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CHAPTER 1
 

INTRODUCTION
 

The 0( PD) Atom iii the Upper- Atmosphere 

One, of the most important constituents of the n-pper atmosphere 

is the'electronically excited oxygen. atom in the ID state. The O( D) 

atom 'is of particular interest for several reasons. One-is that it is 

respons'ible for the airglow and aurora red lines at X = 63OO A and 

K = 6364A due to radiative transition' to the-O(3 P 2 ) and O(3P l ) 

states respectively. 

Due to the-difference in multiplicity between the ground and 

first excited state of the oxygen atom, certain reactions of the O( P) 

atom violate the spin conservation law,, while the same reactions for 

the O( D) atom do not: 

O(. D) + N - NO +h (1) 

O(ID)+-CO- CO+ +hv (2) 

The-fact that the O( D) to O(3p) transition is spin forbidden, 

'radiative removal will be of minor iinp6rtance compared to chemical 

,reaction and physical deactivation under conditions of r.easonably high 

pressures. The radiative lifetime of the-O( D) atom idof the 

order of 100 seconds. 

1

Furthermore, the excitation, energy of the-O( D) atom, 

45 kcal/mole, is high enough. to make its chemical reactivity impor-­

tant but not as high as-to-make its occurrence unlikely. This 

excitation energy can reduce or eliminate any activation-energy 



3requirement of certain reactions. For example, the O( P) + CH 4 

reaction requires an activation energy between 8-10 kcal/mole. 

In summary, even though the concentration of the 0( D) atom 

is several orders of magnitude smaller than the concentration of 

0( 3P) atom, in the upper atmosphere -certain reactions of the O( ID) 

atom may occur at comparable velocities with those of 0( 3P) atoms. 

In the upper atmosphere there are two important processes 

which lead to the production of 0( D) atoms: 

1. At high altitudes, above 90 km. 

O 	 (3Z-) +:hV -_ 0(3p) + O(D) (k < 1750A) 

2. 	 At low altitudes, between. 8-50 km., the following 

reactions are possible 

0 3(A) + h( -2( O g ) +O( D) (X < 4110A) (4) 

0 3( A) + hw - 02( iA ) + 0( D) (X < 3080A) (5) 

0 (A)+ hv - Oz (l Z+ )+0(ID) (k< 2660A) (6) 

1 
DeMore and Raper have shown that in the condensed phase at wave­

lenglths less than 3000A for every 03 photolyzed an 0( D) atom is 

formed. 

At the higher wavelengths where reaction (4) might occur 

ozone does not absorb; therefore, this reaction can not be an.impor­

.tant process leading to the formation of 0( D) atoms. A definite 

decisfont between reactions (5) and (6) as to which is the major 

process leading, to the formation of 0( D) has not been made 

however, above 2660A reaction (5) is the only possibility. 
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Other species which are minor constituehts of the upper 

atmosphere which might be photolytically decomposed to produce 

O(ID) are: N 2 0, NO2 , and CO 2 . The contribution from these species 

to the O( D) concentration in the atmosphere is of minor importance. 

In order to. determine the concentration of 0( D) atoms ina 

sunlight atmosphere.it is necessary to introduce the effect of the 

principal loss process, thephysical deactivation-by N2 and 0 2 . 

Nicolet 2 adopted the following value for the whole homosphere for the 

quenching rate constant: 

i-11 3 -i 
= 5 x cm seckQ 

The photostationary concentration of 0(1 D) for an overhead sun as a 

function of altithde is shown in Table 1. 

From Table 1 it can be seen that the O( D) atom concentration 

increases from Z0 to 50 km. This is due to the photolytic decomposi­

-tion of 03, reactions.(4) - (6). A further increase in the concentra­

tion of the O( D) occurs above 90 km. due to the photolysis of 

molecular oxygen, reaction (3). Finally at altitudes greater than 

120 km. the concentration of atomic oxygen becomes greater than that 
3 

of molecular oxygen. 

Nz 0 and CH 4 as Minor Constituents of the Upper Atmosphere 

There are two possible sources of N 2 0 in the upper atmo-­

sphere:
 

1. N Ois produced by soil bacteria upon decomposition 

of nitrogen compounds. 

http:atmosphere.it
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TABLE 1
 

CONCENTRATION OF O( 1D) FOR AN OVERHEAD SUN
 

UNDER EQUILIBRIUM CONDITIONS2 

Altitude (km) Atoms/cc Altitude(km) Atoms/cc 

20 	 2.5 .65 Z.0 x 10 2
 

1 70 1. Z x 10 2

25 1. 1 xi0 

30 4.4x 101 95 4.0 x 10Z 

35 	 1.5 x i02 100 1.0 x 103
 

40 4.4 x 10 2 105 	 Z. 0 x 103
 

45 	 7.8 x 102 110 4.0 x 10 3
 

. 5.0x 103
50 	 7.9x 102 115 


55 	 5.6 x 101 I20 4.0 x 103
 

3.3 x 102 60 
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2. N 0 can be photochemically produced in the stratosphere.
2 
- 5Adel 4 was the first to consider the soil bacterial process 

and the work of GoodyandWalshaw 6 indicates that this is the most 

- 8important source. Harteck and Dondes 7 consider the formation 

of N2 0 by, the reaction in the ozone layer: 

N2 + 03 - N 2 0 + 02 (7) 

at higher altitudes 

0(1D) +N 2 - +M - N 2 0+M (8) 

0(1D) +N 2 - N 2 0 +hv (1) 

may contribute significantly to the- 0 content of the upper atmo­

sphere.
 

The earth's surface-is the major source for-methane in the 

atmosphere. Methane is the major hydrocarbon product in all 

anaerobic bacterial decomposition of organic matter.in swamps, 

lakes, marshes and sewage. 9 In addition, natural gas which contains 

a large percentage of methane does escape to the atmosphere. Table 

Z compares the relative content of methane and nitrous oxide to bther 

minor constituents of the atmosphere at ground level. The same 

relative contents as listed in Table 2 are expected to altitudes of 

100 km. except for 03 and NZ 0. 

Both methane and nitrous oxide can be photolytically destroyed 

by solar radiation in the upper atmosphere. However, at altitudes 

below 50-70 km. the NZ0 and CH4 is protected by the oxygen-ozone 

layer. At these altitudes, the reactions of oxygen atoms with 

http:matter.in
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TABLE 2
 

MOLECULAR CONTENT OF MINOR CONSTITUENTS
 

OF THE ATMOSPHERE 
3
 

Molecule Ratio by Volumea 

H0O10 
- 5 to 10- z 

CO z 
-3 x 10- 3 

03 10- 8 to 10 7 

CH 4 
1. 5 x 10-6 

N 2 0 2.5 x 10 - 7 

CO 5 x 10 - 8 to Z x 10 - 7 

H z 
.5 x-10 - 7 

(a) compared to the major gases N 2 and 0 z 
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methane and nitrous oxide) become important: 

O( D) + CH 4 -- products (9) 

O( ID) +N 2 0 - 2NO (15) 

The oxidation of nitrous oxide to form nitric oxide is an important 

source of NO in the stratosphere. 

Methods oftProduction of 0( ID) in the Laboratory 

Since the photolysis of ozone below 3100A results in the 

1
production of O( D) atom in the upper atmosphere, this is a conve­

nient method of production in the laboratory: 

03( A) + hv - 2 + ( ID) (10) 

where 02 is either the A and 7-state. 

Sato and Cvetanovic I 0 photolyzed NO2 at wavelengths below 

2288 A to produce O( ID): 

"NO2 + hv - NO( 2fl) + O(1 D) (11) 

In addition, the photolysis of NZ0 with Z139A or-1849A leads 

to the production of O( ID): 

NZO+hv - N2 +O( D) (12) 

A more detailed description of the production and reaction of 

0( D) atoms can be found in an excellent review article by McGrath 

and McGarvey. 
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Previous Investigations of the Photolysis of Nitrous Oxide 

The photolysis of nitrous oxide has been studied by-Noyes 
12-14 

and co-workers. They found two primary processes: 

N0 +hv N + O(D) (12)
2 --

NZO +h -- NO + N (13) 

Doering and Mahan 1 5 have also given evidence thatat 1830 A .about 

20% of the primary decomposition might occur-by-reaction (13). 

It has been, shown that the photolysis of N20 with either 1849 A 

or 2139 A radiation leas almost exclusively to the production of 

- 2 0 O('i5) 16 as indicated- in reaction (12). The excited oxygen-atom 

can then react further to produce 0., NO, and additional N2 : 

O( 1 D) +N 2 0 -- N2 +0 2 (14) 

O(ID) + N 2 0 - ZNO (15) 

Previous Investigations of the Reactions of O( 1D) Atoms .withMethane 

Basco and NorrishZ1 flash photolyzed ozone in the presence of 

methane. They observed .(spectroscopically) the presence of 

vibrationally, hot hydroxyl radicals indicating.the occurrence of the 

reaction: 

O( D) +.CH 4 - OH + CH 3 (16) 

DeMore and Raper studied the reaction of O( ID) with CH 4 

by the photolysis of 03-CH4 mixtures dissolved in liquid argon at 

87 0K. The products they found were CH 3 OH, CH 2 O0 and HZ and they 

indicated that the reaction proceeds by-reaction (16) and two 
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additional paths: 

O( D) + CH 4 + M - CH 3 OH + M (17) 

0(ID) + CH4 - CH20 +H z (18) 

However, Groth 2 3 represents the primary process for the 

reaction between (ID) oxygen atoms and methane as: 

0(1D) + CH 4 - CH 2 Hz0 (19)+ 

The Present Investigation 

The purpose of.the present- investigation was several fold. 

In the photolysis of N 2 0 by itself at 2139 A it was hoped -to determine 

accurately the ratio of rate constants k14/kl15 to determine the 

extent of occurrence of reaction (13). and the extent of the reactions 

leading to the production of ground state O( 3P) atoms. 

In the photolysis of N2 0-.CH 4 mixtures it was hoped to deter­

mine the detailed mechanism and the relative rate constants for 

-reaction and collisional deactivation of the O( D) atom. 

Finally, another goal of this research was to observe the 

effect of removal of the excess translational energy of the O( D) 

atom by added helium in both the photolysis of Nz0 by itself and in the 

photolysis of NzO-CH4 mixtures. 

A new technique "the method of chemical difference" is 

introduced and its advantages in determining the ratio of rate con­

stants ire: shown. 



CHAPTER 2
 

EXPERIMENTAL
 

The High Vacuum Line
 

The high vacuum system was constructed of-Pyrex tubing
 

employing both Teflon stopcocks (West Glass Corporation) and high 

vacuum grease stopcocks. * Both types-of stopcocks could be used 

since none of the reactants attacked the grease. Figure 1 illustrates 

the location of the various components. The pumping system con-' 

sisted of a single-stage mercury,diffusion pump and a two-stage, 

Welch Duo-Seal air pump (Model 1402). Pressures.less than 10 torr 

-were measured on a McLeod Gauge -(Consolidated Vacuum Corpora-' 

tion). Pressures greater-than 10 torr were measured on a mercury 

manometer; to increase the accuracy of th; pressure measurements 

for the N2 0-CH4 experiments, a cathetometer (Gaertner Scientific' 

Corporation, Model M-911) was employed. Finally, a thermocouple 

gauge (Veeco Instrument, Inc., Model TG-7 with a vacuum gauge 

tube Model DV-lM) was used to measure low pressures (< 1 torr) of 

methanol which is condensable in the McLeod Gauge. In addition, the 

thermocouple gauge was used to monitor the admission of gases into 

the vacuum line. Ace Glass adapters (5027-20) were employed for 

-introducing the various gases into the line. 

The Optical System 

The photolyses were-done in two cylindrical quartz cells, each 

10 cm. long and 5 cm.* in.,aiameter. The effective radiation was at 

2139A from a Phil ips 9310,6A !Znresonance lamp. 
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The initial purpose of the two cell system was to allow an 

experiment to be performed in one cell while the intensity of the lamp 

could be-monitored by an actinometryexperiment in the-other cell. 

This technique was employed since the intensity of the initially 

,obtained zinc.lamps varied. However, good zinc lamps were obtained 

and therefore the two cells could be used to perform two different 

simultaneously run experiments. 

Reagents and Methods of Purification 

Nitrous Oxide (Matheson Co.) was purified by passing through 

ascarite -and degassing at -196°C. Propylene-(Matheson Co.) was 

degassed at -196 0 C. Ultra High PurityMethane (Matheson Co.) was 

partially degassed at -196 0 C then twice distilled at -186 0 C (liquid 

argon) to a trap at -196°C to remove any ethane. Gas chromato-­

graphic analysis showed approximately 15 ppm OZ, 35 ppm N2 , and 

5 ppm C 2 H 6 in the CH 4 after-purification. 

