NASA CR-111933

ì

DEVELOPMENT OF A MINIATURIZED, STERILIZABLE, GAMMA-BACKSCATTER ATMOSPHERE DENSITY SENSOR

By Richard G. Hassenpflug

Prepared under Contract No. NAS1-7791 by

CONRAC CORPORATION Instrument/Controls Division Duarte, California

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

ABSTRACT

FOR

DEVELOPMENT OF A MINIATURIZED, STERILIZABLE, GAMMA-BACKSCATTER ATMOSPHERE DENSITY SENSOR

By Richard G. Hassenpflug

A gamma backscatter atmosphere density sensor has been designed and a working model fabricated and tested, demonstrating the density measurement capability with severe size, weight, power, and environmental constraints. Preliminary tests on the working model indicated that further work to improve operation in vacuum environments and weight reduction were necessary. Two prototype gamma backscatter atmosphere density sensors, associated electronics, and a source holder are ready for further tests when facilities become available.

DEVELOPMENT OF A MINIATURIZED, STERILIZABLE, GAMMA-BACKSCATTER ATMOSPHERE DENSITY SENSOR

By Richard G. Hassenpflug

SUMMARY

A gamma backscatter atmosphere density sensor has been designed and a working model fabricated and tested as Phase I of the development program. The program is directed toward demonstrating the density measurement capability within size, weight, power, and environmental constraints. The working model met the size and power goals and identified areas requiring further development. These areas include improvements in methods of detector stabilization, improved operation in vacuum environments, and weight reduction. The Phase II program was directed toward accomplishing these design improvements and fabrication and testing of two engineering prototype gamma backscatter atmosphere density sensors. Further tests will be able to confirm the results obtained in the development laboratory.

TABLE OF CONTENTS

	PAGE	NO.
INTRODUCTION	1	
SYMBOLS AND UNITS	3	
PROGRAM OBJECTIVES AND GUIDELINES	5	
Objectives	5	
Design Guidelines	7	
DESIGN	17	
Mathematical Model	17	
Source Assembly	17	
Detector Assembly	27	
Electronics Assembly	36	
RELIABILITY	50	
STERILIZATION	52	
PMT-HVPS Assembly	52	
Electronic Assembly	52	
WORKING MODEL	55	
DEMONSTRATION TESTING	62	
Demonstration Test Data Analysis	64	
Discussion	69	
RECOMMENDATIONS RESULTING FROM PHASE I DEVELOPMENT AND TESTING	74	
CONCLUSIONS OF PHASE I DEVELOPMENT	76	
PHASE II - DESIGN	77	
Source Assembly	79	
Detector Assembly	79	
Electronics	81	
CONCLUSIONS OF PHASE II	85	
APPENDIX A - Methods of Automatic Gain Control	87	
APPENDIX B - Reliability Analysis	93	
APPENDIX C - Test Data	109	
APPENDIX D - Check-out Calibration and Test Plan Summary	113	

ILLUSTRATIONS

FIGURE		PAGE NO.
1	Density as a Function of Altitude for the Extremes of Mars Model Atmospheres, VM-8 and VM-9	6
2	Density Measurement Technique	12
3	Source Configuration	19
4	Source Cross Section and Pattern	23
5	Source Pattern, Minor Axis	24
6	Source Assembly	25
7	Detector Configuration	30
8	Block Diagram, Automatic Gain Control	32
9	Schematic Block Diagram, Atmosphere Density Sensor	37
10	Schematic - Signal Conditioning Electronics	39
11	Window Discriminator Pulse Formation	42
12	Pulse to DC Converter Calibration	44
13	Pulse Delay Formation	46
14	Electronics Package	47
15	Source Assembly	56
16	Detector Assembly	57
17	Electronics Assembly	58
18	Backscatter Pulse Height Spectrum	61
19	Test Results - 5 Curies Down	65
20	Test Results - 5 Curies Up	66
21	Test Results - 1 Curie Down	67
22	Test Results – l Curie Up	68
23	Stability Data	73
24	Block Diagram, Atmosphere Density Sensor	78
25	Electronics Package - Front Plate	83

INTRODUCTION

A technique being developed to provide direct measurement of atmospheric density from a high speed entry vehicle involves the scattering of gamma radiation. Some fraction of the gamma flux emerging from a radioisotope source is backscattered by the atmosphere into a radiation detector. The backscatter interaction is linearly dependent upon density in the scattering region. By collimating the source emission and the detector field of view, a measurement can be made of the ambient density in a region outside of the shock wave. No probes or special windows which might affect the integrity of the vehicle skin or heat shield are required. Results of flight tests in the earth's atmosphere of a prototype density sensor employing this technique showed good agreement with existing density data. In addition, a study conducted for Langley Research Center showed the feasibility of applying this technique to measure the ambient mass density of the Martian atmosphere (ref. 1).

The objective of the program reported herein is the development of a miniaturized engineering model atmosphere density sensor employing the gamma backscatter technique. The total program is to:

- 1. Demonstrate the ability of the device to measure atmospheric density in the region of interest.
- 2. Demonstrate the size, weight, and power specification of the device.
- 3. Demonstrate the insensitivity of the device to the anticipated space flight environment including steril-ization.

The guidelines of this development are predicated on an eventual space mission culminating in the measurement of the atmosphere density profile of a planet such as Mars. These guidelines define the density profiles, environments, vehicle constraints, etc. The resulting hardware will be proven for application to specific missions as required with only minor adaptation.

The objectives and guidelines of the program are further defined in the next section of this report. These are followed by design details of the various assemblies that make up the sensor. A description of the engineering model is presented along with test data and results. The further development of two prototype sensors and the test data are described along with the problems associated with the development. This work was sponsored by the National Aeronautics and Space Administration, Langley Research Center, under Contract Number NAS1-7791. The program was under the technical cognizance of Peter J. LeBel, of NASA, Langley Research Center.

SYMBOLS AND UNITS

out thi	The International System of Units will be used through- s report. The symbols are defined below.
A _d	detector area, cm ²
D	dose buildup factor, dimensionless
D	dose rate, mr/hr
E	energy of photons emitted from source, KeV
G	geometry factor, dimensionless
I	count rate, pulses per second
I _{as}	air scattered count rate, pulses/second
I _b	background count rate, pulses/second
Id	detected count rate, pulses/second
I _o	source strength, photons/second emitted into a 4π solid angle
Is	scattered radiation to detector, pulses/second
I _{ws}	wall scattered count rate, pulses/second
K _{as}	air scatter scale factor
Kws	wall scatter scale factor
r	source-detector separation, cm
S	source strength, curies
SA	specific activity
t	thickness, cm
Т	decay time, days
V	volume
x	path length, cm
Y	yield, percent

- Γ dose rate constant, $r-cm^2/mc-hr$
- ε_d detector efficiency, dimensionless
- $\mu\alpha$ absorption coefficient, cm²/gm
- ρ density, gm/cm³
- P_{α} density of ambient atmosphere, gm/cm³
- σ_{as} photon scattering coefficient of ambient atmosphere, cm^2/gm
- τ half life, days

PROGRAM OBJECTIVES AND GUIDELINES

This program is one of several steps in the development sequence of a technique to provide a direct measurement of atmos-pheric density from a high speed entry vehicle. The technique involves the scatter of gamma radiation.

Previous studies and test programs sponsored by NASA -Langley Research Center have demonstrated the feasibility of employing gamma radiation scattering technique for measuring atmospheric density. These included rocket flights attempting measurement of Earth's atmosphere in the 100 to 300 K feet altitude region (ref. 2), a computer analyses of the scatter phenomena and associated auxiliary effects (ref. 3), a feasibility study of applying this technique to the Mars application (ref. 1) and development of sources for specific application to the measurement of atmospheric density.

Objectives

The objective of this program is the development of a miniaturized engineering prototype atmosphere density sensor employing the gamma backscatter technique in order to:

- 1. Demonstrate the ability of the device to measure atmospheric density in the region of interest.
- 2. Demonstrate the size, weight, and power specifications of the device.
- 3. Demonstrate the insensitivity of the device to the anticipated space flight environment including sterilization.

Since this program is not directed toward a specific vehicle or atmosphere, the design requirements are based upon conceptual thinking pertaining to a Mars mission.

The atmosphere profiles considered are the extremes defined by the VM-8 and VM-9 models as described in reference 4. These density profiles are illustrated in Figure 1.

Size, weight, and power constraints are necessarily severe due to the constrained payload capacity of the space vehicles.

The design goals in this regard are:

1.	Total	sensor	weight	including	shielding	-	5.0	lbs.
2.	Total	sensor	volume	•	C	-	100	in3

- 2. Total sensor volume
- Total power from a 28 vdc supply - 5 watts 3.

K#E SEMI-LOGARITHMIC 46 6463 7 cycles x 60 divisions war in u.s.a. • Keuffel a esser co.

6

One of the primary objectives of this program is to demonstrate with working hardware that these goals can be achieved.

Environments encountered prior to the mission include handling, shipping, and sterilizing. During the mission, environments of vibration, shock, acceleration, temperature, vacuum, electromagnetic radiation, and nuclear radiation will be encountered. The sterilization environment has been summarized in Table I. The other environments used as a guide for this program are listed in Table II.

Design Guidelines

This section presents the design guidelines agreed upon at the start of the program. The primary approach is to carry forward the work performed under Contract NAS1-5341 (ref. 1).

<u>The Mission</u>. A Mars mission is assumed as a guideline. The mission starts with the assembly, testing, calibration, and sterilization of the sensor on Earth, followed by installation into the planetary vehicle. The sensor's gamma radiation source is in a shielded configuration until just prior to launch when it is unshielded via ground command. Once launched, the planetary vehicle passes through the Van Allen radiation belts near Earth and spends eight months in transit to Mars. The trajectory is such that the planetary vehicle is placed in a Mars orbit. The planetary vehicle consists of an orbiting spacecraft and an entry capsule. On command from Earth, the entry capsule separates from the orbiting spacecraft and decelerates aerodynamically, and in the terminal phase by parachute or retromotor, to a soft landing on the Martian surface.

The descent commences at a shallow angle below the horizon, ~ 20 degrees, and at a maximum velocity of ~ 5 Km/second. The sensor is activated and the radiation source is shielded for a short period and a measurement of background radiation is made prior to the capsule reaching the Martian atmosphere. As the capsule enters the atmosphere, drag reduces its velocity and shock waves form around the capsule. As the capsule reaches an altitude somewhat above 100,000 feet, the gamma radiation source is exposed and the measurement of free atmosphere density begins. As the capsule further decelerates and descends into the Martian atmosphere, a velocity is reached which is slow enough for heat shield separation. With the heat shield removed, the remainder of the descent is controlled by parachute or retromotor to a soft landing on the Martian surface.

During the descent, data is telemetered from the entry capsule to the orbiting spacecraft and then to Earth.

	TABLE I		
Sterilization	n Requirements Summ	ary	
ITEM	TEST	CYCLES	TIME-TEMPERA TURE
Qualification (Type Approval Tests):			
Parts	Decontamination Heat	७७	28 hrs at 50°C 92 hrs at 135°C
Assemblies	Decontamination Heat	७७	26 hrs at 50°C 64 hrs at 135°C
Flight Acceptance Tests (FAT):			
Parts	None		
Assemblies	Decontamination Heat		24 hrs at 40°C 60 hrs at 125°C
NOTES:			
 In addition to these requirements, terminal sterilization at levels simil assemblies. 	, the complete Voya lar to those specif	ger payload w ied above for	ill undergo · FAT of
2. All heat cycles in 100 percent N2	atmosphere.		
3. Decontamination agent is 12 percer	nt ethylene oxide,	88 percent Fr	eon 12.
/ Himo accepted doors not include time		+	too function to the second

4. Time quoted does not include time required to raise temperature from ambient and to lower temperature at end of cycle. See JPL VOL-50503-ETS.

TABLE II - Environmental Guidelines

- 1. Launch Environment sensor not operating
 - a. Sinusoidal Vibration*
 0.6 15 g RMS; 5 17 cps
 15 g RMS; 17 2000 cps
 Single sweep each of three axes; 5 2000 cps at 1 octave/minute
 - b. Random Vibration (all axes)*

0.45 g² cps, 700 - 1200 cps rolled off at 12 db/octave both sides to 227 and 2000 cps. 0.005 g² cps from 20 to 227 cps

1 g RMS for 80 seconds; 7.5 g RMS for 40 seconds; 15 g RMS for 40 seconds; 20.5 g RMS for 40 seconds

- c. (1) Thrust axis = ± 12 g, 5 minutes
 - (2) Transverse axes = ± 4.5 g, 5 minutes
- d. Shock (all axes)

35 g, 11 milliseconds

- Transit to Mars (8 months) sensor generally not operating except that the device will be activated prior to atmospheric entry for warmup and for background radiation measurements.
 - a. Temperature

-55°C to +40°C

b. Pressure

A hard vacuum may be possible

- 3. Atmospheric Entry sensor operating
 - a. Deceleration
 - 55 "Mars" g
 - b. Pressure

Increasing from possible hard vacuum prior to entry to ambient at planet's surface (5 - 20 mb)

c. Temperature

-30°C to +40°C

*From Atlas-Agena-Lunar Orbiter qualification specification for components.

TABLE II - Environmental Guidelines, Page 2

During the latter stages of entry, the temperature will probably be near the high end of this range. There is the possibility of thermal shock when the heat shield is ejected and the sensor is exposed to ambient atmospheric temperature (-20°C to -100°C at 20,000 feet in Mars' atmosphere). The Measurement. The measurement of atmospheric density by gamma radiation scattering is illustrated in Figure 2. A radioisotope source of gamma radiation, housed in a shield, emits gamma rays which pass through the vehicle skin, heat shield, and shock layer into the free stream atmosphere. A portion of these gamma rays is scattered by the gas atoms comprising the atmosphere. The portion of gamma rays scattered is directly proportional to the gas density. Some of these scattered gammas reach the detector located within the vehicle, giving a measure of gas density. As the gas density increases, the output of the detector increases proportionately.

Scattering Theory. Before studying the scattering theory, it is useful to examine the significant forms of interaction of Y rays with matter. Of six possible modes of interaction possible, Compton scattering, photoelectric absorption, and pair production dominate so strongly for the γ ray energies to be considered (10 Kev to 10 Mev) that the other processes can be neglected. These three important processes are:

a. Compton Scattering - A ray scatters from a single electron which is in an orbit about a nucleus. This electron absorbs some of the $\tilde{\gamma}$ ray energy and is freed from its orbit. The energy of the scattered γ ray depends upon its original energy, the energy required to free the electron, and the angle of scattering.

b. Photoelectric Absorption - The Y ray energy is completely transferred to an orbiting electron which then leaves its orbit.

c. Pair Production - The γ ray interacts with the electric field about a nucleus or an electron and is converted into a positron and an electron. A minimum γ ray energy of 1.02 Mev is necessary.

Of these three interaction processes, pair production is avoided by using a radiation source of less than 1.02 Mev, and photoelectric absorption results in a high speed electron which travels away from the MP/L and has a negligible chance of producing a count in the detector of the density sensor. Therefore, only the Compton scattering need be considered.

The source and detector are located within the capsule as shown in Figure 2. To avoid measuring the density of the shock wave, both are collimated so that their fields of view intersect only beyond the shock wave. The relationship, describing the number of scattered gammas detected as a function of atmospheric density, is described by the expression:

FIGURE 2 - Density Measurement Technique

$$I_{s} = G I_{o} \sigma_{as} A_{d} \epsilon_{d} \rho_{a}$$
(1)

where:

- ρ_a is the density of the atmosphere outside the shock wave, in gm/cm^3
- ε_d is the detector efficiency
- A_{A} is the detector area, in cm^{2}
- σ_{as} is the photon scattering coefficient of the ambient atmosphere, in $\rm cm^2/gm$
- I is the source strength in photons/second emitted into 4 π solid angle about the source
- G is a constant related to the geometric configuration
- Is the number of photons per second detected after scattering from the atmosphere

Equation (1) predicts only the count rate resulting from γ rays of energy E1 which leave the source, reach the region of overlap for the collimated source and detector without further interaction, scatter once in the overlap volume, reach the detector without further interaction, and then are detected. Obviously, counts will be recorded that do not correspond to the above sequence of events. These counts may be divided into two groups -- those which are indicative of the ambient density and those which are not. The first group is useful and its inclusion will benefit the density sensing experiment. They can arise when a source γ ray undergoes a low angle scatter in the heat shield followed by a scatter in the overlap volume and subsequent detection. A brief survey of the possibility of such an event indicates that it (and others of similar types) are not sufficiently numerous to justify the effort needed to accurately predict their effect. Therefore, equation (1) is used as the basis of design even though it gives a pessimistic estimate of the useful count rate I.

On the other hand, there are those counts which are definitely not indicative of the ambient atmospheric density. Such counts may arise when a γ ray scatters in the heat shield, proceeds along the heat shield to scatter in the shield over the detector, and is then detected. Cosmic ray counts, etc., are also in this catagory. All such counts cause an error in the indicated atmospheric density. Design Consideration. The hardware configuration used to sense atmospheric density by gamma radiation scattering must include the following elements:

> 1. A radioisotope source is needed to emit gamma photons of the proper energy to provide good scatter in the atmosphere, be able to penetrate the vehicle skin easily, be easily shielded and collimated, and have a long half life.

2. A detector is needed which can efficiently detect the scattered gamma photons, retain calibration after a long mission, and withstand the environments encountered.

3. Shields are needed around the source and detector to prevent direct transmission from the source and internal scatter within the vehicle from reaching the detector. The source radiation pattern and detector viewing pattern are shaped so that the scatter signal reaching the detector is from a volume of atmosphere which is beyond the effects of vehicle interaction, thus providing a direct measure of the free stream atmospheric density.

4. A source shuuter provides means of shielding the sources just prior to entry into the atmosphere so that an accurate background measurement may be made.

5. Background noise limits the accuracy of the sensor at the high altitude-low density end of the measurement range. Therefore, it is necessary to minimize this noise by means of electronic rejection.

Baseline Design. Since the vehicle configuration and mission have not been defined, many of the specifics of design must be selected somewhat arbitrarily. The configuration resulting from Contract NAS1-5341 is used as the basis for the selected configuration with some geometric changes to improve the response. The basic guidelines are listed below.

1. Source - The source design provides shutter capability so that there need be no unusual precautions required during vehicle assembly and so that a measure of background noise can be made prior to entry into the atmosphere. The source mechanism also provides suitable protection in the event of a launch pad explosion. The source configuration is updated to include results of recent ORNL investigations (ref. 5). Specific characteristics are:

Source material - Gadolinium 153 Emission - 100 Kev gammas Half Life - 242 days Useful strength at the time of measurement - 20 gamma curies Collimation efficiency factor - 3 Time decay factor - 2.42 Self absorption factor - 1.33 Abundance factor - 2.18 Strength when delivered from manufacturer - 480 curies 2. Detector - The detector characteristics on which the design is based are: Type - Scintillation crystal/photomultiplier tube Scintillation material - NaI(T1) or equivalent Diameter - 2 inches Thickness - 0.25 inch AGC reference - Source to provide minimum background noise - under 32 Hz 3. Geometry - The geometric configuration is based on the following: Source - Detector separation - 100 cm Source collimation - 30° to 150° Detector collimation - 30° to 150° 4. Shielding - That necessary to reduce direct transmission to less than 1 Hz with shield open and to provide a maximum dose rate of 2 mr per hour at one meter with shield closed. Heat Shield - Assumed as follows: 5. Thickness - 0.5 cm Density -0.5 gm/cm^3 6. Electronics - Based on the following: Response - 100 Hz to 40,000 Hz Window discriminator - 60-100 Kev AGC - Necessary to maintain calibration through sterilization, transit time, and environment 7. Ablation Gages - None 8. Accuracy - $\pm 10\%$

9. System Size, Weight, and Power:

Size - 100 in³ Weight - 5 lbs. Power - 5 watts

10. Sterilization - The design is based upon maximum utilization of sterilization proven parts.

11. Reliability - The design is based upon maximum utilization of proven, high reliability parts.

DESIGN

This section presents the design approaches, tradeoffs, considerations, and design details which have resulted in the present design configuration for the working model.

Mathematical Model

The mathematical model is derived in Appendix A showing the basic design relationships. The atmosphere scattered signal as detected is expressed as:

$$I_{s} = G I_{0} \sigma_{as} A_{d} \rho_{a}$$
(2)

The geometry factor, G, is seen to be a function of basic variables pertinent to the basic design configuration. These are the radiation pattern of the source, the sensitivity pattern of the detector, and the source to detector separation. The source and detector patterns and their effect on sensitivity are not separable and must therefore be considered together. One ob-vious conclusion is that the broader the collimation is, particularly the region between source and detector, the greater the sensitivity. However, as this collimation is broadened to include volumes close to the vehicle between the source and detector, more scatter occurs within the shock layer and the accuracy is degraded. In lieu of a detailed analysis of this effect since actual vehicle and shock layer constraints are unknown, an arbitrary source and detector collimation of from 30 degrees to 150 degrees was selected. Subsequent analysis by Whittaker et al (ref. 3) has shown that significant error can be expected from shock layer effects using these collimation angles, and, in fact, even narrowing the collimation from +60 degrees did not show a marked improvement.

Source Assembly

As has been reported previously (ref. 1), the source material should emit low energy gammas for a high scattering probability, but high enough in energy to minimize absorption in the vehicle structure. The reasonable compromise is in the region of 100 Kev. A second important consideration is a minimum content of high energy gammas which must be shielded from direct transmission. Several sources have been considered in a study by ORNL (ref. 5) which included in order of preference:

- 1. Gadolinium-153 from natural europium
- 2. Europium-155 from enriched ¹⁵⁴Sm
- 3. Cobalt-57, cyclotron produced
- 4. Gadolinium-153 fron enriched ¹⁵²Gd

The Gadolinium-153 was selected for this program having properties as listed below.

Langestons.		
Gamma Energies (Kev)	Percent Yield	Relative Percent Abundance
70	3.1	5.6
97	30	54
103	22	40

Half life - 242 days Types of decay - Electron capture - 100% Emissions:

Specific Activity - 78 curies per gram of Gadolinium maximum Density - 3 gm/cm³

Purity - 10-6 percent yield of gammas of energy greater than 150 Kev

The optimum configuration of the source capsule is dependent upon several tradeoffs. First, the source must be thin to minimize self-absorption. Second, the source must be close to a point source to minimize shielding and collimation weight. Third, the source must have a volume consistent with the source strength desired and specific activity achievable. Fourth, the configuration must be such that remote shielding is practical. Evaluation of these four constraints have resulted in the selection of a line source configuration as shown in Figure 3. This source has a length of 10 cm, a width of 1 cm, and a thickness of 0.24 cm. The source capsule is a welded, stainless steel container having a wall thickness of 0.015 cm.

For a 20 gamma curie effective source, the required source strength is computed as follows:

Self Absorption

$$\frac{1}{\mu\rho t} \left[1 - e^{-\mu\rho t} \right] = 0.35 \tag{3}$$

where:

$$\mu = 4 \text{ cm}^2/\text{gm}$$

$$\rho = 3 \text{ gm/cm}^3$$

$$t = 0.24 \text{ cm}$$

FIGURE 3 - Source Configuration

-

Half-Life Correction

 $e^{-.69} \frac{T}{\tau} = 0.55$ (4)

where

T = 270 days for mission T = 242 days half-life Yield

Absorption in Capsule Skin (stainless steel)

$$e^{-\mu\rho t} = 0.945$$
 (5)

where

 $\mu = 0.37 \text{ cm}^2/\text{gm}$ $\rho = 10 \text{ gm/cm}^3$ t = 0.15 cm

The required source strength is thus

$$S = \frac{20 \text{ gamma curies}}{0.35 \times 0.55 \times 0.52 \times 0.945} = 210 \text{ curies} \quad (6)$$

The required specific activity to package 210 curies in the capsule volume is calculated as

$$SA = \frac{S}{V\rho} = \frac{210}{10 \times 1.0 \times 0.24 \times 3.0} = 29.1 \text{ curies per gram}$$
 (7)

This is well below the possible 78 curies per gram, indicating adequate margin. The capsule thickness was selected based upon an existing thin wall tubing extrusion. If the source was reduced to 0.1 cm thickness, the required strength would be 128 curies and the specific activity 43 curies per gram.

<u>Purity</u> - The source purity must be such that no high energy gammas are emitted such that they reach the detector and contribute a significant background level. This background can be computed as follows, assuming no absorption.

$$I_{\rm B} = \frac{Y}{100} \frac{S A_{\rm D}}{4\pi r^2} 3.7 \times 10^{10}$$
 (8)

letting

 $I_B = 1.0$ pulse per second background due to impurities Y = Percent yield of impurities of high energy S = Source strength = $\frac{20}{.52}$ = 38.5 curies A_D = Exposed detector area = 3.25 cm² r = Source-detector separation = 100 cm

results in a percent yield of

$$Y = \frac{100 \ 4\pi \ 100^2}{1.0 \ x \ 38.5 \ x \ 3.25 \ x \ 3.7 \ x \ 10} 10 \tag{9}$$

Thus, a 2.7 \times 10⁻⁶ percent yield or less of high energy gammas is required. Effects of absorption, dose buildup, scattering, and detector response would tend to modify this somewhat, but it is not felt that a significant change would result if these effects were considered since they would be self-compensating.

<u>Source Shielding</u> - The source shielding must perform three functions. First, it must attenuate the direct transmission of gammas to the detector such that a negligible background noise is produced. Second, it must provide the desired collimation to the source. Third, it must, when in the closed position, attenuate the radiation to a safe level for working personnel in the vicinity. The thickness of shielding required is calculated as follows. The direct transmission is expressed as

$$I = \frac{I_{o} A_{D}}{4\pi r^{2}} De^{-\mu\rho X}$$
(10)

7 7

for the design being considered.

$$I_{o} = 20 \times 3.7 \times 10^{10} \times 0.52 = 3.84 \times 10^{11} \text{ pps}$$

$$A_{D} = 3.25 \text{ cm}^{2}$$

$$r = 100 \text{ cm}$$

$$\mu = 4.2 \text{ cm}^{2}/\text{gm} \text{ for tungsten and 100 Kev gammas}$$

$$\rho = 17 \text{ gm/cm}^{3} \text{ for tungsten}$$

$$I = 1 \text{ pps, the maximum allowable count rate}$$

$$D = 3.0, \text{ dose buildup factor from ref. 6, page 45}$$

The required shielding thickness is thus

$$t = -\frac{1}{\mu\rho} n \frac{I 4_{\pi} r^2}{I_0 A_D} = 0.24 \text{ cm}$$
 (11)

Since the source configuration is a line source, effective collimation can be achieved only in one direction, about the major axis. The line source is thus oriented with the major axis perpendicular to the direction to the detector. Collimation about the minor axis is not necessary for elimination of shock layer effects. The inherent collimation due to absorption is sufficient. The source cross section illustrated in Figure 4 shows the collimation configuration. The actual pattern achieved, including both geometrical and absorption effects, is also shown. Figure 5 illustrates the pattern about the minor axis, primarily the result of self-absorption effects.

