@ https://ntrs.nasa.gov/search.jsp?R=19710026193 2020-03-11T22:26:26+00:00Z

MAXIMUM LIKELIHOOD ANATYSIS OF BATLANCED

INCOMPLETE BLOCK MODELS

Michael Henry Kutner

Texas A&M University




NU-35667

MAXIMUM LIKELIHOCD ANALYSIS OF BALANCED

INCOMPLETE BLOCK MODELS

by

Michael Henry Kutner
Texas AM University

Institute of Statistics
Texas AM University

Technical Report #7

National Aeronautics and Space Administration
Research Grant NGR 4L-001-095

July 1971



CHAPTER I

INTRODUCTION

1.1 Preliminaries

Presently a number of methods exist for obtaining point
estimates of variance components with unbalanced data. Henderson
[12] gives three unbiased methods for estimating variance
components. Searle [26] critically reviews and reformulates,
using matrix theory, Henderson's methods, as well as presenting
a modified fourth method. Hartley and Rao [10] describe a
procedure for obtaining maximum likelihood estimates of variance
components and fixed effects in a mixed analysis of variance
model. LaMotte [20] considers a class of estimators of variance
components which are closely akin to maximum likelihood estimates.
Symmetric sums is a method developed by Koch [17, 18], and
Townsend [30] has developed a method based on best quadratic
unbiased estimation. For a more complete listing see Crump {6]

-and Searle [27]. Any hope for a uniformly best estimation
technique for unbalanced data appears to be futile. Evidence
of this is found in the few comparative studies which have
been made (Bush and Anderson [4], Anderson and Crump [1],

as examples).

Citations follow the style of The Journal of the American
Statistical Association.




Because maximum likelihood estimates yield asymptotically
optimal properties and because there is evidence to indicate
that maximum likelihood estimates also frequently have good
small-sample properties (e.g., Klotz, 53_31: [17]), it is the
intent of this dissertation to examine closely the likelihood
equations. Unfortunately the likelihood equations generally
require a numerical method of solution; therefore, it is extremely
important to identify structure of the likelihood equations
which might allow a less cumbersome computational task of
maximizing the likelihood function. 1In Chapter III a structural
form of the likelihood equations is developed. 1In order to
investigate its computational efficiency and to pursue the
investigation of small-sample properties of maximum 1ikelihoqd
estimates, it was decided to concentrate on the analysis of
balanced incomplete block designs. There were several reasons
for choosing the balanced incomplete block design. It was
felt to be one of the easiest of the unbalanced designs to
~characterize and, further, that valuable information would be
gained for later study of other unbalanced designs. Also,
beyond unbiasedness very little is known about the properties
of the estimates which are presently used in balanced incomplete
block analyses.

Chapter iI treats the matrix analysis of the fixed effects

model primarily for establishing notation and completeness.



Chapter III is concerned with the analysis of the mixed model.
Here, ;he structure of the likelihood equations is employed.

This chapter completely spells out the relationship of maximum
likelihood to analysis of variance. The sometimes misunderstood
recovery of interblock information is considered in great detail.
Chapter IV analyses the random model. Again, the structure
developed in Chapter III is used to solve numerically the
likelihood equations. Also included in this chapter is a
numerical comparison of the maximum likelihood estimates with
Henderson's fitting constants estimates and estimates based on

a minimum variance combination of the sufficient statistics.
Mention is made of the relationship between Rao's [25] estimation
procedure and LaMotte's [21] estimation procedure. Chapter V

is devoted to a summarization and recommendations for areas of

future research.



CHAPTER IT
MATRIX ANALYSIS OF THE FIXED EFFECTS MODEL (MODEL I)
2.1 Definition of the Model and Notation

Consider the model where each observation may be expressed

as
+ B, +e 5 (2.1)

1 if the ith treatment
occurs in the jth block

i=1,.“,t;j=1,.”,b;amim=ni.=
J 0 otherwise.

It should be ﬁoted that if nij = 0 there is no observation. Also,

define gz nij = n (total number of observations)., Further, each

of the b blocks contains k experimental units, each of the t treat-

ments is replicated r times, and each treatment occurs A times in

the same block with every other treatment. Equation (2.1) is the

mathematical model for the balanced incomplete block design (BIB).
If we assume E(yijm) = ﬁ + Ty + Bj and eijm n NID(O, 02) .

then we have defined what is generally referred to as Eisenhart's

Model I [7]. (Notationally, the capital letter E will always denote

the expected value operator.)

In matrix notation we write equation (2.1) as



y = uJ + XIB + XZT + e (2.2)
where y is an (n % 1) vector of observations;

1 1is a scalar constant;

J 1is an (n x 1) vector of ones;

X1 is an (n x b) matrix of known numbers;

B is a (b x 1) vector of unknown constants;

X, is'an (n X t) matrix of known numbers;

T is an (t x 1) vector of unknown constants;

2

e is an (n x 1) vector of independent variables from N(O, o).

This description can be summarized as y n NuJ + X18'+ er, )
. 2
with £=Ely-EWMlly-EWI]'=0T1,

where the prime denotes transpose and I is an (n % n) identdity
matrix. As above we will adopt the convention of using Greek
letters to represent parameters or matrices which involve parameters,
.with the exception being that we will not alter 'standard' notation.

The following is a list of helpful results:

§ nij =r, g nij = k, ; § nij =n = bk = rt , (2.3)
) gy @ AL = A=k -1/ -1, (2.4)

3



or At + - A=rk,
and

bk(k - 1) = At(t = 1), k(b ~ 1) = r(t = k) = (r - )(t - 1). (2.5)

We define f = bk - b -t + 1, where b >t, r >k, t >k, and b > r.
We will adopt the 'dot' notation to indicate a variable has been
sumed over its index or indices, e.g., Vi, < g g yijm’

For the matrix model (2.2), let X:'ZX1 = N, which is called the

incidence matrix and define A' = Xé -1y xr

1° The following

relationships hold for the matrix model:

XX, = kI, X3X, = 1T , (2.6)

J'X, = kJ', J'X! = J3', J'X, = rJ%, J'X} = J' (where J'

1 1 2 2
denotes a row vector of ones of proper dimension) , (2.7)
NN' = (r - ) I+ AT, (2.8)
A'X, = AH(ET - 33%), AR =0, AN =0, (2.9)
tr(WH™ = @)™+ (xr - D" - 1), (2.10)

where tr denotes the trace operator and m is a positive integer.



