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CHAPTER '1: 

INTRODUCTION 

1.1 Prel iminaries  

Present ly  a number of methods exist f o r  obtaining poin t  

estimates of variance components with unbalanced data .  

[12] gives three  unbiased methods f o r  estimating variance 

components. Sear le  [26] cr i t ica l ly  reviews and reformulates, 

using matrix theory, Henderson's methods, as w e l l  as presenting 

a modified four th  method. Hartley and Rao [lo] descr ibe a 

procedure f o r  obtaining maximum l ikel ihood estimates of variance 

components and f ixed e f f e c t s  i n  a mixed ana lys i s  of var iance 

model. LaMotte [20] considers a class of es t imators  of variance 

components which are c lose ly  ak in  t o  maximum l ikel ihood estimates. 

Henderson 

Symmetric sums is  a method developed by Koch [17, 181, and 

Townsend [30] has developed a method based on bes t  quadratic 

unbiased estimation. For a more complete l i s t i n g  see Crump {6] 

and Searle  [27]. Any hope f o r  a uniformly b e s t  estimation 

technique f o r  unbalanced da ta  appears t o  be f u t i l e .  

of t h i s  i s  found i n  the  few comparative s tud ie s  which have 

been made (Bush and Anderson [4], Anderson and Crump [l], 

as examples). 

Evidence 

Ci ta t ions  follow the  s t y l e  of The Journal  -- of the  American - 
S t a t i s t i c a l  Association. 
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Because maximum likelihood estimates yield asymptotically 

optimal properties and because there is evidence to indicate 

that maximum likelihood estimates also frequently have good 

small-sample properties (e.g., Klotz, et al. [17]), it is the 

intent of this dissertation to examine closely the likelihood 

-- 

equations. Unfortunately the likelihood equations generally 

require a numerical method of solution; therefore, it is extremely 

important to identify structure of the likelihood equations 

which might allow a less cumbersome computational task of 

maximizing the likelihood function. 

form o f  the likelihood equations is developed. 

In Chapter I11 a structural 

In order to 

investigate its computational efficiency and to pursue the 

investigation of small-sample properties of maximum likelihood 

estimates, it was decided.to concentrate on the analysis of 

balanced incomplete block designs. There were several reasons 

for choosing the balanced incomplete block design. It was 

felt to be one of the easiest of  the unbalanced designs to 

characterize and, further, that valuable information would be 

gained for later study of other unbalanced designs. Also, 

beyond unbiasedness very little is known about the properties 

of the estimates which are presently used in balanced incomplete 

block analyses. 

Chapter I1 treats the matrix analysis of the fixed effects 

model primarily for establishing notation and completeness. 
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Chapter I11 is concerned with the analysis of the mixed model. 

Here, the structure of the likelihood equations is employed. 

This chapter completely spells out the relationship of maximum 

likelihood to analysis of variance. 

recovery of interblock information is considered in great detail. 

Chapter IV analyses the random model. Again, the structure 

developed in Chapter I11 is used to solve numerically the 

likelihood equations. Also included in this chapter is a 

numerical comparison of the maximum likelihood estimates with 

Henderson's fitting constants estimates and estimates based on 

a minimum variance combination of the sufficient statistics. 

Mention is made of the relationship between Rao's [25] estimation 

procedure and LaMotte's [21] estimation procedure. Chapter V 

is devoted to a summarization and recommendations for areas of 

future research. 

The sometimes misunderstood 
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CHAPTER IT 

MATRIX ANALYSIS OF THE FIXED EFFECTS MODEL (MODEL I) 

2.1 Definition of the Model and Notation 

Consider the model where each observation may be expressed 

as 

= F\ + Ti + Bj + eijm Yi jm 

1 if the ith treatment 
occurs in the jth block 

0 otherwise. I i = l ,  ..., t; j “1, ..., b; a n d m = n  = ij 

It should be noted that if n = 0 there is no observation. Also, 
i j 

define 11 n = n (total number of observations). Further, each ij ij 
of the b-blocks contains k experimental units, each of the t treat- 

ments is replicated r times, and each treatment occurs A times in 

the same block with every other treatment. Equation (2.1) is the 

mathematical model for the balanced incomplete block design (BIB). 
2 If we assume E(yijm) = I.I + Ti + B and eijm NID(0, Q ) , 

j 
then we have defined what is generally referred to as Eisenhart’s 

Model I [ 7 ] .  (Notationally, the capital letter E will always denote 

the expected value operator.) 

In matrix notation we write equation (2.1) as 
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y = pJ + XIB + X 2 ~  + e 

where y is  an (n x 1) vector  of observations; 

IA is  a scalar constant;  

J is  an (n x 1) vector  of ones; 

X1 is an (n x b) m a t r i x  of known numbers; 

B is a (b x 1) vector  of unknown constants;  

X2 i s  an (n x t) m a t r i x  of known numbers; 

T is  an (t x 1 )  vector  of unknown constants;  

e 2 is an (n x 1 )  vector  of independent var iab les  from N ( 0 ,  CT 1. 

This descr ip t ion  can be summarized as y 'tr N(pJ + XIB + X 2 ~ ,  C) 

where t h e  prime denotes transpose and I is  an (n x n) i d e n t i t y  

matrix. As above w e  w i l l  adopt t h e  convention of using Greek 

letters t o  represent  parameters o r  matrices which involve parameters, 

with t h e  exception being t h a t  we w i l l  not alter 'standard' notation. 

The following is a l is t  of he lpfu l  r e su l t s :  

n . t . ( i  # i') = X = r ( k  - l ) / ( t  - 1)  
nij 1 J 

j 
( 2 . 4 )  
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o r  A t + r - A = r k ,  

and 

bk(k - 1 )  = X t ( t  - l ) ,  k(b - r )  = r(t - k) = (r - A ) ( t  - 1). (2.5) 

W e  def ine  f = bk - b - t + 1, where b - > t, r - > k,  t > k,  and b > r. 

W e  w i l l  adopt t h e  'dot'  notat ion t o  ind ica t e  a var iab le  has been 

summed over i t s  index o r  ind ices ,  e.g., yi,, = c c Y i j m '  
j m  

For t h e  matrix model (2.2), let  X;X1 = N, which is  ca l l ed  the  

incidence matrix and def ine A' = X i  - k-l N X i .  The following 

re la t ionships  hold f o r  t he  matrix model: 

XiX1 = k I ,  X3X2 = rI , (2.6) 

J'X1 = kJ', J ' X i  = J ' ,  J 'X2 = rJ', J'X; = J' (where J' 

denotes a row vector  of ones of proper dimension) , (2.7) 

NN' = (r - a) I + XJJ? , (2 8) 

A'X2 = Xk-'(tI - JJ'), A'X1 = 0 , A t J  = 0 , 

where tr denotes t h e  trace operator  and m i s  a pos i t i ve  integer .  
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Relationship (2.10) can be established d irec t ly  by using (2.8) and 

(2.4) as follows: 

(NN')m = [(r - A )  I + AJJ'Im 

2-1 Since (JJ') = t (JJ') . NOW 

= (r - A ) m ( t  - 1) 4- (rk)m . 