The shielding required for safety considerations is calculated as follows:

$$D = \frac{S r}{4\pi r^2} D e^{-\mu\rho t}$$
(12)

where

D = 2 mr/hr dose rate S = 210 curie source strength $\Gamma = 0.22 \frac{r - cm^2}{mc - hr} \text{ or } 0.22 \times 10^6 \frac{mr - cm^2}{curie - hr} \text{ dose rate}$ constant r = 100 cm D = 3.0 dose buildup factor $\mu = 4.2 \text{ cm}^2/\text{gm for tungsten and 100 Kev gammas}$

 $\rho = 17 \text{ gm/cm}^3 \text{ for tungsten}$

t = thickness in cm

The required shielding thickness is then:

$$t = \frac{1}{\mu\rho} n \frac{S \Gamma D}{D 4\pi r^2} = 0.077 \text{ cm}$$
 (13)

<u>Source Mechanism</u> - The completed source assembly is illustrated in Figure 6. The design of the shield mechanism is to provide proper shield positions for the following:

FIGURE 4 - Source Cross Section and Pattern

FIGURE 5 - Source Pattern, Minor Axis

FIGURE 6 - Source Assembly

- a. Pre-launch activities
- b. Launch accident and fire
- c. Fail-safe operation during the mission

The following sequence was used to establish the shield performance criteria:

- a. During the pre-launch activities, the shield should be closed with no power applied.
- b. Just prior to launch, the shield should be remotely opened for preliminary test and possible calibration check on the system.
- c. During the measurement phase, the shield should fail-open to permit completion of the measurement phase of the mission; however, normal operation permits a choice of remotely selecting either open or closed positions for background radiation correlation.

Referring to Figure 6, the various elements of the shield assembly are identified. The source capsule is housed in the source holder. This holder is tungsten and provides the shielding necessary to permit direct transmission and properly collimate the source. The source holder is installed in the source mechanism and is closed by rotating 90 degrees to face the safety shield (item 39, Figure 6). The source holder is secured by tightening the screws (item 9). The shield housing is motivated to the closed position by activating the rotary solenoid (item 2). To retain the shield housing in the closed position, the bidirectional linear solenoid (item 27) is activated. Pins (item 31) fall into detents in the linear solenoid shaft to insure positive position-The shield housing is shown in the closed-retained position ing. in Figure 6.

To open the shield housing, the retaining shaft is withdrawn by activating the linear solenoid in the reverse direction. A spring integral with the rotary solenoid opens the mechanism rotating the shield housing 90 degrees counterclockwise. To perform a mid-mission radiation background measurement, the rotary solenoid is activated to the closed position. The linear solenoid is not activated. In this manner should there be an electrical failure, the housing will remain in the open position, as the rotary solenoid is spring loaded open.

In case of a launch pad explosion or fire, the following features provide safe containment of the radioactive source.

The radioactive material is contained in a stainless steel capsule having a melting point of 2500°F. The mounting plate, bearing blocks, and main housing are fabricated of titanium which has a melting point of 3270°F. The source housing and shield are of tungsten which has a melting point of 6090°F. When the source is in the shielded position, the above parts provide a secure housing for the radioactive material up to 2500°F. At this temperature, the stainless steel capsule will melt, but the source housing, shield and mounting plate will last to 3270°F.

The sequence of operations during a fire is as follows: (assume the source is in open position)

The tin spring retainer (item 19) melts at 449°F. This releases the spring (item 22) which drives the shield housing via the pin (item 10) into the closed position.

At 620°F the lead retainer (item 49) melts and allows the positive arm locks (item 33) to be wedged into the mounting plate. This secures the housing in the closed position during the fire. At this same temperature, the tungsten shield (item 39) is spring driven (item 42) into the bearing blocks (3060514). These parts are solder coated and they will be fused together during cooling. The three functional springs are so constructed that they will retain a sufficient amount of temper to satisfactorily operate at 620°F.

Detector Assembly

<u>General Requirements</u>. The requirements of the detector assembly of the atmosphere density sensor are that it is sensitive to 100 Kev gamma radiation, that it be stable, and that it be insensitive to adverse environments. The detector must present a large area since the basic sensitivity scale factor, which determines the overall sensitivity of the instrument, is based upon the maximum counting rate. The larger the area of the detector for a corresponding source size, the more sensitive the unit will be. The detector assembly must be rugged enough to withstand the environments associated with the vehicle launch and the temperature extremes experienced during a sterilization cycle. The unit also must be of small size and light weight.

Several types of radiation detectors can be considered for this application. These include the solid state detector, Geiger Mueller tubes, proportional counters, and scintillation detectors. The scintillation detector was chosen for this application for its availability with large sensitive areas, high efficiency, good sensitivity to 100 Kev gammas, and proven ability for use in applications such as this.

Common crystal materials available for use in a scintillation detector include thallium activated sodium iodide, thallium activated cesium iodide and sodium activated cesium iodide. Table III shows the various properties of these three crystal materials. Thallium activated sodium iodide is the material which is typically used for scintillation counting of gamma photons. However, sodium iodide is relatively fragile and care must be taken in packaging such a crystal. Sodium iodide crystals are also quite sensitive to thermal shock. Cesium iodide crystals on the other hand are very rugged. They can stand extreme shocks and rapid temperature changes. The light output from a cesium iodide crystal, as seen in Table III, is less than that of sodium iodide. Also, the pulse decay time is significantly longer. This tends to limit the high count rate response of such a detector.

A more recently developed crystal, which seems to have the desired properties of both of the two crystals, is sodium activated cesium iodide. This crystal material is rugged, will withstand severe shocks, both thermal and mechanical, and has almost as high a light output as sodium iodide. The pulsewidth is somewhat longer than sodium iodide crystal, but still within an acceptable limit.

The size and shape of the detector crystal are determined by packaging considerations. It is desirable to have as large a detector area exposed as possible, limited by the weight and size of the total package.

A 2-inch diameter, thin cylindrical-shape was selected for this application. The 2-inch diameter gives 200 square inches of detector surface area. The thickness of the crystal is kept as small as possible such that the sensitivity or the exposed area to gammas coming directly from the source is minimized. Also, the amount of shielding that is necessary to attenuate direct transmission is minimized. The crystal must be thick enough to totally absorb the 100 Kev gammas. The crystal thickness may be determined from the following equation for 90 percent absorption:

$$0.9 = 1 - e^{-\mu\rho t}$$
 (14)

. . . .

where

 $\mu = 1.5 \frac{\text{cm}^2}{\text{gm}}$, absorption coefficient of crystal for 100 Kev gammas

 $\rho = 3.67 \frac{gm}{cm^3}$, density of crystal

t = thickness of crystal to provide 90 percent absorption
Scintillator	Nal(T1)	CsI(T1)	CsI(Na)
Density gm/cm ³	3.67	4.51	4.5
Wave Length of Emission A	4,100	4,100	4,100
Refractive Index	1.7	1.79	1.79
Light Output Relate to CsI(T1)	ed 2.0	1.0	2.0
Hygroscopic	Yes	No	Slightly
Decay Time, µsec	0.25	>1	1.0
Absorption Coefficient:			
100 Kev gammas cm ² /gm	1.5	1.2	1.2

TABLE III - Crystal Properties

FIGURE 7 - Detector Configuration

FIGURE 8 - Block Diagram, Automatic Gain Control

Solving for t gives a minimum required thickness of 0.42 cm. Thus, the selected thickness of 0.25 inch is adequate to absorb the 100 Kev gammas.

The photomultiplier tube chosen has a l-inch diameter photo cathode. The 2-inch area output from the crystal must be reduced via an optical coupling to a l-inch diameter face mating with the photomultiplier tube. A quartz glass material is used to provide this optical coupling. As illustrated in Figure 7, the optical coupling is seen to be a truncated cone with a 45° slope. The crystal manufacturers recommend this as the optimum geometry for maximum light collection. The entire crystal assembly is sealed in a stainless steel container. A reflective material surrounds the crystal to enhance the light reflection.

This crystal assembly is mated to the photomultiplier tube high voltage power supply combination. Several photomultiplier tubes were investigated for this application. The photomultiplier tube must have an S11 photo cathode in order to match the 4100 Å spectral output characteristics of the scintillation material. A 14-dynode venetion blind type dynode structure tube was selected for its ruggedness and small size. The particular tube was selected primarily because of its stability after sterilization cycling. A special photocathode material was developed in a program sponsored by the Jet Propulsion Laboratory. This work is discussed in reference 9. The characteristics of this photomultiplier tube are shown in Table IV.

The high voltage power supply required to power this photomultiplier tube must be small in size and light in weight. The most critical portion of the environment for this photomultiplier tube assembly is the ability to contain the 2,000 to 3,000 volts of high voltage in the vacuum environment without leakage or corona. The optimum method of providing this corona protection, and yet maintain a package of small size and weight, is to internally package the high voltage power supply and photomultiplier tube. The entire assembly can thus be sealed, providing complete protection from the vacuum environment. Only low voltage is required to drive the integrated photoelectric assembly.

Automatic Gain Control. Typical detector assemblies are noted for their lack of long term stability through rigors of environmental change. One particularly severe environment is that of sterilization. The long periods of high temperature soak tend to change the photocathode output and overall photomultiplier tube gain. Also, during a six month period in transit, the photomultiplier tube and power supply may tend to change their operating characteristics in terms of gain. During reentry, changing environment also causes shifts in the detector response. In order to compensate for these gain changes, some type of automatic gain control (AGC) is required. TABLE IV - Photomultiplier Tube Characteristics

Oursetum Efficiency at 100 Å	21 59
Quantum Efficiency at 4100 A	21.5%
Cathode Luminance Sensitivity	72.0 $\mu amps/lm$
Voltage Required for 10 ⁶ Current Amplification	2950 volts
Dark Current at 10 ⁶ current Amplification	2.5 x 10 ⁻¹¹ amps
Pulse Height Resolution (FW HM) for Cs 137, NaI(T1)	8%
Shock	100 g, 11 ms
Vibration	30g, 20-300 cps
Temperature	-55° to +100°C
Number of Dynodes	14
Effective Cathode Diameter	1 inch

Several methods of AGC were studied in this program and are discussed in Appendix A. The method of gain stabilization employed is to place a small reference source near the detector and monitor the resultant detector output. The detector gain is then controlled to maintain the output pulse height constant from this reference. Some of the important requirements for the AGC are: the reference source must have a long half-life; the reference source pulse height must track the signal pulse height; and the reference source must not contribute significantly to the background noise level in the signal energy region.

A number of possible sources and scintillation detectors were considered for this automatic gain control technique. Some of the sources considered were Americium 241, alphas; Americium 241, 60 E Kev gammas; Barium 133, 335 Kev gammas; and Gadolinium 153, 100 Kev gammas. The signal in all cases is the Gadolinium 153, 100 Kev gammas, as backscattered by the atmosphere. The detector crystals considered were thallium activated cesium iodide, or combinations thereof.

The combinations of scintillators and AGC are illustrated in Table V, with their various advantages and disadvantages listed. The method selected for application in the first phase is Method 5, which employs the sodium activated cesium iodide crystal and the 355 gammas from a barium 133 gammas source. There is no shutter. The unit is simple, rugged, and not temperature sensitive. The disadvantage of the method is that there will be a small noise contribution in the region of signal. For the phase II a cesium iodide crystal and an americium 241 source was used because of the interference that was observed from the barium source during the testing of the Phase I system. The interference observed during temperature was greater than could be tolerated. The temperature compensation required by using americium 241 with a cesium iodide crystal were made in the electronics.

The operation of the AGC is illustrated in the block diagram Figure 8. The operation is essentially the same for both phase I and phase II. The 355 Kev gammas from the Barium 133 entered the scintillation crystal and result in output pulses following the spectrum shown. There is the fairly broad photo peak and extensive Compton continuum. These pulses out of the detector are amplified and are fed into a single level pulseheight discriminator. Those pulses of amplitude greater than the reference level are passed and those lower than the reference level are rejected. The pulses that are passed are integrated and compared with a reference such that the output of the integrator is equal to the integral of the difference between the reference level and the AGC count rate. The output of this integrator then drives the gain control input to the photomultiplier tube high voltage power supply. This gain input controls the high voltage output of the supply, thereby increasing and decreasing the total photomultiplier tube gain as required. If the

		TABLE V	V - Compari	son of Var	tious AGC Techniques	
	Signal Crystal	Ref. Crystal	Ref. Source	Shutter	Advantages	Disadvantages
Н	CsI(Na)	CsI(Na)	Am-241 Alaba	None	Rugged	Very temperature sensi- tive
			שייקיומ		Simple	Some noise at 60 Kev.
2	NaI(T1)	CsI(T1)	Am-241 Alpha	None	Simple No noise contribution	Somewhat temperature sensitive. Not rugged. Susceptible to thermal shock.
3	CsI(Na)	CsI(T1)	Am-241 Alpha	None	Simple No noise contribution Rugged	Somewhat temperature sensitive.
4	CsI(Na)	CsI(Na)	Am-241 Gamma	None	No noise contribution Rugged Nottemperature sen- sitive	Complicated electronics. Limited dynamic range (high rate).
5	CsI(Na)	CsI(Na)	Ba-133 Gamma	None	Simple Rugged Not temperature sen- sitive	Small noise contri- bution.
9	CsI(Na)	CsI(Na)	Gd-153 Back- scatter Ganma	None	Rugged Not temperature sen- sitive No noise contribution	Complicated electronics. Limited dynamic range (low rate).
7	CsI(Na)	CsI(Na)	Ba-133 Gamma	Yes	Rugged Not temperature sen- sitive No noise contribution	Complicated mechanically. Less than 100% duty cycle.

Techniques
AGC
Various
o F
Comparison
1
⊳

detector gain is lower than its desired value, the pulses out of the detector from the AGC reference source are lower in amplitude. Therefore, fewer of them pass through the level discriminator to drive the integrator. The countrate is thus lower than the AGC reference and the integrator output thus increases. As the integrator output increases, the high voltage power supply output increases, causing the photomultiplier tube gain to increase, thuse causing the AGC reference pulses to increase in amplitude until they reach an amplitude such that the count rate passing through the level discriminator is equal to the desired count rate as established by the gain reference.

Referring to the AGC count rate spectrum (Figure 8), it can be seen that a large percentage of the AGC countrate is included in the signal window. Therefore, a very low AGC count rate is required. Also, a very long averaging time is required in order to minimize the statistical fluctuation of a low count rate average. It is desired to keep the noise contribution below 30 pulses per second. With a 60 pulse per second count rate, a very long averaging time is fine for stabilizing long term drifts of the photomultiplier tubes such as encountered in a recovery from sterilization cycling and a long transient to a planet, but would not correct for rapid changes that might be encountered during atmospheric entry. Therefore, the detector and electronics must be inherently stable over short term changes.

Electronics Assembly

Signal Conditioning Electronics. The signal conditioning electronics is illustrated in block diagram, Figure 9, and the schematic drawing, Figure 10.

The gamma rays emitted by the source are absorbed by the scintillator. The resulting light photons are transmitted to the PM tube and are converted into electrical pulses. The output of the PM tube is amplified and fed to the AGC and window discriminator. The output pulse of the window discriminator goes to conversion electronics which transform the pulse data into a dc analog signal and a pulse delay signal.

To stabilize the gain of the PM tube, an AGC is used. The AGC uses as reference a calibration source output. A single level discriminator splits the calibration source spectrum in half. If the gain changes, the calibration peak shifts and the number of counts seen by the single level discriminator changes. The AGC circuit senses this change and adjusts the PM tube high voltage power supply to a new high voltage and adjusts to keep the gain constant.

<u>Preamplifier</u>. The preamplifier consists of a high gain dc amplifier $\mu A702$ with appropriate input impedance and feedback resistance to control the gain and the linearity of the signal.

The emitter follower is necessary to minimize the instability due to the interstage loading effect, and gives a low source impedance to drive the window discriminator and AGC circuit.

<u>Discriminator</u>. The window discriminator, as shown in Figure 9, consists of two integrated level detectors (μ A710), two pulse reformation circuits (SE-160), and a NAND Gate (701) which provide the anticoincidence necessary to obtain the window.

A reference voltage is inserted at the inverting input. The positive input pulses are applied at the non-inverting input, if:

 $V_{in} \leq V_{Ref}, \quad V_o \text{ is zero}$ (15)

 $V_{in} > V_{Ref}$, V_{o} is positive (16)

The trailing edge of the output of the UL and LL comparators is used to trigger the monostable multivibrators (SE 160).

The signals from the two comparators do not occur at the same time. The trailing edge of the lower comparator waveform delays the input of the anticoincidence circuit.

The anticoincidence circuit produces an output signal if the signal from the lower comparator is not accomplished by one from the upper comparator.

The NAND logic is expressed as:

$$A \cdot \overline{B} = C \tag{17}$$

where:

A = low level signal exists

 \overline{B} = high level signal does not exist

C = output signal exists

Figure 11 shows the logic pulse formation on the window discriminator.

<u>Automatic Gain Control (AGC)</u>. A single level comparator detects the variations in the system gain and applies a correction signal to the high voltage power supply. This causes the gain of the system to return back to the original value.

FIGURE 11 - Window Discriminator Pulse Formation

42

Gain variations are detected by the high speed comparator (μ A710). A monostable multivibrator (SE-160) shapes the pulse and the integrator (709) provides a feedback voltage to control the high voltage power supply.

Gain reference voltage and bias reference adjustments are used to establish what point on the calibration spectrum the system will operate.

Analog Output. The output required of the sensor is a 0-5 volt signal to drive a telemetry system. In order to minimize the error induced by the telemetry system, a scale change is necessary. The output voltage nominally would be a dc level proportional to the pulse count rate from the signal conditioning electronics. Obviously at very low pulse rates, it would be a very low dc signal. For a linear 0-5 volt output, equivalent to a 0 to 40,000 pulses per second full scale range, the minimum 100 pulse per second signal would appear as a 12.5 millivolt output signal. Typical telemetry systems have a 1% error band which is equivalent to 50 millivolts in a 0-5 volt system. Obviously, the 12.5 millivolt signal would be lost in this 50 millivolt error band. Thus, scale changing is required. Various methods of scale changing were studied in this program. The majority of them requires the switching of amplifier gains as a function of selected count rates, or providing dual outputs, one for high level outputs and one for low level outputs. All of these methods add to the complexity of the overall system.

The approach finally selected is to provide a single output, but with a two slope scale arrangement. This scale change is illustrated in Figure 12. The 0-2.5 volt output is the equivalent to a 0 to 2,500 pulses per second signal. Then the 2.5 to 5 volt output range provides information proportional to the 2,500 to 40,000 pulses per second count rate. This shaped dc output is provided as follows:

<u>Frequency to DC Converter</u>. The output frequency of the window discriminator is shaped and inverted to monostable SE-160 (Figure 9). This output is then averaged and amplified. The output of the amplifier is then inverted by the voltage inverter (709) and used to produce an analog signal output.

The gain of the frequency to dc converter is controlled by a sharp active limiter. The limiter determines the optimum count rate at which to affect the automatic scale change and select the proper gain of the output amplifier.

Digital Output. An investigation was performed directed toward providing a digital output from the sensor. This appears desirable since the information started with is digital in format as pulses or pulse rate. This study showed that the pulses could be directed to counters, shift registers, etc., which could provide a serial or parallel output on command. The electronics

FIGURE 12 - Pulse to DC Converter Calibration

required for digital signal conditioning added to the complexity of the overall system. An investigation of existing data transmission techniques for planetary probes showed that most often a pulse delay type output was used. This was due to limited bandwidth and a limited number of telemetry channels available for such information. A pulse delay output is one in which an interrogation pulse is directed to the sensor and the sensor generates an output pulse at some time interval later. This time interval is proportional to the information desired. In other words, a pulse delay of 1 second could be equivalent to an input signal of 1 volt, or a count rate of 1,000 pulses per second. The conversion from a pulse rate in counts per second to the pulse delay information is most easily done by converting count rate to an analog signal and then converting from analog to pulse delay. This requires less electronics than performing the entire function in a digital fashion.

Pulse Delay Converter. The pulse delay (refer to Figure 9) output is generated in the following manner. The controller initiates a read command pulse. The leading edge of the command pulse triggers the one-shot multivibrator. The output of the one shot controls a gate which applies a reference voltage to a linear integrator. The output of the linear integrator and the analog output are fed to a comparator which turns on when the linear integrator output is slightly greater than the analog output. The comparator output is differentiated to produce the delay pulse. The time delay of the delay pulse with respect to the leading edge of the telemetry read command signal is directly proportional to the analog output as compared to the linear portion of the integrator output. Figure 13 shows the pulse formation delays.

Packaging. The electronics are packaged as shown in Figure 14. The circuit components are mounted on two printed circuit boards which are mounted into the electronics chassis via standoffs. The interconnection between the two printed circuit boards and connectors is provided by hard wiring. This results in a low weight unit that can be easily modified and reworked in a development program.

Size, Weight, and Power Summary

Table VI summarizes the size, weight, and power goals along with those that were achieved by Phase I of this development.

The size goals were met in all cases. The weight goal was missed by 6 ounces, primarily due to an overweight detector assembly. This overweight detector was not anticipated and it is felt that a significant weight reduction still could be effected in this area. The power summary shows that the power goal was achieved during normal operation of the sensor. This power does

FIGURE 13 - PULSE DELAY FORMATION

	- TV JUDE VI	- SIZE, WEIGN PHASE	II	summary		
	Size	(In. ³)	Weight	(1bs.)	Power	(Watts)
	Goa1	Actual	C oa1	Actual	Goal	Actual
Source Assembly	15	31.6	1.3	2.51		
Detector Assembly	35	18.9	1.0	1.75	1.5	.2
Electronics Assembly	4.5	39.8	2.7	1.24	3.5	4.6
TOTAL	95	90.3	5.0	5.50	5.0	4.8

ū Ş С Р ۳ 1 Weight 5170 TARLE VT not include that required to operate the shield motivating solenoids. This additional power will be available before launch via external sources. During the background measurement period, external power will not be available.

Alternate methods of operating this solenoid were considered, but they all involve latching or motivating the shield to a closed position and the condition could exist that if power was lost at that point in time, the shield could not be opened again. This is unsatisfactory since such a failure would completely void the mission.

RELIABILITY

A complete reliability analysis was performed on this sensor and is included in Appendix B. The results of this reliability analysis are illustrated in Table VII. The sensor is divided into six subassemblies, the first being the PM Tube and high voltage power supply; second, the amplifier and the discriminator electronics; third, the AGC electronics; fourth, the analog electronics; fifth, the pulse delay converter electronics; and sixth, the low voltage power supply.

The sensor mission is divided into four operating conditions; the launch period, the transit period, the orbit period, and the descent period. The application factors were then applied corresponding to sensor operation or non-operation, the environment during these various periods, and a complete summary of the reliability was formed. The results of this show a total mission probability of success of 89%. This probability is almost completely contingent upon the transit period operating condition. There is a 53,000 hour MTBF during this 5,760 hour period. In reviewing the various contributors, it is apparent that the PM Tube high voltage power supply is the element that if improved would result in the most significant overall system improvement.

Appendix B shows all of the electronic components, their values, their part numbers, the reliability level, and qualifying document. In almost all cases, the electronic components were selected from a JPL ZZP document which categorizes the parts in terms of their ability to withstand the sterilization environment as well as provide high reliability (ref. 8).

				TTUNE TTTE		
			Failure	Rate x 10-	6	
(1)	(2) Subassembly	(3) Launch	(4) Transit	(5) Orbit	(6) Descend	(7) Remarks
1	PMT Assy. & HVPS	180.75	9.84	27.03	376.75	Actual Part Calculation
ę	Amp. & Disc.	20.37	1.72	3.46	27.83	Actual Part Calculation
4	AGC	7.90	1.95	3.59	10.20	Actual Part Calculation
Ŝ	Analog Conv.	13.07	2.19	4.23	15.96	Actual Part Calculation
9	Pulse Conv.	18.57	1.47	2.17	23.60	Actual Part Calculation
7	LVPS	40.27	1.47	3.44	86.51	Actual Part Calculation
	Total F.R.	240.93	18.64	43.92	540.85	
	MTBF (Hrs)	4151	53,648	22,769	1,849	
	PROBABILITY OF SUCCESS	99.98%	89.85%	99.78%	99.97%	TOTAL MISSION
						$P_{T} = 89.61\%$
Colu	mn Description:					
	(1) Block iden (2) Block (Sub	tification assembly) D	from the r escription	eliability '	block diag	gram.
	(3) (4) (5)	(6) Assume	ed mission	regimes	Launch	Transit Orbit Descent
	a. Durat: h Dower	ion (t) Annlied			0.5 hr	5/60 hr 50.0 hr 0.5 hr No ves ves
	c. Compor d. Applid	nent Temper cation Fact	ature (T) cor (K,)		+85°C Missile	+40°C +85°C +85°C +85°C +85°C Orbit Missile
			A.			

TARLE VIT - RELIABILITY ANALYSIS SIMMARY

(7) Conditions for determining predicted values.

STERILIZATION

A study was conducted to determine the sterilization status of the Gamma Backscatter Atmosphere Density Sensor. Reference is made to the Reliability Analysis, Appendix B, which includes a detail listing of all parts used in the sensor design and their qualification status. Maximum use is made of previously qualified parts appearing in JPL Specification ZPP-2010-SPL-D Sterilization Parts List for Spacecraft Application dated 20 October 1967 (ref. 8).

Referring to the Reliability Analysis, the Qualification Document is specified for all components. Those referring to a ZPP document indicate their selection from the JPL Sterilization Parts List.

Other components are shown as being on the QPL, indicating qualification to the referenced MIL-Spec. The remaining components have not been qualified, but have been selected for some unique operational characteristics.

Table VIII summarizes the electronic parts not appearing on the JPL Sterilization Parts List for Spacecraft Application and the reason for their selection. This list covers 30 of the 280 parts used. Thus, 89.3 percent of the parts are sterilization proven. This list shows 14 generic part types. In most cases, a size constraint or particular performance characteristic made selection of these from the Sterilization Parts List impractical. The following paragraphs describe the approach recommended for the remaining parts.

