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ABSTRACT

Convergence of a method of centers algorithm for solving
nonlinear programming problems whose feasible regions have
nonempty strict interiors is considered. Conditions are
given under which the algorithm generates sequences of
feasible points and multiplier vectors which have accumula-
tion points satisfying the Fritz John and the Kuhn-Tucker
optimality conditions. Under stronger assumptions linear
convergence rates are established for the sequences of
objective function, constraint function, feasible point and
multiplier values.

The feasible points generated by the algorithm may be exact
or approximate solutions to unconstrained maximization
subproblems and in the approximate case may be found by
finite step procedures, bpper bounds are derived for the
number of steps required to solve each subproblem when the
method of steepest ascent is employed.



1. INTRODUCTION'

Consider thu nonlinear programming problem of naximi/sing f(x)

subject to the constraints g (x) > 0 for i = 1,2, ..., m where

c, , ..., g and f are real-valued functions defined on E and
i. m

x = (x̂ x̂ , ..., x^) . Let

S = {x I gi(x) > 0,1 = 1,2 ..... m} .

*
S is the set. of feasible points and a point x e S which maximizes

* *
f over S is an optimal solution and the corresponding number f = f(x )

is the optima] value. Let

S •= {x | gi(y.) > O.i = 1,2, .... m) .

S is called the strict interior of S and only nonlinear programming

problem's with S nonempty will be considered in the sequel,

The method of centers introduced by Huard {15] is in a class of

methods which solve nonlinear programming problems with S nonempty by

solving a sequence of unconstrained problems. The basic idea of this

approach is to consider the objective function as an additional constraint,

f(x) > f(x ) where x e S , and to define an auxiliary function called

a distance function which depends on f , g , . . . , g and x and is

maximized by a point called a center in S «= {x | f(x) > f(x°),g (x) > 0,

i ° 1,2 ..... m} . If this maximization problem is soJved then an

x c S is found such that f(x ) > f(x ) . The above process is then

repeated with x replacing x . If this procedure is carried on then

under certain additional assumptions an approximation to an optimal

solution results. An important property of such a method is that each



point generated is a feasible solution and has a better objective value

than the previous point.

Examples of distance functions given by Faure and Huard [6] and

Huard [15] respectively art:

m
(f(>.) - cx)P n gx(x) for x c S(cx)

(1.1) D(x,a) = ) with p > 0
0 otherwise

and

(1.2) D(x,a)

mm [(f(x) - cO.g.Cx), .... g(*)] for x E S(a)

lo

in

otherwise

where S(a) = {x | f(x) > a,g (x) > 0,i = 1,2 m} and a is a

parameter determined itcratively by a method of centers algorithm. Other

examples of distance function which arc slight modifications of the

above or mixtures of such modifications are given by Tremoli&res [34]. A

k
method of centers algorithm consists' of finding an x which approximately

k k k-1
maximizes D(x,a ) where a = f(x ) for k = 1,2, ... starting from

o k - k
some x E S . For k = 1,2, ... an c -center is a point x E S(a ) such

k k -k -k k k
that D(x ,a ) > D - c. where D is the maximum value of D (x,a )

• k
over S(a ) and {E, } , k D 1,2, ... is a sequence of nonnegative numbers

converging to zero. For a class of general distance functions Bui-Trong-Lieu

k * k
and Huard [1] have shown the convergence of f(x ) to t where {x } is

a sequence of E -centers essentially assuming that f is continuous and

bounoed on S ?nd the closure of S is S . Tremolieres [34] has also

established this result for a relaxed version of the algorithm where

k k-1 k-1 k-1
a = a +p[f(x ) - a ] with 0 < p < 1 and has given numerical results

on several test problems.



The method of centers algorithm based on the minimum function

by (1.2) has been considered alfo by Kleibohm [18], Pironneau and Polak [28],

Polak [29] and Zangwill [35]. This function suffers from a lack of

differentiability even when the problem functions are differcntiable and

for this reason Huard [16] and Pironneau and Polak [28] developed modified

algorithms with finite step subproblem procedures based upon this function.

Huard1s modified algor:thm is closely related to a feasible directions

algorithm proposed by Topkis and Veinott [33].

The following distance function is essentially the natural logarithm

of the function*given by (1.1) with 3 = — > 0 .

m
In (f(x) - a) + B £ In g., (x) for x e S(a)

(1.3) D(x,a)
otherwise .

It is similar in behavior to the following "parameter free penalty function"

due to Fiacco and KcCormick [10].

m 1
7 — 7—r- for x e S(a)(f(x) - a)

Q.A) D(x,a) =(

otherwise .

For a class of general distance functions Fiacco and McCormick [11] have

k k
shown the existence of a sequence {x } of local maxima for D(x,a )

k kover S(a ) for k = 1,2, ... such that accumulation points of {x )

are local maxima for the nonlinear programming problem with objective value

*
v assuming the functions g , ..., g and f are continuous and there

exists a nonempty isolated compact set of local maxima with local maxirum

*
value v intersecting the closure of S . Fiacco [7] has demonstrated



a direct relationship between the method of centers and the interior-point

penalty function methods of Fiacco and McCormick [11] by showing there are

corresponding classes of functions for these methods which give rise to

equivalent procedures. The interior-point penalty function related to (1.3)

is given by

;

...
f(x) + r I In g (x) for x c S

1

otherwise

and the one related to (i.A) is given by

(l.b) P(x,r) =
otherwise .

The associated algorithmic procedure consists of sequentially maximizing

P(x,r ) for a decreasing sequence of positive r. which tends to zero,
H. K

The function given by (1 5) was first proposed by Frisch [12,13] and later

used by Parisot [27] for solving linear programming problens and by

Lootsma [21,22] for nonlinear problems. The one given by (1.6) was first

proposed by Carroll [2] and extensively developed by Fiacco and McCormick

[8,9).

k k
Tne logarithmic distance function d (x) = D(x,a ) with convergence

rate parameter 3 given by (1.3) will be considered here along with the

assumption that g. , ..., g and f are continuously dif ferentiable

in order to obtain convergence rate results. The sequence of points

k k *k * k
{x } , k = 1,2, ... generated by the algorithm is defined by x e S = S(ct )

satisfying ||?d (x ) | | < c for k = 1,2, ... where c > 0 is a subproblem



termination parameter. For the cose when c > 0 , if an algorithm ustii

k -k
to tnaxtnize d (x) over S has the property tuat any acc'j"'ul»iilen potr.L

k - 'x satisiics Td (x) ™ C , then only a fir.it<: nunocr of r.ubproblcn -5t

k 'will be required to find x . This definition of an approximate center '

-kdoes not depend on the usually unknown maxlmun value Dv used to define .in

c. -center.

In Section 2 the logarithmic ncthod of centers algorlth-a Is dt fined

and under differentiability assunptiona it is shown that accu-iuiation

k,points of the sequence of feasible points {x } , k • 1,2, ... f.tncr.i tea

by the algorithm satisfy the Fritz John (17) optic-ality conditions lor

the nonlinear programming problem. With the addition of pscuclo-contn/it.1/

[25] assumptions on the constraint functions it is shown that the algoiit'.n

f / k k k \)
also generates a bounded multiplier sequence |(ui»uj« •••• u If i

k « 1,2, ... such that accumulation points of this sequence and >',hc fc.v.lbl<

point sequence satisfy the Kuhn-Tucker (19) optinalit> conditions, for the

special case when e *• 0 , Lootsna (23] and Flacco and McCornick (11} Ii.ivc

also established this type of result for general classes of dif fcrontlablc

distance functions under concavity assumptions on all the functions. If

the objective function is also pseudo-concave then accumulation points of

the feasible point sequence are shown to be optimal solutions to the njnllnoar

programming problem. The relation to Huard's original method of centers

algorithm for the case of concave objective and constraint function* is

demonstrated by showing that the approximate centers x defined here are
k

e, -centers with respect to the distance function exp (d (x)) which is a

member of the class of distance functions for which huard (15) proved under

concavity assunptions on all the functions that accuaulation points of an

c. -center sequence arc optimal solutions.
K



*
In Section 3 all functions are assumed Co be concave and p is

defined to be tue number of positive components in a Kurm-Tuckcr multiplier

vei tor wl'ich has t:ie largest number of positive components among such

>
vectors and q is defined to be the nu.r.ber of positive constraint values

foi an optinal solution v>hieh has the largest number of positive constraint

values among optinal solutions. It is shown that all the aceurulation points

*
of the feasible point sequence have the same q positive conscraints and

all the accunulption points of the multiplier vector sequence have tne

* * k
•-.nine p positive components. It is also shown in general that f - f(x )

is bounded above by a decreasing exponential function of k and for the special

£ /
case when q = m uhich inplicc p =0 there exists an upper bound which

tb
is a product of k fractions where the k fiaction converges to zero as

* *
k tends to infinity. 1-or the case when p > 0 which implies q < m it

x k i i * k' i *
is shown that f - f(/ ) and | | >. - x || for any optimal point > are

bounded from bclo,^ by decrensing c^poiu itial functions of k which have

the snre rates. It is also dcnc'tistratecl that g (x ) for any i such that

* / * * *.
u > 0 for so',.e Kuhn-luckei multiplier vi i tor lu.jU-, ..., u I and that

k * *
u for any j such that g (x ) > 0 for some optinal point x converge

* k
to zero with the same t>pe of convergence bounds as f f(x ) . These

( * k \C r f **\ I
_ ^ ' |

f - Ux1^1}/

for all k ' 1 w. Ich for t)>u special case wlien c = 0 is equal to [-—l—,— 10 \1 + tm/

and is the sair.c as the bound found under stronger assumptions on the noplinear

programing problem by Fu.uc [5] lot linear functions and by Tremolieres [34]

for general concave function-. Actually Trenolieies1 bound depends on the

relaxation panmeter p c (0,1] and is smallest and equals the one obtained -

here when 0 = 1 which is the case" of no relaxation. It is also shoim here



that the sequence si—: ^—r~J( has all of its accumulation points in
l\f" - f(xk~V)

the interval K Bu* \ / B(m - q*) \
x/M * J

1 + 6p / \1 + B(m - q )/.
This asymptotic result is

independent of the value of the subproblcm termination paraneter c and

justifies calling (5 a convergence rate parameter. For tha special case

& 4
when p + q = n it agrees with the result stated by Faure and lluard [6]

and proved for c = 0 under assumptions which imply the problem nas a

unique nondegenerate optimal point and Kuhn-Tucker multiplier vector pair

by 1-aure [5] for linear objective and constraint functions and by Lootsma [24]

for concave problem functions. Under this uniqueness assumption with exact

(
* k

--—— ) for a general class ofI f* - f (xk) \

\f"-f<xk-v
different]able distance functions and showed that the logarithmic distance

function }s the only number of this class for which the limit is independent

of the value of the kuhn-Tucker multiplier vector. For the nondifferentiable

minimum function defined by (1.2) assuming a unique optimal point and exact

(
* kf C f \

—: . . I converges
/ f - f(xk) \

If"' - f(xk-V

to a fraction with a value depending on th.2 set of Kuhn-Tucker multiplier vectors.

m *
In Section 4 the Lagrangian function f(x) + £ u g (x) for some

i=l 1 1

/ * * * \
Kuhn-Tucker multiplier vector lu.. ,u u I is assumed to be strongly

concave [20] in a neighborhood of an optimal solution x . It is shown that

||x - x || and |g (x ) - g.(x )| for i = 1,2 m are bounded above

by decreasing exponential functions of k having rates which are one half

* k
the rate for the exponential function which bounds f - f(x ) from above.



k *This result represents a typical way of obtaining a rate for x -*• x given

a rate for f(x ) •» f . For example Pironncau and Polak [28] established

this type of result for their modified method of centers algorithm based

upon the minimum function defined by (1.2) under the slightly stronger

assumptions of twice continuously differentiable problem functions and f

having a negative definite matrix of second partial derivatives in a ball

about an optimal point. If in addiLio.. to the stiongly concave Lagrangian,

it is assumed that the first partial derivatives of the objective and

constraint functions satisfy Lipschitz conditions, the gradient vectors of

*
the constraint functions which are active at x are linearly independent

•k *
and u > 0 for all constraints i which are active at x then it is

shown here that the above rates may be improved by a factor of two and that

i k *i|u - u.I for i " 1,2, ..., m is also bounded above by a decreasing

exponential function of k which has the same rate as the one bounding

* k
f - f(x ) from above.

The convergence of the method "of steepest ascent [3,4,14,29,33,35] ou

the subproblcms for the case when the subproblem termination parameter e

is positive is considered in Section 5. The number of steepest abcent

k k-1steps required to find an approximate center x starting from x for

each k > 1 is shown to be bounded above by an increasing function of k .