Helium was purified in the same-manner as the helium used 

in the gas chromatographic system. 

Gas Chromatography 

Gas chromatography was used for the quantitative analysis of 

all products. The gas chromatographic system was connected 

directly to the high-vacuum line by the use of afour way stopcock 

(Kontes Gas Co., K-83350, specially ground for both high pressure 

and high vacuum use,). Figure 2,illustrates schematically the gas 

chromatographic system. 

The gas chromatograph consisted of the following-parts: 
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1. 	 Thermistor-Detector (Gow-Mac Model 10-777) 

2. 	 Power Supply (Gow-Mac Model 40-05D) 

3. 	 Recorder-(Texas Instrument Servo Riter II) 

4. 	 6-port switching value (Loenco Model-. L-206-6) 

5. 	 Columns: 

a. 	 12 footilong 1i/ inch-I.D. copper tube containing 

5A molecular sieve resin. 

b. 	 6 foot long 1/4 inch I. D. copper tube containing 

porapak Q resin. 

c. 	 20 foot long 1/4 inch I. D. copper-tube containing 

porapak Q resin. 

The -detector -was kept at 00 C ahd a-constant current of 15 

milliamperes was provided by the power supply. Helium was purified 

before it was allowed to enter -the gas chromatograph by pas§ing it 

through a tube containih'g indicating drierite and ascarite. The 

carrier gas pressure-was set at 25 psi which gave a flow rate of 

approximately 100 cc/min. 

The noncondensable products,O2 , N 2 and NO were collected 

by -means of the Toepler pump and analyzed on column A. The 

-retention times are: 02 - 2 1/2 minutes, N2 - 5 1/2 minutes, and 

NO - 11 minutes. The condensable products CH3OH and CZH 6 were 

transferred to the gas chromatographic trap at -196 0 C and analyzed 

separately in columns B and C, respectively. Ethane was-analyzed 

at ro-omAterhperatureiand its retention time was 29 minutes. For -the 

methanol analysis, the non-condensables and N0 and C2 H6 were 

pumped away at -1300C.and the methanol was analyzed on column C 

maintained at 125°C. Calibrations for-methanol were performed 
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under identical conditions as an actual experiment including the addi­

tion of water to the gas chromatographic sample tube. Water-is a 

product of the O( D) - CH4 reaction and its presence is necessary to 

reduce the tailing of the CH 3 OH peak. The retention of the CH3 OH 

peak is 5 minutes. 

It was found that the calibration of the gas chromatograph 

for-OZ and N was unaffected for the runs with added helium. The 

shape -and retention times of-the curves did change but the peak areas 

remained essentially unaffected. 

General Operational Procedures 

The vacuum line was pumped down to 0. 01 microns. Nitrous 

oxide, propylene, methane, and helium in the amounts shown in the 

table of experimental conditions and results were admitted into 

thereactiCon cell and irradiated. The lamp was allowed to warm 

for-at least twenty minutes prior to irradiation. At the end of the 

irradiation period the contents of the cell were allowed to expand into 

the right hand manifold of the vacuum line through the coil trap at 

-196°C. The noncondensable products were collected by the Toepler 

pump and analyzed first. Then the condensable products w-ere trans­

ferred to the sample tube trap at -1960C, allowed to warm to room 

temperature, and finally analyzed. 



CHAPTER 3
 

REACTION OF O( D) WITH NITROUS OXIDE 

Actinometry 

The butput of the lamps was monitored by the photolysis of 

N ZO in the presence of an excess of C3 H 6 'which has, negligible 

absorption at 2139A. The propylene will scavenge all the O( 1D) 

atoms before they can react with Nz0 and 0{Nz } will drop to 1.00. 

In order to ensure that sufficient C 3 H6 was used it was first 

necessary to obtain the rate constant ratio-for the competition between 

reactions (14) and (15) with (20): 

O(1D) + N 2 0 Nz +O 2 (14) 

O(D) + N 2 0 -- ZNO (15) 

O(ID) + C3 H 6 - Products. (20) 

Experiments were performed with various mixtures of C3 H6and 

N20. The results are shown in Table 3. As [C 3 H 6 ]7[N20] is raised 

both 4{Nz } and rM {O2} drop: the former to'l. 00, the-latter to 

0.00. The-rate of reaction'(Z0) is equal to R{14} + R{15}when the
 

drop is one-half its full value:
 

R{20} = R{14} + R{15} 

k [Q(I.p)][C 3 H 6J = (kl 4 + kl[O( ID)][N 2 01
20 n 3 14 15a[a 

-and from the data in Table 3: 
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TABLE 3 

PHOTOLYSIS OF -300 TOR-R N2 O AT.-2139A 

IN THE PRESENCE OF C H6(a) 

[Q3H6]I EHxposure Time 4r {O }(b)' c {Nz.I 3a6].a(hrs.) 2
 
(torr) ([phr.)
 

0.0 -- 0.50 0. 0 5 4 (c) 1.46( c ) 

37.5 246 1.00 0.040 1. 7
 

39 327 -1.00 0.017 1.16
 

40 246 1.00. 0.014 1.13
 

41 327 1.,00 0.008 1.2z
 

600 327 0.50 0.0 1.03
 

(a) room temperature. 

(b) n{0z= {O2) - (1/4) {NO} 

-(c) average value taken from Table -47,



kZ0 	_ 01[Nz°] 300
 
= =8.0 

(k 1 4 " 1515) [c3-] 3-

Thus, with
 

[c 3H6]'">
 

[N 2 0] ­

at least 94% of 'the excited oxygen atoms are scavenged by C 3 H 6 '
 

and absolute-quantum yields can be-calculated.
 

Stoichiometry of the NO + OZ Reaction 

After-irradiation, the products j(N2 , Oz, and NO) were 

-collected in the Toepler pump .and introduced-into the gas chrornato7­

graph-, At the entrance of the colfimn, the NO and, 2 react 

quantitatively and the apparent stoichiometric reaction is: 

4NO 	+O - NO 3 (21) 

Blank experiments were performed, seperately but under 

-identical conditions of an actual run to determine the stoichiometry 

of reaction (Z)'. The experimental procedure is as follows: 

a. 	 Fill the cell with 5 0 -500 NO 

b. 	 Fill the right-hand manifold with an excess ,of air that 

is needed to react with all the NO. 

c. 	 Open the cell stopcock so that only, a fraction of the air 

in the system gets.:into'the- cell. If only a fraction of the 

.air-gets-in, the diffusion of the NO out should be 

negligible.
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d. 	 Measure-the nitrogen.that was let into the cell on the 

gas chromatograph. 

e. 	 Add 100 torr Nz0 to the cell. 

f. 	 The oxygen let into the-cell can be calculated on the basis 

of the-measured nitrogen. The oxygen that i as- doinsumed 

by the NO is the difference'between the oxygen calculated 

minus the oxygen measured on the gas chromatograph. 

The results' of the st6ichiometric experiments are listed in
 

Table 4.
 

Results 

The 	results of the photolysis of N20 alone with 2139A radiation 

are 	shown in Table 5. The pressure of N 2 0 was varied ten-fold; the 

absorbed intensity, Ia' by-a factor-of 14. 5; and the extent of 

decompositionby a factor of six. The results-were completely 

invariant to-any of these variations: 

,I,{N	 }I= 1.51 :E 0.11 

and 

( z } 0.059 ±0.007 

In these experiments NO was completely consumed and never 

detected, even though a thorough search was made. In this way the 

measured quantum yield of 02 production, m{O I is really 

{0f}- - this is the-most useful quantity in determining} {NO}; 

-k 14/k . This method of chemical difference reduced the experi­

mental uncertainty'by-a factor of 10 or-more. 
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TABLE 4 

NO + 0 Z STOICHIOMETRY 

[NO] [NO]/[Oz] Consumed 

190 .3.68 

235 4.24 

335 3.97 

438 4.10 

438 4. 10 

543 3.76 

370 4.19 

395 3.64 

average = 3.96 : 0.20 
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TABLE 5
 

PHOTOLYSIS OF NITROUS OXIDE AT Z129 A(a)
 

-Exposure 
time, hrs. 

(A) 30 torr Nz0 

1.50 

1.50 

1.50 

10.00 


Z.00 

Z.07 

Z.00 

2.00 

6.00 

,6.oo 


6.00 

(B) 100 torr N 2 0 

0.50 


1.00 

1.00 


1. 00 

1.00 

3.00 


1.00 


I 4 {N 1(b)
aTo 

30.6 1.43 0.054 

43.0 1.53 

30.6 1.35 ­

28.6 1.45 0.060 

46.8 1.59 0.065 

46.8 1.78 0.071 

46.8 1. 68 0.054 

48.3 1.66 0. 081 ( ' ) 

35.0 1.61 0.052 

35.0 1.64 0.061 

35.0 1.z7 0.,064 ( c ) 

166 1.42 0.064 

166 1.36 0,063 

152 1.59 0.069
 

120 1.72 0. 049 ( c ) 

120 1.50 0.053 

1z0 1.60 
 0.060
 

97 1.43 0.058
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TABLE 5 (cont.) 

Exposure Ia {N2 
time, hrs. 

(6) 300 Z0to-rr N 2

4.00 45.0 1.37 

4.00 41.3 1.63 

4.00 41-.3 1.44 

4.00 33.3 1.36 

0.-33 414 1.62 

0.50 414 1.56 

0..50 414 1.46 

0.50 414-- 1.46 

0.50 414 1.39 

0.50 414 1.35 

(a) . room temperature
 

'(b) @m-{(DZI = C{02 - (1/4) d{NO}
 

(c) 1.0 = 0.2 torr C 3 H 6 present 

O(b){ 2
In
 

0.052 

0.054
 

0.042
 

0.050
 

0.068
 

0,06Z
 

01.05Z
 

0. 050 ( ' ) 

0. 055 ( e ) 
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If we assume that the only important reactions are: 

N 2 0 + hv -- N2 +O( D) (12) 

O(ID) + Nz O- N z +Oz. (14) 

O(ID) + Nz0 - ZNO (15) 

4NO + Oz -I ZNz0 3 (21) 

The ratio k 14 /k 1 5 can be computed from either the ({N 2 } or 

An expression for the quantum yield of nitrogen, 4{Nz}, 

can be written: 

D)]
1 + k14 [NZO] [O( 

(k 14 + k 1 5 ) [NZO][O(ID)) 

I{N I - 1 = -14 (A)
k14 + k15 

rearranging and solving (A) for k14/k15: 

k14 4,{Nz- 1 
- 1(B)

k15 2 - cI{N Z} 

substituting into (B) the value of c{NI = 1.51 t 0. 11, k 14 /k 1 5 = 

1.04 = 0.48. 

An expression for k 1 4 /k 1 5 can be derived in terms of the 

measured quantum yield of oxygen, 4m{O 2. 
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Sto 2 ) - (1/4) 4 {NO} -- m{Oz} (C) 

From the total possible fate of the 0(- D) atoms, the following relation­

ship can be written: 

b tO21 + (Z) C)fNO} ="1.00 (D) 

The <{02 } and ({N0} can both be written in terms of the rate 

contants, Ia, and the.O( ID) and N 20 concentrations: 

1 4 0( D)] [N 2 0] 

a 

and 

-. 2k1 5 [0(1D]N20 
SNO}D][N 2 0]I"
 

a 

substituting the above relatibnships into expressions (C) and (D)
 

and solving simultaneously:
 

kl14 0.5s + (1)rn ozj 
O(E) 

k15 1.0 m{Oz}
 

substituting into (E) the result for c nfO2}= 0.059 ±0.007, 

k14 /k1 5 = 0.59.± 0.01. 

Discus'sion-

From the product quantum yields obtained in previous 

-investigationswith f849A radiation, the ratio k 1 4 /k 1 5 can be 

estimated based on a mechanism consisting. solely of: 



- Z5 -

NZ0 +hv -N +Q( 1D) (12)2 

O(ID) + N 2 0 -- N2 +0 2 (14) 

O(ID) + N2 0 - ZNO (15) 

These estimates along with the results'.of this work are listed in 

Table 6. The estimates from the previous-work vary from 0. 5 to 

1. 56, and each estimate-has considerable uncertainty. In the value 

of k 14 /k 1 5 based on the {I{N2 } from this work also has considerable 

uncertainty. However, it is clear that the uncertainty in the value of 

k14 /k15based on the [r{O2} is at least Z0 times smaller than that 

based on the c{N2 }. This illustrates the advantage of obtaining 

differences between two quantities of similar-value by chemical 

rather than analytical methods, the method of chemical difference. 