PMT-HVPS Assembly

The Photomultiplier Tube-High Voltage Power Supply Assembly is a totally encapsulated unit. The components used in this assembly that have not been tested to the sterilization environment are all similar to types that have been subjected to the heat sterilization cycle. By virtue of the steel housing and encapsulents, these electronic components will not be subjected to the decontamination agent. It is recommended, therefore, that the entire assembly be tested to the sterilization environment rather than the individual components.

Electronic Assembly

The remaining parts consist of a capacitor, two transistors, a diode, and a transformer. The 2 μ f capacitor can be replaced by a 1 μ f from ZPP-2744-2508 with a minor design change. The 2N1132 transistor is similar to the 2N2907A except that it is in a TO-5 rather than a TO-18 case. It is anticipated that a suitable

TABLE VIII -	Electronic	Parts Not	On JPL	Sterilization	Parts List
		The second s			

SECTION	COMPONENT	DESCRIPTION OR P/N	SPECIFICATION	COMMENTS
$\lambda_1 + \lambda_2 PMT$	Resistors (Dynode)	6-8 M Ω		Micronox Film - No equivalent on Sterilization Parts List
Circuitry &	Sensistor	TG 1/8	MIL-T-23648A	
HVPS	Capacitor	109D825x0060C0	Similar to MIL-C-25	No equivalent on Sterilization Parts List that can meet small packaging constraings
	Capacitor	MKW102K30	Similar to MIL-C-25	и и и и и и и и и
	Capacitor	MKW102K50	Similar to MIL-C-25	
	Transformer	TF6 Q X40ZZ	MIL-T-27	Special to this application
	PMT	EMR-591N-01-14	MIL-E-1	Selected based on JPL Sterilization test results - development continuing.
	Transistor	2N718A	MIL-S-19500	Selected based on use history in application
	Diode	1N3284	MIL-S-195100	Special high voltage diode - No equivalent on Sterilization Parts List.
λ ₃ Amp & Windo Discriminator	None			All parts from Sterilization Parts List
λ ₄ AGC	None ·			All parts from Sterilization Parts List
λ ₅ Analog Converter	None			All parts from Sterilization Parts List
λ_6 Pulse Delay	Capacitor M	$2 \mu f CTM$	MIL-C-27278	Similar to ZPP-2744-2508
Converter	Transistor	2N1132	MK-S-19500/177	Also used in LVPS - Selected for special performance (Power and Size) - No equivalent on Sterilization Parts List.
	Transistor	MEM550		Selected for special performance (FET) - No equivalent on Sterilization Parts List.
λ ₇ Low Voltage	Diode	1N4942	MIL-S-19500/359	Selected for special performance (High Speed) - No equivalent on Sterilization Parts List.
rower aubbra	Transformer		MIL-T-27	Special to this application - Can be manufactured to JPL Specifi- cation ZPP-2737-1300.

PNP silicon transistor in a TO-5 case will become available as the JPL sterilization test program continues. The MEM550 is a MOS-FET used for switching. This device is gaining wide application and it is anticipated that an equivalent device will become available as the JPL sterilization test program continues. Both the above transistors can be stored at 135°C and are hermetically sealed. The 1N4942 diode is selected for its high speed. It is packaged in a glass subminiature case size similar to the 1N916 (ZPP-2746-3001) and can be stored at 135°C. It is anticipated that this diode or one of equivalent characteristics will be added to the Sterilization Parts List as the sterilization program continues. The transformer is a toroidal type capable of being manufactured by an approved vendor in accordance with JPL Specification ZPP-2737-1300. Similar transformers are included on the Sterilization Parts List.

It is felt that special testing of the above devices is unnecessary since equivalents will become available as existing sterilization programs continue and sufficient confidence in their suitability is already established based upon similarity.

WORKING MODEL

The working model was assembled and tested to verify the design described previously. This working model verified the size, weight, and power goals of this program and verified performance through limited environmental testing and operation in the altitude sphere to simulate the actual measurement of density. The working model is shown in photographs in Figures 15, 16, and 17.

Before this working model was assembled, a detector and its electronics were breadboarded and tested. Problems were encountered with temperature shifts of the AGC. This first AGC method utilized alpha particles from an Americium 241 source as reference and a sodium iodide crystal detector. The problem encountered was that as the temperature of the crystal changed, the detector response to alpha particles did not track the response to gamma photons. The AGC was designed to accurately control the pulse height of the alpha particles, but through temperature the relative height of the backscattered gammas would change. This produced significantly large errors in the gamma output. This effect was also verified using the sodium activated cesium iodide crystal and thallium activated cesium iodide crystal.

It became evident that one means of getting the AGC Reference Source pulse height to track the backscattered gamma radiation pulse height was to use gammas as the reference source. The 350 Kev gamma of cesium 135 was selected. The disadvantage of a cesium 137 gamma source as a reference was that the Compton continuum from this higher energy gamma plus the 80 Kev gamma would produce a significant background in the region of backscattered gamma radiation. In order to minimize this background, the AGC source strength had to be made as small as possible, shielding added, and the AGC made to operate on as few counts per second as possible.

In this regard, a very small cesium 137 source was placed against the crystal assembly and the output spectrum measured. Lead shielding was introduced between the source and the detector in thin layers. The shielding first attenuated the cesium 137 low energy gammas. Shielding was added until the 80 Kev gammas were totally absorbed and the ratio of AGC source to background noise reached a constant ratio. In this way, the thickness of shielding required was determined. The background then consisted primarily of the Compton continuum from the 355 Kev gammas.

The electronics breadboard was investigated and temperature tested. Several improvements were made through this program in order to arrive at an electronics design for minimum power, particularly in the area of power supply, efficiency, and transformer design.

FIGURE 15 - Source Assembly

After breadboard testing was completed, the assembly of the working model was begun. The source mechanism was fabricated from the original design drawings and a few problems were encountered. Most of these problems were minor in nature and solutions effected with ease. One problem, however, became quite significant. This was in regard to the springs which are used to force the shield assembly closed in the event of a fire or launch pad explosion. It was found that springs could not be obtained which would retain their temper and provide a positive return force at high temperature within space that was available for them in the original design. This problem was left unresolved since it would require a complete refabrication of the assembly with an increased overall length dimension to allow a slightly longer spring to be used for this purpose. All other functions of the source assembly proved the proper design.

The working model electronics was assembled without problem. The detector assembly, although plagued by delays in delivery of the photomultiplier tube assembly, was finally assembled by the crystal manufacturer who used a proprietary optical coupling material to attach the crystal assembly to the photomultiplier tube assembly. Upon completion of this, all the parts of the working model were integrated into a unit and a series of calibrations and tests performed.

The source assembly was tested through temperature and vacuum environments. The unit was soaked at -50° and +100°C and operated at those temperature extremes without problem. The unit was put in a vacuum chamber and soaked in a vacuum and operated with no problem. The source material was received from the manufacturer and found to fit the source mechanism without problem. This source assembly, with a 1 curie source and a 5 curie source installed, was mapped in the open and closed positions, providing the radiation patterns for determination of the adequacy of shielding and collimation.

Integration of the working model detector with its electronics uncovered one particularly severe problem. The sodium activated cesium iodide crystal had a characteristic that was not anticipated in the electronics design, this being a longer than anticipated decay period. A change in the discriminator pulsewidth was required to insure blanking of the low level pulse by the high level pulse. Also, some differentiation circuitry was added to the output of the detector to shorten the pulses.

In calibrating the AGC circuitry, attempts were made to achieve very low AGC comt rates and very low background. The final sensor operated at an AGC pulse rate of approximately 50 pulses per second. Working with this low count rates required working with a very low level signal in the AGC loop, and zero offsets of the one-shot pulse generator and its variation with a very low level signal in the AGC loop, and zero offsets of the one-shot pulse generator and its variation with temperature became significant. A following transistor stage was added with low offsets to minimize the drift of the AGC with temperature. Also, with the low count rate, a long averaging time is required in order to minimize the random fluctuation of the AGC. This was accomplished by reducing the loop gain of the AGC loop to provide the desired slow response. This created a turn-on problem in that a long time was required from initial turn-on to final establishment of the desired AGC level. In order to shorten this turn-on time, an initial offset to the AGC control voltage was added so that it was much closer to its final state at turn-on.

Some modification of the drive capabilities of the output circuits was required to insure adequate operation with long cables in the altitude sphere.

During this period of system integration, a series of temperature tests were performed on the detector and its electronics. Temperature drifts were seen in these tests and improvements were effected. At the conclusion of this test program, the unit showed slight drift, but it was felt acceptable since it could be seen by variations in the AGC countrate and thus, if necessary, compensation could be provided.

The detector and the electronics were subjected to a vacuum test and performed satisfactorily.

The calibration of the discriminator levels was established by measuring the backscatter spectrum from the 100 Kev, l and 5 curie sources, and setting the window levels to encompass this peak. The backscatter spectrum and the relative positions of the window discriminators are illustrated in Figure 18.

FIGURE 18 - Backscatter Pulse Height Spectrum

DEMONSTRATION TESTING

The working model, along with a test box and a simulated vehicle structure, were packaged and shipped to Langley Research Center for demonstration testing in the 60 foot diameter altitude sphere. The purpose of the testing was to demonstrate the response of the sensor to the variations in density and provide a measurement of the calibration constants and determine proper operation of the unit. Also, during periods other than density runs, the equipment was checked for stability. The actual sequence of tests is outlined in Table IV.

The unit was first placed in the chamber, cabling attached, and a checkout of the unit operation performed. This checkout included a stability run in which the unit was allowed to operate overnight and the output count rates continuously recorded. The results of this stability run indicated that there were some temperature instabilities requiring improvement. Also, the fluctuation of the AGC caused lack of short term stability.

Minor changes were effected to reduce the loop gain of the detector electronics in order to stabilize the AGC and reduce the effect of AGC source statistical fluctuation. Also, by reducing this loop gain, the temperature stability was improved.

The checkout continued with density run No. 1. This run involved the installation of the 1-curie source and evacuating the chamber to the equivalent of 100 millimeters and returning to 760 millimeters of mercury. The various data points were reviewed to verify proper operation. This checkout showed a significantly higher wall scatter than anticipated. Modifications to the test setup were made which added shielding around the detector to minimize scattering from the chamber walls near the bottom of the chamber. Also, a portion of the vehicle skin was removed to minimize possible multiple skin scatter.

Stability test No. 2 was then run, showing a significant improvement.

Density test No. 2 was then run, with the lecurie source. The sphere was evacuated to 1 millimeter of mercury and data points were taken on the way down. The unit was then soaked overnight in this 1 millimeter vacuum and the run continued the next day by bringing the unit while operating back to one atmosphere, taking data points on the way.

The next test No. 3 was run with the 5-curie source installed. The sphere was evacuated to 1 millimeter and data points taken during this run. The unit was then turned off and allowed to soak in this vacuum over a weekend, and upon return it was turned on and found to operate properly and the sphere returned to one atmosphere and data points taken on the return.

	TABLE IX Operation Log - Atmo	sphere Den	sity Sens	or - ADS-104		
Test Date	Test Description	Input Voltage	Control Voltage	Operating Time (Hrs)	Sensor Tem- perature °F	Pressure mm Hg
1/8	AGC Calibration	28	1.8	ø	75	760
1/9-1/11	Sensor Calibration	28	1.8	24	75	760
1/13-1/14	Sensor Calibration	28	2.05	16	75	760
1/15	Temperature Test	28	2.05	Ø	-22 to +122	760
1/16	Vacuum Test	28	2.05	4	+70 to +100	25 to 760
1/16	Temperature Test	28	2.05	4	-22 tp +122	760
1/17	Final Checkout	28	2.05	80	75	760
1/21	Checkout in chamber	28	2.05	4	40	760
1/21	Stability Run #1	28	2.05	14	40	760
1/22	Density Run #1	28	2.05	9	40 to 70	100-710
1/22	Stability Run #2	28	2.05	14	40	760
1/23	Density Run #2a	28	2.05	8	40 to 70	760 to 1
1/23	Vacuum Soak (non-operating)	0	0		4.0	1 to 3
1/24	Density Run #2b	28	2.05	4	40	1 to 760
1/24	Density Run #3a	28	2.05	4	40	760 to 1
1/25 - 1/26	Vacuum Soak (non-operating)					
1/27	Density Run #3b	28	2.05	4	40	3 to 760
1/27	Density Run #4	28	2.05	4	40	760 to 1
1/27	Vacuum Soak (operating)	28	2.05	14	40	1 to 3
	Failure Replaced Detector Assembly			148		
1/30	Sensor Checkout	28	2.05	1	40 to 70	7 60
1/30	Density Run #5	28	2.05		40	760 to 100
63	Failure			2		

In Density Test No. 4, the sphere was again evacuated, with a 5-curie source installed, and data points taken down to 1 millimeter of mercury. In this fourth run, argon gas was then to be introduced in order to provide a measure of the unit operation with a gas of different molecular weight. Unfortunately, as the unit was vacuum soaked, a failure of the detector assembly occurred. The detector assembly was replaced with a second unit and sensor checkout performed again.

Density test No. 5 was then initiated and the second detector failed when a pressure of 100 millimeters of mercury was reached.

The failures encountered were similar in nature. A large increase in operating current was noticed, along with a reduction in detector output. Upon investigation of the failed units, it was determined that the failure of the high voltage power supply was caused by voltage breakdown of the encapsulants.

The sphere data that was obtained before the detector failures provided enough information to form several conclusions. These will be discussed later in the report. The sphere data was reduced by computing the actual density in the chamber from measured temperature and pressure data. This actual density is plotted with respect to the detector countrates, and are shown in the following Figures 19, 20, 21, and 22. The solid line shown in these figures is a least square curve fit of a second order equation to these data points. The actual data points and data are contained in Appendix D.

Demonstration Test Data Analysis

The detected countrate as a function of gas density in the altitude sphere can be expressed by the following equation:

$$I_{D} = I_{AS} + I_{WS} + I_{B}$$
(16)

where:

 I_D = detected count rate I_{AS} = air scatter count rate I_{WS} = wall scatter count rate I_B = background count rate

The air scattered count rate is related to air density ρ , source strength S, and a scale factor K_{AS} .

$$I_{AS} = K_{AS} S \rho$$
 (17)

The wall scatter countrate is related to source strength and a scale factor K_{WS} .

$$I_{WS} = K_{WS}S$$
(18)

Referring to the test data, Figures 18 through 21, the factor K_{AS} S can be determined as the slope of the count rate vs density plot. The extrapolation of this plot to zero density provides the sum $I_{WS} + I_B$. Thus, each of the elements of equation (1) can be found from the experimental data. In order to provide a consistent method of obtaining this data, a least squares curve fit program was applied to the data points, the results be being presented in Appendix D. Since there was some non-linearity in the data, a second order equation, rather than a linear expression, was used for this curve fit as below.

$$I_{\rm D} = A + B\rho + C(\rho)^2$$
 (19)

The data points are shown encircled and the fitted curve shown as the solid line of Figures 18, 19, 20, and 21. The resultant parameters for each test run are shown in Table X. Notice in Appendix C that with few exceptions, the data points fall within ±5% of reading of the fitted curves.

Discussion

Scale Factor. The parameter of interest is the scale factor. This is Item B of equation 19 and Table X. For the five-curie source, the scale factors vary from 1.94×10^7 to 2.16×10^7 pulses per second per unit density. The one curie scale factor was seen to be from .387 x 107 to 3.93 x 107 pulses per second per unit density. The ratio of scale factors thus ranged from

$$\frac{1.94 \times 10^7}{.393 \times 10^7} = 4.93 \text{ to } \frac{2.16 \times 10^7}{.387 \times 10^7} = 5.55 \quad (20)$$

The ratio of source strengths as measured by the manufacturer were 5.09. Thus, there is experimental agreement of the scale factors between various runs and the predicted value of within $\pm 6\%$.

The background measured with the source mechanism closed is shown in columns D and E of Table X. This background varied from 213 pulses per second to 271 pulses per second. The background was always high with the chamber at low density and low with the chamber at high density. It is concluded that some portion of the background is a result of secondary radiation being generated as the natural background interacts with the chamber walls. This is easily demonstrated by the fact that the background level in the low energy region of interest outside the

F Wall Scatter pps	830	840	186	214	
und pps Low _p	253	271	234	260	
D Backgro High _p	214	224	213	223	
c Non-Linearity pps/(gm/cm ³) ²	-2.34x10 ⁹	658×10 ⁹	259x10 ⁹	0846x10 ⁹	
B Slope pps/gm/cm ²	2.16x10 ⁷	1.94x10 ⁷	.387×10 ⁷	.393x10 ⁷	
A Zero Density Count Rate (pps)	1083	1111	420	474	
Test Run	5 Curies Down	5 Curies Up	1 Curie Down	l Curie Up	

TABLE X - Data Parameters

chamber is lower than in the chamber. The air in the chamber then attenuates this background giving the noticed change in count rate with density.

The wall scatter plus background is given as the extrapolation of the fitted curves to zero density which is listed in column A of Table X. Subtracting the associated backgrounds at low density gives the wall scatter of column F of Table X.

Linearity. The data is seen to become non-linear at the high density, high count rate regions. This non-linearity is caused primarily by AGC sensitivity to detected count rate and secondarily to detector coincidence loss and air absorption of wall scatter. The air absorption wall scatter can be approximately estimated using the attenuation expression

where:

x = two way path length = 100 feet = 3050 cm ρ = density at 1 atmosphere = .00127 gm/cm³ μ = absorption coefficient for air at 100 Kev = 0.13 cm²/gm

giving:

 $e^{-0.13 \times .00129 \times 3050} = 0.6$ (22)

Thus, the wall scatter at 1 atmosphere density is about 60% of that at zero density. Since the wall scatter at zero density is about 3% of the 1 atmosphere air scatter, the non-linearity due to this effect would account for a 1.8% drop in count rate.

The sensor response is approximately 10⁶ pulses per second. Coincidence loss at 25 KHz count rate would account for a 2.5% drop in count rate at 1 atmosphere. These two non-linear effects are of minor significance.

The major contribution to non-linearity is the interaction of the 100 Kev scattered gammas with AGC circuitry. At the high backscatter countrate, a small portion of these counts reach the AGC discriminator level and are detected as part of the AGC reference gammas. This results in an erroneous reduction in gain to compensate for the increase in count rate. This gain reduction decreases the sensor scale factor as a function of the density. This effect was seen to contribute the major sensor non-linearity.

(21)

<u>Stability</u>. The stability of the sensor was sampled by sampling 10 second count rate averages over a period of 16 hours without changing test conditions other than natural ambient temperature swings of approximately $\pm 10^{\circ}$ F. The data points are shown plotted in Figure 23. Referring to the AGC count rates, the average of 20 points varied by $\pm 0.8\%$. The 2 σ statistical variation to be expected for 200 second averages is 1.88\%. This test showed negligible drift of the AGC within the measurement accuracy. The spread of 10 second averages was seen to be $\pm 6.4\%$. The expected 2 σ statistical variation for 10 second averages is computed as 8.5% again showing the variations to be within the expected 2 σ measurement tolerance.

The 10 second average output count rates are seen to fall within the 2 σ expected statistical fluctuation of ±1%. The overall drift is seen to be approximately ±1.3%.

RECOMMENDATIONS RESULTING FROM PHASE I DEVELOPMENT AND TESTING

This section describes areas requiring further development identified in the Phase I effort. The primary elements to be considered are the photomultiplier tube high voltage power supply packaging, and methods of automatic gain control. Failures of the detector assembly in the vacuum chamber demonstration testing have indicated a high voltage breakdown problem in the high voltage power supply. As a result, some development in the area of high voltage power supply packaging is required. Methods to consider are a more adequate encapsulation material, better process control, or complete hermetic seal of the package.

The method of automatic gain control must also be investigated. The purpose of this investigation is to optimize the AGC technique in order to reduce the background signal, increase AGC source strength for better control, and provide more stable electronics. A review of the various methods of automatic gain control previously investigated indicates that Americium alphas provide a better reference for automatic gain control. The fact that the alphas and gammas do not track as a function of temperature can be taken care of by temperature compensation of the sensor. A composite crystal will improve the tracking abilities.

Experimentation with a composite CsI(T1) and NaI(T1) crystal with AM 241 sealed into the CsI has shown promise. This crystal combination provides the following advantages:

1. Alpha particles are used as the reference and do not create any background in the gamma region. The alphas considered are approximately 5 Mev in energy which, when detected in a scintillation crystal, is equivalent to 2 Mev gamma. This is adequate separation from the 100 Kev backscatter gammas such that Americium alphas will not disturb the background count rate and no 100 Kev backscatter gammas will disturb the AGC circuitry.

2. The 60 Kev gammas from the Americium source when detected in the cesium iodide crystal will appear approximately the same height as the equivalent of 30 Kev gammas as detected in the sodium iodide crystals. Thus the 60 Kev Am 241 gammas appearing as 30 Kev gammas are sufficiently low in amplitude so as not to contribute noise in the 100 Kev region of interest.

By using a NaI(T1) crystal rather than a CsI(Na) crystal as was done in this present program, some consideration must be given to the thermal and mechanical environments that might be imposed on this crystal assembly. In previous programs, it has been demonstrated that a properly packaged sodium iodide crystal will withstand mechanical environments of shock and vibration. Some consideration must be given to the temperature shock that may be imposed upon the crystal. Secondary areas which require further development are simplification of the electronics, minor modifications to the source mechanism, and proof testing of the design through an environmental test program.

The purpose of the electronics simplification is to reduce the size and power of the electronics. This can easily be accomplished by removal of the extraneous digital output electronics and the use of regulated power only for referenced voltage levels. The modification of the source mechanism being considered is the increase in unit length to allow an adequate spring for closing the source mechanism in the event of a launch pad explosion or fire. In the present design there is not adequate room for a spring which will retain its spring rate at high temperature.

A second modification to the source mechanism is to provide a more positive method of retaining the source in this mechanism.

A third minor addition to the source is the identification marks such that the source can be gripped for installation in the proper direction, minimizing wasted time during the source installation procedure.

A third effort is to prove the design through environmental testing. These tests should include the effects of temperature, shock, vibration, vacuum, thermal shock and sterilization. These above areas are recommended, for inclusion in the Phase II effort of this program. The program will include updating the design through further breadboard testing, modification of the working mode, environmental testing of the working model, further development of an adequate PM tube high voltage power supply/detector assembly, and investigation of methods of AGC. Upon completion of these studies and tests, the resultant design modifications will be incorporated into two engineering prototype atmospheric density sensors. These sensors will then be demonstrated in the altitude chamber and delivered for evaluation by NASA - LRC.

CONCLUSIONS OF PHASE I DEVELOPMENT

The following conclusions have been reached as a result of the Phase I program.

1. An atmospheric air density sensor can be designed within the size, weight, and power constraints of 100 cubic inches, 5 pounds, and 5 watts.

2. The sensor design can incorporate sterilizable components to a high percentage.

3. Adequate detector design for operation in a vacuum is yet to be proven.

4. Composition effects are yet to be determined via argon tests.

5. A clean 100 Kev gamma source is available in the form of Gadolinium 153.

6. Improvements in the automatic gain control design are needed to improve temperature stability and sensor repeatability.

A Phase II program is recommended to complete development in the areas still needing improvement and provide engineering prototypes which will meet all the requirements of this program. As a result of the development and testing on the Phase I hardware, Phase II design was incorporated to improve the system in the areas that were found lacking during the test. The initial program set forth in Phase II was to provide a new system and rerun tests in the 60-foot sphere at the NASA Langley Research facilities. Due to the numerous problems throughout the program, lack of funds, and lack of availability of the test chamber, the program was not completed. The hardware was developed and the course set forth for the development and lab tests were made, but the testing in the 60-foot sphere was eliminated from the program.

Figure 24 illustrates in block diagram form the source, detector, and signal conditioning electronics which comprise the atmospheric density sensor.

The Gd-153 source is mounted in a shield mechanism which performs the following functions. With the shield mechanism closed, the gamma radiation is attenuated such that the dose rate at 1 meter is less than 2.0 millirem per hour. The shield and source may then be installed in a vehicle without undue hazard. Upon external command (through the vehicle umbilical), the shield mechanism can be opened and latched, exposing the source. In case of an aborted mission, the shield mechanism can be unlatched and closed on external command. After launch, the shield mechanism remains open and there is no way in which it can be closed and latched. When in flight, the shield mechanism can be momentarily closed on command through a radio command link.

When in the exposed configuration, enough shielding is interposed between the source and detector to attenuate direct transmission to a negligible level (less than one pulse per second).

With the shield mechanism in the open position, the source radiation pattern is loosely collimated to reduce the possibility of air scatter close to the vehicle surface and resultant errors due to shock layer effects.

The source is located approximately one meter from the detector. As gamma photons impinge upon the detector crystal, light scintillations are produced which are sensed and amplified by the pulses whose amplitude is approximately proportional to the impinging photon energy and whose rate is equal to the rate of impingement.

These pulses are further amplified in the signal condition electronics and pass to an upper level (UL) and lower level (LL) discriminator. The upper level discriminator passes all pulses

FIGURE 24 - BLOCK DIAGRAM, ATMOSPHERE DENSITY SENSOR

of amplitude greater than the UL reference. The lower level discriminator passes all pulses of amplitude greater than the LL reference. These two discriminator outputs pass to a NAND gate such that only those pulses of amplitude between the UL and LL reference produce output pulses. Thus, an energy "window" in established which is set to accept only the scattered 100 Kev photons and reject most other noise and background pulses.

The pulse output is converted to a 0 to 4 volt output signal by the pulse to dc converter. The dc output level is directly proportional to the pulse rate. Automatic scaling is performed by providing a two-slope output: high sensitivity output from 0 to 4 volt output, lower sensitivity output from 0 to 4 volt output for 0 to 40,000 Hz. These dc outputs can be telemetered directly.

Since photomultiplier tubes do not exhibit good stability over time and temperature, an automatic gain control (AGC) is employed. A reference gamma source of 2 Mev from an Am-241 is introduced into the detector crystal. This provides a reference output from the detector which is examined by the AGC electronics. If the pulse height of the reference output is not correct, the gain of the photomultiplier tubes adjusted by varying its high voltage until the reference pulse height is brought back to the proper level. The pulse height is measured by the AGC level discriminator. Some of the reference pulses will fall below this reference level and some above. Those that fall above pass through the discriminator and the pulse rate compared with a bias integrator which lowers the photomultiplier tube gain. This reduces the output pulse height reducing the number of AGC pulses passing through the AGC discriminator. In this way, a constant AGC count rate and reference pulse height is maintained.