Relationsghip (2.10) can be established directly by using (2.8) and

(2.4) as follows:

AND® = [(r - A) T+ AJ33']"

m .
Z C:](r _ A)m-l Az Im—z(JJ,)Z
2=0

m
x-0"1+ ¥ C:](r - ™ HMary
2=1

since (JJ') tz-l(JJ') . Now

tr ()™

m T [m m—2 2
=-0"t+ ] [ =-0""0n)
=1

(r-0"t -1+ [r-2at-1D"

(r - M - 1) + ()",

2.2 Solution of the Normal Equations

Form the logarithm of the likelihood function

n 2

anl = - 3

in(2w) - -g- n o
(2.11)

1 _ _ _ o _ _
- 202 (y - wJ X8 XZT) (y - uwJ X8 th)



and differentiate (2,11) with respect to u, B, and 1. The resulting
equations when set equal to zero constitute what are called the

normal equations (N.E.). 1In matrix notation the N.E. are given by

J'Ju + J'X18 + J'XZT = J'y , (2.12).

XlJu + X! X B + Xint = Xiy , (2.13)
and

XéJu + X'X B + XEXZT = Xéy (2.14)

To solve for T, multiply equation (2.13) by k—lN and subtract this

from equation (2.14), yielding

(xé - k-lNXi)Ju + (x' kK NX')X T+

+ (X} -k NX')X B= (X} - kK NX')y
or A + X, + X, 8] = Aly . (2.15)
Since A'J = A'X, = 0, we have
A'X,T = A'y . (2.16)



Simplifying (2.16) we obtain

-1 -1
> S VN = (X! ~
(X2X2 k "NN")T (X2 k

]
le)y

or

T - K (r = DI + AJT']T = (X3 - k‘lei)y

Imposing J't = 0 yields

Imposing J'T = J'8 = 0 in equation (2.12), we get

Now from equation (2.13)

B = k_l[Xiy - KI0 - N'4]

Hence, (2;18), (2,19), and (2.20) are solutions to the N.E.

(2.17)

(2.18)

(2.19)

(2.20)

To estimate 02, differentiate (2.11) with respect to 02 and

set the resulting equation equal to zero yielding
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¢" == (y - wJ X,T XlB) (y - uJ X,T XlB)
(2.21)
I - -1 1 _.JE 1 - -1 v _ ko '
==y' [T -k XX -5 AT - kXX - AA'ly

2,3 Tests of Hypotheses

Suppose we write model (2.2) in partitioned form as
y =Xy +e (2.22)

where X = (JIXllXZ) and y' = (uIBIT). Now consider testing the

hypothesgis
Ho: K'y = ¢ (2.23)

where K' has rows ki,

constants, and kiy is estimable. The test statistic for testing

i=1, oo, t+ b+ 1, ¢ is a vector of
(2.23) is given by

(R*{=c) VK (X'X) K] "L (R'y=c)
F = 5 (2.24)
r(K) ¢

which is a noncentral F distribution with r(K) degrees of freedom
in the numerator and [n - r(K)] degrees of freedom in the denomina-

tor and with noncentrality parameter
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A= —li'(K'Y - c)'(K'(X'X)-K)—l(K'Y -~ ¢). Note that y is any
20
solution to the N.E., (X'X) denotes any generalized inverse of

X'X, r(+) denotes rank, and

22 XN (XD |

n-r (X) vy - XR(K'K) “Lel H(I -~ X(X'X)7X")

[y - XR(K'K) "Yel/[n - £(X)]

y'I - XX'X) X']y/[n - r(X)] .

For the general development see Searle [28, Chapter 5].

In particular, consider testing the equality of treatments, i.e.,
H:T =1,=.0.517 . (2.25)

From (2.23) let
k' = [o|o]J,~11 «' = (uIBITl, Tys eees Tt), and ¢ = 0, (2.26)

which is equivalent to (2.25). It can be shown that by testing
(2.26) using (2.24) we obtain the same F statistic under Ho as in
analysis of variance (AOV) (see Graybill, [9, p. 312]). Here,

r(K) =t-land rX) =t +b -1,
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CHAPTER ILI
MATRIX ANALYSIS OF THE MIXED MODEL (MODEL III)

3.1 Definition of the Model

Recall equation (2.2) and set B = B, yielding

y=uJ +X.B+X,T+e

1 2

where
2
B ~ NID(O, GB)
Alternately, we can write

y ~ N(uJ + X1, I)

2
where

I=01l1+ag

This description is commonly regarded as Eisenhart's Model III

(treatments fixed, blocks random) [7].
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3.2 Identification of Sufficient Statistics

In order to identify sufficient statistics, the following

relationship_is useful:
-1 _ -1
(I + CG) =I~-C(I+GC) G . (3.1)

(See LaMotte [20] for proof.) To identify a minimal set of

sufficient statistics, we write the exponent of the likelihood

(y = uJ - X,7)' Z_l(y - uJ - X,1)

02
B

£ -~ - A\l -—1. a S——————— 1 -— -
(y - uJ er) 3 (1 5 5 Xlxl)(y W -x37 (3.2
o g -+ koB

utilizing - (3.1) to obtain the inverse of . In the exponent

we expand (3.2) yielding

2 2
o OoNX!
N B e wle  2H v 2 yper B 1
A A P T N o LA T A Ay T - Ml Y M
o] o (o +ko) o “+ko o o +ko
B B B
P L r'xéz'lsz + ZUJ'Z-lsz i (3.3)

Since the last three terms in (3.3) do not involve the observa-

tions they can be ignored with regard to identifying sufficient
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statistics via the factorization theorem. (See Mood and
Graybill [23, pp. 168-169].) Rewriting the first four terms of

(3.3), we have in summation notation

02 b
1 2 B 2 2u y
% ijm ~1IM 02(02+k0123) j=1 *J (02+k0123)
TR IS P
-— 1 T,y - B T, n..y . 1. (3.4)
02 i=1 i‘i.. 53 i=1 - j=1 ij’.3.
o +koB

For b > t we identify, after eliminating redundancies, the

statistics
2 2 _ )
i§m Vijm? § Vg Vi, @=L ey el
and X n,.y (1=1, ..., t) (3.5)
i ij7ede

which agree with those previously reported by Hultquist and
Graybill [14]. By using the factorization theorem we have a
direct procedure for identifying sufficient statistics. However,
we do require a closed form solution to the inverse of the

variance-covariance matrix. When b = t, ) nijy j is a set of t
j L .



relations involving t)yj 's and because b = t we can determine

each y j G=1, ..., b). Therefore, since each y j is known
ln,.y (i=1, ..., t) and z yz in (3.5) can be reduced to
i 137 .3. j .

y j G=1, ..., b) when b = t.