In addition to the reaction of O( D) it was necessary to 

consider the possibility of the presence of O( 3P) which might have 

been produced in one of three ways: 

N2 0 4hv (2139A) - NZ'+ O3P) (Z2)S 

N 2 0+O(1D) -- N2 0+ O(3P) (Z3) 

or a combination of the following two reactions: 

N O+hv-NO+N (13) 

N+NO--N 2 +O(3P) (24) 

If the present O( 3P) would react with NO to ultimately produce 02 by 

the reactions: 

http:results'.of
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TABLE 6 

VALUES OF k14is -

1.0 

Value B'asis -

q.{O._1 0.5 
.Z- I. 

- - Reference 

MacDonald 2 4 

-- -

0.7 

0.5 

,{N 

c{bZ) 

-1.4, 

0.35 

Neyes1z 

Noyes 1 2 

1.56 (1,.1 -

1.38(1.22 ­

.Z) 

1.56) 

1{Nz} =1.61 -0.08 Zelikoff and' 5 
( -2)}61,Aschenbrand 

I-{O2}=-0,58 L'0.03' Zelikoff and 2 5 
Aschenbrand 

0.78 (0.64 -0.96) .5{N2 1-.44.: 0.05 Castellion and Noyes 

1.44 

1.04 (0.67 

-"{NO} 

1.63.). .{Nz 

-0.82 -

--1.51 +*.0 11, 

Castellion and Noyes,26 

.,This.work 

0.59 +-0 01 m {OC} = 0.059 . 0.007 -This work 
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0(3P) +NO+ NO - NOz-+ N2 0 (Z5) 

0(3 P) + NO z - NO +.t z (26) 

NoNO would be consumed but some 02 would have been produced in 

addition to-that formed by reaction (14). To check this possibility 

some experiments were done in the-presence of 1 torr -of C3 1-I6 to 

'scavenge any 0(3P). Under -the conditions of the experiments the 

C3 H6 removes less than 18%/ of the-O( D) atoms and usually much 

less. If any'O(3 P) had been present, bIn{OzI would have been 

dimished. In fact, for six runs with 1 torr C3H6' f{N 2 } = 1.48 + 

0. 15 and (D {0 I = 0. 059 =b 0. 009 which are identical to the values 

found in the absence of C3 H Therefore, it can be concluded that 

the quantum yield of 0(3 P) production is less than 0.02 and probably 

zero. The absence of 0(3P) means 'that reactions (13), (22), and 

(Z3) are unimportant. 



CHAPTER 4 

COMPETITIVE REACTIONS OF O( 1D) ATOMS WITH 
NITROUS OXIDE AND METHANE 

Actiriometry 

The Output of the lamps -was monitored by the photolysis of
 

Nz0 in thepresence of an excess of 'C3H6 but in the absence of any
 

CH 4 . "This procedure is identical to that previously described in the 

actinometry section of Chapter 3,. 

Results 

Mixtures of methaneand nitrous oxide at room temperature 

-were photolyzed with 2139 A radiation. The experimental results 

are listed in Tables 72.0. 

The-variation of the quantum yield of ethane, C{C 2 H 6 } as a 

function of the CH 4 pressure at three different NZO pressures is listed 

in Table 8.and a' plot of this data is shown in Figures 3-5. For -the 

data at 30 and 100 torr Nz0 a maximum value in ({C 2 H6 } is not 

obtained. However, the plot of the data for' 10 torr NZO (Figure-3) 

reaches a limiting value of 4{CzH6 } = 0.87 h0.0. 'b{CzH6 }was 

found to be independent of the Nz 0 pressure for a givenvalue of 

[CH4]/[N.0], as shown in Figure 6. The intensity was varied by a 

factor of 30 and the extent of decomposition was varied by a factor 

of ]6ior runs with the same CH 4 and N 2 0 pressures with no 

noticeable effect. 

From the photolysis at high values of [CH 4 ]/[N2 0], the 

quantum yield of methanol, {CH 3OHI, can be measured. The 

average value of '{CH OHifrom Table 7 is 0. 06. 
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TABLE 7
 

CH OH PRODUCTION IN THE PHOTOLYSIS OF N 2 0-CH4
3 	 . 
MIXTURES AT HIGH VALUES OF [CH41/[NO] 

[CH 4 ] Time I a [CH 3 OH] 4{CH 3'OH I 

(torr) (mn) (.Ii/in) O ­

(A) 10 torr N 2 0 

800 1200 0.36 19.5 	 0.055 

792 1200 	 0.76 42.0 0.054
 

-(B) 300 torr Nz, 

852 626 1.18 27.5 0.047 

837 1240 1.18 77.5 0.067 

836 300 2.53 27.5' 0.053 

822 30 11.47 19.0 0.070 

819 600 0.64 15.0 0.049 

814 600 0.64 19.5 0.064 

806 120 6.37 62.5 0. 103 

793 1240 Z.53 85.5 0.034 

764 60 11.47 41. 0 0.075 
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TABLE 8
 

CzH 6 PRODUCTION IN THE PHOTOLYSIS OF N2 0-CH4
 

MIXTURES AT HIGH VALUES OF [CH 4 ]/[NZO]
 

[CH 4 ] 

(tbrr) ....... 

Time 

(min) 

Ia 

([i/min) 

[C2H61 O ZH6 . 

(A) 10 tort Nz0 

891 

881 

870 

840 

818 

406 

193 

97 

48 

1Z0 

120 

120 

$60 

120 

1120 

1z0 

120 

1z0 

1.85 

3.17 

1.97 

3.17 

2.80 

1.85 

Z.80 

1.78 

2.6z 

185 

3.41 

211 

151 

290 

188 

289 

159 

208 

0.834 

0.898 

0.'894 

0..840 

0.864 

0.847 

0.861 

0.743 

0.662 

36 

26 

19 

10 

1z0 

120 

120 

1zo 

1.53 

1.53 

2.43 

2.43 

105 

74 

82 

9 

0.570 

0.403 

0.Z81 

0.031 

(B) 300 torr NZ_0 

851 

835 

823 

599 

536 

30 

60 

60 

60 

30 

10.03 

6.60 

10.03 

6.60 

4.17 

245 

331 

471 

Z77 

86 

0.815 

0.835 

0.783 

0.682 

0.688 
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TABLE 8 (cont.) 

[CH4 ] - Time Ia [C 2 H6 ,] 4 {CzH6 }
(totrr) (miri) (i/rain) i()" 

.415 '60 6.60 225 0.568
 

401 30 6.23 116 0.621
 

199 30 . 4.17 67 0.536 

195 " 60 10.03 2-6 0.543­

104 240 5.97 630 0.440 

101 240 3.97 397 0.417 

100 15 -3.97 29 0.488 

99 'Z40 0.33' 35 0.443 

98 15 5.97 50 0.559 

94 60 10.03 Zz 0.366 

87 Z87 0.33 -34 0.360 

57 -30 3.97 3Z 0.269 

37 30 5.97 19 0.109
 

-(C) -100 tort N 20
 

885 15 18.9Z 190 0.669
 

874 15 12.25 121 0.658
 

811 15 18.92 174 0.61-3
 

640 15 12.25 1111 0.603
 

4ZZ 15 18.92 130 0.458
 

276 31. 12.25 134 0.353
 

-213 30 IZ.Z5 70 0 190
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TkBLE 8 (cent.-) 

[CH 4 ] Time Ia Cy]Z . {GzH 6 } 

(torr) (ri) (j/mi) 

Z10 240 0.92 61 0.Z77 

164 30 18.92 78 0.137 

142 31 18.9z 61 0.104 
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TABLE 9
 

PHOTOLYSIS OF N 2 O-CH4 MIXTURES IN THE REGION
 

WHERE- -THE TIME EFFECT IS IMPORTANT
 

[C 2 P_6] - { ZH 6 

GO­

30.2 0.0823
 

zz.2 0.0566
 

13.4 0.0383
 

13.2 0. 0325 

12.5 0.0308
 

10.0 0.0255
 

56.9 0.0817
 

31.8 0.0457 

20.4 0.0305
 

19.9 0.0265
 

10.9 0.0158
 

6.7 0.0096
 

7.2 0.0104
 

64.3 0.0537
 

46.9 0.0397
 

37.3 0.03-11
 

[CH 4 ] 

(torr) 

(A) 30 torr N 

43.45 


41.65 


37.80 


37.70 

36.70 


34.25 


[CH4 ] - Ia 

[N 

0 , 60 

1.533 


1.331 


1.350 


1.205 

1.199 


1.119 


- (m 

minutes irradiation 

6.12 


6.53 


5.83 


6.77 

6.77 


6.53 


137.75 1.373 

120.15 1.203 

108.90 1.078 

104.20 1.061 

99.70 1.600 

89.05 0.8865 

80.10 0.7868 

-(C) 100 torr N 2 0, 60-minutes 

140.45 1.397 


-129.65 1.296 


119.85 1.209 


(B) 100 torr Nz0,- 30 minutes-irradiation 

23. Zl 


23.21 

22.27 


25.07 


ZZ. 97 


23.21 


22.97 


irradiation 

19.97 


19.65 


20.00 
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TABLE 9 (cont.) 

[CH 4 ](torr) R 4 1[G 4 )[--] 
[N2 0] 

a[CH1 

(k/min.) 

[CzH] 
G 

CfCH I{ 2 Ha
6 

115.70 1.175 19.85 22.0 0.0185 

112.90 1.110 19.65 Z4.9 0.0z1l 

103.30 1.0z0 19.65 18.1 0.0152 

101.90 1.0Z6 21-. 03 18.7 0.0148 

98.05 0.978 23.32 14.4 0.0102 

95.30 0.963 21.03 1-3.5 0.0107 

91.40 0.929 19.33 9.3 0.0080 

87.65 0.882 19.70 8.8 0.0074 

85.50 0.867 19.70 10.1 0.0085 

84.95 0.848 19.33 8.0 0 . 0069 

79-05 0.786 21.57 7.3 0.0056 

76.55 0.773 19.85 4.1 0.0034 

70.20 0.700 19.65 4.2 0.0036 



TABLE 10 

PHOTOLYSIS OF N 2O-CH 4 MIXTURES IN THE REGION 

WHERE THE TIME EFFECT IS NEGLIGIBLE 

[CH 4 ] 

(torr) R 

[C H4 ] 

[N2 0] 

i 
(p/min) 

[ 2 H 6J 

(f) 

J {CzH 6} 6 J+ 

R 

2:czf.Z05 k16 

k 1 4 
+ k 15 

(A) 100 torn NZ0 , 10 minutes irradiation 

70- 45 0.6743 27.90 3.1 0.0110, 3.29 3.10 

78.'60 

88,95 

92.45 

94.30 

0.7680 

0.8905 

0.9328 

0.9461 

23.65 

23.77 

25..50 

23.65 

3.4 

5.5 

11I.9 

10.3 

0.0.144 

0.023 1 

0.0467 

0.0436 

2.89 

2. 50 

2.41 

2.38 

Z. 77 

2.48 

2.55 

2.49 

Ul 

96. 10 

100.10 

103. 10 

103.85 

110.85 

" 

0.9756 

0.9950 

1.028 

1.017 

1.119 

23.65 

23.65 

23.77 

23.77 

25.80 

13.2 

15.9 

13.4 

12.0 

3,1..4 

0.,0558 

0.0673 

0.0564 

0. 0505 

.0.1221 

. 

2.32 

2.28 

2,20 

2.22 

2.08 

2.49 

2;51 

2.S6 

2.'37 

2.50 



TABLE 10 (cont.) 

[CH 4 ] [CH 4 ] 1a [C2 H 6 ] cfG 6 22 H 6 }+ 2. Z05 k<16 

(orr) R [NO] (./min) (Rk) 14 + k15 

112.80 1. 114 3.14 7-.5 0.085 2.05 2.3 1(a ) 

418.85 i1183 3.14 10.4 0.113 ,1.96 2.32 (') 

119.35 1.192 23.77 21.8 0.0918 1.93 2.20 

120.40 1.211 Z3.77 22.5 0.0947 1.90 2.18 

121.70 1.2Z6 27.50 30.1 0.110 1.89 2.zz 

12.70 1.220 37.70 29.7 0.0788 1,87 Z.10 

135.Z5 1.368 18.60 29.9 0.161 1.73 Z.21 

151.00 1.528 18.60 34.1 0.183 .1.56 2.07 

175.10 1.767 18.60 40.0 0. Z15 1.37 1.91 

Z20.65 Z.233 18.60 68.2 0.333 1.14 1.93 

255.00 2. 573 18.60 70.6 0.380 1.01 1.87 

298.40 3.020 1is.60 111 0.541 0.91 2.45 



TABLE 10 (cont.) 