2.2 Solution of  the Normal Equations 

Form the logarithm of the l ikel ihood function 

n n 2 
RnL = - - 2 Rn(2.rr) - - Ln CT 

(2.11) 
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and d i f f e r e n t i a t e  (2.11) with respect t o  p ,  6, and T. The r e su l t i ng  

equations when set equal t o  zero cons t i t u t e  what are ca l led  t h e  

normal equations (N.E.). I n  matrix nota t ion  t h e  N.E. are given by 

J ' Jv  + J'X1f3 4- J'X2.r = J 'y  , (2.12). 

(2.13) 

and 

X;Jv + X'X f3 + X;X2'c = Xiy . (2.14) 2 1  

To so lve  f o r  T, mult iply equation (2.13) by 

from equation (2.14), yielding 

(xi - k-'NXi)Jv + ( X i  - k-lNXi 

k-lN and sub t r ac t  t h i s  

X2T + 

o r  A'(& 3. X 2 ~  3. XIBl = A'y . 

Since A ' J  = A'X1 = 0, we have 

(2.15) 

A r X 2 ~  = A'y . (2.16) 
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Simplifying (2.16) we obtain 

(XiX2 - k-lNN')r = (Xi - k-'NX;)y 

or 

rT - k-'[(r - A)I + AJJ'IT = (Xi - k-'NX:)y (2.17) 

Imposing J'T = 0 yields 

* k  
T - A'y . At 

Imposing J'T = J'B = 0 in equation (2.12), we get 

Now from equation (2.13) 

(2.18) 

(2.19) 

(2.20) 

Hence, (2.18), (2.19), and (2.20) are solutions to the N.E. 

To estimate 02, differentiate (2.11) with respect to o2 and 

set the resulting equation equal to zero yielding 
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(T -2 = - 1 (y - jJ - X,; - X,;)'(y - GJ - X2; - x18) 
n 

(2 . 21) 
1 -1 k k 
n 1 1 A t  1 1 A t  = - - ' [ I - k  X X '  - - A A * ] ' [ ~ - k - ~ x x '  - - A , A ~ ] ~ .  

2.3 Tests of Hypotheses 

Suppose we  w r i t e  model (2.2) i n  par t i t ioned  form as 

y = X y + e  

where X = ( J ( X l l X 2 )  and y' = ( v I B I T ) .  

hypothesis 

Now consider t e s t i n g  t h e  

H : K'y = c 
0 

(2.22) 

(2.23) 

where K' has rows k' i = 1, ..., t + b + 1, c is  a vector  of 

constants ,  and k!y is estimable. The test s ta t i s t ic  f o r  t e s t i n g  

(2.23) is given by 

i' 

1 

(K' $-c) ' [ K' (X tX)'K] (K' <-c) 
F =  

r ( ~ )  c2 (2.24) 

which is a noncentral  F d i s t r i b u t i o n  with r(K)  degrees of freedom 

i n  t h e  numerator and [n - r (K) ]  degrees of freedom i n  the  denomina- 

t o r  and w i t h  noncent ra l i ty  parameter 
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A = -  ' (K'y - C)'(K'(X~X)-K)'~(K'~ - c). Note t h a t  ? is any 2 20  
so lu t ion  t o  the  N.E., (X'X)" denotes any generalized inverse of 

X'X, r ( * )  denotes rank, and 

[y - XK(K'K)-lc]/[n - r ( X ) ]  

For t h e  general  development see Sear le  [28, Chapter 51. 

I n  pa r t i cu la r ,  consider t e s t i n g  t h e  equal i ty  of treatments,  i.e., 

t .  Ho: T~ = T = . . e  = T (2.25) 

From (2.23) let  

which is equivalent t o  (2.25). It can be shown t h a t  by t e s t i n g  

(2.26) using (2.24) we obtain t h e  same F s t a t i s t i c  under Ho as i n  

ana lys i s  of var iance (AOV) (see Graybi l l ,  [9, p. 3121). Here, 

r (K)  = t - 1 and r(X) = t + b - 1. 
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CHAPTER X X I  

MATRIX ANALYSIS OF THE MIXED MODEL (MODEL 111) 

3.1 Definition of the Model 

Recall equation (2.2) and set B = B y  yielding 

y = pJ f XIB + X 2 ~  + e 

where 

2 B - N I D ( 0 ,  oB) . 

Alternately, we can write 

Y - N h J  + X2T, E )  

where 

2 2 C = o I + a  x x '  B 1 1  

This description is commonly regarded as Eisenhart's Model I11 

(treatments fixed, blocks random) [7] 
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3.2 I d e n t i f i c a t i o n  of Suf f i c i en t  S t a t i s t i c s  

I n  order t o  i d e n t i f y  s u f f i c i e n t  statist ics,  t h e  following 

r e l a t ionsh ip  i s  useful:  

(I + CG)-' = I - C(I + GC)-'G . (3.1) 

(See LaMotte [20] f o r  proof.) To i d e n t i f y  a minimal set of 

s u f f i c i e n t  statistics, w e  w r i t e  t h e  exponent of t h e  l ike l ihood 

(y - p J  - X2't) '  C-'(y - p J  - X2.c) 

u t i l i z i n g  (3.1) t o  ob ta in  t h e  inverse of C. I n  t h e  exponent 

w e  expand (3.2) y ie ld ing  

Since t h e  last  t h r e e  terms i n  (3.3) do no t  involve t h e  observa- 

t i o n s  they can be ignored with regard t o  iden t i fy ing  s u f f i c i e n t  
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statist ics v i a  t h e  f a c t o r i z a t i o n  theorem. 

Graybi l l  [23, pp. 168-1691.) Rewriting the  f i r s t  fou r  terms of 

(3 .3) ,  w e  have i n  summation no ta t ion  

(See Mood and 

2 
B - 2v (5 1 

2 +kag) 2 y... 

b 2 t  
5 

t 
-. B C ~i C nijY.j .  1 .  2 

- 2 [ vi.. 2 2 i-1 j= l  (5 i=1 
(5 +koB 

For b > t we i d e n t i f y ,  a f t e r  eliminating redundancies, t he  

statist ics 

(i = 1, ..., t-1) 2 2 
1 yijm’ 5 y.j.9 y i  .. 

i j m  

and 

(3  4) 

(3.5) 

which agree with those previously reported by Hultquist  and 

Grayb i l l  [14]. By using t h e  f a c t o r i z a t i o n  theorem w e  have a 

d i r e c t  procedure f o r  ident i fy ing  s u f f i c i e n t  statist ics.  However, 

we do r equ i r e  a closed form so lu t ion  t o  t h e  inverse  of t h e  

variance-covariance matrix. When b = t, 1 nijyej. is  a set of t 
j 
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r e l a t i o n s  involving b y  ' s  

each y (j = 1, ..., b). 
*3 

.j 

and because b = t w e  can determine 

Therefore, s ince  each y is  known .j. 

2 & nijyej. ( i  = 1, ..., t )  and 1 y e j  i n  (3.5) can be reduced t o  
J J 

(j = 1, ..., b) when b = t. 