Combined with the results of Section 3 this leads to an upper bounding

function of t for the total number of steepest ascent steps required to

find a feasible point x starting from x such that f - f(x ) < t

where t is a termination parameter for the algorithm.



2. DEFINITION AND GENERAL CONVI RGCNCE PROPERTIES 01' THE A! GOR1THM

In order to define the algorithm and establish its convergence properties

certain assumptions will be required. The following two conditions will be-

assumed to hold throughout:

There exists an x° c S ° {x | p.(x) > 0 , i = 1,2, ..., mj

(2.1) such that S1 - {x | f(x) > f° , gi(x) > 0 , i = 1,2, .... ml

is bounded where f ° f(x ) .

f and g for i = 1,2, ..., ra are

(2.2) i

continuously dif ferentiahle on S

If S = {x | g (x) > 0 , i = 1,2, ..., m} is a closed convey ser, f is a

concave and upper semi-continuous function on S and the set of optiria]

points that maximize f over S is bounded then Topkis [3?] h.is shown that

S is bounded. Sinilar results which imply Assumption (2.1) for S non-

empty are contained in Rockafellar [30] and Fiacco and McCormick [11].

Assumption (2.1) implies that if x is an optimal solution to the nonlinear

* * * i
programming problem and f " f(x ) is the optimal value then x c S

* o
and f > f .

a

Define the norm of y e E^ by

l l v l l

and define the gradient vector of partial derivatives of a differentiable

function d defined on a subset of Ep by

Vd(y) .(y)
JT \p t
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Algorithm:

k-1
Chuosc numbers c > 0 and 6 > 0 . Given x e S for any integer

k—1 k—1
k > 1 terminate the algorithm with x if vf(x ) = 0 . Otherwise define

k-1 t-1 '
(2.3) f" = £(x ') ,

(2.A) SSk = |x | f(x) > f^1 , g^x) > 0 , i = 1,2 ml

and

, , . m
(2.5) dk(x) = ]n (f(x) - f X) + ('. I In g (x) for x c S*

k -k
and find x c S sucn that

(2.6) ||vdk(xk)||

where by Assumption (2.2)

"I Vg.(x) ,

(2.7) 7 d x ) . __ _ + B y - for x t s
k .

(f(x) - f""1) i = l KiU;

It should be noted that a starling point x exists by Assumption (2.1) and

k L k-1 'k+1 'V \
if x exists for some k > 1 then f > f iind S C S C S by

b
Definitions (2. A) and (2.3). The finding of x Is to be nc< ompl Islu-d ty

k k
a subroutine which m.iximircs d (>) 01 , cqulvalintly , cxp (d (x)) over

•k k -kS . Due to the behavior of d (x) at the bound. iry of C I h l a i iubproblcn *

opLl t iU/a t ion is e s s e n t i a l l y imcons t r . i Jncd . *

The fo l lowing two loinm.is J u s t i f y l i i u s ta tement , of the a I v.ci I t lm. The

k-1 '
fir.st lenima shows tha t if the a l g o r l t h n iloi-s not t c r n l n n t c nt x then

t
'k <the next set S is nonempty. '_, j
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l.cr-M 2..1:

k-1If x c S exists for some k > 1 and
E=

is nonempty.

/ 0 tl.cn Sk

1'roof:

k-1
Since x c S ,

k-1
g (x ) > 0 for i = 1,2, ..., m

k-1 k-1
Let x(X) = x + XVf(x ) where X is a real number. Since g for

i = 1,2, ..., n is continuous on S , there exists a A > 0 such that

for i «= 1,2, ..., m

g,(x(X)) > 0 for 0 < X < X .
X "** *~

k-1 - -Since Vf(x ) <f 0 there exists X e (0,X] such that

f(x(X)) > f(xk-1) for 0 < X < X .

Therefore, S is nonempty. | |

k-1 k-1
If Vf(x ) ̂  0 , then Lemma 2.1 shows that 7f(x ) is a feasible direction

k-1 kfrom x in which to start subproblem k maximization even though Vd

k-1 k-1
is undefined at x .In fact, Vf(x ) multiplied by any positive

definite matrix will suffice. The next lemma which is a slight modification

-of an existence result given by Fiacco and McCorraick [10] shows that if S

k -kis nonempty then there exists a point maximizing d (x) over S

-k

LOPTUT 2 .2 ;

-k - -
If S is nonempty for some k > 1 , then there exists an x c S

k -k • t .---- '-' --- j " - r . \ ----- c* „„,» ,-K,,,. t j i K / _ \ _ n
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Proof;

Let Sk = |x | f(x) > f1"'1 , &iM > 0 , i = 1,2, .... ml . Sk is

k— 1 o k 1 k
bounded by Assumption (2.1) since f > f implies S C S and S is

-k k k
nonempty by hypothesis since S c S . S is closed since f and g

for i = 1,2, ..., m are continuous on S ^> S b> Assumption (2.2). Let

m
D (x) = (f(x) - f ) II g (x) and let x maximize the continuous function

i=l X

k k k ~V
D (x) over the nonempty compact set S . Since D (x) > 0 for x e S*

and Dk(x) =0 for x c Sk - Sk , x c Sk . Since dk(x) = In Dk(x) and

k 'k k k *k
x maximizes D (x) over S ci s , x must maximize d (x) over S

The continuity of f and g for i = 1,2, .... m implies that S is an

k -k
open set and Assumption (2.2) implies d x(x) is dif f crcntiable on S

Therefore Vdk(x) = 0 . | |

If e > 0 and subproblcm k is solved by an unconstrjined maximization

algorithm which has the property that any accumulation point x generated by

it satisfies Vdk(x) = 0 , then a point xk such that ||vdk(xk)|| < c

k
will be found in a finite number of subpioblem steps since d is continuously

dif f crcntiable on S . For general discussio-is of unconstrained naximization

algorithms which have the above property sec Fiacco and McCormick [11],

Polak [29], Topkis and Veinott [33] and Zangwill [35].

The next result x'hich is a general property of method of centers algorithms

when S is compact and f is continuous on S has been essentially

demonstrated by lluard [15].

Lemma 2.3:

Assume the algorithm does not terminate in a finite number of iterations.

Then

(2.8) fk - f1""1 > 0 for k = 1,2, ...
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and

(2.9) lira (fk - f1"'1) = 0 .

Proof:

t -k k k-1Sircc \* t S , f > £ by (2.4) nnd (2.3). The monotune inert

k,sequence ( f } , k = l , 2 , . . . is bounded above since f is conti luous on

S by Assumption (2.2) and S is closed and bounded by Assumptions (2 1)

and (2.2). Then (2.9̂  follows since there exists an f such th.it

lim f = i .
k-*»

'Ihe following theorem shows lh.it accumulation points of the sequence

{x } , k = 1,2, ... generated by this method of centers algorithm satisfy

the Fritz John []7] optimalit) conditions for the nonlinear progrnniming

problem.

Theorem 2.A:

Either the algorithm terminates in a finite number of iterations wjth a

k k kpoint x E S such that 7f(x ) = 0 or the sequence {x } , k = 1,2, ...

has at least one accumulation point and for each accumulation point x

there exist multipliers v >Q for i = 0,1, ..., ra not all zero such

that

m
(2.10) v Vf(x) + I v Vg (x) - 0 ,

1=1

(2.11) vigi(x) - 0 for i = 1,2, .... m



X

1A

and

(2.12) gM > 0 for i = 1,2 m

Proof:

Either the algorithm terminates in a finite number of iterations with

a point x e Sk C S1 such that Vt(x ) = 0 or by Lemmas 2.1 and 2.2

^applied inductively Lhc algorithm generates a sequence {x } , k = 1,2, ...
0

such that

k -k 1
(2.13) x c SK c S ,

(2.1A) g(x) > 0 for i = 1,2, .... m

and

(2.15) ||?dk(xk)|| < t .

By /ssumptions (2.1) and (2.2) S is closed and bounded and therefore by

(2.13) (x } , k = 1,2, ... has an accunulation point x c S . Let K

k —
be an infinite subset of {1,2, ...} su"h that lim x = x , Then by

kcK
Assumption (2.2)

(2.16) lim Vf(xk) = Vf(x) ,

(2.17) lim <?g (xk) = 7g (x) for 1 = 1,2 ..... m,
x

lim g (x ) = c (x) for i = 1,2 ..... m
i
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and by (2.14)

g (x) > 0 for i = 1,2, ..., m

which establishes (2.12). Let

(2.18) gk = 6(fk

(2.39) gk = gi(x
k) for i = 1,2, .... m

and

(2.20) hk = mm g.g ..... g for k = 1,2,

Then by (2.3), (2.14), (2.18) and (2.19)

(2.21) hk > 0 for k = 1,2,

and by Lemma 2.3

(2.22) lira hk = 0

Multiplying 7dk(xk) by hk and using (2.7) yields

(2.23) hk7dk(xk) - ^ f(xk) 4- I f̂ K̂ ) for k-2.2.
\fk - f̂ 1/ 1=1 gk i

Let

(2.24) vi k f°r i = °'1'2' •••• ra ard

1 k = l.,2, ... .
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Then by (2.20) and (2.21)

(2.25) 0 < v < B for i = 0,1,2 ..... m and

By (2.23), (2.24) and (2.18)

(2.26) hkVdk(xU) = vkVf(xk) + I vkVgi(x
k) for k = l , 2

Choose an infinite subset K~ C K, such that
/ j.

(2.27) lim v' = v for i = 0,1, ..., ra

which is possible by (2.25). Then choose K_ C K such that for some

j c {0,1 n)

(2.28) hk = gk for all k e K3 .

This is possible since there are a finite number of indices i and at least

k
one must identify the minimal g infinitely often. By (2.24) and (2.28),

v = 6 for all k c K. and, therefore,
J 3

v
3

By (2.16), (2.17) and (2.27)

I m ,
vkVf(>.) + I v

1=1

By (2.15) and (2.22)

m
I

i=l



C 31) 1 H »K.J\\. ' ) - C

CITC by (2 .? l>) , <2.^)) .i-uJ (".31)

n
v '. f ( x ) + i v / f . (") - 0

\ . \ > \ < ~ y f?i ' b l i ^ h c s (? .10) if c, (") .• i' , •" t.u,-f i c {'.,.', . ., '-, , i

v - C '.-. (2 ? - . ) , (2. . '2) .iaJ (2. .V) - . I s t c In ^Cx' ') • 0 . - j i ' i - : i < • . » '

(J.Ut !'.y (''.?:•) v 0 foi i <= 0,1, .... -i .ind tao - j i t t , '

Under s t r < i^cr .'issviiTipt lotiJ. . in the con'.tr.nlnt. J u n c t i o i a I 've a } i , o i i t l l - i

.TLf;. n boarded - a u l t i , > l i r > i-cquvco H'/.'.u,, .. , ' •* ' ) ? . '" c l i ? , •••

for v n i c h the combined smut- ice <(\ , u " , u " , ..., u ."j/ . 1- t "* I t 2 , ... I .is'

accuTul j t ion points ' ' i t i ' - . f y L n g t f c Kuhr.-Ti.cV.cr [ l O ] o p t l m l ' i j c o n d i t i o n s

fcr tho non l in t -T prof, rarT. nip

Pr f ini t ip ' i :

A rerl-vnltic-d f u n c t i ^ r p, is p-ft/i 'i-fc 'CSi'-~ [ 2 j ] on .1 convex set

T <- Ln if {-, Is d l f f c r o -,t.i i h l c oa "i and V ( - . ( y ) - ( x - >) ^ 0 for

x,y c 1 inplirs g(\) < f (>) . It c.in be s'lovn tint a di f 'crcnt iablc

concave func t id i is pscudo-concivc aid th j t ps<-uuo-ccnc ivc f u n c t i o n s hivr-

the property c'nat Iccal cinyin.-j arc global raaxinva.

Cop.bininf; Che results of Theorca 1.U vith pseudo-concavity .isfiunpt ior.s

-
en tbc cr».*i iraint functions and Ucf inirg u «= - ---- - for

i / ^ k

: - J , ? , .... n .iiii k = 3 , 2 , ... yields t'io fo l lowing trccron.



Theorem 2.5.

Assunc that g. for i = 1,2, ..., m are pseudo-concave on a convex

set containing S and that the al);orithm does not terminate in a finite

number of iterations. 'Ihen there exists a positive nu'iber b such that

k k-1
(2.32) 0 < uk = -(-f—̂ -~ ^ < b for i = 1,2, ..., m and

i f k. v

&,(>-)
k = 1,2

Ku ilu-M rorc the co'ibinod sequence \n ,u.,u^, ..., u y/ , k = 1,2, ... has

at liTSt O.TC- acv.i:-uKit in.- point ana each accuruilat ion point (x,u.,u- u )

.siti^fics the following condi I

(2,33) Vf(x) H J G <:& (\) = 0 .