As an alternate to the above set of sufficient statistics

for the case b > t we may consider the set

.. i=1, ..., t-1) , § nijy.j. (i=1, ..., t)

and

1 1 At JJ'
= g'[= Vo e INY! NL Jo
8 = ' X% - wemy BV ey Y

= |l ..!'_ |- _Ii_ | _-1_-_ [ BT ] [l
s¢ = ¥ i XX -5 KX + I+ 53 (XlN X} + XZNX1)
- X N'NX'] y (3.6)
kit X1 1 ’ '

For convenience and for later reference we display the
statistics S, and Se in tabular form (Table I) to illustrate
their relation to quadratic forms. We also display statistics
S35 8,5 and Sg in a similar way. These statistics will be
useful in later analysis and will also appear in the analysis

of the random model in Chapter V. The notation 85 i=2, ..., 6,

15
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is made to conform with that given later for the random model.

TABLE I. RELATIONSHIP OF AN Sy TO ITS QUADRATIC FORM

L} 1 Tt 1 1] L4 Y
X, X} XX} I | X N'%) + KNK] | X N'NK] JJ
1 _ 1 At
S2 K k(z-2) | Dk(z-r)
< 1 __k
3 k(r-2) t(r-\)
s 1 L
4 2k 2
s -k -1 1
5 At At kAt
s |- k. 1 1 .
6 k At At kAt

.To use Table I write
= v [—L ¥ NTNR! - —E gt
s3=¥ [k(r-A) X, N'NX} YEmy JJI'ly .

To obtain the results in Table I and a number of later

results it is useful to construct a multiplication table (Table II).
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Lpiq ;Nﬁ L pota L pia Lpa Lpp | L
L ;mvz + A(-0)7 ;Nﬁ + 2A(¢=2) ;Nﬁ;. Ta(v-2)3 Laay + "aqv-1) | % |9
Lpya ;sz + a1 | fay + SAGe-1 | LAy CaCe-n)w Lav + CaQ=ay | Spq | S
Lpqa n>~vz + 2a(¢-2) Ipa Ly + ¢>2Lv Tz 9\ v
L, 9, S\ v, Z, T, |
Lpa Laae + SaQe-2) Az Lo 4 Taqy-1) Cpx Sp | C
Ly e oA "ax a Ty | Ty
Ly 95 A 7\ 9 T\ .
T\ gukIz FA W04 WIEVI NOTIVOTTATITON 1T WIEVI



=1,V, = X.N'X!

= ' = !
In Table II, V, = X;X}, V, = X,X}, V 4 = X N'X5, Vo

272° '3

= 1 Ny ! = '
Ve = X,N'NK], and V, = JJ'.

For later reference, it is convenient to rewrite the

exponent (3.2) in terms of quadratic forms as

V. = X NX!

(3.7)

l—__ 1 - -1 1] -1 - - ' t - -
2 [Y' (@ -r 7 X,K)y+r (7 -u - X0 LG -w - X0]
2
g
- [(y =~ uJ = X, 1) X XD (y - - X,1)]
02(02+ko§) 2 171 2
02
1 B
== (5, +5,) - Sq -
62 1 2 02(02 + kcg) 3
Note that (I - 1:”l X X)J = (I~ r—1 X! X, =0
272 272 2 *

3.3 Likelihood Equations (L.E.)

3.3.1 General structure of the L.E. for mixed models

Before we proceed to obtain the L.E. for the BIB design
Model III, a general form of the L.E. will be developed. To
develop this form the following rules for differentiation are

given:

18



—5)
2 2
3oi Boi
(3.8)
1
2. 822 _z-l 322 Z_l.
90, 90,
i i
Define V, = EE—-.
i 802
i
The general mixed model is written as
P
y=Xo+ ] XF (3.9)
i=1

where Xo is an (n x k) matrix of known fixed numbers, k < n;

Xi’ i=1, ..., P, is an (n x mi) matrix of known numbers,

1 =M

o 1is a (k x 1) vector of unknown constants;

Fi’ i=1, ..., p, is an Gni x 1) vector of independent

.variables from N(O, ci).
T2
Note that E(y) = X a and % = ] oX

X!. Here, V, = X X!,
. i i i1
i=]1

i

i=1, ..., p, so that

19



p
=) oV, . (3.10)

Using (3.8) differentiate

a

nl, = 5

n(2m) - Y4n |Z| - Ler[s Ny - X )y -Xa)']l (3.11)

with respect to a and oi, i=1, ..., p, and obtain the L.E.

1

_1 _ ' -
Xo =Xy, (3.12)

X'z
o
and

Patr(z V)1 = BsGy - X' 2TV, 27Ny - X o)1 (3.13)

i
Note that the left hand side (1.h.s.) of (3.13) can be written

13

[str (2 V)1 [etr (L v,z

B ) ezt A v, %]
5 33

or in matrix form

20



02
1
ezt vol=a|: = ae, (3.14)
2
v}
P
1 _l _1
where Q = (wij) = [Ytr(Z Vi T Vj)]' Therefore, we can
write (3.13) as
1 ] —l -l
Q06 = [(y - Xoa) z Vi I (y - Xba)] . (3.15)

Note that @ is the information matrix, i.e.,

2
Q=E_——————a;’nL2 :
90, 90,
i3
PXP

(See LaMotte [19].) This suggests an iterative technique for
simultaneously solving (3.12) and (3.15). Furthermore, the
right hand side (r.h.s.) of (3.15) can be written as a matrix,
say A, dependent upon unknown parameters, times a vector of
sufficient statistics and fixed parameters, say S. Hence,
(3.15) can be written in matrix form as

Qe=A8S . (3.16)

This will be demonstrated for the BIB mixed and random design.