Source Assembly

During design evaluation and testing of the source holder, two potential problem areas were uncovered. In the spring mechanism, it will be possible at high temperatures, as in the case of an explosion on the launch pad, that the tension would be destroyed by heat. The second problem existed on the pivot mechanism, where increased heat could cause expansion to the point where the shutter would not close. These problems were eliminated by redesign of the pivot mechanism so that adequate clearances would be available under all temperature conditions, and the springs were made of different tempered steel which would allow the tension to be maintained under all expected temperature conditions.

Detector Assembly

During the testing of the 60-foot sphere on the Phase I hardware, both photomultiplier tube and high voltage power supply failed. Both units were returned to the original manufacturer, EMR, for evaluation and repair. After many months of evaluation, EMR concluded that the problems associated with the high voltage power supply during tests were a result of the potting technique that was used in encapsulating the high voltage section. Conrac had anticipated this type of problem and had set forth a program to redesign the high voltage power supply using a different technique. After EMR had completed the test and repair of one unit, it was returned to Conrac and then subjected to vibration and shock tests, The shock tests indicated no problem areas with respect to design, but the vibration test pointed out an area in the housing which had a high resonance and would have caused a complete failure over sustained operation at this frequency.

Conrac's evaluation of the high voltage power supply problem covered three areas of design. The first was to be a continuation of the design in the Phase I hardware with whatever improvements were requires as a result of EMR's evaluation and Conrac's environmental testing. The second was to have a power supply redesigned by Pulse Engineering Corporation of San Jose, California. Pulse Engineering had previously designed and built a high voltage power supply/photomultiplier tube combination for Conrac on the Apollo program. These units had been very successful throughout the environmental tests which had been run on this program. The third approach was to use the basic EMR design, but to change the housing so that it would be evacuated and sealed. EMR's evaluation of the failures and the cause of the failure were not adequate in Conrac's opinion to continue with this type assembly. The costs quoted by Pulse Engineering were prohibitive of the program. Conrac therefore completed the design of the detector using the basic high voltage power supply from EMR and a completely sealed assembly. The vibration problems that were present in the original design were eliminated during the basic redesign. The Conrac designed detector is the same as shown in Figure 7. The entire unit, including the crystals, photomultiplier tube, high voltage power supply were assembled and tested. During the assembly, the photomultiplier tube was preloaded with a spring and shims so that a constant pressure existed between the photomultiplier tube and the window. After assembly was completed, the detector housing and the electrical header were welded using the electron beam process. The unit was then evacuated and filled with a trace of helium prior to sealing so that adequate leak tests could be performed after sealing. The final results of this process during the temperature and bench tests at Conrac proved to be satisfactory.

The testing of the Phase I detector had some instabilities due to the electronics and the automatic gain control techniques. A Barium 133 source was used with a sodium activated cesium iodide crystal. Part of the gamma spectrum from the Barium source and part of the Gd 153 gamma overlapped the detector and caused an instability in the AGC. The Phase II design used a NaI(T1) detector crystal and a cesium iodide (na) AGC crystal with an Americium 241 alpha source. During the initial testing of this combination, the AGC signal was found to be too great in amplitude and could not be handled adequately by electronics. This problem was solved by a series of optical filters which essentially reduced the pulse height of the AGC signal out of the photomultiplier tube. Additional problems of the spectrum smearing were also present in this design and were solved by providing a quartz crystal with the proper coefficient transmission.

Electronics

The major problems associated with the electronics in Phase I were in the area of automatic gain control and the stability over temperature environment. Figure 25 is a schematic diagram of Phase II electronics. A considerable amount of time was spent in the development and testing of the electronics for the AGC. The basic integrated circuits were finally changed from 709s to 741s which provided the system with more stability over the temperature range and additional circuitry was added to compensate the AGC network along with the optical filters that were added into the detector. The entire system was tested over the temperature range from -15° C to $+50^{\circ}$ C with input count rates from approximately 300 to 30,000 counts. The results of these tests are shown on Tables XI and XII. Results of these tests indicate that the system operates within error band of $\pm 2\%$ of the entire frequency temperature range. The checkout, calibration and test plan for the system are described in Appendix D.

CONCLUSIONS OF PHASE II

The basic aims of the Phase II program was directed toward accomplishing design improvements as a result of the Phase I design, and the fabrication and testing of two engineering prototype Gamma Backscatter Atmospheric Density Sensors. The Phase I and Phase II programs have proven the basic design of the Gamma Backscatter Atmospheric Density Sensor for use in atmospheric studies. The results of the programs are summarized as follows:

1. An engineering model of the system has proven over the temperature and frequency range that the system is accurate to within $\pm 2\%$.

2. The unit can be packaged into a 100 cubic inch size and use less than 5 watts of power. The weight of the engineering model slightly exceeded the 5 pound limit, but several areas of weight reduction can be accomplished with continued design effort.

3. Final testing of the system in a large test chamber was not accomplished because of the availability of the chamber.

The use of a 100 Kev gamma source in the form of Gd 153 will probably prove out to be one of the most significant results of this program. This source has shown that it can provide a high energy gamma source that can be easily shielded and has a clean spectrum which probably will be used in many other fields of radiation study.

REFERENCES

- 1. Gebbie, N.W.: Final Report More Probe/Lander Density Sensing System. NASA CR-66094, February 1966.
- Hakewessell, D.B.: Feasibility Study for an X-Ray Backscatter Free Air Density Sensor. NASA CR-66148, September 1966.
- 3. Whitaker, D.B.; and Gardner, R.P.: Mathematical Model Predictions and Optimization Study of Gamma Ray Atmosphere Density Sensor. NASA CR-66676, August 1968.
- 1973 Voyager Capsule Systems Constraints and Requirements Documents. Table of Mars Model Atmospheres, SE002 BB002-2A21, JPL, January 1967, p. 19.
- Production Study of Gadolinium -153, Summary of Results March 1967 - December 1967. ORNL Intragency Agreement AEC 40-108-67, MIPR-L-1775.
- 6. Price: Radiation Shielding.
- 7. Final Report, Improved Sterilizable Multiplier Phototube, Electro-Mechanical Research, Inc. JPL Contract No. 951555, EMR Report No. 2641-4476.
- 8. JPL Specification ZPP-2010-SPL-D, Sterilization Parts List for Spacecraft Application, October 1967.

APPENDIX A

Methods of Automatic Gain Control

1.0 INTRODUCTION AND SUMMARY

This appendix describes several techniques for stabilizing the pulse height output of scintillator-photomultiplier tube type gamma radiation detectors. These techniques were considered for use in the Gamma Backscatter Atmosphere Density Sensor being developed for National Aeronautics and Space Administration, Langley Research Center, under Contract NAS1-7791. This sensor measures the amount of 100 Kev gamma radiation scattered from a source to a detector by the atmosphere. The amount of scatter and thus the detector output is directly proportional to the atmospheric density.

The method of stabilization is through the use of automatic gain control (AGC) techniques. A reference radiation source is placed near the detector. The detector output pulse height from this reference source is measured and compared with a reference voltage level. If the pulse height is too large or too small, the gain of the photomultiplier tube is correspondingly adjusted. Thus, variations of the crystal, photomultiplier, and its power supply with time, temperature, or other environment that cause pulse height changes are automatically corrected.

2.0 DESCRIPTION OF VARIOUS AGC METHODS

The important requirements of the optimum AGC approach are listed below:

- 1. The reference source must have a long half-life.
- 2. The reference source pulse height must track the signal pulse height.
- 3. The reference source must not contribute to the background noise level in the signal energy region.

This investigation centered around the use of Americium 241 alphas; Americium 241, 60 Kev gammas; Barium 133, 355 Kev gammas; and Gadolinium 153, 100 Kev gammas as reference sources. The signal source in all cases is backscattered Gd-153, 100 Kev gammas. The detector crystals considered were NaI(T1), CsI(T1), and CsI(Na), or combinations thereof. The use of a CsI(Na) crystal is most attractive since it exhibits good gamma detection qualities and is rugged. The following paragraphs describe several AGC methods and their relative advantages.

2.1 <u>CsI (Na) Detector and Am-241 Alpha Reference</u>. The AM-241 alphas provide an excellent pulse reference with good resolution. The Americium can be seeded directly in the crystal material. The alpha contributes negligible countrate in the region of 100 Kev gammas, thus producing no noise. The 60 Kev gammas from the Am-241 may interfere with the 100 Kev gamma backscatter spectrum. The alpha pulse height does not track the gamma pulse height as the crystal temperature is varied.

2.2 <u>NaI(T1)/CsI(T1) Crystal Combination and Am-241 Alpha</u> <u>Reference</u>. The pulse height output from a CsI(T1) crystal is a factor smaller than the NaI(T1) crystal. By using a main detector crystal of NaI(T1) and bonding a small CsI(T1) crystal seeded with Americium 241, a composite crystal is achieved which has the following characteristics.

The alpha pulses provide a good signal for AGC. The 60 gammas introduced by the Am-243 are now much lower in pulse height than the 100 Kev backscatter gammas being detected in the NaI(T1) portion of the crystal assembly, thus reduced noise. The alpha pulses in the CsI(T1) crystal and the gamma pulses in the NaI(T1) crystal track each other better with varying crystal temperature, but still not well enough to be considered a stable detector over wide temperature ranges.

2.3 <u>CsI(Na)/CsI(T1)</u> Crystal Combination and Am-241 Alpha <u>Reference</u>. The CsI(T1) crystal has a lower pulse height output than the CsI(Na) crystal. By bonding a small CsI(T1) crystal seeded with Am-241 to a CsI(Na) crystal, the same results of Paragraph 2.2 can be achieved. The temperature trading of the alphas in the CsI(T1) and the backscatter gammas in the CsI(Na) are probably not as good as the combination of 2.2, since both materials are CsI and little compensation would result. This has not been verified by test.

2.4 <u>CsI(Na)</u> Crystal and Am-241 60 Kev Gamma Reference. The use of a gamma reference is considered to eliminate the effect of differing temperature sensitivities of crystals to alphas and gammas. By using a gamma reference of lower energy than the signal, it cannot contribute noise. This technique is difficult to implement because the backscatter signal contributes large and varying count rates in the 60 Kev region which will upset the AGC. Unless a very high AGC count rate, compared with the signal count rate, is used, this method appears impractical. For the present application, there a 40,000 pps signal is expected, the AGC count rate should be at least 100 times greater to achieve stable operation. This is not practical with the pulse width characteristics of the scintillation material.

2.5 <u>CsI(Na)</u> Crystal with Ba-133, 355 Kev Gamma Reference. The 355 Kev Gamma output from the Ba-133 source provides a very good reference. The 80 Kev gamma output can be effectively shielded so that it does not contribute noise. The detector itself however in the scintillation process generates a Compton continuum which introduces some noise in the 100 Kev region. This noise can be minimized by reducing the reference count to as low a rate as possible while still providing enough for good AGC response.

2.6 <u>CsI(Na) Crystal with No Auxiliary Reference Source</u>. The 100 Kev gamma backscatter pulse height can be used directly to control the gain of the detector. The accuracy of this method improves as backscatter countrate increases; however, in the very low density regions, the AGC becomes ineffective. A small Gd-153 source can be added to establish a minimum count rate. 2.7 <u>Shuttering Method</u>. The method described in Paragraphs 2.5 and 2.6 can be improved by shutting the reference source and operating the AGC on a low duty cycle. During periods when backscatter measurements are taken, the reference source is closed and the gain is held, thus no noise contribution. Between successive backscatter measurements, the reference source is opened and AGC electronics activated to provide correction. The mechanical shuttering required degrades the reliability and adds weight to the system making the approach not attractive.

3.0 CONCLUSIONS

Table I summarizes the approaches discussed above. The method chosen for the present program is that defined in Paragraph 2.5. It provides good AGC with little complexity. The shortcoming is the noise introduced. Further study appears warranted on the combination crystal and alpha reference approach. Perhaps by choosing the proper combination of crystals and amount of doping, an assembly in which the gammas and alphas track with temperature can be achieved.

Literature has shown that by changing the amount of doping, a crystal can exhibit either a negative or positive temperature sensitivity. The possibility of accurate compensation therefore seems possible.

Further study of the electronics required to implement approach 2.6 also appears warranted.

GC TECHNIQUES	
Å	
VARIOUS	
Ы	
COMPARI SON	
1	
F	
TABLE	

Disadvantages	Very temperature sensi- tive	Some noise at 60 Kev	Somewhat temperature sensitive. Not rugged. Susceptible to thermal shock.	Somewhat temperature sensitive	Complicated electronics Limited dynamic range (high rate)	Small noise contri- bution	Complicated electronics Limited dynamic range (low rate)	Complicated mechanically Less than 100% duty cycle
Advantages	Rugged	Simple	Simple No noise contribution	Simple No noise contribution Rugged	No noise contribution Rugged Not temperature sen- sitive	Simple Rugged Not temperature sen- sitive	Rugged Not temperature sen- sitive No noise contribution	Rugged Not temperature sen- sitive No noise contribution
Shutter	None		None	None	None	None	None	Yes
Ref. Source	Am-241 Alaba	פוולדע	Am-241 Alpha	Am-241 Alpha	Am-241 Gamma	Ba-133 Gamma	Gd-153 Back- scatter Gamma	Ba-133 Gamma
Ref. Crystal	CsI(Na)		CsI(T1)	CsI(T1)	CsI(Na)	CsI(Na)	CsI(Na)	CsI(Na)
Signal Crystal	CsI(Na)		NaI(T1)	CsI(Na)	CsI(Na)	CsI(Na)	CsI(Na)	CsI(Na)
Para.	2.1		2.2	2.3	2.4	2.5	2.6	2.7

APPENDIX B

Reliability Analysis

1.0 SCOPE

The following pages present the Reliability Block Diagram and Math Model, Failure Mode and Effects Analysis, and Failure Rate Analysis for the Engineering Prototype Gamma Backscatter Atmospheric Density Sensor. This sensor is being developed under Contract NAS1-7791 for NASA, Langley Research Center, for eventual applications to planetary atmospheric exploration.

2.0 RELIABILITY BLOCK DIAGRAM

The Reliability Block Diagram illustrates the seven elements that make up the Detector and Electronics portion of the sensor. The radioactive source element has not been considered at this time. The seven elements considered are:

- 1. Photomultiplier Tube and Circuitry
- 2. High Voltage Power Supply
- 3. Pre-amplifier and Window Discriminator
- 4. Automatic Gain Control
- 5. Analog Converter
- 6. Pulse Delay Converter
- 7. Low Voltage Power Supply

3.0 FAIL URE MODE AND EFFECT ANALYSIS

The Failure Mode and Effect Analysis has been limited to general type failures of various sensor elements rather than detail failure analysis to the piece part level. The results of this analysis show that the sensor will fail to achieve its mission if failures of any parts occur. Therefore, the unit reliability is based on a complete parts count assuming no redundancy or partial success.

4.0 FAILURE RATE

The detail failure rate analysis is summarized on the summary page showing a total mission probability of success of 89.61%. This success probability is almost entirely due to failures that could occur during the long transit period where the sensor is in a power-off condition. The major contributor to this failure rate is the High Voltage Power Supply and its large number of semiconductor elements. Some room for improvement is possible in this area by better application of the parts used.

The probability of success during periods of the mission other than transit is better than 99%.

NASA-LRC AIR DENSITY SENSOR (ADS-104) Contract No. NASI-7791

EFFECT	
AND	10505
MODE	101
FAILURE	UNLIVAU

Failure Effect On the Product	 a. Actual Failure b. Actual Failure c. Possible Failure d1 Actual Failure d2 Possible Failure 	a. Actual Failure b. <u>Possible</u> Failure cl <u>Possible</u> Failure c <u>2 Actual F</u> ailure d <u>1 Actual F</u> ailure d <u>2 Actual F</u> ailure e <u>1 Actual</u> Failure e <u>2 (Same</u> as c.)	a. <u>Possible</u> Failure b. <u>Possible</u> Failure c. <u>Actual</u> Failure	a. <u>Actual</u> Failure a. <u>Actual</u> Failure	al <u>Possible</u> Failure a 2 <u>Possible</u> Failure	al Actual Failure a <u>2 Possible</u> Failure a <u>3 Possible</u> Failure
Failure Effect On the Item	 a. Loss of Signal b. Short circuit in H.V. No signal c. Excessive Noise & di No output di No output 	 Loss of Signal Incorrect count Rate Rate Loss of Signal Incorrect Count Rate Loss of Signal d1 Rate d2 Loss of Signal e1 Loss of Signal e2 (Same as c.) 	 a. Count Rate Dis- tortion b. Count Rate Shift c. Loss of Signal 	 a. Constant Output including zero b. Incorrect Signal 	a, Loss P.D.Signal a2 Constant P.D. Signal	al Loss of the out- put Voltages a2 Shift of the out- put voltages (Gain increase) a3 D.C. Ripple.
Failure Type	 a. PM Tube Failure b. HV Breakdown (Low resistance path) c. H.V.Breakdown(High resistance path) d. Loss of high voltage 	a. Pre-amp. Loss b. Pre-amp. Oscil- lation c. Loss of Upper Window d. Loss of Lower Window e. Anti-coincidence loss	a. AGC Oscillation b. Signal/Window Shift c. AGC Ckt Failure	a. Circuit Failure b. Transfer Function Shift	a. P.D.Círcuít Loss	a. LVPS Component Failure
Function	Radiation Detection Signal Conditioning High Voltage Fower Supply	Signal Amplifier Pulse Height Discriminator Anti-coincidence Circuit	Control of PM Tube Gain	Dïgital to Analog Signal Conditioning	Provides Separate Telemetry Signal Based upon the Analog Con- verter Signal	Power Source for All Assemblies except PMT Assembly
Drawing Number	3060502	306.35.02	3060502	3060502	3060502	3060502
DRAWING - 3060500 Item	PMT Assembly λ_1 and λ_2 .	Pre-Amp. & Window Discriminator λ ₃	Auto.Gain Control À ₄	Analog Converter Å5	Pulse Delay Circuit λ ₆	Low Voltage Power Supply λ ₇

4) 4

P

(7) Conditions for determining predicted values.

÷

¢

	t.No.					لہ _{میں} میں معروم میں معروم میں میں میں مربط							Y	S E'	<u> T</u>	0	A	
H 0 0 4 5 5 1	et.)	Component		alue	Description or P/N	MIL-SPEC (ER Level P)	Qualif. Document	At +85°C Stress Rated	Applied	Stress Ratio	¥¥ Ţ		5.8. 5.8.	S.R. efined 1	t=.5 Launch	c=+40°C = 5760 ranεit	t=50 Orbit	ٿ
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Rl	Res. CC	ה נו	0 Ω R	ICR07G100J	MIL-R-39008	ZZP-2748-	188 mw		<.1 .013	00	1	.325	.325	2.6	.170	.325	2.6
m dt in voi	R2	Res. MF	5	6 K R	U.07GF 563J	MIL-R-22684B	5501	188 mw		.065	80		.325	.325	2.6	.170	.325	2.6
4 10 10	ស្ត	Res. MF	6	.1 K R	U07GF222		ξ	188 mw	100.0444	.003	00		.325	.325	2.6	.170	.325	2.6
10 VO 1	R4	Res. MF	F 51(0 13 R	L07GF511			188 mw		.004	ø		, 325	.325	2,6	.170	, 325	2.6
v	ß	Res. MF	è e	.8 K R	U.07GF681			188 mw		.004	80	н	325	.325	2.6	.170	.325	2.6
	R6	Res. MF	F 13	KR	U.07GF132			188 mw	woeser	.12	80	-	.325	.325	2.6	.170	.325	2,6
~	R7	Res. MF	н 33	K	u.07GF332		····	188 mw		.05	00		.325	.325	2.6	.170	.325	2.6
00	R8	Res. MF	F 91(0 20	L07GF991	>		188 mw		.0005	80		.325	.325	2.6	.170	.325	2.6
6	R9	Res. MF	F 91(0.0	U.07GF911J	MIL-R-22684 B	7ZP-2728-	188 mw		.0005	80		.325	.325	2.6	.170	.325	2.6
10	RIO	Res. CC	C 22	0 K H	ICR07G224J	MIL-R-39008	5528	188 IIIW		.015	80		.325	.325	2.6	.170	.325	2.6
11 16	Dynodes	Res. Film	nox6-1	8 M	•		ZZP-2748	188 mw		100.	00		.325	.325	41.6	2.72	5,365	41,6
12 AC Re	Load	Res MF	10	R	L07GF103J	MIL-R-22684B	-5501	188 mw		1000.	80		.325	.325	2.6	.170	.325	2.6
เว	R11	Res. MF	د 10(0 12 13	L07GF-101J		-> ;	188 mw		<.1	8	Ч	,325	.325	2.6	.170	.325	2.6
14	R13	Res. MF	Э.	6 K R	U.07GF362-J	MIL-R-22684B 2	ZP-2748-	188 mw		.008	ø		.325	.325	2.6	.170	.325	2.6
15	R14	Sensistor	15(L U U U	IG 1/8	MIL-T-23648A	0 PL	145 mw		.005	80		.325	, 325	2.6	.170	,325	2.6
16	5	Cap. WI	8	2 µf]	109D825x0060C0	(Similar to MTL-C-3965)	JAD .	60 V	30 v	5.	25		.075	3.8	1.9	.014	3.8	6
17	5	Cap. SI	г	0 µf]	150D 105×0050A0	(Similar to MIL-C-26655)	ZZP-2744- 2501	50 v	30 v	.5 with 5 510 in	50		610.	.23	.95	.0077	.23	11.5
8	CJ	Cap. C	۔ د	01 LE C	X30CW103K	MIL-C-11015	22 P-27 445	200 V	30 v	series .1	15		.0032	.0032	.048	.0020	.0032	°.
19	40	Cap.	C 10	14 00	CK20CW102K	MIL-C-11015	ZZP-2744-	200 V	5		15	+-1	.0032	.0032	.048	.0020	.0032	°.
50	CS	Cap. (ō u	01 ILÉ	MKW102K30	(Similar to MIL-C-25)		3000 V	500 v	.25	20	1	.015	.16	r,	.0062	•16	3.2
51	C6	Cap. (о	01 HE	MKW102K30	(Similar to MIL-C-25)	1	3000 V	1000 v	Υ.	20	 T	.015	.68	'n	.0062	.68	13.6
22	CJ	Cap. (ō.	02 µ£	MKW202K30	(Similar to MIL-C-25)		3000 v	1000 v	ц.	20		.015	68	n .	.0062	- 68	13.6
53	83	Cap.	о 	021 f	MKW202K30	(Similar to MIL-C-25)	1 0	3000 V	1000 v	ŝ	20		.015	.68	ش	.0062	.68	13.6
24 15	Dynode	Cap.(rated 500 v	4G 10	0 pf	CYFM10C101J	MIL-C-5	ZZP-2534	500 v	•	4.	60		.015	34	6.	.0062	.34	20/4
25 HV	Coupling Cap.	cap.	Ж	01 pf	MKW102K50	(Similar to MIL-C-25)	: 1	5000 V		e e	20		.015	1.2	e.	.0062	1,2	24
26	T1	Transforme	EL L		TF 6QX40ZZ	MIL-T-27	Iad	1	•••••••	.060	50		.7			.21	۲.	3,5
27	М	PMT				MIL-E-1	-1906-077	ł	ð.	•	1.0		•	1.0	1.0	1.0	1.0	1.0
28	Q1	Transisto 1	н		2N2605	MIL-S-19500	1007-177	400	2	r _n	52	1.5	.780	.780	19.5	.46	1.2	19.5
59	Q2	Transiston			2N718A	MIL-S-19500	140	500 mw	45 mw	Used	52	1.5	.290	.365	1.3	• 29	. 55	9.1

S.

r							· •					- 1		 	 	 	 	 	+ 		•		
	t= .5	19.5	10.3	7.3	7.3	3.25	4.1	4.1	4.1	4.1	4.1	4.1	376.75					÷.,	, r				
, A	t=50 Orbit	1.2	.62	44.	44.	.49	.615	.615	.615	.615	.615	.615	27.03										
ours 0 T	+40°C	•46	.33	.21	.21	.248	.210	.210	.210	.210	.210	.210	.84						:				
10 ⁻⁶ H	=.5 t= unch Tr	9.5	7.3	7.3 .	7.3	2.9	4.1	4.1	4.1	4.1	4.1	4.1	0.75 9									.	
F.R. X	R. t ined La	780 1	410	290	290	325	410	410 -	410	410	410	410	AL 18						•				
X S	S. d R. S.	80	. 06	. 06	. 06	. 06	. 10	. 10	10	10	. 10	.10	LOL					•••	·				
	= 2 + - - - - -	.5 .7	.5.	.5 .2	.5 .2	•5	.5 .4	.5 .4	.5 .4	۰5 . 4	.5 .4	.54									• • • •		
	L KA	25 1	25 1	25 1	25 1	101	10 1	10 1	1 01	1 01	101	10 1											
	Stress Ratio	Used	ç		>	, Used		used	(I)	n Uséd											
	Hed	T.	MID	MI	MIII	T wa	ME	T T	MIII	MII	MIII.	T wm											
1627-	°C 5 I App	15	mw 111	nuw 1	uw 1	шw. 3	mw 5	шw 5	ntw 1	mw l	mw 1	uw 1											
O. NASI	At +85 Stres Rated	400	800	500	500	80	250	250	250	250	250	250								·	,		
TRACT N	alif. ocument	-2061 PPL-U	L.	ŗ	L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-2,431	J.	Ę.				r.											
ଥି	EC QU	0	ī	QI QI	0	0	б О	IO - 0		• •		٥ ٥								• • •			• ••••
	MIL-SP	L-S-1950	4		>	L-S-1950	L-S-1950	L-ș-1950	<		>	L-S-1950											
ļ		EW				MI	UN.	IM :				ΠW											
2	ription . P/N		_	3A	_						•	-											
ge 2 of	Desc	2N260.	2N229	2N 718	2N718/	11916	1N328	1N328	1N328	1N328/	1N328/	1N328/											-
bea X	"alue																						
R SUPPI	onent	fstor	istor	lstor	istor	-																	
GE POWE	Comp	Trans	Trans	Trans	Trans	Diode	Diode	Diode	Diode	Díode	Diode	Diode											
H VOLTA	kt.No. Ref.)	Q3	Q4	Q5	Q6	CR1	CR2	CR3	CR4	CR5	CR6	CR7											
NT1 2	Lten C	30	31	32	33	34	3 5	36	37	38	39	40											

99

.....

