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ABSTRACT

Convergence of a method of centers algorithm for solving
nonlinear programming problems whose feasible regions have
nonempty sStrict interiors is considered. Conditions are
given under which the algorithm generates sequences of
feasible points and multiplier vectors which have accumula-
tion points satisfying the Fritz Jjohn and the Kuhn-Tucker
optimality conditions., Under stronger assumptions linear
convergence rates are established for the sequences of
objective function, constraint function, feasible point and
multiplier values.

The feasible points generated by the algorithm may be exact
or approximate solutions to unconstrained maximization
subproblems and in the approximate case may be found by
finite step procedures. Upper bounds are derived for the
number of steps required to solve each subproblem when the
method of steepest ascent is employed.
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1., INTRODUCTION

Corsider the nonlincar programming problem of maximizing £(x)
subject to the constraints gl(x) >0 for 1=1,2, ..., m where
Bys revs By and f are rcal-valued functions defined on E" and

X = (xl,xz, ceey xn) . Let
S = {x | gl(x) >0,1=1,2, ..., m} .

*
S 1s the set of fcasible points and a point x € S which maximizes
* *
f over S 1is an optimal solution and the corresponding number f = f(x )

is the optimal value, Let

S={x] g >0,i=12 ..., m.

S is called the strict interior of § and or:ly nonlinear programming
problems with S nonempty will be considered in the sequel.

The method of centers introduced by Huard [15) is in a class of
methods which solve nonlinear programming problems with § nonemptyv by
solving a sequence of unconstrained problems. The basic i1dea of thas
approach is to consider the objective function as an additional constraint,
f(x) 2 £(x°) where x° € § , and to define anauxiliary function called
a distance function which depends on f , Bys ve0s By and x° and is
maximized by a point called a center in §t - (x| £(x) > f(xo),gi(x) > 0,
i=1,2, ..., m} . If this maximization problem is solved then an

1 1

x* ¢ § is found such that f(xl) > f(xo) . The above process is then

repeated with x1 replacing x° . 1f this procedure is carried on then

under certain additional assumptions an approximation to an optimal

solution results. An important property of such a method is that each



point generated is a feasible solution and has a better objective value
than the previous point.
Examples of distance functions given by Faure and Huard [6] and

Huard [15] respectively are:

m
(£G) - )P 1 g, (x) for x ¢ $(a)

i=1
(1.1) D(x,a) = with p > 0
0 otherwise
and
min [(L(x) - d),gi(k), cees gm(x)] for x e S(a)
(1.2) D(x,a) =
lo otherwise

where S(a) = {x | £(x) > a,gi(x) >0,i=1,2, ..., m} and & is a
paramcter determined itcratively by a method of centers algorithm., Other
examples of distance function which are slight modifications of the

above or mixtures of such modifications are given by Tremolidres [34]. A

method of centers algorithm consists of {inding an xk which approximately

maximizes D(x,uk) where uk = f(xk—l) for k=1,2, ... starting from
some xo ¢ §. For k= 1,2, ... an ck-center is a point xk £ §(ak) such
that D(hk,ak) > ﬁk - ¢, where 5k is the maximum value of Dk(x,ak)

k

over §(ak) and {ek} » k= 1,2, ... 1s a sequence of nonnegative numbers

converging to zero. For a class of general distance functions Bui-Trong-Lieu
*

and Huard {1]) have shown the convergence of f(xk) to t  where {xk} is

a sequencec of €, -centers essentially assuming that f 1is continuous and

-~

bounoed on S and the closure of S is S . Tremolieres [34) has also

established this result for a relaxed version of the algorithm where
ak uk-l + xk-l) _ Olk-l

plf(

] with 0 <p <1 and has given numerical results

on several test problems.
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The method of centers algorithm based on the minimum function given
by (1.2) has been considered alvo by Kleibohm [18), Pironneau and Polak [28],
Polak (29} and Zangwill {35). This function suffers f{rom a lack of
differentiability even when the problem functions are differentiable and
for thas reason Huard (16} and Pironneau and Polak [28] decveloped modifiied
algorithms with finite step subproblem procedures based upon this function.
Huard's moglfled algorathm 1s closely related to a feasible directions
algorithm proposcd by Topkis and Veinott [33].

The folloving distance function is essentially the natural logarithm

of the function® given by (1.1) with B8 = > 0.

3 |

m
In (f(x) ~a) + B X in gi(x) for x ¢ §(a)
1=1
(1.3) D(x,a) = .
—t0 otherwise .

1t is similar In behavior to the following 'parameter free penalty function"

due to Fiacco and McCormick [10].

m

-ty 1
() - 2 8,(x)

for x ¢ g(a)
(1.4) D(x,0a) =
—co otherwise .
For a class of general distance functions Fiacco and McCormick [11] have
shown the existence of a sequence (xk) of local maxima for D(x,ak)
over §(uk) for k =1,2, ... such that accumulation points of {xk}
are local maxima for the nonlinear programming problem with objective value
v* assuming the functions Bys» *oer 8y and f are continuous and there

exists a nonempty isolated compact set of local maxima with local maxirum

* -
value v  aintersecting the closure of S . Fiacco [7) has demonstrated

¥t



a direct relationship between the method of centers and the interior-point
penalty function methods of Fiacce and McCormick [11] by showing there are
corresponding classes of functions for these methods which give rise to
equivalent procedures. [he interior-point penalty function related to (1.3)

is given by

m
f(x) + r Z In g (x) for =x € S
1=1 .
(1.5) P(x,r) =
- otherwise

and the one related to (i.4) 1s given by

(1.06) P(x,r) =
—= cthervise .
The associated algorithmic procedure consists of sequentially maximizing

P(x,r,) for a decreasing sequcnce of positive r, which tends to zero,

k
The function given by (1 5) was first proposed by Frisch [12,13] and later
used by Parasot [27] for solving linear programming problems and by
Lootsma [21,22] for nonlinear problems. The one given by (1.6) was first
proposed by Carroll [2] and extensively developed by Fiacco and McCormick
18,9).

Tne logarithmic distance function dk(x) = D(x,uk) with convergence
rate parameter 32 given by (1.3) will be considered here along with the
assumption that 815 c+vs 8y and £ are continuously differentiable
in order to obtain convergence rate results, The segquence of points !

k | k

{"} , k=1,2, ... generated by the algorithm 1s defined by x ¢ § = §(ak) -

satisfying [I?dk(xk)ll <e for h=1,2, ... where ¢ > 0 {is a subproblem '



terminction parameter. For the case when ¢ > 0, i{f an algorithn usce
to maxinize dk(x) over §k has the property tnhat any accu~ulatien poin
X satisties de(i) = $ , then only a finite number of subproblen steps .
will be required to find xk . This definition of an approxizate canter '
does not depend on the usually unknown maximum value 6k ustd to define an
¢, mcenter.

In Section 2 the logarithmic method of centers algorftha {4 dofincd
and under differentiability assumptions it is shown that accunulation
points of the sequence of fcasible points (xk) , k=™ 1,2, ... geuneratey
by the algorithm satisfy the Fritz John {17} optinality conditicns for
the nonlancar programming problem. With the adaition of pscudo-concavisy
{25] assumptions on the constraint functions it 1s shown that the algotitim
also generates a btounded multiplier sequence {(u?,ug, seey uZ)} ,
k = 1,2, ... such that accusulation points of this scquence and rhe fcauible
point sequence satisfy the Kuhn-Tucker [19) optimality conditions. }or the
spr.eial case when € = 0 , Tootsma [23) and Flaceco and McCormick {11} have
also established this type of result for gencral classes of differentiable
distance functions under concavity assumptions on all the functions, If
the objective function is also pscudo-concave then accuzulation points of
the feasible point sequence are shown to be optimal solutions to the nanlinear
prograrming problem. The relation to Huard's original method of centers
algorithm for the case of concave objective and constraint functione {s
demonstrated by showing that the approximiate centers xk defined here are

k
g, —~centers with respcct to the distance function exp (4 (x)) which {s a

k

member of the class of distance functions for which huard [15] proved under
concavity assunptions on all the functions that accumulation potiats of an

¢, ~center sequence arc optimal solutions.

k



*

In Section 3 all functions are assumed to be concave and p is
defiaed to be tiie number of positive components in a Kuhn-Tuckher multiplier
velctor which has tue largest number of positive components among such

x
vectors and is defined to be the numnber of positive constraint values
for an optinal solution which has the largest number of positive constraint
values among optinal solutions, It Is shown that all the accurulation poants
X

of the feasible point sequence have the same q positive conscraints and
all the accurwulotion points of the multiplier vector scquence have tne

% * k
same  p positive components., It 1s alwo shown in general that £ - £(x")
1s bounded above by a decrecasing cnponential function of kK and for the specaal
casc when q = m which inplice p = 0 there exists an upper bound which

th
1s a product of Kk fractions vhere the K f{iaction converges to zero as
* *
k tends to infinity. ‘tor thc case wvhen p > 0 which implies q <m it
n k * k. *
1s shown that { < f(. ) and llm - x || for any optimal point > are
bounded from below by decreasing esponctial functions of k  which have
N

the sare rates. It 1s also denonstrated that gl(x )} for any i such that

x % *
u > 0 for sowe huhn-lucher multiplier vector (ul’UZ’ ey um) and that

% *
u for any 3 such that gJ(x ) > 0 for some optimal point x converge

%
to zero with the same type of convergence bounds as f - f(xk) . Tlhese

k
results are established in part by finding an upper bound on __i_;;_&ﬁ%:%_
[ ¢ N
for all K -1 w ich for the special case when € = 0 is equal to (If%@E;)

and is the same as the bound found under stronger assumptions on the norlinear
programming problem by Fumic [5]) for linear functions and by Tremoliéres [34)
for general concave functicen-. Actually Tremoliiies' bound depends on the
relavation parimcter p ¢ (0,1] and is smallest and equals the one obtained -

here when p = 1 which is the case of no relaxation. 1t is also showm here
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? — x has all of its accumulation points in
* k-1

£ - f(x )

that the sequence (

* *
- +
the interval [( By x),( 6(m - g )* )] . This asymptotic result is

1+ 6p 1+8(m=-q) :

independent of the value of the subproblem termination paraneter ¢ and
justifies calling B a convergence rate parameter. For the special case
when p* + q* = @ 1t agrees with the result stated by Faure and Huard (6]

and proved for ¢ = 0 wunder assumptions which imply the problem nas a

unigque nondegencrate optamal point and Kuhn-Tucker multiplier vector paar

by raure [5] for linear objective and constraint functions and by Lootsma {24]

for concave problem f{unctions. Under this uniquencss assumption with exact

f* f k
centers Lootsma found the limit of (—;——:——QE:%—
f

) for a general class of

- f(x )

differentaable distance functions and showed that the logarithmic distance
function 1s the only number of this class for which the limit 1s independent

of the value of the huhn-Tucker multiplier vector. For the nondifferentiable

minimum function defined by (1.2) assuming a unique optimal point and exact

* k
centers Pironneau and Polak [28]) demonstrated that (-%}—;;—ELE:%—) converges
f - f(x )

to a fraction with a value depending on tha set of Kuhn-Tucker multiplier vectors.
m ok
In Section 4 the Lagrangian functioa £(x) + Z ulgl(x) for some
i=1
* *

JYIRRED um) is assumed to be strongly

*
Kuhn-Tucker multiplicr vector (ul,u
*
concave [20] in a neighborhood of an optimal solution x . It is shown that
* k k *
[]x" - x°|| and Igl(x ) - g (x )] for 1 =1,2, ..., m are bounded above

by decreasing exponential functions of k having rates which are one half

*
the rate for the exponential function which bounds f - f(xk) from above.