(2.3'.) u g ̂ ) = 0 for ! = 1,2, .... m ,
i

(2,35) u, > 0 for i = 1,2 m

and

(2.36) Ei(.x1 > 0 for i = 1,2, ..., m

Proof:

^Let v for i «= 0,1, . .. , m and k = 1,2, ... be as in the proof of

^Theorem 2.A. If lim inf v =0 then there exists an infinite subset

k- k — —
K <^ (1,2, ...} with lim v = v for i = 0,1, ..., m such that v = 0
° kck X x °

o
k _

Choose K, ̂  K vith lim x <* x . Then (2.10) reduces to
1 o
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i
[ V

ra
(2.37) I v Vg (x) = 0 .

i=l

Let y c S which is nonempty by Assumption (2.1). Then g (y) > 0 for

i = 1,2, . . . , m . If v > 0 then g (x) = 0 by (2.11). Therefore

g, (y) > g.(x) for all i such that v > 0 .

o

Since y,x e S and g for i = 1,2, . . . , ra are pseudo-concave on a convex

set containing S ,

(2.38) Vg.00'(y - x) > 0 for all i such that v > 0

Since v = 0 and not all the v are zero in Theorem 2.4, it must be true
o i

that v > 0 for some i > 1 . Therefore by (2.38)

m
I v Vg (x)-(y - x) > 0

1 X

k k
which contradicts (2.37). Therefore lim inf v > 0 , and since v > 0

k
for k = 1,2, ... there exists a positive number a such that v > a

for k = 1,2, .... By the definition in (2.32) and (2.24)

k V—1 o M
k fiff f l °n *

(2.39) u* = — ~ = -r = -f for i = 1,2 m and
o ^r

1 i o k = It2> ><f ̂

I

Therefore by (2.25)

k. 6
0 < u < — fot i = 1,2, .,., m and k = 1,2, ...

- - &.-,
6 i

L'. "ing b = — establishes the upper bound of (2.32). Now let
a ,~
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, / k k k k\
lim Ix .u.jU-, •••, u | =

which is possible by Theorem 2.4 and relation (2.32). Choose K C K such

k - - —
that lim v = v for i = 0,1, ...» m , Then x and v > 0 for_

i = 0,1, .... m satisfy (2.10) to (2.12) with v > 0 . By (2.39)

k Vi - - -
u = lim u = — for i = 1,2, ..., m and therefore (x,u.,u., ..., u )
i . . i - 1 i m

ktk v
2 o

satisfy (2.33) to (2.36). ||

The assumptions that the feasible set has a nonempty strict interior and

the constraint functions are pseudo-concave constitute Slater's weak constraint

qualification [26] for the nonlinear programming problem. For the case when

c = 0 the results of Theorem 2.5 ha/e been obtained by Lootsma [23] and

Fiacco and McCormick [11] under conca\it> assumptions on the functions f

and g for i = 1,2, ..., m .

For reference in the sequel a vector u = (u,,un, ..., u ) c E which
1 2 m

satisfies relations (2.33), (2.3/0 and (2.35) for some x c S will be called

a Kulm-Tucker multiplier vector.

In order to show that accumulation points of {x } , k = 1,2, ... are

optimal solutions to the nonlinear programming problem an additional

assumption on the objective function f will be required.

Theoron. 2.6:

Assume that f and g for i = 1,2, ..., m are pseudo-concave on

a convex set containing S . Either the algorithm terminates in a finite

number of iterations with an optimal solution to the nonlinear programmirg

_ k
problem or every accumulation point x of the sequence {x } , k = 1,2, ...

is an optimal solution.
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Proof-

Under the above assumptions the Kuhn-Tucker conditions, (2.33) through

(2.36) of Theorem 2.5, are sufficient to imply optimality by Theorem 10.1.1

of Mangasarian [26],||

The above result was first established by Huard [15] under concavity

assumptions on the objective and constraint functions. For the distance

k k kfunction D (x) s exp (d (x)) Huard's algorithm is to find c.-contcis y

such that Dk(yk) > Dk(xk) - ek for k - 1,2, ... where xk maximizes

k AkD (x) over S and {c, } is a sequence of nonnegative numbers converging
K

k
to zero. The following analysis will show that the sequence {x } ,

k = 1,2, ... generated by the algorithm discusced here is a sequence of

e -centers if f and g for i • 1,2, ..., m are concave functions on
K 1 ,

a convex set containing S . By the mean value theorem for all k > 1

(2.AO) Dk(xk) - Dk(xk) •=• VDkaV(xk - x
k)

where

(2.41) tk • xk + XkUk - xk) and 0 < Xk

From the concavity assumptions it is easy to see that d (x) is a concave

function on the convex set S . Then
i

k k k k k k(Vd (£ ) - 7d (x ))•(£ - x ) < 0

i

k :

which implies since X > 0 .1

I (x )• (f. - x ') ' '

li
or by (2.41) . v
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I/ ' t- I W If I \c. _ . _ . _ . K » t\» / ~ rv lv» i-« • "^ / **• \ / "*• *^\
(2.42) Vd U )-(x - x ) < '.« (x )-(x - x )

By (2.40), the definition of Dk(x) and (2.42)

_-K*"'K» TX " X ^ \ T> *^ ̂ »• *^ X » i*^/«-'^\ /" ** \ r \ " / " - \ T " J / \ / *" " " \D (x ) - D (x ) = D (C )Vd (C )*(x - x ) < D (, )^d (x )•(x - x )

which implies by the definition of x and the Cauchy-Schvarz inequality

k k k k k k i i V k i i i i - k k
D (x ) - D (x ) < D (x ) I | V d ' ( x ) I I ||x - x

Then since | |r.dk(xk)| | < c

Dk(ik) - Dk(xk) < DV(

where y = sup | |y - y|| . Defining c, = D (x )(.) for all k > 1 yields
1

x.ycS1

Dk(xk) > Dk'xk) - C

nd

lin c = 0
k ^-WO

since Dk(xk) = (f(xk) - fk-1) n gx(i
k)6 , g^^ for i = 1,2 n is

i=l

1 k-1 -k * k-1 *
continuous on the compact set S , f < f(x ) < f and lim f = f by

k-*«

j.
Theorem 2.6. Thus, x is an e -center for each k > 1 , but here the j

l(
definition of an approximate center x docs not depend on the unknown

k -k
maximum value D (x ) . ,

These concavity assumptions will he used in the next section to derive
j

convergence rate results. " i <"

_ . .. J i
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3. CO\VF.i{CL;.CL "..VIE 1! SU11 S Ri QLI RING CON'C AVI TY

For purport's of establishing convergence rale results the following

condition in addition to Assumptions (2.1) and (2.2) bill he assumed to hold.

f and p. for i ° 1,2, ..., ra are concave functions on a

(3.1) 1

convex, set containing S

It should be noicd that tins assumption inplies that S is a convex set

and together with (2.2) i-plies that f and g for i ° 1,2, .... ra are

pseudo-concave functions on S

It will also be assumed throughout the sequel that the algorithm does

not terminate in a finite nunber of iterations so that a feasible point
k

sequence {x } , k * 1,2, ... and a irultiplicr sequence

fl\\\ k k\\\i ,u , . ., u )f , k •» 1,2, ... as defined In Section 2 are generated.

The stronger assumption that Vf(x) t 0 for all x c S will be explicitly

stated where needed for additional results.

The following Icmra is a direct consequence of the concavity and

dif f ei cntiability of the problem functions.

For k " 1,2,

k k k-1 I r 8llX> k,,l 1
f(x) - f* < (f - f* x) 9m - B [ . + c|[x - x*| for all x c S .

Proof:

By the concavity and differentiability of f and g. for i - 1,2, ..., m

on S1



and

(3.3) Vgi(x
k)-(x - xk) for

for all x c S since x e S for k > 1 . Multiplying the i inequality

/B(£k - fk~1)\
of (3.3) by (— - r - I > 0 and adding the resultant inequalities to

(3.2) yields

* (x)
m

1=1
.

6(f -

m

&\ gl(xs r
1 (x - x ) for all x c S

which is equivalent to

f(x) - f* < fk-l.- f )m
k _ k-

n 8l(x)

+ (fk - fk"1)Vdk(xk)-(x - xk) for all x e S1

since

k k
Vdk(xk) =

- 1=1 8(x

The result then follows since

Vdk(xkV(x - xk) < ||Vdk(xk)|| - x < c||x - xk||

by the Cauchy-Schwartz inequality and the definition of x for k = 1,2,
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A well-known [19] consequence of the concavity of the problem functions

is the following:

* r * 1
(3.4) f - f(x) > I u g (x) for all x E S

* / * *\
where u = u., .... u is any Kuhn-Tucker multiplier vector associated

\ i m /

with an optimal solution to the nonlinear programming problem and f is

the optimal objective value.

* k
By combining Lemma 3.1 with the above result bounds on f - f can

be obtained. The following lemma is the key lemma from which most of the

results of this section are derived. It will require some preliminary

definitions which will be used throughout the sequel. Let X be the set

of optimal solutions to be nonlinear programming problem and U be the

set of Kuhn-Tui_ker multiplier vectors associated with optimal solutions.

Let

(3.5) Y - sup ||x - y||

x.yeS1

which is a finite number since S is assumed to be bounded.

Lemma 3.2:

* * * *
Let x e X and u e U Then

*
4 fc* <k\ ra g (x-

i-l u B(f - f

< tn+ ftW for k - 1,2
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Pi oof•

* 1
Any optimal solution x is in S and, therefore, by the result of

*
Lemma 3.1 with x = x

(f(x*) - fk) ? 81(X*}

, , , K c^ •*• \ ~~ •> /
6(1 - f ) i=l g^x

k 1
Furthonrorp, since x c S for k = 1,2, ...

for k = 1,2,

by the definitions of S and Y • Thus, the last two of the desired

k
inequalities are established. From (3.A) with x = x for k = 1,2, .

since

*
. , , . , m u

f(x ) - fk > ?,(fk - f^1) i -f
"~ T "•

1=1 U
1

„•<„ M l r _ I ) , o for .

These last two relations establish the first two desired inequalitics.il

This lemma shows that the convergence of f - f to zero is at least

k k-1
as fast as f - f which converges to zeio by Lenuna 2.3.

The next lemma which gives a basic convergence result also requires

some preliminary definitions. Lot ' q(x) be the number of indices

i c {1,2, .... m} such that g (x) > 0 for x c S and p(u) be the



number of indices i c {1,2 m) such that u, > 0 for

u = (u, .u,. u ) > 0 . Define
1 / m °

(3.6) q = max q(x)

xcX

and

(3.7) p = max p(u) .
*

ueU

* * * * * *
It should be noted that if u c U and x E X then (x ,u ) satisfy

* * * *
the Kuhn-Tucker conditions and p(u ) + q(x ) < m since u.g (x ) = 0 ,

* * * *
u > 0 and g (x ) > 0 for i = 1,2 m . If p(u ) + q(x ) = m ,

* *
then the pair (x ,u ) is said to be nondegenerate.

Lemma 3.3:

For k = 1,2, ... and i = 1,2, ..., m

0.8) gi(x
k) > /—̂ J-A sup g.(x)

and

(3'9)

_

and if x is an accumulation point of the sequence {x } , k = 1,2,

and u ° (Uj,u , ..., u ) is an accumulation point of the sequence

f k k k\\ , _
1U1'U2' "•' "m/J ' = 1>2' "• ' C en

(3.10) q(x) - q*
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and

(3.11) p(u) = p* .

Proof:

* * * *
The results of Lemma 3.2 imply that for any x E X and any u e U

for k = 1,2

Ihcn (3.8) and (3.9) follow irrrnediately fror this inequality. From (3.8)

and (3.9) and Definitions (3.6) and (3.7)

and

Furthernore,

and

_ *
q(x) > q

p(u) > p

q(x) < q

*
p(u) < p

* _ *
since x c X and u c U by Theorems 2.5 and 2.6. Thus, (3.10) and

(3.11) are established.||

This lcTia combined with Theorems 2.5 and 2.6 shows that there arc q

k kconstraint indices i satisfying lim jnf g (x ) > 0 and lin u = 0 ,
-
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p constraint indices x satisfying lio g,(xK) » 0 and lin inf u^ ' 0

* * V.and n - q - p constraint indices i satisfying lia f, (x ) - 0 and

lira u - 0 .

