explicit form

2
L §2N - IO —(x—Wi)
P = : e 2 dx
e 5,2%N ;5 /T, e 20,
2
: ,2N+1 o W)
+ =t L e 20,7 ax (3.16)

2.22N 3272N41 YZte, ‘o

where Wi is the value of W for the'ith

00

pattern and is equal

to ATJ(BT,0) + ] (A +A_ )TI(BT,n) for i%2°N ana -ar3(mT,0)+
© n=1

I (a+A_)T3(BT,n) for i22°N + 1. since the probability that
n=1
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a "1" in the middle of a particular pattern is erroneously

detected is the same as that for a "0" in the middle of
the complement of this pattern, the second term in Equation

(3.16) is equal to the first term, Thus we have

[— (X_Wl) 2
.i” , gzn.ﬂii" fo 2022 (.
P = — e dx 3.17)
e SN ;5 /TTo, e

Therefore it is sufficient tb compute the bit-error probability
by only examining .the patterns around the "1" bit,

For the system considered here, it can be seen that
|J(BT,n)|<<J(BT;0) when n>5 (see Table 3.l1). Thus we can
confine the effects of the intersymbol interference to the
five preceding and five following bits on the bit under

detection. From Equation (3.17), we have

ei T . e 2% dx
where
5 (A +A_ )
W. = AT[{J(BT,0) + } ——— J(BT,n)]
1 n=1 A
_‘XrWi '
Let u= ;, P _. becomes
=3 ei
1 T u2 :
P .= [" e du (3,18)
el T jz '

ll-erf(zill

n.
N
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where - 5 A +A
W AT[J (BT,0)+ } —Tp—= J(BT,n)]
g, = o - - n=l —
l . ‘ A A
V20, YZ o NGT
= [i§=DPi" (BT, (3.19)
0
—— 2 »
E = A"T , the energy per bit
5 A_+A . -
and [3(eT,00+ ] (B2 g(sT,m))? |
Diz(BT) = __n=1 ‘ (3.20)
J (BT,0)

Thus Diz(BT), a function of the bandwidth=-bit duration pro-
duct and bit patterns can be considered as the degradation of
signal~-to-noise ratio. This quantity is easily calculated.

The probability of bit error for a particular patternzcan
‘ )

also be viewed as the shaded area under the curve j~

: ™

Zi to =« as shown in Figﬁre 3.2, Z; is bounded by 2, the

from

pattern giving minimum wvalue of Diz(BT), and ZB’ the pattern
giving maximum value of Diz(BT). Zg corresponds to the
pattern such that the net effect of intersymbol interference
is zero, i.e.

R .
D;“(8T) = J(BT,0)

It can be shown that
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o . _
and all the values of Z; 's are symmetflc about Z,..

There ar~ 1024 different patterns, Thus the bit-error
probability P, of a random NRZ signal for a particular band-

width is given by

g 1024
Pe = 1037 izl Pei
Ly 1024
= 1557 izl 1/2[1-erf(z,)] (3.21)
orxr
P, = 1/2[l-erf(z,)] " (3.22)

where ZA is bounded between ZQ and»?oz(see Figure 3.2) and
R
P is the area under the curve of‘j_ from Z, to ». But
T .
ZA cannot be determined analytically, because intersymbol

interference is not Gaussian distributed. We can only find

P, by Egquation (3.21) and then Z, can be found numerically.

A

ZA will be different for different Pe . As B+, Zijfg%-,
Pe+l/2[l—erf(.%—)], the optimum case presented in Chapter II.

‘The probabglity of bit-error, Pe’ for a random NRZ signal
as a function of signal-to-noise ratio K%—) and bandwidth-bit
duration product BT with the intersymbol gnterference confined
to the nearest 10 bits is shown in Figure 3,3.

The upper bound of P_, P can be obtained by finding

emax
the worst pattern which gives minimum value of Diz(BT). This



—_—

Y
§
4

LoGaCfe

| l l
-2.0 [ -
-3.,0 |— -
-4,0 [ —
-5.0 |- 2
-6.0 [ —
-7.0 t— —
~8.0 {— ]
0,8
-9.,01 ]
1.5
| l | ! | |
4 6 8 10 12 14
E —>> dB
Ny

Figure 3.3 Probability of Bit-Error vs

Np

for the NRZ Baseband System



35
can be accomplished by choosing An = A_ﬁ = —AO if J(BT,n)>0,
and A = A__ = Aj if J(BT,n)<0, (See Table 3.1). The upper

bound thus can be expressed as

“‘[J(BT;O)+ ¥ 2|agT,n) |17

_ | E n=1
Poniax = 1/2[1l=erf( ﬁE : TET, 0 - 11 (3.23)

The lower bound of Pe, |4 can be obtained by choosing An =

emin
- A for all n, which gives DiZ(BT) = J(BT,0). The lower

bound thus can be expressed as

P = 1/2[1-erf(v/%-‘J(BT,0) )] (3.24)
0 .

emin

Table 3.2 lists P and the corresponding values

. p
emin’ ~emax

of ZO’ Z and Pe as a function of signal-to-noise ratio E/N0

w’
for BT equal to one.

Martinides and Reijns [17] studied the same system using
the averaging method. The explicit expression for the inter-
symbol interference was not determined. The problem was
analyzed by using a 40 bit periodic sequence instead of random
sequences. Also they only considered the effects of four
nearest bits (N=2), which will introduce considerable truncation
exror by ignoring the influence of intersymbol interference
beyond N = 2 especially when BTS}, That is why the results

presented in this section are significantly different from

Martinides' for BT<1.,



36

6€2°n
990°1%
588°¢

004°¢

9641 €
H82°¢
L50°¢€
2182
Ensee
£nere
968°T
89°1
gng*o

0°TI=Ig U3TM ws3shs pusgaseg ZYUN I0J

£66°g~
AR
604° L=
790 ° 4=
Sme9-
940G~
€1T°S-
95t -
€6lec-
121 ¢~
seqte-
g2l 1~
8€6°0=

( Xeus

d)38o71

Zh9 6~
£66°8-
oHE* 8=
£89°4-
020°%4-
T5€*°9~
2L9%5-
1864~
gle -
ZnS e
muNmml
£96°1~
£70°T-

(°q)301

2°€ eIqeL

°x

q

1641
455 H
HnS€*
Znty
L16°€
089°€

geh €

16T €
0s8°e
HTG*2
ge1ee
o9 1
0586°0

SA @
d

(

XBlUs

LEQ° 1T~ 0°H#1
9€z°01~ 9°¢T
£CH 6= AR
629°8- g*e7
228 L= £ee1
£T0%4~ 811
L6T* 9= T°it
08€°S- §°01
955 ° - 56
AR $°g
9i8°2~ 0°s
T00°2~ 8°1
870° T~ 4 0°0
va ut)
EﬂsmmvaQ WW
o TS, 15 sourep

d



37

Although the averaging method gives the approximation of

average bit-error probability, the main disadvantage is that
the computational effort becomes prohibitive as N becomes

large.

In the past some efforts have been made to obtain the
upper bounds 06 the average bit=-error probability. Hartman [7 ]
analyzed the bandlimited PSK system by finding the worst case
probability of error as Equation (3.23) indicated; To use
this method to predict the error probébi;ity is, in some
cases, exceedingly pessimistic and may lead to gross over
design of the system. On the other hand, ignoring the inter-
symbol interference to predict the error probability such
as Equation (3.24) indicated is sometimes too optimistic
especially for higﬁ signal-to-noise channel (see Table 3.,2).

Some improved bounds have been proposed recently.
Saltzburg [28] separated the intersymbol interference terms
into two sets, one set containing terms which are treated as
a'dégradation of the signal and the other set containing
terms which increase the effective noise power, The chief
attribute of this approach is mathematical utility; However,
as a theoretical tool it suffers from one drawback;_the
determination of the optimum set is aﬁ arduous task;

Lugannani [16] obtained an upper bound by using the Chernoff



38

inequality. The expression for this bound is‘rather complica~-
ted in appearence compared with that of Saltzburg's, But it
is relatively easy to eValuate; 'The chief difficutly is that
evaluating the parameters of this bound is a problem equal

in magnitude to the problem of evaiuating a large set of
sequences by using the averaging method; and the method does

not yield an analytic solution.

3.5.,Bit-Error.Probability;-Series.Expansion Method

Recall that the output of the integrator sampled at t=T -

due to both signal and noise is given by  Equation (3.10)

. o
Yy = AT J(BT,0) + } A T J(BT,n) + n

2
n==-~co
n#0
Divide both sides by AT, we obtain’
-]
X = 2,3, + _Z_ J 2, +N (3.25)
====00
n#o0
where
.. .A_T h
X =gk, 2, =g =1, I, = J(BT,), and N = ;2
‘n
The variance °N2 of N is E[(K%)Z], which can be evaluated as
...... 6'2”
2 . . . .1 2 . » .2. L o
0, = E(n,”) = &5 (3.26)
N T a2pZ T2 A%T

The probability that an error will be made is given by
Equation (3.11)

Po = P(Ay=A) P(y<0|A =A) + P (A =-A) P(y>0|A ==A)
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or equivalently can be given by

P, = P{Zy=1)P (X<0|Z,=1)4P (2g=~1)P (X>0|3,=-=1) (3.27)

e
Let
S = . E_w Z2, 3, + N (3.28)
n#0
and
Xn = Zan (3.29)

Since P(ZO=1)=P(A=A0)=1/2 and P(Z0=-l)=P(A=—A0)=1/2, from
Equations (3.25) and (3.27f we have

P, = 1/2 P(~J,>S) +1/2 p(s>do)
= 1/2 [1-P(-T,<8<3,)]
= 1/2 (1-9,.) (3.30)
and Qe = P(-J45529,) (3.31)

X, is a random variable assuming values J, and -J with equal

probability. Therefore the characteristic function @x (w) of
n

©

._[m [1/28 (Xn-Jn)+l/26 (xn+Jn) ] eijn dxn

=
~
%
L
I

cos(an) (3;32)
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The characteristic function of N can be obtained as [19]

s
o t0) = [ =E- e N eI ax (3.33)
-0 fZHGN
w2
- e Y

Since_X'ns and N are all independent random variables, the
characteristic function of S can be expressed as the product
of the characteristic functions of Xn'S and N

«©

@S(w) = @N(w) T o, (w)

n#0
w .
= QN(W) .n:—w cos(an) (3.34)
n#0

It is well known that the probability for a random variable
r distributed between a and b can be evaluated in terms of
its characteristic function [20]

. 00 e—jaW_e—ij

P (a<r<b) = / VT ¢r(W) dy. (3f35)

- 00

Thus Equation (3.31) can be evaluated as

it

Q

e = P(~T,<8<3,)

o j.J.OW __.e.'-.onW '
— o (w) aw (3.36)

]

J

- 00
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Since cos(an) can be expanded into a power series of y,
©0

m cos J w can also be put into a power series of w

2 v OO

n#0
T cos Jw=1+.} b, W (3.37)
n=- n n=1 24n
n#0

The expression for bén will be derived in Appendik A, Thus
from Equation (3.33), Equation (3.34), and Equation (3.37),

we have 2
o o g2
N 2n N
o (w) = (1+nZl b, W) e ‘

(3.38)

Substituting Equation (3.38) into Equation (3.36), we obtain

Qe = Qel + Qe2 (3.39)
where
. ;WZ 5
0 ) onW -jJOW '2- (e}
- e -e N
and
“u? 2
o JJgw -jJow © o
_ e -e 2n 2 N
Qup = {w SPET (h£1 b, w) e aw (3,41)

It is readily recognized that Qa1 is the probability that
the Gaussian random variable N lies between ~J, and J,. Thus

we can evaluate Qel as



Jo o * :._‘xz -
Quq = [ . L e 'ZQN dx

-Jq /2m N
. . X : .

with u = ;, we obtain

Y20
N ......
ok
Qe = 2 / 20y ™% au = erf(

/2 o
Toy
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(3.42)

J .
O  (3.43)
N

Taking the summation sign out of the integral sign, Qe2

becomes

[+ (o]
1
0, = 3 2o, (-1)%[5=[ e
e2 = L “Pon ow )

2 °N

I 20, (-1 37 [ (=5w)

2n-1

The term inside the bracket is [21]

q2n=1
d (2 ()
2n-1
da J,

Thus-Qe2 can be evaluated as

= I 2b, (1)

3 (w) e 370W gyl

Q — (=
®2  n) a Jo2n 1 Yoy

(3.44)

(3.45)
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Let .fﬁﬁgf_
dﬁ”"--7**1”” ';;;7
Gn n (= e ) ’ (3,46)
ag, /7?6N

a recurrence formula to evaluate Gn can be found

Ty i1

®n =~ 77 G121 " 7 G2 (3.47)
N N
Now Qez can be written as
_ ¥ e
Qy = nzl 2b, (-1)" G, 4 (3.48)

Combining Equations (3.39), (3.43), (3.48), and (3.30), the

probability of bit~error then can be given by

Pe = 1/2 (1—Qe) = Pel + Pe2 (3.49)
where
. “JU
Pe1 = 1/2 [l-erf ( )] (3.50)
o}
N
and
oy ntl
Pep = 1 (1177 BypSony (3.51)
...... 2 ..
2 o NOT

. U2 2 : . '
Since oy" = —— and 0," = - Jo (see Equation 3.14)
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we have
PN S
N Vil ;2',;
e o L
BT .52
%?4

where E=A®T is the energy per bit for the infinite bandwidth.

Thus

E
Py = 1/2 [l-erf(. ﬁb Jo)] . (3.53)
Now we can recognize that Pel is the probability of bit-error
for the detection of a single bandlimited NRZ bit. Indeed,

. 1f we only consider the bit under detection itself, from

Equations (3.9) and (3.10) we have

W

AGTJ (3.54)

and

b 4 A TJ. + n

090 5 (3.55)

Siﬁce A, is equal to A or -A with the equal probability and
n, is Gaussian noise with zero mean and variance, the output
of the integrator due to both signal and noise can now be
described by two Gaussian distributions with mean values at

" ¥ATJ,, and variance’oz2 , Wwhere one distribution is for a
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logical "zero" decision, the probability that a "zero" or a

"one" is erroneously detected can be given by

- (x~amTy?
R 5 "
.0 20
X 2
Pog = 1/2 [ e dx
M0, ~*
2
1 .o --(x+ATJ0)2
+ 1/2 = [ e ——— ax
¢2w02 o 202

Changing variable and simplifying, Pos becomes

ATJQ

P = 1/2[1-erf( )]
es ‘/'2-0.2
but
. N,T
Cn = 0 J
2 2 0

thus immediately we can see that

E
Pog = 1/2[1~erf(f’ﬁ; Jo)] ’

(3.56)

(3.57)

which is identically equal to Pel' Therefore the degradation

of the signal itself caused by the restriction of bandwidth

in terms of probability of bit~error can now be described by

Equation (3.53),

Obviously the effect of the intersymbol interference on

the bit under detection in terms of the probability of bit-

error can now be illustrated by Equation(3.51) . Notice that



i
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Gén—l in Equation (3.51) can also be expressed as a function
of signal-to-noise ratio E/NO.