Vet



*
This result represents a typical way of obtaining a rate for xk + X given

a rate for f(xk) - f* . For example Pironncau and Polak [28] established
this type of result for their modified method of centers algorithm based
upon the minimum function defined by (1.2) under the slightly stronger
assumptions of twice continuously differentiable problem functions and £
having a negative definite matrix of second partial derivatives in a ball
about an optimal point. If in additio.. to the stiongly concave Lagrangian,
it is assumed that the first partial derivatives of the objective and
constraint functions satisfy Lipschitz conditions, the gradient vectors of
the censtraint functions which are active at x* are linearly independent

* *
and u, > 0 for all constraints 1 which are active at x then it is

i
shown here that the above rates may be improved by a fuctor of two and that
*
Iu: - ui[ for 1 ~1,2, ..., m is also bounded above by a decreasing

exponential function of Kk which has the same rate as the one bounding
I* - f(xk) from above.

The convergencec of the method of steepest ascent {3,4,14,29,33,35] on
the subproblems for the case when the subproblem termination parameter e
is positive is considered in Section 5. The number of steepest ascent
steps required to find an approximate center xk starting from x "% for
each k > 1 1is shown to be bounded abave by an increasing function of k .
Combined with the results of Section 3 this leads to an upper bounding
function of t for the total number of stecpest ascent steps required to

*
find a feasible point xk starting from x° such that f - f(xk) gt

where t 1is a termination parameter for the algorithm.



2. DFFINITION AND GEMNCRAL CONVEI RGENCE PROPERTILS O THE Al GORITHM

In order to defaine the algorithm and establisn its convergence properties
certain assumptions will be required. The following two conditions will be

assumed to hold throughout:

There esmists an x ¢ S = {x | g
(2.1)  such that sl - {x [ £(x) > £° g, (x) 20, 1=1,2, ..., m}

is bounded where f° = f(xo) .

f and 8y for 1 =1,2, ..., m are
(2.2)

continuously differentiable on S1

If S={x | gl(x) >0, 1=1,2, ..., m} 1is a closed conver ser, f s a
concave and upper semi-continuous function on S and the sct of optimal
points that maximize f over S 15 bounded then Tophis [3?]) has shown that
S1 is bounded. Similar results which imply Assumption (2.1) for § non-
empty are contained in Rockafellar {30) and Fiacco and McCormick ([11]}.
Assumption (2.1) implies that if x* is an optimal solution to the nonlincar

* ® ®
programming problem and f = f(x ) 1is the optimal valuec then x ¢ S]

%
and f 2 £° .

Define the norm of y € EP by

L
2 2 2
|IYI|=(y1+yZ+"'+yp)

and define the gradient vector of partial derivatives of a differentiable

function d defined on a subset of EP by

3d(y) 3d(y) ad(y)
Vd()') = ( ay-lL-l-—a—-y‘:—. ss sy ayp ) .

R
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Algorithm:
k-1 A .
Chuose numbers € >0 and B >0 . Given x € S for any integer
k > 1 terminate the algorithm wath xk“1 1f Vf(xk-l) = 0 . Otherwise define'
k- L '
(2.3) o Y ’

k

(2.4) §¥= {x | £y > <71

VB0 >0, 1=1,2, ..., m}

and

n .
(2.5) d* ) =m0 - Mhe e ) g ) for x ¢ &

1=1
and find xk € Qk sucn that

h, k

(2.6) [va" O] 2 e
where by Assumption (2,2)

m Vg, (») .
(2.7) de(x) = ———gi(hl—K:I— + B f ——%;7— for » ¢ Sk .

(F(x) - £77) 1=1 8§

It should be noted that a starting poant x° exists by Assumption (2.1) and

if nk exists for some k > 1 then fk > fk-l and §k+l < ék c Sl by

Definitions (2.4) and (2.3). he finding of xk is to be accomplished Ly

a subroutine which maximizes dk(y) o1, cvquivalantly, coxp (dk(x)) over
ék . Duec to the behavior of dk(x) at the boundary of fk thifs nubproblem ;
optimisation 1s cssentially unconstrained,

The following two lemmas Justify tie statement of the algerithn,  The

. k-1
first lemma shous that {f the aigorfithnn does not tarminate at  x then

-k L

the neat set S is norempty.

.y *
—
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lerna 2.1:

It x*! ¢ § exists for some k > 1 and Vf(xk-l) /0 then

15 nonempty.

Proof:

Saince xk €S,
g (x ) >0 for 1 =1,2, ..., m.

k-1

Let x()) = x + AVf(xk-l) where A 15 a real number. Since 8, for

1
i =1,2, ..., m 1s continuous on S~ , there exists a A > 0 such that

for 1 =1,2, ..., m

gi(x(x)) >0 for O

A
>

1IN
=
.

1

Since Vi(xk- ) # 0 there exists Xe (0,X! such that

oA
>t

F(x(V) > £(x*h for 0 < A
ak
Therefore, S is nonempty.]l

1f Vf(xk-l) # 0 , then Lemma 2.1 shows that Vf(xk-l) is a feasible direction

from xk-l in which to start subproblem k maximization cven though de

is undefined at xk—l . In fact, Vf(xk-l) nultiplied by any positive

definite matrix will suffice. The next lemma which is a slight modification

of an existence result given by Fiacco and McCormick [10] shows that 1f §k

is nonempty then there exists a point maximizing dk(x) over §k

Lerma 2.2:

=k
If s is noncmpty for some k > 1 , then there exists an x ¢ S

2K, ak el elennm ulkI:\ - N

[ PR

av v v
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Proof:

k

Let S = {x | £0x) > el

v

. gl(x) 0, 1=12, ..., m} . Sk 1s

k-1 1) k 1 k

bounded by Assumption (2.1) since f- amplies S & S° and S is

noncmpty by hypothesis since §k = Sk . Sk 1s closed since { and 8,

nv

k n
for 1 =1,2, ..., m are continuous on S1 2 S by Assumption (Z.2). Let

m
)y I gl(x)B and let x maximize the continuous function
1=]

) = () - 71

k zk
Dk(x) over the noncupty compact set Sk . Since D (») >0 for x ¢ SP

and Dk(x) =0 {for x ¢ Sk ~ §k , X €

X masximizes Dk(x) over ék C Sk s X must maximize dk(x) over Sk .

ék . Since dk(x) = 1n Dk(x) and

-

1,2, ..., m 1implies that ék 1s an

i}

The continuaty of { and &) for 1
open set and Assumption (2.2) implies dk(x) 1s differentiable on ék .

Therefore de(ﬁ) =0 .ll

1f ¢ > 0 and subproblem k is solved by an unconstrained maximization
algorithm which has the property that any accumulation point X generated by
1t satisfaies de(i) = 0, then a point xk such that IIde(xk)‘[ <e
wi1ll be found i1n a finite number of subproblem steps since dk 1s continuously
differentiable on ék . For general discussions of unconstrained maximization
algorithms which have the above property see Fiacco and McCormick [11],
Polak [29]}, Topkis and Veinott [33) and Zangwill [35].

The next result vhich as a general property of method of centers algorithms
when S1 1s compant and f 1is continuous on Sl has been essentially

demonstrated by Huard [15].

Lemma 2.3:

Assume the algorithm does not terminate in a finite number of iterations.

Then .

(2.8) £ -1 50 for k =1,2, ...

PR e
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and

(2.9) Lim (68 - M <0 !
k+e .
’l
Proof:
Sirce \h £ §k , [k > [kql by (2.4) and (2.3). The monotone incrc:sing

)

sequence {77 , k=1,2, ... 1is bounded above since { 15 contiwous on
Sl by Assumption (2.2) and Sl is closed and bounded by Assumptions (2 1)’
and (2.2). Then (2.9) follows since there exists an f such that

lim fk =1 .]‘

Koo '

The following theoren shows that accumulation points of the sequence

(xh

}, k=1,2, ... generated by this method of centers algorithm satisfy
the Fritz John [17) optimalaty counditions for the nonlinear programming

problem.

Theorem 2.4:

Either the algorithm tcrminates in a finite number of iterations with a
k acr K k
point » € S such that 9Y£(x") = 0 or the sequence {x'} , k =1,2, ...
has at least one accumulation point and for each accumulation point X

there exist multipliers ;1 20 for 1=0,1, ..., m not all zero such

that
- - mo_ -
(2.10) voV£(x) + ) vngi(x) =0,
i=]
(2.11) ;igi(§) = 0 for i=1,2, ..., m.

[

[QUPNIYRPN
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and

(2.12) gl(i) >0 for i =1,2, ..., m.

Proof:

Either the algorithm terminates in a finite number of 1terations with

a point xk £ ék < Sl such that Vf(xk) = 0 or by Lemmas 2.1 and 2.2

applied inductively the algorithm generates a sequence (xk} , k= 1,2,
15

such that

(2.13) xk € ék c Sl,

(2.14) gl(xk) > 0 for i=1,2, ..., m
and

(2.15) Hea* )| < e .

By fssumptions (2.1) and (2.2) S1 1s closed and bounded and therefore by
N -
(2.13) {x}, k=1,2, ... has an accuulation point x ¢ Sl . Let K

be an infinite subset of {1,2, ...} suzh that lim xk = X

kckl

. Then by

Assumption (2.2)

(2.16) nm VEGR) = vER) ,
kek
1
(2.17) Lin 95 (x*) = vg (X) for 1=1,2, ..., m,
chl

lim 8i(>~k) =g (X)) for 1i=1,2, ..., m
, 1
kckl

—
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and by (2.14)

g, (x) 20 for 1=12, ..., m
which establishes (2.12). Let
(2.18) g’; = p(ef - £7h
(2.19) g? = gl(xk) for 1=1,2, ..., m
and
(2.20) hk = min [gi,gi, ceey gﬁ] for k =1,2, ... .
Then by (2.8), (2.14), (2.18) and (2.19) N '
(2.21) N for k =1,2, ...
and by Lemma 2.3
(2.22) lin b = 0 .
k-

Multiplying de(xk) by hk and using (2.7) yields

k
(2.23)  wvaREM = —k—h——l—(_—l)vﬂ,c ) + Z Bh vg, (x°) for k =1,2, ...
£~ £ i=1 g
i
Let
. k
(2.24) v§ = EE— for 1 =0,1,2, ..., m ard
. gt

13 Y
.
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Then by (2.20) and (2.21)

(2.25) 0 < vt <8 for 1 =0,1,2, , m and
1
¥ =1,2, .
By (2.23), (2.24) and (2.18) '
R m
(2.26) n¥odk (<) = vivf(xk) + 7 VEVgl(Lk) for L =1,2,
i=1

Choose an infinite subset K2 C K, such that
L

(2.27) lim v© = v for 1=0,1, ..., m

which 1s possible by (2.25). Then choose K3 C2K2 such that for some

3 £ 10,1, ..., m}

(2.28) h™ = g, for all k ¢ k3 .