.....

- --

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3060502 PLOUDER PLANT AND PLANE 1 01 2	100502	uminator Page 1 of 2	7 TO T ARA L DI 7	Page 1 of 2			CONTRACT NO	0. NAS1-77	161				Y	F.R.	× 10	6 Hours	T A	
old 277-2704 Retio L O -1 Defined learch Tank II Orbit I -5 08 277-2703 188 vt vt <th>Description MIL-S</th> <th>Description MIL-S</th> <th>Description MIL-S</th> <th>Description MIL-S</th> <th>Description MIL-S</th> <th>S-IIW</th> <th>PEC</th> <th>Qualif.</th> <th>At +85°C Stress</th> <th></th> <th>Stress</th> <th>R A</th> <th>Ľ</th> <th>=+8.3°C S.R.</th> <th>S.R.</th> <th>t=.5</th> <th>T=+40°C</th> <th>t= 50</th> <th></th>	Description MIL-S	Description MIL-S	Description MIL-S	Description MIL-S	Description MIL-S	S-IIW	PEC	Qualif.	At +85°C Stress		Stress	R A	Ľ	=+8.3°C S.R.	S.R.	t=.5	T=+40°C	t= 50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ef.) Component Value or P/N (ER L	Component Value or P/N (ER L	nent Value or P/N (ER Lu	Value or P/N (ER L	or P/N (ER L	(ER L	evel P)	Document	Rated	Applied	Ratio	4	6		Defined	Launch	Transit	Orbit	t=.5
3182 -5353 213 4.1 1.2 1.2 4.35 1.3 1.1 2.3 1.3 1.3 1.2 4.35 1.3 1.3 1.2 4.35 1.3 1	RI Res. CC 51. 0 RCR07 MIL-R-3	Res. CC 51. 0 RCR07 MIL-R-3	CC 51. 0 RCR07 MIL-R-3	51. 0 RCR07 MIL-R-3	RCR07 MIL-R-3	MIL-R-3	8006	ZPP-2748- 5528	188 mv	vi ev	<. 1	20	1	10.	10'	5	.0035	10.	ŗ
9008 -5228 213 c1 c1 51 c1 c1 <thc1< th=""> c1 c1 <t< td=""><td>R2 MTL-R-5 MTL-R-5</td><td>MF 2. K RNR60 MIL-R-5</td><td>MF 2. K RNR60 MIL-R-5</td><td>2. K RNR60 MIL-R-5</td><td>RNR60 MIL-R-5</td><td>MIL-R-5</td><td>5182</td><td>-5555</td><td>215</td><td>7</td><td><.1</td><td>1.5</td><td>1</td><td>.29</td><td>•29</td><td>.435</td><td>.19</td><td>.29</td><td>.435</td></t<></thc1<>	R2 MTL-R-5 MTL-R-5	MF 2. K RNR60 MIL-R-5	MF 2. K RNR60 MIL-R-5	2. K RNR60 MIL-R-5	RNR60 MIL-R-5	MIL-R-5	5182	-5555	215	7	<.1	1.5	1	.29	•29	.435	.19	.29	.435
39008 -5328 188 cl. cl. 1.0 1.2 2.9 .433 1.9 2.9 .435 1.9 2.9 .435 1.9 2.9 .435 1.9 2.9 .435 2.9 .435 2.9 .435 2.9 .435 2.9 .435 2.9 .435 2.9 .435 2.9 .435 .10 .5 .0035 .01 .5 .0035 .01 .5 .0035 .01 .5 .5 .5 .5 .5 .635 .615 .5 .0035 .01 .5 .0035 .01 .5 .0035 .01 .5 .0035 .01 .5 .0035 .01 .5 .0035 .01 .5 .5 .5 .6 .7 .705 .5 .5 .6 .7 .705 .5 .6 .7 .705 .705 .705 .705 .705 .705 .705 .705 .705 .705 .705 .705	R3 CC 51. 0 RCR07 MIL-R-	CC 51. Ω RCR07 MIL-R-	cc 51. 0 RCR07 MIL-R-	51. 0 RCR07 MIL-R-	RCR07 MIL-R-	MIL-R-	39008	-5528	215	4	<"I	50.5		10.	.01	•5	• 0035	•01	ŝ
55182 -555 215 <1 1.1 1.1 1.2 2.9 4435 1.9 2.9 4435 39008 -5528 188 <1	R4 CC 200 A RCR07 MIL-R-	CC 200 n RCR07 MIL-R-	CC 200 n RCR07 MIL-R-	200 n RCR07 MIL-R-	RCR07 MIL-R-	MIL-R-	-39008	-5528	188	₹	<.1	3	H	10.	.01	5	.0035	-01	.
-55182 -5538 215 $< < 1$ $< 1, 1$ $< 1, 2$ < 23 < 13 $< < 1$ < 11 < 101 < 101 < 53 < 101 < 53 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23 < 23	R5 MF 3.3 K RNR60 MIL-R	MF 3.3 K RNR60 MIL-R	MF 3.3 K RNR60 MIL-R	3.3 K RNR60 MIL-R	RNR60 MIL-R	MIL-R	-55182	-5555	215	7	<'I '	1.5	e-1	.29	• 29	.435	.19	.29	.435
-9008 -5538 188 <1 < 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1	R6 MF 10 K RNR60 MIL-R	MF 10 K RNR60 MIL-R	MF 10 K RNR60 MIL-R	10 K RNR60 MIL-R	RNR60 MIL-R	MIL-R	-55182	-5555	215	7	1 , 1	1.5	-	.29	.29	.435	.19	.29	.435
39008 -5528 188 36 $\cdot 2$ 50 1 01 016 $\cdot 5$ 0035 016 $\cdot 5$ 55182 -5555 215 170 $\cdot 8$ 11 29 $\cdot 9$ $\cdot 435$ $\cdot 19$ $\cdot 77$ $\cdot 755$ 55182 -5555 215 170 $\cdot 8$ 1 $\cdot 11$ $\cdot 29$ $\cdot 435$ $\cdot 19$ $\cdot 77$ $\cdot 755$ 55182 -5555 215 170 $\cdot 8$ 1 $\cdot 11$ $\cdot 29$ $\cdot 435$ $\cdot 19$ $\cdot 77$ $\cdot 705$ 55182 -5552 188 < -1 $\cdot 11$ $\cdot 20$ $\cdot 1$ $\cdot 10$ $\cdot 101$ $\cdot 101$ $\cdot 101$ $\cdot 11$ $\cdot 101$ $\cdot 11$ $\cdot 101$ $\cdot 101$ $\cdot 101$ $\cdot 101$ $\cdot 101$	R7 CC 1 K RCR07 MIL-R-	CC 1 K RCR07 MIL-R-	CC 1 K RCR07 MIL-R-	1 K RCR07 MIL-R-	RCR07 MIL-R-	MIL-R.	39008	-5528	188	₽	<.1	õ.	-	.01	.01	ñ	.0035	10.	s.
39008 -5528 188 <1 <1 0.1 <	R8 CC 910 0 RCR07 MIL-R-	CC 910 0 RCR07 MIL-R-	cc 910 n RCR07 MIL-R-	910 n RCR07 MIL-R-	RCR07 MIL-R-	MIL-R-	39008	-5528	188	36	•3	20		.01	.016	5	.0035	•016	80
-55182 -5555 215 170 .8 1.5 1.2 1.2 1.435 1.3 1.4	R9 CC 51 n RCR07 MIL-R-	CC 51 R RCR07 MIL-R-	cc 51 n RCR07 MIL-R-	51 n RCR07 MIL-R-	RCR07 MIL-R-	MIL-R-	-39008	-5528	188	4	1. V.1	20	p-4	•01	•01	ŝ	.0035	10.	ŝ
55182 -5555 215 30 .1 1.5 15 15 .435 .19 .29 .435 35182 -5555 215 170 .8 1 .01 .01 .5 .0035 .01 .5 35182 -5555 215 170 .8 1 .01 .01 .5 .0035 .01 .5 39008 -5528 188 6 <.1	R11 MF 150 A RNR60 MIL-R-	MF 150 A RNR60 MIL-R-	MF 150 A RNR60 MIL-R-	150 n RNR60 MIL-R-	RNR60 MIL-R-	MIL-R-	55182	-5555	215	170	°	1,5		•29	.47	.435	•19	.47	.705
39008 -5328 188 <1 $< \cdot \cdot \cdot$ $< \cdot \cdot \cdot \cdot \cdot \cdot$ $< \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $< \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $< \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $< \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $< \cdot \cdot$	RIO MF Select RNR60 MIL-R-	MF Select RNR60 MIL-R-	MF Select RNR60 MIL-R-	Select RNR60 MIL-R-	RNR60 MIL-R-	MIL-R-	55182	-5555	215	30		1.5		.29	• 29	.435	•19	.29	.435
55182 -5555 215 170 .8 11.5 1 .29 .47 .435 .19 .47 .705 55182 -5555 215 30 .2 1.5 1 .01 .01 .5 .0035 .01 .5 39008 -5528 188 6 <.1	R12 CC 510 Ω RCR07 MIL-R-	CC 510 A RCR07 MIL-R-	cc 510 n RCR07 MIL-R-	510 A RCR07 MIL-R-	RCR07 MIL-R-	MIL-R-	39008	-5528	188	4	<.1	20	+-1	•01	.01	ŗ.	.0035	10.	ŝ
55182 -5553 215 30 .2 1,5 1 .01 .01 .5 .0035 .01 .5 39008 -5528 188 <1	R14 MF 150 A RNR60 M1L-R-	MF 150 G RUR60 MIL-R-	MF 150 A RNR60 MIL-R-	150 n RNR60 MIL-R-	RNR60 MIL-R-	MIL-R-	55182	-5555	215	170	ø.	1.5	-	.29	.47	.435	.19	.47	.705
39008 -5528 188 <1 <.1 50 1 .01 .0 .5 .0035 .01 .5 39008 -5528 188 <1	R13 MF Select RNR60 MIL-R-	MF Select RNR60 MIL-R-	MF Select RNR60 MIL-R-	Select RNR60 MIL-R-	RNR60 MIL-R-	MIL-R-	55182	-5555	215	30	•3	1.5	7	-29	.32	.435	.19	.32	.480
99008 -5328 188 6 <1 50 1 01 .5 .0035 .01 .5 99008 -5528 188 <1	R15 CC 510 Ω RCR07 MIL-R-	CC 510 A RCR07 MIL-R-	CC 510 Ω RCR07 MIL-R-	510 n RCR07 MIL-R-	RCR07 MIL-R-	MIL-R-	39008	-5528	188	4	*. 1	20	y 1	10.	10.	ņ	.0035	10.	ŝ
39008 -5528 188 6 <.1 50 1 .01 .5 .0035 .01 .5 39008 -5528 188 <1	R16 CC 24 K RCR07 MIL-R-	CC 24 K RCR07 MIL-R-	CC 24 K RCR07 MIL-R-	24 K RCR07 MIL-R-	RCR07 MIL-R-	MIL-R-	39008	-5528	188	9	<,1	<u>6</u>	F -1	.01	10.	s.	.0035	.01	ŝ
9008 -5528 188 <1 $< \cdot 1$ $5 \cdot 1$ $5 \circ 1$ $\cdot 1$ $\cdot 1$ $\cdot 0 \cdot 1$ $\cdot 5$ $\cdot 0 \cdot 3 \cdot 5 \cdot 5 \cdot 5$ $\cdot 0 \cdot 5 \cdot 5 \cdot 5 \cdot 5$ $\cdot 0 \cdot 3 \cdot 5 \cdot 5 \cdot 5 \cdot 5$ $\cdot 0 \cdot 5 $	R17 CC 24 K RCR07 MIL-R-3	CC 24 K RCR07 MIL-R-3	CC 24 K RCR07 MIL-R-3	24 K RCR07 MIL-R-3	RCR07 MIL-R-3	MIL-R-3	8006	-5528	188	9	<,1	00	,-1	10.	10.	ŝ	•0035	10.	ی ور
99008 -5528 188 <1 $\cdot 1$ $\cdot 1$ $\cdot 1$ \cdot	R18 CC 510 n RCR07 MIL-R-2	CC 510 n RCR07 MIL-R-2	CC 510 A RCR07 MIL-R-2	510 n RCR07 MIL-R-3	RCR07 MIL-R-3	MIL-R-S	8008	-5528	188	7	<.1	20		-01	10	ŝ	.0035	.01	ñ
9008 -5528 188 <1 <.1 50 1 01 .0 .5 .0035 .01 .5 9008 -5528 188 72 .4 50 1 .01 .5 .0035 .01 .5 9008 -5528 188 <1	R19 CC 510 Ω RCR07 MIL-R-3	CC 510 Ω RCR07 MIL-R-3	cc 510 n RCR07 MIL-R-3	510 n RCR07 MIL-R-3	RCR07 MIL-R-3	MIL-R-3	9008	-5528	188	v	, 1 V.	<u>6</u>	,	-01	.01	5.	.0035	.01	ŝ
9008 -5528 188 72 .4 50 1 .01 .039 1.950 .0035 .01 1.950 9008 -5528 188 <1	R20 CC 510 Ω RCR07 MIL-R-3	CC 510 Ω RCR07 MIL-R-3	CC 510 Ω RCR07 MIL-R-3	510 Ω RCR07 MIL-R-3	RCR07 MIL-R-3	MIL-R-3	8006	-5528	188	₽	* .1	<u></u> В.		6.	10.	ŝ	.0035	.01	.
39008 -5528 188 <1	R21 CC 510 Ω RCR07 MIL-R-	CC 510 Ω RCR07 MIL-R-	CC 510 Ω RCR07 MIL-R-	510 Ω RCR07 MIL-R-	RCR07 MIL-R-	MIL-R-	39008	-5528	188	72	4.	<u>.</u>	, 1	01	.039	L.950	.0035	.01	1.950
39003 ZFP-27444 15 v 6 v .4 50 1 .017 .054 .85 .0069 .054 2.700 39003 Z501 15 v 6 v .4 50 1 .0033 .0033 .0033 .0033 .0033 .0033 .055 39014 -2502 200 <1 v	R94 Res. CC 510 Ω RCR07 MIL-R-	Res. CC 510 Ω RCR07 MIL-R-	CC 510 Ω RCR07 MIL-R-	510 f RCR07 MIL-R-	RCR07 MIL-R-	MIL-R-	39008	-5528	188	4	<.1	2 0	r 4	.0	10.	S.	.0035	10	5
39003 2272-2701 15 v 6 v .4 50 1 .017 .054 .85 .0069 .054 2.700 39003 -2502 200 <1 v																			
39003 -2502 200 $<1 \vee$ $<.1$ 15 1 .0033 .05 .0019 .0033 .05 39014 -2502 200 $<1 \vee$ $<.1$ 15 1 .0033 .05 .0019 .0033 .05 39014 -2502 200 $<1 \vee$ $<.1$ 15 1 .0033 .05 .0019 .0033 .050 39014 -2502 200 $<1 \vee$ $<.1$ 15 1 .0033 .05 .0019 .0033 .050 39014 -2503 100 $12 \vee$ $<.1$ 15 1 .0033 .05 .0019 .0033 .050 39014 -2503 100 $6 \vee$ $<.1$ 15 1 .0033 .05 .0019 .0033 .050 39014 -2503 100 $6 \vee$ $<.1$ 15 1 .0033 .05 .0019 .0033 .050 39014 -2503 100 $6 \vee$ $<.1$ 15 1 .0033 .05	CI Cap. S.T. L39 LF CSR MIL-C-	Cap. S.T. L39 LT CSR MIL-C-	S.T. LOB LE CSR MIL-C-	LOB LE CER MIL-C-	CSR MIL-C-	WIE-C-	50065	ZFP-2/44-	15 V	6 V	4.	20	-	.017	.054	.85	•0069	.054	2.700
-39014 -2502 200 <1 v	C2 CER 510 pf CKR MIL-C	CER 510 pf CKR MIL-C	CER 510 pf CKR MIL-C	510 pf CKR MIL-C	CKR MIL-C.	WIL-C	-39003	-2502	200	^ ! ∨	~.1	<u>د</u>		.0033	.0033	•02	•001•	.0033	.050
-39014 -2503 100 6 v <.1	C3 CER 56 pf CKR MIL-C	CER 56 pf CKR MIL-C	CER 56 pf CKR MIL-C	56 pf CKR MIL-C	CKR MIL-C	WIL-C	-39014	-2502	200	~1 <	4.1 2	<u>ب</u>	,	.0033	0033	.05	.0019	.0033	.050
-39014 -2502 200 <1 v <1 15 1 .0033 .0033 .05 .0019 .0033 .050 -39014 -2503 100 12 v .10 15 1 .0033 .05 .0019 .0033 .050 -39014 -2503 100 6 v <1 15 1 .0033 .003 .05 .0019 .0033 .050 -39014 -2503 100 6 v <1 15 1 .0033 .0033 .05 .0019 .0033 .050 -39014 -2503 100 12 v .10 15 1 .0033 .0052 .05 .0019 .0033 .050 -39014 -2503 100 12 v .10 15 1 .0033 .0052 .05 .0019 .0033 .050 -39014 -2503 100 12 v .10 15 1 .0033 .0052 .05 .0019 .0033 .050 -39014 -2503 100 12 v .10 15 1 .0033 .0052 .05 .0019 .0033 .050 -39014 2274-2502 200 6 v <1 15 1 .0033 .0052 .05 .0019 .0033 .050 -39014 2774-2502 200 6 v <1 15 1 .0033 .0033 .055 .059 .0033 .050 -39014 2774-2502 200 6 v <1 15 1 .0033 .0033 .055 .059 .0033 .050	C4 CER 0.1 CKR MIL-C	CER 0.1 CKR MIL-C	CER 0.1 CKR MIL-C	0.1 CKR MIL-C	CKR MIL-C	WII-C	-39014	-2503	100	۹ و	< .1	2		.0033	.0033	•05	•0010	.0033	.550
-39014 -2503 100 12 V .10 15 1 .0033 .003 .05 .0019 .0033 .050 -39014 -2503 100 6 V <.1 15 1 .0033 .0033 .05 .0019 .0033 .050 -39014 -2503 100 6 V <.1 15 1 .0033 .0033 .05 .0019 .0033 .050 -39014 -2503 100 12 V .10 15 1 .0033 .0052 .05 .0019 .0033 .050 -39014 -2503 100 12 V .10 15 1 .0033 .0052 .05 .0019 .0033 .050 -39014 -2503 100 12 V .2 15 1 .0033 .0052 .05 .0019 .0033 .050 -39014 -2503 200 6 V <.1 15 1 .0033 .0053 .05 .0019 .0033 .050 -39014 274-2502 200 6 V <.1 15 1 .0033 .0033 .05 .0019 .0033 .050 -39014 274-2502 200 6 V <.1 15 1 .0033 .0033 .055 .05 .0019 .0033 .050 -39014 274-2502 200 6 V <.1 15 1 .0033 .0033 .055 .05 .0019 .0033 .050	C5 CER 1500 Pf MIL-C	CER 1500 pf MIL-C	CER 1500 Pf MIL-C	1500 pf MIL-C	MIL-C	MIL-C	-39014	-2502	200	∧ ^	~.1	.		.0033	.0033	•02	6100.	.0033	.050
39014 -2503 100 6 V <.1	C6 CER 0.14 CKR MIL-C-	CER 0.14f CKR MIL-C-	CER 0.14f CKR MIL-C-	0.14f CKR MIL-C-	CKR MIL-C-	-D-TIM	39014	-2503	100	12 v	.10	5		.0033	.0033	•05	.0019	.0033	.050
39014 -2503 100 6 v <.1	C7 CER 0.1µf CKR MIL-C-	CER 0.14f CKR MIL-C-	CER 0.14f CKR MIL-C-	0.14 CKR MIL-C-	CKR MIL-C-	MIL-C-	39014	-2503	100	, A 9	<.1	5		.0033	.0033	•05	6100.	.0033	.050
39014 -2503 100 12 v .10 15 1 .0033 .0052 .05 .0019 .0033 .053 39014 -2503 100 12 v .2 15 1 .0033 .0052 .05 .0019 .0033 .053 39014 -2502 200 6 v <.1	C8 CER 0.14 CKR MIL-C-	CER 0.14 CKR MIL-C-	CER 0.14 CKR MIL-C-	0.1µf CKR MIL-C-	CKR MIL-C-	MIL-C-	39014	-2503	100	6 V	<.1	ŝ		.0033	,0033	.03	.0019	.0033	.050
-39014 -2503 100 12 V .2 15 1 .0033 .0052 .05 .0019 .0052 .078 -39014 -2502 200 6 V <.1 15 1 .0033 .0033 .05 .0019 .0033 .050 -39014 ZPF-2744-2502 200 6 V <.1 15 1 .0033 .0033 .05 .0019 .0033 .050 -39014 ZPF-2744-2502 200 6 V <.1 15 1 .0033 .0033 .05 .0019 .0033 .050	C9 CER 0.14 CKR MIL-C	CER 0.14 CKR MIL-C	CER 0.14 CKR MIL-C	0.14 CKR MIL-C	CKR MIL-C	MIL-C	-39014	-2503	100	12 V	.10	5		.0033	.0052	°02	.0019	.0033	.050
-39014 -2502 200 6 v <.1 15 1 .0033 .003 .05 .0019 .0033 .050 -39014 ZPP-2744-2502 200 6 v <.1 15 1 .0033 .0033 .05 .0019 .0033 .050 SUB TOTAL 13.330 1.597 2.948 16.093	CIO CER 0.1µf CKR MIL-C	CER 0.145 CKR MIL-C	CER 0.14 CKR MIL-C	0.14 CKR MIL-C	CKR MIL-C	MIL-O	-39014	-2503	100	12 v	.2	5		.0033	.0052	.05	.0019	,0052	.078
-39014 ZPP-2744-2502 200 6 V <.1 15 1 .0033 .05 .0019 .0033 .050 .0033 .050 .0033 .050 .0033 .050	CII CER 47 HE CKR MIL-	CER 47 LE CKR MIL-	CER 47 LE CKR MIL-	47 LE CKR MIL-	CKR MIL-	MIL-	C-39014	-2502	200	6 V	×.1	ង		.0033	.0033	.05	.0019	.0033	.050
SUB TOTAL 13.330 1.597 2.948 16.093	C12 CER 22 HF CKR MIL-	CER 22 HE CKR MIL-	CER 22 HF CKR MIL-	22 LF CKR MIL-	CKR MIL-	MIL	C-39014 Z	PP-2744-2502	200	× 9		ม	 71	.0033	.0033	.05	.0019	.0033	.050
														SUB	TOTAL	13.330	1.597	2.948	16.093

				NASA-L	RC AIR DENSI	ITY SENSOR	(ADS-10	()	L						
¶ €. 1	MP 50805	DOW DISCRIMINATOR	rage 2. 01. 2		CONTRACT NO.	. NAS1-779.	1				F.R.	× 10-6	lours		
	-	jer	•			At +85°C				T=		1	T=+40°C	4	
ă 	Ckt. o.		Description 	MIL-SPEC	N Document F	Stress Rated	Applied	Stress A	-C	S.R.	S.R. Defined	t5 : Launch,	t=5760 Traneit	t=50 Orbit	t= . 3
									ļ						
36	CR-1	Rect		MIL-S-19500	-2PP-2746-	80 mm		nTn=.4+0 10		• 6 33 •	.033-	- 330 +	+ + + + + + + + + + + + + + + + + + +	.033	• 330
37	ER-2		1N916 Deleted	· MIL-S-19500			<1-1-	.*T	 	.033	033		-916		-330-
38	41	Xsters S1 NPN	2N2272A 175°	4	ZPP-2751- 7041	500 mw	66 mw	$*T_{n}^{-4} + 33 25$	1	.033	.066	.825	.014	•066	1.65
39	1-2	HC C	ыА702 15°		-2750- 6009	300 mw	100 mw	*Tn=.48+.3 25	⊷ 4	.041	073	1.025	.014	.073	1.825
40	Z-2		HA710 150°		-6010	300 mw	100 _. mw	₩T _n =.484.3 25		.041	.073	1,025	.014	.073	1.825
41	Z- 3		. µA710 150°		-6010	300 mw	100 mw	*Tn=.484.3 25		.041	.073	1.025	.014	.073	1.325
42	2-4	-	SE160G 175°		-6020	150 mw	45 mw	*Tn=.4+.3 25	pi	.033	.061	.825	.014	.061	1.525
43	2-5		SE160G 175°	}	-6020	150 mw	45 mw	*Tn=.4+.3 25	 i	.033	.061	.825	÷10.	.061	1.525
44	2-6	1¢	SE101G 175°	MIL-S-19500	-6012	40 mw	7 mw	*Tn=.4+.02 25	⊷ -1	.033	.036	.825	.014	.036	900
												7.035	.126	. 509	п.735
									SU	E TOTAL	Page 11	13.330	1.597	2.948	l6.093
										۶ ⁴	TOTAL 2	0.365	1.723	3.457	27.828
										•					

% Except for Transit

.