The next lenraa conbines the results of Lcrnnas 3.2 and 3.3 to bhow thnt

the sequence , k • 1,2, ... has accumulation points in the

interval (p ,n - q ] ard if there exists a nondegeneratc- cptlral solution

and Kuhn-Tucker nultiplicr vector pair, then the liaiting value »_
* * * *

p = n - q . Note that X is bounded by Assumption (2.1) and U is

bounded by Lerraa 3.3. Define

(3.12) Sup

uct/

for k - 1,2,

and

(3.13) inf
*

xcX

m g.(x)
X - X I for k - 1,2,

Lemma 3 . A :

For k = 1,2,

(3.14)
(f* - fk)

k " 6(fk - i*4"1) " k

(3.15)
* *

p < lira inf p < lim sup p < o - q ,
fc-HB Vf"

and
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* *
(3.16) p < lim inf s, < lim cup s, < m - qc K K

* * * / * * * \ *
Furthermore, if there exists an x c X and a u - (u-.u^ ..... u I c U

*
such that p(u ) -1- q(x ) = m then

(f* - fS *
(3.17) lim p = Jin ,-~~ = lin s, = m - q = p

K k ^'1

Proof:

Relation (3.14) follows immediately frca Lemma 3.2 and Definitions

(3.12) and (3.13). let x he any accumulation point of the sequence

k _ _ _ —
{x ) , k = ],2, ... and u = (u. ,u , .... u ) be any accumulation point

of the sequence u,"' '"• " • k = 1'2 ..... By Definitions (3.12)

and (3.13)

m u.
Pk > I ~k

 for k

1 = 1 U.

and

>
k =

* *
since for any such u and x , u c U and x c X by Theorems 2.5 and 2.6.

Let K. be an infinite subset of (1,2, ...} such that lim p = p and
k

k
choose K- C i' such that lim u = u . Then by Lemna 3.3

keK, K keK i=l u
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*
Therefore, lim inf p. > p . Now let K, be an infinite subset of

k iC ~~ •*
-*»

{1,2, ...} such that lim s, = s and choose K. C K, such that
. .. K. *4 O
kcK-

k -lim x = x . Then by Lemma 3.3

s = lim
kcK,

*
= m - q(x) = m - q

Therefore; lim sup s < m - q which together with lim inf p. > p
k-»~ k-*»

* *
and (3.14) implies (3.15) and (3.16). Now suppose there exists an x c X

* * * *
and a u c U such that p(u ) + q(x ) = m . Then by the definitions of

* A
p and q

p + q > m

But by the remarks preceding Lemma 3.3

* *
p + q < m

Therefore, p + q = m which together with (3.14), (3.15) and (3.16)

establishes the final result (3.1?).||

A
It should be noted that if q » m then this lemma iirplies that

k+1 k * k
(f - f ) (f - f ) k+1 *lim -^r {-V- = lim -— £-f- = 0 since f < f for all k > 0 .

If If — i ir V ~l o a
k-~> (f - f ) k-«o (£K - fK x)

To show that (f - f ) does not converge to zero any faster than

k k-1(f - f ) requires the existence of a positive number p which bounds

r» v,nir,.j fnr all k . This in turn reauires an assumotion which
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*
p > 0 and in order to obtain an expression for p requires upper bounds on

k
the multiplier values u for 1 = 1,2, ..., ra and k = 1,2, ... . The

next lemma which follows from Lemma 3.1 provides these bounds along with

lower bounds and upper and lower bounds on the constraint function values

g (x ) for i = 1,2, ..., m and k = 1,2, ... . Define

(3.18) g = sup g (x) for i = 1,2, .... m
1xcS

and

* ,o\If - f°\
(3.19) Uj = (1 4 em + cy)/- ^- ] for i = 1,2, .... m

Lemma 3.5:

For k = 1,2, ... and i = 1,2, ... , m

J. (3.20) 0 < 8(£ I f ^ < gi(x
k) <

and

(i ->,\ n f g(f
k - f1""1) ̂  k -(3.21) 0 < < u < u.,

Proof:

Since S is assumed to be compact and g. for i = 1,2, .... m are

assumed to be continuous on S the quantities g defined by (3.18) are
i

finite numbers and the upper bound of (3.20) follows immediately since

x e S for all k > 1 . Since x° E S , Lemma 3.1 implies
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for k = 1,2, ...

Rcairanging this expression yields

.j=i e..(x) e(f - f

•(Cm -f e||x° - xk||)] for k = 1,2,

Then for i = 1,2, . . . , m and k = 1,2, ...

°g (x) m g (x) / i \r * 0
(3'22) " [(f •" f );L(x ) j=l g (x

i \

^
- f )/

since f* > fk > f11"1 > f° and | |x° - xk|| < y for all k > 1 . Then

the remaining bounds of (3.20) follow from (3.22) and (3.19). Since

k 8(fk - f*"1)
u. = —* <- for i = 1,2, ..., m and

g±(x )1 k = 1,2, ... ,

(3.21) follows from (3.20).||

The existence of upper bounds for all the multiplier values u. has been

shown in Theorem 2.5 under pseudo-concavity assumptions on the constraint

functions. Heire the stronger concavity assumptions of this section specify

these bounds. The next corollary uses these bounds to provide a lower bound

on the sequence {p.} , k « 1,2, ... . Define



m u.
(3.23) p = sup I -^

,* i=l u
ucU i

The following is immediate from (3.12) and (3.21),

Corollary 3.6:

For k = 1,2, ...

m u

Pk >
 SUP I ~ = P

* i=l u
UEU i

The next lemma gives a sufficient condition for the existence of a

(f* - fSpositive number p which bounds r . • from below for all k .
B(f - r"1)

Lemnia 3.7:

If 7f(x) f 0 for all x c S1 , then

(f - fk)
0 < P < -̂ -- r̂rr- for k = 1,2,

- r *-)

Proof:

* * * *
Choose u c U and x e X . Then

Vf(x*) -f I u*vg (x*) = 0 .
1=1

Since Vf(x ) 5* 0 there exists an i c {1,2 m} such that u. > 0

m u.
Therefore, p = sup ^ — > 0 and the desired result follows from

* i=l uucU i

Corollary 3.6 and Lemma 3.4.||
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The results of Lemma 3.4 nay be used Co find upper and lower bounds

(f* - rk)on the ratio •— [—;— for all k . This result provides an objective
(fX - £ )

value convergence rate for the algorithm. •
i

Tlipornm 3.8:

For k = 1,2, ...

1 + Ppk = ,f* _ fk-l = 1 + BsR «= 1 + 6m + EY '

Proof:

(f* - fk) _ (f* - fk)

(f* - f̂ 1) (f* - fk + fk -

for k = 1,2,

. ,

Then from (3.14) when p. > 0

(f -

and from (3.14) and Lemma 3.2

for 5c = 1,2,

for

(£ -

l
* k *

For the case when c = 0 the upper bound result — r - ; — f— < •; — ; — r- '
,,* _ £k-l\ = 1 + 6m

for k = 1S2, ... has been established \-y Tremolieres [34] under the
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* *
a unique optimal solution x with g.(x ) = 0 for i = 1,2, ..., n and

the constraint gradient vectors Vg (x) are linearly independent for all

x c S . Under similar assumptions with linear objective and constraint

functions this result has been established with equality holding by Faure [5]

(f* - fk)To obtain a nonzero lower bound on —-r r—;— for k = 1,2, ...
(f - r'1)

requires the assumption of Lemma 3.7 which implies there exists a nonzero

* * *
u e U , i.e., p > 0 . The following is an immediate consequence of

i)

Corollary 3.6 and Theorem 3.8,

Corollary 3.9:

If Vf(x) i- 0 for all x E S1 , then

i + BP (f -

By conbining the results of Lemma 3.4 and Theorem 3.8 the asymptotic

(f* - fk)behavior of —j —:— can be determined.
(f - f )

Theorem 3.10;

(f* -
*-—j < lim inf —~ f—-,— < lira sup A - ~ —

1 + Bp " k-*« (f" - f " ) " k-x» (f - f ) = 1 + e(m - q )

Furthermore, if there exists an x c X and a u e U such that

p(u ) +q(x ) =m then

^k-»« (f - fk-1) l + Bp 1 + 6(m - q )
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(f* - fk)It should be noted tha t if q = ro then lim —•- "~JT~ c ° . i - C . , tlie
k '* °̂ {* *~ t )

sequence {f ) , k = 1,2, ... converges to f super linearly.

For the case when c = 0 the concluding result of Theorem 3.10 has been

stated by Faurc nnd Huard [6]. It has also been proved for this case under

assumptions which imply the problem lias a unique nondcgencratc optical

solution and Kuhn-Tucker multiplier vector pair by Faurc IS] for linear

objective and constraint functions and by Lootsraa [24] for general concave-

problem functions. Theorem 3.10 shows that the as>mptotic rate of

convergence of the algorithm is independent of e and is better for smaller

values of B . For example, if $ - — then —-*-—r < -r .
ID + . n *•1 + Bp

The following corollary is the result of inductively applying

* k
Theorem 3.8 and gives upper and lower bounds on f - f for k = 1,2, ...

in terrs of products of k fractions and gives an upper bounding exponential

function of k .

Corollary 3.11:

For k •= 1,2, ...

. »' - f") .
j + 6"

This corollary can be used to obtain a lower bound on the number of

* k
iterations k which is sufficient for f - f < t where t is a

termination parameter for the algorithm.

Corollary 3. 12;

If
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then

Proof:

Suppose

In
k > - ' ^ . ' for t > 0 ,

= !„ A + !Mn +
10 I Em + CY

£* - fk < t

In

or

k > , .V p ' . for t > 0 .
" In (--—̂  ^H

k ln (JL±_̂ £1) > ln (l-̂ l)
\ gift + CY / = V L /

6m
p_jLJX\k „ (f* -
+ CY / V t

which implies

' i «* - £°>(rf̂

Then the conclusion follows from Corollary 3.11.||

It should be noted that an upper bound on (f - f ) is known atter one

iteration of the algorithm provided an upper bound on Y is known since
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f* - f1 < (f1 - f°)(Bn + CY) by Lemma 3.2 which implies f* - ~° < (f1 - f °) •

•(1 + Cm + cy) • Thus, a lower bound on the number of iterations k which

* k
is sufficient for f - f < t may be determined from Coroliiry 3.12 after

one iteration of the algorithm.

Another interesting feature of this particular method ot centers

algorithm is that it is possible to choose values of the algorithm parameters

* 1
£ and B such that f - f < t .

Corollary 3.13-

If B > 0 and e > 0 are such that

6m + EY <
(f - f ) - t

where

then

0 < t < (f* - f°) ,

f - f< t .

Proof:

6m + CY <
(f - f°> - t

implies

(f* - f°>
Bm + CY

- 1

or



/I + lm + cv\ (f - f°)
I Bm + cY / = t

Then the result follows from Corollary 3.11 with k = 1 .||

The above result has been observed by Lootsma [21] and Fiacco and McCorciick

[11] for the case when E = 0 .

The next corollary which follows from inductive application of Corollary

* k
3.9 provides an exponential function of k which bounds f - f from

below for k = 1,2

Corollary 3.1A:

If Vf(x) # 0 for all x c Sl , then

* ,k
for k = 1,2

/ „" \K ,Jt
A / Bf \ f - f0 < / 1 < _,

\1 + Bp/ f - f

A lower bound on the nunber of iterations k which is necessary for

* k
f - f < t can be derived from the previous corollary.

Corollary 3.15:

If Vf(x) t 0 for all x c S1 and

f* - f" < t ,

then

In
k > —

/I + 6p\

I BP )
In

BP



Prog/:

Since the al^oritha does not tcrr.inatc in a finite nursbi-r of it^'a*

* 1 * k '
f - fv > 0 for all k > 1 . Therefore, if f - f < t then t •», 0

by Corollary 3.14

T!-cn

ii±$t, IL_I
UP / • c

or

k In

which implies the result since ( ~- j > 1 .||

Corollary 3.14 can also be used to obtain in exponential function of

i i * ki i *k which bounds | |x - x j| froa belov whcr« x is any optical solution

to the nonlinear programing problea. Coabincd with Lcr.ea 3.5 it also yields

lower bounding exponential functions of k for all of the corstralnt func.ico

k kvnlues g.(x ) and all of the multiplier values u . Define

(3.24) A - sup ||Vf(x)|| .
1xcS

Thcoren 3.16:

If Vf(x) 4 0 for all x t S1 , then for k - 1,2. . .
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(3.25) 0 < < inf l|x - x

XEX*

(3.26) 0 < (f - f") (x ) for i = 1,2, .... m

and

(3.27) 0 < for i = 1,2, ..., m
+ F

Froof:

Since f is continuously differcnciable on S and S is compact,

A = sup ||vf(x)|| if finite, li.en l-j tl'C ̂ean value theorem

° e1xcS

* \ i i * k i i * *
f(x ) - f(x") £ A ||x -x|| for any x. E X and

for k = 1,2, ..