As an a l t e r n a t e  t o  the above set of s u f f i c i e n t  s t a t i s t i c s  

'.j. 

f o r  the  case b > t w e  may consider the  set 

yi.. (i 1, ..., t-1) , C nijy.j. (i = 1, ..., t) 
J 

and 

1 A t  JJ' l Y  9 
1 

s 2 = y'[-x k 1 x' 1 - k(r-A) X 1 N'mi + bk(r-A) 

For convenience and f o r  later reference we display t h e  

s t a t i s t i c s  s 

t h e i r  r e l a t i o n  t o  quadrat ic  forms. 

s3, s4, and s5 i n  a similar way. 

usefu l  i n  later ana lys i s  and w i l l  a l so  appear i n  the  ana lys i s  

of the  random model i n  Chapter V. 

and s6 i n  tabular  form (Table I) t o  i l lus t ra te  2 

We a l so  d isp lay  s t a t i s t i c s  

These s t a t i s t i c s  w i l l  be 

The nota t ion  si, i = 2 ,  ..., 6 ,  
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i s  made t o  conform with that given later f o r  the random model. 

TABLE I. RELATIONSHIP OF AN si TO ITS QUADRATIC FORM 

s2 

53 

s4 

s5 

'6 

'1'; 

1 
k 
- 

1 
k 

- -  

x2x; 

k 
A t  

- -  

k 
A t  

- -  

XIN'X; + X2NX; 

1 
2k 
- 

1 
A t  

-- 

1 
A t  

XIN ' NX; 

1 
k(r-A) 

1 
k(r-A) 

1 

k2 
- -  

1 
kXt 
- 

1 
M t  

- -  

To u s e  Table I w r i t e  

JJ'] y . I k ' - t(r-X> s -  3 - "[k(r-A) 1 

JJ ' 

A t  
bk(r-A) 

k 
t(r-A> 

-- 

To obta in  t h e  r e s u l t s  i n  Table I and a number of later 

r e s u l t s  i t  is  u s e f u l  t o  cons t ruc t  a mul t ip l i ca t ion  t a b l e  (Table 11). 
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h 
3 

W 
3 

In 
3 

U 
3 

m 
3 

N 
3 

rl 
3 

h 

W 
B 

h 
3 

+ 
3 
n 
d 
I 
Li 

x 
In 

v 

W 
3 

2 
+ 
3 
n x 

I 
k 

W 

W 

h h 

3 
24 x 
+ 
3 
n 
x 
I 
k 
Y 

N 

In 

W 

d m 
24 
ri 

+ 
3 
n 
4 

I 
k 

Y 

W 

W 

3- 

5 
N 

N- 
$ Y  x x 

I I 
k k 
W W 

h 

3 
+ 
3 
n 
x 
I 
k 

N 

W 

U 
3 

h 
3 

+ 
3 
n 
x 

I 
$4 

2 
4- 

W 

+ 
3 
n 
x 
I 
k 

Y 

N 

W 

h 
3 
Y 
& 

+ 
3 
x 
I 
k 

Y 

N 

U 
h 

v 

In \o b 
3* 3 3 3 

N *? 
3! 3 3 

h 

In W h 
3* 3 3 3 

4 N m 
3 3 3 
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= X NX' In  Table 11, V1 = XIXi, V2 = X2Xh, V3 = I, V4 * X 1 NIX;, v5 2 1' 

V6 = XIN'NXi, and V7 = JJ'. 

For later reference,  it i s  convenient t o  rewrite t h e  

exponent (3.2) i n  terms of quadra t ic  forms as 

1 - 2 Cy'(1 - r-l x2x;)y + =-'(y - VJ - x2T)f x2x;(y - UJ - x2T)l 
u 

2 
B [(y - IJJ - X2~)' X X' (y - i.lJ - X,T)] U - 

2 2  2 1 1  cr (u +kug) 

2 
B u 1 

0 cr (u 4- koB) 2 2  2 s3 = 2 (S1+ S2) - (3.7) 

-1 -1 Note t h a t  (I - r X2Xh) J = (I - r X2X;) X2 = 0 . 

3.3 Likelihood Equations (L.E.) 

3.3.1 General s t r u c t u r e  of t h e  L.E. f o r  mixed models 

Before we proceed t o  ob ta in  t h e  L.E. f o r  the  B I B  design 

To Model 111, a genera l  form of t h e  L.E. will be developed. 

develop t h i s  form t h e  following r u l e s  f o r  d i f f e r e n t i a t i o n  are 

given : 
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J. A 

f1 -1 ac -- - -e - ac-l 
aoi 2 .  aai 2 2. 

ac Define V = - i 2 -  

The general  mixed model is  writ ten as 

P 
y = Xoa + 1 XiFi 

i=l 

where X i s  an (n x k) matrix of known f ixed numbers, k < n; - 0 

Xi, i = 1, ..., p ,  is  an (n x m.) matr ix  of known numbers, 
1 

m < n; i -  

a is  a (k x 1) vector  of unknown constants;  

Fi, i = 1, ..., p ,  is  an (m. x 1) vector  of independent 
1 
2 var i ab le s  from N ( 0 ,  oi) . 

P 
Note t h a t  E(y) = Xoci and = 1 ofXiX;. Here, V = XiX;, i i=l 

i = 1, ..., p, s o  tha t  
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p 2  c =  1 Q i V i  
i=l 

U s i n g  (3.8) d i f f e r e n t i a t e  

(3.10) 

2 
i 

with respect  t o  c1 and Q , i = 1, ..., p, and obtain the  L.E. 

-1 x; G - l  Xoa = x; G y , (3.12) 

and 

[%tr(Z-l Vi)] = [4(y - X0a) Z - l  Vi G-'(y - X0a) I . (3.13) 

Note that the  l e f t  hand s i d e  (1.h.s.) of (3.13) can be wr i t t en  

o r  i n  matrix form 



= n o ,  
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(3.14) 

where $2 = (wij) = [%tr(Z -1 Vi Vj)]. Therefore, we can 

w r i t e  (3.13) as 

.Q 0 = [%(y - Xo.)' c -1 vi -1 (Y - xO.)l (3.15) 

Note t h a t  S2 is  t h e  information matrix,  i.e., 

(See LaMotte [19].) This suggests an i t e r a t i v e  technique f o r  

simultaneously solving (3.12) and (3.15). Furthermore, t h e  

r i g h t  hand s i d e  (r.h.s.) of (3.15) can be wr i t t en  as a matrix, 

say A ,  dependent upon unknown parameters, times a vector  of 

s u f f i c i e n t  s ta t is t ics  and f ixed parameters, say S. Hence, 

(3.15) can be wr i t t en  i n  matrix form as 

S 2 0 = A S  . (3.16) 

This w i l l  be demonstrated f o r  t h e  B I B  mixed and random design. 
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3.3.2 L . E .  for  the f ixed e f f e c t s  

The logarithm of the l ikelihood is  given by 

n 
2 Rn L = - - ~ n ( 2 ~ r )  - +An 1x1 

(3.17) -1 - %tr[C (y - VJ - X2-r)(y - ~.IJ - X2-r)'l . 