· ,

••

- r			T				** * *											•••											-						_
			, ; ; ; ; ;	,435		8.	.435	.435	.435	.435	-1-950-	.435	,435	s.	.435	.435	.435	.435	. ,050	.050	.038	038	.038	.050	.050		1	-1 ⁻⁶²⁰	1.825	1.525	1.825	10.201			_
		t=50	.01	.01	.01	.016	.29	.29	.29	.29		.29	.29	.01	.29	.29	.29	.29	.0033	. 0033	.0015	- 0015	.0015	.0033	.0033			. 066	•073	.061	.073	3.588			
•	o Hours	T=+40°C t=5760	,19	- 1 6	0035-	.0035	.19	.19	.19	.19	- 0035 -	.19	.19	. 0035	.19	.19	.19	.19	0019		.0010	-0100-	. 100.	.0019	.0019			•014	.014	.014	•014	1.952			-
	. × 10	t=.5	,435	.435		.500	.435	.435	.435	.435	500	.435	.435	• 500	.435	.435	.435	.435	050-		.038	.038	.038	.050	.050			-929-	1.025	.825	1.025	106.7	-		-
	F. F	s.R. Defined	-29	29		016	.29	.29	.29	.29	• • 039	.29	.29	.01	.29	.29	.29	. 29		. 0033-	.0015	0015-	.0015	.0033	.0033				.073	.061	.073	TOTAL			
	T E	T=+č) C S.R. ≣.1	.2 9	•29	- 101 -	.01	.29	.29	.29	• 29	.01	.29	.29	.01	• 29	.29	.29	.29	.0033	- 0033	.0015		.0015	.0033	.0033			.033	.041	.033	•041	A4	it		-
		KA KA	1.5-1	1.5-1-1-	50 1	50 - 1 -	1.5 1	1.5 1	1.5 1	1.5 1	50 1	L.5 I	1.5 1	L.5 I	1.5 1	L.5.1	L.5 1	1.5.1	- 11	15 - 1 -	25 1	251	25 1	15 1	15 1				25 1	25 1	25 1		or Tran		
		Stress			یں۔ 1914ء - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914	Ċ,			.1		4.	-	-1	.1				1	ii ii	•	.12	. 1	.1	.1	r.				- 48+.3	. t. 3	n= 484.3		Except f	<u></u>	-
DS-104)		plied			Y		v	v		V		v	•	•	•	•	•	•	¥ 	¥ :	2	¥	•	•	×			I. mm	T* wm	T* wm	L*		*		-
NSOR (A	1677-18	5°C SS d AD		V N	¥		7		25	~	70	7	7	7	7	7	₽.	7	×	د . ۱۳	v 6	₩. <	v 4	۲ 21	د ۱			=	mw 100	mw 45	195 195				
IS ITY SE	NO. NAS	Ar +8 Stre Rate	- 215	215	188	- 188	215	215	215	215	: T88	215	. 215	188	188	188	188	188	200	200-	50	75	75	200	200			- 500	300	150	300				
C AIR DEN	CONTRACT	Qualif. Document	ZPP-2748 5555			-5528	-5555	-5555	-5555	-5555	-5528	-5555	-5555	-5528	-5528	- 5528	-5528	-5528	ZPP-2744- 2593	2503	P64437	ZPP-2744-	2545	-2503	-2503			ZPP 2751 7041	ZPP-2750- 6010	ZPP-2750- 6020	APP-2750- 6009				
NASA-LR		MIL-SPEC (ER Level P)	MIL-R-55182-	MIL-R-55182	MIL-R-39008	MIL-R-39008	MIL-R-55182	MIL-R-55182	MIL-R-55182	MIL-R-55182	MIL-R-39008	MIL-R-55182	MIL-R-55182	MIL-R-39008	MIL-R-39008	MIL-R-39008	MIL-R-39008	MIL-R-39008	MIL-6-39014	MIL-6-39014	MIL-C-(27287)	MIL-C-27287	MIL-C-27287	MIL-C=39014	MIL-C-39014			<u>MIL-S-19500</u>	MIL-S-19500	MIL-S-19500	MIL-S-19500				
		Description or P/V	-RMR-60 Deleted	-RNR-60 Deleted	-RCR-07 Deleted	-RCR-07 Deleted	RNR 60	RNR 60	RNR 60	RNR 60	-RER07 Deleted	RNR 60	RNR 60	RCR 07	-EKR Deleted	- GKR Deleted		-EEM- (Non-ER)pgg	CTM (Non-ER)	CKR	CKR			-2N2222A- Deleted	µA710	SE160G	на709								
	1	Value	-11-K	-2-2-K	-100-8		1 K	200 n	203 K	18. 22 K	-510-8	61.9n	24.3 K	24.3 K	5.1 K	13 K	8.2 K	200 ມ	-9-3-HÉ-	- 0 - 1 - 1 E - -	300 0 pf		5 µf	680 µf	100 pf			* 1							
		ponent		*H=F-*	66		MF	MF	ΜF	Æ		MF	MF	8	3	3	ខ	8	6ER	6ER	PC	W	М	CER	CER			er-Słnpn					•••		
	502	C or	Res	Re6							+ + + + + + + +							Res	6ap	•					Cap	p -	5	Xst	IC	IC	IC				•
VGC	3060	Ckt.No. (Ref.)	R23	R24	R25	R26	R27	R28	R29	R30	R31	R32	R33	R35	R36	R37	R38	R106	6- 1 3	6-14	C 15	6-16	C 17	C 18	C 19	Delet	neter	0-2	6 - 2	Z-10	2-11				
]	ten		7	ŝ	4	ŝ	9	7	ø	σ	10	11	12	13	14	15	16	17	18	19	20	21	22	23	4 u 7 t	; ;	26	27	28	29				

.

102

Ч

.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CONVERTE	æ	ł		NASA-LR	C AIR DENSI	TY SENGOR	(ADS-104)	4		L		> 0 14	10-6 40.		
Image: Problem in the set of th						TORATION	1-TOWN O	7L				AS	E - A			
end File File <th< th=""><th></th><th></th><th>-</th><th>Description</th><th>MIL-SPEC</th><th>Oualif.</th><th>At +85°C Strees</th><th></th><th>Stress</th><th>KA</th><th>F-1</th><th>H85°C</th><th>R.</th><th></th><th>10°C = 50</th><th>1</th></th<>			-	Description	MIL-SPEC	Oualif.	At +85°C Strees		Stress	KA	F -1	H85°C	R.		10° C = 50	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ĕ	onent	Value	or P/N	(ER Level P)	Document	Rated	Applied	Ratio	4		.1 Dei	ined Lau	nch Tra	sit Orbi	t t=.5
	-		510-8-	-RCR07 Deleted	MEL-R-39008	2PP2748- 5528	100 mv	70 m		50		0 •	395	00 <u>+</u> -00	35 .03	.1:956
W 5.11 K Name Millar-S112 -335 213 <1 1.1 1.29 29 .435 1.9 2.9 .435 1.9 2.9 .435 1.9 2.9 .435 1.9 2.9 .435 1.9 .29 .435 1.9 .29 .435 1.9 .29 .435 1.9 .29 .435 1.9 .29 .435 1.9 .29 .435 1.9 .29 .435 1.9 .29 .435 1.9 .29 .435 1.9 .29 .435 1.9 .29 .435 1.9 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435		MF	4.99 K	RNR60	MIL-R-55182	-5555	215	7	<.1	1,5		9 .2	9 - 4	35 .19	.29	.435
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		MF	5.11 K	RNR60	MIL-R-55182	-5355	215	4	<.1	1.5	1 -2	9 .2	9 - 4	35 .19	.29	.435
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		MF	22.1 K	RNR60	MIL-R-55182	-5555	215	₽	<.1	1.5	1 .2	9 .2		35 .19	.29	.43
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ខ	5.1 K	RCR07	MIL-R-39008	-5528	188	4	<.1	50	1	1 .0	1	00.00	35 .01	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		MF	2.49 K	RNR60	MIL-R-55182	-5555	215	ຕາ	. <,1	1.5	1	9.2	9.	35 .19	. 32	.435
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Æ	2.8 K	RNR60-	MIL-R-55182	-5555	215	7	<.1	1.5	1 .2	9 .2	9 - 4	35 .19	.32	.435
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Æ	30.1 K	RNR60	MIL-R-55182	-5555	215	ŝ	<.1	1.5	1 .2	9 .2	9 4	35 .19	.29	.435
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ð	20 K	RNR60	MIL-R-55182	-5555	215	m	<.1	1.5	1 .2	9.2	4	35 .19	.29	.435
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Æ	5.9 K	RNR60	MIL-R-55182	-5555	215	2	<,1	1.5	ч. 	9.2	4.	35 ,19	.29	. 435
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Æ	165 n	RNR60	MIL-R-55182	-5555	215	₽	<.1	1.5	1 .2	9 .2	4.	35 .19	.29	.435
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	1,45K	RCR07	MIL-R-39008	-5528	188	7	<,1	50	1			00 00	35 .01	°.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ខ	5.1 K	RCR07	MIL-R-39008	-5528	188	₽	<.1	50	1.0	1 0		00.00	35 .01	°.
0. PC Select MIL-C-(27287) $F-64437$ S0 v 6 v 12 25 1 .0015 .0035 .0035 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0015 .0013 .0	ຮ	8	5.1 K	RCR07	MIL-R-39008	-5528	188	7	~ ,1	50	н 	1		00 00	35 .01	ŝ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ā.	PC	Select	-	MIL-C-(27287)	P-64437	50 v	v 9	.12	25		015 0.0	015 .0	375 .02	50 .00	15 . 037
CER MIL-C-39014 $-\frac{2}{5}33$ 200 v < 1 v $< .1$ 15 1 $.0033$ $.050$ $.0033$		W	2 µf	CTM (Non ER)	MIL-C-27287	ZPP-2744-	100 V	1 1	<.1	25	1.0	015 .0	015 .0	38 .00	10 .00	15 .038
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CER	680 pf	CKR	MIL-C-39014	-2303	200 V	<1 ∨ √	<.1	15	-0-	033 .0	033 .0	50 .00	19 .00	33 .050
CER MIL-C-39014 -2503 200 v 6 v $< \cdot 1$ 15 1 0033 003 0033 003 0033 003 0033 003 0033 003 0033 003 0033 003 0033 003 003 003		CER	100 pf	CKR	MIL-C-39014	-2503	200 v	v</td <td><.1</td> <td>15</td> <td>1 .0</td> <td>033 .0</td> <td>033 .0</td> <td>50 .00</td> <td>19 .00</td> <td>33 ,050</td>	<.1	15	1 .0	033 .0	033 .0	50 .00	19 .00	33 ,050
CER 100 pf CKR MIL-C-39014 -2503 200 V 6 V <.1 15 1 .0033 .0033 .050 .0019 .0033 .050 0014 .230 0019 .0033 .051 .330 0014 .230 0014 .230 0014 .051 .330 0014 .051 .330 0014 .071 .033 .051 .330 .014 .051 .330 .051 .330 .051 1.555 000 000 mJ 12 mv T_n^{-4} , T_n^{-2} , T_n^{-4} , T_n^{-2} ,		CER	680 pf	CKR	MIL-C-39014	-2503	200 v	6 V	<.1	15	1.0	033 .0	033 .0	50 .00	19 .00	33 ,050
p. CER 680 pf CKR MIL-C-39014 -2503 200 v 6 v <1 15 1 0033 050 0019 0033 050 0019 0033 050 0019 0033 050 0019 0033 050 0019 0033 050 0019 0033 050 0019 0033 050 0019 0033 050 0019 0033 050 0019 0033 050 0019 0033 050 0019 0033 050 0019 0033 050 0019 0033 050 0019 0033 050 0019 0033 050 1013 1023 1051 1330 014 1051 1330 014 1051 1330 014 1051 1330 051 150 1014 1051 112 $m^2 + 4h + 3$ 25 1 0041 1079 1014 1051 112 $m^2 + 4h + 3$ 25 1 0041 1079 1041 1079 </td <td></td> <td>CER</td> <td>100 pf</td> <td>CKR</td> <td>MIL-C-39014</td> <td>-2503</td> <td>200 v</td> <td>6 ν</td> <td><.1</td> <td>15</td> <td>- -</td> <td>0.33 .0</td> <td>033 .0</td> <td>50 .00</td> <td>19,00</td> <td>33 .050</td>		CER	100 pf	CKR	MIL-C-39014	-2503	200 v	6 ν	<.1	15	- -	0.33 .0	033 .0	50 .00	19,00	33 .050
p. CER 100 pf CKR MIL-C-39014 -2503 200 v 6 v $< \cdot 1$ 15 1 .0033 .050 .0019 .0033 .050 .0019 .0033 .050 .0019 .0033 .050 .0019 .0033 .050 .0019 .0033 .050 .0019 .0033 .050 .0019 .0033 .050 .0019 .0033 .051 .330 .014 .051 .330 .014 .051 .330 .014 .051 .330 .014 .051 .330 .014 .051 .330 .014 .051 .330 .014 .051 .330 .014 .051 .330 .014 .051 .033 .051 .330 .014 .051 .1525 .014 .051 .1525 .014 .051 .152 .014 .051 .1525 .014 .051 .152 .014 .051 .1525 .014 .051 .152 .014 .051 .1051 .014		CER	680 pf	CKR	MIL-C-39014	-2503	200 V	<1 v	<.1	15	1	0330	033 .0	50 .00	19 .00	33 .050
ode Rect. 1N916 MIL-S-19500 ZPP-2746- 80 mv 13 mv $T_{n}^{4.4.2}$ 10 1 .033 .051 .330 .014 .051 .330 state 160C MIL-S-19500 ZPP-2750-6010 300 mv 112 mv $T_{n}^{4.4.1.3}$ 25 1 .003 1.025 .014 .061 1.525 μA 709 MIL-S-19500 ZPP-2750-6010 300 mv 102 mv 10.079 1.025 .014 .079 1.975 μA 709 MIL-S-19500 ZPP-2750-6010 300 mv 100 mv $T_{n}^{4.44.1.3}$ 25 1 .041 .079 1.025 .014 .066 1.650 μA 709 MIL-S-19500 ZPP-2750-6010 300 mv 100 mv $T_{n}^{4.44.1.3}$ 25 1 .041 .073 1.025 .014 .066 1.650 μA 709 MIL-S-19500 ZPP-2750-6010 300 mv 100 mv $T_{n}^{4.44.1.3}$ 25 1 .041 .073 1.025 .014 .076 1.655 μA 709 MIL-S-19500 ZPP-2750-6010 300 mv 100 mv $T_{n}^{4.44.1.3}$ 25 1 .041 .073 1.025 .014 .076 μA 709 MIL-S-19500 ZPP-2750-6010 300 mv 100 mv $T_{n}^{4.44.1.3}$ 25 1 .041 .073 1.025 .014 .076 μA 709 MIL-S-19500 ZPP-2750-6010 300 mv 100 mv $T_{n}^{4.44.1.3}$ 25 1 .041 .073 1.025 .014 .076 μA 709 MIL-S-19500 ZPP-2768-2518 188 mv <1 mv <.1 1.5 1 .29 .29 .435 .19 .29 .435 μT 91 K RK 60 MIL-R-55182 ZPP-2748-5558 188 mv <1 mv <.1 1.5 1 .01 .01 .500 .0035 .01 .5 μT 7.2 μT 7.2 μ	p,	CER	100 pf	CKR	MIL-C-39014	-2503	200 V	⊳ 9	<.1	15	1	033 . 0	033 .0	50 .00	19 .00.	33 .050
SE 160C MIL-S-19500 ZP-2750-6070 ISO we 45 mv $T_n - 4+.3$ 25 1 .033 .061 .825 .014 .079 1.525 μA 709 MIL-S-19500 ZP-2750-6010 300 mv 112 mv $T_n - 4B+.3$ 25 1 .041 .079 1.025 .014 .079 1.975 μA 709 MIL-S-19500 ZP-2750-6010 300 mv 100 mv $T_n - 4B+.3$ 25 1 .041 .079 1.025 .014 .079 1.975 μA 709 MIL-S-19500 ZP-2750-6010 300 mv 100 mv $T_n - 4B+.3$ 25 1 .041 .079 1.025 .014 .079 1.825 $h A$ 709 MIL-S-1382 ZP-2748-5555 Z15 mv Jmv $T_n - 4B+.3$ 25 1 .041 .073 1.825 .014 .073 1.825 .043 .19 .29 .433 .182 .014 .073 1.825 .014 .073 1.825 .014 .073 1.825 .014 .073 1.825 .435	ŏ	le	Rect.	11916	MIL-S-19500	ZPP-2746- -3001	80 EW	· 13 mw	Tn=.4 +.2	10	- -	33 .0	51 .3	30 .01	4 .05	1 .330
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				SE 160G	MIL-S-19500 Z	PP-2750-60	20 150 mw	45 mw	T	25	1.0	33 .0	61 .8	25 .01	4 .06	1,525
I.A 709 MIL-S-19500 $ZPP-2750-6010$ 300 mw 80 mw $T_n^{-1}-4B_1.27$ 25 1 .041 .066 1.025 .014 .066 1.650 I.A 709 MIL-S-19500 $ZPP-2750-6010$ 300 mw 100 mw $T_n^{-1}-4B_1.3$ 25 1 .041 .073 1.025 .014 .073 1.825 S. WF 91 K RNR 60 MIL-R-55182 $ZPP-2748-5555$ 215 mw < 11 1.5 1 .041 .073 1.025 .014 .073 1.825 MF 91 K RNR 60 MIL-R-55182 $ZPP-2748-5555$ 215 mw < 11 1.5 1 .029 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19 .29 .435 .19				HA 709	MIL-S-19500 2	PP-2750-60	10 300 mw	112 mw	T	25	1	41 .0	79 1.0	25 .01	4 .07	9 1.975
So the formula for the formula form the formula form to the formula formula formula formula formula for the formula f				на 709	MIL-S-19500 2	PP-2750-60	10 300 mw	80 mw	T484.2	7 25	1.0	41 : 0	66 1.0	25 .01	4 .06	5 1.650
S. MF 237 0 RNR 60 MIL-R-55182 ZPP-2748-5555 215 mw 5 mw <.1 1.5 1 .29 .435 .19 .29 .435 .19 .29 .435 MF 91 K RNR 60 MIL-R-55182 -555182 -5555 215 mw 10 mw <.1 1.5 1 .29 .435 .19 .29 .435 .19 .29 .435 CC 1.5 K RCR-8 MIL-R-39008 -55548 188 mw <1 mw <.1 1.5 1 .20 1.01 .500 .0035 .01 .5 CC 1.5 K RCR07 MIL-R-39008 -55548 188 mw <1 mw <.1 50 1 .01 .01 .500 .0035 .01 .5 CC 1.5 K RCR07 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <.1 50 1 .01 .01 .500 .0035 .01 .5 CC 1.5 K RCR07 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <.1 50 1 .01 .01 .500 .0035 .01 .5 CC 1.5 K RCR07 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <.1 50 1 .01 .01 .500 .0035 .01 .5 CC 1.5 K RCR07 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <.1 50 1 .01 .01 .500 .0035 .01 .5 CC 1.5 K RCR07 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <.1 50 1 .01 .01 .500 .0035 .01 .5 CC 1.5 K RCR07 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <.1 50 1 .01 .01 .500 .0035 .01 .5 CC 1.5 K RCR07 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <.1 50 1 .01 .01 .500 .0035 .01 .5 CC 1.5 K RCR07 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <.1 50 1 .01 .01 .5 CC 1.5 K RCR07 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <.1 50 1 .01 .01 .5 CC .0035 .01 .5 CC 1.5 K RCR07 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <.1 50 1 .01 .01 .5 CC .0035 .01 .5 CC 1.5 K RCR07 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <.1 50 1 .01 .01 .5 CC .0035 .01 .5 CC 1.5 K RCR07 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <.1 50 1 .01 .01 .5 CC .0035 .01 .5 CC 1.5 K RCR07 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <.1 50 1 .01 .01 .5 CC .00 .5 CC				HA 709	MIL-S-19500 2	PP-2750-60	10 300 mw	100 mw	T.=.48+.3	25	10	41 .0	73 11.0	25 .01	407	3 1.825
MF 91 K RNR 60 MIL-R-55182 -5555 215 mv 10 mv <.1	ິທີ	ΗE	237 G	RNR 60	MIL-R-55182 2	PP-2748-55	55 215 mw	5 mw		1.5	1 .2	9 .2	9.4	35 .19	. 29	.433
CC 1.5 K RCR-8 MIL-R-39008 -5528 188 mw <1 mw <1, 1 50 1 01 500 0035 01 5 CC 1 K RCR07 MIL-R-39008 -5528 188 mw <1 mw <1 1 50 1 01 101 500 0035 01 5 . CC 10 K RCR07 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <1 1 01 01 .01 .01 .500 0035 01 .5 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <1 1 01 01 .01 .500 0035 01 .5 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <1 1 01 01 .01 .500 0035 01 .5 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <1 01 01 01 .500 0035 01 .5 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <1 01 01 01 .500 0035 01 .5 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <1 01 01 01 .01 .500 0035 01 .5 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <1 01 01 01 .500 0035 01 .5 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <1 01 01 01 .500 0035 01 .5 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <1 01 01 01 .01 .500 0035 01 .5		Æ	91 K	RNR 60	MIL-R-55182	-555	5 215 mw	10 mw	<.1	1.5	12	9 .2	4.	35 .19	.29	.435
CC I K RCR07 MIL-R-39008 -55248 188 mw <1 mw <.1 50 1 .01 .500 .0035 .01 .5 s. CC 10 K RCR07 MIL-R-39008 ZPP-ZM8-5528 188 mw <1 mw <.1 50 1 .01 .01 .500 .0035 .01 .5 mv <1 50 1 .01 .01 .01 .500 .0035 .01 .5 rotAL 13.068 2.19 4.230 15.966		8	1.5 K	RCR-8	MIL-R-39008	-5528	8 188 mw	~ ∽1	<.1	20		1.0		00.00	35 .01	د .
s. CC 10 K RCR07 M1L-R-39008 ZFP-ZM48-5528 188 mw <1 mv <.1 50 1 .01 .500 .0035 .01 .5		ខ្ល	IK	RCR07	MIL-R-39008	-553	8 188 mw		<.1	50	1	1 0	т •2	00.00	35 .01	<i>.</i> .
TOTAL 13.068 2.19 4.230	ŝ	8	10 K	RCR07	MIL-R-39008 ZF	P-2748-5528	188 mw	<1 IIW	<.1	50	1	1.0	1	00.00	35 .01	.5
												TOT	AL 13.0	68 2.19	4.23	15.966

ľ				1				-													*****													 		
· · · · · · · · · · · · · · · · · · ·			t=.5	5	ŝ	5	5	ŝ	•5	.435	.435	. 5	.5	.5	.5	.5	8.	s.	s.	•5	• •	.050	.050	.048	.050	.050	.050	.050	.050	.050	.950	0.373	}			
		T A	u-JU Lorbit	10.	.01	.01	.01	.01	.01	.29	.29	.01	.01	.01	.01	.01	.016	.01	.01	.01	.01	.033	.0019	.0019	.0019	.0019	.0019	.0019	.0019	.0019	.019	1.653.1)))			
	Hours	$\frac{1}{1} = \frac{1}{10}$	Transit	.0035	.0035	.0035	.0035	.0035	.0035	.19	.19	.0035	.0035	.0035	.0035	.0035	.0035	.0035	.0035	.0035	.0035	.0019	.0019	.0010	.05	• 02	.05	.05	.05	.05	.0077	1 308	> > > 4			•
	, x 10-		Launch	.5	ئ	s.	5	ŝ	5.	.435	,435	5.	ŗ	Ś	s.	s.	8,	s.	s.	. 5	s.	.05	.05	.038	.05	.05	.05	.05	.05	.05	.950	0.263				
	F.R	ם ע ע	Defined	10.	.01	.01	.01	.01	.01	• 29	.29	.01	.01	.01	10.	.01	.016	.01	.01	.01	.01	.0033	.0033	.0019	.0033	•0033	.0033	.0033	.0033	.0033	- 010 ⁻	OTAL. 1		 		
		T=+0.0		.01	.01	.01	.01	.01	.01	.29	.29	.01	.01	.0I	.01	10.	, 01	.01	.01	10.	.01	.0033	.0033	.0015	.0033	.0033	.0033	.0033	.0033	.0033	.019	STIR T	⊷ } }	 		
L		1	T			· · · · ·		 			1	1			_				لسد	~	1			 _					_	_					• -• •	
		R K	PI-	0	0	0	0	0	0	л Л	5	1	(• ·		• •																				
				<u>ں</u>	<u>د</u>	<u>.</u>	ι Λ	د 	۰۰ 		1.	50	50	50	50	50	50	50	50	50	50	15	15	25	1°	15	15	15	15	15	50					·
ITY SENSOR (ADS-104)		Stre	Rati	<.1 <	<.1	~ .1	<.1	×.1	<.1	<.1	r. v	<.1	<.1	 	٨.1	<.1	.2	<,1	<.1	۲ . ۲	<.1	<.1	<,1	.2	, 1	<.1	<.1	<.1	<.1	<.1	.1					
			pplied	MID													-					>	>	v	>	A	Δ.	>	\$	>	\$			-		
	1-7791	5°C	d A	<u>v</u> .		V	2	7	٣.	v	25	цì	<u>и</u>)	v	Ÿ	v	30	7		ę	7	د 1	v	v 12	v ^1	×	v ∧1	v Ø	>	ہ و	v 6					
	NO. NA	At +8	Rate	188	188	188	188	188	188	215	215	188	188	158	188	188	188	188	188	188	138	200	200	50	200	200	200	200	200	100	50	·	·	 		
AIR DEN	CONTRACT	Oualif.	Document	ZPP-2748-	- 5528	-5528	-5528	-5528	-5528	-5528	-5528	-5528	-5528	-5528	-5528	-5528	- 5528	-5328	-5528	-5328	-5528	ZPP-2744- 2502	-2502		-2502	-2502	-2502	-2502	-2502	-2502	-2502					
ULSE DELAY CONVERTEN Page 1 of 2 NASA-LRC 0	J	MIL-SPEC	(TR Level P)	L-R-39008				>	L-R-39008	L-R-5182	L-R-55182	L-R-39008	L-R-39008	~		anatosis +++					->	L+C-39014	L-C-39014	L-C-27278	L-C-39014				>	L-C-39014	L-C-39003					
				IW					IW	IM	IM	IN	IW									IM	ΜI	IW	IW					IW	IW				-ar ti u - a	
		Descripti	or P/H	RCR07	RCR07	RCR07	RCR07	RCR07	RCR07	RNR60	RNR60	RCR07	RCR07	RCR07	RCR07	RCR07	RCR07	RCR07	RCR07	RCR07	RCR07	CKR	CKR	CTM	CKR	CKR	CKR	CKR	CKR	CKR	CSR					
	ĩ	i	Value	51 K	510 n	33 K	69.8 K	4.22 D	05 50	23.2 K	10 K	5.1 K	5.1 K	10 K	5.1 K	5.1 K	20 K	62 K	10 K	100 K	·10 K	όαO pf	100 pf	2 uf	580 pf	100 pf	580 pf	LCO pf	.1 µ£	1 μΙ	3.3 μ£					
			ц.	20	8	S	20	cc	CC 1	MF	MF	20	20	20	ິ ວິ	S	8	20	20	ខ	20	ER	ER]		ER	ER]	ER	ER 1	ER	ER .	г					
			oner																			0	C	£	0	0	C)	0	O O	C	S					
	1502	; ;	Com	Res.			• - • • • • • • • • • • • • • • • • • •													>	Res.	Cap.	-							 >	Cap.			-	1	
	3060	Ckt.No.	(Ref.)	R53	R55	R57	R 60	R59	R61	R62	R60	R64	R65	R66	R69	R70	R100	R101	R102	R103	R104	C31	C 32	C 33	C34	C35	C36	C 37	C38	C52	C53	_				
<u>م</u>	1		[tem	H	7	ŝ	4	ŝ	9	L.	80	6	10	11	12	13	14	15	16	17	18	. 19	20	21	22	23	24	25	.26	27	28					