By assumption A > 0 which implies

(3.28) (f*- *-*- < inf ||x - x | | for k <= 1,2,
~o *xcX

From Lemma 3.2

(f* -
(em -I- c - f for k = 1,2,

vhich conbincd with Lemma 3.5 yields for k «* 1,2, ...



(3.29)
EY)

for i = 1,2, ..., m

and

(3.30)
+ EY)

for i = 1,2, ..., m .

Then (3.25), (3.26) and (3.27) follow from Corollary 3.14 and (3.28), (3.29)

and (3.30) respectively.il

It should be recalled that positive lower bounds on the constraint function

value and multiplier value sequences which have positive accumulation points

are given in Lemma 3.3.

As demonstrated by the next two theorems, upper bounds which converge

k
to zero are available for constraint function values g.(x ) with i such

k
that sup u > 0 and multiplier values u with j such that

* 1 J
ueU

sup g (x) > 0 .
* 3

XEX

Theorem 3.17:

For all i e (1,2, ..., m) such that sup u. > 0
* 1

ucU

(3.31)
- f )< — M- for k » 1,2,'i.̂  ' - /sup

\UEU

and

(3.32) (f -
ucU

/ fn + CY \ , , , o
(i . bD +CY)

 for k ° lt2'
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Proof:

By Relation (3.4) for any u (* * *\ <
W ••" Um) E U

m* k r- * k * k
E - f(xK) > I u g (x*) > u g (x*)

- j=1 J J
for 1=1,2, ..., m

k 1since x c S for k = 1,2 Then (3.31) follows for any i such

that sup u > 0 , and (3.32) follows fiom (3.31) by Corollary 3.11.||
a. 1-

ueU

Theorem 3.18:

For all i c (1,2, ..., m} such that sup g (x) > 0
* 1

XEX

(3.33)
(Bm - fk-1)

xcX

for k = 1,2,

and

(3.34) (f* - f°)(l + Em + c>)

xcX

(rliHV) '« *' '•'•

Proof:

By (3.8) for i « 1,2, ..., m and k » 1,2,

k. B(f --̂

Then (3.33) follows for all i such that sup g.(x) > 0 , and (3.34) fellows
* i

xcX

from (3.33) by Corollary 3.11 since fk - fk-1 < f* - fk-1 for all k > 1 .||
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Upper bounds on | |x - x || , |g.(x ) - g.(x )| for indices i

* i k *i *such that g.(x ) > 0 and |u. - u. | for indices J such that u. > 0

ft * / * * ft\
where x is an optimal solution and u = (u.jU™ u I is a Kuhn-Tucker

multiplier vector require stronger assumptions on the problem functions.

Such assumptions will be considered in the next section in order to obtain

further convergence rate results.

r
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4. CONVERGENCE RATE RHSULTS REQUIRING STRONG CONCAVITY

In order to obtain further convergence rate results such as upper

bounding functions of k for ||x - x || , and |u - u.| and ,

i k * i * '
|g (x ) - g (x )| for all i c {1,2, ..., ra} where x is an optimal

* / * * * \
solution and u = lu ,u?, ..., u ) is a Kuhn-Tucker multiplier vector

assumptions stronger than concavity and continuous differentiability will

be required. It is for this reason that the following definition is considered.

Definition:

A real-valued function L is strongly concave [20] on a convx set

T C E if there exists a X > 0 such that

L(|(X + y)) > \ L(x) + i L(y) + |||x - y||2 for all x.y c T .

It can be shown that if T is compact, L has continuous second partial

derivatives on T and the matrix of second partial derivatives of L is

negative definite on T , then 1, is strongly concave on T .

In addition to Assumptions (2.1), (2.2), (3.1) and nonfinite termination

of the algorithm it will be assumed throughout this section that

* * a *
(4.1) there exists an x c X and a u c U such that

° * 1
(a) L(x) « f(x) + 2. Ui6,(x} is strongly coacavc on S with

i-1 *

the corresponding constant X > 0 .

(b) Vgt(x*) for i e A(x*)

are linearly independent vectors.

0 , i c {1,2 ..... a}l

Actually this assumption only need hold in the ir.s*»ction of S and a ball
*

about x . The stronger condition is assumed for convenience of exposition.

It also implies that S is a bounded set which is part of Assuapticn (2.1).

<
? i
i ;

i l

n
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(c) p(u ) + q(x ) = m .

It is a well-known saddle point result [19] thac any optimal solution to

the nonlinear programming problem maximizes L(x) over S . Assumption

(4.1. a) itrplies that x is tha only point maximizing L(x) on S and
*

therefore x is the unique optimal solution to the nonlinear programming

problem. It is easy to see from the Kuhn-Tucker conditions (2.33) to (2.36)

o.f Theorem 2.5 that Assumption (4.'l.b) implies u is the only Kulin-Tucker

multiplier vector. Therefore, under these assumptions Theorems 2.5 and 2.6

k * /kk k\ / * * *\ *
imply lim x ° x and liin Iu.,u0, ..., u 1 = fu-.u., ..., u I = u

k-*0 k-*o° m

*
Assumption (A.l.c) is a nondegeneracy assumption which implies that A(x )

has p = p(u ) elements, i.e., u > 0 for all i c A(x ) . If the

index set Q(x ) is defined by v

Q(x*) - {1,2 ..... m} - A(x*)

* * *
then Q(x ) has q « q(x ) elements. Since it is implicitly assumed that

ft ft
m > 1 , at least one of the index sets A(x ) or Q(x ) is nonempty and

ft I ft ft
(4.2) 6 - oin I min u , min g,(x )|

I (, *• & *
[icA(s ) icQ(x )

is a fiuitc positive number where the aininua over Che empty eet is defined

to be +» .

In addition to the above, it will be assumed in this section that the

following Lioschitz conditions are satisfied:

there exists a positive nuober u such •- I

! !
that for all »,y c S i
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||Vf(x) - Vf(y)|| < p||x - y||

and

||Vgx(x) - Vgi(y)|| < u||x - v|| for i = 1,2, ..., m .

Since S is assumed to be bounded this latter assumption will hold if

f and g for i = 1,2, ..., m have continuous second partial derivatives

on S by the gc'iieralized me in value theorem [14]. Similar bounds exist

£or the function values since f and g for i = 1,2 m are assumed

to be continuously differentiable on S . That is, for all x,y E S

|f(x) - f(y)| < Ao||x - y||

where by (3.24)

AO - sup ||Vf(>)||

xcS1

and

(4.4) |Ei(x) - &i(y)| < a||x - y|| for i - 1,2 m

where

(4.J) A= max [sup ||Vgi<x)||l .

1°i°n Lxcsl J

Tlte following Icrana uses st-ong concavity to provide a second order

extension of Relation (3.4).

Lcrr. j 4.1;

For all x c b ,
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Proof:

* 1 1
Since x e S and L(x) is strongly concave on S

(A. 6) L<x + *) lj L<x*> + \ L<x> + l lx - xl I for

Since S Is a convex set, -j(x + x) E S for all x e S . By thu

* 1
remark following Assumption (4.1) x maximizes L(x) on S and, therefore,

(4.7) L(x*) > L(|(X* + x)) for all x c S1 .

Inequalities (4.6) and (4.7) imply by the definition of L(x) that

~ f(x") + I u*Bi(x*) - f(x) - I u*gi(x) > |||x* - x||2

for all x c S1 .

Then the desired result follows since £ u.g (x ) » 0 .||

It should be noted that the uniqueness of x follows irencdincely fron this

letsaa. Combining the result of this lema with the sequences {x } and

\(U1'U2' *"* ua)f • k ™ 1>2' •" Bencroted bX lho algorithn yields the

following leaaaa. By (3.12) and the uniqucneea of u

Q U

(4.8) pk « [ — for U - 1,2
i«l u

Define
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m g (x )
(A .9 ) q. - I — for k = 1,2,

i=l g , (x )

Lemma 4 .2 :

For k = 1,2,

| | x * - x k | | 2 <

Proof :

k 1Since x c S loi k « 1,2, ... , Lemma 4.1 implies

(4.10) ||x* -x k | | 2 < l\)K - fk - I u*g (x k ) for k - 1 , 2 ,I2 .«({)['

BY Lcnuna 3.2 and (4.9)

..11) f* - fk < (f1 - f11"1) L(n - q.) + c||x* - x k | | for k - 1,2,

Combining (4.10) and (4.11) with (4.8) yields the desired result since

gA(x
k) ° S(f "k

f ^ for i - 1,2 m
",
1 and k • 1,2 ||

A i *y
Froa this lc-=na it is easy to see that the convergence of ||x - x || to

k k-1
zero is at least as fast as (f - f ) since a - p - q < m and

||x - s'JI * Y • sup ||x - y|| for all k > 1 . The next corollary

x.ycS1

shows that ii is even faster due to the nondegeneracy assumption (A.l.c).
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Corollary 4.3-

II * k! I2
, I x - x
l i m — H - i i
kw (f

K - f^1)

Proof:

By (A. 8) and (4.9)

* *
lim (n - p - q ) » m - p(u ) - q(x )

Then by ('(.12) and Assumption (A.l.c)

lira e(m - p - q ) + c||x* - xk|| - 0

and the desired result follows frota Lemma A.2.||

In fact as the remainder of this section will show, a result stronger

than Corollary A. 3 is true. The next lenaa begins this development by

providing an nlgcbraic equivalent for the expression (ca - p. - q. ) which

appears in Lemma A. 2.

Lcraa A . A ;

For k - 1,2, ...

Proof:

A a / * « * \
By the nssunptions on x and u - \ui'u7' •••• u
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Thus,

* / *\m u m g (x ) n

I iT~ = 1
1=1 ) 1=1

1=1

jk 'xk) u* (xk)

S ^V ^ l i t * IV 1
\« / ** fy \ ** J

*\ , k,

k , * * * I

T̂ir̂ r̂vTrl
V;(x) Vi(x,J

vhich is equivalent to the uesired result.[|

An upper bound for (n - p, - q, ) can be iound by combining this lervnn

vitli the nondcgcnorcicy assunption (4.1.c), the positive lo>;er bounds on u.

* k
for i c A(x ) ar.d g , ( ^ )

A
d e f i n i t i o n of 6

*Q(x ) provided by Lcnuna 3.3 and the

Lc-Piraa A. 5 :

For k =• 1,2,

l i cA(x icQU

\.hcrc su-«ation over an empty ii.dex set is nssuncd to be zero.

Proof :

Since g^x ) = 0 for all it A(x ) , u. - 0 for all i c Q(x ) and

* *
A(x ) U Q(x ) = (1,2, .... a) the result of Lecaa 4.4 icplies

(Et
for X ° 1.2,

icA(x

where biiaaaifon over an enpty index set is assured to be zero. Since

* * *
u > 0 for ail i t A(x ) by Aasuripiion (i.l.c) and g (s ) > 0 for all



Q("< ) . thi-' leu*: li.iuri1 r o s u l t s ^i Lvtna 3.3 that

0 - Pk ' \ =
i tA(x

for V •> 1,2

:ho dc^iric! it .u!t follovs fros (a.2).!!

'.n ore'*, r tv procicd furtSu-r it is necessary to bou.-d the expressions

v i ' * i r i ' & * i) !u. - j.I and £ [p,. (x ) - g, (x ) froa rbovo !>v ft-.ictii.n-> r*i

_fA(x ) itQ(x )

(fN - f ) and | |x - x )| . The iarter can l»o accorplishcd by u«.ln{;

('..-'O and the foracr will be c-noidcred after a prclinirjry result c'«.|»-tdi.n;

on Ar-sunption (4.1.b) !•* catablichcd.

For a p*q iMtrix JI denote the transpose of 1) by H and define

the norn of h usinp, the Euclidean uona for the vectors y c L and

Jiy c L by

IMI -

If p > 0 the constraint functions, if necessary, so that

) • (1.2, .... p } and for x e S let li (x) be the p « n oitrix

th *
whose 1 row is Vg (») for each i e A(x ) .

rssa 4.6:

[H*(x)H

If p > 0 , then there ox 1st positive nunberc o and n such chat

]"1 exists and

7 frr all x c 5 (x > 0 S1



n) .