This 1s possible since therec are a finite number of inuices 1 and at least

one must identify the minimal gi infinitely often. By (2.24) and (2.28),

vk = B8 for all k ¢ K3 and, therefore,
(2.29 v =8.
J
By (2.16), (2.17) and (2.27)
!
m m
(2.30) lim [vkvf(hk) + Z kag.(xk)] = v Vf(x) + Z v Vg (x) .
, o} 1 %1 o 1 °4
kckz 1=1 i=1

By (2.15) and (2.22)




(2 31) SR T TTCR S

Jeroem

Jaerdfere by (2.20), £2.39) awd (7L31)

-
n
v+ ) v:‘g:(-) =0
11
wvhiaet oot blaches (2.10) 153 “,( Voo o sure e {l,e, L L, Lt ot
t
- " e ;¥ . .
vom G by (220, (2u02) aad (2.000) slice Mimoa (a0 )y D0 dbas et
1 pev,
(2.11) By (.25 ‘e 0 for 1 ' G,1, covy mtoand LU <1l oD coy 1
PR |

all zero by (2.29) weich corpletes tar proct .}

Under stroayger assumptions on the constrafnt functivs the algorith=s

r s
\ bk 'r.\ . "
sererates a bourded multiplicr sequevce (u}.uw. RIS § R 1,2, <.
2 :
b
¥k k k Ll
for wnich the combined sequince {(x ‘uX'UZ' ceey u"){ L= 1,2, 0 bar
accurulation points sitisfying tte Kuhan-Tucker [19) optimal-ty conditions
Py (<] 7

fer the ponlinu~r profrarming piubler,
Pefimition:

A rerl-valued functier g is prewlis-scezve [25) on a corves sct B}
- n - .
TCL 1f g ds differestiable oa 7 and 7ply)-(x - 3) 20 for

X,y ¢ T arplies g(v) < g(y) . It cun be shown thit a dif‘crentiable
concave functica 1s pscudo-concave aitd that pscuco-cencve fuactions have

the property that lccal marima are glebal maxima.

Conbining the results of Theorem 2.4 with pseudo-cencavity assuaptions

{
on the cecctramnt functions and definirg ug =

- 12, o, moaa ko= 1,2, ... vields the following tresrem. - . e e -
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Theorem 2.5.

Assune that 8y fer 1 =1,2, ..., m are pscudo-concave on a convex
1 .
set containing S and that the alporithm does not terminate in a finite

number of 1terations. ‘then there exists a positave nunber b such that \

Furtherrore the conthined sequence \k uk uk uL\
< (. ) (% i C N l, 2, ey m/

} , h=1,2, ... has

at l¢ast oae accunulatine point ane each accumnulation point (h,ul,uz, ceay um)

siticf1cs the fellowing conditinmns,

mn

(2.33) UI{x) 4 J utg () =0.
1=1 1 1

(2.3%) Glgl(\‘) =0 for 1 =1,2, ..., m ,

(2.35) Gi;o for 1=1,2, ..., m

and

(2.36) gi(?n >0 for i=1,2, ..., m.

Proof:

k
Let vy for i=20,]J, ..., m and k =1,2, ... be as in the proof of

Theorem 2.4, 1f 1lim anf vz = 0 then there exists an infinite subset
ko

K < {1,2, ...} with 1lim vk =v for 1=0,1, ..., m such that v =0
° keckh . °
o

Choose K, € ho with lim xk = x . Then (2.10) reduces to

1 kekh
1
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(2.37) ] v.vg (x) =0.

~

Let y € S which is nonempty by Assumption (2.1). Then gl(y) >0 for

1=1,2, ..., m . If ;1 > 0 then g1(§) = 0 by (2.11). Therefore
g. &) > gi(;) for all i such that ;1 >0 .

= 1 .
Since y,x € S° and g, fori=1,2, ..., m are pseudo-concave on a convex

set containing S,

(2.38) Vgi(i)-(y -x)>0 for all i such that Gl >0 .

Since 30 = 0 and not all the ;1 are zero in Theorem 2.4, 1t must be true

that ;1 >0 for some i > 1 . Therefore by (2.38)

v %8, () (y - x) >0

te~18

i=1

which contradicts (2.37). Therefore 1lam inf vz > 0 , and since v: >0

k4o
for k =1,2, ... there exists a positive number a such that VE > a
for k = 1,2, ... . By the definition in (2.32) and (2.24)
k k
k k-1 £ v
(2.39) uk B - f ) _ o % for i=1,2, ..., m and
i gk gk vk
i i o kK =1,2, oo .
Therefore by (2.25)
0<uf <8 2
<u o for 1 =1,2, ..., m and k = 1,2, ...

o

establishes the upper bouad of (2.32). Now let

-
'
-
]
69

o

1]

[

4k
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k k k k - - = -
11T (h sUPsUgs eeey um) = (x,ul,uz, e um)
kskl

which 1s possible by Theorem 2.4 and relation (2.32). Choose Kz = K1 such

that 1lim vk =y for 1i=0,1, ..., m. Then » and v >0 for

. 1 by
kekz

1=0,1, ..., m satisfy (2.10) to (2.12) with ;o >0 ., By (2.39)

for 1 =1,2, ..., m and therefore (;,61,62, ceey u)

u = lim u =
m

by
kckz o

satisfy (2.33) to (2.36).]]

The assumptions that the feasible set has a nonempty stract ainterior and

the constraint functions are pseudo-concave constitute Slater's weak constraint

qualification [26] for the nonlinear programming problem. For the case when
£ = 0 the results of Theorem 2.5 havse becn obtained by Lootsma [23]) and
Fracco and McCormick {11]) under concavity assumptions on the functions f
and g, for 1 =12, ..., m.

For reference in the sequel a vector u = (61,62, eeey Gm) £ Em whaich
satisfies relations (2.33), (2.34) and (2.35) for some x € S will be called
a Kulm-Tuchker multiplier vector.

In order to show that accumulation points of (xk} , k=1,2, ... are
optimal solutions to the nonlinear programming problem an additional

assumption on the objective function { will be required.

Theoren 2.6:

Assume that f and 8, for 1 =1,2, ..., m are pseudo-concave on

. 1 .
a convex set containing S~ . CLCither the algorithm terminates in a f.nite
number of iterations with an optimal solution to the nonlinear programmiryg

problem or every accumulation point x of the sequence (xk} s k=1,2, ...

is an optimal solution.
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Proof-

Under the above assumptions the Kuhn-Tucker conditions, (2.33) through
(2.36) of Theorem 2.5, are sufficient to imply optimality by Theorem 10.1l.1

of Mangasarian [26].]] .

)

The above result was first established by Huard [15] under concavity
assumptions on the objective and comstraint functions. For the distance

function Dk(x) = exp (dk(x)) Huard's algorithm is to find ¢, ~centers yk

k
such that Dk(yk) > Dk(ik) - €y for k = 1,2, ... where ik maximizes

Dk(x) over g% and (ck} is a sequence of noniegative numbers converging

to zero. The following analysis will show that the sequcnce {xk} .
k = 1,2, ... generated by the algorithm discussed here is a scquence of
ck-centers if f and B, for {=1,2, ..., m are concave functions on

a convex set containing S1 . By the mean value theorem for all k > 1

(2.40) D*(K) - D¥(x) = wkehye ¥ - 1%
vhere
(2.41) fF e xR - x®) and 0 <A <1,

k
From the concavity assumptions it is easy to see that d (x) is a concave

function on the convex set §k . Then
k k
(v (e - wa¥ e (" - ) g0
which implies since Ak >0

(—3‘;\)%“(&:“)-(&“ - % ¢ (ik)‘zcl“(x“)'(é:k - %)
A A

or by (2.41)



22
(2.42) vak (e - G - 1M < e e - X
By (2.40), the definition of DV(x) and (2.42)
S N B N A L o Gl T AR WP A G LT O RY LN
which i1mplies by the definition of ik and the Cauchy-Schwarz {nequality
p*Gh - bR < DGR [ Iva® M ] LK - K8

Then since ||§dk(xk)]| <€

p*GM - MM < P GMyey

where y = sup ||» - y]] . Defiming ¢ = bR K ey for all K > 1 yields

k
X,yeS

nk(xk) > Dk’ik) -
nd
lime, =0
ko h
m
since Dk(ik) = (f(ik) - fk-l) i gl(ik)8 » 8 for i=1,2, ..., m is
1=1
- N * -
continuous on the compact set S1 . fk 1 < f(xk) g f and 1lim fk 1 a f

ke
Theorem 2.6, Thus, xk is an ek—center for each k > 1, but here the
definition cf an approximate center xk docs not depend on the unknown
maxirnum value Dk(ik)

These concavity assumptions will be used in the next section to derive

convergence rate results.

by

%

v
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3. CONVERGLNCL “WIE RISUWTS Ri QUIRING CONCAVITY

For purposes of establishing convergence rate results the following

condition In addition to Assumptions (2.1) and (2.2) will be assumed to hold.

f and £, for 4= 1,2, ..., m are concave functions on a
(3.1)

convey, sct containing S1 .

It should be noted that this assuxmption implies that S1 is a convex sct
and togcther with (2.2) i~plies that £ and 8y for £=1,2, ..., m are
pscudo-concave functions on S1 .

It will also be assumed throughout the sequel that the algorithm does
not terminate n a finite number of iterations so that a feasible point
sequence {xk) , k=1,2, ... and a rultiplicr sequence
{ui,ut, ey u:)} s k= 1,2, ... as defined {u Section 2 are generated.
The stronger assumption that VE(x) # 0 for all x ¢ Sl will be explicitly
stated where nceded for additional results.

The followang lemra is a direct consequence of the concavity and

differentiability of the problem functions,

Lemma 3.1:

For k=1,2, ...

_ m g, (x)
f(x) - fk < (fk - fk 1) 8m - 8 z _i—_i. +ellx - xkll for all x ¢ Sl.
i=1 gi(x )

»

By the concavity and differentiability of f and g, for { =1,2, ..., m
y i { ’

ke A

Ky a Of KV (e = XY
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and

k k
(3.3) gi(x) < gl(xk) + Vgl(x Ye(x - x) for 1 =1,2,
1 k 1 . th ,
for all x ¢ 8° since x € S for k >1 . Hultiplyang the 1~ 1inequalaty

B(fk B fk—l)
of (3.3) by o 0 and adding the resultant i1nequalities to
g (x7)
1

(3.2) yields

m - k k-1 _
£(») + z (ZLE_JL%%_.2>81(3) < f(xk) + B(Ik - fk l)m +
1=1 gl(x )

m A k _ k-1
+ Vf(xk) + Z ;££————£ ) 7gl(hk) (x - xk) for all x ¢ S1
1=1 gl(x )

which 1s equivalent to

n g ()
- k-
O I R 1 e T 1 e
i=l g (x)
1
+ (fk - fk-l)de(xk)-(x - xk) for all x ¢ S1
since
k
K, k vt (x5) m Vg, (x7)
VAT () =t B NN
(£ -7 1=1 gl(x )
s
The result then follows since K4
k k k
de(x Ye(x = x) < lIde(xk)ll 1x - x|} < ellx - kuI R

by the Cauchy-Schwartz inequality and the defanition of xk for k =1,2, ... .II Y

Art
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A well-known [19] consequence of the concavity of the problem funct:ions
is the following:
m

* *
(3.4) £ - f(x) > ) ug (% for all x ¢ S
=5 ;

1

* * *
where u = (ul’ ceny um) 1s any Kuhn-Tucker multiplier vector associated

with an optimal solution to the nonlinear programming precblem and f* is
the optimal objective value.