21
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3.3.2 L.E. for the fixed effects

The logarithm of the likelihood is given by

gn L = - 3 4n(2r) - %a 1]

- Qtr[E—l(y -puJ - XZT)(Y - uJ - XZT)'] . (3.17)

Differentiating (3.17) with respect to u and T and setting the

resulting equations equal to zero yields

J' -1 u J! i}
z [J X2] = Ty . (3.18)
X! T Xé

To simplify (3.18), we write the l.h.s. as

2
J! o H
1 B ,
_2[ ][I"E‘"z' X151 %) H

] Xé o +kcB T

1 n rJ' koz n rJ' U
_ B
o rJ rl c +k0B rJ k "NN' T

and the r.h.s. as




2
2 kcB

Xy +
02+k0§ 2 02+kc§

Q lH
N

l_"l 1
s —k T MDYy

X

3.3.3 L.E. for the variance components

The L.E. for the variance components of the BIB design
Model III aré obtained by finding those quantities listed in

equation (3.15). The information matrix is found using

Datr(z L v, g1 V)1 and is given by
64 + (k—l)(c2 + kcg)2 kc4
b
Q:lyz—-——-——-———-—

04(02+k0§)2 4 9 4

[,ko 'k

1k 1 0

_, b b(k=1)
Y3 3.3 2 | ¥ 7% .
(o“+ko?) k k o 0 o

(3.20)

23
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The r.h.s. of (3.15) is found by expanding [%(y - uJ - XZT)'-

Z—l Vi Z_l(y - uJ - XZT)], the result of which is
AS
where
- 2 -
i1 1 o? .
04 o4 04k o] +kcrB
A=1/2 ’
1
0 0
(02+k02)2
. B -
and
S
S = S2 R
S3
and Si is defined by (3.7).
2
o
Letting 6 =
02
B

we obtain the equation in the form given in (3.16).

(3.21)



3.4 Discussion of the Estimation of u and 1

In most of the standard references where BIB analysis is
discussed, there frequently appears a section dealing with
intrablock analysis and the recovery of interblock information,i
(e.g., see Kempthorne [15], Graybill [9], Cochran aﬁd Cox [5]).
The recovery of interblock information was first considered
by Yates [32] and subsequently by a number of other writers
(e.g., Zelen [33], Rao, C. R. {24], and Shah [29]). The basic
idea employed in the recovery of interblock information can
be summarized as follows: If one performs only the intrablock |
analysis then he has "lost' some treatment information which is!
contained in the blocks, i.e., there exists another unbiased |
estimate of treatments independent of the intrablock estimates

and it is a function of the block totals. (See Graybill {9,

p. 408].) To pursue this, recall equation (3.18) rewritten

2 n rJ!’ 0 0. U
o
02+k0 -1 ¥ -1 '
B rJ k "NN', 0 rI - k "NN' T
0 J'y
2
- + ______20 5 . (3.22)
-1 o +korB -1
Ty - ' 1
Xoy - k "NXyy k "NXjy

25



Imposing J't = 0 yields

(3.23)

and

2 2
(—2—) (xud + SE:Al‘T) + A8 = Ay + =2 KL NXiy . (3.24)
2,. 2 k k 2,, 2 1
(o] +kO’B o +k.0'B

(See Bargmann [2] for equivalent result.)

Investigation of (3.24) shows that it is a sum of two sets

of equations

Ai. T=A'y (3.24a)
and
02 r-A 02 -1
3 3 (ruJ + < ) = ( 5 2) k NXi . (3.24b)
o +kcB o +koB

Recalling the estimates which were obtained for the fixed model,

equations (2.18) and (2.19), we see that these agree with (3.23)

and the solution of (3.24a), The solution of (3.24a) is

(3.24¢)

26



and is referred to as the 'intrablock' estimate of t. Now

solving (3.24b) with (3.23) we obtain

=25 el ey - e
T Y [k Nle ruJ]
= L xly - L JNx!ya] (3.24d)
r-A 1 t 1

since kJ'y = J'NXiy. The estimator T is known as the 'interblock®

estimator of T (Graybill [9, p. 408]). It is shown in Graybill

that T and T are unbiased with wvariances EiE:%l- 02 and

At

E%;%%% (02 + kog), respectively. Hence the problem of

'recoverihg' the interblock information is just that of improving

on the estimator T by considering a minimum variance combination

of (3.24c) and (3.24d), namely

2 2
< o~ + ko N 2 -
T = -—2-__}23- %E_T+(2° 5) (rk")r . (3.24e)
ro +Ato o “+ko
: B B
Note that (3.24) can be rewritten as
2 2 X
-A£-+ =2 Q—Jz———) T=A'y + ( g )(k—lNX'y - )
k k 2 2 2 2
o +ko ¢ +ko
B B
2
At ° -A, =
T G ED T
o o +ko

B

27



28

Therefore, the solution of (3.24) is identical with the minimum
variance combination (3.24c). Hence, the often confusing
'recovery' is nothing more than the solution of the L.E. Of

course, the estimate depends on the unknown ratio 02 and
2

o +kc§

since we generally do not know this ratio, we must estimate it.
Much has been written in regard to this problem and the solutions
depend upon the manner in which one estimates this ratio.

(See Shah [29] for references and some comparisons of methods.)

Yates [32] suggests a procedure based on the AOV

estimates given in Table III.

- 2 ~2 _  (b-=-1) _
The estimates ¢ Ee and s £(r=1) (Eb Ee) are
2 .
used to form —79———- in Yates' method. We suggest 02 and
o] +kcB

og be estimated by solving the L.E. However, the equations,
given by (3.34) and (3.36), generally require an iterative

solution.
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- -9 Te30L
£
[A
Nb Jm uorloBIIqNS T+9~3-Yq |x0xxg MooTqaelul
I= T=f = ver TI=[
g 19 q 1 3 0T A T 73X .
0 o - e + £7°u == £ — -9 [pe) syoorg
¢ o3t 4 ..ﬁ:.mawmh MH vmx (*tpe) sydo1
[A [A
T=T
.mm = .w { -3 SIUSWIBDIAY
£ ey
4 [A
SWH SH sS 3P 3%anog

TIAOR QIXIW JHI ¥04 TTIVI AOV *III F'19VL



3.5 Solution of the L.E.

3.5.1 Approximate solution using the fixed model estimates

Let us now consider the task of approximately solving the

L.E. First, we find

2
6 [x® K] 20%ke?) [0 0
Q-l,= 20 . + B
bk (k-1) |-k 1 bk? 0o 1

Next, pre-multiply 26 =AS(found in Section 3.3.3) by & %
yielding
o2 | ¥ oK® 0 0 o s
~ 1 L1 1
- 2 2 S
) bk? (k-1) bk 2
oy & -k 1 0 0 1 s,
X ok x| |51
S ) (3.25)
bk? (k-1)

Since 82 and S3 depend on p and T we must estimate them.