Proof:

Since Vg (x) for i = 1,2, ...,m is continuous on S ,

•k ft x ^
p(x) = mm y [ l l (x )H (x) ]y is continuous on S . By Assumption (4.1.b)

* * *
H (x) has full row rank p and, therefore, p(x ) is positive. Thus,

* * X -1
there exist positive numbers p and n such that [H (x)H (x) ] exists

-" * 1
and p(x) > p > 0 for all x c B (y ) fl S . It can be shown that p(x)

= H
k * X 1

is the minimum eigenvalue of [H (x)H (x) ] and, therefore, —-.—r- is the

A * 1 -1
maximum eigenvalue of [11 (x)H (x) ] . Then

* * T -1 1 1
max j[H (x)M (x) ] y = -~ < ±

* ]
for all x c B (x ) fl b and the de-sired result follows since as in

Goldstein [16; p. 22]

r i i * * T -!
| = max | | [11 (x)ll (x) ] y| | =

max y[H*(x)ll*(x)T]~1y . I I

IMl-i

By combining the result of this lemma with bounds provided by Assumptions

(2.2) and (A.3) an upper bound on £ |u - u | for k = 1,2, ... can

icA(x*)

be found in terms of (f - f ) and ||x - x || .

Lemma 4 7:

*
If p > 0 , then the-"? exists a positive number p such that for

k = 1,2, ...



1EA(X )

I u*)||x*-xk||
1=1 /

Proof:

By tnc definitions of x and u

C..14) Vf(x ) + I u 7g (x ) = 0

k k kand by the def in i t ions of V7d (x ) and u for i •= 1,2, ..,, m

(4.15) Vf(xk) + I ukVC (x
k) = (fk - fk"1)Vdk(xk) for k - 1,?,

i=l X J

Subtracting (A.14) fron (4.15) yields

k * ? */ k * \ ? / k *\ l<
V f ( x K ) - V f ( x ) + I u (7K . (xK ) - Vg (x )) + L (u - u )Vr (xK)

-1 \ x 1 ' x x 1/1

(fk - fk"1)Vdk(xk) for k « 1,2, ...

and by rearranging terms

(fk -
icA(x icQ(x)

* k T */ * k \
+ Vf(x ) - Vf(xk) + I u (Vg (x ) - Vr (x

k))
1=1 X

for k - 1,2.

which implies by the triangle Inequality
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i rA(x ) i c Q ( x )

.16) + (fk - f k " 1 ) | | vd k (x k ) | i + | | v f ( x * > - V£(x k ) | |

m * *
+ I " Jhp jU ) - V E l ( x k ) | | for k = l , 2 ,

i - j

* * * *
since Ui = 0 for .ill i c Q(x ) . Since Q(x ) has q clcnu-nts,

l | v B i U
k ) | | < l tor i - 1.2, .... m hy ( 4 . 5 ) , e i (x k ) > / 1—\.

* r+ (ii'l
for i = • ] , : , . . . , m by 11 .-i'1.1 3.3 and ( < min £ . (>. )

IcQ(x*)

I ^ u k | | v g i ( x k ) |

it<
(4.17)

- fk '1) for k - 1 ,2 ,

By Assumption

| |V£(x*) - V f ( x k ) | | + ?

(4.18)

'" A \ *

4 ,1. u i ) H * - * II f°r k o 1,2,

Combining (4.16), (4.17) and (4.18) with Jjvdk(xk)j) < t yields

- u*)/Bl(x
k)|| < ,

/ n *•"(»+ i «.;V 1=1 J

_ _ . 8m + cv)|(fk - I1*"1) +

icA(x*)

1,2



k *Now let w be a p vector for k ° 1,2, ... wi t l i

(4.20)
k k *

w = u - J
1 1 1

for i t A(x ) <= {1,2,

Then for k = 1 ,2 , ...

| I cA(x )

l.w

llm x = x , Lc~una A.6 in.plies t'lc-re exists, an integer k ard a
k «"

* k * k T -1
positive number p such that [!i (x )H (x ) ] exists and

(4.21) for all k - k .

Tlicn

icA(x )

* kT * k * k T - 1
II (xV[H U )H (xVl for all k • ;.

and h) the f .encrnl i /ed Cnuchy-Schwarz inequal i ty {31; p. 185]

| |H*(xk)T | |

i c A ( x )
for all k > k .

By a Matrix norm property [31; p. 188] and the definitions of A and p

(4.23) ||H*(xk)'|i ;
n
V

3x
icA(x

(p )JA for k = 1,2,

Then rotnbininr, (•'•.I"), (4.21), (4.23) and (4.22) yields
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= WU \6" / 'm+ EY)J
(4.24)

<(l + I u*VV 1=1 i/'
x* - x k | I ( for all k > k

By (/..20)

k = 1,2, ... .

icA(x )

l.V-ti f r om (4.2 ' ' ) .mil (•!>.?!)) "Lore exists d posit ive nuraoer o ^ p such tha t

t h e d i sued t o s u l t i . o l d s . j j

Jn j rdi r to ( tn i lu r iL Lcrun is -i. 2, i. 5 anil 4.7 to ob ta in dn upper bound on

M '' ^1 I r ,r^ rk '^ , ,I jx - x II in t c i m s of (f - f ) a Kiu-id not dc|>cnding on problem

1' ip t loHb w i j ) l > e r e q u i r e d .

'< 8:

Lot .1 , b , c and <1 be nonnej^/t ivc numbers such tha t

( A . ? C > ) a2 - kid - cd2 -. 0 .

l i i en

a < ~[b + (b2

llic r e H u l t is t r i v i a ] if d - 0 so suppose a > 0 . Then clearly

(/. . 2 7 ) n - ||b - (b2 + 4c) 5]d > 0 .
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Relation (6.26) is uqm v.i lent to

(b2 t- 4c)'-]d]|a - ~[b-(b2 + 4c)'-]d < 0 .

Then the cicsjrcd result follows frotr (4.27) and (4.28).(|

i iNow .ill of the previous results may be conbiri"d to show that | |> - >

*
icA(x )

Lonma A . 9 :

ju - u j ,>rc bounded above by Ijnojr functions of (fr - f '

Suppose p ^0 and let p be as in Lemna .̂7. Then for k = 1,2,

(4.29) ||x*-xk|

and

(4.30) I |uk - u*| < b3(f
k -

icA(x*)

where

"•>»

(fk _

- ](Bm + ey) (Bm +

and
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1'rnof.

By combining the results of Lemma 4.2 and Lemma 4.5

| x * - x k i | 2 <
(4.3'.)

,, + £y)
[itA(x

c l l x " - x k | for y = 1,2,

by ( ' t .*) .incl the d e f i n i t i o n of q

x - x for k = 1,2,

By ctmMiunf; (/t.J'O and (/i.J5) and the result of Lemma U.

I * kl I2
x - x

>®
for k = 1,2

D e f i n i n g b and b by (4.31) and (4.32) yields

/ / i , s I I | i i / / - r~ \ , . / , , - . I |(4.36) | |x - x (I < b(f - f ) + b(f - f ) | | x - x

for k - 1,2

Then (4 .29) follows uancd l a t e ly f rom (4.36) and Lemma 4.8 wi th a a \ |x - x |

b = l>t , c = b2 und d = (fk - fk - I) . Then (4.30) follows d i r ec t ly f rom

na 4.7 nnJ (4. 29) wlicn b is dc-flncc! by (4.33). | |
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Combining the above icsult with Corollary 3.11 yields the following

uppor bounding decreasing exponential functions of k for | |x - x j ] ,

I 1^ - UJ and \&i(x ) - gi(x )| for i = 1,2 ..... m .

Theorem 6.10

Suppose p > 0 and let a^^ = (-} \b1 + (b + 4b2j
2 . Then for

k = 1,2, ...

k-1
// ITS I I * k| I t r* «r°s/ 8m +C..37) ||x - * | | < a < r - f

icA(x

and

Em + c \k~1

t .39) lg,(O - 8,(x")| < Aa . (£" - f")L ,m
ftm ? \ for 1 = 1,2,

Proof:

By Corollary 3.11

(4.40) fk - f^1 < f* - fk~ l < (f* - f0)(_aS.±-aL-) for k . 1,2, . . . .

Then (4.37) and (4.38) follow from (4.40) and (4.29) and (4.30) of Lenrnia 4.9,

respectively. The final result (4.39) follows from (4.4) and (4.37).||

*
F<.<r the case when p =* 0 corresponding upper bounds can be given in

terms of products of k-1 fractions where the fractions converge to zero.
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Theorem 4.11:

Suppose p = 0 and let

k = 1,2, ...

Ey) ' Then for

< a V

and

*
(4 42) |g (xk) - g (x )| <

K~1 / 6s> \
n L +

 J
Bs f

3=1 \ J/

or 1=1,2, ...,m

where

Proof.

lim s = 0

From (4.34) and (4.35) with A(x ) empty

Then since q = m

for k = 1,2,

(4.43) |x* - xk|| < a2(f
k for k-1,2 .....

By Corollary 3.11

* *
(4.44) C - i l < f - f < (C - f°) for k = 1,2,

Then (4.41) follows from (4.43) and (4.44) and lin s. = 0 by Lenma 3.4 since
j-KD J

m _ q'- = p* = 0 . Then (4.42) follows from (4.4) and (4.41).(1
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The convergence rate given by (4.37) of Theorem 4.10 is an improvement

by a factor of 2 over the following convergence rate result vinch represents

k * k * t
the usual wiy of getting a rate for x •> x given a rate for f -»• f

This result follows directly from Lemma 4.1 and Corollary 3.11 and does not

require Assumptions (4.1.b), (4.1.c) or (4.3).

Theorem 4 12:

For k = 1,2, ...

I * klx - x
cy

Proof:

k 1
From Lemma 4.1 with x=x eS for k = 1,2, ...

t * k i i 2 /] \ * k r?
X - xk||2 < f - f(xk) -

Then the desired result follows from Corollary 3.11.|

fFor example see [20], [28], [29] and [32].



5. SUlM'ROlM L'\

In this section the convergence of Cauchy's [ 3] method of steepest

ascent for each subproblem k will be studied and an upper bound on the

k k-1
number of steepest ascent steps reouired to find x fron x will be

derived. Combine' with the result of Corollary 3.12, tins will lead to rn

upper bound on the total number of steepest ascent steps required to find a

k o * k
point x starting from x sucli that f - f (x ) < t where t is a

termination parc^uiei for the algorithm.

In addition to Assumptions (2.1) and (3.1) which imply S is hounded

and convo , it will be pssurncd throughout t -> section that

f and g for i = 1,2, ..., m are twice
(5.1) X

 1

continuously diffcientiablc on S ,

(5.2) Vf(x) i 0 for all x £ S1

and

(5.3) e > 0 .

The n * n symmetric matrices of second partial derivatives of the respective

probJem functions which exist and are continuous by Assumption (5.1) wall be

denoted by

„
o

and

(5.5) 11, (x) for i = 1,2, ..., m .



' t io" (j J) i i ;>1 !..•-- p. , . . , £ mid 1 an- cont iruoir-!\ I ' l i f i r i P t *

on S "ii li is ;issi'"!T 10 i ( - . • ! ) .inci tor.ot.lier .'it.li the a s sumpt ion th . i t l-~

is '»ou' ' ie-1 Tid tin1 f «_ re i ill Toil r iMn \ . i luc thcoren [ 1 - t , ;>. 20] i ^p j i t " . v.'u c

the L a p t - f ' ' i t / C(''io ; i. i i ' i of At.su"ytlon ( 4 . T ) h o l a s vu-n u is di fmod by

(5.6) u = nax
0- i-n

x-.S1

w l i c i i 1 L l i i r n t f i x norn is .is c o f i n o d in (4.13). The concav i t y of f inu s,

fur i - 1,2, . . , n uiplics tl iat tbo T-,i tr ict-s 1! (\) '"or i -- 0 , J , .. , M

.iro negative scirivli-f in to for all v t. S . Then as in [ J /«, ;i 22]

( b . 7 ) | |i; ( x ) H = sup y t - H ( > . ) ] > for 1 = 0,1, .... n ano
l i > ! l - J ,

all y c r/

Combli i i . i i . ( - ) . f % ) -Hict ( r ) . 7 ) f.ivos the u s e f u l r e s u l t , Ui.it for all x r S

.ind all > r. E

(5.8) y f - H x J l y < u||yj|2 for i - 0,1 ..... m .

pt ion (3 .2) implies the .ilj'.or i t l in docs not t e r ' n in j t c ir. a f i n i t e

number of i tc i . i t iuns anJ tog i - th t r w i th (5.1) i rp l ios tliat a > 0 when-

(S.9) o - i"i ||Vf(x)|| .

It will be convenient to define a function C(x) vih_ch gives the

smallest conrtrair.t value for feasible poi-us x by

(5.10) G(x) = nfn R (y) for x c S .

l-i addition to t!-o jnrnnetcrs defined bv (3.5), (3.24), (A. 5), (5.6) and (5 9)
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(3.U)

(5.12)

(5.J3)

g =

n = 2 nax

0 = -^ M.iX

sup {; (A)

-,.2 9 2U,2n 2u

ft),,
\o /

(:> 13)

cC.c) - na [ £,(.! + c-,)(l + ;n + c () '.