Differentiating (3.17) with respect to 1.1 and T and set t ing  the 

result ing equations equal to  zero y i e lds  

To simplify (3.18)' we write the 1 . h . s .  a s  

n rJ' 

(3.18) 

(3.19) 

and the r . h . s .  a s  
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1 - 
2 a 

2 J' a 
x x'] y 1 7 [XJ [ I -  a 2 +kaB 2 1 1  

.- 

- 

- 
4 ka 4 2 

0 + (k-l)(o + keg) 

2 4  k a  4 ko 

f i = %  b 
4 2 2 2  a (a +kaB) 

- 

2 

2 2  a +kaB 

2 

2 2  a +kag 

a 

a 

J 'Y 

2 

o +kaB 

kaB 
x;y + 2 2 (X; - k-l NX;) y 

. (3 .20)  

3.3.3 L . E .  for the variance components 

The L . E .  for  the variance components of the BIB design 

Model I11 are obtained by finding those quantities l i s t ed  i n  

equation (3.15). The information matrix i s  found using 

[&tr(C-l Vi Z - l  V ) ]  and i s  given by 
j 

1 k  1 0  



24 

0 
0 =  

2 
0 

The r . h . s .  of (3.15) i s  found by expanding [%(y - UJ - X2'c)' 

2-1 Vi C-'(y - pJ - X 2 T)], the resul t  of which i s  i 

B i  

AS (3.21) 

where 

and 

and Si is defined by ( 3 . 7 ) .  

Letting 

we obtain the equation i n  the form given i n  (3.16) .  
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3.4 Discussion of t h e  Estimation of 1-1 and T 

I n  most of t he  standard references where B I B  ana lys i s  i s  

discussed, there  f requent ly  appears a sec t ion  dealing with 

intrablock ana lys i s  and the recovery of interblock information,,  

(e.g., see Kempthorne [15], Graybi l l  [ 9 ] ,  Cochran and Cox [51). 

The recovery of interblock information was f i r s t  considered 

by Yates [32]and subsequently by a number of other writers 

(e.g., Zelen [33], Rao, C. R. €241, and Shah [29]) .  The bas i c  

idea  employed i n  the  recovery of interblock information can 

be summarized as follows: I f  one performs only the  in t rab lock  

ana lys i s  then he has ' l o s t '  some treatment information which is! 

contained i n  the  blocks, i.e., t he re  e x i s t s  another unbiased 

estimate of treatments independent of t he  intrablock estimates 

and i t  i s  a function of t he  block t o t a l s .  (See Graybi l l  [9, 

p. 4081.) To pursue t h i s ,  recall equation (3.18) rewr i t ten  

L 

= 
2 

2 2  
Q +kag 

U 
(3.22) 
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Imposing J’T = 0 y i e l d s  

.. 
“ 1  l~ - J’y n (3.23) 

and 

(See Bargrnann [ 2 ]  f o r  equivalent r e s u l t . )  

Invest igat ion of (3.24) shows t h a t  i t  i s  a sum of t w o  sets 

of equations 

and 

2 

CT +kag 
2 2  ( rpJ  + - r k -A T I = ( ,  CT 2) k-lNX;y . 2 

B +kag 

CT 

(3.24a) 

( 3 .24b) 

Recall ing the  estimates which were obtained f o r  t h e  f ixed  model, 

equations (2.18) and (2.19), we see that these agree with (3.23) 

and the so lu t ion  of (3.24a). The so lu t ion  of (3.24a) is  

( 3 . 2 4 ~ )  * k  
T = - A‘y At 



27 

and is  re fer red  t o  as t h e  ' in t rablock '  es t imate  of T .  Now 

solving (3.24b) with (3.23) we ob ta in  

(3.24d) 1 
[NXiy - t J'NXiyJ] 1 

r-X 
x- 

.., 
s ince  kJ 'y = J'NXiy. The est imator  T is  known as the  ' in terblock '  

estimator of T (Graybill  [9, p. 4081). It i s  shown i n  Graybi l l  
8. -. k(t-l) u2  and t h a t  T and T are unbiased with var iances  

A t 2  

2 2 
t (r-A) B (t-')k (u + ku ), respect ively.  Hence the problem of 

'recovering' the in te rb lock  information i s  j u s t  that of improving 

on the  estimator T by considering a minimum variance combination 
A 

of ( 3 . 2 4 ~ )  and (3.24d), namely 

I *  (r-A) ; 2 

u +kuB 

u 
- T + (  2 2 ) k  

Note t h a t  (3.24) can be rewr i t ten  as 

.., 2 .., 
u )(k-lNX'y - rvJ) 

2 

T = A'y + ( 2 2  u +kuB 

A t  A u r - A  - 
= -  T + ( 2  2>(T) 'c 
k u +koB 

(3.24e) 
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Therefore, the  so lu t ion  of (3.24) i s  i d e n t i c a l  with the  minimum 

variance combination (3 .24~) .  Hence, the of ten  confusing 

'recovery' is nothing more than the  so lu t ion  of t h e  L.E. Of 
a 

course, t he  estimate depends on the  unknown r a t i o  aL and 
2 2  u +kag 

s ince  we general ly  do not know t h i s  r a t i o ,  we must estimate it .  

Much has been wr i t t en  i n  regard t o  t h i s  problem and the so lu t ions  

depend upon the  manner i n  which one estimates t h i s  r a t i o .  

(See Shah [29] f o r  references and some comparisons of methods.) 

Yates [32]suggests a procedure based on the AOV 

estimates given i n  Table XII. 

(Eb - Ee) are ^2 "2 - (b-1) 
t (r-1) The estimates u = E and aB - e 

a 

i n  Yates' method. We suggest a' and aL used t o  form 
u +kaB 

2 ag be estimated by solving the  L.E. 

given by ( 3 . 3 4 )  and ( 3 . 3 6 )  general ly  requi re  an i terative 

However, the  equations,  

solut ion.  
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3.5 Solution of the  L.E. 

3.5.1 Approximate so lu t ion  using the f ixed model estimates 

L e t  us now consider t h e  t a sk  of approximately solving the  

L.E. F i r s t ,  we f i nd  

Next, pre-multiply Qe = AS(found i n  Section 3.3.3) by 52-l 

yielding 

Since S2 and S depend on i.~ and T w e  must estimate them. 3 
" k  and T = E A'y. A s  a f i r s t  approximation consider j = n 

A 2 A h  

Define Si = Si(u, T). We then obtain from the  (3 equation i n  

(3.25) 



"2 - '6 
b (k-1) .G - 

31 

(3.26) 

A 

w h e r e  the S ' s  are given i n  Table I V .  i 

i n  Table I. 