A 1] . "~
As a first approximation consider uy = QHZ- and T = X%-A'y.

Define Si = Si(u, T). We then obtain from the 02 equation in

(3.25)
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Th-1)

Q
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(3.26)

where the Si's are given in Table IV. Note that S6 1s defined

rt

in Table I.
TABLE IV. RELATIONSHIP BETWEEN Si AND ITS QUADRATIC FORM
1 ] Iyt ' v ' 1
XlX1 X2X2 I XlN X2 + XZle XlN NXl JJ
a 1
Sl -7 1
s 1iray2 - Lrm) r _1
by 2 2
2 T At (At) t) rt
- k.2 rk? (rk + At) 1
S50 1 | NG ST | T2 | Th
() ()
‘To use Table IV, we take for example
a 1 ,r=-)2 (x-2) r
S, =y'"[= D" X, X! - (X,N'X! + X_NX!) + ——, X_N'NX!
3 r At 2 V(At)z 17 72 2771 _(At)z 1
nad ‘L JJ'] y ]



By writing
S, = ks +(-A)l(—w
3 7T M EY
where
2s
- EAy o LA AE
s, =8, + ¢ rk) Sg z T s3=vwts,

and the si's are defined in Table I, we obtain

. 2
22 _ (x-\) rk
bk (o +kGB) 53 = kS7 + It kw kS2 f e Vo (3.27)

~

Solving for og, we obtain

32 ='E2._” ¢ .
B bk bk(k-1) Atb = °

(3.28)

It is interesting to compare estimates (3.26) and (3.27)
with those obtained by using Yates' method given in the previous
section. (These are also Henderson's method 3 estimates.)

Apart from degrees of freedom the estimates are the same, i.e.,
if b(k-1) = b(k~1) - (t=1) and if we eliminate some of the
~1's from the degrees of freedom. To see this, look at (3.27)

and observe
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— k2 k? (£=1)
P Pondhebuliig r -
bk (o +koB) = ks2 + At ki 2 + Tt (k-1
= k(sz+ w) = ks7 .
Hence
22 _ 5y °6
° = Bk " BR(k-1) (3.29)
Yates' estimates are given as
s
2o
bk~b-t+1
s s
62 - _(b-1) 7 6 , (3.30)
B  t(xr-1) [(b-1) bk-b-t+l

and the comparisons are clearly as noted above. Therefore,

we conclude that if the fixed model estimates are used in the
_L.E. then, apart from small discrepancies in degrees of
freedom, the estimates of the variance components are equal to

those obtained using AOV techniques.

3.5.2 Direct solution using the maximum likelihood estimates

~ ]
Suppose we substitute u = QEX and

33
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Ly R

2, 2 2

LN E U T T B N

ol i seunw 1 B i o R IR
ro +ltoB o +kcB

the maximum likelihood estimates (3.23) and (3.24e), into (3.21).

Let
o bt x . A o% 02+k0§
h=(y—uJ—X2)=I ———2—-—-5.].]'— ZXZX'
r ro +Ato ro +Atc
» B B
2
s
+ — X NX!ly .
rcz+xt02 271
B
Now compute
2
x GB
1 = | e—— Y SV I_ ]
XZXZh 5 5 [=(x-2) X2X2 AJIY + X NX1] v .
ro +Ato
: B
Therefore
Z-_}.Z' ':
82 =2 h X2X2h
2 2
1|__°8 - :
=7 y [(r—A) X2 5 = r(r-k)(XlN X2 + XZle)
ro +Ato
: B
2 1 L 2 A
+ r X N'NX! - A"tIJ'] ¥y . (3.31)

1 1



These results were obtained with the aid of multiplication

Table II and results (2.3) through (2.10).

Similarly, we obtain

2
% T 0= f 02+ko§
h'X.X!h =S, = y'"|X,X! + (x-}) - X, X! - r
1 3 171 r02+At02 272
L B
2 ) 2,. 2
GB o] +koB
+ X, NX!) + : l1+r
271 2 2 2 2
Yo +ﬁtoBJ ro +AtoB
2. 2?2 2 2
o +ko Ako o +ko
B , B 1
Ul O ) B T R T
o +AtcB ro_+ktcB rao +AtcB

or to express this in terms of the s,'s

i
2
% 02+kc§ )
S, = ks, + At ( s
3 2 2 k
ro +Ato
B
2
02+ko§
= k82 + rit W
Yo +AtcB

5

r02+xtc

X N'NX!

JJ'

-2s, + =—s.)

4

k 3

1yt
5 (XlN X

B

Y »

2

(3.32)

Now consider the equation for 02 from (3.25), which can be

written



bk(k-1) 6% = kS. + kS, - §

Again as above, equation (3.33) can be simplified to

2
bk (k-1) 02 = ks, + -—£L__—_f r(r-2) w .

6 rcg+ktoB
The equation for Gg from (3.25) can be written as
bkZ(k-1) o2 = -bk(k-1) o + (k-1) §3
or

2 2. =
bk(c™ + koB) = S3 .

Thus (3.35) results in

2
2 2 02+ko§
bk(c™ + koB) = ks2 + At |5 W .

2
rc_+AtoB

As done previously, let us consider the simultaneous

solution of (3.34) and (3.36) and relate this to Yates' AOV

02

2 2
o] +koB

estimates. If is small and if we eliminate some of

the -1's in the degrees of freedom, we can show that maximum

(3.33)

(3.34)

(3.35)

(3.36)



likelihood estimates and AQV estimates are equivalent. To

exhibit this result, note that (3.34) can be written

2 [ 02 ? r-A
bk(k~1) ¢~ = ks6 + I e 2 ( = ) w
o+ — o
{ r B
02 2 r=-A
= ks, + > w (3.37)
6 02+kc§ r ’

using At = rk instead of A(t-1) = r(k-1).