) = [C mx lG(x0),l]]fri+1

and

(5.J7)
n + r'«

Q(B,t) = (- ^

whore p is dcfinod by (j.23) and depends on u for i = 1,2, ..., m defined

b> (3.19) uhich is a function of Llie .ilgorilliii pnr.ineters 3 and £ .

t's will be shown in the- scqvicl, Assumption (5.3) guarantees that only

k
a finite number of subproblcn steps will be required to find each x when

a sJiRbt modification of the following algorithm is used to solve each

subpi'obJem.

Method of Steepest A.sccnl with Op n rial Step Size;

Let d be a re.il-valued function defined on En and z c En be ao

starting point. Assume Lliat T = {i \ d(z) > d(^ )} is bounded and that
»

d is continuously diffcrcntiable on T .

general .ilgoi i tlims of this type- see Topkis and Veinott [33].
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1'or j = 1,2, ... Irt X . he n positive nunhcr satisfying

.Tld lot

st.DtinR fru-i / and stopping if Vd(/. ) = 0 for some j j 1 . Curr\ I '« 1

has si'ô n th.it if / is an accumula t ion point of the sequence {? } ,

j - ],2, ... then Vd(>) - 0 .

For solving subprohlom k the first step of tins nlgorithm will hav<_

k
to be modified in order to take into account that d 11 to he m.i\imi7td

-k k— 1 - k
over an open s.ct S starting from a point x on the boundary of S

k
where fl is not defined. By employing the result of Lemma ?.l n step of

k k-1 k-1optinal si/.e in ly be made I rom 7 = x in the direction Vf(.\ ) to fin d a
o

k -V
point /- L S ' and a set

(5.18) T - x | x r Sk , dk(x)

on ulnch to carry out. the remainder of the steepest ascent steps. The

k/ k\ k-1
modified algouthm essentially defines Vd Iz I to be V£ (x ) .

Fct each integer k > 1 let <z > , j = 1,2, ... be the sequence of

points generated by the modified steepest ascent algorithm starting from

k k-1 k k k
z = x . Since Vd is continuous on T and T is compact by the

k -k k
continuity of d on the bounded set S ^> T , each accumulation point

- k ( k ) k -k
z' of <.: > , j = 1,2, ... satisfies 7d U ) = 0 and therefore since

( > 0 there exists an integer j such that ||vd K . l i < c • Let f.(k)

be the sr..il]cst integer j such that [ | Vd (/ )
\ J /

< c and set x = 7-«/
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I h i M ?( '*) is l lu iuinl»ei of steps r e q u i r e d to solve G u b p r o b l e m k ar.d,

t n u . , f i n d .1 su i r tmj j p o i n t for subproolem k + 1 .

UK- developru-nt to botnul ) * ( k ) begins w i t h the fo l lowing lennia w h i c h

k- 1
is .111 e x t e n s i o n of Lcn"i,i 2.1 d e a l i n g w i t h .1 s tep fron x in the d i r e c t i o n

I -1 • 'k
''1 ( ) lo .1 p o i n t % (' ) in b . It not o n l > shows, the exis tence of

/ . ( ' ) hut usi s second i -nkr i n f o r n a L i o n lo provide p o b i t i v e lower houiuls for

f( ( ' ) ) - f 1 " 1 .md S ( * ( " ) ) fo' J " 1.2. .... PI .

l\.r eat h i n t e g e r t - 1 then ixis ' .s n p o s i t i v e nunber \ de-pi ,ul i nj;,

on k such t l i . i t

-- nln i

,ind for c.ich i L ( 1 , 2 , ..., m}

(5.20) g jL(xk"1 + X V f ( x k ~ J ) ) > (^-) rain B.Cx 1 """ 1 ) , ! ! > 0

Proof:

For some k > 1 let

(5.21) x (A) « x14"1 + XVf(x k " 1 )

(5.22) h Q (X) = X| |Vf(xk"1) | |2 - -| X2p | | Vf (x^1) | | 2

and

(5.23) h(» = G(xk"1) - X A l l v f C x ^ 1 ) ! ! - ~ X 2
l ! | | V f ( x k " 1 ) | j 2
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for A > 0 such thjt x(X) c i> where u , A and C are defined bv (5.6),
c

(4 .5) jnd (!>.10) ri-spi i_t i ve ly . Assumpt ion (5.1) and (5.21) imply by the

second order l a lyor ' j , l i ico.um (31) tli i t

(5.24)

and

(5.2',)

• V f ( x k " J ) f o r 1 - 1 , 2 m

where (, l i e s on the l i n e s iKnvnl conn i -c t lnK x and x ('-) 'or

1 • 0,1 m . Tlu-n ( 3 . 2 4 ) . (3.8) Jnd ( b . 2 J ) I r r p l y

(5.26) f ( x ( X ) ) - f^" ' h (A) foi all > - 0 sui.li th . i t
" O "

x ( ' ) i. S

Simi la r ly (5 .25) , the Caucliy-Schwajv i n e q u a l i t y jnd the di f inl I lo.is of A

and y inply tliat for each 1 c {1,2, .... m)

' X A | | V f ( x k " l ) | | - i X 2
l , | | V

or

(5 .27) * l\K .<» '> /

• L | | v f ( x k - l ) | j * i x 2
u | | v r (>" 1 ) | ' ' ' |

k-1 k- 1
fht-n < » l n t e C(x ) ^ K £ ( x ) hy the <!<•! lul r nut or (. , ( j . t ' l ) mil ( 3 , 2 7 )

i m p l y tint for c ,ich I t ( l , ^ » .... m!



Not . iha I Q ( 0 ) = 0 and — - = | | . ' £ (x )|| > 0 and h(0) = C . ( x ) > 'J

( ( *"•"' > \
— -,-—)• t ( \ ( )) > 1.0) for all X > 0 sucli tli \i

'* x ( \ ) i S1

dh (0)

— ̂  -

1Mj i'blfli = _ , , | j f ( . k ~ 1 > 1 | ° . 0 s jnec | | v f (x k " 1 ) | | > 0 by Assur.pl ion (5 J)

..nil . - 0 b> the boundodnuss of S . Consider increasing X f rom /cro

i i ! i L , J < i i h c r l i ( ' • ) = l i ( - ) or b (^) is ndxir.izud wli ic i ievcr occurs f i r s t .
o o

1! i - 0 , ]iL T m a ^ i i n / c h (> ) for X > 0 wlucli exis ts s j n c ^ li (>) js
o = o

s l i i i t l y 1 1 me. IV. f c r , > 0 . Then

If i ' = 0 , d i l l no ' • = + < • . D e f i n e X by h (X) = h ( X ) so

> l ! - , f k - ' - ' 2

llu i

( b . J l ) X = -—> 0
"
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h (*) > ),<\) --;-*-
O I I i ,. , K-J\ I 1 ' • It • / *.*"• 1. i

)|I + n]Ivl(x )|

O.J2)

ov. lot X = nin [I,\] . If A • >, then A - I nnd Ly (3.30)

If A > X then A •> A and by (5 .29) and (5.3])

, | | V f ( x k - 1 ) | | 2

by

(5.35)

2 - uC(xk"1)

Tnen combining (5.3A) and (5.35) yields

which implies by the definition

(5.36)



( u..i!> i .11 ii), ( j . j 1 . ) i'u! (b. 30) >K . l i l c . for i M t h t r

— I run

win i t • ( i - i ' . f t n < ! h \ C > . ] 2 ) ii 'd C ib do f i n e d 1>N (5 . ' J ) . 11u.n (3 J / )

U > > " t l n t w i t h (!.. '(•; .uul (">. - ' ! ) i m p l i e s (5 J9 ) .ind lof.L' tbcr \ J t h (5 J8 )

I ci «. .u li i i {i , i , . . . , i.i I

) I Ii ' • I i

I'.v. ( o; i pi oc i < - . ! ' ] ' } fin I ( ti i \ ) t l i t 'u f i r s t si c i ^ r s L jsc.i n t - j t c j ) two

[II «. J 1! ' 1 P.^I _ i < i'I I1 , t ' .IC l'l .1 1 I I I ) ' V I til J t <_ I .It Kill k = J .liul tilt- C'llu 1 ^ 11 I)

j U i <it ) ( .» ) • • k . ' , w» J ! hi i - t . i M i ' l u J l v n ' r i s u l t 1 of t l u ' t - J i - 'Mni . t ' h. ivi

di f I 01 cut I in i is i l u i to t i.i f i( t lli IL % , tlu l.t ,11 I i ii) poi at i in i li'i nt i D i

k - I , i ^ i n f • IK i 11 nut in i | > s < i ( i > i t it.i t f i i t i - ' r for sunn1 p i i v i u u s i i v r j i i u n .

m m
' ,!] for all x L S

dll ' l f"l I J i l l 1 I { 1 , ' , . . . , I.i J

- J ' — , /JL_\ n

M!M C . , ( x ),! ' \C(x°)/
for all x c S1

liy tin ill. I i ni t ion of (• for tMi.li i r 1 1 , 2 , ..., m)
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(5.40)
nln

1_ < 1 , /_J_\ nax (G(<
0),1] .

cxU ).i) " mm [c(x°),i] \r.(x°)/

Then (5.38) fo)lovb from the equality relation in (5.40) since f(\) < f |

for all x c S and (5.39) fellows fren (5.40) since g(x) > j"; for all

x e S1 .||

Lrrm.i 5 3:

For each Integer k > 2

for all x c S

and for each i c (1,2, ..., m)

(5.42)
min

" for all x c Sk

Proof:

By Lemma 3.2

(5.43) f* - fk-1 < (fk-1 - fk"2)(Bm + for k - 2,3, ...

and by Lemma 3.5 and the definition of G

(5.44) C(xk-1) > BCf1"1 for k - 2,3,

The definition of f , (5.43) and (5.44) Imply for each integer k > 2 that



rain |G( ! ' ) , 1 J \ l.(\°)
^m + CY)

for <-ill x L b

' i i i i_<_ for . • 1

f . for

. s i r c L C.( .° ; , , , (.3 iJ) l u l l u x s f rom (5 .A6) and (5 ] ' i ) . Also foi each

L i , i i I 2 l i i i . ' J . I .in! i l ic l i c f i n i L i o n of Y

f k" J ) for al l

E S

foi S! .ma f ( ^ ) = fk J for a]J x c Sk , (5 47)

I T [1 1 1 .

0, _, T _!IL(I) + r\
1=1 ( C^'1) '"''

for all x c S

foi i .- .(_li i n t > . ' i , < _ r k f_ 2 and each i c {1,2, . . . , m)

k-1 =
< m + P- -k

for all x E S

i i tli i r ip l ic s

(i .68) < max
I , N ,mm IK, (^ ) ,11

for all x r S

• - . i iuu r, (A) < (.', for . i l l X L ' . . Then (S42) fo l lows f ron (5 '18) since
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1 < 1 + 8m + CY implies

max
(8,e)
~

The next lemma employs the results of Lemmas 5.1, 5.2 and 5.3 to obtain

k k k/ k\
an uppe*- bound on d (x ) - d Iz^J for each k > 1 .

Lemma 5.A:

(5.49) < U raax

and for k = 2,3, ...

(5.50) dV) - dk(2
k
1) < Cl + 0m) in

Proof;

k-1 k-1
For some k > 1 let x(X) = x + XVf(x ) for X > 0 such that

-k *
x(X) c S and let X be such that

dk(x(X*)) = max [dk(x(X)> \ X > 0 and x(X) c Sk) .

Such a X exists by Lemma 5.1 and the continuity of d on the bounded

-k k *
set S . Then z. = x(X ) and with X as in Lemma 5.1

dk(xk + XVf(xk»

and by (5.19) and (5.20)

(5.51) ~) tain lG(>.k~1),l] + 6 In rain

Then (5.51) and the definition of d (x ) imply for each integer k > 1



/o

k k. ,
d (x ) - il '•

(5.52)

m
B } In , k-1

u n i; (x ) , 1

I h t n (3 4a) fcl lci i> f ron Lo .^ id 5 2 and (5.52) vi th k = 1 and (5.50) fo l i o ,

f i o m I C L U I U 5., and (5 52) v i t h \ ^ 2 since x" c Sk for all k > ] and

10 (5 .1 J )

- r

and

By e m p l o y i n g a i j;u 'it n t •> s i m i l a r Co ti ios. jt ,cd in p r o v j i i y the previous

Icivia, I«.!,i - . . is 5 ), 5.2 and "j . J rui^ be co b i u c d Lo prov ide lower boards on

! -] kf (> ) - f and f, (x) for i = 1 ,2 , .., n for all x e. 1 v,ncrc by

(5/85 the p o i n t s / for 7 > 1 ( 'eucr.ittd b) t l ic rod i f i cd

ascent ,T I j . o r i t l in .