A 

TABLE I V .  RELATIONSHIP BETWEEN Si 

N o - e  tha t  s i s  defined 6 

AND ITS QUADRATIC FORM 

A 

s1 

s2 

s3 

A 

A 

'1'; 

1 

x2x; 

1 
r 

- -  

I 
- 
1 

X 1 N'X; + X2NXi XIN ' N X i  

(rk + A t )  

( A t )  

JJ ' 

1 
rt  

- -  

1 
b 

- -  

To use Table I V ,  we take f o r  e x a m p l e  

A r (r-A) (XIN'X; + X2NX;) + - x x' - - 1 r-A 2 s3 = y'[, \-+ 
( A t ) 2  

1 
rt - - JJ'] y 
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By wr i t ing  

A k 
S j  = ks7 + (r-A) w , 

where 

= w + s 2  

and t h e  si's are defined i n  Table I, we ob ta in  

2 (r-h) kw I ks2 + - r k  
A t  A t  w .  (3.27) -2 A bk(0 +kQB) S3 = ks7 + - 

-, 

Solving f o r  ii, w e  obta in  

r + -  6 
B bk bk(k-1) Xtb 

S S =2 - 2 
(J - - -  (3.28) 

It i s  i n t e r e s t i n g  t o  compare estimates (3.26) and (3.27) 

with those obtained by using Yates' method given i n  t h e  previous 

sec t ion .  

Apart from degrees of freedom t h e  estimates axe the  same, i.e., 

i f  b(k-1) b(k-1) - (t-1) and i f  we e l imina te  some of the  

(These are a lso  Henderson's method 3 estimates.)  

-1's from t h e  degrees of freedom. 

and observe 

To see t h i s ,  look a t  (3.27) 
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- 2 bk(a 2 2  +kaB) = ks2 + - f k 2  w ks2 + r k  rt(k-l) (t-1) 
A t  

k(s2+ w) = ks7 . 

Hence 

=2  s7 '6 
(T = - -  

B bk bk(k-1) (3.29) 

Yates' estimates are given as 

'6 
and 2 ( j =  

bk-b - t+l 

r 1 

(3.30) 
S 

and the  comparisons are c l e a r l y  as noted above. 

we conclude t h a t  i f  the  f ixed  model estimates are used i n  t h e  

L.E. then, apa r t  from small discrepancies i n  degrees of 

freedom, t h e  estimates of t he  var iance components are equal t o  

those obtained using AOV techniques. 

Therefore, 

3.5.2 Direct so lu t ion  using t h e  m a x i m u m  l ikel ihood estimates 

Suppose we s u b s t i t u t e  = and n 
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the maximum l ikel ihood estimat-s (3.23) and (3.24e), i n t o  (3.21). 

Let 

.., 2 2  
Y Y CT +kcrB 

Y Y 

x x' 2 2 2 2  I-$[ $ 2 ] J J ' -  rcr + A m B  rcr + A t o g  
Y 

h (y - VJ - X 2 ~ )  = 

2 cr 2 x2Nx-j Y 

+ 2  
r b  +htaB 

Now compute 

2 

rcr + A t c r B  

.., 

X2X$ = [ ;B [ - ( p - A )  X2X; - AJJ' + r X 2 N X i ]  y . 

Therefore 

.., .., .., Y 

" 1 "  
i= - h'X X'h '2 r 2 2  

+ r 2 X N'NX; - A 2 tJJ'] y . (3.31) 1 
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- Y . . ,  ." - -  
h ' X  X'h = S3 = y' 1 1  

These r e s u l t s  were obtained with the  a i d  of mul t ip l ica t ion  

o 2 2  fkoB 

ro 2 2  +AtoB 

Table I1 and r e s u l t s  (2.3) through (2.10) 

Similar ly ,  we obtain 

2 

+ X2NXi) + [ 29B 2] [ 1 + 
r(f +MOB 

+ I[ uFi2]2 AkoB 2 

- 2  2 r u  + A m B  r u  +AtaB 

2 

( XIN ' Xi 

or  to express t h i s  i n  terms of t h e  si's 

2 2 
A t  - o +koB s3 3 ks2 + A t [  22] (9 s5 - 2s4 + - k 3  S 

r u  +AtuB 

2 2 u +koB 

r u  +AtaB 
= ks2 + nf[ 22] w . (3.32) 

Now consider the  equation f o r  o2 from (3.25), which can be 

w r i t  t en  



." ..a ." ..# ." 

bk(k-1) a2 = kS1 + kS2 - s3 . 
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( 3 . 3 3 )  

Again as above, equation ( 3 . 3 3 )  can be s implif ied t o  

2 

( 3 . 3 4 )  2 bk(k-1) u = ks6 + [ $ r(r-A) w . 
r u  +AtaB 

The equation f o r  u2 from ( 3 . 2 5 )  can be w r i t t e n  as B 

- ... 2 2 bk (k-1) u i  = -bk(k-1) u + (k-1) S 3  

or  

- 
2 2 "  bk(a + koB) = S 3  . 

Thus ( 3 . 3 5 )  r e s u l t s  i n  

As done previously,  l e t  us  consider t he  simultaneous 

so lu t ion  of ( 3 . 3 4 )  and ( 3 . 3 6 )  and relate t h i s  t o  Yates' AOV 
3 

i s  small and i f  we e l iminate  some of ul- 

u +kaB If 2 2 estimates.  

( 3 . 3 5 )  

( 3 . 3 6 )  

the  -1's i n  the  degrees of freedom, we can show t h a t  maximum 
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l ikel ihood estimates and AOV est imates  are equivalent.  

exhib i t  t h i s  r e s u l t ,  note  t h a t  (3.34) can be wr i t t en  

To 

2 
bk(k-1) a 2 = ks6 + [e] (T) w 

2 A t  a2 a + -  

2 

ks6 + [ i2 2] (e) w , 
CI +kaB 

(3.37) 

using A t  = r k  ins tead  of A(t-1) = r(k-1). 

It follows t h a t  (3.37) is approximately 

=2 2 '6 
b (k-1) a -  

versus Yates' estimate 

6 S 
2 a =  

bk-b-t+l 

Also, (3.36) can be wr i t t en  

2 a +kaB 

= ks2 + % [ a + -  1 ks2 + kw ks7 

using t h e  r e l a t ionsh ip  t h a t  yielded (3.37). Therefore, 



versus  Yates' estimate 

* 2  - - (b-1) r 7  
OB t(r-1) b-1 

2 
is  small, then applying t h e  [ 02:kod - A  

It a l s o  follows t h a t  i f  

same degree of freedom adjustment as above r e s u l t s  i n  = T. 

What i f  [ t2 2] is  not  small? Then maximum l ike l ihood 
u +koB 

estimates and AOV estimates can d i f f e r  appreciably. To see an 

example of t h i s ,  consider Graybi l l ' s  [9] AOV on page 418, 

Table 18.10. Yates' method produces t h e  es t imates  

c j 2  = .2424 

.2 o = .00596 . B 

I t e r a t i n g  on ( 3 . 3 4 )  and ( 3 . 3 6 )  y i e l d s  

;2 = .1587 

:2 = .00713 , B 
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which, as indicated above, d i f f e r  considerably from the  AOV 

estimates. Note t h a t  i n  t h i s  example the  est imate  of 

2 
U is  approximately 1. It is important t o  r e a l i z e  t h a t  2 2  

5 +kag 

( 3 . 3 4 )  and ( 3 . 3 6 )  must i n  most cases be solved i t e r a t i v e l y ,  i .e.,  

we must estimate o2 and o2 on the  r .h.s.  of ( 3 . 3 4 )  and ( 3 . 3 6 )  

and obtain t h e  f i r s t  i t e r a t i o n  estimates f o r  a2 and 5 +k5 

on the  1.h.s.; then put  these f i r s t  i t e r a t i o n  estimates i n t o  

the  r.h.s. of ( 3 . 3 4 )  and ( 3 . 3 6 )  and continue t h i s  process u n t i l  

convergence is obtained. 