. E B . -2.n.. 2

Gyq = —z(ﬁ;)(czn_z + 5= Gy3) (3.58)

b2n in Equation (3.53) can be expressed as the function of
intersymbol interference terms, Jn's and can be evaluated in

a recurrence form (see Appendix A)

n-1
=1 )
Pon = “zm @an-1 * 1. Pan-2p d2p-1) (3.59)
where
28 ,,2% ©
- 277(27"-1) 28
dag-1 = T By L Tn (3.60)
n#0
and Byo is the Bernoulli number., Generally speaking, Jn2<<Jl2

for n>5 (see Table 3.1), thus the coefficient b2n can be
calculated with negligible error by using only the terms from
J_g to Jg. In other words, the influence of intersymbol
interference can be confined to the five preceding and five
subsequent bits on the bit under detection without significant

error., The resulting probability of bit-error P, can be

rewritten as

e o :
Py = 1/2[1-erf( ,ﬁ; I+ hél -1)"by G, . (3.61)



47

which can be evaluated for a given value of signal-to-noise
ratio E/N0 an? bandwidth-bit duration BT if the series can be
truncated with negligible error. It will be shown in Appendix
B that the series can be truncated with negligible error

provided that

P’
n=-c B
B =2 :<0.5 (3.62)
(o}
N

For the system considered here; the series converges rapidly.
Pe can be evaluated accurately using only 10 terms in the
series,

By confining the intersymbol interfefence to five bits
and using ten terms in the series, the resulting Pls exactly
agree with those obtained using the averaging method of
Section 3.4. Two cbmpletely different approaches yield the
same answers! The computer time, however, is much less
using the series expansion method. By extending intersymbol
interference to more than 10 bits, and using more than 10
terms in the series of Equation (3.61) the resulting P, does
not change significantly. This verifies our previously
assumptions,

Table 3.3 shows the values of P, P, and P_, for various
bandwidths and signal-~to-noise ratio with the intersymbol

interference confined to the 10 bits and the series truncated to



Values of Pe' Pel and Pe2

with BT

0.5, 9.8 and 1.5

Log(Pe)

-0.933
~-1.558
-2.012
-2.392
-2.735 .
.-2.898
-3.057
-3.366
-3.667
-3.961
-4.,248
-4.528
-4.804
+=5.085

Table 3.3

vs E

BT

No
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for the NRZ Baseband System

0.5

Log(Pel)

-0.972
-1.807
-2.568
-3.302
-4.022
-4.378
-4.733
-5.438
-6.139
-6.836
-7.532
-8.225

Log(Pez)

-1.999
-1.918
-2.153
-2.449
-2.758
-2.913
-3.066
-3.370
-3.668
~3.961
-4.248
-4.528
~4.805
~5.085



E_
NO_
(aB)
0 .
4.77
6.99
8.45
9.54
10.00
10.41
11.14
11.76
12.30
12.788
13.22
13.62

13.98

Table

BT

Log (P))

-1.040
-1.957
-2.773
-3.541
-4.277
-4.635
-4.989
-5.685

=6.367

-7.039
-7.702
-8.360
-9.012
-9.661

363 (continued)

= 008

Log(Pe

-1.044
-1.991
-2.860
-3.702
-4.,528
-4.938
-5.346
-6.158
-6.965
-7.771
-8.571
-9.370
-10.167
-10.963
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Log(Pez)

-3.026

-3.083
-3.514
-4.050
-4.633
-4.935
~5.241
~5.863
-6.493
-7.128
-7.766
-8.404
-9.044
-9.683



zF&

(dB)

0 .
4.77
6.99
8.45
9.54

10.00
10.41
11.14
11.76
12.30
12.788
13.72
13.62
13.98

Table 3.3 (continued)

BT
Log(Pe)

-1.062
~2.021
~2.886
~3.709
-4.504
-4.894
~5.280
-6.039
-6.788
~7.526
-8.257
-8.981
-9.701
-10.417

1.5

Log (P

-1.065
~2.043
-2.943
-3.816
~4.673
-5.098
~5.522
~6.364
~7.003
~8.038
~8.869
~9.698

-10.576

-11.352

el)
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-3.240
-3.330
-3.797
-4.372
-4.996
-5.320
-5.649
-6.319
-6.999
~7.686
-8.379
-9.074
-9.771
-10.121
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10 terms. From Table 3.3, it can be seen that P, is very

close to P, when'E/N0 is low and almost dominated by Py

1 2
when E/NO is high, This iS'ekpeCted; because the system is
essentially noise limited for low signal-to-noise ratio and
intersymbol interference limited for high signal-to-noise
ratio [15].

For the infinite bandwidth case; Jo is equal to one

and b2n is equal to zero. Then the probability of error

is given by

_ cere( TE
B, = 1/2[1-erf( ’ﬁa—)] (3.63)

The additional signal power needed to give the performance
as an optimum detector described by Equation (3.63) for the
detection of NRZ signals in the presénce of white Gaussian
noise and in a bandlimited channel . using the correlation
detector is tabluated in Table 3.4. Here S is the additional
power in dB needed for the single pulse case in the absence
of intersymbol interference. This can be given by 10 log (JO)
(comparing Equation (3.63) and Equation (3.53)). This table
can be used as a design guide for the tradeoff between signal-
to-noise ratio and system bandwidth,

For the system where Equation (3;62) cannot be maintained,
we can make B sufficiently smaller by starting the summation

from, for example m instead of 1. Once we choose m>1, the



Table 3.4

Additi.mal Power needed for the Detection of NRZ

Signals to give the same Performance as an Optimum Detector

BT=  BT=0.5 0.6 008 1.0 2.5
P, (go)dB s A S A S A s A 5 &
1072 4¢3 1.1 2.7 0.8 103 005 047 Ok 0.7 0.2 0.2
1077 6.8 1.1 3.6 0.8 1.6 0.5 0.7 0ok 0.7 0.2 0,2
107" 8.k 1.1 4.0 0.8 1.8 065 0.7 0o 047 042 0,3

1075 946 el Lelt 0e8 2e1 0e5 08 Oclt 048 02 0.3
-6

10 10.5 1.1 u’08 008 20“’ 005 009 OOL" 009 002 0‘3

1077 11,3 1ol 5¢1 0¢8 266 005 140 Ocl 140 0¢2 043

S : Additional power needed for the single pulse case in dB

in the abscent of intersymbol interference

52

. A ¢ Additlional power needed for the average case in dB, Second

column is the signal-~to-noise ratio required for the unlimited

bandwidth (optimum case)
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expression for the probability of bit-error, Equation (3.49),
will also be changed. This change is trivial and the new

expression can be immediately written as

L Rl
Pe = ’—m) 2 :1/2[1-erf( )]
2 . Y20
i=1 N
v n+l .
+ 1 LT by Gy g (D) (3.64)
n=1
where J, (i) is one of the combinations of i J—(m—lf i oo HT 4
tJp¥dy ek I 4 » and
b, * = -3~ (d5__, + nil b* as, 1) (3.65)
2n ~ 2n ‘"2n-1 =] 2n-28 “28%-1 *
. 2% 28 .. © 00
. 2772571 2% 2%
d,, " = ; B,,() J + I ") (3.66)
22-1 28. 28 2 M ne-m B
cJq (1) o :
sy _ _ 0 vy o 2n=2 .
G2n-—l(l) = GN Gzn_z (l) W) G2n_3 (l) (3.67)
also
o0 2 -0 2 2 X
g (Y 3%+ 3 32%) /d (3.68)
=g=m n n=-m 2 N

For small m, the computation of Equation (3.,64) does not

require a long computer time. For all the practical systems,
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m=2 is sufficient to make B < 0,5.

3.6 Discussion of the Main Result

The averaging method and the series expansion method
have been used for computing the average probability of bit-
error, Both methods give the same results. However, for
the cases where the intersymbol interference is not confined
to a few symbols, the series expansion method is preferred.

The explicit expression Equation (3;49) for the
probability of error by using the ser;es expansion method
is simple and the computation is easy to perform. Most
importantly, the influence of the intersymbol interference
on the detected signal in terms of the probability of bit-
error can be determined analytically. Also all of the constants
involved (JO, bzn's, G2n's) can be obtained with only a
knowledge of the system parameters. Equation (3.25) is the
generalized expression for any received signal [1 ], [161],
[18]. Thus Equation (3.49) can be applied to any linear
timg invariant data transmission system perturbed by the
intersymbol interference and Gaussian noise,

For most practical transmission systems, the intersymbol
interference can be confined to very few bits [1], The
averaging method can also be applied equally well as far as
the average probability of bit=-error is concerned; The upper

bound Pe and the lower bound P

max emin (equal to Pel in the
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series expansion method) can also give useful information about
‘ the system performance,

In the next two chapteré; both the series ekpansion
method and averaging method will be used to analyze the

performances of various baseband and modulation transmission

systems,



CHAPTER 1V
ANALYSIS OF SOME PRACTICAL BASEBAND SYSTENS

4.1 Introdiction
The effect of bandlimiting on the performance of an NR2Z
baseband transmission system using the correlation detector
has been studied in Chapter III;
In this chapter; some practical baseband systems will
be analyzed using the results of Chapter III,
(1) Bandlimited (ideal filtering) Split-Phase base-
band system using a correlation detector.
(2) Bandlimited (ideal filtering) RZ baseband systems
using a sample detector,
(3) Bandlimited (Gaussian filtering) NRZ baseband
system using a correlation detector.
The effects of intersymbol interference on the performance
of the systems will be analyzed and the bit-error probability

will be computed.

4.2 Bandlimited Split-Phase Baseband System

The bandlimited Split-Phase baseband transmission system

in the presence of additive white Gaussian '‘noise can be
(=]

modeled as in Figure 4,1, Here ) a,(t) is the random

n=-c

Split—-Phase signal with amplitude +A or -A, bit duration

equal to T and n(t) is an additive Gaussian noise with zero
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mean and spectral density Ny/2. The ideal lowpass filter

has a transfer function H(f) which is one for -B<f<B, and
zero elsewhere,

The n™® bit of information can be_represented by

T

[ A NT<t<NT+=
n - 2
o
A (t) =¢ A NT+5<t< (n+1)T
0 elsewhere (4.1)
b

where A =+A is the amplitude of the nth pulse.

The response of the lowpass filter due to. the nth bit

can be obtained as

il

B o . .
[« an(t)e—jZﬂft at) gJ2mit af

- ==

b (¢)

- rfT - mET

2 1y TEET
LR
(4.2)

th

The integrator output sampled at t=T due to n bit alone,

is o

fz IT “©
C (T) = b_(t)dt - b_(t)dt
. o n . n

T
5
o o -
ce 3 B o TEL LmET :
' : ' 2 - - -
=.An ] (! s}sz e j2m™nET e I (1-e jva)
°© =B ==

(l_ejﬂfT) eijft af) dt

AT B . =~ . s ——— . .
n sin™ 2 e j2mneT o3 2 (1-e jﬂfT)ejzﬂfT

af
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2 'wai-
AT B 8in =5= =J2mnET (g ~ITET) 3 _ ITET) 4
== | —wmmz me”
-B (-7_)
2 25cT ot 2TED
=.AnT f B 4sin”—— ~j2TEnT as B ‘AS%%HFQ—.COS -
2 2
e~32nTET 4p9 (4.3)
(continued)
Changing variable and simplifying, Cn(T) becomes
Cn(T) = AnTF(BT,n) (4.4)
where
" TBT
o 2 .4
F(BT,n) = % J 55%—5 cosédnx dx
o X
" BT
= 2. 2 f‘ sin’x cosdnx dx
- et T .2
o X
TBT
C 2 g2
. fo 10X cos2nx dx (4.5)
X

Using Equation (3.5), F(BT,n) can then be expressed as

F(BT,n) = 2:J(3~ , 2n) =J(BT,n) (4.6)
which can be evaluated in terms of Jfgz , 0) and J(BT,0)
(see Equation 3.8)).

The output of the integrator sampled at t = T due to an
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and nl(t) is the output of the lowpass filter due to the noise

n{t) alone with covariance

_ O .giﬁé%Bkigf&”
P(t,T) = E[nl(t)nl(T)] = NyB T EE=T) (4,10)
Let -
1 0<t<m |
hi(t) = - ' (4.11)
-1 FetsT
then the variance of nj can be expressed as

T Ly
0,2 = Eln,?] E[IO h(t)n, (t)dt fo h(1) ny (1) dr ]

- sin2r (tn)
2mB (t=1)

T .T
[ | n)h(r) N
o O

0 dtdt (4.12)

This expression can be evaluated easily to give .

" wBT
CNAT L e 4 . N,T
2 70 4 ¢ 27 sin'x -0
0'2 = —5— - Io x2 dx = -5 F(BT,0) (4.13)

4,2.1 Probability of Bit=Error Using the Averaging Method

The output of the integrator due to both signal and

noise is given by Equation (4,8)

y =W+ n,
(=]

A,T F(BT,0) + .} A F(BT,n) + n, (4,14)

N=eCo

n#0
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infinite bit train is

L

) AnTF(BT,n)

n=-w

AT F(BT,0) + Y AT F(BT,n) 4.7)

n==ca

n#0

The first term is the desired signal and the second terﬁ is
the intersymbol interference caused by bandlimiting the
signal. Thus F(BT,0) represents the degradation of the
signal and F(BT,n) represents the effect of intersymbol
interference on the bit under detection. As Bsw, F{BT,n)-0
and W;AOT as expected., The influence of the adjacent bits
can now be easily calculated. Table 4.1 shows some values of
F(BT,n) for various bandwidths and bit positions.