[CH 4
(tort) I 

[c 4 ] 
- 20 

a 
t a 

(P./rnin) 
[cz6] zH 6 } zH 6 J+ Z. 205 

R k'14 
k16 
+ k15 

(B) 30 

32.80 

33.45 

41.90 

torr N 20 , 10 minutes irradiation 

1.080 13.65 

1.104 9.40 

1.378 9.40 

9.5 

7.5 

14.1 

0.0696 

0.0798 

0.150 

Z.11 

Z.07 

1.71 

2.34 

Z.34 

Z.17 

(a) 30 minutes irradiation 
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The CH	3OH could come from either 

OH + CH 3 - CH3OH (34) 

3 H3 

CH 3 + Oz CH 3 0 3 CH3OH + CH 0 (28) 

or
 

O(ID) + CH 4 + M - CH 3 OH + M (17)
 

To unambiguously determine the route of CH3OH formation, 

two experiments were done with 1. 2 torr of NO added. The Nz0 

pressures were 28 and 9. 1 torr, and the CH 4 pressures were 778 

and 658 torr, respectively. The NO completely, scavenges CH 3 

radicals, so that the C{CH3 OH} should be reduced to zeroif the 

CH 3 radical is the precursor, but should be unaffected if O( D) 

inserts into CH . In both experiments CH OH formation was
4 3 

completely suppressed (4{CH3 OHJ < 0.01), from which it can be 

concluded that CH 3 is the prcusordto E3OHprtidvoti ni. 

On the basis of the maximum {C2H6}= 0.87 and 

d {CI-13 ,OH}= 0.06, the maximum quantum yield of O(3P) production 

can be calculated. Each 0(3 P) formed reacts to form (1/Z)Oz which 

will scavenge one methyl radical: 

CH 4 + O( D) - CH4 + O(3 P) 

(Z7) 

OH3 
CH 3 +02 - Products (28) 

In addition, two methyl radicals are lost from the~two r daotiDns: 
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O(ID) + CH 4 - CH 3 + OH (16) 

OH + CH4 - Hz0 + CH 3 (30) 

Therefore each time O( D) is deactivated by methane to form O(3 P) 

atoms, three methyl radicals are lost. The maximum quantum yield 

of O( 3P) production, max {O(3 P)}, can be calculated to be equal 

to 0.05 1 0.05. This value of 0.05 is a good estimate of the ratio 

of deactivation compared to reaction of the O( D) atom with 
22 

methane. DeMore and Raper reported that deactivation of the 

-O( D) toO(3P) ground state accounts for 30% of the total reaction 

while no deactivation was reported by Paraskevopoulous and 
.,27 

Cvetanovic. The result of this work that the deactivation is less 

than 5%/ is in good agreement with the later of the two observations 

but both contradict the result of DeMore and Raper, which were 

obtained in the liquid phase. 

The other possible reactions are: 

0(ID) + CH4 -- CH2 O+ 2 (18) 

O( D) + CH 4 -- CH 2 + H 2 0 (19) 

The possibility of the production of H 2 was investigated. No H was 

detected; therefore it can be concluded that the quantum yield for 

the production of H 2 , §{H 2 }is less than 0.00Z and probably zero. 

If CH 2 is produced it would react in four ways: 

CH z + CH4 -- C2 H6 (19a) 
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CH Z + CH 4 -' Z0H 3 (19b) 

ZCH Z - CZH 4 (19c) 

CH3
CH + CH3 - CRH (19d)'
-j303513d8 

No CZH 4 or C3H8 ( f{C 3 H 8 Jt<- 0'..02). were found, :smr~acttins-(19c) 

and (19d) are unimportant. Reaction (19a) would occur only for 

singlet CHZ, which would not be scavenged by 02 or NO. When NO 

was added, 4{CZH6 }fell to zero; therefore reaction (19a) also 

must be unimportant. Reaction (19b) cannot be eliminat6d as a 

possible path leading to the production of CH 3 radicals, but it is 

indistinguishable from reaction (16) followed by reaction (30), and 

need not be considered separately. 

Since the method of chemical difference proved to be the 

best method in determining the ratio of rate constants k 1 4 /k 1 5 in 

the photolysis of NZ 0 by itself (Chapter-3), it was also found to 

be useful in this study. The results in the region where. this method 

could be employed is shown in Tables 9 and 10. The data are 

separated in such a way that the results where the time effect is 

important is listed in Table 9 and the results where the time effect 

is neglikibleisshewnin Tale 10. 

Simplified Mechanism 

O( D) atoms produced by the photolysis of NZ0 at Z139A 

are known to react with N2 0 and the only important reactions were 

shown to be: 
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N 2 0+hv - N +0( 1D) (12) 

O(ID) + N2 0 - N2 + 02 (14) 

0(1 D) + N 2 0 - 2NO (15) 

in the presence of CH 4 the 0( D), can react accordingly: 

0( D) + CH4 - OH + CH 3 (16) 

OH + CH 4 -H1 2 0 + CH 3 (30) 

CH3 + CH3 - 2 H 6 (31) 

O(ID) + CH 4 -'- O(3p) + CH 4 (27) 

The major, fate of 0( 3P) is to produce 02 by the reaction sequence: 

0(3P) +NO+ M - NO Z + M (13) 

O(3P) +NO 2 - Oz +NO (14) 

oz and NO are known radical scavengers of CH 3 radicals 

and the'following reactions must be included: 

CH 3 +0 +M- CH 3 0 2 +-, (Z8) 

CH3 02 + CR 3 - CH3 0 2 CH 3 (38) 

CH3 +NO - CH3 NO (29a) 
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CH 3NO + CH 3 - (°CH 3)NO (M%) 

(CH3)zNO+ CH5 - (CH3')ZNO(CH 3 ) (29c) 

!',,Combining (29a), (Z9b) and (296), the following reaction 

can be written: 

CH 3 +NO (CH3)3NO (32) 

At high values of [CH4I/[N 2 0], reactions (14) and (15) will 

be small compared to the reactions of the-O( ID) atoni with methane. 

However, as the ratio of [CH 4 ]/[N2 01 is lowered a competition for 

-the reaction of the O(ID) between CH 4 and NZO will occur. As a 

result of this competition occuring for low ratios [CH 4 ]/[N0] 

(6 < R < 10; R = [CH 4 ]/[NZO]) reactions (14) and (-15) will be 

occurring extensively. Consequently, -reactions (28) and (3Z) 

which are scavenging methyl radicals will become very important. 

As the [CH 4 ]/[N2 O] ratio becomes smaller and smaller, reactions 

(28) and (32) will become more and more important and 1 {C2 H6 } 

will approach zero. In this region c{CZH 6 }will be a sensitive 

function- of the ratio of ,[CI4 ]/,[N2 0]. The use of reactions (28) 

and (32) as. radical scavenging paths is- another example -of the 

method of chemical difference. 

Since each OZ formed removes two methyl radicals and each 

NO formed removes three methyl radicals, an expression for the 

rate of production of ethane, R{C22 6 } can be written: 

R{CZH 6 }= k 1 6[0( 1 D)CH4 ] - a/z)2yh 2 [0(I D)[CH4 ] - kI 4 [O( 1 D)][N 2 0] 

- 3k 1 5 [o(ID)][N20] 
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Fromthis expression the I {C 2 H6 }is given by the equation: 

+ 3 k1 5 ) [N0]- (I/?)kV )[CH 4 ] - (k 1 4~{C(k162 61 (k 1 6 + k2V) [CH 4 ] + (k 1 4 + k,)[Nz0] 

rearranging this expression:
 

qqC H 6 I+ b26 = a- c {C 2 H 6} (F) 

where 

k 14 + 3ka= k16 " GI/ Z)kT, b- 5 k16 + k Z7 

k14 + k 1 5  k 1 4 + k 1 5  k14 + k 1 5 

[OH4 ] 
= 

and R 

[N 2 O] 

If it is assumed that k 14/k15 = 0, 66 from the most recent result 

28obtained in our laboratory, b can be evaluated to be equal to 2. 205. 
When ( {C H 6 } + 2. 205)/R is plotted versus P{C H 6 the intercept 

of the plot is equal to (k 16 - (1/2)k2 )/(k 1 4 ± k 1 5 ) and the slope is 

equal to -(k 16 + k 2 7 )/(k 1 4 + k1 5 ), A plot of the data in the region 

where secondary reactions are negligible is shown in Figure 7. 

Secondary reactions of the following kind: 

CH30 + C -CH3OH + HO (33) 

were determined to be unimportant since the reactions of CHz0 
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lead to GO. Under the conditions where no CO was detected it 

canbe assumed that the secondary reactions of C H2 0 must be 

unimportant. 

The linear portion of the plot has an intercept of 2. 18 and a 

slope of -3. Z. Substituting these values into the expression for a 

and c respectively the two equations can be solved simultaneously: 

k16 Z 
___ ___ - 2.5 

k14 + kl15 

k 27
 -0.18 

k16 + k27 

The analysis is quite sensitive for k 1 6 /(k 14 + k1 .), but 

relatively insensitive to 7/(k 1 6 +'k7); From the product analysis 

it was determined that k2 7 /(k 1 6 + k2 7) = 0.05 =L 0.05. With this 

value, the expression for a gives k 1 6 /(k 1 4 + k1 5 ) = 2. Z. Utilizing 

lx 10 1 1 Mthe known value of (k 14 + k1 5 ) = . Isec -l ,28 k16 = 2.4 

10I I - Ix M- I sec 

The non-linear portion of the plot in Figure 7 cannot be 

explained on the basis of this simple mechanism but can be 

explained on the basis of the more complete mechanism which will 

be given in the next section of this chapter. This deviation can be 

attributed to the reaction of CH30 with NO. The NO will scavenge 

less methyl radicals than predicted in reaction (32) and 4{C2 H 6 } 

will be larger, as is shown in Figure 7. 
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Complete Mechanism And Computer Results 

The complete mechanism will include in addition to reactions 

(IZ), (14), (15), (16), (27), (28), (30), (31) and (32) as given in the 

simplified mechanistic scheme: 

CH 3 + OH - CH3OH (34) 

the reaction of ground state, O(3 P) atoms: 

O(p) +NO + M -- NO2 + M (35) 

0(3p) +NO? .- 02 +NO0 (26) 

NO 2 + CH - CH3 N O2 (36) 

CH302 can react with itself and with other radicals: 

CH 0 +CH0 -- ZCH30+0 (37) 
3- 2 3 23 +2 (7 

CH 3 0 2 +01 33 - CH3 OOCH 3 (38) 

CH302 + CH 3 0 - H (39)0302H + CH20 

CH 3 0 2 +NO - CH3Oz NO (48) 

CH302 + NO z - C 3 0zNO2 (49) 

CH 3 0 can react via: 

CH 3 0 + NO - CH 3 ONO (40a) 
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CH 30 + NO - CH 2 O + HNO (40b) 

CH30 + CH3 3 (41a)CH3OCH3 

CH 3 0 + CH 3 - CH 3 0 + CH 4 (41b) 

CH3 0 + CH3 0 - Product (42) 

CH30 + NO 2 CH 3 ONO2 (43) 

Finally, the reactions of HNO must be included: 

HNO + CH 3 - CRH4 + NO (44) 

HNO +-CH 3 0 --- GH 3 OH + NO (45) 

HNO + CH 3 0 2 -- CH 3 0zH +NO (46) 

HNO + HNO -- H O+N O (47) 

The value of all known and estimated rate constants are listed in 

Table 11. 

Steady state equations can be written for each of the 

radical intermediates: 

[1)] = a (G) 

(k 1 4 +k 1 5)[NzO] + (k 1 6 + k2 7 )[CH 4 ] 

[OH-= k1 6 [O( D)] (H) 
k30 



,i 

TABLE 11 

RATE CONSTANTS.AT 250C 

Reaction k Reference 

(14) O( 1 D)+N 2 0-N 2 +0. x 10ll Young et al. 29 

(15) 0(ID) + N2 O -ZNO 

(16) 

(26) 

O( D) + CH 4 

O(3P) + NO2 

OH + CH 3 
3 

- 02 +NO 

~1030 

1.7 x 10 DASA 3 0 

(27) 

(28) 

(30) 

(31) 

(32) 

O(ID) + CH 4 0( P) + CH4 

CH 3 +02 + M - CH 3 02 + M 

OH + CH 4 -' H2 0 + CH 3 

CH + CH 3 - CH 6 

ZCH 3 
CH 3 + NO -3 CH 3 NO(CH) 2 

3 x 1010 

6.2 x 106 

10 
2. 4 x,10 

2.4 x 109 

McMillen and Calvert 3 1 

Wilson and Westenberg 3 2 

3ac3el 
Baso et al. 

Basco et al. 3 3 

(34) CH 3 + OH - CH 3OH 2 x 109 Estimate 



TABLE 11 (cent.) 