By combining Lemma 3.1 with the above result bounds on f* - fk can
be obtained. The followiug lemma is the key iemma from which most of the
results of this section are derived. It will require some preliminary
definitions which will be used throughout the sequel. Let X* be the set
of optimal solutions to be nonlinear programming problem and U* be the

set of Kuhn-Tucker multiplier vectors associated with optimal solutions.

Let

(3.5) y= sup ||x - y||
1
X,y€eS

which is a finite number since S1 is assumed to be bounded.

Lemma 3.2:

* * * *
Let x ¢ X and u €U . Then

*
mou ;*_k n g (x)
0s | _% s fk szl sm- ] : ¥ (E)IIX* - xk|| <
i=1 u B(f - £ ) i=1l g (x7) 8 -
1 i
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Proof"

*
Any optimal solution x 1S 1n Sl and, thereforc, by the result of

%
Lemma 3.1 with X = x

*
Lii&il~:~£ﬁl ‘- T Eifi_l + (E)le* - K8
s - £TH T amig 6 VP

k
Furtheiwore, since x» ¢ § for k =1,2, ...

for k=1,2, ...

bl
mog ()
_\__l___.+<
L k
1=1 gl(x )

o™
S
I
b3
1
e
o
A
——
™|m
v

by the definitions of S1 and y . Thus, the last two of the desired

incqualities are establaished. From (3.4) with s = x for k =1,2, ...

*
2 _ n u
O I I A T R
1=1 u
1
since
K k-1
k -
e B =), for 1=1,2, ..., m.
1 N
gi(x )

These last two relations establish the first two desired inequalities. ||

%
This lemma shows that the convergence of f -~ fk to zero 1s at least
k k-1 .,
as fast as { - f{ which converges to zeio by Lemma 2.3.
The neat lemma which gives a basic convergence result also requires -

some preliminary definitions. Let q(x) be the number of indices

ie{1,2, ...; m} such that gl(x) >0 for xe¢S and p(u) be the



number of indices 1 ¢ {1,2, ..., m} such that uy

u = (ul,uz, ooy um) >0 . Define

*
(3.6) q = max q(x)
*
xeX
and
*
(3.7) p = max piu)
*
uel

* * * *
It should be noted ttat 1f u € U and x € X

* * * *
the Kuhn-Tucker conditions and p(u ) + q(x ) < m since uigl(x )

* *
u, >0 and gl(x ) 20 for 1=1,2, ..., m. If

>0 for

27

* %
then (x ,u ) satisfy

[}

* *
plu) + q(x)

x % .
then the pair (x ,u ) 1is said to be nondegenerate.

Lemma 3.3:

For k=1,2, ... and 1=1,2, ..., n

(3.8) gi(xk) 2 (—j;l—z—- sup* gi(x)
" (B)Y xeX

and

(3.9) ui

and 1f x 1is an accumulation point of the sequence

and u = (61’62' ceny Gm) is an accumulation point

{(“l;aul;s eoay uk)} , k = 1,2, s« , then

\ m

(2.10) a®) = ¢"

), k = 1,2,

of the sequence

0,

m ,
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and

- *
(3.11) p(u) = p

Proof:

* * *
The results of Lemma 3.2 amply that for any x ¢ X and any u ¢

* X
m [u g (x)
. ) 2 2 Nen+ (5)7 for k =1,2, ...
N k = B
1=1 u gl(k )

lhen (3.8) and (3.9) follow wmmediately fror this inequality. From (3.8)

and (3.9) and Definitions (3.6) and (3.7)

- *
a(») 2 q
and
- *
p(u) > p
Furthermore,
- *
q(») < q
and
- *
pu) <p

- * - *
since x € X and u e U Dby Theorems 2.5 and 2.6. Thus, (3.10) and

(3.11) are cstabl1shcd.||

*
This lemma combined with Theorems 2.5 and 2.6 shows that there are gq

constraint 1ndices 1 satisfying lim inf g (xk) >0 and lim uk =0
koo : koo 1

u

*

PO
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*

P constraint indices 1 satisfying lim By (x ) »= 0 and lin inf u: > 0
,(c-m ¥ =0
* *
and m-q -p constraint indices {1 sat{sfying lim gy (x ) = 0 and
K-==
lim ut = 0.
k-

The next lemma combines the results of Lemmas 3.2 and 3.3 to show that

5

7‘..

the sequence 3 - } , k= 1,2, ... has accuzulation points in the

- f“ )
interval [p o - q ] ard if there exisis a nondegenerate cptiral nolution
and Kuhn-Tucker nultiplier vector pair, then the limiting value ..

* *

* *
P =mn-q . Note that X 18 bourded by Assvaption (2.1) and U {s

bounded by Lerma 3.3. Define

u

[T 4
(3.12) P, = sup I Y for k= 1,2, ...
* =
uct li Luy
and
m g, (x)
(3.13) s, = inf [n - ] ! +(-§-)Hx-ka for k = 1,2, ...
* o >
xcX 1g, &)
Lemma 3.4:
For k=1,2, ...
.
f -~ f
(3.14) P, < — <5,
k B(fk _ ik l) k
* *
(3.15) P S lim inf P £ lim supp, B -Qq ,

k-4

and



"
\!/

e

Tt
/
o 30
* *

. (3.16) P S lwman{ s, < lim sup s, Sm-q
. | ) Ko

\
-1

- * * * x % * *

Furthermnore, if there exists an x ¢ X and a u = (ul’UZ’ Coey um) e U
* *

~ such that p(u ) + q(» ) = m then

N * L + %
- (3.17) lim Py = lin —££E~—~£;%I— =lins =m-q =p .

—- K+ hwe £({" - £ ) | Sa

= Proof:
- Rclation (3.14) follows iumediately ircm Lemma 3.2 and Definitaons
g (3.12) and (3.13). let x be any accumulation point of the sequence
! (xk} , h=1,2, ... and u = (GI,GZ, cees Gn) be any accumulation point
o of the seguence {(u?,ug, ey ui)} , k=1,2, ... . By Definitions (3.12)
o and (3.13)
=< mouy

o Py 2 1£1 - for k = 1,2,
) 1

/
% and

<
[ ‘} -
A m ﬁi(k) Ny - K

X s sm- § (;)]]x - x*] for k = 1,2,
. i=1 gi(x ) "

- - - * - *
since for any such u and x , ue U and x ¢ X by Theorems 2.5 and 2.6,

T Let K, be an infinite subser of (1,2, ...} such that 1lim P, =P and

keK
- 1 -
- choose K2 C:KI such that lim W =G . Then by Lemma 3.3 .
- heK, :

- u

p = lim P 2 Iin

k£K2 keKz 1

- *
=pu) =p .

#te~18

|
S ™

1
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*
Therefore, 1lim inf Py 2p . Now let K3 be an infinite subset of

k-+oo
(1,2, ...} such that lam s, = s and choose K, © K, such that
? k 4 3
keK
3
1im xk = x . Then by Lemma 3.3
kcka
- m g (%) _
s=lim s <l |m- ) —i——K— + (%)l]x - xk]] =
kCKé kEKé 1=1 gi(x )

- *
m-qx)=m~-q .

n

* *
Therefore, lim sup s, <m - q which together with 1im inf p, > p
k = k =
ko koo
* *
and (3.14) implies (3.15) and (3.16). Now suppose there erists an x ¢ X

* * * *
and a u e U suck that p(u ) + q(x ) = m . Then by the definitions of

* *
p and gq

But by the remarks preceding Lemma 3.3

* *
Pp +4q gm,

* *
Therefore, p + q = m which together with (3.14), (3.15) and (3.16)

establishes the final result (3.17).]]

*
It should be noted that 1f q = m then this lemma irplies that

k+1 k * k
- - *
lim Sﬁg————iéil = lim —j{}———éj%— = 0 since fk+1 <f forall k20.
ke (7 - £ 7) kv ({7 - £ 7) -

*
To show that (f - fk) does not converge to zero any faster than

k. fk‘l) requires the existence of a positive number p which bounds

(f

~ halaw fAr 211 k . This in turn requires an assumotion which imnlies
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* -
p > 0 and 1n order to obtain an expressionfor p requires upper bounds on

the multiplier values ut for 1 =1,2, ..., m and k = 1,2, ... . The
next lemma which follows from Lemma 3.1 provides these bounds along with
lowcr bounds and upper and lower bounds on the constraint functien values

gl(xk) for 1 =1,2, ..., m and k = 1,2, ... . Define

(3.18) gi = sup g (x) for 1 =1,2, ..., m
1
x€S
and
* -
(3.19) ﬁi = (1 + Em + €y) ———:;——) for 1=1,2, ..., m .
g, (x7)

Lemma 3.5:

For k=1,2, ... and 2 =12, ..., m

arek k-1
(3.20) o BU =L ). 8, (x) 5 &
u
i
and
k k-1
(3.21) 0 B ZE ) kg
84 B
Proof:

Since S1 is assumed to be compact and 8y for 1 =1,2, ..., m are

assumed to be continuous on S1 the quantitjes éi defined by (3.18) are

finite numbers and the upper bound of (3.20) follows immediately since

xk € S1 for all k > 1 . Since x° ¢ S1 , Lemma 3.1 implaes

e [p—
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[
- m g, (x)
e R R A I T e T IR |
j=1 gj(x )
for k = 1,2,
Reairanging this expression yields
- o
m o g.(x") -
L s ( — k-1 )[(fk - £+ (- £ Th.
y 371 gy O T ABUE - £
«(em + e |x° - xk||)] for k = 1,2, ...

Then for 41 = 1,2, ..., m and k =1,2, ...

g, (x°) m g (x) R
(3.22) = ( 1
B(f

k, = k. = Xk k-1 )[(f* - fo)(l + Bm + ey)]
) 3 -£)

A
o~
LS

A

gy (x

*
since f > fk > f 1 . Then

v

£ and |[]x% - xkll <y for all k

v

the remaining bounds of (3.20) follow from (3.22) and (3.19). Since

\ ' Kk k-l
! JKeBE -F ) for 1 =1,2, ..., m and

k
8, (x7) ,
k=12, ...,

(3.21) fo*lows from (3.20).l|

PR .

y The existence of upper bounds for all the multiplier values u: has been
shown in Theorem 2.5 under pseudo-concavity assumptions on the constraint

~ functions. Here the stronger concavity assumptions of this section specify

Lwon
I

these bounds. The next corollary uses these bounds to provide a lower bound

2flar

on the sequence {pk) , k= 1,2, ..., . Define

[ DV AP | R

i 14
&g bR



34

"ne~8

(3.23) p = sup
*

uel

C'IHF

1

1

"

The following 1s :mmediate from (3.12) and (3.21).

Corollary 3.6:

For k = 1,2, ...

u
1i -~
— =7p.

e~3

Py 2 sup
*
uel =1 i

(=]

The next lemma gives a sufficient condition for the existence of a

(£F - 5

from below for all k .
k-
p(e® - £

positive number 5 which bounds

Lemma 3.7:

If 9f(x) # 0 for all x ¢ S, then

£ - g%
o<f)=<=(_k_k—zl_ for k=1,2, ...
B(f™ - £ 7)

Proof:

* * * *
Choose u ¢ U and x € X . Then

* o % *
VE(x ) + z ungl(x ) =0.
i=1

* *
Since Vf(x ) # 0 there exists an 1 ¢ {1,2, ..., m} such that u, >0 .

i
- mou,
Therefore, p = sup E — > 0 and the desired result follows from
ucU* 1=1 Yy .