The output of the integrator sampled at t = T due to

both signal and noise can be given by

Y =W+ n,
= AOTF(BT,O) + nz— AnTF(BT,n) + 1, (4.8)
n#0
where T
z T
n, = | n, (t)dt - JT nl(t)dt (4.9)
o]

2



BT

1.0
1e4
242
246
360
3.4
3.8
L,2

Table 4.1

Values of F(BT,n) for Various Bandwidths

62

F(BT,0) F(BT,1) F(BT,2) F(BT,3) F(BT,4) F(BT,5)
0.6446  =0,0910 =0.0116 =0,0048 =0,0026 =0,0017
0.8225  =0,0032 =0g0133  0,0074 =0,0026 =0.0011
068560  =0,0223 =0.0000 =0o0000 =0,0000  0.,0000
008639  =0,0294  0,0043  =0,0024  0,0009  0,0002
08958  =0,0189 =0,0004 =0,0002 =0,0001 =0,0000
09200  -0,0884  =0,0023 040013 =0.0005 =0,0002
009250  =0.0123 =0,0000 040000 040000 =0,0000
0.9250  =0,0122  =0,0000  0,0000 =-040000 =0,0000
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The probability that a "1" in the middle of a particular pat-

tern is detected to be a "0" is given by Equation (3.18)

Py = 1/2 (Lmerf (z;)) (4.15)
where
L W3,
. YZ g,
© +A .
AT[F (BT,0)+ ) 'V('I_%A"jn')f‘.(BT,n)]
= . =1 ........... (4.16)
vZ T :
—— F(BT,0)
and
: © A _+A
[F(BT,0)+ § (—3—2)F(BT,n)1?
p,%(er) = =1 S (4.17)
F (BT, 0)

Diz(BT) can be considered as the degradation of Qignal—to—noise
ratio (E/NO) for a particular pattern. From Table 4.1, it can
be seen that F(BT,0)>>|F(BT,n)| when n>5. Thus the effect of
intersymbol interference can be confined to the 10 bits nearest
to the bit under detection. There is a total of 1024 different

bit patterns. Then the probability of bit-error is given by

cooq 1024

/E 2
Pe = oz ) l/2(l—erf(4/§bDi (BT) )) (4.18)
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The upper bound and the lower bound of the average

probability of error can be given by Equation (3.23) and Equation

3.24 tivel =
(3.28) respectively (B (BT,0)72_ ]| F.(BT,n)]) 2
F (51,0 !

— - [E
Pemax = 1/2[1-erf( NO

(4.19)

Pomin = 1/2[1-erf( /ng(BT,O))] (4.20)

4,2,2 Probability of Bit-Error Using the Series Expansion Method

Dividing both sides of Equation (4.8) by AT, we obtain

[+ ]
X = ZOJO + Z ann + N (4.21)
N===o00
n#0
where
L .AnT
x=&T v iy = mgy T il Jp = F(BT,n)
and .
S+ P
2
N = —%

The variance of N, UNZ, can be evaluated as

‘.9,2 S PO -
A°T (ﬁ*(')-)

Equation (4.21) iscf the same form as Equation (3,25), The
probability of bit~error is then given by Equation (3.49)
P=P

e1 t Pez (4.23)
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where
-: 1 _ _E_ ..
Pel = -2- [l erf(/ No JO)] ’ (4024)
and
_ v (_\n+l '
Pe2 = nzl (-1) bZnGZnnl r (4.25)

b,, can be evaluated using Equation (3.39) and G, _,

using Eguation (3.58). From Table 4.1, the coefficient b2n
can be calculated with negligible error using only the
terms from J_g to J;. For the system considered in this
section, the series for Pe2 converges rapidly and Pe2 can be
evaluated closely using only 10 terms in the series. By
confining the intersymbol interference to the nearest 10 bits
and using 10 terms in the series, the resulting ?e's, which
are plotted as a function of signal-to-noise ratio and system
bandwidth are shown in Figure 4.2, The results agree with
those obtained using the averaging method. Table 4.2 shows
the values of Pe' Pel and Pe2 for various bandwidths and
sigﬁal—to—noise ratio; Table 4.3 shows the additional power
needed to give the same performance as an optimum detector,
As predicted; the probability of error is dominated by Poo
for high signal-to-noise ratio, and by Pel for low signal-to-~

noise ratio.

The results obtained by both methods compared with those
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Table 4.2 67

: E _
Values of P Pel and Pe2 vs ﬁo for the Split-Phase Baseband

System with BT = 1,0 and 1,2

BT = 1.0

E
‘N Log (P ) Log(Pgy) Log (P 5)
(dB)

0 ~05872 =00892 -2,208
bo77 ~1.471 ~15609 -20036
6699 ~1,932 -20255 -24212
8,45 -25327 ~2,875 -2,471
9. 54 -24583 -3.1482 -24758

10,41 =3,017 -l4,081 -3.056
11,14 -3e337 =l o673 ~3¢357
11.76 -3.647 =-5¢261 -30658
12430 «3.951 -5.,846 -30956
12,79 -4 ,250 =6.L428 -l e253
13,22 -k, 5h5 -7.010 =l 547
13,62 -1 ,838 -7, 588 -14,838

13,98 ~54127 =84165 =5,128



Table 4.2 (Continue)

Log(Pe)

=04966
~Llo77h
-24486
-36151
=34784
-Lo.392
-4 ¢979
-5¢548
-6,101
-6s642
=7¢170
~7687
-8¢195

BT = 142

Log(Pel)

=0,971
-1.804
-2, 564
~34296
-l¢015
=l ¢724
=5:428
~64127
=64822
«-74518
-8.208
=84897
=95585

68

Log (P, )

=3:000
-24950
-36272
-3¢698
~44169
=l o664
-5¢170
-5.681
-6.193
~6.70k
=76212
=7715
=8¢213



Phase

10=2

Table 14'.3 69

Additional Power needed for the Detection of Split-

Signals to give the same Performance as an Optimum Detector

BT= 0O 1.0 1.2 1.6 3.0

Ho3  1e9 2.9 Lel  Lob 0.7 0.8 0.4 0.6
6.8 1.9 3.6 1.1 1ol 0.7 0.8 0.4 0.6
8ol 1.9  L4o0 1.1 1.4 047 0.8 0.l 0.6
946 149 443 1.1 1¢5 047 049 Oudk 047
1005 109 La7 Lol 1.6 0,7 1.0 0.4 0,7
11.3 1.9 35¢0 11 17 0.7 1.0 044 0.7

S ¢+ Additional power needed for the single pulse case

in the absence of intersymbol interference.
A : Additional power needed for the average caseo
Second colomn 1s the signal~to-nolilse ratio required for

the infinite bandwidth (optimum case)
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obtained for the NRZ baseband system in Chapter III, demon=~*
strate that the split-Phase system requires about less than
twice as much bandwidth as the NRZ baseband system to have
the same probability of bit-error for the same values of

signal-to-noise ratio.

4,3 Bandlimited NRZ Baseband System Using a Sample Detector

The system shown in Figure 4,3 is the same one analyzed
in Chapter III except a sample detector is used instead of
an integrator. A sample detector give§ the value of the
function at the sampling time.

The Fourier Transform of the output of the lowpass

filter to the nth bit is

B (£) -j2nft
n

]

[ a (t) e dt -B<f<B
=00

= 0 elsewhere (4.25)
and the time response is
T's'inx
X

cosx(lF%§+2n)dx

B » . TTB
_ jamft . _ 2
b () = [ B (f)e af = a 2]

-B o]

(4.26)

Figure 4.4 shows the plot of bn(t). It can be seen that the
response extended from —~eo to « instead of being restricted
from nT to (n+l)T. The response of the lowpass filter due

to the infinite bit train can then be expressed as
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wit) = ] b (t)
n=-e
. aBT L o
= AO _2_ f .s...].:.l}-}s- coSsX (ln-,%-.—-t-) dx
" ) .

[~ . 2
+ A =
n=—z'-oo n IO

n#0

BT sinx

T

cosx(l;gE‘+ 2n)dx

73

(4.27)

The first term is the desired signal and is peaked at t=T/2

for BT<l (see Figure 4.4) [29]., The second term is the

intersymbol interference due to bandlimiting the signal. Thus

sampled at t=T/2, the response can be simplified to give

W= A, S(BT,0) + § A S(BT,n)

=eann

n#0

where

) BT .
S(BT,n) = = | SIDX  os2nx dx

SR

o}
an even function of n, and

-2

where

v
_ Csinx
Si(y) = fo = dx

the sine integral.

(4.28)

(4.29)
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S(BT,n) can be evaluatea in terms of S(BT,0)
S(BT,n) = 1/2 s{(2n+1)BT,0] -~ 1/2 S[(2n-1)BT,0] (4.30)

Table 4,4 lists some values of S(BT,n),
The output of the lowpass filter sampled at t=T/2 due

to both signal and noise can be given by

Y =W + n1

I

A, S(BT,0) + ) A S(BT,n) + n (4,31)

n==—oo

n#0

1

where n; is the output of the sampler due to the noise n(t)
alone. The covariance of nl(t) is given by Equation (4.10)

and the variance of ny can be expressed as

2 2.

4.3,1 - Probability of Bit-Error Using the Averaging Method

The probability of bit~error for a particular pattern

can be given by Equation (3.18)

P = 1/2 (l=exrf (Z;)] - (4.33)



BT

0o5
006
067
0.8
0.9
1,0

Table

b4

Some Values of S(BT,n)

75

s(BT,0) S(BT,1) S(BT,2) S(BT,3) S(BT,4) S(BT,5)
04873 0,0756  =0,0167 06,0073 =0,0081  0,0026
0,987  =0s0317  0,0713 =0,0534 00,0271  =0.0028
1,074  =0,0833 050487 040166 =0.0292  0,0028
1,134 =0,0847  =0,0075 0,0204  0.0163  =0,0027
1,168 =000660 050197 =0,0085 =0,0020 000024
1,179  =0:0564  =0,0130 =050057 =0,0032  =0,0020
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where o | A_¥K
— A(S(BT,0)+.} .. “.2. 2 S(BT,n))..
i~ = 2
/2 o4 vZ o+ N B
. |BE 2
= J/ﬁ D, % (BT) (4.34)
0
and
o A F+A_
Iser,0+ | 32 s(er,m]’
D, (BT) = =1

(4.35)

Diz(BT) is the degradation of signal~to—ﬁoise ratio for a
particular bit pattern,

From Table 4.4 it is clear that |S(BT,n)|<< S(BT,0) for
n>5, thus the effects of the intersymbol interference can be
confined to the 10 nearest bits on the bit under detection.
There are 1024 different patterns. Thus the average probability

of error can be evaluated as

R 1024 e 5
Pe = m lzl l/2(1—erf( -I\-]-ODi (BT) )) (4.36)

The upper bound and lower bound of P, can also be given

. by Equation (3.23) and Equation (3.24) respectively

[S(BT,0)-2 § S(BT,n) 12
E =1

Pomax = 1/2 (1~erf ( ﬁb ~5 y (4.37)
P = 1/2(1-erf (] E 5(87,0)° )) (4.38)
emin ~ er ﬁb 2BT .
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" Method

Dividing both sides of Equation (4.24) by A, we obtain

X = ZOJO + z JnZn~+ N (4,39)
n==oo
n#0
y .An ) -
where X =+, Z, =z =t 1, Jn = S(BT,n) and
. n
71
N = =~

Equatibn (4.39) is of the same form as Equation (3.25).
Therefore the probability of bit-error can now be given by

Equation (3.49)

P =P

e el + P

e

J o

/sz n=1

n

1/2[1-erf( b2nG2n-l (4.40)

The variance of N can be evaluated as

2 1 NOB .NOBT 'NDBT Cq
O'N = 5 = 5 = 5 = > = BT . B (4’41)
A A AT AT (—) )
No
Thus

' (4.42)
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and

ntl oy g , (4,43)

Pe2 = ; (-1) 2n 2n-1

e2 ns1

b2n can be evaluated using Equation (3.59), G2n~l is

given by Equation (3.47)

G _ —. J.O G —. -2~n-—2 G
2n-1 -~ g 2 2n-2. g 2 2n-3
N N
- E Q) Sz (4.44)
NO BT 2n-2 BT 2n-3 *

From Table 4.4, the coefficient b2n can be computed wifh
insignificant error using only the terms from J_g to JS’
For the system considered here,vthe series for Pe2 converges
rapidly so that Pe2 can be computed accurately using only
10 terms in the sefies.

By confining the intersymbol interference to the
nearest 10 bits the resulting Pe‘s are shown in Figure 4.5,
Table 4.5 gives the values of Pe’ Pel and"Pe2 for various
bandwidths and signal-to-noise ratios.

The resulting Pe's obtained by Equation (4.43) do agree
with those obtained by the averaging method;

The bandwidth of the lowpass filter is limited to be
less than 1/T. Because for B>1/T; the peak value of signal
will not occur at t=T/2 (see Figure 4.4), and more noise is

allowed through. [33]
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Table 4.5

- E -
Values of P, Pel and Pe2 vs ﬁo for the NRZ Baseband System

Using Filter and Sample Detector with BT=0.7 and 0.9

BT = 0,7

E

N, Log(P_) Log (P_; ) Log(P_,)

(dB)

0,00 =05987 =1,002 -24l452
be77 -1.775 15883 -25433
6499 -2,422 -24698 ~24761

8elvs 25992 3467 ~3169

9.5h -35509 ~44231 ~3.600
10.41 ~30987 4,987 ~144033
11,14 -4 436 -5.736 ~lbol58
11.76 14861 -6.480 -1 872
12430 ~54267 ~74223 -54272
12479 -5.658 -7.962 ~5.661
13.22 -64036 8,698 -64037

13598 -64761 -10,165 ~64761



Table 4:85(continued)

BT = 0.9
Los(Pe)

-0s957
-1747
-2,438
-3,080
~34690
-l 3276
~Lo8hl
~5¢397
-56938
-6.471
~645996
~74515
-8,028

Log (P, )

«0¢962
-1,78L
=2,531
=3e252
-34958
=l 656
-5.347
~6,035
~6,718
75402
=8,081
~-8¢758
=9eh3L

81

Log(Pez)

-2,90L
-2,842
-3e152
~34567
-Ls027
-4.510
=-50007
~56510
-64017
~60525
-7+033
~7+540
~8,0U45
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If a single pulse (in the absence of the intersymbol
interference) is transmitted; Pe = Py is minimum when
BT=0,7, which gives the makimum value of J02/2BT equal to
0.82. This agrees with the predicition by Schwartz [30];
But from Table 4.5 and Figure 4:5,_it can be seen that the
probability of bit error is minimum when BT=O.9; Thus the
intersymbol interference has a considerable effect on the
detection of bandlimited signals using the filter and sample
detector. The optimum bandwidth of the filter should thus
be set to 0.9 of the bit rate of the transmitted NRZ signal
if the filter and sample detector is used.

Comparing Figure 4.5 with Figure 3.2, it can be seen
that the correlation detector is supgrior to the filter and
sample detector for BT>0.6. But the performance of the
filter and sample detector is better than that of the correla-

tion detector for BT is equal to 0.5.

4,4 Bandlimited'KGaussian Filtering) NRZ Baseband System

Using the Correlation Detector
| So far we have considered the ideal bandlimited channel
- for various baseband transmission systems, In this section,
we intend to analyze the performance of the NRZ baseband system
for a bandlimited channel with a filter whose transfer function G (f)

is Gaussian  as shown in Figure 4.6, The expression for
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G(f) is [31] £ 2
-0.347(5—) ’
(4,45)

G(f) = e

where B is the 3dB bandwidth of the filter.