It follows that (3.37) is approximately

S

2. %
b(k-1)
versus Yates' estimate
§2 . o6
bk~b-t+l °

‘Also, (3.36) can be written

_~N— 2 2

o 2 at |9 Thog

bk(o +k0B) = k82 + = WW = k82 + kw = ks7

T cB

using the relationship that yielded (3.37). Therefore,
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32 °7 _ %6 _
B bk  bk(k-1)

versus Yates' estimate

2 __-1) |7 %6
%8 ~ t(r-1) |b-1 ~ bk-b-t+l| °

2
It also follows that if _EE——E is small, then applying the
o] +-koB

A

same degree of freedom adjustment as above results in T =T,

2
3 3 is not small? Then maximum likelihood
g +kcB

What if

estimates and AOV estimates can differ appreciably. To see an
example of this, consider Graybill's [9] AOV on page 418,

Table 18.10. Yates' method produces the estimates

2424

= .00596 .

Qe
[

Iterating on (3.34) and (3.36) yields

.1587

Q
1

.00713

Qe
W
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which, as indicated above, differ considerably from the AOV
estimates, Note that in this example the estimate of
2

—EE——E-is approximately 1, It is important to realize that

o] +koB

(3.34) and (3.36) must in most cases be solved iteratively, i.e.,
we must estimate 02 and cg on the r.h.s. of (3.34) and (3.36)

and obtain the first iteration estimates for 02 and 02+k0§

on the 1l.h.s.; then put these first iteration estimates into

the r.h.s. of (3.34) and (3.36) and continue this process until

convergence is obtained.
3.6 Large Sample Properties of the Estimators

Maximum iikelihood estimates possess a number of desirable
large sample properties. These include: (1) that the vector
of estimates is consistent; (2) that the joint maximum
likelihood estimates tend to a multivariate normal distribution
(under regularity conditions); (3) that the large sample
variance-covariance matrix is the inverse of the information
matrix and; (4) that the estimates are asymptotically unbiased
and asymptotically efficient. (See Kendall and Stuart [16].)

In reference to the previous section, if the ratios of
the parameters on the r.h.s. of (3.34) and (3.36) were known,
then we would have the exact solution of the L.E. and could
claim the properties of maximum likelihood. However, we

practically never know these ratios and consequently are



hopeful that our iterative technique converges to the maximum

of the likelihood function.
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CHAPTER IV
MATRIX ANALYSIS OF THE RANDOM MODEL (MODEL II)
4,1 Definition of the Model

Consider equation (2.2) and set B = B, T = T resulting in

y=uJ + XlB + X2T + e where B ™ N(O, Ggl)

and T~ N(O, 0%1) .

Alternately, we can write

‘ _ 2 2. w1 2, o1
yvN(uI, ) aand I =01+ chlxl + cTXZX2 .

With this definition of the model we have what is commonly called

Eisenhart's Model IT [7].

4,2 TIdentification of Sufficient Statistics

Write
_ 2 2 ' 2 2 w1l 2 '
I=("I+ onlxl)[I + (¢"I + onlxl) oTXZXZ] ,
then
~1 _ 2 2 -l 2 e=l, 2 2 -1
X —‘[I + (¢TI + onlxl) oTXZXZ] (6" + onlxl) , (4.1)
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where each inverse on the r.h.s, of (4.1l) can be found by applying

(3.1). The resulting inverse can be shown to be

02 02n 2 2
_1= "2 -_B. T T [} BT tvt
) 4] = X1X1 ¢ XZXZ + I 4 —— (X N X2 + X NXl)
0402 1020202
__BT INg! = e BT sre
7 X N'NXJ on JJt (4.2)

where

_ 2 2 _ 2 2 2 2
n=o + koB s, V=n+ TOp and ¢ =0 v + AtoB T °

To identify sufficient statistics (b > t), write the exponent

, 6
(y - ud! X—I(Y - uJ) = Z P (y - u3)!? Uj(y - uJ) (4.3)
j=1

where the Uj'sare linear combinations of the matrices found in
(4.2) such that these quadratic forms reveal the sufficient
‘statistics and the pj's involve the parameters; Table IV is given
to identify the pj's and U,'s and furthef, this set of sufficient

3

statistics was chosen subject to U

3

choice was made in order to obtain the sufficient statistics

J=0,3=1, ..., 5. This

s

12 i=1, ..., 6, previously obtained by Weeks and Graybill [31].
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TABLE V, RELATION OF pj AND Uj TO 8
t t ty? ] 1 ] v
pj X1X1 X2X2 I XlN X2+X2NX1 X N'NX JJ
1 1 _ At
2 n K K(x-A) | Dk(x-M)
[02+-)I%- c,%]
s _ k
3 ) t(r-A)
2
] -20T 1
4 ¢ 2k
=\ 2
o MR Cn x L
5 ¢ At At
6 2 k At At
o
To illustrate the use of Table V, consider for example
6. = v [ K X! - <L (X,N'X} + XNK!) + —— X N'NX!ly
5 At 7272 At 1 T2 271 kit "1 1
= y'Usy
(52
where P5 = s is substituted into the r.h.s. of equation
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(4.3) when j = 5. The remaining parts on the r.h.s. of (4.3) are

obtained ahalogously. When b = t, ) is not defined.
4,3 L, E. for 1 and the Variance Components
The logarithm of the likelihood function is, apart from an
additive constant,

pnL=-2gn 5] - %—(y Y LT« TR S (4.4)