Corollary 3.6 and Lemma 3.4.}]|
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The results of Lemma 3.4 may be used to find upper and lower bounds

* k
-—£§—4:—£:%— for all k . This result provades an objective
£« -1 )

on the ratio

value convergerce rate for the algorithm. '
H

! Theorem 3.8:

Proof:

* *
G- - £ ¢ - %
* - *
(" - &Yy (- e £ -
1
= K -1 for k =1,2, ...
+ % K
(£ -£)
Then from (3.14) when Py >0
* ok
(ﬁ'i_i; 11 for k = 1,2, ...
(fF - f ) 1+ —
BPk
and from (3.14) and Lemma 3.2
kK
¢ -£) .1 _ . 1 for k =1,2, ... .||
g -Fh T s 1
Bsk Bm + €Y

*
_fk

For the case when ¢ = 0 the upper bound result ( ) fm
" - fk—l) 1 + Bm

*irn

17N

for k =1,2, ... has been established ty Tremolieres {34] under the

e - . @

L

RS

v

Oad Aiiibect ket s o
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* *

a unaique optimal solution x  with gi(x =0 for r2=1,2, ..., n and

the constraint gradient vectors Vgl(x) are linearly independent for all
1

¥ € S . Under similar assumptions with linear objective and constraint

functions this result has been established with equality holding by Faure ([5].

. f* fk
To obtain a nonzero lower bound on _ii—_:_ﬁf%_ for k =1,2, ...
(£ -£ 9

requires the assumption of Lemma 3.7 which implies there exists a nonzero

* * *
u ¢U , 2.e., p >0 . The following 15 an immediate consequence of

Corollary 3.6 and Theorem 3.8.

Corollary 3.9:

If vf(x) # 0 for all x ¢ Sl , then

- * k
Bp (f -
0 < x

<

- = for k = 1,2, ... .
l1+8p (f -f£ )

By combining the results of Lemma 3.4 and Theorem 3.8 the asymptotic

" - X
behavior of ——;—;:—E:%— can be determined.
£ -7
Theorem 3.10:
* % k * k *
——ER——; < lim 1inf _ié——:“é:%— < lim sup (i = i-i < B(m - qﬁ)*
1+ Bp k- (f - £ 7)) koo (f - £ 7)) 1+Bm-4q)

* * * %
Furthermore, 1f there exists an x ¢ X and a u ¢ U such that

* %
plu ) +q(x ) = m then

* % *
¢ - % .8 _ _B(m-gq)
*

lim
koo (£ - 5y 14 8pY 1+ 8@m-qh)

- e 514 -

v -

ki e g s
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It should bc noted that 2f g =m then 1
k

sequence (™) , k= 1,2, ... converges to
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* k
- f
im “ié* [:%— =0, f.e., the
o (f - £7 )

*
{

superlinearly.

For thc case when ¢ = 0 the concluding result of Theorem 3,10 has been

stated by Faure and Huard (6). It has also becen proved for this case under

assumptions which imply the problem has a unique nondegencrate optimal

solution and Xuhn-Tucker multipllier vector pair by Faurc {5%) for lincar

objective and crnstraint functions and by Lootsma [24]) for general concave

problem functions. Theorem 3.10 shows that the asymptotic rate of

convergence of the algorithm 1s 1independent

values of B . For example, if B = % then

of € and is better for smaller
*
& 1
X = °
1+ 8p 2

The following corollary is the result of inductively applying

Theorem 3.8 and gives upper and lower bound

3 on

*
£ - % for L=1,2, ...

in terrs of products of k fractions and gives an upper bounding exponential

functien of k .

Corollary 3.11:

For k = 1,2, ...

k * k k

0 ( SPJ ) < (f -1 ) - ( st
= * =

j=1 1+ Bpj (£ - fo; j=1 1 + Bs

):

fm + €Y k
1l + Em + ey)

This corollary can be used to obtain a lower bound on the number of

*
iterations k which is sufficient for f -~ fk st where t is a

termination parameter for the algorithm.

Corollary 3.12: .

If

W
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* o
f - f
o

k 2 1 (l + Am + C\) for ¢>0,
n Em + ey
then
*
f - fk gt
Proof:
Suppose
*® o
o (1)
k > for t >0 .

1+ Em+ ey

Tnen since Em 4 Y

n
—
o
—
|7
e~
(SN
[
~S—

+ Bm +
K 1n (1 £m CY)

Bin + ¢y

ot

(1 + fm + ay)k R (f* - f°>
Bm + €y

which implies

k
* o Bm + ey
£z £ )(l + Bm + CY)

Then the conclusion follows from Corollary 3.11.]|

*
1t should be noted that an upper bound on (f - fo) is known atter one

iteration of the algorithm provided an upper bound on y 1is known since
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* *
£ - fl < (fl - fo)(Bn + €£Y) by Lemma 3.2 which amplies £ - < (f1 - 1%9-.

e e adean

(1 + fm + €y) . 7Thus, a lower bound on the number of 1tcrations k which

®
is sufficient for f - fk < t may be determined from Coroliary 3.12 after

Nmem e e

one i1terataion of the algorithm.
Another 1interesting feature of this particular method of centers
algorathr 1s that 1t 1s possible to choose values of the algorithm paramcters

. 1
£ and LB such that { - £ St

Corollary 3.13:

If B>0 and ¢ 2 0 are such that

}
4§
fm + ey § —— i
(f -1{7)-+¢ i
where :
{
* o ;
0<t<(f -f£), ;
then 1
*
f - fl <t. i
3
Proof: g
2
]
Bm + €y ¢ —p—to——— ]
(£ -£% -t ‘
:
amplies g
*
1 (£ - %
> -1

Bm + €Y = t .

or - -
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* .0
(l + fm + ev) (f - )
fm + €y = t

Then the result follows from Corollary 3.11 with k = 1 .||

The above result hacs been obscrved by Lootsma [21] and Fiacco and McCormich
[11}) for the case when ¢ =0 .

The next corollary which follows from inductive application of Corollary
3.9 provides an expounential function of Kk which bounds f* - fk from

below for k = 1,2,

Corollary 3.14:

If Vf(x) # 0 for all =x ¢ st , then

- .k * L
0 < ( Ep _) < f -1 for k =1,2,
1+ 8p

A lower bound on the number of iterations k which 1s necessary for

*
f - fk < t can be derived from the previous corollary.

Corollary 3.15:

If Vf(x) # 0 for all x ¢ Sl and

then



Since the algoritha dees not terninate in a finfite nuzber of fté-avions

* *
f - fL >0 for all Kk 2 I . Therefore, {f f - fk St othen t w0 aed

by Corollary 3.14

Then
-k *
(L;¢) )
tp
or

+ p
which implies the result since (l-—f~2) > 1 .1}

ep

Corollary 3.14 can alsc be used to cbtain :n exponential! functiosn of
k which bounds llx' - xkil froz below wher. x‘ is any optimal solution
to the nonlinear propgramming problea. Combined with Lemma 3.5 it also yields
lower bounding exnonantial functfons of k for all of the coratraint fuac.fcn

values gi(xk) and all of the multiplier values u: . Define

(3.24) 5, = sup Hlveexy ]l

ch1

Theoren 3.16:

If Ti(x) # 0 for all x ¢ Sl , then for L = 1,2,
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® 0 ~ k
(3.25) 0 < (r -_§ )( fp _) <nf Qlx - 551,

(e = %) gp  \¢ K

(3.26) 0 < |- - ( =L ~) < g (x) for 1= 1,2,
ul(r + <g)\) 1 & 5p
and
% o = k
- ¢ B .

(3.27) 0« |- = £) 2} < K for i=1,2, ...,

(0 Gl T
Proof:

Since { 1s continuously differentiable on S1 and Sl is compact,

b, = sup [Ie£(x)|] 1f finite. 1men Ly the rean value theorem
xc$S
* 8 * * *
£(x) - £(x7) g Aollx - xkll for any » € X and
for k =1,2, ..

By assumption Ao > 0 which ieplics

* k
(3.28) ££"~§-£—l < anf [lx - xkll for k =1,2, ... .
0 *
xeX
From Lemma 3.2
L
L - ) k L-1 _
(Em ¥ <7) N f5 - f for k =1,2, ...

which combined with Lemma 3.5 yields for k = 1,2, ...



LA

!

P N

[

Y 4

)
1!

PN

*  k
(3.29) ?‘f il < gl(xk) for i =1,2, ..., m
ui(Bm + €y)
and ‘
* g K |
(3.30) 8¢ - £) of for 1=1,2, «o, m .

éi(Bm + €v)
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Then (3.25), (3.26) and (3.27) follow from Corollary 3.14 and (3.28), (3.23)

and (3.30) respectively.]|]|

It should be recalled that positive lower bounds on the constraint function

value and multiplier value sequences which have positive accumulation points

are given in Lemma 3.3.

As demonstrated by the next two theorems, upper bounds which converge
to zero are available for constraint function values gi(xk) with 1 such

that sup ug > 0 and multiplier values u? with j such that
*

uel

sup g, (x) >0 .,
x 3
xeX

Theorem 3.17:

For all { ¢ (1,2, ..., m} such that sup u, >0

4 1
uel
K, (F - £
(3.31) g () < - £) for k= 1,2, ...
i = fsup u
(oot ™)
uel
and
* o k
k (f -U( P + €y -
(3.32) gi(x ) & (sup “1) TETEET) for k=1,2, ... .
*
uel

s %

.
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Proof:

* x * *
By Relation (3.4) for any u = (ul,uz, ceey um) e U

* m x *
f - f(xk) > z ug (xk) >u. g (xk) for 1 =1,2, ..., m
® a1 13 = 1%

since xk € S1 for k=1,2, ... . Then (3.31) follows for any 1 such

that sup u >0 , and (3.32) follows fiom (3.31) by Corollary 3.ll.||
*
uel

Theorem 3.18:

For all i ¢ {1,2, ..., m} such that sup gl(x) > 0
*

xeX

k k-1
k  (Bm+e)( - £ ) -
(3.33) ug S (sup gl(h)) for k =1,2, ...
%
xeX
and
(3.34) uk < (f* - fo)(l + fm + €y) ( m + cy )k £ ks 1.2
: is= (sup gi(x)) 1 + fm + ey or 15y mee e
*
xeX
Proof:

By (3.8) for {1 =1,2, ..., m and k = 1,2, ...

p(e* - ¢l

1 k
. sup g, (x) 5 gy(x7) = 0 .
m + (“')Y ® u
R xeX i

Then (3.33) follows for all i such that sup gi(x) >0, and (3.34) fcllows
*
xeX

k k-1 * k-1

from (3.33) by Corollary 3.11 since £ - f <f - f for all «k > 1 .||

S - ma

e

o
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# k k %
Upper bounds on [|x -x}| , |gi(x ) - gi(x )| for indices i
* k * *
such that gi(x ) >0 and |uj - ujl for indices J such that u, > 0
® % * *
where x is an cptimal solution and u = (ul,uz, ey um) is a Kuhn~Tucker
nmultiplier vector requirc stronger assumptions on the problem functions.