As we know from Chapter II, the optimum receiver for
the detection of binary signals corxrputed by additive
white Gaussian noise can be obtained by using the matched
filter., For a single NRZ pulse (i:e; in the absence of
intersymbol interference) transmitted over this channel,
the optimum receiver (matched filter) can be determined from

the signal and channel characteristics [1 ]. The Fourier

transform of a pulse with amplitude A and duration T is

T . el .
F(£) = | A e 2™ %3¢ = ar §i§%%3 e~ ITET (4.46)
(o]

Thus the transfer function of the matched filter will be []12]

R(f) = KIF(£)c(£)eI2 Ty« (4.47)

where K is an arbitrary real number and * indicates the
conjugate. Substituting Equations (4.45) and (4.46) into
Equation (4.47), R(f) becomes

L £.2
-0.347 (&)
. B

R (£) , sinTmfT ejﬂfT

- ~321ET
= KAT —m €

n

. £ 2
—0'347(5) - sinmET —jnle

(KA) (e I(T”—EET— e (4.48)
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KA can be chosen to be 1. We recognize that fEE%%%E e IWET

is the transfer function of the correlation detector. Therefore

the matched filter consists of the Gaussian filter cascaded
with a correlation detector.

The primary objective in this section is to examine the
effects of intersymbol interference on the'perfprmance of this
optimum receiver using the basic principles developed in
Chapter III, The total system can now be modeled as shown
in Figure 4.7. Again § an(t) is the random NRZ signals
with amplitude A or _An;;2 bit duration T. n(t) is the Gaussian

noise with spectral density N0/2 (two sided).

Rewrite G(f) as

;&2(2ﬁf)2
G(f) = e 4 (4.49)
where
) ;'ﬂTﬁ?TT (4.50)
7B

The impulse response of the two Gaussian filters cascaded
together can be obtained as

-]

g(t) = [ ()% &I2TEE ¢
...... ) 2.2
R L A
=A§%ﬁ ] e 2 et aw (4.51)
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where
w = 27f
and [19]
1 . .€¢2w2
g(-t)=,-2-“-f e 2
- ;.éz
=‘ l e 2(!
V2T
Thus .
._..t2

mee

eajwt

87

dw

(4.53)

The output of the Gaussian filter in the receiver due to

the nth bit can be obtained as the convolution of an(t) and

g(t)

o0

. £man(t-x)g(x)dx

by (£)

t-nT
=[ A
t=(n+l)T

1
which can be simplified as

‘Aﬁ [
b_(t) = exf
n T /2“

DN e

[ (n';-!:l‘) Tty

2
202

e dx (4.54)

erf (A% (4.55)

Y2«
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The response of the integrator sampled at t=T due to the nth
bit is
.m :
c (T} = [ b_(tldt
o
By T (ML) T-t o nT-t
= 5= f fexrf[~———] ~ erf( )ldt
[o] (= o .
Ce (4.56)
With m-='L2%%£l , changing variable and simplifying, Cn(T)
becomes
Cn(T) =A T E(BT(n) (4.57)
where

E(BT,n) = %L E[(n+1)BT,0]
- nE(nBT,0)

+’-"2'-l E[ (n-1)BT,0]

and
& (1) 2
E(BT,0) = erf(:.E/EE'IL_-_ y- 0-;’;47 ;HZBT (1-e 2°0.347 )

‘Thus the output of the integrator due to the infinite bit
train is

w= J c(T)

n:.-.oo

[

A,T E(BT,0) + .} A T E(BT,n) (4,60)

TZ - 00

n#0
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The first term is the desired signal and the second term is
the intersymbol interference: ’As.B»w;wE(BT,0)+l,,E(BT;n)+O
and w-A,T as eXpected; Table 4.6 sﬁbws some values of |
E(BT,n).

The output of the integrator due to signal and noise

can be described by

: w0
= AOTE(BT,O) + ng_ AnTE(BT,n) + n, (4,61)
n#0
where
LT
n, = Io nl(t) dt (4.62)

and nl(t) is the output of the Gaussian filter due to the
noise n(t) alone.

The variance of n,, 022, can be shown to be (see Appendix C)

2 - NoT s oy =(rem)?
I/m. m m
.NOT
= T E(BT,O) (4.63

4,4,1 Probability of Error Using the Averaging Method

From Table 4,6, it can be seen that E(BT,0)»»|E(BT,n)|
when n»1l, thus the effect of intersymbol interference can just

be confined to the two adjacent bits, The average probability



0.5

0.6_

0s7
008
09
140
1.2
1.5
240
2.5
3.0

Table 4,6

Some Values of E(BT,n)

E(BT,0)

047017
0,7508
04,7863
0.8130
04+8338
0.8504
0.8753
049003
0.9252
0,9402
00,9501

E(BT,1)

0,1487
0.1246
061069
050935
040831
040748
000623
0,0499
050374
040299
050249

E(BT,2

040000
0.0000
0.0000

0.0000 -

0.0000
0.0000
00000
040000

-040000

0.0000
0.0000
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of bit-error now can be expressed as

P, = 1/2(1-erf(z,1) + 1/2(l-erf(z,)

4 1/2(lmerf (7;)) + 1/2(L-erf (z,) (4,64)
where
gz — 1 _ AT[E(BT,0)%(L+1)E(BT,1)]
1oV, T G
f-q-z; E (BT, 0)
o S
_ - JE T (EET,0) F2E(ET,T))
—/./N—E R 01 (4.65)
g - 2 _ ATIE(BT,0)#(1-1)E(BT,1)] "
2 VI, VI [RT
fT E (BT,0)
= |5 21,0 (4.66)
0
. = 73 _ ATIE(BT,0)(=1+1)E(BT,1)]
3 Y20, V2 NGT
—— E(BT,0)

| =J§E E (BT, 0) (4.67)
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and

» < 4 _ AT (E(BT,0)#(<1F1VE(BT,1))
4 /7o, /T RT
//T E (BT,0)
_fE_ [E@T,0-28@T,1)1° (4.68)
"N, E(BT,0) ‘

Figure 4.8 shows the plots of the probability of error as

a function of signal-to-noise ratio for various band-widths.

4.4,2 Probability of Bit-Error Using the Series Expansion

Method
Normalizing Equation (4.61) by dividing both sides by
AT, we obtain

0

X = 240y + nz_w J I, + N (4.69)
, n#0
: AT )
where X = %T , AL = RT =+ 1, J = E(BT,n) and N = zx
The variance of N can be given by
2
c :
0. 2 PR 2 PO 1. .
= = e J (4,70)
N aZp? 2 (£-) 0
0

Again Equation (4.69) is of the same form as Equation (3,25).
Therefore the probability of error can be given by Equation (3,50)

Pe = Pel + Pez (4.71)
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where
Ty
P ., =1/2[1-exf(: )1
el =
2q
N
= 1/2[1-erf (| B 3, )] , (4.72)
No
and
_ T _1yn+l '
Pap, = L (1) by, Gooig , (4.73)

b2 can be evaluated using Equation (3.59) and Gonml using
Equation (3 58). As B-w, b2n+0, and P e Pe +1/2[1 erfg[_—_)]

as expected for the infinite bandwidth case. b2n can be
evaluated accurately using only the terms from J_1 to Jl'

In other words, almost all the influence of intersymbol
interference comes from the immediate adjacent bits. The
series for Pe2 can Ee truncated to 10 terms without introducing
any significant'error. The resulting Pe’s agree with those
found using the averagingmethod.

The performance of the system considered in this section
is much worse than the systems described in Section 4;3 and
Chapter III (comparing the curves in Figure 4,8 with those
in Figure 4,5 and Figure 3.3); The reason for this is that '
the Gaussian bandlimited channel introduces more signal dis-

tortion than the ideal bandlimited channel does (see Table

4,5, Table 4.3 and Table 3;1).



CHAPTER V

ANALYSIS OF SOME PRACTICAL MODULATION SYSTEMS

5.1 Introduction

The effects of bandlimiting on the'perforﬁance'of some
practical baseband systems haye been analyzed in Chapter Iv;
Bandlimiting not only causes the loss of signal energy but
also introduces intersymbol interference; It is the inter-
symbol interference that dominates the total system performance
for high signal~to-noise ratio.

For the modulation systems, the resfriction of bandwidth
is usually caused by (1) premodulation filtering (2) post-
modulation filtering (3) bandlimited channel (4) receiver
bandpass filtering or IF filtering. In the case of (1), the
performance of the system can be analyzed the same way as
the baseband system [17]. But for the cases of (2), (3) and
(4) additional signal distortion and interference will be
introduced by the aliasing effect if the carrier frequency is
not much greater than the bit rate [43].

In this chapter, the effects of the receiver IF filtering,
the most common cause of bandlimiting for a modulation system,
will be'analyéed using the main results of Chapter III,

The performance of the three basic data modulation

systems, which are almost exclusively used in practice, will
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be investigated:

(1) Phase Shift Keying or PSK

(2) Amplitude Shift Keying or ASK

(3) Frequency Shift Keying or FSK
The explicit expressions for the degradation of signal;
intersymbol interference; and aliasing effect as functions
of system bandwidth and carrier frequency will be determined
first, The probability of bit-error for each case will then

be computed,

5.2 Phase Shift Keying

The PSK coherent communication system can be modeled as
shown in Figure 5.1 [14], [34], [46]; The PSK signals (see
Chapter II) at the transmission end can be generated by
amplitude modulating a carrier cos(wc t) by a random NRZ
signal with bit duration T, amplitude A or -A. n(t) is white
Gaﬁssian noise with zero mean and power spectral density
N0/2 (two sided). The receiver IF filtering can be modeled
by using a rectangular bandpass filter centered at the carrier
freéuéncy £, with bandwidth 2B, where B is defined as the
equivalent baseband system bandwidth, The transfer function

of the bandpass filter can be represented as

1 fc—B;f;ﬁc+B
HB(f) = 1 —fc-Bgﬁiffc+B (5.1) .

0 elsewhere
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The modulated signal plus noise at the output of the IF filter
is demodulated by the coherent demodulator; which consists
of a multiplier followed by a lowpass filter with bandwidth B,
The demodulated baseband signal plus noise then is fed to
the baseband detector. This detedtor, which consists of a
correlation detector followed by a threshold deVice; is optimum
if the system bandwidth is infinite; Since PSK signals are
antipodal, the optimum threshold d is set to be zero (see
Chapter II).

For practical consideration, the carrier frequency is
assumed to be a multiple of the bit rate [3], [10], [47].
The communicétion model shown in Figure 5.1 can be replaced

by an equivalent one (see Appendix D) as shown in Figure 5.2,

Here .
1l o sinTfT _~-j7fT e
> T TOE-F T . T e fc ‘Bififc+B
"1l sinnfT ~j7wfT f _mefeoo
H(f)= 2— T T—Tﬂ +fc T e fc Bf_ff_ fc+B
0 elsewhere (5.2)
The nth bit can be represented as

n

A nTéﬁi(n+l)T
an(t) =
0 elsewhere (5.3)
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where

[ A for a "1"
A = ) (504)
-A for a "0V

Then the modulated carrier can be expressed as
bn(t) = an(t) coswct nT<tg (n+1)T (5.5)

The Fourier transform of bn(t) is

(n+1)T
‘n£ Ancosznfcte

B_(£) =J2nftge

- sinm(£-£ )T  =jn(£-£_)T (1+2n)

AT TEE T ©

L Ll

.sinﬂ(f+fC)T —jn(f+fc)T(l+2n)

1
+ 3 AT TEFE T © (5.6)

Since fCT is an integer, we have

—jn(f-fC)T(l+2n)

sinn (£-£f )T e = sinqfT e—j“fT(l+2n)
¢ (5.7)
and
' ~ju (f+£ )T (1+2n) s
sint (F+£f )T e ¢ = sinqfT e JnfT (1+2n)
¢ (5.8)
Thus ........... ) e ee aesrsea aens .
21 , singfT - _~jqufT(1+2n) 1, . sinpgfT _~jqfT(1+2n)
B (f) = 5 AT TEET °© +2AnTﬁT?¢¥;TT‘e
_ a  £TsinmfT _~§mET (1+2n) .
Ay e (5.9)

m(f -fc)T
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The output I (t) of the filter H(f) in the time interval

th

Ofﬁfy-due to the n bit can be determ.ned to be

j2nft

.o
In(t) =‘£m Bn(f)H(f)e df
EA4B U
- f A T‘fsinwa‘ e—jnfT(l+2n)‘ 1T'SiﬁﬂfT'
£ -8 % m(el-El)T 2 TG T
e—j'"fTeJzﬂft af
~£ 4B T
+ A T.f singET -j'nfT (1+2n) l ogingfT
jf B D n(F2-£T "2 TR )T
TteT e €
e ITET  I2nftae
0<t<T (5.10)

Changing variables and simplifying, we obtain

AT BT g2
Tae) = - 15 [ B

coszx(1+nF%) ax

o X
BT ... 2 .
-2 f Sin X 5 cost(l+n-%)dX]
"o (2nE T)-x

For t=T, we have

AnT

(5,12)
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where
- 'HBT'Siﬁzx~ A
J(BT,n) = = f ——= cos2nx dx (see Equation (3,5)
o X
and
T BT, il 2000 o
C(BT,£_T,n) = 2 | SN X cosnx dx  (5.13)
T o (24£ . T) “-x

Both J(BT,n) and C(BT,ch,n) are even functions of n.

Also from Equation (3.7)

2 TP sin“x 2 ‘ - sin“ BT
(5.15)
Similarly
. BT ... ... . L2
C(BT,£_T,0) = 2 { = X?_ ax
T (27f T) “-x
which can be evaluated as (see Appendix E)
A..fif,f A _2ﬁfCTiﬁBT” *
ﬁ——77—~f [1n > F T=7BT + Ci(]4ﬂch—2ﬂBTl)—Ci(4nch+2ﬂBT)]
4 °F T c
c
‘ B # 2f (5.16)
C(BT'fCT0)= BN [N v e
N . 41. . . N
m [0.5772+ln (Bﬂch)"Ci(Bﬂch)] B = 2fC
c

(5.17)
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where

N _f " cosx
c; (y) = [y. >2% ax

is a cosine integral, also a tabulated value, C(BT,ch,n) can

also be expressed in terms of the function C(w,y,0)

C(BT,£,T,n) = 251 I (n+1)BT, (n+1)£_T,0]

- nC[nBT,nch,O]

+ 5L ¢ m-1)B7, (n-1)£,T,0] (5.18)

The signal at the output of the integrator sampley at t=T

due to an infinite bit train can then be given by

W= ) I (T

_'AOT

= —— [J(BT,0)~-C(BT,£_T,0)]

+A_
"K‘"E) [J(BT,n)-C(BT,£_T,n)] (5.19)

The first term is the desired signal and the second term is

the interference on the signal under detection; Note that each
J(BT,n) and C(BT,ch,n) is less than or equal to one for any n,
BT, and £ T. Also as B+wﬁ,J(BT;O)+l,vJ(BT,n)+0 (for n#0),
C(BT,fCT,n)+0 and vm+A0T/2 as expected for an infinite band-
width; J(BT,n) represents the effect of intersymbol inter-

ference on the bit under detection and C(BT,ch,n) represents
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the effect of aliasing. Also note when fd>>l/T, C(BT,fCT,n)+0
as expected and the effect of aliasing is insignificant. Table
5.1 gives some values of C(BT;ch;n).