Reaction k Reference 

(35) 

(36) 

(37) 

(38) 

OP)+ NO,+ M- NO 2 + M 

GH + NO2 -CH 3 NOz 

CH 3 0 2 + CH 3 0 2 - ZCH 3O + 0 2. 

CH 3 + CH302 - CH 3 000GH 3 

3.6 x 1010 

3.0 x 109 

5 x 1010 

'8 x 108. 

DASA 3 0 

Heicklen and Cohen 3 4 

Heicklen 3 5 

Heicklen 3 5 

(39) 

(40a) 

,(40b) 

OH0 +-GH0 -

3~ 
CH 3 O0 + NO -" CH 3 0 

CH 3 0 + No CH 2 0 

OH H+GH 0 

32326 
NO 

+ H NO 

i. 6'x 109 

3 x 10 

6 x 106 

Heicklen and, Cohen3 4 

Wiebe 3 6 

McGra* and Johnstor 3 7 , Wiebe 3 6 

(41a) C 3 + CH 3 O -CH 3 OCH33 3- 3 31.6 x 10 0Heicklen 3 5 

(41b) 

(42) 

(43) 

CH 3 + CH 3 O0- CH 2 O + CH 4 

CH 3 0 + CH 3 0 -0 product 

CH30 + NO2 - CH 3 ONOZ 

1 x 1010 

6.0 x 10 
7 

Heicklen 3 5 

36
Wiebe 

(44) CH 3 + HNO - CH 4 + NO 1 + 108,. Estimate 



TABLE 11 (cont.) 

Readtion k Reference 

(45) CH3 + HNO -CH3OH + NO 1 x 108 Estimate 

(46) CH 3 0 z + HN -- CH 3 OzH + NO I x 108 Estimate 

(47) 

-(48) 

(49) 

HNO + HNO - H2 0 + N20 

CH3O 2 + NO ICH3OzNO 

CH3O z + NO Z -- CH 3 O2 NO' 

lx 106 

3.0 x 167 

7 
3.0 x 10 

Estimate 

Spicer 3 8 

38 
Spicer 3 8 

(a) units o:rmoleis, liters, and seconds 
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[Os]" = k1 4 [O( _ 
1 D)][N _ 2 o] + k_ 3 7[CH 3 0 2 ] + k2 6 _ [O(3)][NO]_)___ __ __ _(__ __ _ 

kz 8 [CH ] [XM-] 

3 k?.7 [0( 1 D)][CH 4 ]>[O(3p)] = , J) 

k35 [NO][M]+ kZ6 [NO Z] 

[NO] = (2k 15 [O( 1 D)][Nz0] +-kZ6 [O(3P)][NOz] + k4 4 [CH 3 ][HNO] 

+ k4 5 [CH 3 0][HNO] + k 4 6 [GH3 O 2 ][HNOI) k3 Z[CH 3] 

+ (40 a + k4 ob) [CH 3 O] + k3 5[0(p)][M]-+ 8 [CH 3 0] ) 

(K) 

kZ8 k3[CH3 o02 k[CH3 ][09[M] [C + 21c37 [GH3 021 

+ k 3 9 [CH 3 O] + k4 6 [HNO] + k4 8 [NO] + k4 9 [NO]) (L) 

[CH3 ] = (zk 3 7 [GH 3 O2 z1/ ((40a k4 0b)[NO] + k4 1 [CH 3 ] 

+ Zk4 2 [CHsO] + k4 5 [HNOI + k4 3 [NO?] + k3 9 [CH 3 0 2 ]) 

('M) 

[NQ]= k3 5 [0( 3p)][NO][M] /4 3 6 [0H 3 ] + k4 3 [CN 3 0]) 
+ 6 0( 3kPA. + k4 9 [CH3 0 2 1 (N,) 
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[HNO 144 0bGH3 0][NO] (0)
 
k4 4 [CH 3 ] + k4 5 [GH3 O] + k4 6 [GH3 OZ.] + 2k4 7 [HNO]
 

[CH3 ] Zk1 6 [O(1D)][C4] )/( 2k3 l [CH 3 ] + kz8 [Oz][M] 

+ 3k 3 Z[NO] + k34[OH] + k 3 6 [NO Z] + k4 1 [CH 3 0] 

+ k3 8 [C H 3 0Z ] + k44[HNO]) (P) 

From reaction (31): 

CH3 + CH 3 - n- CZH 6 (31) 

the following expression can be written: 

CI{C 2H6 i='k3 (OH 3) 

• a 

rearranging: 

a(CH3 )7 = 6-

-.31 

k31 and I are known and c'{C2 H6 }'was measured for each experi­

ment; as a result, the concentration of methyl radicals can be 

calculated for each experimental run. Now the [aH3] is no longer. 

unknown and the steady state equation for OH 3 expression (P). can 

be rewritten as an equation to solve for the value of kl 6 . 
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These 10 steady state equations can be reduced to six non­

linear equations; equations (M), (0) and 

[CH0z] =( 	 k 1 4 CI[Nz0] + k [CH 3 O] 2 + CCz[NO2 ])/ 

k38 [CH 3 + 2k3 7 [CH 3 02] + k3 9 [CH 3 0] + k4 6 [HNO] 

+ k4 8 [NO] + 149[NO Z]) 

[NO] = (1k 1	 5 C1 [N2 0] + CIC 2 [NO2 ] + k4 4 [CH 3 ][HNO] 

+ k45[CH 3 o][H NO] + k 4 6 [CH3 OZi[HNO] k 3 2 [cH3 ] 

+ (k 4 0 a + k4 ob) [CH 3 0] + GIG 3 + k 4 8 [CH 3 02 ] 

[NO I 	 CIc 3 [NO] 

k 3 6 [CH 3 ] + k4 3 [CH3 0] + CICz + k4 9 [CH 3 0 2 ] 

k = Zk 3 1[CH3]2 + k 4 CI[NzO] + k 3 7 [CH 3 O2 ]r + CC 2 [NO Z] 

+ 3k 32 [CH3][NO] + k 3 4 k 1 6 C1[GH 3 ] / k3 0 + k 3 6 [NO9][CI- 3 ] 

+ k 41 [CH3 O][CH 3 ] + k 3 8CH3 OZ] G 3 ] + k 4 JHNO][CH 3 ]) / 
2CI[CH4 ] 

where 

a 

(k 1 4 + k 1 5 )[N 2 0]. + (k 1 6 + k 2 7 ) [CH 4] 
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k2 8k8
[CH 4] 

k3 5 [NO][M] + k2 6 [NO 2 ] 

k27 k3 5 [ M ][CH 4 ] 

k35[NO][M] + kZ6 [No 2 ] 

Theten steady state equations have been'reduced to six 

non-linear equations involving seven parameters: 

CH 3 0, HNO, CH 3 0 2 , NO, NO2 , and k 27 .k 1 6 

Of 	these ,six were unknown, but the ratio kZ 7 /k 1 6 was set equal to 

0. 05 based on the-experiments performed at high 2yHt/[N2] '..ti~s. 

A computer -program was written to solve these six equations 

in six unknowns by an iterative process. The programis a 

Fortran IV (Watfor.), Program and it is tabulated in the Appendix. -

The computer-was fed the following information: 

i. 	 Six non-linear steady state equations. 

2. 	 Values of all r.ate constants from Table 11. 

3. 	 Initial guesses for all the-radical intermediates 

as listed in'table 12. 

.4. An initial guess for the value" of k 16 . 

5. 	 A value of k 1 4 /k 1 5 = 0.66 based on the most 

recent result obtained in. our laboratory. 28 

6. 	 Data cards for each experimental run that was 

listed in Table 10. The information listed on the 

data cards is shown in Table 13. 
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TABLE 12
 

INITIAL GUESSES OF THE RADICAL CONCENTRATIONS 

Radical Concentration 

(Moles/Liter) 

1 01.7 x 10 -CH 3 0 2 

1. 17 x 10O9 
NO 2 

- 91. 1 x 10CH 3 0 
9Z. 5 x 10 -HNO 

4.5 x 10- 8 
NO 



TABLE 13 

DATA AS LISTED FOR THE COMPUTER WORKH' ) 

(CH 4 ] 

-3 moles 
(x 10 - liter 

~ 
(x 

[NzO] 

-3 m0-oles)
0 ,liter 

x 
(x 

Ia 

-8 : dnls 
10 l it g±xr;sec 

o 1 0 

(x- 0 
moles)x
liter 

I3 

~0-2 moles 
t(x1e 

(A)) 100 torr N 2 0, 10- minutes irradiation 

3.189 5.617 Z.50 1.03 0.941 

4.060 

4. Z27 

5.453 

:5..502 

3.38 

2.12 

-0.91 

1.08 

0.951 

0.973 
0­
0 

4.784 5.370 2.13 1.38 1.015 

4.972 5.330 Z.Z9 Z.03 1.030 

5.07Z 5.362 Z.1z 1.89 1.043 

5.168 •5.300 Z.12 Z.13 1.047 

5.384 5.410 Z. Iz Z. 34 1.079 

5.545 5.392 2.13 2-.15 1.094 

5.585 

5.962 

5.'494 

5.330 

Z.13 

2.31 

Z.03 

3.30 

1.108 

1.129 



TABLE 13 (cont.) 

[CH 4 ] [N 2 O] 1a [CH3 ] [M] 
( 63mlesmles (x 10 - 3 molesliter :ml-'(litei-sec ) i00-i10 molesxliter ( 0 molesliter 

6.067 5.445 0.78 0.94 1.151 

6.392 5.402 0.Z8 1.11 1.179 

6.419 5.384 2.13 2.74 1.180 

6.475 5.346 2.13 Z.79 1.182 

6.545 5.338 2.47 3.2Z 1.188 C 

6.545 5.367 3.38 3.ZO 1.191 

.7.274 5.316 1.67 3.21 1.259 

8.121 5.316 1.67 3.43. 1.344 

9.417 5.330 1.67 .3.71 1.475 

11.87 5.314 1.67 4.62 1.718 

13.71 5.330 1.67 4.94 1.904 

16.05 5.314 1.67 5.89 Z.136 



TABLE 13 (cont.) 

[CH 4 ] [NzO] Ia [CHs] [M] 

(x -30 moles)liter (x 10 3 molesliter - e 
-8(x 10 >Jmolesc 

lifdi-sec ) I -10(,Cl0 molesiter ) -2 moles(x 10 mliter 

(B) 30 torr N 2 0, 10 minutes irradiation 

1.764 1.630 1.22 1.81 0.339 

1.799 1.630 0.84 1.61 0.343 

Z.253 1.635 0.84 Z.z1 0.389 

(-a)cerefers) t.thedafa, iffib,) 10 
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The computer calculated new values of the six unknowns 

iteratively until a set tolerance between two successive iterations 

were met. The computed values for k 1 6 /(k 14 + k 1 5 ) for each run 

are listed in Table 10. If the values corresponding to the three 

lowest values of {C 2 H6 .} are discarded then the values for 

k16/(k14 + k 1 5 ) lie between 1.87 and Z.55 even though C{c 2 H6 

varies by a factor of-23. The average value of k 1 6 /(k 14 + k 1 5 ) with 

its standard deviation is 2.28 ± 00 Z0 in good agreement with the 

result obtained from the simplified mechanism. 

The value of k 14/k15 was changed from 0.66 to 0.59, the 

original value obtained in this work (from ,Chapter 3); k 1 6 /(k 14 + k 1 5 ) 

increased from 2. Z8 to 2.33. This change is insignificant. 

In addition, the value of k16/(k14 + k 1 5 ) that was calculated 

was independent of the following possible variations: 

1. 	 Initial guesses of the steady state concentra­

tions. 

Z. 	 The initial starting value of kZ7 /k 1 6 between 

0. 00 and 0. Z0 as is shown in Table 14. 