Such assumptions will be considered in the next section in order to obtain

further convergence rate results.

T e em Rlas 4o~ e
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4, CONVERGENCE RATL RLSULTS RLQUIRING STRONG CONCAVITY

In order to obtain further convergence rate results such as upper
* k k *
bounding functions of k for ||x -x || , and Iu1 - uil and ,

k * . N *
Igl(x ) - gl(x )| for all 1 ¢ {1,2, ..., m} where x 1s an optimal

* * % %
solution and u = (ul,uz, ceey um) 1s a Kuhn-Tucker multiplier vector

assumptions stronger tnan concavity and continuous differentiability will

be required. It 1s for this reason that the following definition 1s considered.

Definition:

A real-valued function L is strongly concave [20] on a convex set

TC EV it there exists a A > 0 such that
L(%(x + y)) > % L(x) +—J£~ L(v) + %le - yl|° for all x,y ¢ T .

It can be shown that if T 1s compact, L has continuous second partial
derivatives on T and the matrix of second partial derivatives of L is

negative definite on T , then L {s strongly concave on T .

In addition to Assumptions (2.1), (2.2), (3.1) and nonfinite termination

of the algorithm it will be assumed throughout this section that

# * 'S *
(4.1) there exists an x e X anda u ¢ U such that

o
s
(a) L(x) = f(x) + 2 uigi(x) is strongly coacave on S1 with
i=1
the correspording constant A > 0 .*

o * *
(b) Vgi(x ) for 1 ¢a(x) = {1 | gi(x y=0,1c¢(1,2, ..., m)}

are linearly independent vectors.

1

Actually this assumption only need hold in the insection of S1 and a ball
*

about x . The stronger condition i< assumed for ccnvenieance of exposition.

It also implies that S1 is a bounded set which is part of Assuampticn (2.1).

et
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(©) pu) + qx) = m .

It is a well-known saddle point result {19] that any optimal solution to
the nonlinear programming problem maximizes L(x) over Sl . Assumption
(4.1.a) irplies that x* 1s the only point maximizing L(x) on S1 and
therefore x* is the unique optimal solution to the nonlinear programming
problem. It 1s easy to see from the Kuhn-Tucker conditiens (2.33) to (2.36)
of Theorem 2.5 that Assumption (4:1.b)-1mplies u* is the only Kulin-Tucker
multiplier vector. Therefore, under these assumptions Theorems 2.5 and 2.6

k * k k k * % * *
imply lim x =% and lim (ul,uz, seey U ) = (ul,uz, ceey U ) =u .

. Koo ! m
*
Assumption (4.l.¢) is a nondegeneracy assumption which implies that A(x )
% & ® *
has p = p(u ) elements, i.e., ug > 0 for all 1i ¢ A(x) . If the

index set Q(x*) is defined by N
% %
Q(x ) = {1,2, ..., m} ~ A(x )

* 'y #
then Q(x ) has q = q{x ) elements. Since it is implicitly assumed that

® #
m > 1, at least one of the index sets A(x ) or Q(x ) 4is nonempty and

® % ®
(4.2) 6 = min min u, , @in gi(x )

a 1+ %
icA(x ) 1eQ(x )

is a fiuite positive number where the minimun over the empty set ig defined
to be += .,
In addition to the above, it will be assumed in this section that the
following Linschitz conditions are satisfied:
there exists a positive number u such -

(4.3) 1
that for all x,y ¢ S

el ite i e e e sl b i el o e e

- T R UV L Y
L et A

s
i

> e
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[Hvee) = v ] g wllx - vl
and

Heg ) - vg (N]] < u]lx - v} for i=1,2, ..., m.

Since Sl 1s assumed to be bounded this latter assumption will hold 1f
f and gl for 1 =1,2, ..., m have continuous second partial derivataives
on Sl by the generalized mean value theorem [14]. Similar bounds exast

for the function values since f and 8, for i =1,2, ..., m are assumed

to be continuously differentiable on S1 . That 1s, for all x,y ¢ S1
l£G) = £ 2o llx = vl
where by (3.24)

&, = sup Heee ]|
1

XES . N
and
(4.4) le,(x) - g, < all> - yll for 11,2, ..., m
where
(4.2) 4 = max [sup IlVgi(x)lll .
l<ien 1
CE xcS

The follouwing lcmma uscs st ong concavity to provide a seccond order

e

extension of Relation (3.4).

Leorws 4.1

For all » ¢ sl )
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m
* 2 1\ = *
Hx = x]|° < (i)[[ - f(x) - ] u;g (x)
i=1
Proof:

*
Since x ¢ S1 and L(x) 1is strongly concave on S1

[T

* % *
(4.6) L(%(x + x)) Ed L(x ) + %-L(x) +-%ifx - x||2 for all = ¢ S .

1 1, * 1 1
Since S is a convex set, 3(x 4+ x) e S for all x € S . By the

*
remark following Assumption (4.1) x maximizes L(x) on S1 and, thecrefcre,

(4.7) L(x*) 2 L(%(x* + x)) for all x ¢ Sl .

Inequalities (4.6) and (4.7) imply by the definition of L(x) that

o m
%l}(x*) + ) u:gi(xt) - f(x) - § u:gi(X)] > %llx* - x||2
i=1 i=l 1 F4

for all x e S .

o
# &
Then the desired result follows since I uigl(x ) =0 .1} :
{1
o
It should be noted that the uniqueness of x follows immediately from this
lemsa. Combining the result of this leumma with the gsequences (xk} and
Qa

{(ut.ug. ooy uk)} » k21,2, ... gencrated by the algorfthn yields the

2
tfollowing lexma. By (3.12) and the uniquences of u

S
Yy

(4.8) - for h=1,2, ....

Yy

Defiae e
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*
m gl(x )
— for k=1,2, ... .

(4.9)
1=1 gl(xk)

Lemma 4.2:

* -1.71\ . * L
flx™ - xkltz < (fk _— l)\%)[:(n - Py qk) +ellx -]} .

Preoof:
k ) B AN
Since x € S for h=1,2, ..., Lemma 4.1 implies
£ k2 (.o kT ok
(4.10) HEEE N (7) £ -1 - ) ug &) for k= 1,2, ...
=1

By Lemma 3.2 and (4.9)
*
(4.11) £ - £ < (f

Combining (4.10) and (4.11) with (4.8) ylelds the desired result since

k k-1
gi(xk) - 8U -k[ for £ =1,2, ..., m

Yy
and k = 1,2, ... .||

”
From this lcwma ft is easy to see that the convergence of [|x - xkllz to
k _ fk~l

zero is at lcast as fast as (f

[lx

) since m - ‘o and

%
k
~= ]l cv= sup |{x=-y||l forall k1. The next coroslary

Py
L ]

x,ycsl

shows that ft is even faster due to the nondegeneracy assuoption (4.1.¢).

- fk-l)[:(n - qk) + ;||x* - xklll for k=1,2, ...
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Corollary 4.3

* k2 -
i Lo |
ko (£7 = £ 7) .
Proof:
By (4.8) aund (4.9)
* *
(4.12) lim (n - Py ~ qk) =m - plu) ~qx) .

| T

Then by (4.12) and Assumption (4.1.c¢)

*
lim [B(m - P - qk) +ellx - xkll = 0

k-wo
and the desired result follows from Lemma 4.2.1]

In fact as the remainder of this section will show, a result stronger
than Corollary 4.3 is true. The next lemma begins this development by
providing an algebraic cquivalent for the expression (m - P - qk) which

appears in Lemma 4.2,

Lerma 4.4

For kw» 1,2, ...

® * 1% o k o
‘f u, a g,;{x) o fu-u ife (x7) - g(x)
o - — - & ; .
Kk k y k ) k
{=1u/ 4=l g (x7) 1=l u, gi(x )
Proof:

* a 2 & *)
By the assu=mptions on x and v = {u_,u cesy U



[ x 1

" o L * Kk ( * (
o - ? El _ T gl'x ) - ? 1Sl(x ) lgl(k ) _ 1g1 x ) + uzgi )
L= 1 K I K X Lk
i=1 ug 1=1 gl(x ) 1= } lgl(x ) 1p,l(x ) us, (x ) uigl(x )
T TR S A P
= ? (ul Y gx(h ) Yy ul)gl(x )
'S k
1=1 i ulsl(x )

which 1s equivalent to the gesired result. ||

An upper bound for (n - P qk) can be found by combining this lermna

k

vith the nondegencracy assunption (4.1.c), the positive lover bounds on uy

* *
for 1 ¢ A(x ) and gi(\k) for { € Q(x ) provided by Lemma 3.3 and the

*
definition of 6

Lermd 4.5:

For L = 1,2,

] h k &
R ("?)(ﬂ + (%)\) X . |u‘ - uII + Z lgl(x ) - Bl(x )

®
icA(x ) 1eQ(x )
where su—mation over an empty index set is assumed to be zero.
Procf:
* ® » *
Since gi(x ) =0 for all { ¢ A(x ) , ug = 0 for all { ¢ Q(x ) and

N *
Ax ) U Q(x ) = {1,2, ..., a} the result of Lecma 4.4 icplies

K 'S
(si(x ) - g,(x ))
5 -p, -9, " j —— ) for x= 1,2, ...
k * uk * (‘k)
fcA(x ) { {cQ({x ) By

vhere summacion over an empty fndex set Is assuzed to be zero. Since

* 1] -
u > 0 for all { ¢ A(x ) by Assuaption (4.1.¢) and g((x } >0 for all



LY

‘e

Fs
1o Q¢ ) , the lower bourd sesults of Lenma 1.3 (mply thar

*“ | ] 1, ] )
. ¢ juy - u‘! ; fbl(x“) - Ti(\ )‘l
cons (e ()] T, SHEee oy BRI
koE & u * golx)
fen(x ) { 1eQ(x ) §

for + o 1,2, ... .
1ron the desired te.ult follows from (4.2).))

in oorder tu procced further it {s necessary to bound the expressions

. H ® % &
y o' = o} and v lg, (x¥) = g. (x )} from above by fractiuns a1
. 1T L, ™ i

St (x ) £eQ(x )

} k-1 * K
(" = £ and |jx ~x}} . The tatter can be accorplished by uaing

4.4) and the former will be ¢ noldered after a prelinmirary result depewiag

on Assunmption (4.1.b) s established.

-,
~

For o p » q mnatrix H denote the transpose of I by HT and define
the norn of h using the Euclidecan norm for the vectors vy ¢ LY and
vy ¢ 1P by

(4.13) [irtl o gun Lyl .
Hyli=

-1
If p >0 .cuumber the constraint functions, if necessary, so that

1

® ® k 4 .
Alr ) = {1,2, ..., pl and for x ¢ S 1let E (x) be the p = n mpatrix

[
whose lth row is Vgi(x) for each 1 ¢ A(x ) .