The output of thé integrator due to both §ignal and

noise can now be given by

¥ = nE_wI (T) +ny =TT + } I (T) +ny
n#0
. AT
= —— [J(BT,0)-C(BT,£_T,0)]
e @ (A_+A_ ) V
+ %I nzl __EK_:E [J(BT,n)~C (BT, £_T,n)] + n, (5.20)

where n,y is the response of the receiver to the channel noise
n(t).

The variance of the noise n, can be obtained as

oo N
2 _ %0 2
f +B L
- I C . NO .. T2 ..... Sinzﬂ'fT N df
£ -2 T " 25 202
C C
- 3 L g
+ 0] IR G+ G Y (5,21)
td 2 I ° q2 2.2 M
£ -B (E+£ )°T

Changing variables and simplifying,'s'l2 becomes

o 2 Mot J (BT,0) (5.22)
y = 7 BT, :
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-Some Vaglues of C(BT,ch,n)
ch =1

BT C(BT,ch,O) CKBT,ch,l) C(BT,ch,2) C(BT,ch,B) C(BT,ch,4) C(BT,ch,S)

0.5 0.0131 -0.0066 0.0001 -0.0000 0.0000 -0.0000
0.6 0.0184 -0.0116 0.0042 -0.0028 0.0013 -0.0001
0.8 0.0258 -0.0144 0.0003 0.0010 0.0007 -0.0002
0.9 0.0271 -0.0137 ~0.0003 -0.0001 0.0001 0.0001
1.0 0.0273 -0.0135 -0.0001 -0.0000 -0.0000 -0.0000
1.2 0.0292 -0.0124 -0.0007 -0.0010 -0.0008 0.0002
1.5 0.0511 -0.0267 0.0016 -0.0006 0.0003 -0.0002
2.5 0.0575 -0.0299 0.0016 -0.0006 0.0003 -0.0002
ch = 2
0.5 0.0032 -0.0016 0.0000 0.0000 0.0000 0.0000
0.6 0.0044 -0.0028 0.0009 -0.0006 0.0003 -0.0000
0.8 0.0061 -0.0034 0.0001 0.0002 0.0001 ~0.0000
0.9 0.0064 -0.0033 —0.6000 -0.0000 -0.0000 -0.0000
1.0 0.0064 -0.0032 -0.0000 -0.0000 -0.0000 -0.0000
1.2 0.0068 -0.0030 -0.0001 -0.0002 -0,0001 0.0000
1.5 0.0100 -0.0050 B.OOOO -0.0000 0.0000 -0.0000
2.5 0.018? -0.0094 0.0001 -0.0000 0.0000 0.0000
ch = 3
0.5 0.0014 -0.0007 0.0000 -0.0000 0.0000 -0.0000
0.6 0.0019 -0.0012 0.0004 -0.0003 0.0001 -0.0000
0.7 0.0027 -0.0015 0.0000 0.0001 0.0001 -0.0000
0.9 0.0028 -0.0014 0.0000 -0.0000 0.0000 0.0000

1.0 0.0028 -0.0014 -0.0000 -0.0000 -0.0000 -0.0000
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Table 5.1 (continued)

BT C(BT,f_T,0) C(BT,f,T,1) C(BT,£.T,2) C(BT,f_T,3) C(BT,£T,4) C(BT,£T,5)

1.2 0.0029 -0.0013 -0.0000 -0.0001 -0.0001 0.0090
1.5 0.0043 .-0.0022 0.0000 -0.0000 0.0000 -0.0000

2.5 0.0075 ~-0.0038 0.0000 -0.0000 0.0000 0.0000
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5.2.1 Probability of Bit-Error Using the Averaging Method

Recall that the output of the'irtegrator due to both

signal and noise is given by Equation (5.20)

y =W+ n,
CAgT ) S
= —— [3(BT,0) = C(BT,£,T,0)]
@ (BAAT) : S
+ = 21 —2 "R [3(8BT,n) - C(BT,£,T,n)]+ n,
n=
(5.23)

Using Equation (3.18) and Equation (3.19), the probability

of bit error for a particular bit pattern is

e 2
o1 -u 1
P.=—] e du = = [1-erf(z,)] (5.24)
ei /T . 2 i
i
where
W,
2. =
* /701
© . A FA_
" AT{J (BT,0)-C (BT,fCT,O)+ ¥ (""K"") [J(BT,n)-C(BT,fCT,n)]}
g e gy A e
VZ R, T
-z—-J(BT,O)
.E ) .
= ,,/ﬁo B;” (BT,£.T) (5.25)
and E = AZT/Z, the energy per bit for the PSK signal (see

Chapter II),
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and
. A”+A'” 2
{J(BT 0)-C (BT, £ T, 0)+ Z (——~Ef—Q[J(BT,n)-C(BT £.T,n)1}
D (5T, £ T); ................... Y T NN
J(BT,O)
Thus Di (BT,ch) as a function of system bandwidth, carrier

frequency and bit patterns can be considered as the degradation
of signal-to-noise ratio and can be calculated easily.

From Table 3.1 and Table 5.1; it can be seen that |J(BT,n)
~C (BT, £,T,n) |<<[J (BT,0) - C(BT,£_T,0)] when n>5. Thus the
effects of the interference can be confined to the nearest 10
bits. There is a total of 1024 different patterns. Thus the

of error is given by

N 1%24
P = P .
e " T02 L ei
S 1024 1
= 'm z 2— (l—erf(Zi)) (5.27)
i=1
The' upper bound Pemax’ and lower bound Pemin can be obtained

in a fashion similar to those in Chapter III (Equations (3.23)

and (3.24)) D RSO ORI TR

...............................................

. [J.(BT,0) CBT £.T,0)- -} -2 3(BT,;n)-C(BT,£_T,n) 14
K AR A S IR S A
Pemax = gli-erf( No J (BT, 0)
(5.28)
By | . 13@T,0)-c (BT, £,1,001% 1 -
Pemin = Fil-exfl( N, —J(BT,01 (5.29)
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5.2.,2 Probability of Bit-Error Using the Series Expansion

‘Mefhbd-

Dividing both sides of Equation (5.20) by AT/2, we

have
X = 2,3, + nz_w 2, J + N (5.30)
n#0
where
X = L A =’§‘E=~4§1 J_ = J(BT,n)-C(BT,f _T,n)
AT/2 ' “n AT - " %n ! r~c 1™
and o
. n.,
N = 1
&)
The variance of N is
2.
R ¢ RS
0N2= E[ 1 2]
(AT/2)
=H'44 C. 2
AZT2 1
C . N,T e ey
= 53— + —4— J(BT,0) = L(ELO) (5.31)
AT Z(ﬁ-—)
. 0

Equation (5.30) is of the same form as Equation (3,25).

Thus the probability of bit-error is given by Equation (3.49)

P = (5.32)

e Pgl + Pe2
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where
) g
Pel = ¥ [l-exrf ( . )]
N
e 5
and
_ ¥ _qyhtl
Pe2 = nzl (-1) 2n ®2n-1 (5.34)

b, can be evaluatgd using Equation (3:59). G,,~1 can be

given by Equation (3.47)

G . _ —- .J.O G '. .2n‘-2 G
2n-1 ~ G 2 2n-2 c 2 2n-3
N N
. . J(BT,0)~-C(BT,£f T,0)
= 2(E ¢ c G
. -2n.-'~2.
= JBT,0) ®2n-3) (5.35)

From Table 3.1 and Table 5,1, the coefficient b2n can be

5 to J5

(i.e. from J(BT,-5) = c(sT,f_T,~5) to J(BT,5) - C(BT,fCT,S)).

calculated accurately ' using only the terms from J_

In other words, the effects of interference can be confined

to the 10 nearest bits without significant error, The series

for Py also converges rapidly so that it can be evaluated

accurately using only 10 terms in the series. ag B+, b2n+0'
. E

J(BT,0)~1, C(BT,ch,O)+O and P, = 1, P = 1/2(1-exf ( ﬁa }) as

expected for the infinite bandwidth case (see Chapter II).
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The resulting pfobability of error; Por for a random PSK
signal as a function of signal-to-noise ratio E/NO and band-
width-bit duration product BT for various carrier frequencies
is shown in Figures 5.3, 5.4; 5.5,,5;6 and 5!7; The results
agree with those found using the averaging method.

Table 5.2 lists Por Pel; and Pe2 as a function of signal-
to-noise ratio E/N0 for some values of BT and ch. It can be
seen from Table 5,2 that; as predicted, Pq is close to Pel
when E/N0 is small and close to Poo when E/N0 is large. Also
as the bandwidth of IF filter becomes wider, the interference
becomes less.

From Figures 5.3, 5.4, 5.5, 5.6, 5.7 and Table 5.1, it
can be seen that for fc>3/T, the effect of aliasing can be
neglected, and the results are the same as obtained in
Chapter III for the baseband NRZ system. In other words,
the modulation has no influence on the detection of PSK signals
for carrier frequencies greater than three times the bit rate.
This is significant result, because it can serve as a guideline
for the design of an aliasing free frequency division multi-
plexing (FDM) transmission system;

For BT=2;§; ch>3; the additional power needed to give
the performance same as an optimum case (infinite bandwidth)
is only 0,3 dB(see Table 3;1). This suggests that an IF
bandwidth of five times the bit rate is wide enough to achieve

the optimum results for the PSK system.,
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Values of P_, P and P VS.E for the PSK Systém with BT=1,0
e el e? N0
and ch = 1.0, 3.0

£,T =10 BT = 1.0

E
(dgé Log (P,) Log (P q) Log (P, )

0,00 -1,008 ~1,016 -2, 7L

Lo77 ~1,862 ~1.921 =2,757

6.99 -2,600 ~2,748 =34137

8,45 -3,280 ~3.548 -3.617

9.5k =3¢925 ~4.334 -he139
10,41 -l o 5hl ~5,111 -4,682
11,14 ~5.147 ~50882 -5¢285
11,76 -54737  ~6,648 ~50794
12,30 ~64319 ~7.413 ~64356
12,79 -6,895 -8,173 =64919
13,22 =7,467 ~84931 -7.482
13.62 ~8,035 -9.687 -8.045

’ 13q98 -80601 -100[‘1'&1 "8.607
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(Continued.)
£,T = 300 BT = 1,0
Log(P,) Log(P_;) Log (P, )
-1,039 ~1.045 ~24945
~14952 -1.993 =3,002
~2e759 ~24863 ~34432
=3e515 =34705 ~34965
-ls238 =~k 533 =y 5
10937 ~50352 -50147
~54618 -64165 ~5,764
-6.288 -6.973 -64388
~60948 =7779 ~74017
=7.601 -8,581 ~7.649
~8,248 -9,381 -8,282
-8,892 =10.179 -84,915

-9¢533 =10,976 -90 549
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5.3 - Amplitude Shift Keying -

The ASK cystem is the same as a PSK system shown in
Figure 5.1 except that A is equal to A or zero instead of A
or -A (see Chapter II). The threshold setting is AT/4 as
will be shown later.

Equation (5.18) can be rewritten as

Al oo . o

.. o P | R
Ty Oy

+ L [ ——— A][J(BT,n)—C(BT,fCT,n))] + ny
(5.36)
where
' A; = A Oor -A
Thus
o A' 3+ A "
© AT n -1
+ g nZl = [3(BT,n)-C(BT,£_T,n))] (5.37)
+ %-'Il Y JT,n)
- %?. z_w C (BT, £,T,n)
+ ny (5;38)



120
L] ) o .
But ) J(BT,n) =1, .2 C(BT,fCT,n) = 0 (See Appendix E),

n=-—® ==

we have

AgT

y = —— [3wr,0)-c(BT,£,T,0)]

L] 1

. o A H+A
AT A

+ g n=21 _.E_..A.__P.._ [J (BT ,n)~C (BT, £_T,n)]

+ %2 + ny (5:39)
Thus the optimum threshold should be set at AT/4 (if the gain
of the integrator is A, d will be AZT/4, which agrees with
- the result of Chapter II). The decision error will occur
whenever Y-AT/4 plus noise is greater than zero if a "O"
is being sent and less than zero if a "1" is being sent. Let

Y' = ¥Y-AT/4, Equation (5.39) becomes

]
o o ot [J(BT,0)-C(BT,£f T,0)]
Y = =g ’ 't
AT o A+ A_"
v~ h;l ——— [J(BT,n)-C(BT,£_T,n) ]+ ny
(5.40)

Therefore we can treat the ASK system the same way as we

treated the PSK system,

Dividing both sides of Equation (5,40) by AT/4, Equation
(5.40) becomes

. [+ ]
X = 2y, + nz_wszn + N (5.41)

n#0
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where J, = J(BT,n) - C(BT,ch,n), Zn =+ 1, and N = nl/(AT/4).
Equation (5.41) is of the same form as Equation (5.30) except

that the variance of N is

c 2 .§1n1.1

N . 2
AT
(7;0

= T(BT,0) (5.42)
Z(ENE)
where E = A2T/4 is the average energy per bit for the ASK
signals (see Chapter II).

By comparing Equation (5.42) with Equation (5.31),
immediately it is clear that the ASK system requires twice as
much energy to achieve the same performancé as the PSK system,

This can also be verified using the averaging method.
Using Equations (3.20) and (5.40), the probability of error

for a particular bit pattern is

P, =’§ (1-erf (z,))

where 5 S ATiA"
) , At _
AT Yo n 2
|5 wenn-cer, g 04 b S 5(eT,n)-C (BT, £ T,n0))
2 = 2N, 3 (BT, 0 — -
(5,43)
o

Since éﬁz is the average energy per bit, we haye

_'|E 2 '
Z, _A/WJ p (BT, £ _T) (5.44)
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Compared with Equation (5.25), the ASK system indeed requires
twice as much energy to achieve the same performance as the
PSK system, Thus regardless of the restriction of the
bandwidth, the ASK system always requires 3dB more power
than the PSK system. The probabilities of bit-error plotted
in Figures 5.3, 5.4, 5.5, 5.6 and 5.7 can all be used for
the ASK system except that all the curves must be moved to

the right by 3dB.

The bandlimited FSK coherent communication system can be
modeled as in Figure 5;8. un(t) is the random NRZ signal
with bit period T, and amplitude +1 or -1. Bandpass filter
Bl(f) is centered at one carrier frequency fo + Af with
bandwidth 2B, and bandpass filter Bo(f) is centered at the other

carrier frequency f,-Af with bandwidth 2B.