1 c MI la 5. r>

(5.53) f ( x ) - f for all x c T1

and for t-pcn i c ( 1 , 2 , .. . , m}

(5 54) "' /C for all x c

and for k = 2 ,3 ,
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(S.ii) f ( x ) - f- run [G(\k ]),1] for all x c l'

,i.id foi \itli ) c ! J , 2 , . . . , ra)

(3 .56) for all x c

1'rocit

^ < > ^ t .icli i t i t <_,,•_ i V - 1

O . l > 7 ) ,]' ^) -- hi ( i ( - ) - I"""1) + r. I In g (x) ^ ilk(-'!') for all x c i'
1=1 i - \ J/

C c < , ) l > i i i i i > ; ( ' .> ( i . 3 J ) \ i L J d i

rk-l
In (I (\) - f ) + : } In (; (\) ]n

( 5 . b K )

+ 6 In
/ '\

;-) i.in L.Cx^-1) .
\ i / I '

mm [G(x k * ) ,

for .ill x c T

l l l 'pl 1 t'b

In ( f ( x ) - fk ') _ In I f - - ) run [C(x k " 1 ) , l ] | -

m r,
B I In |[-',-H '—— r\ for all x c

o / \ n) n j;

Then by (5.39) of Ic-.na 5.2 and (5.59) w i i h k = 1

In ( f ( x ) - f") > -In

- t"i In

o c ( x )

V n.'x [ C ( x ° ) , l ] for all x c T1



78

01 SJIK.O 0 > f—1-

(f(x) - f°> > -I nax [G (x°) , I ] ] 6m+1 1

(W I

I

for all x c T
1

wliK.li by (5 15) is jquiviKpt to the desired result (5 53). In a similar

manner (5 r> >) follows fior\ (5 42) of Lcnma 5.3, (5.59) with k > 2 and (5.1o)

since 0 > /—y] • Relation (3 56) a]so inpjjcs for each i c {1,2, ..., m)= V"l

(S.ftO)

-J
for all x c 1

Then for each i c {1,2, ..., n) by Lemma 5.2 and (5.00) with k = 1

Jn P (x) In _^ max
|\o /\ C(x°) /

- (m - 1) In

- In

/-!L\/--i__\
[\oV\C(x°)/

[/-i\(_i--Wl\
^"/VG(X°)/\B/

nax [G(x°),l] -

max [C(x).lj for all x c T

or by the definition of 0

;x(x) > -In |p-
V)lG max lG(x°),1)]m+1/e( for all x c T1

which by (5.15) is equivalent to the desired result (5.54). In a similar

manner (5.56) follows- from Lcnina 5.3, (5.60) with k > 2 and (5.16) since



for i = 1,2 m .

For k - 1,2, . let 11 (x) be the matrix of second p a r t i a l dc-rivaiv,

k ' '»•of d (x) for x e S . The results of Lenna 5.5 ma> be asecl to hound tin-

k k
norm of H (x) for all x c 1

Lemma 5.6.

For all y c L

(5.61)

> [ - M ( x ) J y < n— b (6 ) + Dn(D
" VWl

B m ( b . ( B ) ) 2 / E | J ! | y |

and for k = ? ,3, ...

sup y [ - H k ( x ) ] y < nf - ^-V.lbCR.r) + 8 m ( b ( B , c:»1/SJ-

(5.62) •Hr-̂ -rT/ + (' ̂ —V(b(B,c))2 + fm(b(6,O)2/(V
\f - fk"V \2G(x°)/

i t * - ? y
\£* - f1-1/

Proof :

For each Integer k > 1

kVdk(x)
(f(x) - f )

? Vgl(x) -kI -- for x c Sk

which implies by Assumption (5.1)

(f(x) - fk-1) (f(x) -
+R v i"j(x) lVRi(x)Vgi(x)B " "
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U!UTO 11 (-• ) for i - 0 , J , . . . , in arc i lc-Cipc-d b\ (5. 4) .ind (3 . j ) nnd

l ' ' f ( \ ) 'I ( ) ] , foi example, is ai n * n b>T.in\ cu r i e m a t r i x whoso ij

oJcracnL is I- — "•][-" --- 1 • rlien f°r a l l> >' c E
\ 'x i /V -x j /

y[-"
^ )1_ + B I ___

L) (f(x) - fk~V 1=1 j Ri

for

.ind b> t l i v ; d( f nii i i c j n u f . and K i - l a I um ( 5 . R ) >ind L i i c d o f n M i i o . s of

and / irJ Liu C in i .h%-ScJ i i ' . u / n u q u a l i t j

y[-nl

_-•.— +

lin.n snu-i n

for all x c S

, (5.(- 'J; i n ip J i c s for .my y c L that

y l - H ( x ) J v

n

for x c S

tin C.-.^L- uhcn k " 1 , Lcmna 5.5 ini])Jics

(5.65)
(fi

for all x e T

and foi each i f (1.2, ..., m)



(5.6'0 :~K _ f-Ul-.C))1''1 for .-11 > , 1! .

f t i c n (..'.M) f o J l o s s f j o ' i ( ) . 0 5 ) , (5.66) ntid (5.04) u: ui k = 1 . fot t '
I

r-ue v h..» k ;• 2 (=> 41) mplios '

* I -1 / * c_n_i_f__) < [JL_-_l
nun t*j (x ̂  ) , 1J \ C (x )

i / i */ <• -
(-, (.7) i-— < b ( C , c ) —'— M --— for all x

f ( x ) - £K '1 -

for tacli i f. {1,2, ..., m)

f01 all >. r

T h e n (3.62) Jo l lows f r o m ( 5 . 6 / ) , (5.08) and (5.('•'») v,ith k > 2 J|

Die next lonmn p iov idos an upper bound on t ( I ) , the nunher of

k k
rcquin-d by Lhr n o d i f i c d steepest nsccnt a lgor i thm to f i n d x ° z - / i \

x ̂ K /

starting from x*""1 - ?^ for carh k > 1 . Clearly J.(k) - 1 and xk = r^

if ||\'d (z. ]i i ̂  e . Otherwise i(k) > 1 ond the remaining steepest ascen*

^steps arc carried out on T . For k • 1,2, ... let

(5.69) v - sup ||H*(x)|| .
k

xcT

l.omma 5.6 implies the e>istencc of v. for k = 1,2, ... since for a negative

k
f ini lc- ^vrru-U'trir n-atrix sut'i as H (x)

v!-nk(y)]y .



I 1

'- J
' •- ."l o ( 3 . 2 ) 'it t :uv d . 1 " p i t - . ' j n 1 - . of i, (O "J IK ,(_ , .

i
1 o '.c ' Li >L i"" i' i '_ervc si ' i At siii pt ' on (', i) : p 1 n. s ,•> •'i •

11 j c- ' - 'or ' v l o i ' s t lu-oren L h n L ror j -; J

f o r

.•s on tin. ] iiu scf.menL connect i up, / and z + AVcJ (' ) In
1 J \ J/

(r> -•; .in.' (-> 70)

( > ) ] v < »i. ||v|r for all y c 1."
— K

Ml

Hun l/t.71) .UK' ('• 12} i n p l y t!u->t for j > 1

for all X > 0 such that 7 + X7dk (/' '} t ~f

J \ J/

A
1(1 X r , i ' .n . /o o x e r ,vnncf, , iLivi- real numbers the f u n c t i o n of X on the

t j'.hi i' ii ii . ]< ' ( • of ( 3 . 7 J ) winch is i\ concave func t ion of X . Then

(I . 'u l - m i l ' I n , fuiu t ' o i ) ic rr.is( «. ii> i 11> m.'\ M R I I C - a l u i '
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dk(zM + /-̂ Mj |ndk/zM| j2 as X increases from 0 to X* . (5.73) mpli.cs

zk + XVdk(zM c Tk for all X c [0,X*J . Then by the definition of zk+1

for j > 1

.k/ k \ ,k/ k . * .k
d

and if j < £(k) then | |vd (z )| I > c which implies

,k/ k \ k/ k\ / 1 \ 2
d (z , ) > d (z I + |- — c

\ j-H/ = \ J/ 2p

Then by induction on j for j = 1,2 ..... i(k) - 1

which is equivalent to the desired result since x = z.,,^ . ||

Now Lemmas 5.£, 5.6 and 5.7 and Corollary 3.14 may be combined with the

definition of a(S,c) to give an exponentially increasing function of k

which upper bounds £(k) for all k > 1 .

Theorem 5.8:

(5.74) UD < ax(6,c) + 1

and for k = 2,3, ...

(5.75) t(k) < a2(S,c)(a(6,c))
k"1 + a3(6,c)(a(6,c))

2(k~1)

where



— [ ! , ( ' , , ) + fcn(b(;,c))]/B] In

In

I- ion )(":,„! r> '• ,ir<.! I IK' <k I" J n i U ous of b . ( r - ) <jnd b( .3 ,c)

ami f oi L = ^ , J, ...

(5. SO) d k (x k )

5.6 , ( 5 . r , V ) .ind ( -J .70) i m p l y

and for k = 2 ,3 , ...

(5.8.-)
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Trom Corollary 3.14 and (5 17)

" _i < (aC.e)) for k = 1,2,

lliLii (5 74) follous from (5 79), (5.81) and Lcmria 5.7 with k -- 1 -hero

a (f:,c) is defined b> (5.76) and (5.75) follows fror> (5 80), (5 SJ), (5 8J)

and Lemma 5 7 wjin k ^ 2 wierc a2(3,c) and a.,(|5,c) arc defined t>> (5 77)

and (5.78) respectively.||

It should be noted that it is possible to find an upper bound in tciras

1 + f-p
of the definitions of this section for the factor a(6,c) = '-*- appear J PR

Bp
In Iheorem 5.8 From (3.19) and the definition of G

f - f°
(5.84) u < (1 + (5m + CY)( — I for i = 1,2, .... m

1 = \ G(x°) /

and from (3

*
m u

(5.85)

* * * *
For x E X and u c U

\ i , * / * * * \
p > I — for all u = ^u1>u2, ..., u 1

1 ~ J. U ,

Vf(x ) = - I u VR (x )

and by the definitions of o and A and the triangle inequality

m *
(5.86) o < | | V f ( x ) | | < I u J l V g (x )|| < a I u

1=1 1=1 X

Combining (5.84), (5.85) and (5.86) yields



Mi

1 H .

. 4. -. \

U( ...

I h i s 'loup.'l u u i i l d 1 1 s<> !>,_ u sed in conju R t i on w i t h Coro l l a r i es 39, 3 14 ^tncj

J 1 Li ..nil 1 U O I L P J 1 '> id obt 1 1 n coi respond \ n;; Lounds? \ l n c h rep lace the

di.pi.1 1- ncu on L \ i tli i lc.pt lulciKA on o ind '\ .

i i> t u ' i b i u i i f , L l ic r e s u l t s , . f 11-eonm 5.8 and Coro l l a ry 3.12 an u p p e r

bound in j 1 , f urn t ion of t nay bo f o u n d for tbe Lo ta l number of steepest accent

s tep ' , r i - c j u i r c d to f i n d ju v s t a r t i n f , f i o u x such that f - f (x ) < t

wlii ' i c t 3s a t i ' r i i i i u i o n pu . ' i i ' c t c i foi the a l g o r i t h m .

J 1 t jn oi.i 5 _9

Let n.(B>") » a_(,'5,s) and a_(6,c) be as defined in Theorem 5.8 and

lot n(t) be the total iiui'ibor of steepest ascent steps icquired to find a

point x c S Stalling from x c S such that f - f (x ) < t where

t < f* - f(x°) . Then

n ( t ) < k ( t , 6 , c )

(5.87) . [ ( c , ( r , , c ) ) ' ' - 1] + a

(o(B,c)) -
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In
k(t,B,c) is the greatest integer less than , j—- .

ln \Cm + CY /

Proof:

Frorr Corollary 3.12 if k > rr^ / . ' . then f - f" < t which
= . I + '-m + ry'ln \~^TT

implies f

k(t,6,c)+l
(5.83) n(t) < I Hfk)

where i(k) is number of steepest ascent steps required to solve subpioblcn

k . For tne case when k(t,B,c) = 0 , (5.87) follows ^mmediatcly from (5.88)

and (5.74). for the case when k(t,3,c) > 1 , (5.88) and Theorem 5.fe imply

k(t,3,E)fl
n(t) < k(t,6,c) + 1 + a (B,c) + a (8,E)a(8,c) I

1 k=2

, k(t,B,c)+l
+ a.(S,c)(a(B,E)) I

k=2

which is equivalent to (5.87).||
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