,												- 4	ŧ			 				 		 			_
		ړ د.	.330	.330	.330	.330	.330	1.650	1.650	1.650	5.350	1.28	3.603											- ee	
ENSITY SENSOR (ADS-104)	- V	r=50 Drbit	.033	.033	.033	.033	.033	- 000 -	.066	.066	.107	.051	2.174 2									 			
	ours	-440°C -5760 1 ansit (014	.014	014	.014	014	0.14	014	.014	.031	.017	468					• •• ••	-	 	·	 			
	10 ⁻⁶ H	=.5 t= unch Tr	30	30	30 30	30		27	25	 -		8	568 1.	1 an an 1						 		 			
	F.R. X	r ned La				 		00 T.O	56 1.0	56 <u>1</u> .0	07 12.3	51 1.2	/L 18.							 	•	 			
	v.	C S.F		3	3	6					2 .1(TOT /							 		 			
		ι 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.03:	•03	03	8.8	03	-40°	.04	.04	:60	.05										 			
		KA KA	10 1	10 1	10 1	10	10 1	T (7	25 1	25 1	25 1	25 1				*** **	• •					 			2 بيون
		to s 1	4 +0	7+7	4 +0	4 +0	- + 0 + + 0	17.4	84.27	84.27	+:033	+ 000										 			
	1	Str Rat	Ч.	E E	ц Ц				T=.4	т п=т	1≕4	o°=u 1													
	91	Applied	2.5 mv	7	7	₽.	7 8	80 IIIW	80 mw	80 mw	20 mw	1 mw											·		
	NAS1-77	c +85°C Stress Mated	80 mw	80 mw	80 mw	80 mw	80 mw	900 mm	300 mw	300 mw	500 mw	l12 mw						• •							
	CT NO.	f. ent	46- 001	100	001	100	100	- 600		-00	- -	-										 <u></u>			
C AIR	CONTRA	Quali Docum	ZPP-27	ř.	۳ •	ຕ ່ (9- 17-447		ZPP-27	7 QP	ı								 		 			
ASA-LR		-SPEC Pvel P)	9500			4		-		500	9500/17														
-	•	MIL- ER LO	IL-S-19						>	IL-S-19	IL-S-19	1													
		Ę	×							W	W					 			2	 					
c	N	criptic r P/N	16	16	16	. 6	10	<u>.</u>	60	6(132	550 9623)													
	e 2 of	Des	IN9	1001	TN9	IN9	IN91	на / (µа7(иа7(2N1	MEM (3049													
1	188 1	Value	RECT	RECT	RECT	RECT	RECT	1	ı	ı	,	•													
	TER	nent		, -	** . *			kts		kts	istor	istor	-												
	CONVER	Сопро	Diode	e			Diode	Int.C	>	Int.C	Trans	Trans										 			
	DELAY 3060502	.No. f.)	4	S	6	7	16		co.	6	1	5													
	PULSE	en (Re	6 6	0 CR	1 CR	2 CB	3 CB	4 Z1	5 Z1	6 Z1	7 Q1	8 , 01										 			
	ဖ	<u>ب</u>	2	ň	e	3	ŝ	τ,	3	ŝ	ŝ	3													

۰.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ckt.No. en (Ref.)	OWER SUPPLY	Page 1 of 2		CONTRACT NO	0. NAS1-77	Ì6			F	F.R.	x 10-0	Hours		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Component	Value Description	MIL-SPEC (ER Level P)	Qualif. Document	At +85°C Stress Rated	Applied	Stress Ratio	KA L C	T=+85°(S.R. =.1	S.R. Defined	t=.5 Launch	T=+40°C t=5760 Traneit	t=50 Orbit	t=.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L R75	Resistor CC	22 0 RCR07G240JP	MIL-R-39008	2PP-2748- 5528	188 mer	۳۳. 901 106 س	95.	50 1	- 01	088	ۍ. ۲	-0035	088	4.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2 R76	8	8.2 K RCR07G822JP		-5528	188 mw	96 mw	.51	50 1		.056	i ni	.0035	.056	2.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	877 B	8	68 Ω RCR07G680JP		-5528	188 mw	10 mw	<.1	50 1	10.	.01	s.	.0035	.01	5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 R78	22	68 Ω RCR07G680JP	MIL-R-39008	-5528	188 unw	106 mw	•56	50 1	10.	.088	ŝ	0035	.088	4.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 R79	WE	*7.5 K RNR69C7501FP	MIL-R-55182	-5555	215	18 mw	<,1	1.5 1	.29	.29	.435	.19	.29	4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 R80	8	3 K RCR07G302JP	MIL-R-39008	-5528	188	3 EW	<.1	50 1	.01	.01	ŝ	.0035	.01	°.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 R81	8	5.1 K RCR07G512JP	MIL-R-39008	-5528	188	5 mw	<.1 <	50 1	-01	-01	s.	.0035	10,	.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8 R82	Æ	4.99K RNR69C4991FP	MIL-R-55182	-5555	215	7 101	<.1 .1	1.5 1	.29	.29	.435	.19	.29	.435
R84 CC 10 Resolution MIL-R-39008 -5528 135 4 6 1 0.1 0.39 1.5 0.0035 0.0135 0.0135 0.0135 0.0135 0.0135 0.0135 0.0135 0.0135 0.0135 0.0135 0.0135 0.011 0.01 0.01 <t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>9 R83</td><td>ខ</td><td>1.5 K RCR076152JP</td><td>MTL-R-39008</td><td>-5528</td><td>188</td><td>24 mw</td><td>.13</td><td>50 1</td><td>-01</td><td>10.</td><td>ŝ</td><td>.0035</td><td>10.</td><td>ŝ,</td></t<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 R83	ខ	1.5 K RCR076152JP	MTL-R-39008	-5528	188	24 mw	.13	50 1	-01	10.	ŝ	.0035	10.	ŝ,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 R84	ິ	10 n RCR206100JP	MIL-R-39008	-5528	375	100 mw	.38	50 1	.01	.039	ŝ	.0035	.039	.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	l R85	2	10 K RCR07G103JP	MIL-R-39008	-5528	188	4 HEW	< .1	50 1	10.	.01	s.	.0035	.01	••
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccc} 8.87 & \text{CC} 5.11 \ \text{KarRo70512JP} & \text{MIL-R-3908} & -5328 & 188 & 3 \ \text{ww} & <1 & 50 & 1 & 01 & 01 & .01 & .01 & .03 & .0035 \\ 8.89 & \text{W} & 10 \ \text{K} & \text{ReR070512JP} & \text{MIL-R-3908} & -5358 & 188 & 3 \ \text{ww} & <1 & 50 & 1 & 01 & .01 & .01 & .5 & .0035 \\ 8.80 & \text{CC} & 1.5 \ \text{KRRO7013ZJP} & \text{MIL-R-3908} & -5358 & 215 & 4 \ \text{ww} & <1 & 50 & 1 & .01 & .01 & .01 & .5 & .0035 \\ 8.80 & \text{CC} & 1.5 \ \text{KRRO7013ZJP} & \text{MIL-R-3908} & -5358 & 375 & 40 \ \text{ww} & .11 & 50 & 1 & .01 & .01 & .5 & .0035 \\ 8.80 & \text{CC} & 1.5 \ \text{RRRO7013ZP} & \text{MIL-R-3908} & -5358 & 375 & 40 \ \text{ww} & .11 & 50 & 1 & .01 & .01 & .5 & .0035 \\ 8.80 & \text{CC} & 2.0 \ \text{a} \ \text{RRRO7013JP} & \text{MIL-R-3908} & -5358 & 375 & 40 \ \text{ww} & .11 & 50 & 1 & .01 & .01 & .5 & .0035 \\ 8.80 & \text{CC} & 2.0 \ \text{a} \ \text{RRRO7013JP} & \text{MIL-R-3908} & -5358 & 375 & 40 \ \text{ww} & .11 & 50 & 1 & .01 & .01 & .5 & .0035 \\ 8.80 & \text{CC} & 2.0 \ \text{a} \ \text{RRRO7013JP} & \text{MIL-R-3908} & -5358 & 188 & 24 \ \text{w} & <.1 & 20 & 1 & .01 & .01 & .5 & .0035 \\ 8.80 & \text{CC} & 2.0 \ \text{a} \ \text{RRRO7013JP} & \text{MIL-R-3908} & -2558 & 188 & 24 \ \text{w} & <.1 & 1.5 & 1 & .001 & .01 & .5 & .0035 \\ 8.81 \ \text{MIRO7} & \text{MIL-R-3908} & \text{MIL-C-14157} & -2558 & 215 & 22 \ \text{w} & .12 & 1.5 & 22 & .29 & .29 & .29 & .29 \\ 8.81 \ \text{C41} & P & .0034 \ \text{MIL-C-14157} & -2508 & 20 \ \text{v} & 28 \ \text{v} & .56 & -1 & 1 & .005 & .023 & .005 \\ 8.8 \ \text{C42} & \text{r} & \text{r} & .64 \ \text{v} & .64 \ \text{v} & .64 \ \text{v} & .1 & .007 & .012 & .025 & .025 \\ 8.8 \ \text{C43} & \text{RR00168} \ \text{RR} & \text{MIL-C-39013} & -2501 & 20 \ \text{v} & .26 \ \text{v} & .56 \ \text{v} & .16 \ \text{m} & .01 & .007 & .0074 & .0055 \\ 8.8 \ \text{c43} & \text{c43} & \text{c43} & \text{c44} & \text{c41} & 15 \ 1 \ 0.007 \ \text{c43} & 007 \ \text{c44} & 00$	2 R86	AF	10 K RNR60C1002FP	MIL-R-55182	-5555	215	4 mw	<.1	1.51	.29	.29	.435	.19	.29	.435
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 R87	ຮ	5.1 K RCR07G512JP	MIL-R-39008	-5528	1.88	3 mw	<.1 .1	50 1	-01	.01	5.	.0035	.01	5.
R89 HF ICK RandoctionZFP MIL-R-55182 -5555 215 4 mm < 1 1.5 2.9 4.33 1.9 2.9 4.33 1.9 2.9 4.33 1.9 2.9 4.33 2.9 4.33 2.9 4.33 2.9 4.33 2.9 4.33 2.9 4.33 2.9 4.33 2.9 4.33 2.9 4.33 2.9 4.33 2.9 4.33 2.9 2.93 2.9	R89 HF IO K RNR60C1002FF MIL-R-55182 -5555 215 4 c.l I.5 1 29 29 35 19 R90 CC 1.5 K KR0701512TF MIL-R-55182 -5528 188 24 mv .11 50 1 .01 .01 .5 .0035 R107 Resister MF 511 RUR075103TF MIL-R-59008 -5528 188 4 mv .11 50 1 .01 .01 .5 .0035 R107 Resister MF 511 RUR075103TF MIL-R-53083 -5558 215 25 mv .11 50 1 .01 .01 .5 .0035 R107 Resister MF 71 RUR06510FF MIL-C-14157 -2508 50 V .29 .4 .4 .11 .001 .01 .01 .5 .0035 .0059 .0053 .0053 .0053 .0053 .0053 .0053 .0053	F R88	ខ	5.1 K RCR07G512JP	MIL-R-39008	-5528	188	5 BW	<.1	50 1	.01	.01	s.	.0035	.01	ι,
R90 CC L, S K RCR07615Z1P MIL-R-39008 -5328 188 Z 4 mm .13 50 1 .01 .01 .01 .01 .01 .01 .01 .5 .0035 .01 R90 CC 10 K RR076103JP MIL-R-39008 -5528 375 40 mw .11 50 1 .01 .01 .5 .0035 .01 R107 Resifter MF 511.0 RR0605100F MIL-R-55182 -5553 15 25 .12 101 .01 .5 .0035 .01 C41 P .039 uf [2779393854 MIL-C-14157 -2508 50 v .56 -1 1 .005 .023 .005 .023 .005 .023 .005 .023 .005 .023 <	R90 CC L, S k RG07G15ZJF MIL-R=39008 -5528 375 40 mw .11 50 1 .01 .01 .5 .0035 R90 CC 10 R REX07G13JF MIL-R=39008 -5528 375 40 mw .11 50 1 .01 .01 .5 .0035 R107 Resistor MF 511.0 RK8005110FF MIL-R=39008 -5528 188 4 mw .11 50 1 .01 .01 .5 .0035 R20 CC 10 R RK8005110FF MIL-R=39008 -5528 188 4 mw .11 50 1 .01 .01 .5 .0035 R210 CC 10 R RK8076131F MIL-R-14157 -2508 50 V 26 1 .017 .005 .023 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005 .005	5 R89	WE	10 K RNR60C1002FP	MIL-R-55182	-5555	215	4 mw	<.''	1.51	• 29	. 29	.435	.19	.29	.435
R30 CC 20 0 RER206200JF MIL-R-39008 -5528 375 40 11 50 1 .01 .01 .5 .0035 .01 R32 CC 10 R RE0076103JF MIL-R-39008 -5528 188 4 w 11 50 1 .01 .01 .5 .0035 .001 C41 P .039 uf 12779393R54 MIL-R-55182 -5508 50 V .43 1 .01 .01 .5 .0035 .005 <td< td=""><td>R50 CC 20 n Refrest Resistors MIL-R-39008 -5328 375 40 ms .11 50 1 .01 .5 .0035 R107 Resistor MT 511 0 RNE005110F MIL-R-39008 -5528 188 4 ms <.11</td> 50 1 .01 .5 .0035 R107 Resistor MT 511 0 RNE005110F MIL-R-35182 -5528 188 4 ms <.11</td<>	R50 CC 20 n Refrest Resistors MIL-R-39008 -5328 375 40 ms .11 50 1 .01 .5 .0035 R107 Resistor MT 511 0 RNE005110F MIL-R-39008 -5528 188 4 ms <.11	890 B	ខ	1.5 K RCR07G152JP	MIL-R-39008	-5528	188	24 mw	.13	50 1	10.	-01	ŝ	.0035	.01	ŝ
3 R92 CC 10 RackorG10JP MIL-R-39008 -5528 188 4 \mathbf{w} $\mathbf{c}.1$ 50 1 01 $\mathbf{c}.5$ 0035 0015	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	06N 7	8	20 n RCR20G200JP	MIL-R-39008	-5528	375	40 mm	.11	50 1	•01	-01	s.	.0035	.01	ŗ,
RIOT Resister WF 511 0 RUR60C3110FP MIL-R-55182 -5555 215 25 mm .12 1.5 1 .29 .29 .435 .19 .29 .054 15 .055 054 055 .005 .054 055 .005 054 055 055 055 055 055 055 055 055	RIO7 Resifictor MF 511.0 RIR60C5110F MIL-R-55182 -5555 215 25 25 .12 1.5 1 .29 .435 .19 C40 C40 C40 C40 C41 P .003 .005	3 R92	ຮ	10 K RCR07G103JP	MIL-R-39008	-5528	188	4 mw	<.1	50 1	.01	••	S.	.0035	.01	s.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R107	Resistor MF	511 0 RNR60C5110FP	MIL-R-55182	-5555	215	25 mw	.12	1.5 1	. 29	.29	.435	.19	.29	.435
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 · C40	'Cap. S.T.,	15 µf CSR13H156KP	MIL-C-39003	-2501	75 V	32 V	.43	50 1	.017	.054	.85	.0069	.054	2.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l c41	<u>م</u>	.039 LE 127P3939R5S4	MI1-C-14157	-2508	50 v	28 V	•56		• 005	.023	.005	.005	.023	.023
C43 P .039Lf IZ7P3939R554 MIL-C-14157 -2508 50 v 28 v .56 - 1 .005 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 .017 .21 .85 .0069 .21 5 C46 ST 100 Lf GRRJ3E107KP MIL-C-39003 -2501 20 v 12 v .6 50 1 .017 .21 .85 .0069 .21 5 C46 (VKI)G 680 Pf (VR01 MIL-C-39013 -2501 20 v 4 v .11 1017 .21 .85 .0069 .21 5 C46 (VKI)G 680 Pf (VR01 MIL-C-39014 -2502 200 v 4 v 15 1 .0074 .011 .005 .0074 .0074 .0074 .0074 .0074 .0074 .0074 .0074 .0074 .0074 .0074 .0074 .0074 .0074 .0074 .0074 <td>C43 P .039uf I2779393R584 MIL-C-14157 -2508 50 v 28 v .56 - 1 .005 .023 .005<td>2 C42</td><td>Δ,</td><td>.0022ff 127P22291S4</td><td>MIL-C-I4157 (non ER)</td><td>-2508</td><td>100 v</td><td>64 v</td><td>.64</td><td></td><td>• 002</td><td>.023</td><td>• 005</td><td>.005</td><td>.023</td><td>.023</td></td>	C43 P .039uf I2779393R584 MIL-C-14157 -2508 50 v 28 v .56 - 1 .005 .023 .005 <td>2 C42</td> <td>Δ,</td> <td>.0022ff 127P22291S4</td> <td>MIL-C-I4157 (non ER)</td> <td>-2508</td> <td>100 v</td> <td>64 v</td> <td>.64</td> <td></td> <td>• 002</td> <td>.023</td> <td>• 005</td> <td>.005</td> <td>.023</td> <td>.023</td>	2 C42	Δ,	.0022ff 127P22291S4	MIL-C-I4157 (non ER)	-2508	100 v	64 v	.64		• 002	.023	• 005	.005	.023	.023
C44 ST 100 μ f CSRL3E107KP MIL-C-39003 -2501 20 v 12 v .6 50 1 .017 .21 .85 .0069 .21 C45 ST 100 μ f CSR13E107KP MIL-C-39003 -2501 20 v 12 v .6 50 1 .017 .21 .85 .0069 .21 C46 (VK1)C 680 Pf CR05Gw681KP MIL-C-39014 -2502 200 v 4 v <.11 15 1 .0074 .0074 .111 .005 .0074 C 440 C 100 pf CR05Gw681KP MIL-C-39014 -2502 200 v 4 v <.11 15 1 .0074 .0074 .111 .005 .0074 C 440 (VK1)C 100 pf CR05Gw101KP MIL-C-39014 -2502 200 v 4 v <.11 15 1 .0074 .0074 .111 .005 .0074 C 449 (VK1)C 100 pf CKR05Gw101KP MIL-C-39003 -2502 200 v 4 v <.11 15 1 .0074 .0074 .111 .005<	C44 ST 100 μ CSRKBE107KP MIL-C-39003 -2501 20 v 12 v .6 50 1 .017 .21 .85 .0069 C45 ST 100 μ CSRIJE107KP MIL-C-39003 -2501 20 v 12 v .6 50 1 .017 .21 .85 .0069 C45 ST 100 μ CSRIJE107KP MIL-C-39013 -2501 20 v 4 v .6 50 1 .017 .21 .85 .0069 C46 (VK1)C 680 Pf CKR05CM681KP MIL-C-39014 -2502 200 v 4 v <.1 15 1 .0074 <td>5 C43</td> <td>ρ.</td> <td>.039µf 127P3939R5S4</td> <td>MIL-C-14157 (non ER)</td> <td>-2508</td> <td>50 v</td> <td>28 v</td> <td>• 26</td> <td></td> <td>•002</td> <td>.023</td> <td>.005</td> <td>• 005</td> <td>.023</td> <td>.023</td>	5 C43	ρ.	.039µf 127P3939R5S4	MIL-C-14157 (non ER)	-2508	50 v	28 v	• 26		•002	.023	.005	• 005	.023	.023
C45 ST 100 Lf CSR13E107KP MIL-C-39003 -2501 20 v 12 v .6 50 1 .017 .21 .85 .0069 .21 C46 (VK1)C 680 Pf (VK01 MIL-C-39014 -2502 200 v 4 v <.1 15 1 .0074 .011 .005 .0074 C47 C 100 pf CKR05CM681KP MIL-C-39014 -2502 200 v 4 v <.1 15 1 .0074 .011 .005 .0074 .011 .007 .0074 .011 .007 .0074 .011 .007 .0074 .011 .007 .0074 .011 .005 .0074 .0074 .011 .007 .0074 .011 .007 .0074 .011 .005 .0074 <td>C45 ST 100 Lf CSR13E107KP MIL-C-39003 -2501 20 v 12 v .6 50 1 .017 .21 .85 .0069 C46 (VK1)C 680 Pf (VK01 MIL-C-39014 -2502 200 v 4 v <.11</td> 15 1 .0074 .0074 .111 .005 C47 C 100 pf CKR05Cw681KP MIL-C-39014 -2502 200 v 4 v <.11	C45 ST 100 Lf CSR13E107KP MIL-C-39003 -2501 20 v 12 v .6 50 1 .017 .21 .85 .0069 C46 (VK1)C 680 Pf (VK01 MIL-C-39014 -2502 200 v 4 v <.11	. C44	ST	100 µf CSRk3E107KP	MIL-C-39003	-2501	20 v	12 V	•	50 . 1	.017	.21	.85	.0069	.21	10.50
C46 (VK1)C 680 pf (VK01 C47 C 100 pf CKR05Cw681KP MIL-C-39014 -2502 200 v 4 v <.1	$ \begin{array}{c ccccc} C46 & (VK1)C & 680 & \text{pf} & (VK01 \\ CKR05Cw681KP & MIL-C-39014 & -2502 & 200 & & 4 & & <.1 & 15 & 1 & .0074 & .0074 & .111 & .005 \\ C & 100 & \text{pf} & CKR05Cw681KP & & & -2502 & 200 & & 6 & & <.1 & 15 & 1 & .0074 & .0074 & .111 & .005 \\ \hline C & 00 & \text{pf} & CKR05Cw681KP & & & & -2502 & 200 & & 4 & & <.1 & 15 & 1 & .0074 & .0074 & .111 & .005 \\ \hline C & 0 & 0 & \text{pf} & CKR05Cw101KP & & & & & & & & & & & & & & & & & & &$	5 C45	ST	100 µf CSR13E107KP	MIL-C-39003	-2501	20 V	12 V	9.	50 1	.017	.21	.85	•0069	.21	10.50
C47 C 100 pf CKR0SCW101KP -2502 200 v 6 v <.1	C47 C 100 pf CKR0SCW101KP -2502 200 v 6 v <.1	5 C46	(VK1)C	680 pf (VK01 CKR05CW681KP	MTL-C-39014	-2 502	200 v	4 V	<.1	15 1	.0074	0074	.111	.005	.0074	.11.
C48 C 680 Ff CKR05CW681KP -2502 200 V 4 V <.1	C48 C 680 Ff CKR05Cw68LKP -2502 200 V 4 V <.1	C47	.	100 pf CKROSCW101KP	¢	-2502	200 v	6		15	.0074	.0074	.111	.005	.0074	
0 C49 (VKI)C 100 μf CKR05CW101KP MIL-C-39014 -2502 200 v 6 v <.1 15 1 .0074 .0074 .111 .005 .0074 0 C50 ST 100 μf CSR13E107KP MIL-C-39003 -2508 20 v 6 v .3 50 1 .017 .035 .85 .0069 .035 1 C51 Cap. ST 100 μf CSR13E107KP MIL-C-39003 ZFP-2744 20 v .6 v .3 50 1 .017 .035 .85 .0069 .035 1 C51 Cap. ST 100 μf CSR13E107KP MIL-C-39003 ZFP-2744 20 v .6 v .3 50 1 .017 .035 .85 .0069 .035	0 C49 (VKI)C 100 pf CKR05CW101KP MIL-C-39014 -2502 200 v 6 v <.1	3 C48	, ,	680 Pf CKR05CW681KP		-2502	200 v	4 V		15 1	.0074	.0074	.111	:005	.0074	.11
C50 ST 100 μf CSR13E107KP MIL-C-39003 -2508 20 v 6 v .3 50 1 .017 .035 .85 .0069 .035 L C51 Cap. ST 100 μf CSR13E107KP MIL-C-39003 ZPP-2744 20 v ·6 v .3 50 1 .017 .035 .85 .0069 .035 L C51 Cap. ST 100 μf CSR13E107KP MIL-C-39003 ZPP-2744 20 v ·6 v .3 50 1 .017 .035 .85 .0069 .035	0 C50 ST 100 μf CSR13E107KP MIL-C-39003 -2508 20 v 6 v .3 50 1 .017 .035 .85 .0069 1 C51 Cap. ST 100 μf CSR13E107KP MIL-C-39003 ZFP-2744 20 v .6 v .3 50 1 .017 .035 .85 .0069 1 C51 Cap. ST 100 μf CSR13E107KP MIL-C-39003 ZFP-2744 20 v .6 v .3 50 1 .017 .035 .85 .0069	649 649	(VKI)C	100 pf CKR05CW101KP	MIL-C-39014	-2502	200 V	د د	* .1	15 1	.0074	.0074	.111	•005	.0074	.111
L C51 Cap. ST 100 μf CSR13E107KP MIL-C-39003 ZFP-2744 20 V · 6 V · 3 50 1 .017 .035 .85 .0069 .035 .035	L C51 Cap. ST 100 μf CSR13E107KP MIL-C-39003 ZFP-2744 20 v 6 v .3 50 1 .017 .035 .85 .0069 -2508 -2508 20 v 6 v .3 50 1 .017 .035 .85 .0069	0 C50	ST	100 LE CSRIJE107KP	MIL-C-39003	-2508	20 V	۰ م 9	۴.	50 1	.017	.035	.85	.0069	.035	1.75
		l c51	Cap. ST	100 Lf CSR13E107KP	MIL-C-39003	ZPP-2744 -2508	20 v	♦	ب	20	.017	.035	.85	.0069	.035	1.75