B 
2 2  

B 

3 .6  Large Sample Proper t ies  of t he  Estimators 

Maximum l ikel ihood estimates possess a number of des i rab le  

l a rge  sample proper t ies .  These include: (1) t h a t  t h e  vec tor  

of estimates is  cons is ten t ;  (2)  t h a t  t he  j o i n t  maximum 

l ikel ihood estimates tend t o  a mul t iva r i a t e  normal d i s t r i b u t i o n  

(under r egu la r i ty  conditions) ; ( 3 )  t h a t  t he  l a rge  sample 

variance-covariance matrix is  the  inverse of t he  information 

matrix and; ( 4 )  t h a t  t he  estimates are asymptotically unbiased 

and asymptotically e f f i c i e n t .  (See Kendall and S tua r t  [16].) 

I n  reference t o  the  previous sec t ion ,  i f  t he  ra t ios  of 

t he  parameters on the  r.h.s. of ( 3 . 3 4 )  and ( 3 . 3 6 )  were known, 

then we would have the  exact so lu t ion  of t h e  L.E. and could 

claim the  p rope r t i e s  of maximum l ikel ihood.  However, we 

p r a c t i c a l l y  never know these r a t i o s  and consequently are 
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hopeful that our i t era t ive  technique converges to the maximum 

of the l ikelihood function. 
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CHAPTER IV 

MATRIX ANALYSIS OF THE RANDOM MODEL (MODEL 11) 

4.1 Definition of the Model 

Consider equation (2.2) and set 8 = B, T = T resulting in 

2 y = vJ + XIB + X2T + e where B 'L N ( 0 ,  aBI) 

and 

Alternately, we can write 

2 2 2 C = a I + uBXIXi + a X X' y Q N(vJ, C) a and T 2 2 '  

With this definition of the model we have what is commonly called 

Eisenhart's Model I1 [7]. 

4.2 Identification of Sufficient Statistics 

Write 

2 2 2 2 -1 2 c = (a I + OBXIXi)[I + (0 T 4- OBX1Xi' aTX2x;1 , 

then 

2 2 -1 2 X'] -1 (a 2 1 + 2 , (4.1) z-l = [I: 4- (Q I + aBxlxi) 
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where each inverse on 

(3.1). The r e su l t i ng  

t h e  r.h.s. of (4.1) can be found by applying 

inverse can be shown t o  be 

where 

2 2 2 2 2 2  
rl = (J + kaB , v = n + roT , and 4 = Q v + AtaBaT . 

To i d e n t i f y  s u f f i c i e n t  s t a t i s t i c s  (b > t ) ,  w r i t e  t he  exponent 

where theU 'sare l i n e a r  combinations of the  matrices found i n  

(4.2) such t h a t  these  quadrat ic  forms reveal t h e  s u f f i c i e n t  

s ta t is t ics  and t h e  p Is involve t h e  parameters. 

t o  i d e n t i f y  the p 's  and U 's and fu r the r ,  t h i s  set of s u f f i c i e n t  

j 

Table I V  is given J 

j j 
stat is t ics  

choice was  

s i = l ,  i' 

w a s  chosen subjec t  t o  U J = 0, j = 1, ..., 5. This 

made i n  order t o  obtain the  s u f f i c i e n t  statistics 

..., 6, previously obtained by Weeks and Graybi l l  [311. 

3 
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j 
TABLE V. RELATION OF p AND U TO B 3 j 

_. 

- 

s2 

3 S 

s4 

s5 

' 6  

_I 

1 
n 
- 

4 

-2OT 2 

4 

1 
2 
- 
0 

'1'; 

1 
k 
- 

1 
k 

- -  

x2x; 

k 
A t  
- 

k 
A t  
- 

1 
2k 
- 

1 
A t  

- -  

1 
A t  

XIN' NX; 

1 
k(r-A) 

1 
k(r-A) 

1 - -  
k2 

1 
k i t  
- 

1 
k h t  

- -  

To i l l u s t r a t e  t h e  use of Table V, consider for example 

(XINrXh 4- X NX') + k ~ t  X N  2 1  
k 1 

5 A t  2 2 A t  
s = y y - x  X' - -  

= Y'U5Y 

r-A 2 ( n +  - k 'TI 
4 where p = 5 is  subs t i tu ted  i n t o  the r.h.s. 

JJ' 

A t  
bk(r-A) 

k 
t (r-A) 

- 

Y 

of equation 
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(4.3) when j = 5. The remaining parts on the r.h.s. of (4.3) are 

obtained analogously. When b = t, s is not defined. 2 

4.3 L. E. for 1 ~ .  and the Variance Components 

The logarithm of the likelihood function is, apart from an 

additive constant, 

(4.4) n 1 -1 Rn L = - T R ~  I c ~  -y(y - l.1~1~ c (y - VJ) . 

2 and aT, yields the Differentiating (4.4) with respect to V, a , ag, 

L.E., which can be written 

2 2  

and 

and s2 is the information ac 2 ,  v 2 = 2 ,  ac vg=- 
aOB aOT a 0  

2 where V = - 
matrix. The reader is referred to equation (3.15) for the 

development. 

4.4 Solution of the L. E. 

Equation (4.5) is easily shown to yield 
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c 1; y.* .  0 

n (4.7) 

Equation (4.6) is d i f f i c u l t  t o  solve,  In  order  t o  develop the 

comparison between maximum l ikel ihood and a minimum variance 

combination of t h e  s u f f i c i e n t  s ta t is t ics ,  we decided t o  work with 

a d i f f e r e n t  set of s u f f i c i e n t  s ta t is t ics  from those given by Weeks 

and Graybi l l  [31]. Table V I  g ives  the  re la t ionship  between the  two 

sets of s u f f i c i e n t  s ta t is t ics  and the  expected values of t h i s  new 

set, denoted by P1, P2, Pg, Z1, and Z2. Further, i t  can be shown 

t h a t  PI, P2, and P Also, t h e  

expected values i n  Table V I  suggested t h e  reparameterization 

are independent of Z1 and Z2. 3 

2 2 
02* = (T + kaB . B 

TABLE VI. RELATION OF P1, P2, P3, Z1, Z2 

To '29 '39 '49 '59 '6 

s3 s4 I s5 I s6 1 Expected Value 

I I I 
-k 

(t-1) (r-A) 

A t  (t-1) 

k2 
A t  (t-1) (r-A) 

-k 

2 
d 

2 2 
6 -I- koB 

2 
T 
2 

6 

6 

2 2 
(T -t- kog 
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To use Table VI, write for example 

-k 1 s4 + - p1 (t-1) ( r -A)  (t-1) s5 
- - 

Low [22] suggests a linear combination of the sufficient 

statistics with constant coefficients as estimates of the variance 

components. She then compares the variances of this set of 

estimates. As alternatives consider maximum likelihood estimates 

or a minimum variance combination of these sufficient statistics. 