0
As in Section 5.2 the model can be replaced by an equi-

valent one as shown in Figure 5.9, where

(1 o sinmfT _ _-jmET

7 T T, aETT £,+AE-B<Ef< £ +AF+B

1 . singfT  _=37ET
Hy (£)1=] 7 T T(EFE,+AE0T ©

—fo—Af—Bﬁﬁjffo—Af+B

0 elsewhere (5;45)
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. 1 o .. . :S-in'n_.f'r . .- —jnfT _ _ . .' _
T T FUE-E,FAET £o-Af-Bif<f~AT+B
B < ginmET —jva . L |
Hy (£)={5 T TTEFE,-AE)T e £ tAE~BSESE +Af+B |
: (5.46)
Y elsewhere

The frequencies f0+Af and fO-Af for the two carrier tones are

assumed to be the multiples 0of the bit rate (i.e. the signals

are orthogonal) [34]. The nth bit can be represented as
b_ (t) = Acos (wyt+U_Awt) NT<t< (n+1) T

where
U, = l or -1

The Fourier transform of bn(t) can Be written as

(n+l)T s
B_(f) = ‘Acos (u, t+U_Awt)e 2Tt gt
n 0 n
nT
e em Sin'n’fT ..... —j'n'fT (1+2n)
= AT — 7~ © (5.47)
nlf —(fO+U AEYT]T
n
The output Cnl(t) of the upper integrator due to the nth
bit can be determined to be
¢ j2nft
Sy (e) = [ B (E) Hy(£1e?°TF af (5,48)
th

The output C_,(t) of the lower integrator due to the n~ bit
can also be determined to be

j2rft

CnO(t) = f_m Bn(f)HO(f)e af (5.49)
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th

Thus the input to the decision device due to n " bit sampled

at t=T is

Dn(T) Cnl(T)—Cno(T)

j27TET

b1

,I-.mBn. (£) [H, (£)-H, (£)]e af (5.50)

Changing variables and simplifying, we have

D, (T) = = Un{J(BT,n)—C[BT,(fO+UnAf)T,n]+C(BT,fOT,n)
+ C(BT,AfT,n)} (5.51)
The signal presented at the input of decision device due

to the infinite bit train can then be expressed as

[

W= ) D_(T) DO(Ti + D_(T)

N Ne=e-—o

= 22 uy (I (BT,0)-CIBT, (£,+U A£)T,0]+4C (BT, £,T,0)

0
+C (BT, AfT,0)}

+.%; ) Un{J(BT,n)-C[BT,(f0+UnAf)T,n]+c(BT,fOT,n)

n=-®

n#0

+ C(BT,AfT,n)} (5.52)

Compared with Equation (5.19), it is apparent that in addition
to the effects of aliasing on the bit under detection there
exists signal crosstalk caused by the IF filtering which can

be represented by C(BT,fOT,n) + C(BT,AfT,n).
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The noise present at the decision device can be written as

n' = nl(T)—no(T)

. 00¢s -]

| n@n,(r-2)az ~ | n(2)hg (T-2)az (5,53)

- GO

where hl(t), ho(t) are the impulse responses of Hl(f) and
Ho(t),respectively.
nl(T) and nO(T) are both Gaussian processes with zero mean

and variance 012 and 002, where

2 _ > Ng 2 - NpT -
0% = j°° » |H (£) |7 af = —~— J(BT,0) (5.54)
and ,
o N CNAT
2 :2 0
0,% = fm - |Hy(£)[% af = - J(BT,0) (5.55)

Thus n' the differeénce of two Gaussian noise processes 1is

still Gaussian process with zero mean and variance

o2 = 012 + 002 ~ 2E[ny (T)ng (T)] (5.56)

But'E[nl(T)no(T)] can be written as [41]

o
Blny (Tng (M) = [ 5> By (O)E5(D)af (5.57)



For B>Af, we have

EEnl(T)nO(T)]
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'7_'“f0+Af—B i3 n(f-fo—Af)T 2 ﬂ(f—f0+Af)T
+‘ io— —fo—Af+B }- T ..... Sin,n,fT .o . "j"TfT.}_ T BN Sin'ITfT jﬂfT df
2 - +Af-B 2 7 m(E+L +AE)T 2 7 m(f+fy=AL)T
(5.58) .
Simplifying, we obtain
. N,T A
. 70 AfT
Elny (Tng(T)] = —— CI(B-A£)T, —— , 0] (5.59)
For B< f, we have
Hl(f)Ha(f) = 0 (5.60)
and
E[nl(T)no(T)] =0
Now we can express o2 as
N,T .. N,T CA-Em - Apm
AFn
2 aer,0) - o cl@-af)T, 2, BT 01 By af
2 _ -
7 = (5.61)
.NOT .
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The input to the threshold device due to both signal
and noise can now be given by

y=w+n!

='§E UO(J(BT,Q)-C[BT;(fO+UOAf)T;O]+C(BT;fOT;01+C(BT}AfT;01)

+ %3 I U J(BT,n)~CIBT, (£,+U, Af)T,n]+C(BT,£,T,n)+C (BT,AfT,n]
n:‘-—co
n#0

+ n' (5.62)

For carrier frequencies much greater than the bit rate, which
is a practical assumption for the FSK systems [34], C(BT,(fOiAf)T,n)
and C(BT,fOT,n) will approach zero. Then Equation (5.62)

becomes

y = 3% U,[3(BT,0) + C(BT,AfT,0)]

+ § (Un+U_n)[J(BT,n) + C(BT,AfT,n)] +n' '
e (5.63)
In the following, the probability of bit-error will be
detefmined using the averaging method and the series expan=-

sion method based on Equation (5.63).

Using Equation (3.,18) and Equation (5.63), the probability

of bit-error for a particular bit pattern can be given by

Py = 3 (l-erf(zy)) (5.64)
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where

_ TR 2 .
Z; -.Aﬁaﬁa D; (BT,A£T) r (5.65)

E = AZT/Z, the energy per bit for the FSK Sanals, and

[J(BT 0)+C(BT, AfT 0)+ E (U;+0_ )[J(BT n)+C(BT AfT,n)]

Di (BT' AfT) o n__l ....... o
3 r,0) -Clte-ae)r, 2L o
(5.66)
The upper and lower bounds of the probabilities of bit-~

error can also be expressed as

2

1 .
Pemax = zli-erfl( ?"E CAF
J(BT,0) - C[(B-Af)T, -A-,z-"i , 0]
(5.67)
- [T (BT, 0)+C (BT, A£T,0)] 2

0 J(BT,O)—C[(B—Af)Treégr

Pemin
0]

From From Table 3.1 and Table 5.1, it can be seen that |J(BT,n)
+ C(BT,afT,n) |<<J (BT,0)+C(BT,A£fT,0) for n»5. Thus the effects

of interference can be confined to the nearest 10 bits. The

average probability of error now can be given by

13 (BT,0)+C(BT,AfT,0)+2 2 |3 (BT,n)+C (BT, AfT, n),]

)]
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5.4,2 ' Probability of Bit-=Error Using the Series Expansion

" Method -

Dividing both sides of Equation (5.63) by AT/2, we

obtain
o] .-
X = 243, +.n£_mznan + N (5.70)
n#0
where -
Z,=U, =+1, 3 =J(BT,n} + C(BT,AfT,n),
and Ce e e e
—. .n.'.' .
N = AT
(=)

The variance of N is

¢2 = 5@'?) (5.71)
. AETZ _
(~If—)
Substituting Equation (5.61) into Equation (5.71), GNZ becomes
N T o
, - {3(8T,0). - cL(B-pa)T, 2L, 01}
o =
N ) 'A2T2
Y
, J(BT,O)—C[(BjAG)?,Af?,~pq .............
= : — — —_ (5,72)
2(2%-6)

Equation (5.72) is of the same form as Equation (3,27), Thus

the probability of the bit~error is given by Equation (3,51}

P, = Py *+ Pgy (5.73)
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where
- T
P = = [l-erf(— )1
el 2 )/'2-0.
N
oL f1eest (ng [:J (BT, 0)+C (BT,AfT,oigfi; ']
0 J(BT,0)~-CI(B-Af)T,=5=,0]
(5.74)
and
3 n+l :
P.y = nZl (1) by Con-1 (5.75)

b, can be evaluated using Equation (3.593). G,y,.q Can be

given by Equation (3.47)

; I _m2
2n-1 o 2 2n-2 o 2 72n-3
N N

- - E_[I(BT,0)4C(BT,0ET,0) c
No " a(er,0) -l (B-A£)T, 22T, 0] 2n-2
............ ane2
- G2n—3]

3 (8T,0)-c[ (B-2£)T, 2%, 0]
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From Table 5.1 and 5.2, it can be seen that [J(BT,n)
+C (BT, AfT,n)1°2<<[J (BT, 1)+C (BT, AfT,1)1% for n>5. Thus b, can

be evaluated accurately using only the terms from J_ to

5
5o Therefore as for the averaging method the effects of

J
the interference can be confined to the 10 nearest bits. Also
the series for Pe2 can-be truncated to 10 terms with insignifi-
cant error, As B-so, J(BT;O)+1; C(BT,AfT;O)+O; J(BT,n)~0,
J(BT,A£T,n)+0, and C((BT-A£T), A£T/2, 0)»0, thus b, >0 and
P, = Py = 1/2 (1~erf ( -5534)), the well known result as .
predicted in Chapter II for the infinite bandwidth FSK system.
Table§3 lists Por Poyr and P.s for éome values of AfT
and BT, Figures 5,10, 5.11, and 5;12 show the plots of the
probability of bit~error for Af equal to 0.5/T, l;S/T, and
3.0/T respectively. Figure 5.13 shows the plots of the probability
of bit-error as a fﬁnction of AfT for E/N0 equal to 10dB
and 15 dB. The results obtained here agree with those obtained
by the averaginé method.
Comparing the results obtained by either method with
those for the PSK system (Figure 5.7), it can be seen that
for Af>3/¢, the perfdrmance of the FSK system is the same as
that of the ASK system and is 3dB poorer than the PSK system
on an average power basis, Howeyer, forf8f<3/T, the performance

of the FSK is better than that of the ASK, The reason for this

is that the signal crosstalk C(BT,AfT,n) tends to reduce the



LOG (Pe)

~220

134

~.

Figure 5.10

for the FSK System with Af ='9%§



PSS
m“
[oo BEEN
ot
(=
-
S

14

:Eﬁ-;» as
(o]

Figure 5.11 : P, Vs ﬁ-— for the FSK System with Af = —T--
0



=-2,0

136

T

Figure 5.12: p  yg E_
e NO

8 10 12
-Er + dB

l

[t

3

for the FSK System witﬁ Af:T




137

oz
gp 6T pue ‘dp m-= " g

yaTm wo3sSAS NS4 °Yd. X0 Ig SA 4 (E€T°G 9InbTd

+~ L3V




138
Table 5.3

: B . ~
Values of Pe' Pel and Pe2 vs ﬁg for the FSK System with BT=1.0
and AfT=0.5, 3.0

AfT = 0465 BT = 1,0

%o Log (P, ) Log(P ;) Log (P, )
(aB)
0.00 ~04792 -00792 o272
4477 -1,362 ~1.363 ~3,981
6499 -1.867 -1.870 ~-4,073
8.45 2,348 20353 4,278
9. 54 -2.815 ~2,823 ~li4 538
10,41 ~3.723 -3.285 =k, 831
11,14 -34725 ~3.742 -50146
11.76 ~h,272 ~l,194 ~5e175
12,30 -4 o616 =4, 6Lk ~54817
12479 ~5.056 ~54091 ~64167
13.22 ~5.493 -50535 =60 524
13,62 -50928 ~5.978 ~6.886
13.98 ~64360 ~6420 -7 0254



Table 5&3
(Continued)
AfT = 3,0 BT :I 1.0
Log(P ) Log (P ) )
=04767 ~0.769
=16296 -1,306
-1.756 ~14782
=24185 2,234
-2, 596 ~24673
-20993 «34105
~-3¢380 =3¢531
~30758 =3.953
=l4,128 -l,372
=4 o2 -l ,788
~l,851 -54202
-50206 ~5¢615
=5¢556 ~60026

. Log(P

139

e2)

=3e253
-2,932
-2,991
-3.161
=3.384
-3.638
=30912
-4,199
=LoU495
-l e 799
-50107
-5:420
=5.736
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influence of the intersymbol interference J(BT,n), while
C(BT, £fT,0) tends to aid the signal strength J(BT;O), Also
the noise nl(T) and n2(T) ;r; correlated;‘thus tﬁeuygriance
of n' , 0%, is reduced (—— (J(BT,0)-C((B-Af)T,2EE, N)),

The optimum Af is found to be equal to the half of the
bit rate, 1In other words; to obtain the greatest discrimina-
tion, the optimum spacing between the two carrier tones is
equal to the bit rate. Notice that for the case of infinite
bandwidth the two carrier tones spacing does not affect the

performance, Thus the IF filtering indeed has a great effect

on the performance of the FSK system,



CHAPTER VI

EQUALIZATION OF INTERSYMBOL LINTERFERENCE

In previous chapters;_the pexformance of various band-
limited baseband and modulation systems has been analyzed in
terms of the probability of bit~error, It has been shown
that the intersymbol interference severely degrades the
performance of these communication systems operating in a
high signal-to-noise channel.

Currently, the demand of the high data transmission
rate utilizing the high signal-to-noise channel such as
telephone line as the communication link has resulted in
an enhanced interest in alleviating the influence of the
intersymbol interference. The well known optimum equalizer
is a tapped-delay-line (TDL) filter [l ]. The purpose of
any TDL filter is to eliminate the intersymbol interference.
For an unknown channel characteristics, some adaptive
alogorithms using steepest-decent techniques for automatically
adjusting the tap gains of TDL filter have been proposed
[13],,[18];A[23]. Different performance  indices were used
in these works. Lucky [13] minimized the sum of the
absolute values of intersymbol interference by adjusting tap

gains, while others [18], [23], adjusted'the tap gains to
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A}

minimize the mean-square error {MSE) due to the combination
of intersymbo:' interference and additive noise,

On the other hand; for a known channél characteristic
the tap gains can be obtained by minimizing the probability
of bit-error and solving a set of nonlinear equations [1 ].
However, in most cases, the nonlinear equations are not
particﬁlarly tractable, Thé optimum gains are usually
obtained by trial and error.

In this chapter, first, the receiver in the bandlimited
NRZ baseband model shown in Figure 3.1 of the Chapter III
will be proven to be the optimum detector for detecting a
single NRZ pulse in the absence of intersymbol interference
and then a new modified tap-delay-line filter in tandem with
the receiver will be proposed for equalizing the intersymbol
interference. The overall performance improvément will be
determined in terms of bit-error probability. The principle
developed for this particular system then will be generalized

for any data transmission system using the linear detector.