Lerma 4.6

a -
If p > 0, then thcre oxist positive numbers o and n such that
a * T -
[H (x)K (r)]} i exfists and

* * - ®
i (x)n 0Ty Z fer all x ¢ B (x) N st

D -
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B = x| o= %] )

Proof:

Since Vgl(x) for 1 =1,2, ..., m 1S continuous omn S1 ,

* *
p(x) = min y[H (x)H (x)T]y 1S continuous on S1 . By Assumptien (4.1.b)
yll=1

* * *
H (x) has full row rank p and, therefore, p(x ) 1s positive. Thus,

- * % -
there exist positive numbers p and n such that [H (x)H (x)T] 1 cxists

1

- *
and p{x) p >0 for all =x» ¢ B”(y Y NS . It can be shown that p(x)

v

P *
1s the minimum cigenvalue of {[H (a)H (x)T] and, therefore, 15 the

p(x)

* * 1.-1
maxitum eigenvalue of [H (x)H (x)'] . Then

* * T.-1 1
max y[H GIH (X)) Ty =
vl [=1 p(x)

A
'O |-

*
for all x ¢ Bn(x )y N s] and the desired result follows since as in

Goldstein [l4; p. 22}

[I[H%(x)ni(X)T]_1[| = max ||[“*(X)”*(X)T]—IY|l =
Hyll=1

= max y[ll*(k)“*(x)T]—ly . I l
[yl{=1

By combining the result of this lemma with bounds provided by Assumptions

*
(2.2) and (4.3) an uppcr bound on 2 |uk -u

. i iI for k=1,2, ... can
ieA(x )

k-1

be found in terms of (fk - f %) and llx* - xkl[ .

Lemma &4 7:

X
If p >0, then there exists a positive number o such that for

k=1,2, ...



* 1
N _
z |uk ~-u | < p A(l) c + 4 ﬂ; tn+ oey) (T - fk ]) +
* 1 1! = p { P
lEA().)
* %
+ p(l + 57 );h - ka}
1
i=}
Proof:
* ®
By tnc definitions of x and u
* mos *
(4.14) vE(x ) + ) uVg. (x ) =20
171
i=1
k, k k
and by the definitions of Vd (x ) and ug for 1i=1,2, ...,
k T ok k k k=1, k, k
(4.15) Vi(x') + ) ui‘-’gl(x') = (" - N x) for
i=1

Subtractaing (4.14) fron (4.15) yields

m

Vf(xk) - Vf(x*) + X u:(Vgi(xk) - Vgi(x*)> +

i=1

o (fk - fk-l)de(xk)

and by rearranging terms

kK A\, k&
z * (ui - J1)‘81(x ) = - Z R
ieA(x ) 1eQ(x )

u -8

for

m

k=1,2,

k * k

1

m
+91(x) - vk + } u:(Vgl(x*) - Vgi(xk))

i=1

which implies by the triangle inequality

k=1,

2,

for

* -
(ut - ui)Vgi(xk) + ([k - fk ])de(xk)

k =1,2, ..

“i Ok amdeds bl
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. * ki1 :
ll z . (Ut\ - ul),’gl(xk)', : z , ui',"gi(xk)], +
beatx 1cQ(x)

(6.30)  + (- H v e+ e’ - vea®) )+

m * *
+ ) ullve 5 - v, 6N for k=1,2, ..
1=

* % * *
since u = 0 for all § ¢ Q(x ) . Since Q(x ) has gq elcments,

k k *
[lvgl(n )Il N for 1 =1,2, ..., m by (4.5), gi(x ) 2 L:_~ i.l(). )
n + f: ¥

* ]
for 1 =1,2, ..., m by Lcmna 3.3 and € < min gi(A )

*
{eQ(» )

h k=1

A k . aee™ -

AR (—-‘—‘——-ﬁ—’—)llvsluk)ll :
1eQ(x ) 1eQ(x ) g, ()

(4.17)

*
: A(ﬂﬁ)(fm ot - Y for h=1,2, ... .
4

By Assumption (4.7)

m
Hvee™y - vy |] o+ 1 w v, M = vg, 65 1] g

™
(4.18)

mo, .
< u(l + l uj)flx - xkll for k=1,2, ... .
i=1

Combining (4.16), (4.17) and (4.18) with |[|va*(x*)|] < ¢ yiterds

%

1) (Ut - u:)xxi(xk)‘l s {c + A(i;)(gm + CY)]((k _ {k-l) R

(4.19)

L3
Ty D MV [T Y for k= 1,2, ... .
=1 1



[«

*
how let wk be a p vector for k = 1,2, ... with
N k k * L, . *
= - = Lyga .. }
(4.20) wl u1 N for 1 ¢ A(x ) {1,2, s P
Then for k = 1,2,
K% kT ‘ ( S A W IR
vl (¢)E () = ) . v ull\gl(\ i () .
fea(x )
- f -
Since lim x = x‘ » Lcmma 4.6 inplies there exists an integer h  ard a
K e
- * * -
positive number p such that {H (xk)H (xk)T] 1 €x1sts and
* * - -
(4.21) Nt oo ) < 2 for all k - & .
[y
Then
* %* * * -
wk a Z (ut - u{)Vgi(xk) H (xk)T[H (xP)H (xk)T] 1 for all k
. i -
feA(x )
and by the generalized Cauchy-Schwarz inequality [31; p. 185)
k k ® k * kT L U -
@22y W g T R - e T TG Tt et oM
*
leA(x )

for all k > k.

By a matrix norm property {31; p. 188] and the definitious of &

* \ n
" oM s ),* z
feA(x ) i=1

(4.23)

Then combining (4.19), (4.21), (4.23)

for

and (4.22) yields

*
and p

k=1,2,

-~

1

e
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*
W < (p”)"z.(i){[: + L(ﬂz)wm + cy)}u" -5y
- 6

(2]

(4.24)
m o * -
+ u(l + ) u )!Ix - xk|| for all k > k .
{ e
i=1
By (4.20)
1 * L 1
(4.75) ) |u§ - uil < (p )2|{uk|[ for k=1,2, ... .
*
icA(x )

fthen from (4,24) and (4.75) rhoere existls a positive numoer o p such that

<
=

the destred tesult nolds. [

In grder to combine Lervais 4.2, 4.5 and 4.7 to obtain an upper bound on

]lx’ - xkll in tams of (fk - fk-l) o lenma not depending on problem

assumplions w1} be required.
Lo 4 8

Let a, b, ¢ and d be nonnegotive numbers such that

(4.26) n2 ~ bad - cd2 < 0 .

Tnen

(b + (b2 + 4c)7]d .

ST

a <
o

Proof:

The result o trivial {f a4 = 0 so suppose a > 0 . Then clearly

t
4.27) o - %Ih - wr 4+ e)d >0 .
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Relation (4.26) 1s cquivalent to
!
1. 2 1 ¢
(0.28) |1 - S+ oF v &c)‘}d] A= 2b- 0+ 40 ) 0. ;
Then the desired result follows from (4.27) and (4.28).[{
[ Vi
how all of the previous results may be combined to show that |l -5
\ 1k *) ¥ b
and 2 fu, = u ore bounded above by lonear functions of (f - f )
*
1cAlx )
Lerma 4.9:

*
Suppose p - O

(4.29)

and

(4.30)

where

(4.31)

(4.32)

and

(4.33)

and let p be as in Lemma 4.7, Then for k = 1,2,

“r - x Il ( )lbl + (bi + l.bz)'il(fk _ fk-l)

fk-l

*
I k- f] gy - £

*
f1eA(x )

o )+ ) @+ § om0
*)[‘ + A(‘(:;)(Bm + CY)}(Bm + ey)

o
N

!
———
O |~
S
—
>|>
N
T
O

°

by = p*(:)[t + A( *)(PT +ey) + (l + Y u ) lb + h + GhZ)Z}] )
6

b A the e b e e

L TP

“n




60

Yroof.

By combining the results of Lemma 4.2 and Lemma 4.5

Hx™ - 5512 <

(4.34%)

( ):(J‘,—)(ﬁn + €y) ) lu‘; - u:l +

*
1tA(n )

L * x
S S TR T oY) [T T B NS

*
1¢Q(x )

o

X

by {4.4) and the definition of q

*
{

n

(4.3%) 2 |u1(>l) - gl(f*)] b q*allxk -x |1 for k = 1,2,

£ S
1.Q(x )

By combining (4.34) and (4.35) and the resuit of Lemma 4.7
Kh( )k( n o+ Ly)(ﬂﬂ) (b)[“ + L(~:)(Pm + ry)](fk - MYy
6
’ 1
+ [ (vr + cr)(ﬂi) (-) (l +
o ‘ i

O Tt

ol

for ke 1,2, ... .

Dcfining b, and b2 by (4.31) and (4.32) vields

1

.30) |- <M e bz(fk -

f

k-1,2

- %
)% 4 bl(fk - LT - xR

for k=131,2, ... .

*
Then (4.29) follows umiediately from (4.36) and Lemma 4.8 with a = |[[x - xkll

b = h1 , € = b2

lermaa 4.7 and (4.29) when

b

and d = (fk

3

k-1

- f ) . lhen (4.30) follows directly from

s defined by (4.33).]]

2



Combining the above result with Corollary 3.11 yields the following

upper bounding decreasing cxponential functicns of k for
- k %*
A I

and I (x) - (x )l for 1 =1,2
; 1 1 gl g1 T
1eA(x )

Theorem 4.10

* 1 2 1
Suppose p > 0 and let a, = (~)[h + (b + bbz)

1 2 1 1
k=1,2,
k-1
* k * o fm + cy
(4.37) x" - x| < a(f - f >(1 + 8m + CY) ’
k-1
k * * o _Bm+ ey )
(4.38) ) . lul - ull S b3(f £ )(l + fm + cy
1eA(x )
and
“.39) ] ) k) ) ( *)l <A (f* _ fo)( m + ey ) -1
. g, (x g, x = 24 1+ Bm + ey
Proof:

By Corollary 3.11

k-1
Kk _ k-l % k=l _ % o f Bm+ cy )
(4.60) £°- £ < f - f T <(f -f )(l o ——

* k
|lx - X i! ’
., m .
Then for

for 1 =1,2,

for k =1,2, ..

Then (4.37) and (4.38) follow from (4.40) and (4.29) and (4.30) of Lemma 4.9,

respectively.

The final result (4.39) follows from (4.4) and (4.37).]]

* .
Ffur the case when p = 0 corresponding upper bounds can be given in

terms of products of k - 1

fractions where the fractions converge to zero.

.a
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Theorem 4.11:

*
Suppose p = 0 and let a, = (%) + (%)(ﬂ%)(ﬁm + €y) . Then for
§

k =1,2, ]
N L s o k-1 Bs X
(4.41) [Ix" =7 ga ) - £) 0 (—1—1+65) -
J=1 ]
and
K x * o k~-1 Bs,

(4 42) Igl(x ) - gl(r )] z uaz(f - {7) le (If;—%;—) for 1 =1,2, ..., m
where

lims_ =0,

e
Proof.

*
From (4.34) and (4.35) with A(x ) empty

[x* - ]2

A
~~
T
-
|
tas}
-
)
—
A
—
"

) cen + ena’ o+ cJite” - 40
NS

for k = 1,2, ...

*
Then since (q

1
3

k-1

* .
(4.43) f[x" - xkll az(fk - £ ) for

PN

1,2, ... .

P
1]

By Corollary 3.11

tA

k-1 Rs
k- 3 - *
(4.44) fk—flg_r-fkl_(f-f°)n —1 for k = 1,2,
J=1 1+BSJ

Then (4.41) follous from (4.43) and (4.44) and lim s, = 0 by Le-ma 3.4 since
g
m-gq = p* = (0 . Then (4.42) follows from (4.4) and (4.41)-l‘
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The convergence rate given by (4.37) of Theorem 4.10 1s an improvement
by a factor of 2 over the following convergence rate result witzch represents
k * k * t
the usual way of getting a rate for x =+ x given a rate for f -+ f .