3. 	 The value of the following rate constants which 

were varied over a factor of 100 (a factor of 

10 greater and 10 smaller of the value listed 

in 	 Table 11): 

k2 6 , k2 8 , k3 0, k3 4, k3 5, k3 6, k37' k3 8, 

k 3 9 , k 4 0b' k 4 2 , k43, k 4 5 , k4 6 k4 7 , k49 

Table 15 lists the effect on the average value of k 1 6 /(k 14 + k 1 5 ) 

with its standard deviation over a factor of 100 variation in all the 
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TABLE 14 

EFFECT OF VARYING RATIO kOZfkl6 

Value of kZ7/k16 

0.000 

0.030 

0.053 


0.100 


0.150 

0.zoo 

on k16(k14 + k1 5 ) 

k16/(k14 + k 1 5 ) 

2.20 ± 0.21 

Z. 23 • 0.20 

Z. 28 0. ZO 

Z.36 0. 18 

2.47 0.16 

Z. 59 ±. 14 
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TABLE 15
 

EFFECT ON AVERAGE VALUE OF k16/(k14 + k 1 5 )
 

BY VARYINGTHE VALUE OF THE RATE CONSTANT(a)
 

k 	 k 1 6 /.(k1 4 + k) 

kZ6 	= 1.7 x 109 2.18 :*0. 20
 

1.7 	x 10 1 1  
k26 	= Z-.31 0.20 

k 28  3.0 x 	10-9 Z. 28 0. 20
 

k 2 8 	= 3.0 x 1011 -Z. Z8 0.20
 

105
k30 	= 6. 2 x 2.Z8 0. z0
 

= 2x 107
k30 6. 	 2.Z8 0.20 

i 3 1 = Z.6 x 	109 1.88 0.20
 

1011 11.6 A7.4 (b )

k31 	= Z.6 x 


k3 2 = 6.0 x 	107 1.47 ± 0.11
 

108
k3 2 = 2.4 x 1.82 ± 0.12
 

k3 2 = 6.0 x 108 Z. 06 0.15
 

k3Z = Z.4x 101 0  Z.38 0.Z3
 

k34 	= 2.0 x 10 82.28 0.20
 

"
k3 4	 = 2.28 0.. 20
2.0 	x 1010 2 
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TABLE 15 (cont.) 

k 16/(k14 + k 1 5 ) 

10 9
k35 = 3.6 x Z.31 0.20
 

k35 = 3.6 x 1011 Z. 18 0.20
 

k3 6 = 3.0 x 108 Z.31 0.20
 

k3 6 = 3.0 x 1010 2.19.:L 0.20
 

k3 7 = 1.5 x 109 Z.16 0. 18
 

k37' = 1.5x10 I I  Z.-33 0.21
 

k38 = 8.0 x i07 Z.28 +0. 20
 

k38 = 8.0 x 109 Z.26 0.21
 

k39 = 1.6 x 108 Z.-30 -0.20
 

k 3 9 = 1.6 x 1010 2-.17 -0.20
 

10 6
k40 a 3.0 x Z.30 0.21
 

k40 a = 3.0 x 108 2.07 0. 15
 

k 4 0b = 6. Ol05 Z.Z8 ±0.20
 

k40b = 6.0 x 107 Z.27 0.19
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TABLE 15 (cont.) 

k16 f(k 1 4 + k1 5 ) 

k4 1	 = 1.6 x 109 Z.140.21
 

2.55 0. Z4k4 1 	 = 1.6x 1011 


k = 1.0 x 109 Z.34 ±0. 19
 

4 2 = 1.0 x 10 1 1 2. zz b0.21
 

106
k43 =6.0 x Z. 28 d: 0.20
 

108
=6.0 x 	 Z.Z7 0. ZOk4 3 


107
k4 4 	 =1.0 x Z. Z8 ±0. ZO
 

= 1.0 x 109 2. Z8 0. ZO
k4 4 


k4 5 	 = 1.0 x 107 .28 ± 0.20
 

= 1. Ox 109 	 2. Z8 ± 0. ZOk4 5 


k4 6 = 1.0 x 1027. 28 ± 0. z0
 

k4 6 =1.0 x 109 2.28 ± 0.ZO
 

i 4 7 =1.0 x 105 2.28 ±0.20
 

k4 7 = 1.0 x 10 7 2.28 ±0.ZO
 

http:Z.140.21
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TABLE 15 (cont.)
 

k<
klG/(k14 + k1 5 ) 

k = 3.0 -61 Z 32, .zz 
488 

k48 = 3.0 x 108 2.01 0. 14 

488 
10 6k49 = 3.0 x Z-. 17 0..Z0
 

-
k4 -30Ox 108 1.17 * 0.20 

(a) first three runs from Table 10 omitted in averaging 

(b) a number of the runs did not converge in -100 iterations 
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rate constants. The effect in the majority of the cases is less than 

I-Z% change in k 1 6 /(k 14 + k15 ) . 

The value of k 1 6 /(k 14 + k 1 5 ) computed did depend on the 

values of the rate constants: k 3 1 , k 3 2 , k 4 0 , k4 1 , and k 4 8 . For 

reactions (40a), (41) and (48) the effect results in less than 12% 

change in the k 16 /(k 14 + k 1 5 ). The value of k 1 6/(k 1 4 + k 1 5) did 

depend significantly on the value of k3Z; lowering k to 6.0 x 107 

reduced k 1 6 /(k 14 + k 1 5 ) to 1.47 ± 0. 11. 

Lowering k 3 1 by a factor of 10 only reduced k 1 6 /(k 1 4 + k 15 ) 

to 1.88 £- 0.20 but raising k 3 1'by a factor of 10 increased 

k16/(k14 + k 1 5 ) to 11. 6 ± 7 with a large number of the individual 

runs not converging in 100 iterations. The very large scatter in 

the data is a good indication that k 3 1 cannot be so large. Furthermore, 

the value of k3 1 is very accurately known (< 10%"uncertainty), so 

that the high result need not be considered. 

The reliability of this method depends on the validity of the 

steady state assumptions. For the steady state assumption to be 

valid, it is necessary that the steady state concentrations be much 

less than the O( ID) produced (93-377). The final steady state 

concentrations given in the last iteration of the computer output are 

listed in Table 16. The results in Table 16 indicate that the steady 

state concentrations are all negligibly small (< il.) except for possibly 

the 02 steady state values for the first three runs. 

The values of k 1 6 /(k 14 + k 1 5 ) equal to 3. 10, 2.70 and Z. 77 

are exceptionally high, these represent the points in Figure 7 

which deviate most from the-linear- position and are the runs under 

which the quantum yields of ethane measured were very low. Under 



TABLE 16 

STEADY STATE CONCENTRATIONS AS, LISTED IN THE LAST 
ITERATION OF THE COMPUTER CALCULATION 

91 9 0 101 0 x 100 x13(1) 10l(b) 8 (c) 7 (d) 
k16 109x 109x ll x l~x 10x 101 x 10 x 031 x0 10 x 

k 1 4 +k 1 5  [NO] [No 2 ] [CH 3 O] [CH 3 0] [HNO] [O( D)] [Ow] [O( 3 P)] [02] [CH 3 NO] 

M M M M M M M M m M 

3.10 33.67 4.60 4.23 4.34 8.96 1.39 6.95 0.45 21.12 Z0.20 

,2.70 51.49 7.01 4.87 4.99 13.94 1.90 8,65 0.39 32.11 30.89 

2.77 27. 15 3.83 3.90 4.00 7.14 1.19 5.32 0.46 16.43 16.29 

2.48 21.30 3.14 3.91 3.96 5.42 1.19 4.78 0.57 12.32 12.28 

2.55 15.08 2.29 4.0s 3.94 3,'54 31..23 5.03 0.87 8:60 9.05 

2.49 15.09 2.31 3.88 3.81 3.58 1.14 4.57 0.80 -8.49 9.05 

2.49 13.13 2.04 3.86 3.73 3.00 1.13 4.52 0.91 7.37 7.88 

Z.51 11.77 1.88 3.84 3.65 2.61 1.08 4.37 0.99 "6.'42 7.06 

2.36 13.07 2.09 3.87 3.33 2.99 1.11 4.23 0.89 7.02 7.84 

Z.37 13.92 2.24 3.88 3.77 3.24 1.10 4.18 0.82 7.38 8.35 

Z.50 8.45 1.44 3.90 3.46 1.64 1.10 4.44 1.48 4.46 5.07 

2.31 3.82 0.64 1.39 1.30 0.82 0.14 0.52 0.39 1.60 2.29 



TABLE 16 (cont.) 

10 9 x 10x 101 ° 101lx 10 1 °x 10 17 x 103 10 1 0 (b) 8 c) 7 (d) 

k 1 4 +k 1 5  [NO) [NO 2 ] [CH 3 0 2 ] [CH30] [HNO] [O( D)i [OH] COOP)] [02] [CH3NO] 
M M M M M M M M M M 

2.32 3.11 0.54 1.37 1.23 0.62 0.13 0.50 0.47 1.52 1.87 

2.20 9.77 1.69 3.80 3.50 2.04 1.05 3.73 1.1Z 4.89 5.86 

2.18 9.59 1.66 3.80 3.48 1.98 1.05 3.71 1.14 4.80 5.75 

2.22 9.40 1.65 4.05 3.65 1.88 1.19 4.28 1.16 4.70 5.64 

2.10 13.52 2.33 4.82 4.51 2.91 1.71 5.77 1.27 6.69 8.11 

2.21 5.92 1.11 3.Z4 2.75 1.06 0.75 z.67 1.40 2.82 3.55 

2.07 5.37 1.07 3.19 2.66 0.92 0.72 2.42 1.46 Z.41 3.22 

1.91 4.72 1.03 3.13 Z.5Z 0.76 0.69 Z. 12 1.54 1.95 2.83 

1.93 3.11 0.81 2.90 2.07 0.40 0.57 1.76 2.09 1.15 1.86 

1.87 2.66 0.77 2.80 1.91 0.32 0.52 1.55 2.24 0.91 1.60 

2.45 1.53 0.53 Z. 45 1.42 0.13 0.36 1.41 3.57 0.53 0.92. 

2.34 8.81 0.55 2.93 2.78 1.95 Z.05 7.73 2. 2 15.38 5.29 



TABLE 16 (cont.) 

16 109X 109Ix 10 x 
101 

10x 
01 

101 0x 101 7 x 10 
3'(a) 10 (b) 

loO-10 x 
a (c) 

10 x 
7~ (d) 

10 x 

k 14 +k 1 5  [NO] [NO 2 ] [CH 3 02 ) [CH 3 0] [aNo] [0(1 D)] [OH] [O(3p)] [O] [CH 3.NO] 

M M M M M M M M M M 

2.34 6.74 0.43 2.42 2.27 1.45 11.39:- 5.25 1.99 11.66 4.04 

2.17 4.45 0.32 2.33 2.01 0.82 1.24 4.35 2.76 6.90 2.67 

(a) calculated from Equation (H) 

(b) calculated from Equation (J)' J 

(c) calculated from Equation (I) 

(d) calculated on the basis of k2 9 a = 4 x 107 IM 1 sec - 1 
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these conditions the steady state assumption for CH3NO collapses. 

Exact steady state values for CH3NO cannot be obtained because 
3 3 

only a lower limit to kz 9 a is known: k Z9 a > 4 x 107 . An upper 

limit for CH3NO is listed in Table 16. These values are significant 

and could easily account for the large values of k16 /(k14 +k 15 ) 

computed for these runs. For the other runs the-limiting steady 

1
 
state values are between-1 and 10% of the total O( D) produced and 

the steady state assumption is valid. 

It was hoped that an estimate of k 2 7 /k 1 6 could be obtained 

from the computer work. However, as was stated previously the 

value that was calculated for k 1 6 /(k 1 4 + k 1 5 ) was independent of 

the initial starting value of k 2 7 /k 1 6 . Therefore, an estimate of 

the value of kZ 7 /k 1 6 was not possible from the computer work. 



CHAPTER 5
 

THE TRANSLATIONALLY flOT O(
I -
D) ATOMS
 

Introduction 

In Chapter 3 it was reported .that for-the photolysis ;of N 2 0 

at 2139,A the O( D) atoms react: 

NzO +hv ---N + o( D) (IZ) 

O(ID) +.-Nj0 N 2 + 02 (14) 

I 

O(1D) + N 2 - ZNO (15) 

The ratiok 1 4 /k 1 5 = 0.66:E 0.06 was determined by the method 

of chemical difference. In addition Goldman, Greenberg, and 

Heicklen, 3 9 , determined this ratio.in the photolysis of 0 -N -0 

mixtures and.found k14 /ki 0.59 ±-0.08.at 2537A and k14 /k15 = 15 = 0.50 

40-0.07 at 2288A. However, Preston- has also,measured k14/k15 
141 

using several sources of 0( D) atoms: photolysis of N 2 0-NO2 

mixtures at ZZ88A and Z400A gave-kl /k = 1.01 ± 0.06, flash14 15 

photolysis of Nz0-03 mixtures gave k 14 /k 1 5 = 0.99 = 0.06, and,the 

photolysis, of N2 0 at Z-Z88A gave k14/k5 1:.= 08 ±0.19. the discrep­

ancy btwyeen.the two laboratories is outside the claimed.experiment l 

errors. The difference between the work from this-laboratory and 

that of Preston will be discussed in- terms of the excess translational 

energy of the O( D) atoms, which will in turn depend on the source 

of the 0( D) atom. Some common sources of the O( D) atom and the 

excess energy available are shown in Table 17. 

http:ratio.in
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TABLE 17
 

SOURCE OF 'O( D) AND EXCESS ENERGY AVAILABLE
 

xenergy
Source 
 kcal/rnole 

N 2 0 + hv - N2 +O( D) 2139A 48.1 

NzO + hv - NZ + D) 2288A 45.0 

0 3 + hv r0 0 2 (1A) + O(. D) 2288A 31.8 

03 + hv - 0 2 (1A) + 0(1D) 2537A 20.3 

NO z + hv - NO +O( D) Z288A 5.6 
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Furthermore, the excess translational energy of the O( D) 

atom will be shown to be important in the reactions of the O( 1D) atom 

in the N 2 0-CH4 system. 