6.2 Optimum Detection of a Single Bandlimited NRZ Signal

The bandlimited NRZ baseband communication system shown
in Figure 3.1 is repeated in Figure 6.l1. From Chapter II,
it is known that the optimum receiver for the detections of

binary signals corrupted by additive white Gaussian noise can
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be implemented using the matched filter. For a single NRZ
pulse (i.e. in the absence of intersymbol interference) the
optimum receiver can be determined from tﬁe signal and channel
characteristics;

Now consider a single NRZ pulse with amplitude +A or ~-A and

duration T, The Fourier transform of this pulse is given by

T coEr e . L)
F(E) = | A e I%TEE gr = pp SIDFET mITET 6.1)
(o] .

Thus the transfer function of the matched filter will be

(see Equation (4.48))

R(£) = KIF(E)H(£)e 12T«

(KR)H (£) - (7EERTET =3 7L, (6.2)

Choosing KA to be 1, the optimum receiver is readily recog-
nized to be a lowpass filter followed by a correlation detector
as shown in Figure 6.1. This model is the same as the one
used in Chapter III.

| The probability of error for detecting the single pulse

is then given by Equation (3.53) or Equation (3,24)

Pes =- %. (l-—erf( ’W J(BT,O)) (603)
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Figure 6.2 shows the plots of P_ for various bandwidths.
No other receiver can give better performance than the
one shown in Figure 6.1 for detecting a single bandlimited
NRZ pulse; However; from Chapter III; the performance of
this receiver is severely degraded by the intersymbol inter-
ference especially for the high signal—to—noise channel,
In the followiﬁg, a modified TDL filter equalizer will be
proposed to eliminate the intersymbol interference to achieve

the minimum probability of error as given by Equation (6.3).

A modified TDL filter in tandem with the receiver (see
Figure 6.1) is shown in Figure 6.2, The output of the
integrator is sampled and normalized before being sent to

the TDL filter. There are (2n+l) taps (C_y to Cg) in the

N
TDL filter. Thus the delay line spans (2n+l1)T seconds, and
in it there are stored the most recent (2n+l) samples. The
operations performed on these (2n+l) samples are as follows
(see Figure 6.3).

The sample stored at each tap (except the central one)
is.fed to a sign detector; If the sign is positive at the
decision time'(t=T);_the corresponding gain element will

subtract an amount J(BT,n) from the bit under detection

(central element) and vice versa. The central bit then will
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be decided to be a "1" or "0" depending upon the resulting
.signal plus noise at tﬁe'output of the summer greater than
zero or not. After this decision is being made; the content
of the samples stored at different taps is shifted to the
right and detection is performed as before;

The output of central element can be expressed as

o]

OJO + nZ-w Zan + N (6.4)

n#0

X = 7

where

B =+1, 3 = J(BT,n)

The variance of the noise N is given by Equation (3.52)

Jd

52 _ o
N 2(%_) (6.5)
0

In the following sections, the performance of this
modified TDL filter will be analyzed by considering only

three taps, namely C-l’ Co and C+l using the averaging method

and series expansion method.

6.4 Performance Analysis = Ayeraging Metho

There are only four possibilities associated with the
slgns gf taps C—l and C+l:
A, Both signs.of C_; and C,, are correct,

B, Sign of C_, is correct and C,1 1s incorrect.
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C. Sign of C_; is incorrect and C_; is correct.

D. Both signs of C_i and C+l_are'incorrect.

The probability P that the sign is incorrect for the taps

C__l and C+l can be thought as the probability of bit-exror
for the receiver without using the TDL filter and is given

by Equation (3;21) or Equation (3;61) in Chapter III: Thus
the prbbability of Case A; P (Case A) can be written as (l—P)z.
Similarly the probabilities of Case B; Case C and Case D

can be expressed as

P (Case B) P (1-P)
P(Case C) = P(1~P)

P(Case D) = p?
The probability of bit-error for a particular patfern can

be obtained as follows.

" Case A-

The output of the summer is

X = ZOJ0

o}
+ n£2 (z,+7_, ) J + N (6.6)

The probability of error for this particular pattern can be

given by Equation (3.18) @
) o ot Ezn(?nfz nl9y
. l . E E [ n’_ NN e s ) .
PEi = 7[l—erf( ’-N—— . v - - ——— ) ] (6.7)
A 0 N5} '



Case B

The output of the summer is
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<0 .
X = A3, + hzz (AtZ 50 I, + 23)) 2y + N (6.8)
and the probability of error B
""" - (2, +Z~h)J~+(2Jl)Z
Pei = [l-erf( | —
"o
(6.9)
Case C
The output of the summer is
©0
X =233+ 1 (2+2_ )3 + (23;) Z2_; + N (6.10)

n=2

and the probability of error is

Jo+ L (B +2_ )T +(23,)2]

= ..U . el o n LT =Y
Py = % [1-exf ( /%— n=2 -
C 0 vdJ

0
(6

" Case D

.The output of the summer is

X = 2,3, + n£2 (2 +Z_ )3 + 2(Z;42_3)d; + N (6

)]

oll)

.12)

)]
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and the probability of error is

_ J *. 2 S AZ FD )T +2(z +7.. )J

Py [1l-erf( / -
0 .
(6.13)
The average probability of bit-error for this particular

bit pattern using only three taps can then be evaluated. as

P

P (Case Aa) Pe‘ + P (Case B)Pei

el lA B

+ P(Case C) Peic + P {Case D)PeiD

2
= (1-P)“ P . + P(1-P)P_ . + P(1l-P)P
elA elB elc

2

+ P PeiD (6.14)

The average probability of bit-error for the intersymbol
interference confined to the 10 nearest bits then can be

computed as
=t 1024

Pe = m izl Pei (6.15)

6.5 - Performance Analysis--Series Expansion Method

The probability of bit-error can be obtained using the
series expansion method by analyzing the same four cases of
Section 6.3; .

The probability of error for the Case A can be given by

Equation (3.61)
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By = gll-erf( / N 900+ 2 i, D™, 6, (6.16)

except that d,, ; which is used to evaluate bZn (see Equation

(3.60)) is modified as

2RI =2 o |
_ 22t 2k 28 24
d20-1 T T3 Band  Tn" *nda T (6.17)

Similarly, for the Case B, the probability of error is

[2-]

- liere( B3, _1yn+l
Py = 1[1 erf ( Ny Jo)1 + nzl (-1) by Gy g (6.18)

and d,,_4 is changed to

..2&..22" ©
(27" -1) By [ 2 g2 ) Jn22+ (2J1)2£]

n
" (6.19)

dyg-1 = Y
24-1 2%e n=-® . n=2

For the Case C, the probability of error is

Py = 3 [1-erf( [E- R nzl -1, 6, (6.20)

and de—l now becomes
| L2828 = 2
(2 ) 2% 2%
a = [ Z J M+ Y 3 (23 ,) ]
28-1 287 2Q neew B n=p D -1
(6.,21)
Finally, for the Case D, the probability of error is
_ 1 _ g v n+l .°
Py = sll-erf( Ny I+ L 1T by Gy g (6,22)
| n=1
and d21—l is changed to
22 22 0
e (2°7-1) 2% 24 2% 22
dygq = ST Q[n_Z__mJ + nngn +(27_) 7742077

(6.23)
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For the system considered in this chapter, I is equal to
J_n. Thus Py is equal to Pae The avevage probability of
error for the detection of the central bit can now be computed
as _
P = (1-p)° P +2P (1-p]P. + PP (6.24)
e A B ‘ D ¢

By confining the intersymbol interference to the 10 nearest
bits as for the averaging method, the resulting Py is in agree-
ment with that obtained using the averaging method and is
shown in Figure 6.4 for various bandwidths (dashed lines).

Table 6.1 lists Pes' P P, (1—p)2PA, 2P(l—p)PB and P2P for

el D

BT=0.6 and BT=0,8.

Comparing the results obtained using either method with
those for the single pulse case (Figure 6.2), the effect of
the intersymbol interfereﬁce has almost been cancelled out.
Table 6.1 gives the reason., Since P is much smaller than 1,
Py in Equation (6.24) tends to approach Pay which corresponds
to the case of the cancellation of J(BT,l). From Table 3.1,
it can be seen that the most effect of the intersymbol inter-
ference comes from the immediate adjécent bits., Thus using
only three taps, the performance of the modified receiver
is almost near optimum and can be predicted using Equation

(6.3),
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6.6 Discussion

The performance of the modified TDL filter equalizer
has now been verified by both methods: The analysis procedure
laid out in Sections 6;4 and 6:5 can be used to analyze the
performance of the modified TbL filter with more than 3 taps.
By using 5 taps; it is found that the performance does not
improve significantly. In other words, the correction con-
tributed by C_, and C,, has little effect on the detection of
the central bit. Because |J(BT,2) is much smaller than
J(BT,0). Thus for all practical purposes, there is little
point in using the C2 and C_2 taps for the bandlimited NRZ
transmission system.

The biggest advantage of this modified equalizer is that
the gains can be obtained analytically and the performénce is
almost near the opﬁimum case (single pulse correlation
detection). As pointed out before, the detector output for
any data transmission system with known channel characteristics
can be given by Equation (3.25). Therefore the modified TDL
filter developed in this chapter can be applied to any data
system to allievate the influence of intersymbol interference
and thus speed up the data transmission rate,

In practice; the delay lines can be replaced by digital
shift registers and all the gain element and summer can also

be realized by the logic gates and flip-flops. Thus the operation
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of the modified TDL filter can be performed digitally with

high speed.



CHAPTER VII

CONCLUSIONS AND RECOMMEIIDATIONS

7.1 Conclusions

The effect of bandlimiting on the performancé of various
transmission systems corrupted by additive white Gaussian

noise have been analyzed using two methods , the averaging

5
method and the series method; The results from both methods
agree,

First, the performance of an ideal bandlimited NRZ
(Non-Return-to-Zero) baseband transmission system was examined
using correlation detection gnd sampling, The cxplicit expres-
sion for the degradation of the signal and the intersymbol
interference was derived as a function of system parameters,
such as the bandwidth of the filter and signal-to-noise ratio.
The average probabilities of bit-error were computed. It was
shown that the correlation detector performs better than the
sampler detector for BT>.6 and worse for BT=.5.

Second, a split-phase baseband system was analyzed
following the same steps used for analyzing the NRZ system.

It was shown that a split-phase baseband system requires

about less than twice as much bandwidth as the NRZ system

to have the same probability of bit~error for the same value

of signal-to-noise ratio using the correlation detector.
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Third, an NRZ baseband system using Gaussian filters

was analyzed employing correlation detection; It was found

that this system introduces more intersymbol interference

and performs poorly.compared to ideal bandlimited NRZ system,
Fourth; the effect of bandlimiting the modulated system,

the Phase-Shift-Keying (PSK), the Amplitude-Shift-Keying (ASK),

and the Frequency-Shift-Keying (FSK) have been analyzed assuming

coherent receiver and using ideal filters as well as cor-

relation detection. The explicit expression for the degradation

of the signal and the intersymbol intérferenée as a function

of bandwidth of the filter, signal-to-noise ratio and carrier

frequencies were given., It was found that the aliasing ef-

fected can be neglected if the carrier frequency is three

times more than the bit rate. The PSK system requires 3 dB

less on the average power basis than the ASK system regardless

of the restriction of the bandwidth. If the spacing between

two carrier tones in the FSK system is less than three times

of the bit rate, the FSK system shows a better performance

than that of the ASK system, The optimum setting of the tone

spacing is shown to Ee equal to the bit rate. However, PSK

system still gives the best performance. Thus for a coherent

modulation transmission system; the PSK should always be fayored,
Finally, a tapped-delay-line (TDL) filter has been

introduced at the receiver of the NRZ baseband system in
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conjunction with the correlation detector as an intersymbol
eliminator. On-an average probability of bit-error basis,
and using only three taps, it was demonstrated that the

performance of this system is near optimum,

In this dissertation, the channel is modeled by a linear
filtef by an additive white Gaussian noise source: The
first topic for future study suggested by this dissertation
is an investigation of the effects of bandwidth restriction
on the performance of a modulation system over a nature (not
man-made) mutipath fading communication channel. Because of
the random changeability which often accompanies this natural
channel, mutipath is inevitable and is crucially. dependent
on the signal bandwidth. Mutipath not only introduces a
Rayleigh fading envelop but also a uniformly distributed
r-f (carrier) phase. The analysis of the performance of
digital transmission system over a slow and nonselective
Ray;eigh fading channel in the absence intersymbol inter-
férence has been reported [35]. It Qill be very interesting
to extend the analysis to the case of intersymbol interference,
However, it is believed that the analysis will be highly
complicated.

The coherent detection for the modulated signals was
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assumed in this dissertation. In the absence of the inter-
symbol interference, the analysis of the performance of the
binary communication system with partially coherent reception
has been obtained by Viterbi [44]. The second topic for the
future study suggested by this dissertation is to look into
the effect of intersymbol interference on the performance
of this partially coherent system.

The receivers analyzed in this dissertation are the
linear detectors which are optimum for the infinite system
bandwidth., However, the performance of these detectors is
degraded if the system bandwidth is restricted. Therefore,
it is worthwhile to compare the performance of linear
detector with that of nonlinear detector such as envelop
detector for ASK and FM discriminato£ for FSK under the
bandlimiting hypothesis. The third topic suggested by
this dissertation for the future study is then the investi-
gation of the influence of the bandlimiting on the performance

of the ehvelop detector and FM discriminator.
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APPENDIX A

0

THE SERIES EXPANSION OF g cos(JnW)

n=-«
n#0
Let F(w) = =« cos(an)
IN=-<ocow
n#0
then
J_lsin (J_ lw)
F'(W) = ceee. F(w)

cos(J_lw)

= -F(w) 7} Jntan(an)

n=-wx

n#0

Using power series, we have

J151n(J w)

1

cos(le)'

_ 1 3 2 5
Jntan(an) = Jn[an + §(an) + Tg(an) +

228 (528 _q)

+ 201 20

where BZQ is the Bernoulli number.

Combining all terms, we obtain

J g tan(T w) = § d, _, w ,
Neew B n o=1 29-1
n#0
where
a2 22be* -y !
22-1 29! 28 pL_°n

n#0

B (an)2
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F(w)....