To pursue the connection between the latter two approaches, note 

that since the P's and Z's are independent, we have 

-1 S l  = QP + D'QzD = $[I + QP D'QZD] ¶ ( 4 . 8 )  

where D = E!:], and $2 and QZ are the information matrices P 
associated with the Prs and Z's,  respectively. 

St-', we apply (3.1) to (4.8) and find 

In order to find 

S2-I = (I + Q!D)Q" 
P ( 4 . 9 )  

-1 -1 -1 -1 where Q! = -Qp D'[DQp Dr + Siz ] 

and their inverses. 

. Therefore, one must find QP, QZ, 

To form % and 9, we apply 
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r 1 

-1 where C The algebra involved is q u i t e  tedious 

and w i l l  not be given. However, one makes extensive use of t he  

re la t ionships  (2.6) through (2.10)’ and mul t ip l ica t ion  Table 11. 

A f t e r  s impl i f ica t ion ,  we obtain 

is given by (4.2).  

1 

A t  04 X t ( r - A )  a4 - 
T k B* 

2 
k2 

(a2  + 2 k T  a2) r-X 04 - 
k 

where v and (b are defined i n  ( 4 . 2 ) ,  and 

L 

0 

b-t 
4 
B* 

- 
CT 

. (4.11) 

Furthermore, the r.h.s. of (4.6) can b e  wr i t t en  a f t e r  subs t i t u t ing  



48 

h -  

P = y . . .  as 

PI Z ' 
(4 .12)  

which displays t h e  form given i n  (3.16). To obtain (4 .12 ) ,  we can 

use t h e  orthogonal matrix given by Weeks and Graybill  [31] t o  form 

the  decomposition of t h e  r.h.s. i n t o  a matrix times the vector  of 

s u f f i c i e n t  statist ics and then transform these  sirs, i = 1, ..', 6 ,  

t o  P1, P2, P3, Z1, Z2 v i a  Table I V .  

r e s u l t  more d i r e c t l y  by simply expanding [ (y - vJ)  'Z-'V5Z-'(y - PJ) ]  

using 

Table I. 

However, one can obtain the  

(4.2) f o r  Z-', and u t i l i z i n g  mul t ip l ica t ion  Table I1 and 

Now let  us look a t  t h e  L. E. f o r  t h e  variance components, i.e., 

Note t h a t  

and fu r the r  recall t h a t  

(4.14) 



49 

d 

= P + @(DP - Z) - - (4.17) 
2v B* 

2 

0 

T ,  d 

-1 -1 -1 Also, @[DQp D + Qz 1 = -QP D' , and rearranging, we g e t  

(4.15) -1 -1 
z *  (I + @D)QP D' = -@Q 

Theref ore ,  

(4.16) 

Hence, 

The f i r s t  two terms on the r.h.s. of (4.17) are a l i n e a r  combina- 

t i on  of t he  s u f f i c i e n t  statistics where @ is chosen t o  minimize the  

var iance of this l i n e a r  combination (See Hocking, et&., [131). 

Thus, we observe from (4.17) t h a t  maximum l ikel ihood and a minimum 

variance combination of the  s u f f i c i e n t  s t a t i s t i c s  d i f f e r  by the  

las t  term on t h e  r.h.8. of (4.17). This d i f fe rence  w i l l  be discussed 

i n  the next sect ion.  Note t h a t  (4.17) is now i n  a good form f o r  

i t e r a t i o n .  

4.5 Numerical Comparisons 

As noted i n  the previous sec t ion ,  one must i t e r a t e  on (4.17) 

t o  estimate the var iance components. Therefore, a computer program 
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was written to solve (4.17). 

made comparing (1) maximum likelihood, (2) the minimum variance 

combination of the sufficient statistics, and (3) Henderson's fitting 

constants estimates. The fitting constants estimates were chosen 

because Low [22] states that these estimates "...tend to have 

smaller variance when the CT ) s  are such that a BIB might be used." 

In addition, a simulation study was 

2 

Without loss of generality p was assumed equal to zero. To 

generate the multivariate normal data, let x Q N ( 0 ,  C) and 

p Q N(0 ,  I). 

of C, then MCM' = Diag(Xi), where Diag (Xi) is a diagonal matrix 

Let M be a matrix whose columns are the eigenvectors 

1 with A .  the characteristic roots of C. Choose H =: Diag(-)M, then 

x = H y is the transformation needed such that C = ET1(H')'l, i.e., 
1 JT;; -1 

the variance-covariance matrix can be written as a product of a 

triangular matrix and its transposed matrix. To find H-' we used 

the square-root method.(See Faddeev and Faddeeva [8 , pp. 144-1471.) 
Therefore, we generated N ( 0 ,  1)'s and applied the above transforma- 

tion to obtain N ( 0 ,  E). 

using the Box-Muller [3] equations. 

Incidentally, the N ( 0 ,  l)?s are generated 

Two hundred samples were generated for each of the BIB designs 

under study. BIB designs with n = 12, 30, and 42 observations 

were generated for numerous sets of parameters. The starting values 

chosen for both the L. E. and the minimum variance combination of 

the sufficient statistics were the fittfng constants estimators. 

However, this choice was for convenience and other starting values 

were investigated later. The iterative technique was performed 
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using the  

A l l  t h r ee  
2 
B e i t h e r  7 

U 

U 

unconstrained L. E. The r e s u l t s  are summarized as follows. 

methods on the  average produce the  same estimates when 
2 
T 
2 

U 
o r  - is g rea t e r  than 1. Also, t h e i r  sample variances 

U 
are almost i d e n t i c a l  and are q u i t e  c lose  t o  t h e  large-sample 

maximum l ikel ihood variances. 

smaller than 1, then one encounters some convergence d i f f i c u l t i e s  

2 
T 
2 

U 2 

and - are considerably B I f  both 3 
CT 

U CT 

solving the L. E. However, even i n  t h i s  case i f  w e  e l iminate  the  

divergent r e s u l t s  and compare t h e  remaining estimates w e  f ind  t h a t  

on t h e  average they are not  d i f fe ren t .  It is noted that f o r  

individual  cases one can f ind  t h e  f i t t i n g  constants  estimates and 

the  m a x i m u m  l ikel ihood est imates  t o  be qu i t e  d i f fe ren t .  It is very 

uncommon t o  f ind  t h e  maximum l ikel ihood estimates and the  minimum 

variance combination estimates d i f f e r ing  s igni f icant ly .  For a l l  t he  

cases considered i t  appears t h a t  t h e  s t a r t i n g  values can be vas t ly  

d i f f e r e n t  and have l i t t l e  e f f e c t  on convergence when e i t h e r  

present  s t a r t i n g  values  do not  seem t o  be  the cause f o r  divergence. 

Since we  are i t e r a t i n g  on t h e  L. E. we cannot guarantee a global  

maximum and hence can only hope t h a t  t h e  apparent ind i f fe rence  t o  

s t a r t i n g  values ind ica tes  t h e  desired maximum. 