Differentiating (4.4) with respect to u, 02, og, and o%, yields the

L.E., which can be written

gt ogy = gt v, (4.5)
and
2
o
2 1 - -1 -1
Q@ logl = [5G -wDN' 27V, I 7@y -uD], 1=1,2,3, (46)
02
T
where V, = EE—-, v ='§§—-, v, = R and @ is the information
1 2 2 2 3 2
90 acB BUT

matrix. The reader is referred to equation (3.15) for the

development.
4.4 Solution of the L. E,

Equation (4.5) is easily shown to yield



ﬁ=i:;y-=§... . 4.7
Equation (4.6) is difficult to solve. 1In order to develop the
comparison between maximum likelihood and a minimum variance
combination of the sufficient statistics, we decided to work with

a different set of sufficient statistics from those given by Weeks
and Graybill [31]. Table VI gives the relationship between the two
sets of sufficient statistics and the expected values of this new

set, denoted by P PZ’ P3, Zl’ and Zz. Further, it can be shown

1’
that Pl’ PZ’ and P3 are independent of Z1 and ZZ' Also, the

expected values in Table VI suggested the reparameterization

2 2 2
* =
oy o+ koB .
TABLE yI. RELATION OF Pl, P2’ P3, Zl, Z2
TO Sys 835 845 S5y S¢
s, S S, 8¢ Sg Expected Value
=k 1 2
Py DN | D ’
1 -k 2 2
Py (t-1) At (t-1) " + koy
k2 2
P3 - - Xe(e-1) (x-1) 9
1
% T o
1 2 2
Zz —.E:E o ."l" kO'B
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To use Table VI, write for example

="""“:L"-'-S +-._._]-'—~S
1 (t-1) (r-1) 4 (e-1) 5 °

P
Low [22] suggests a linear combination of the sufficient

statistics with constant coefficients as estimates of the variance
components, She then compares the wvariances of this set of
estimates. As alternatives consider maximum likelihood estimates
or a minimum variance combination of these sufficient statistics.,
To pursue the connection between the latter two approaches, note
that since the P's and Z's are independent, we have
1

= ! = n
=0 +D QZD QP[I + QP

p D'QZD] R (4.8)

_ {100 . .
where D = [blO]’ and QP and QZ are the information matrices

associated with the P's and Z's, respectively. In order to find

Q l, we apply (3.1) to (4.8) and find

-1

Q= (I+ @D)Q;l (4.9)

where ¢ = —QEID‘[Dﬂng‘ + 921]‘1. Therefore, one must find Qp, QZ’
and their inverses.

To form QP and QZ’ we apply



1
2

where 8—1 is given by (4.2)

and will not be given.

relationships (2.6) through (2.10) and multiplication Table II.

*

The algebra involved is quite tedious

After simplification, we obtain

[ 2 r-A 2
(ops + = op)

= (=)
2¢

1 0
+'—_2 1i(0, 1, r)’
2v r

2

(o

tr(z'lviz‘lvj)] = |E [

i

-37an L
50%30°

|

At(r=2) 04

2

k

+

2

At

3

where v and ¢ are defined in (4.2), and

Furthermore, the r.h.,s. of (4.6) can be written after substituting

(o

T

2.2

)

3x3

However, one makes extensive use of the

47

At 4
& B
-\ 4
-—'k o
At 2 - 2.2
G opx ¥ % 9p)
(4.10)
. (4.11)
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» —-—
u = Y.-. as

L [0 E P
8, - —5 |1| (0, 1, r)|D*e, R (4.12)
2v T ] Z

which displays the form given in (3.16). To obtain (4.12), we can
use the orthogonal matrix given by Weeks and Graybill [31] to form
the decomposition of the r.h.s. into a matrix times the vector of
sufficient statistics and then transform these si's, i=1, ..., 6,
to Pl, PZ’ P3, Zl’ Z2 via Table IV, However, one can obtain the
result more directly by simply expanding [(y - uJ)'Z-IViZ—l(y - uJ)]
using (4.2) for Z—l, and utilizing multiplication Table II and
Table I.

Now let us look at the L. E. for the variance components, i.e.,

r 2 9
g
0 X P
2 - “l - l ! 1
Op% e, -5 |1 ©, 1, r)1d'e, . (4.13)
2v© \r . Z
.
VT

Note that

"1t = e
QD QZ = (I + @D)QP D QZ (4.14)

and further récall that

= o~lpt ~1o¢ -1,-1
@—SZPD[DQPD +QZ] .
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Also, @[Dﬂng‘ + Q;l] = -Q;lD', and rearranging, we get
"'l * "1
(T + @D)QP Dt = —@Qz . (4.15)
Therefore,
~Lloe =
Q "D'Q, = ~o , (4.16)
Hence,
(62 )
2 gt [
Ogx| = P+ (P ~ Z) - —5 1} (0, 1, )P . (4.17)
2v7 |\r
02
LT

The first two terms on the r.h.s. of (4.17) are a linear combina-
tion of the sufficient statistics where ¢ is chosen to minimize the
variance of this linear combination (See Hocking, et al., [13]).
Thus, we observe from (4.17) that maximum likelihood and a minimum
variance combination of the sufficient statistics differ by the

last term on the r.,h.s. of (4.17). This difference will be discussed
in the next section., Note that (4.17) is now in a good form for

iteration,
4.5 Numerical Comparisons

As noted in the previous section, one must iterate on (4.17)

to estimate the variance components. Therefore, a computer program
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was written to solve (4,17). 1In addition, a simulation study was

made comparing (1) maximum likelihood, (2) the minimum variance

combination of the sufficient statistics, and (3) Henderson's fitting

constants estimates. The fitting constants estimates were chosen

because Low [22] states that these estimates ",..tend to have

smaller variance when the cz's are such that a BIB might be used."
Without loss of generality p was assumed equal to zero. To

generate the multivariate normal data, let x v N(0, £) and

y ~ N(0, I). Let M be a matrix whose columns are the eigenvectors

of I, then MIM' = Diag(ki), where Diag(xi) is a diagonal matrix

with Ai the characteristic roots of I. Choose H = Diag(l/%_)M, then
' i
x = H 1y is the transformation needed such that I = H-1(H")-1, i.e.,

the variance~covariance matrix can be written as a product of a
triangular matrix and its transposed matrix. To find H_l we used
the square-root method. (See Faddeev and Faddeeva [8 , pp. 144~1471,)
Therefore, we generated N(0, 1)'s and applied the above transforma-
tion to obtain N(0, Z). Incidentally, the N(0, 1)'s are generated
using the Box-Muller [3] equationmns.

Two hundred samples were generated for each of the BIB designs
under study. BIB designs with n = 12, 30, and 42 observations
were generated for numerous sets of parameters. The starting values
chosen for both the L. E. and the minimum variance combination of
the sufficient statistics were the fitting constants estimators.
However, this choice was for convenience and other starting values

were investigated later. The iterative technique was performed
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using the unconstrained L, E. The results are summarized as follows.