(A.1)

LI

(A.2)

(a.3)

(A.4)
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Since cos(x) can only be expanded into a series of even

power of %, we can let

[ -]

Flw) =1+ 7} b, W (A.5)
n=1

Thus

wen-1 (A.6)

F'(w) = ] 2n b,

n=1

Using Equation (A.l), Equation (A.3) and Equation (A.6), we

have
2n b, W=+ I b, WM ] a4, v o@au
n=1 n=1 =1
Comparing the coefficient for w2n—1 , wWe obtain
n-1

20 by = ~(an1 * L Panoap 9pp-1) (.8)

Thus b2n can be evaluated in a recurrsive formula,
1 n-1
Pan = 7 28 “on-1 t L Panapdae-d) (A.9)

Therefore b2n is only the function of intersymbol inter-

ference ) J 2,
n

[+

n==—o

n#0



170

APPENDIX B
ANALYSIS OF THE CONVERGENCE QOF THE SERIES

- n+l
z (-1) by Gong

n=1 )

Analysis of the convergence of the series
ntly ¢ (B.1)

S e 2n ®2n-1

The error E introduced by using only K terms can be expressed

by
- v _y D+l
B = n:é.*-l (-1) bzn G2n—l (B.2)
‘Thus
From Equation (3.46), we know
- _w2 52
> oy . _ »
|Gon-1] = |f% [ e ? (-3w) 2071 730w aw | (B.4)

Using Schwarze inequality, we have

W 2

® e g

e 2 N l ("'jW) 2!1"1‘ le—JJowldW‘

i
N
al“
——

lG2n--1l

=L [ e |w? L] aw (B.5)
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2
. S
But e 2 N ]wzn_ll is an even function, we have
16pnoql == [ 2 N W au (B.6)
o)
lwz 2 2
Let t = - 5~ Oy , then dt = Woy dw
Thus
n-1
o 2 -t n-1
1 —==) e ~ t dt
1Gop-1l = 757 (oNz
N o
n-1 :
= % 2 5= (n-1) ! (B.7)
N
Note
[ et tat=r(m = n-1) 1, (B.8)

where T (n) 1is the gamma function.

Next the desired bound for b will be derived. Let us

2n
consider finite terms for n cos(an) , namely from n = -m
, oo
. n#0
to m; then we can write
“m - m ejJ W . e—Jan
L cos(an) = m 5
0= -m n=-m
n#0 n#0
1 2zm Jogw
= ~>m z e {B.9)
2 L=1
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where a, is one of the combinations

+ + + %
tJ‘mi c e v 0 —J"'l.-Jl— ¥ ¢ 6 o Jm ° (B.lO)
ja,w :
Now e can be expanded into a power series of w
jo,w © Goaw)® (B.11)
e = z n! :
n=0
Thus
2m
x Ly [22 (3a,)"] o (B.12)
n cos J W = —— 1 jo —— B.1
n=-m e = Tl = B A .
n#0 ‘
m
We can also expand T Ccos an into a power series of w
n=-m
directly n#0
m v 2n
m cos Jw=1+ ) b, w (B.13)
n & 2n
n#0

Comparing Equation (B.12) with Equation (B.13), we obtain

22m
) (jal)n =0 for n = odd integer (B.14)
=1
and
22m
1 . 2n 1
b, = = } (e, == (B.15)
2n 22m g=1 L 2n!
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Thus
22m
1 ~2n 1
b, | === ] o« g (B.16)
2n 22m 221 L 2n!
But
2K 2K
2m -m ™
2 (3 ) eese{(J)
2n 2m ~In m
! «a =) 27 (2n}! : (B.17)
2'=1 ‘9' ﬁl\_mj ! o6 s o0 e (sz) !

where )} indicates all the combination of integers

Kon'’ Xoey 700+ --Ky-e.. K under the constraint that

¥

K_m + K—m+1 +. LA ] .+ Km = n L]

Substituting Equation (B.17) into Equation (B.16), we have

2K__ 2K_
( ) ceese (T )
. -m m
by, 1= 1 (2R_JT.. ... (KT - (B.18)
It is very easy to see
2K 2K o K K
-m m 2, -m 2
5 (T_p) ceee (J) < *l-f (R eee (I7)
L300 I ¢ SR PENLED Y I K"
(B.19)
But
K K
2, -m 2, 'm
(J ) oc.o(J ) m n
) —— m ent = ¥} 32 (B.20)
_TK—m)!"""“'(ij! ( RS )

n#0
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" Thus

m n

1 1 2

lenl‘ < = ;ﬁ-(nz—m g %) (B.21)

n#0
Let m » @ , we obtain the desired bound for b,/
1 1 2) "
b, | <« £ L(7 52) (B.22)
2n oh n!(n__wn

n#0

Substituting Equation (B.22) and Egquation (B.7) into

Equation (B.l), we have

© -1 n
1 2" (n-1)! 2
el < ]} (L 3.
n=K=1 m O'Nzn Znn! n=-c n
n#0
2
!,
(- n=—m
- z 11 n#0
n=K+1 27 n °N2
DI
n=-—c
1 n#0
S L\, 2 ) (B.23).
N
but
@ n
I og 2
L n
E n#0
n=K+1 o 2
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Thus K+1
I a2
nz—m n
nfo
2
1 on o
lEl < 27 (K+1) = 5 (B.25)
! g,
n:—oo
n#0
1 ; >
N
T 2
Let B = n#o 3 F)
°N

then for B < 0.5 , by suitable choice of K , Py can be
evaluated accurately. For the system considered in this
work, K = 10 1is sufficiently enough to be used to_calculate
Pe2 very closely. It is believed that there still exists a

tighter bound than the one given by Equation. (B.25).
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APPENDIX C

EVALUATION OF THE VARIANCE OF THE OUTPUT OF GAUSSIAN
- CORRELATION DETECTOR WITH THE

GAUSSIAN NOISE INPUT

~ The transfer function of the Gaussian filter is given

by Equation (4.34)

£ 2
G(f) = &7 0-347 () (c.1).
Let 5 = 0'337 . we have
2 2
g w
2. 2.2 - By _
G(f) = e~2m BE or G(w) = e 2 (C.2)

Since the power spectrum of n(t) is No/z ; the power

spectrum of the output n,; (t) of the Gaussian filter can be

given by
NO I 2
S (w) = G (w) |
nlnl 2
No _62w2
=5 e (C.3)

The‘autocorrelation of nl(t) can be obtained as the inverse

of S (w)
nny



“ *

R _(T) =5[] S w) 7 aw

L4 . ® 2.2 .

e 0O

=

ir

1 -8%w
N, 5= g e cos wrdw

Changing variables, we obtain

© 2

N_J e~ ¥ cos 2 rxdx
°© o

R ()
nny

where

c= 458 r T =07

P
~
n
2
N
e
o

i
+]
o

with
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(C.4)

(C.5)

(C.6)



‘The transfer function of the integrator is given by

H, (f)
or

H, (w)
Then the power

2M2

The inverse of

h; (7)

=>T

spectrum of n,

" sin wfT

e-jwa
wfT

is given by

: ‘ 2
(w) =8 (w) |H, (w) |
n,n, i
Hi(w)z. is
1 ® 2 jw
= > [_w |8, (@) | el aw
.2 WT
2 «© sin® -— .
= %— ) 2 VT gy '
LIRS WT 2
' 2

which is a triangle [22]

hoo=ra-43l) -rarsr

R
&40 elsewhere
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(C.7)

(c.8)

(C.9)

(C.10)
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The autocorrelation R.n (-t} is the inverse of S (w) ,

which can be

hi )

nyny —.

2" nyn,

obtained as the convolution of Rn n (T) and

171

() = | R, nl(r— «) h; (=) d=« (C.11)

Now the wvariance of n, can be obtained as

Substituting

022 becomes

oo

= Rn2n2 (0) = f;-w Rnlnl (~—oc)hi(cc)da: (C.12)

Equations (C.6) and (C.lO) into Eguation (C.1l1),

T 2

022 =[ T~ L%L) ae™®* g«
-T
bt 2 ~be T
= g a 2 ~X -a e
2T[2‘S(n{, e dx) -3 —2b'0]
a a —sz
=TT g erf (Jo 1) - 75 (L-e )) (C.13)
With a = ——-Eg— b= —_ and g = —%Léil we obtain
the desired result
2
_T
2 N, T 402

%2

= -—czf--[erf (-2?-8—) - 52.—%»(1 - e 18 .)1
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~9— erf[( ETE?Z—

|2 0347

~ 1

aBT

(1-e
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__(nBT)2
20347
)]

(C.14)
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APPENDIX D

SIMPLIFICATION OF BANDLIMITED COHERENT PSK

COMMUNICATION MODEL

The model of Figure 5.1 is shown in Figure A.l. Suppose
the input to the dotted block is r(t), and the corresponding
Fourier transform function is R(f), then the response of the

lowpass filter 2(t) due to r(t) can be expressed as

B o« L3 1 ’
p(t) = [ (f r(t)cosanf_t e 32" Ear)ed?Ttys (D.1)
—B -0 i !

Simplifying, we obtain

B

et = [ 3 [R(e-£) + R(E + £)1eI%" ar (D.2)

B

The output of the integrator sampled at t = T due to r(t)

can now be obtained as

T .
y (T) =f0 L (t)dt (D.3)

Substituting Equation (D.2) into Equation (D.3), we have

T :
= 1 - j2nft
y(T) = é _é 3 [R(E - £,) + RUE + £ )]e df at
B T .
= [ [ Lire - + rE+ £)1e7% A ar
-B 0 ¢ ¢’
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_ "1 _ . sinnfT JnfT
= {B 5 [R(£ - £) + R(E + £])] + T ==g=—e asg
) B—fc 1 R(E) T sinn (£ + fc)T ejnch ejnfT ac
_B-f 2 m(f + fc)T
B+£ Tsinn(f - £ )T -jnf T .
+f °irm rrEe— e C eIl (D. 4)
-B+f c
c
Since ch = integer, we have
~jﬂch
sin{(n (f -~ fc)T)e = ginsfT , (D.5)
jnch
sin(n (f + fc)T)e = sinnfT (D.6)
Thus the expression of y(T) can be written as
y(T) = [ R(E)H' (£)eI?"FTas (D.7)
Where
l TsinwfT _-jnfT _
-2- m_i_—fc—)i; e B fCSfSB fc (D.S)
H' (f) =
1l TsinnfT -jr £T _
5 m e B+fc$f$B+fc

Thus the dotted block can be replaced by a blqck whose
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transfer function is H' (f). Since the transfer function of
the bandpass filter HB(f) is equal o one for —B-fcsfSB-—fc
and B+fcsfsB+fc, and equal to zero elsewhere, we can combine
these two blocks into a single one with the transfer function

H(f), where H(f) can be expressed as

1 sinnfT -jnET

5 T ?T?:?;TT e -B+f _<ESBHE (D.10)
H(f) =

1 . _sinwfT -jnET L _

5T * =557 © B fcsfs&..fc (D.11)

n(f+fc)T

The system model now can be reduced as shown in Figure A.2.
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APPENDIX E

EVALUATIONS OF Z J(BT,n) AND 2 C(BT,£_T,n)

T 0 n=-cw
K .
We can write | J(BT,n) as

n=-K

K K

] J(BT,n) = J(BT,0) + 2 | J(BT,n) (E.1)
n=-K . n=1
n+1l

Since J(BT,n)

222 J[(n+1)BT,0]-nJ (nBT, 0)+———J[(n—l)BT 0] (E.2)

we obtain

K ..
J J(BT,n) = J(BT,0)+2{J(2BT,0)-J(BT,0)
=-K

+% J (3BT, 0)~-2J (2BT,0) + % J (BT, 0)

+§ J (4BT,0)-3J (3BT,0) + % J (2BT,0)
5 3

+ * o @

+§J(KBT,0)—(K-1)J[(K—l)BT,0]+§%2J[(K—Z)BT,O]

+5:L3 [ (+1) BT, 0] -KJ (KBT, 0)+———JT(K—1)BT 013

= 2{§J[(K+1)BT,01~52J(KBT,0)+%J[(K+1)BT,0)]} (E.3)
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Now let'K+w, we have
o0

Y J(BT,n) = lim J[(K+1)BT,0} = 1 (E. 4)

N==ow Koo

K
Similarly, we can write } C(BT,ch;n) as
n=-K

K ' K .
} c¢(BT,f T,n) = C(BT,f£ T,00+2 ] C(BT,f T,n) (E.5)
c c (o]
n=-K - n=1

also

C(BT,ch,n) = E%l C[(n+l)BT,(n+l)ch,O]-nC(nBT,nch,O)

+£§l Cl(n=1)BT, (n-1)£,T, 0] (E.6)
Thus
§ C(BT,f T,n) = 2{8C[(R+1)BT, (K+1)f T 01—;K C(KBT,Kf T,0
=_K I 4 c ’ = EC ’ c 4 7 TI c 7 )
+ % CL(K+1)BT, (K+1) £_T,0] ) (E.7)

Let K»+», we have
o

! c(BT, £ T,n) = lim CL (K+1)BT, (K+1)£_T,0]

22w 00 K>

=0 (E.8)
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APPENDIX F

EVALUATION OF C(BT,ch,O)

BT

o T sinzx
c(sT,f T,0) = = f.
C m 0

(2nf 1) *ox

5 dx

1 [ sinzx + sinzx ]
4nch 2nch—x ancT+x

. BT

% dx (F.1)

Q=

Changing variables and simplifying, we have

1 ancT

SiﬁZ 2wch+nBT sin2
C(BT,£,T,0) = —5— [f S Y gy + | 518 ¥ ayl

- Y y
2% ch ancT BT ZNfCT

2nch+nBT 2
=t [ B Y gy (F.2)
2n°f£ T 2nf_ T-vBT Y

. 2
Since EE%_Z is an odd function, we have

2nch+nBT

C(BT,£_T,0) = —st— | Sin Y gy
27 ch !2nch—nBT| Y

2ﬂch+ﬂBT
I S l:SQEZz,dy (F.3)

2 - Y
4n“£T |20 T nng

For B # 2fc , C(BT,ch,O) can be evaluated as
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. 1 2nf_T+mbT dnf T+27B cosx
c(BT,f T,0) = —5—— [l s—err—=m
¢ 41r2ch n 2nf T-mBT 4w £ _T-27BT | X
2 f T4+4BT
= 2l [1n|2“ch—“BT‘
4 ch c

+ C; (|4 £ _T-21BT|)-C, (4nf _T+2nBT)]  BF2f,
where

c;(y) = - [B22= ax ,

Y
a cosine integral.
For B = 2fc ; we have
1 »4“ch 1—0052
47°fF T O Y
c
Changing variables, we obtain
8rf T
C(BT,£_T,0) = ——2—1—-— ¢ _l__g_;}c_sg_c_
47°f T O
c
_ -1 BECT osx-1 d
T2, o =
4°f T O
, c

But [ 2]

dx]

(F.4)

(F.5)

(F.6)

(F.7)
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g8nf T
cosx-1 _ - _
fo ——= dx = C, (8rf_T)-1n(8rf_T)-0.5772
Thus
C(BT,f T,0) = —=2*— [0.5772 + In(8nf.T) - C.(87f T)] B = 2f
c- 4w2f T ¢ 1 c :
C

(F.8)
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