Helium was chosen as a third body to remove the excess 

translational energy of the O( D) because helium is known to quench 

only the excess translational energy of the-O( D) but not deactivate 

it to the O(3 P) ground state. 

Results 

The results of added helium in the-photolysis of N2 0 by 

itself with 2139A radiation is shown in Table 18. A plot of rn O2} 

as a function of added helium pressure is shown in Figure 8. 

The stoichiometry of the'NO + 0 Z reaction-was checked in the 

presence of added helium under-identical conditions as described in 

Chapter-3 except that approximately 200 torr of helium was added 

to-the reaction cell before the sample-was collected and analyzed. 

The results of the two stoichiometric experiments performed are: 

NO/O2 Consumed: 3.7.6 and 4. 11 

Average: 3.94 :b 0. 18 

'This isin excellent agreement with the-value of 3.96 : 0. 20 obtained 

in the absence of helium. Therefore, reaction (21) is still valid: 

4NO + O2 -- 2N2 03 (21) 

The data in Figure-8abzebad.iy scattered; however, a definite 

effect of the added third body is apparent. From c{O2 at high 

helium pressures, the average value of 15{ O2} = 0.182 =h 0.02. The 

http:Figure-8abzebad.iy
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TABLE 18 

PHOTOLYSIS OF 10 TORR Nz0 AT Z139A IN THE PRESENCE 

OF ADDED HELIUM 

[He] 
Dm{OzI(torr) 

0 0.090 

0 0.080 

0 0. 070, 

29 0. 1z 

72 0.17 

101.5 0.18 

IZ4 0.17 

.159.5 0.21 

193 0. 17 

216 0. 16 

Z39 0. 15 

248 0. Z3 

Z53 0.17 

339 0.20 
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value of k 1 4 /k 1 5 can be calculated from expression (E)derived in 

Chapter 3. 

k 14  0. 5 + {Oz} ({)- (E) 
k15 1 m 

k14/05 = 0.85 ± 0.05
 

A more detailed study of the effect of added helium in the photolysis 

of NZ0-by itself at 2139A and 1849A has been made in this 

laboratory. 39 

The affect of addedhelium in the photolysis of CH 4 - N2 0 

mixtures was determined by the use of a computer program. The 

experimental conditions and the results of the measurement of 

4f{C*H6} is shown in Table 19 and the information that was listed 

on the data cards Js given in Table Z0. The value of k14 /k 15 = 0..66. 

was used in the calculation of k16/(k14 + k 1 5 ). -The average for the 

ratio of rate constants k 1 6 /(k 1 4 + k 1 5 ) at 330 torr and 760 tort helium 

are respectively 2.0O4 ::0.,08 and 1.89 ± 0. 10. The final steady state 

concentrations as given in the last iterati6n of 'thecomputer-outputs 

are listed in Table 21. 

It was necessary to determine the'effect of using different 

weight factors of the helium pressure in the third body term, M, of' 

the mechanistic scheme. The results of this study are, shown in 

Table ZZ. From these measurements it can be concluded that the 

values of k 1 6 /(k 4+ k] 5 ) are independent of the fraction of the helium 

pressures weighted into the M term. 



TABLE 19 

EFFECT OF ADDED HELIUM IN THE PHOTOLYSIS 
OF N 2 O-CH4 MIXTURES 

[Cc 4] [CzH 6 ] q{CzH 6 k 6(a)
[CH 4 ] [He] 4la 


(torr) (tort) R -[N=O0 ([i/min)- (k14 + k15)
 

(a) 100 torr N2 0, 10 minutes irradiation, -330 torr helium added 

106.15 356 1.062 33.8 IZ. 1 0.,0358 2.16 

111.75 317 1.115 33.8 15.7 0.0464 2.12
 

119.85 325 1.209 :33.8 '15.2 0.0450 1.94
 

120.10 320 1.215 Z5.6 15.6 0.0609 2.01
 

132.65 .349 1.337 25.6 Z4.3 0.0949 1.97
 

(B) 100 torrN20, 10 minutes irradiation, -760 torr helium added 

109.70 791 1.104 33.8 11.5 0.0340 Z. 05
 

120.55 758 1.Z23 '33.8 13.6 0.040Z 1.89
 

135.05 788 1.366 Z5.6 19. z 0.0750 1.84
 

144.70 712 1.438 25.6 21.9 0.0855 1.78
 

(a) based on helium weighted 1/3 into M term and~kz k3= 0.66 



TABLE 20 

ADDED HELIUM DATA IN THE PHOTOLYSIS OF N2 O-CH 4 

MIXTURES AS LISTED FOR THE COMPUTER WORK(a) 

[CH 4 ] 
(x 10 - 3 moles) 

liter 
( 
( 

[N Z Q] 
1-3 moles) 

0 liter 

I a 
(x 10 ­ 8 moles. 

litet'-sec 

[CH 3 ] 
(x i0-l0 moles 

liter 

[M1b) 
10 - 2 moles) 

liter 

(A) 100 tort Nz0, 10 minutes irradiation, -330 torr helium added 

5.709 

6.010 

6.446 

6.459 

7. 134 

5.375 

5.39Z 

5.330 

5.322 

5. 335 

3.03 

3.03 

3.03 

2.29 

Z.29 

2.04 

2.33 

2.Z9 

2.32 

2.89 

1.747 

1.708 

1.760 

1.752 

1.873 

0 

(B) 100 tort N 2 0, 10 minutes irradiation, -760 tort helium added 

5,900 

6.483 

5.343 

5.303 

3.03 

3.03 

1.99 

Z. 16 

Z.542 

2.538 



TABLE 20 (cont.) 

[CH 4 ] [N 2-0] Ia [CH3 ] [Mj(b) 

(x i0-3 moles) 
liter 

(x I0-3 moles) 
litdr 

(x 10.8 ;. inoles; 
lit'er'-sec 

-10 moles 
liter 

(x 0 moles 
liter 

7.263 5.319 2.29 2.57 Z.671 

( 7.782 5.413 Z.29 2.75 2.596 

(a) refers to the data in Table 16 

(b) based on helium pressure weighted a factor of 1/3 
03 
N4 



TABLE 22 

HELIUM 	PRESSURE WEIGHTED INTO-THE 
THIRD BODY TERiM 

Fraction of Helium - k 1 6 /(k 1 4 + k l )(a) 
Pressure Weighted into M [He] --33i tort [fle] = 76Q torr 

0 	 Z.05 ±0.08 1.91 dE0. 10 

1/3 	 Z.4k'-0..0 1.89 ± 0.10 

1/z 	 2.03 ± 0.08 1.88 :E0.10 

I 	 .2.02 ±h0..08 1.86 =±-0. 10 

,(a) based on kz/k3 0.66
 



TABLE 21 

STEADY STATE CONCENTRATIONS AS LISTED IN THE LAST 
ITERATION OF THE COMPUTER CALCULATION FOR THE 

CH 4 N 9O-He DATA(a) 

k 6 10 8 s 101 x 10 0' 10 010° . i17x 1 8 (b) 1 1() 8(d) 

16__
k14+K1 5 

x-0xx
[NO]' [No2] [CH 3 O2] 0. 

,JCH30] [HNO] 0 1i[0(II1)] [OHn]" 30x1[(3p)] 0I[Oa] 

, 'M MM 'M, 'v'i i. .M- M vi 

2.16- Z.00 4 .33 . . . 187 1.65 5.75 - 5.40 6.71 

2.12 -1.74 3:74 .4.62 ".4-. 52' 4.08- 21.62 ,5.51: 6.31 - .5.95 . . " 

1..94 1.77 3.87- 4.*62'. A'53 ' .,4,.17 ' 1.64 .5. 13 ' 56.10 

2.01 1.29 2.87 3. 99 3.83 z.9z 1'.211 ' 3,92- 6.37 4.33'" 

1.97 0.99 2.36, 3.93',' 3.60 2.03 1-..14 .3.62 7.94 3.12 . 

2.05 Z.06 5.57 4.63 4.60, 5.02 - 1.68 5,54, 3.80 - . 4.71 

1.89" 1.88 5.12 -4.62 .4.55', 4.49 1'.67 - 5.07- 4. i8 4.31, 

1.84. 1.14 -3.33' 3%.95,." 3.7.1 2.47 '1.19 '3.51 5'04 '2.50 

1.78 1.05. '3.05 3.93f', 3.65 Z.22 1.15 -'.3.30 5.60 2.38 

(a) k14 / 1A = 0. 66 and Heweiglited 1/3 in M (c) calcilatetd from Equation (3) 

S(b) calpulated fiorm Equation (4) - ", (d) calculhted from Equation (I) 
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Discus sion 

This work has shown a significant effect of the removal of 

excess. translational energy in both the photolysis of N 2 0-by itself 

and in the photolysis of Nz0 - CH 4 mixtures. The difference between 

the value obtained for k 14 /k 1 5 in this work (0. 66) and that-obtained 

by Preston (1. 00) can be-explained in terms of the excess transla­

tional energy of the O( D). For if the excess translational energy 

1of the 0( D) atom is removed the new value of k 1 4 /k 1 5 calculated is 

0.85 in much better-agreement with the value obtained by. Preston. 

However, according to-the results of Preston there is no 

indication that excess translational energy affects the ratio of rate 

constants k 14 /k 1 5 . The addition of excess SF 6 'in the photolysis of 
03 -N 2 0 mixtures had no effect on the ratio k 14/k15 The apparent 

discrepancy can be explained on the basis that the method of 

chemical difference is a sensitive tool in measuring small changes' 

in the ratio k 1 4 /k 1 5 . This can be confirmed since the-.effect of th6,e 

removal of the excess translational energy of the0( D) atom was 

investigated in the photolysis of 03 -N 2 0 mixtures. No effect of 

added helium was found. Therefore, it can be concluded that the 

only method sensitive enough to determine small changes in k 1 4 /k 1-5 

is the method of chemical difference. 

From the hard sphere model for atomic collisions, the 

average amount of translational energy removed-from the 0( D) 
4,1
 

atom after a collision with helium is given by: 

" " MO(: Di MHeM 
=E T T (M0-) M+ le 
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where 

ET excess translational energy-after collision 

<ET = excess. translational energy before collision 

Substituting in the values for-the masses of the O( D) and He, 

ETI/ET = 0.68; thus 32% of the excess translational energy is 

removed by each collision;with helium. 

The number-of times that an average O( D) atom will collide 

-with a helium atom before collidingtwith a nitrous oxide molecule is 

given by the ratio: 

2 [He] 

He-O 

? [N z]
N2 0 - 0 

where . and 0-2 are-the collision amcr'ss;sectibns f (I D) 

NaO-O He-O 
atom with nitr ous oxide and helium respectively. Table 23 contains 

the Valuesrdf, ', 

1-Z2
 

for the various, species, of interest. - Fr-om th'a values/,-in Table 23,, the 

ratio of collision-cross sections can be, calculated: 

2
0­

-2.25
z 

He - O 
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TABLE 23 

VALUES OF T (a) 

Species T, (A) Reference 

O(1D) (b) 

He 

N 2 0 

CH 4 

Z.9 

Z'. 18 

4.71 

4. 14 

Suehla 4 2 

Kennar d4 1 

Benson4 3 

Kennard 41 

(a) 

(b) 

from viscosity data 

value of O( ID) assumed.to be the same as for O( 3P)_ 
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If it is assumed that the excess energy available is distributed 

evenly between the O( D) atom and the-molecular-fragment, the excess 

translation energy of the O( D) atom will be 24. 2 kcal/mole. For a 

-[He]/[N2 0. ] ratio of 20/1, the relative number of collisions of O( D) 

with He to that with N 2 0 is 8.9. Under these conditions of high 

[He]/[N2 0] ratios, the excess translation energy is reduced to less 

than 1 kcal/mole. Therefore, the ratio k 14 /-k 1 5 = 0.85 :h 0.05 can 

be assumed to be-the value f6r the completely, thermalized O( D) 

atom. 