All three methods on the average produce the same estimates when

2 &2
either —5 or —3 is greater than 1. Also, their sample variances
o} o
are almost identical and are quite close to the large-sample
2 2
o o}

maximum likelihood wvariances, If both'~§ and-—g are considerably
smaller than 1, then one encounters some convergence difficulties
solving the L, E., However, even in this case if we eliminate the
divergent results and compare the remaining estimates we find that
on the average they are not different. It is noted that for

individual cases one can find the fitting constants estimates and

the maximum likelihood estimates to be quite different. It is very

uncommon to find the maximum likelihood estimates and the minimum

variance combination estimates differing significantly. For all the

cases considered it appears that the starting values can be vastly
different and have little effect on convergence when either

2 &

—5 Ot — is near or greater than 1, but when divergent cases are

2 2
o o

present starting values do not seem to be the cause for divergence,
Since we are iterating on the L, E. we cannot guarantee a global
maximum and hence can only hope that the apparent indifference to
starting values indicates the desired maximum,

Rao [25] recently has proposed a procedure based on MInimum
Norm Quadratic Unbiased Estimation (MINQUE)., LaMotte's [21]
procedure is an iterative procedure which is essentially maximum

likelihood corrected for bias, If one takes as starting values
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02 =1, cg = 0% = 0 using LaMotte's technique, we obtain after the
first iteration estimates based on the unadjusted BIB analysis, i.e.,
one simultaneously equates the sample mean squares to the expected
mean squares and solves for the individual variance components from

the AOV Table VII.

TABLE VII, UNADJUSTED AOV TABLE FOR THE RANDOM MODEL

5.V, d.f. SS E(MS)
1 _ Yeeen2 2 2 b-r| .2
Blocks b-1 K g(y.j. B ) o° + kcB + E;:I] OT
. l sace 2 2 t"k 2 + 2
Treatments t -1 p g(yi.. ILE—Q o + (E:i] UB roT

Remainder bk-b~t+1 Subtraction

2 Yeoo 2 k(b-1) 2  r(t-1) 2
- o T r-1) 1

- IZn Yism = Pk O TBk-1)

Total bk - 1 Z Z
ij

It has been shown by Low [22] that these estimates tend to have
larger variance than the fitting constants estimates when the cz's

are such that a BIB might be used. It can be shown that if one

takes 02 = o% = ci = 1 as initial estimates using LaMotte's proce-

dure then the resulting estimates after one iteration are Rao's

MINQUE estimates. Consequently, one is skeptical about the variance
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of Rao's estimates,

In conclusion, we state that generally the fitting constants
estimators compare quite favorably with both the maximum likelihood
estimates and the minimum variance combination estimates. Occasion-—
ally, one of the latterltwo estimates is uniformly better than the
others when the criterion for comparison is sample variance. Never
did we find a case where the fitting constants estimates were

uniformly better.
4,6 Negative Estimates of Variance Components

In the previous section and also in Section 5 of Chapter 3,
we have considered the unconstrained solution of the L. E. Since
reporting negative estimates for known nonnegative parameters is
not generally well received, we present in this section the necessary
steps required to modify and eliminate negative estimates.

It is relatively easy to impose nonnegativity constraints on
the estimates of the variance components, If there is one negative
estimate, then this component is set equal to zero and we delete
the row and column which corresponds to the differentiation of the
L., E. with respect to that component, If more than one negative
estimate is obtained, then one considers the solutions to the L. E.
by forcing each one of the negative components to zero separately.
The analogous deletion procedure described above is used. If no
solution is found in which all components are nonnegative, then

force all pairs to be zero. Continue with three at a time, etc.,
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until for some n, having examined all n-tuples, at least one solu-
tion obtained by forcing an n-tuple to be zero has all components
nonnegative . Now the best of these solutions is the one that
yields the largest value of the likelihood.

An alternate solution to the problem of negative estimates is

to consider the quadratic programming problem

max (AS)' —% 9'Q0
subject to 6 > 0,

where AS and Q are currently fixed.

Let F = (AS)' 6 - -]2; 6'Q6 + A'6 , then the necessary and

sufficient conditions for optimality (Kuhn-Tucker Conditions) are
VF=AS - Q0+ A =20

8

Ate =0

Letting VFi denote the ith component of VF, we have

VFi=(AS—96)i 0 if Ai=0

I A

0 if A, >0, i.e., 8 =0.



Hence the quadratic programming solution will yield a solution to

satisfying 6 > 0. Note that this must be done at each iteration
since we get a new f and AS. However, one would no doubt wait to
see if the unrestrained solution of Q6 = AS is going to yield
negatives before initiating the quadratic program. (See Hadley [10]

for the details.)
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CHAPTER V

CONCLUSION

5.1 Summary

A general iterative technique for obtaining point estimates
of variance components based on a particular form of the L.E.
has been developed. The procedure has been implemented for the
balanced incomplete block mixed and random models.

For the mixed model, the recovery of interblock information
is discussed and the relationship between maximum likelihood
estimates and analysis of variance estimates is uncovered.

Also a direct method, dependent upon a closed form solution to
the inverse of the variance-covariance matrix, is given for
identifying sufficient statistics.

For the random model, the numerical solution of the L.E,
using the form mentioned above is obtained. Numerical comparisons
are made among (1) maximum likelihood, (2) a minimum variance
combination of the sufficient statistics, and (3) Henderson's
fitting constants estimates. The results indicate that Henderson's
fitting constants estimates compare quite favorably to the other
estimates in both average value and sample variance. The
bias for the maximum likelihood estimates is extremely small if
indeed they are biased. Since we solve the unconstrained

L.E. and therefore, allow negative estimates for the variance
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components, there is a section devoted to considering only
non-negative estimates. Also included is a direct method for
identifying sufficient statistics similar to that presented

for the mixed model.
5.2 TFuture Research

It appears that one cannot generally solve the L.E. in
closed form. Therefore, one should investigate other forms
of the L.E. which might further ease the computational task of

maximizing the likelihood function. Also needed is a workable

criterion which will allow us to establish convergence properties

for the iterative technique which we present.

As far as unbalanced designs go we have admittedly just
scratched the surface by considering BIB models. However,
we are hopeful that the conclusions that were drawn for the BIB
models will hold for other unbalanced designs and to pursue
this we plan to investigate the properties of maximum likelihood

estimation for other unbalanced design models.
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