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		T	T ·				••••	-							· ··-		-••		···· †					•	• • • • • • • • •	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			 	t=.5	.410	.510	.510	.330	.330	.980	4.875	4.875	4.875	4.875	1.525	1.525	5,350	10.		86,51						•
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		A	t=50	Orlife	.041	•051	.051	.0325	.0325	•098	•065	.065	.058	.058	.0610	.0610	.107	.2		3.436		•				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SING		==5760	raneiu	n= 20 .0195	n=.30 .0255	h=.30 .0255	n12 .0140	h=.12 .0140	n=.12 .0140	n= 11 .028	n=.11 .028	n=.11 .028	n=.11 .028	n=.433 .0365	n=.433 •0365	n=.086 .031	. 27		469					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	× 10-6	- -		é inch	.330 1	.330 1	• 330 I	.330 T	• 330 I	T 086.	• 35 I	:35 I	• 32 ·	÷35]	.0290 T	.0290 T	.30 I	0.		. 272 . 1		81.0 0 1.0.7		*****		
Low under tream control Page 2 cf 2 Wish-Luc All Brevier Sizzon Alas-1191 Second Also - 144 ($10,1,1,0,0$ $c_{erreptiven}$ $10,1,1,0$ $10,1,1,1,0$ $10,1,1,1,0$ $10,1,1,1,0$ $10,1,1,1,0$ $10,1,1,1,1,1,0$ $10,1,1,1,1,1,1,0,1$ $10,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$	F.R.		R.	Lined I	041	051	051	033	033	860	065 4	0.65 4	058 4	058 4	0610	0610	107 2	2 10		TAL 46			-			
1.00 1.00		A S	0,02+	De	033	033	033	. 033	. 033	. 860	058.	0.58	058	058	0290	0290	. 260	5		2 	•			alt duringe Westagher		
Low Transformer Page 2 of 2 Mistain Properties (ABC-104) (Get.)	L	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		• 	•	•	•	•	•	•	•	•	•	•	•	•	•								
1004 1004 <t< td=""><td></td><td>-</td><td>•</td><td>Î</td><td>10</td><td>10 1</td><td>10 1</td><td>10 1</td><td>10 1</td><td>10</td><td>75 1</td><td>75 1</td><td>75 1</td><td>75 1</td><td>25 1</td><td>25 1</td><td>53 -</td><td>- Q</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-	•	Î	10	10 1	10 1	10 1	10 1	10	75 1	75 1	75 1	75 1	25 1	25 1	53 -	- Q								
Low TOLIANE POURIA CUTPUN Page 2 of 2 MAA-LIKC ALR DESCITY SENSOR (AUS-130) Contract Contract Cartoric Tan-TX-LIN4942 MILL-S-LISERC Ovartact No. MAA-1791 R C (RU1 Diode Rec. Jan-TX-LIN4942 MILL-S-LISERC Ovartact No. MAA-1791 R C (RU1 Diode Rec. Jan-TX-LIN4946 MILL-S-LISERC Ovartact No. MAA-1791 R C (RU1 Diode Rec. Jan-TX-LIN4946 MILL-S-LISERC Ovartact R R R C (RU1 Diode Rec. Jan-TX-LIN4946 MILL-S-LISERC Ovartact R R R C (RU1 Diode Rec. Jan-TX-LIN4946 MILL-S-LISERC Ovartact R R R C (RU1 Rec. Jan-TX-LIN4946 MILL-S-LISERC Ovartact R R R R R R R R R R R R R R R R R R R			tres:	atio	4+.104	4+.203	203	4+ . 02	4+ 02	.44.02	.343 +0.03	.343 +0.03	.343 +.020	.4 +.57	.343 +.333	.343 +.133	.4+.033	· ·						•	,	
Low Low <thlow< th=""> <thlow< th=""> <thlow< th=""></thlow<></thlow<></thlow<>	34)		ى 	E F		•		•	•	Tre	Tn=		T. L	=ut	_n⊺	Tn∍	Ţn⁼									
LOW LOW Low A.A-LIK A.R.A-LIK	(ADS-1			Aplie	83 ma	162 ma	162 ma	20 ma	20 ma	15 mw	80	80 mw	588 mw	342 mw	100 mw	100 mw	20 mw	85°C								
LOW VOLTAGE POWER GUPTLY Page 2 of 2 MASA-LINC AIR DENSIT CRUID Diode Rec. Description Overthy and a section of the section of th	IN SENSOR		At +85°C Stress	Rated	300 ma	300 ma	300 ma	300 ma	300 ma	50 mw	30 w	30 w	30 w	30 w	00 mw	MU 001	500 mw	130°C								
LOW VOLTANE FOUND SUPERING LOW VOLTANE FOUND SUPERING MSA-LINC AIR MSA-LINC AIR C(kef.) Cerponent Jan-TX-IN4942 NIL-SFEC Quality C (kel.) Cerponent Jan-TX-IN49446 NIL-S-19500/ QPL C (kel.) Rec. Jan-TX-IN4946 NIL-S-19500/ QPL C (kl.) Rec. Jan-TX-IN4946 NIL-S-19500/ QPL C (kl.) Rec. Jan-TX-IN4946 NIL-S-19500/ QPL Q (kl.) Rec. Jan-TX-ZN2893 NIL-S-19500/ QPL Q Q Transistor Jan ZN2893 </td <td>DENSI7</td> <td></td> <td></td> <td>LL cut</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3017</td> <td>751- 7052</td> <td>7052</td> <td>751-</td> <td></td> <td>750- 3</td> <td>750- 3</td> <td>Ţ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·</td>	DENSI7			LL cut						3017	751- 7052	7052	751-		750- 3	750- 3	Ţ									·
LOW TOLTAJE PONENK SUPPLY Page 2 of 2 MSA-Lit (ket.) Cerponent Jan-TX-IN4942 MIL-SPEC (ket.) Cerponent Jan-TX-IN4942 MIL-SPEC (ket.) Diode Rec. Jan-TX-IN4946 MIL-SPEC CR11 Diode Rec. Jan-TX-IN4946 MIL-S-19500/ CR12 Rec. Jan-TX-IN4946 MIL-S-19500/ CR13 Rec. Jan-TX-IN4946 MIL-S-19500/ CR14 Rec. Jan-TX-IN4946 MIL-S-19500/ Rec. Jan-TX-IN4946 MIL-S-19500/ 359 CR14 Rec. Jan-TX-IN4946 MIL-S-19500/ Q Transistor Jan-TX-202893 MIL-S-19500/ Q Q Transistor Jan-TX-202893 MIL-S-19500/	C AIR CONTRA		Quall	Docur	Jab			>	OPL	ZPP-2	ZPP-2	1	ZPP=2	1 OPL	ZPP-2	ZPP-27 6(Jiò /	140								
LOW TOLTAJE POWER SUPPLY Page 2 of 2 Cartaino. Component yalae Jan-TX-1N4942 MIL-S-19 C CR10 biode Rec. Jan-TX-1N4946 MIL-S-19 C CR13 Rec. Jan-TX-1N4946 MIL-S-19 C CR13 Rec. Jan-TX-1N4946 MIL-S-19 C CR15 biode Zener 9.3 v 1NZ623A MIL-S-19 C CR15 biode Zener 9.3 v 2N2893 MIL-S-19 Q Transistor Jan-TX-2N2893 MIL-S-19 Q Transistor Jan-TX-2N2893 MIL-S-19 Q Transistor Jan-TX-2N2893 MIL-S-19 Q Transistor Jan-2N1132 MIL-S-19 Q Transistor Jan-2N1132 MIL-S-19 Q TI Transformer MIN Si MIL-S-19 MIL-S-	ASA-Lh		SPEC	vel P)	500/ 3 5 9				500/ 359		500/13I		500/ 181	500/ 181	(6	(6	00/177									
LOW VOLTANE POMER CUPRLY Page 2 of 2 c (Att.:O. Cerponent Description c (R10 Dtode Rec. Jan-TX-IN4946 c (R11 Dtode Rec. Jan-TX-IN4946 c (R12 Rec. Jan-TX-IN4946 c (R13 Rec. Jan-TX-2N2893 c (R13 Transistor Jan-TX-2N2893 c (Q13 Transistor Jan-TX-2N2893 r (Q2 I.C. OpAmp NFN Si HA7	21	, 	- TIN	ER Le	-S-19			>	-S-19		+S-19	Y	-S-19	-5-19	<i>#</i> 600	<i>4</i> 600	S-195	T-27								
LOW VOLTANE POWER SUPPLY Page 2 of 2 E (Ref.) Cerponent Jan-TX-IN4946 E (Ref.) Jan-TX-IN4946 CR11 biode Rec. Jan-TX-IN4946 CR12 Rec. Jan-TX-IN4946 CR13 Rec. Jan-TX-IN4946 CR13 Rec. Jan-TX-IN4946 CR14 Rec. Jan-TX-IN4946 CR15 Diode Zan-TX-IN4946 Q Transistor Jan-TX-IN4946 Q Transistor Jan-TX-2N2893 Q Transistor Jan-TX-2N2893 Q I.C. OpAmp NFN Si Jan-ZN1132 Q Z1 Transformer J Q Amp. J Jan-2N1132 <				4	MIL			• · · · · • •	MIL		T IM		MIL	TIM	SU)	(DS	- TIW	-TIM								
IOW TOLTAJE POWER CUPRLY Page 2 of 2 CR11 Diode Rec. Jan-TX-IN CR11 Diode Rec. Jan-TX-IN CR11 Diode Rec. Jan-TX-IN CR12 Rec. Jan-TX-IN CR13 Rec. Jan-TX-IN CR14 Rec. Jan-TX-IN CR13 Rec. Jan-TX-IN CR14 Rec. Jan-TX-IN CR13 Rec. Jan-TX-IN CR13 Rec. Jan-TX-IN CR13 Rec. Jan-TX-IN CR13 Rec. Jan-TX-IN CR14 Rec. Jan-TX-IN CR15 Diode Zener Q Transistor Jan-TX-2N Q Transistor Jan-2N Z Q Amp. Q Transistor Jan-2N Q T Tran		;	tion		4942	9761	1946	946	9†6†	2623A	2893	2893	2893	m	607	602	2									
IOW VOLTAJE POWER CUPPLY Page 2 CR10 Diode Rec. Jan- Jan- Jan- CR11 Jan- Jan- CR13 CR11 Diode Rec. Jan- Jan- CR13 CR13 Rec. Jan- Sec. Jan- Jan- CR13 CR14 Rec. Jan- Sec. Jan- Jan- Sec. CR13 Rec. Jan- Sec. Jan- Jan- Sec. CR14 Rec. Jan- Sec. Jan- Jan- Sec. CR15 Diode Zener 9.3 v Q Transistor P.Sw Jan- Sec. Q Transistor Jan- P.Sw Jan- Jan- Sec. Q Transistor 9.3 v Jan- Jan- P.Sw Q Transistor Jan- P.Sw Jan- Jan- Jan- Sec. Z I.C. OpAmp NFN Si Jan- Sec. Z Z I.C. OpAmp NFN Si Jan- Jan- Sec. Z Z Z Jan- Sec. Jan- Sec. Z I.C. OpAmp NFN Si Jan- Sec. Jan- Sec. Z Z I.C. OpAmp NFN Si Jan- Sec. Z Z Amp. Jan- Sec. Jan- Sec. <td>of 2</td> <td></td> <td>scrip</td> <td>or 7/</td> <td>IX-1N</td> <td>IX-1N</td> <td>IX-IN</td> <td>IX-IN</td> <td>IX-1N</td> <td>IN:</td> <td>2N:</td> <td>2N.</td> <td>IX-2N</td> <td>2N289</td> <td>Ч</td> <td>.YH</td> <td>2N113</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	of 2		scrip	or 7/	IX-1N	IX-1N	IX-IN	IX-IN	IX-1N	IN:	2N:	2N.	IX-2N	2N289	Ч	.YH	2N113									
 LOW VOLTAJE POWER SUPPLY Particle CR10 CR11 CR11 CR13 CR13 CR14 Rec. CR13 Rec. CR14 Rec. CR15 Diode Rec. P.Sw Q6 Transistor P.Sw Q7 Transistor P.Sw Q8 Reg. Q9 Amp. Amp. Amp. T1 Transformer 	ge 2		Эe		Jan-	Jan-'	Jan-	Jan-J	Jan-J			د	Jan-	Jan j			Jan-									
 LOW VOLTAJE POWER SUPPLY CR10 CR11 CR11 CR13 CR13 CR13 Rec. CR14 Rec. CR15 Diode Rec. P.Sw Q7 Transistor P.Sw NF S T1 T.C. OpAmp NF P.Sw NF S T1 Transformer T1 	Pa	}- }		alle	.					.3 v					N Si	N S1								• 、		
CR10 Diode I CR11 Diode I CR13 Diode Zer CR13 CR13 Diode Zer CR13 CR13 CR13 CR13 CR13 CR13 CR13 CR13 Diode Zer CR14 CR12 CR13 CR13 Diode Zer CR13 Diode Zer P. P. P. P. P. P. P. P. P. P. P. P. P.	Alddi				Sec.	sec.	sec.	Sec.	sec.	ler 9	оr Sw	лс Sw	50	лг 38-	Amp NF	Amp NF	Amp.	ner.								
r CR10 Dio CR11 Dio CR13 CR13 CR13 CR13 CR14 CR13 Dio CR14 CR13 Trar CR13 Trar 2 CR13 Trar 2 CR13 Trar 4 Q1 Trar 4 Q9 7 Trar 4 Q9 7 Trar	VER St			nuodu	le	le I				de Zer	nsist(P.	ısist(P.	R	nsistc Re	7do	ďð	ł	nsfor								
CR10 CR13 CR13 CR13 CR13 CR13 CR13 CR13 CR13	104 35				Dic	Dic				Dio	Тга	Тга		Trai	Ι.С.	L.C.		Tra							· · · ·	
LING 111 122 111 122 122 122 122 12	VLTOA		0	£.)	10	11	12	ដ	14	15				e	0	-4										
	TOW		Ckt	n (ke	CR	S	CR	CR	g	CR.	9Q	Q7	Q8	Q1	22	22	60	TI								1. JAN M aria
	$\underline{\lambda}_{7}$			I Le	32	33	34	35	36	37	138	39	- 40	41	42	43	77	45				·····			1	07

APPENDIX C

Test Data

Curve Fit Data - Density Run #1

5-Curie Source

TERM	COEFFICIENT			
0 1 2	1082.87 2.15633E+07 -2.34408E+09			
Density Actual gm/cm ³	Count Rate Actual pps	Count Rate Calculated	Difference	Percent Difference
1.26140E-04 .001018 7.69380E-04 5.14860E-04 2.57790E-04 1.71230E-04 1.36450E-04 1.32800E-04 1.00790E-04 6.70910E-05 3.32790E-05 2.47870E-05 1.64510E-05 8.18540E-06 1.63310E-06	24598.3 20547.8 16271 11515 6589.8 4769 4056 3868.5 3195.7 2514.4 1805.6 1559.89 1449.8 1240.7 1084.5	24553.1 20605.1 16285.7 11563.6 6485.9 4706.43 3981.54 3905.14 3232.42 2519.02 1797.88 1615.92 1436.97 1259.21 1118.07	45.1894 -57.3064 -14.6908 -48.59 103.901 62.5732 74.4614 -36.6361 -36.7212 -4.62008 7.724 -56.0261 12.83 -18.5135 -33.5749	.184048 278118 -9.02065E-02 420198 1.60196 1.32953 1.87017 938152 -1.13603 183408 .429618 -3.46714 .892852 -1.47024 -3.00292
TERM 0 1 2	COEFFICIENT 1110.71 1.94420E+07 -657711333			
Density Actual gm/cm ³	Count Rate Actual pps	Count Rate Calculated	Difference	Percent Difference
1.63310E-06 5.75830E-06 8.00520E-06 1.61030E-05 4.90200E-05 1.14070E-04 3.57830E-04 5.98560E-04 1.21650E-04	1084.5 1172.2 1227.5 1541.5 2098.4 3315 7997.3 12492.9 23792	1142.46 1222.64 1266.3 1423.61 2062.17 3319.9 7983.42 12512.3 23788.5	-57.9564 -50.4384 -38.8022 117.889 36.2271 -4.89603 13.8836 -19.3584 3.45197	-5.07296 -4.12537 -3.06421 8.28098 1.75675 -1.47475 .173905 154715 .014511

ŝ,

Curve Fit Data - Density Run #2

1-Curie Source

TERM 0 1 2	COEFFICIENT 419.772 3.87270E+06 - 2.59474E+08			
Density Actual gm/cm ³	Count Rate Actual pps	Count Rate Calculated	Difference	Percent Difference
.001239 1.01240E-03 7.68460E-04 5.16640E-04 2.59160E-04 .00017 8.24820E-05 3.33280E-05 8.74000E-06 1.69380E-06	4839 4056.1 3220.2 2351 1431.4 1097.9 752.5 544.57 434.3 403.7	4819.72 4074.54 3242.56 2351.3 1405.99 1070.63 737.435 548.553 453.6 426.331	19.2794 -18.4425 -22.3582 304817 25.4067 27.268 15.0653 -3.98321 -19.2997 -22.631	.400011 452628 689522 -1.29637E-02 1.80703 2.54691 2.04293 726129 -4.25479 -5.30831

TERM 0 1 2 Density	COEFFICIENT 474.312 3.92553E+06 -8.45965E+07 Count Rate	Count Data		Democrati
	Actuar			Percent
gm/cm ³	pps	Calculated	Difference	Difference
1.69380E-06 7.41680E-06 .000021 5.93900E-05 1.24630E-04	403.7 535.9 573.5 720.9 983.7	480.961 503.422 556.711 707.151 962.237	-77.2607 32.4779 16.7893 13.7491 21.463	-16.0638 6.45143 3.0158 1.9443 2.23053
3./3320E-04	1927.4	1928.	601776	-3.12124E-02
6.49870E-04	2989	2989.67	670208	-2.24175E-02
9.75290E-04	4208	4222.38	-14.3775	340506
1.27250E-03	5341	5332.57	8.43091	.158102

APPENDIX D

CHECK-OUT CALIBRATION AND TEST PLAN SUMMARY

5

1.0 SUMMARY

This appendix describes the test setup for calibrating and testing the ADS-104 System. The system as shipped will be calibrated for use with 50 foot cable between the electronics and detector, and a Gd 153 gamma source. Details of handling and calibrating with high strength sources are also contained in this appendix.

2.0 TEST BOX

The test box provides the electrical interface between the sensor and test equipment as is illustrated in the Interconnection Block Diagram, Figure 1. Figure 2 shows the wiring of the PM/HVPS. The unit is powered from a 28-volt source and the input voltage and current are monitored in the test box. The primary outputs of the sensor are the 0 to 4 volt dc which is measured with a digital voltmeter. Switches are also provided to energize the shield solenoids for opening and closing the source mechanism.

Secondary output from the sensor can also be monitored as a check on sensor performance. These outputs are shown as dashed lines on Figure 1. Pulses out of the UL discriminator, LL discriminator, and NAND Gate can be monitored. The AGE high voltage power supply control voltage is monitored to insure in-limit control.

The test box schematic is shown in Figure 3.

3.0 CALIBRATION

This section describes the calibration procedures and presents calibration data taken on the Atmosphere Density Sensor (ADS-104). Calibration adjustments are performed on the unit to set up the AGC, set the UL and LL of the output window, set up the slopes and end points on the pulse to dc converter.

3.1 Gain. The pulse height spectrum as measured at TP7 has the Am 241 AGC peak and the Gd 153 calibration source direct transmission peak at 100 Kev. The Am 241 source strength is selected to produce approximately 200 pulses per second in the AGC spectrum. R28 is selected so that the AGC discriminator level (Gain reference) is set at 4.0 volts. The gain bias (R32) is then selected so that the AGC spectrum peak falls at 4 volts and the AGC discriminator output count rate is 100 pulses per second. 3.2 <u>Window</u>. The sensor air backscatter pulse height spectrum as measured is shown in Figure 4. The optimum upper and lower discriminator levels are seen to be 0.9 volt and 1.5 volts. R10 adjusts the low level and R13 adjusts the upper level to these values.

3.3 <u>Pulse to DC Converter</u>. Selection of resistors R42B, R46A, R46B, R49, and R95 is necessary to provide the desired slopes, breakpoint, and end points of the pulse to dc converter. The calibration data are summarized in Table I.

4.0 DEMONSTRATION TEST PLAN

The following tests shall be performed at NASA, Langley Research Center, to demonstrate the performance of the Atmosphere Density Sensor after a brief confidence check period.

4.1 Installation and Check-out. The sensor shall be placed near the floor of the 60-foot diameter altitude sphere, facing upward. Cable interconnection shall be made between the sensor and its test equipment via a 100-foot cable. The sensor shall be turned on and background and AGC measurements recorded. This data shall be compared with previously recorded data to verify proper sensor operation. If desired, the altitude sphere may be closed and evacuated while the sensor is in this configuration, and stability of sensor output monitored. The data format is shown in Table II.

4.2 <u>One-Curie Calibration</u>. The sensor shall be placed near the floor of the 60-foot diameter altitude sphere, facing upward with the unloaded source assembly and detector separated by one meter. A sensor check shall be performed using the Gd 153 calibration source and a background measurement taken. The 1-curie Gd 153 source shall be installed and the source mechanism closed and a second reference measurement taken. The chamber shall be sealed and the source mechanism opened. The chamber shall slowly be evacuated and the measurements in Table III recorded. Pressure shall be measured using the Wallace and Tiernan pressure gage. Temperature shall be measured using the recording thermocouple. Evacuation shall proceed to a pressure of 1 mm hg. Data shall be taken both during evacuation and refill. When back to atmospheric pressure, the source mechanism shall be closed and a reference reading recorded. The source shall then be removed and background readings recorded. The calibration source shall be replaced and reference readings recorded.

4.3 <u>Five-Curie Calibration</u>. The 5-curie Gd 153 calibration run shall follow the same procedure as the 1-curie calibration of paragraph 4.2.

TABLE I

CALIBRATION DATA SUMMARY

(Reference Figure 1)

	DESIRED	ACTUAL
GAIN		
AGC Source Spectrum (volts) TP4	+4.5	
AGC Gain Reference (volts) TPF	1.5	
R28 (ohms)		402
R29 (ohms)		49.9
AGC Disc Output (Hz) TP7	750	
WINDOW		
UL Disc. Ref. (volts)		1.25
LL Disc. Ref. (volts)		.850
R10 (ohms)		604
R13 (ohms)		1.18K
Background (Hz)	0	25
PULSE TO DC CONVERTER		
25 pps Output (volts)	0	±.025
TPE at 4 KHz Output (volts) H Gain	4.0V	0
Breakpoint Output (volts)	2.5	2.56
TPD at 40,000 Hz Output (volts) L Gain	4	
R46A (ohms)		2.8K
R47B (ohms)		7.5K
R53 (ohms)		110K
R56 (ohms)		4.7K
R58 (ohms)		19.6K
R108B (ohms)		110К

TABLE II

INSTALLATION AND CHECK-OUT DATA

	Ref.	Cor.	1	2	3	4	
Date				<u>.</u>			
Half Life Factor							
BACKGROUND							
UL pps			<u> </u>				
LL pps							
Window pps							
Averaging Time							
DC Output L Gain							
DC Output H Gain							
AGC pps							ŕ
AGC Output							
CALIBRATION SOURCE							
VL pps							
LL pps							
Window pps					7		
Averaging Time							
DC Output L Gain							
DC Output H Gain							
AGC pps							
AGC Output							

TABLE III

ONE-CURIE CALIBRATION

	25 µCi Ref.	Cor.	Back- ground	25 μCi Ref.	1 C Ref.	1	2
Date							
Half Life Factor							
UL pps		<u></u>					
LL pps							
Window pps							
Averaging Time							
DC Output L Gain							
DC Output H Gain			· · ·				
AGC pps		<u></u>					
AGC Output							
Pressure		<u>, , , , , , , , , , , , , , , , , , , </u>					
Time							
	n-1	n	1 C Ref.	Back- ground	25 μCi Ref.	1	2
Date							
Half Life Factor							
UL pps		<u></u>					
LL pps		<u></u>			7		
Window pps							
Averaging Time							
DC Output L Gain							
DC Output H Gain							
AGC pps							
AGC Output							
Pressure							
Temperature							
Time							

4.4 <u>Composition Sensitivity</u>. Based upon previous test results, the 1-curie or 5-curie source shall be selected to perform the test. Background and reference measurements shall be recorded as in paragraph 4.2. Data shall be recorded as the chamber is evacuated to a pressure of 1.0 mm hg. Argon gas shall be slowly introduced to a pressure of 100 mm hg and data recorded. The chamber shall then be evacuated to 1 mm hg and data recorded. The chamber shall be slowly returned to 1 atmosphere and data recorded. Final background and reference measurements shall be recorded as in paragraph 4.2.

4.5 <u>Separation Sensitivity</u>. Based upon previous test results, the 1-curie or 5-curie source shall be selected for this test. Background and reference measurements shall be recorded as in paragraph 4.2, except the source to detector separation shall be 50 cm in lieu of 100 cm. Data shall be recorded as the chamber is evacuated to 1 mm hg and returned to 1 atmosphere. Final background and reference measurements shall be recorded as in paragraph 4.2.

5.0 SOURCE HANDLING

The source handling and safety procedures are described in this section. The 5-curie Gd 153 source will be used as reference. The source characteristics are listed below.

Material - Gadolinium 153		
Strength - 5 curies		
Half Life - 242 days		
Gamma Energy - 70 Kev	97 Kev	103 Kev
Percent Yield - 3.1%	30%	22%
Form - Sealed Source, Welded S.S. Capsule		
Dose Rate Constant (Computed)		$0.24 \frac{r - cm^2}{mc - hr}$
Dose Rate Constant (Measured)		$0.22 \frac{r - cm^2}{mc - hr}$

The measured dose rate constant is lower than the computed since effects of self-absorption and capsule wall absorption have not been considered. For the dose rate calculations, the more conservative dose rate constant of 0.24 $r - cm^2$ will be used. The sequence of source installation is outlined below.

- 1. Open cask and remove source from shielded container using 5-foot handling tongs.
- 2. Place source on floor and regrasp source in proper orientation for installation.
- 3. Install source in source assembly and actuate mechanism to the closed position.
- 4. Tighten screws securing the source. (Source is shielded in this operation.)

The sequence of source removal is outlined below.

- 5. Loosen screw securing source. (Source is shielded in this operation.)
- 6. Actuate mechanism to the open position and grasp source using 5-foot handling tongs.
- 7. Remove source and place in shielded container.

The total dose rate during this operation is tabulated below.

Operation Number	Time (hr)	Calculated Dose (mr)
1	.002	1.0
2	.003	1.5
3	.003	1.5
4		
5		
6	.003	1.5
7	.002	1.0
TOTAL	.013	6.5

The computed dose per installation and removal cycle is 6.5 mr. This cycle can be repeated fifteen times per week without exceeding a 100 mr per week limit.

The test plan calls for 6 source installation removals, thus allowing for reasonable contingency.

The maximum dose rate on the outside surface of the sphere, assuming 5-foot minimum distance and the attenuation afforded by the 1/4-inch thick steel walls, is computed as 1.0 mr per hour.

122

.36

ADS- 104 NASA

VIEW OF P.M. TUBE CONNECTIONS OUTSID€

COPPER TUBE TO 7-8 IS CASE EROUND.

1. 1. 1.

FIGURE 2

Pulse Height

FIGURE 4 - Backscatter Pulse Height Spectrum