Similar-arguments and calculations can be-made-for the 

CH4 - N 2 0 system. The number of times that an average 0( D) atom 

will collide with a helium atom before colliding with a methane 

molecule is given by the-ratio: 

2 [He] 

He-O­
2 [cH4] 
CH 4 -O 

From the values in, Table 23, the ratio of collision cross sections 

-can be calculated: 

V02
 

CH4 -00 
-= 1.92 

- 2 
He - O 

The number of times -that an average 0( D) atom will collide-with a 

helium atom before colliding with either-a nitrous oxide or-methane 

molecule, is given by: 
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02 [He] 
He - 0 

(r [NO] +a-2 [H 4 ]-J 
N20-0 C H4 - 0 

rearranging: 

2 2 
SNz 0-0 [NzO] CH 4 -0 [GEl4 ] 

2 [Re] a' [He] 

Ee -0 He- 0 

evaluating this expression at 330 and 760 torr He, the values 0.73 

and 1. 7 are obtained. Using these results, the excess translational 

energy can be calculated to be equal to 18.3 and 1Z. 7 kcal/mole, 

respectively. 

For the CH4-N zO-He runs listed in Table 19 the He present 

is not sufficient to remove all the translational energy in the 0( D) 

atoms. Thus k 14 /k15 must lie between 0.59 and' 0.85. The results 

of varying k 1 4 /k 15 does introduce a slight effect as shown in Table 24. 

Table Z5 gives the experimental results of k 1 6 /(k 1 4 + k 1 5 ) 

as a function of the excess translational energy of the O(ID) atom. 

The value of infinite helium pressure (ET = 0) is obtained by 

extrapolation as shown in Figure 9. Because of the extrapolation and 

the estimates required in obtaining ET' the uncertaintly in this value 

is rather large. However, the value of k16/(k14 + k 1 5 ) = 1.35 tL 0.3 

can be assumed to be the value for the completely thermalized 0( D) 

et. al. 29atoms. This agrees with the value of 1. Z2 found by Young 

who worked with excess Ar, which also removes translational 

energy without quenching 0( ID) to 0( 3p). 
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TABLE 24 

EFFECT OF THE VALUE OF k14/k 15 ON k 1 6 /(k 14 + k15)
 

IN THE PRESENCE OF He~a)
 

+
k 1 4 /k 1 5  k 1 6 /(k 1 4 k15) 

[He] = 330 torr [He] = 760 tort 

*0.59 Z.09 ± 0.09 1.94 ± 0. 11 

0.66 Z.04 ±0.08 1.89 ±0. 10 

0.75 1.99 ± 0.08 1.84 ± 0.10 

0.85 1.94 0.08 1.79 :0.09 

(a) He-weighted a factor of 1/3 in-M 
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TABLE 25
 

COMPUTER CALCULATED VALUES OF k 1 6 /k 1 4 + k 1 5 )
 

AS A FUNCTION OF ADDED HELIUM
 

[He] E T k!/(k + k1 5 ) 
(tort) (kcal/mole) 

0 Z4.2 2. Z8
 

330 18.3 2.01
 

760 12.7 1.84
 

0.0 1.35 ( a ) 

(a) extropolated 
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FIGURE 9 ­

' k16/(14 + 115) 'ASA FUNCTION OF THE EXCESS TRANSLATIONAL ENERGY 
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In conclusion, the removal of the excess translational energy 

increases the ratio of rate constants k 14 /k 1 5 while the value for 

k16/(k+4 +k 1 5 ) decreases. In the photolysis of NZO by itself the 

increase in the value of k14/k15 can be understood physically if 

reaction (15) has a small activation energy. The decrease in the ratio 

of k 1 6 /(k 14 + k 1 5 ) in the photolysis of N 2 0 - CH 4 mixtures can be 

understood physically.if reaction (16) has a greater-activation energy 

than the sum of the activation energies for r-eaction (14) and (15). -

http:physically.if


CHAPTER 6
 

SUMMARY AND CONCLUSfONS
 

This study investigates the reactions of O( D) atoms both 

translationally hot and thermally equilibrated in two systems: 

(1) The photolysis of N 2 0 at Z139A 

(2) The photolysis of Nz0-CH4 mixtures at Z139A 

The -relative rate constants ratio for the reactions 

O(1D)+NzO - Nz +02 (14) 

0(1D) + NzO - ZNO (15) 

was determined, k 14 /k 15 = 0.59 ± 0.01, by the use of a new 

technique; the method of chemical difference, an in situ chemical 

titration technique. 

In the-photolysis of N 2 0-CH4 mixtures, the detailed 

mechanism was elucidated and relative -rate constants were deter­

mined by the method of chemical difference with the aid of a 

computer program: 

*O(D) + CH 4 - CH 3 + OH (16) 

O(ID) + CH4 - O(3p) + CH 4 (27) 

where 

Sl6/(kl 4 + k 1 5 ) = Z. 28 ± 0.20 

kZ7/(k 1 6 + kZ7)= 0.05 ± 0.05 
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From the results of the experiments with added helium, it 

was found that the O( D) atom possesses translational energy in 

excess of that obtained from thermal equilibrium. This excess 

translational energy has been shown to affect the values of the ratios 

of rate constants k 1 4 /k 15 and k 1 6 /(k 14 + kf 5 ). This effect explains 

to some ,extent the discrepancies in many of the previous investiga­

tions of the ratio k 1 4 /k 1 5 . 

The results of this work, indicate the importance of the trans­

1lational energy possessed by the O( D) atom in its reactions. 

Furthermore, this effect of excess translational energy should not be 

overlooked in other possible atom reactions. 
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APPENDIX 

FORTRAN IV (WAT FOR) PROGRAM 

c . THIS PROGRAM-ATTEMPTSJTO SOLVE ITERATIVELY ASET OF 
C SIX NON-LILNEAR SIMULTANEOUS EQUATIONSINVOLVING SIX 
C. UNKNOWNS. 
C, 10/21/70 -- R.L. DIVANY 

IMPLICIT REAL*4-(AIK-Z) 
REAL*iI4 CH302(2),NOC2),NO22),CH30(2), 

1HNO(2-),Kl6(2),V(12),K27(2YW(6) 
EQUI.VALENCE-(V('I),CH302i,(V(3)'NO) 
EQUIVALENCE (V(5),NOZ).,(C67.,CH30,(V(9),HNO) 
EQUIVALENCE (V(11),K16),(Wl), I-CH302).,(W(2),INO) 
EQUI'VALENCE_(W(3)NO2),(W(41,lCH30)V(W(5),IHNO) 
EQULVALENCE (Wx6), IK16) 

C.. K16 AND-K27-ARE.BQTHUNKNOWNS BUT.K27 IS.CALCULATED 
C FROM K16. 

TOL=0.001 
JIT=100 
DI-FF=1000, 

C. DIFF IS THE FACTOR BY.WHIrOH 'AVARIABLE.AAY GO.HhGH OR 
C LOW.,BEFORE-IT MUSTVBE CGNSTRAINEDo 

K14=4-sOE+10 
K15=6.-OE+1O 

K306,2E+06 
K31=2o6E+10 
K28=3.-OE+10 
K32=2,4E+09 
K34=2.OE+09 
K35=3.6E+10 
K40Aq.3,OE+07 
K40B=6OE+06 
K36=3.OE+09 
K41=10 6E+10 
K38=8.OE+08 
K37=1.5E+10 
K42=1oOE+1Q 
K43=6,OE+07 
K26=o7E+10 
K39=1o6E+09 
K44=1.OE+08 
K45=1iOE+08 
K46=1-OE+08 
K47=10E+06 
K48=3..OE+07 
K49=3.OE+07 
DO 90.J=1,50 



100
 

CH302(11=1.7E-10
 
NO(11=4 51E-08
 
N02(1)=1.17E-09
 
CH30(1)=I.lE-09
 
HNOM=2-51E-09
 
K16(1)=2e4E+ll
 
K27(1)=O 0,53*1<16(1)
 
ICFf3O2=CH302(1) 
INO=NO(l)
 
IN02=NO2(l)
 
ICH30=CH30(l)
 
K27(1)=G453*Kl6(l)
 
ICH302=CH302(l)
 
INO=NO(I)
 
INO-2=NO2(l)
 
ICH30=CH30(l)
 
IHNO=HNO(l)
 
IK16=KI6(l)
 
READi CHk,NZO,,IA.CH3,M 
PRINT,'CH4-=', GH4,! N20_- ..N20,2, IA = -,IA,'-CH3
 

I CH3,1 M =I'm
 
PRINT 102
 

102 FORMAT-(/////' ',6X1 1\10 9XkNO2 7,MCR302'7X 
'CH3W -&X!:H NO Tax -I<16!1, &X,'P7'/) 

JKOUNT=O 
J2=1 
PRI,NT 100. I\1002),NO2021,CH30202) 

1, CH30W2),,iH NO W2 .,rK16 (J2),,K,27 02) 
lo.. Jl=l 

J2=2
 
C. JI INDI-CATESRRESENT.VALUE.
 
c J2 INDIC-ATE-,S NE14iPREDICTED.-VALUE. 
15 Cl=l A/,((-KI4+KIS)-i N20+-( K16CJ1) +K-2-7(-Jll),*CH4) 

C2=K26*K27(Jl)*CH4/-(K35*NGCJ1)--*M+K2-64-NG2(il))
 
C3=K27(Jl)tK35*M*CH4/ (K35* o,( il),tM,+-2 6*NO2--(Jl)) 
CH30(J2)=2.0*K37*CH302(ill*CH502CJII/,((KkGA+K40B)*
 

1NO(Jl)+K41*CH3+ 2,.O*K42tkCI+30,Cdl) +K4-3.*NO2,(-Jl)+K39* 
2CH302,(,Jl).,+K45*HNO(Jl))
 
HNO OJ2l=K40B-kCH30(Jl)tNOCJI),/(K4k-*GH3tK45*CH30(Jl)+
 

lK46-ACH302CJI)+2.0*K47.*HND(dl))

CH302(J-2),:5(,GltKI4*NZ04!K37-*CH302,(-Jll*,CH302(Jl)+C2* 

1N02(Jll*Cl)/(K38*,CH3+2.0t-K37*CH302-CilI+K39*CH30(Jl)+
 
2K46*HNQ(-JI),+K48tNO(-Jl)+K49*NG2(JI))
 
NO(J2)=(2eO*KI5*N2OtCl+CltCTtNG2(JI).+K4k*CH3*1,iNO (dl)+
 

lK45*HNOCJll-tCI450CJI)+K46tC-H302CJI)-*HNOCJII;)-/(K32* 
2CH3+(K40A+K40B)*.CH30CJI)+C3*Cl+-K4&*-CH302-(Jl))
 

N02(-J2X,=C3*NQ(,Jll*Cl/(K36*OH3- -K43*GH3,06,JI.X+C2*Cl+ 
lK49*CH30z(jl))
 
K16( J2)=(-2.0% K31 -CH3*CH3+3.0*K5Z*NQ(JIIA-CH3+K34*
 

IK16(Jl)-t-CltCH3/K30+Kl4tN2OtC,1-+K37*CH3,G2 (jl)tCH302(Jl)+ 



- 101 ­

2'C2*NO2 Cl
CItK36*N02 (JI)-*CH'3+K4l*CGH3O0J1)tCH3+K38*
 
3CH302J)*ACH3-K44*HNOC(J1)*OH3/-(2.O*CH4*C1)
 
K27(J2)=K6CJ2)*O.-053
 
JSTART=J2
 
JSTOP=J2+10­
JW=1
 
'DO 3Q JI.NDJSTART, JSTOP, 2
 
IF('V(J IND- .. ,GT WC-W);DhFF) -GO TO 24
 
V(JI-ND)=WJWX/DI FF
 
GO TO 38
 

24 IF(V(JIND)'oLT. W(-JW),-DLFF) GOtTO 30
 
V(JI.ND)=WCJW)-*DIFF
 
GO TO 38
 

30 JW=JW+l
 
38 PRINT 100,NOGJ2lNO2(J2),CH302-(J2),
 

ICH30J21,.HN0 CJ2-YK16-J2K27CJ2)t#CI,.C2,C3 
100 	 FORMAT(' ',1211E11.3) 

JKOUNT=JKQUNT+1 
JTEMP=J1
 
Jl=J2
 
J2=JTEMP
 
DG40 	JJ=1,11,2
 
IF(ABSV(JJd) VCtJJI)X;.GT.--TOL*V'(JJ 


40 	 CONTINUE
 
GO TO 	90 

45 -IF(JKOUNT.,LT..JIT)--GOTO,15
 
PRINT -101,JIT
 

,GOTO 45
 

101 	 FORMAT ('3DI,D.NOT.CONERGENk,,' ITERATIONS')
 
90 	 CONTINUE
 

STOP'1
 
END
 