Rao [25] recent ly  has  proposed a procedure based on MInimum 

Norm Quadratic Unbiased Estimation (MINQUE). LaMotte's [21] 

procedure i s  an iterative procedure which is  e s s e n t i a l l y  maximum 

l ike l ihood corrected f o r  bias .  I f  one takes as s t a r t i n g  values  
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S .V. d.f. ss 

1 
Blocks b - 1 i; l (Yej0  

j 

1 
r - h Y i  .. i 

Treatments t - 1  

Remainder bk-b-t+l Subtraction 

2 2 -y... 
Y i j m  bk 

Total  bk - 1 
i j m  

2 o2 = 1, ag = o2 = 0 using LaMotte's technique, w e  obtain a f t e r  t he  T 

E (MS 1 

2 k(b-I) 2 r(t-1) Q2 ' '(bk-1) ' +(bk-1) T 

f i r s t  i t e r a t i o n  estimates based on the unadjusted BIB ana lys i s ,  i.e., 

one simultaneously equates the  sample mean squares t o  the  expected 

mean squares and solves  f o r  t he  individual  variance components from 

the  AOV Table V I I .  

TABLE V I I .  UNAaTUSTED AOV TABLE FOR THE RANDOM MODEL 

It has been shown by Low [22]  t h a t  these  est imates  tend t o  have 

l a r g e r  var iance than the  f i t t i n g  constants  es t imates  when t h e  CT 2, s 

are such that a B I B  might be  used. It can be  shown that i f  one 

2 takes  a2 = aT = of = 1 as i n f t i a l  estbates using LaMottets proce- 

dure then t h e  r e su l t i ng  est imates  a f t e r  one i t e r a t i o n  a r e  'Rao's 

MINQUE estimates. Consequently, one i s  skep t i ca l  about t he  variance 
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of Rao's estimates. 

In conclusion, we state that generally the fitting constants 

estimators compare quite favorably with both the maximum likelihood 

estimates and the minimum variance combination estimates. Occasion- 

ally, one of the latter two estimates is uniformly better than the 

others when the criterion for comparison is sample variance. 

did we find a case where the fitting constants estimates were 

uniformly better. 

Never 

4 . 6  Negative Estimates of Variance Components 

In the previous section and also in Section 5 of Chapter 3,  

we have considered the unconstrained solution of the L. E. Since 

reporting negative estimates for known nonnegative parameters is 

not generally well received, we present in this section the necessary 

steps required to modify and eliminate negative estimates. 

It is relatively easy to impose nonnegativity constraints on 

the estimates of the variance components. 

estimate, then this component is set equal to zero and we delete 

the row and column which corresponds to the differentiation of the 

L. E. with respect to that component. 'If more than one negative 

estimate is obtained, then one considers the solutions to the L. E. 

by forcing each one of the negative components to zero separately. 

The analogous deletion procedure described above is used. 'If no 

solution is found in which all components are nonnegative, then 

force all pairs to be zero. Continue with three at a time, etc., 

If there is one negative 
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u n t i l  f o r  some n,  having examined a l l  n-tuples, a t  least one solu- 

t i o n  obtained by forcing an n-tuple t o  be zero has a l l  components 

nonnegative.  

y i e lds  the  l a r g e s t  value of t h e  l ikelihood. 

Now the  bes t  of these  so lu t ions  i s  t h e  one t h a t  

An a l t e r n a t e  so lu t ion  t o  t h e  problem of negative estimates is 

t o  consider t h e  quadrat ic  programming problem 

1 max (AS)' e - '3: 8'528 

subject  t o  8 - > 0 , 

where AS and 52 are cur ren t ly  fixed. 

1 L e t  F = (AS)' 8 - et528 + A'8 , then t h e  necessary and 

s u f f i c i e n t  condi t ions f o r  opt imal i ty  (Kuhn-Tucker Conditions) are 

vep = AS - Qe + A = o 

A t e  = o 

Let t ing  VF denote the ith component of VF, we  have i 
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Hence the  quadratic programming so lu t ion  w i l l  yie ld  a solution t o  

s20 = AS 

sa t i s fy ing  0 - > 0. 

s ince  w e  ge t  a new s2 and AS. 

see i f  t h e  unrestrained so lu t ion  of $228 = AS is going t o  y i e ld  

negatives before  i n i t i a t i n g  t h e  quadrat ic  program. 

f o r  t h e  de ta i l s . )  

Note t h a t  t h i s  must be done a t  each i t e r a t i o n  

However, one would no doubt w a i t  t o  

(See Hadley [ l o ]  
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CHAPTER V 

CONCLUSION 

5.1 Summary 

A general  i t e r a t i v e  technique f o r  obtaining point  estimates 

of variance components based on a pa r t i cu la r  form of the  L.E. 

has been developed. 

balanced incomplete block mixed and random models. 

The procedure has been implemented f o r  t he  

For the mixed model, t h e  recovery of in te rb lock  information 

i s  discussed and the  re la t ionship  between maximum l ikel ihood 

estimates and ana lys i s  of variance estimates is  uncovered. 

Also a d i r e c t  method, dependent upon a closed form so lu t ion  t o  

the  inverse of t he  variance-covariance matrix,  i s  given f o r  

ident i fy ing  s u f f i c i e n t  statistics. 

For the  random model, the  numerical so lu t ion  of t he  L.E. 

using the  form mentioned above i s  obtained. Numerical comparisons 

are made among (1) maximum l ikel ihood,  (2) a minimum variance 

combination of the  s u f f i c i e n t  statist ics,  and (3) Henderson's 

f i t t i n g  constants estimates. 

f i t t i n g  constants  estimates compare q u i t e  favorably t o  the  other  

es t imates  i n  both average value and sample variance. 

b i a s  f o r  t he  maximum l ikel ihood estimates is  extremely small i f  

indeed they are biased. 

L.E. and therefore ,  allow negative estimates f o r  t he  variance 

The r e s u l t s  i nd ica t e  t h a t  Henderson's 

The 

Since we solve t h e  unconstrained 
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components, there  i s  a sec t ion  devoted t o  considering only 

non-negative estimates. 

ident i fy ing  s u f f i c i e n t  statistics similar t o  t h a t  presented 

f o r  the  mixed model. 

Also included is  a d i r e c t  method f o r  

5.2 Future Research 

It appears t h a t  one cannot general ly  solve the  L.E. i n  

closed form. Therefore, one should inves t iga te  other  forms 

of the  L.E. which might f u r t h e r  ease the  computational t a sk  of 

maximizing t h e  l ikel ihood function. Also needed is  a workable 

c r i t e r i o n  which w i l l  allow us  t o  e s t ab l i sh  convergence proper t ies  

f o r  t he  iterative technique which we present.  

A s  f a r  as unbalanced designs go w e  have admittedly j u s t  

scratched t h e  sur face  by considering B I B  models. 

we are hopeful t h a t  t he  conclusions t h a t  were drawn f o r  t he  B I B  

models will hold f o r  other  unbalanced designs and t o  pursue 

t h i s  w e  plan t o  inves t iga t e  t h e  proper t ies  of maximum l ikel ihood 

estimation f o r  other  unbalanced design models. 

However, 
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