This result follows directly from Lemma 4.1 and Corollary 3.11 and does not

require Assumptions (4.1.b), (4.1l.c) or (4.3).

Theorem 4 12:

For k = 1,2,

*
Hx™ - x7}

A
—_———
)
»
>
rh
o}
S
—
—
+ ™
E]
Ros)
g1+
+|m
<
™
-~
~—

Proof:

From Lemma 4.1 with x = xk € Sl for k =1,2,

1=1

m
[1x* - %112 < (%)[f* -6 - ujgl(x‘ﬁ] LG

Then the desired result follows from Corollary 3.11.]|]|

+For example see [20], [28), [29] and [32].
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5.  SUBPROBI LM CO..WVIRGEME

In this section the convergence of Cauchy's [ 3] method of steepest
ascent for cach subproblem k will be studied and an upper bound on the
k k-1
nuuber of steepest ascent steps reauired to find x from x will be
dcrived, Combine' with the result of Corellary 3.12, this will lead to on
upper bound oa the total number of steepest ascent steps required to find a
k o * IN N
point starting {rom x such that £ - f(x ) <t where t 1s a
termination parc~eter for the algoraithm,

In addition to Assumptions {2.1) and (3.1) which umply Sl 1s bcunded

and conver, 1t wi1ll be oassumed throughout v - section that

f and g for 1 =1,2, ..., m are twice

(5.1) 1
continwously differentiable on S,
1
(5.2) VEi(x) # O for all x € S
and
(5.3) e >0 .

The n » n symmetric matrices of second partial deraivatives of the respective

problem functions which exist and are continuous by Assumption (5.1) will be

denoted by
2
13 f(x)

(5.4) Ho(x) = [5:~3;—]

L1 L
and

- 2

2'g, (%)

(5.9) B o(x) = lah 3x£ for 1=1,2, ..., m.



as

Assumption (0 1) aoplies T and {  are contiruousiyv ditforents o

‘ 1

cn S Mt as asseention (02) and togethier wath the assumption that -

15 hou #cd 1nd the gercralized rean value theoren {14, o, 20) 1e0plies (hot
the Lipschite concreren of Assumptaon (4.1) holus waen u 1s defined by

(5.6) v = ™Max |} sup ;}Hl(\);}]

Orim | st ]

<

where the rateix nerm 2s as cefined 1n (4.13).  The concavaity of [ ipg g
for 1 = 1,2, . ., m oplies that the matrices HJ(\) for 1 = 0,1, ..

. 1
are negative seridef mite for al: v ¢« §° . Then as in (14, p 22)

(5.7) Hl!l(n)l! = ;!» y[-H(G) ]y for 1=20,1, ..., m ang

all » ¢ S .

Combinty, (5.6} and (5.7) gives the useful result, that for all x ¢ 91

and all y = E"

(5.8) y[-Hj(x)]y < ullyilz for { =20,1, ..., m.

Assu ption (5.2) 1mplies the algorithm does not terminate in a finite
nunber of fteratwons and toguther with (5.1) irplies that o > 0 where

(5.9) o= ini Jlve)|] .

1
xeS

1t will be convenient to define a function G(x) wh_ch gives the
«mallest construint value for feasible points x by
(5.10) G{x) = nin nl(x) for x e 8,
l<i<m

In addartion te the parancters defined by (3.5), (3.24), (4.5), (5.6) and (5 9)

rhnan €AY w1y 1 'Y hha asend Iin Ffhite comrt s mme
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(5.11) {_‘,= mas sup gl(,‘)
Js2m ]
= = A S
(5.12) n = 2 nax u,ZAi,2u2i
o _ g0 -
RO 5
o 6(x) /N6
(5.14) e(i,e) ~nma [ e, (at+ e)( + n+ ep0))
(> 19) bl( Y = [£ mas [C()\O)’l”fm-’rl
_ £m+
(5.16) b(f,-) = _(‘J.LJ&)_),
and
(5.17) 0(8,(_) = _!__‘*_‘__:.(_'p
fp

where p 15 defined by (3.23) and depends on Gl for 1v=1,2, ..., m defined
by (3.19) which 1s a function of the algorithn paraneters B and ¢ .

/s will be shown an the sequel, Assumption (5.3) guarantees that only
a finite number of subproblem steps will be rcquired to find ecach xk when

a slight modification of the following algorathnm 1s used to solve each

subproblem.

Hlethod of Steepest Ascent with Optimal Step Slze:f

Let d be a real-valued function defined on E and z° ¢ EN be a

starting point. Assume that T = {z | d(z) > d(zo)} 1s bounded and that

»
d 15 continuously differentiable on T .

Tfor general algovithms of this type see Tophis and Vernott [33].
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For 3 = 1,2, ... lert Xj-l be a positive number satisfving
+ 7d (. = + 2 d(z '
d(/J_l \J'l d( J—l)) max d(z -1 b L(?J_]))
220 ,
and let
z =z + X vd (7 )
J 3-1 ARt -1

starting fron ‘s and stopping 2f Vd(AJ_l

) =0 for some 3 : 1 . Curryv (4!

has shown that if ¢ 15 an dccumulation point of the sequence 17 )},

3= 1,2, ... then Vd(2) = 0.

For solving subproblem k the first step of this algorithm will have

k
to be modificd 1n order to take into account that d

k-1

1S to be maximized

-k .
over an open sct 5 starting from a point on the boundary of S

where dk 1s not defained. By emploving the result of Lemma 2.1 a step of

k k-1
optiaal s1cze miy be made irom 70 = X

k 2
point <) LS and a sct

(5.18) ™ - {x | x ¢ g%, akw) 2 dk(z‘l‘)}

in the direction Vf(mk-l) to find a

on which to carry out the remainder of the stecpest ascent steps. ‘lhe

k-1

modified algorithm essentially defines de(zz) to be V{(x ) .

Fer each anteger k > 1 let {z?} y 3= 1,2, ..

be the sequence of

points generated by the modified steepest ascent algorithm starting from

k k-1 k
z =X
o

k

. Since de is continuous on T and Tk

is compact by the

k : k
continuity of d° on the bounded set § DT , each accumulation point

<\ K .
zk of {; } ,» i = 1,2, ... satisfics de(zk) = 0 and therefore since

k
¢ > 0 there exists an integer J  such that l|Vd <7

be the smallest integer j  such that {Ide(/E))I < ¢ and sct mk

k
3

)li e . Llet (k)

.
zP(k) .

- —ae
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Ihhn (L) 1s the nunber of steps requared to wolve subproblem k  and,
tnu,, find o starting point for subprovlem k + 1 .

The development to bound (k) begins with the following lemma which

k-1

15 an extension of Lerma 2,1 dealing with a step from » 1in the direction
oy g B N -k
i ( ) to apont ~(') an ST . It not only shows the enistence of

~(1) but usis sceond ordor anformation to provide positive lower bounds for

fCryy - 7Y and g,GC) for 1= 1,2, .o n .

v

Te 1 5 )

For cach integer b oo 1 thero oxists a positive number  V depoading
& z p i

on ko such that

a9 16w LrehThy - R (%—) nin 16N 1) 40

and for each 1 ¢ {1,2, ..., m}

2
(5.20) gl(xk-] + AV[(xk-l)) > (%r) min

K-
gi(x l),ll >0 .

Proof:

For some K 2 1 1let
(5.21) x(A) = xk—l + AVf(xk-l)
- 1 -
(5.22) b ) = alfveeh 12 - 3 0%l vea h )

and

(5.23) b)Y = 6GNh = aalreM (] - 2ok vieETh [



1
for A >0 such that x(d) ¢ 5 where uw , & and G are defined by (5.6),

(4.5) and (5.10) respoctively, Assumption (5.1) and (5.21) imply by the

second order Talyor's theo.em {31} that
- k- - - h- K-
(5.24) f(x()) = f(xk ‘) + Vf(x l)-\((xk l) + % fzvf(\ I)Ho(“o l).f(x l)

and

L kel B 28 DU S SRR T S S | ( »-1)_
gi(x())) bl(x y o+ k~g1(x Yeuf(x ) + 3 ATV (x )nl x

(5.29)
areth for {=1,2, ..., m

k- k-]
where Li 1 lies on the lfine segment connecting  x and x(x) for

i=0,1, ..., m. Then (5.24), (5.8) and (5.22) imply

k=1
(5.26) f(x(r)) - ¢ Z ho(l) for all ) 2 0 wuch that
x() ¢ sl

Similarly (5.25), the Cauchy-Schwars incquality and the dofinftican of &

and p inmply that for ecach {1 ¢ {1,2, ..., m]

-]-

)
-

B, 0N 2 e, Th < el Th - ket Th

or
k-1 ke
&ii_[:%- v (x(R)) b(xk-l) - (51(ft%‘.'
gi(x ) “‘(R )
(5.27)

'!”=Il'v'r(x“"‘>|i 1 %*2ullf-'r<-“">l"" :

k= - »
fhen since G(x 1) . ;:{(xk l) by the detinttion of G (3.21) wd (5.27)

foply that for cach { o (1,4, vy mi




RSN
(5 28) Lj_}']— L)) 2 ) for all A > 0 such thit
v (o ) 1

x(V) « 5

dh (0)
Note that 1 _(0) = 0 and ——%7—— = i[!f(xk l)||2 >0 and h(0) = c(\k ]) > 1)
. - 2 -
ind leﬂl = -] f(.L l)|| <« 0 since l]Vf(xk 1)|| > 0 by Assumption (5 2)
and . - 0 by the boundednuess of S] . Consaider increasing A from /scro
unt. cither ho(‘) = h(:) or ho(‘) 1s manirized whichever occurs first.

4 1 - 0, Jet 4V mavinice ho()) for X >0 which ex1sts sinc. ho()) 1S

strictly comeave fer o 2 0, Then
Y 1
'Y }o= =
(') y
aed
- 1 k=1, 2
(o 30) b = ()Her N7

1If 3 =0, difine > =4 . Definc A by ho(i) = h(l) so

- 12 : l\" g e k-
N S 1Y T Y TR et S VY | (740 Y
12 h-
-3 Al Th R
Then
k-1
(5.31) - ( e o ) >0
[Hvee™ D+ al]vre D

and

P
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el h v 12 >
Lo O+l M h

AN T e s ve T

Now let i = min {;,i] .o1f X oo then X = % and Ly (5.30)

ho(i) = h(\) = <|

(5. 52)

(5.33) h(a) 2 hu(i) - (%)(3)'lvf<xk'1)[}2 .

If X >X then A = ) and by (5.29) and (5.31)

(5.34) (2) - (_____ ah )

h Hvro ™D 1% 4 aflveaH

and by (5.32)

k-1 k=1, 2
0y - s (1 cx- D Ivee i
h() = h (0 (2)< ).

Hvead ™12+ aljvee ™ ||

g2 - ( uG(xk-l) J
Hve 14+ allvea ™|

Tnen combining (5.34) and (5.35) yiclds

(5.35)

; -y e h ek )2
h(A) =0, () > {3 k=1,7)2 k-1
Pveee 1S + alveee 5]
which implies by the definition Ao

(5:36) hO) =0 () > (%)(‘i"l“°-)0(xk'1>l|vz(xk">ll2 :
AO + Af

Qs



Coubrarng, (0033 amd (5.36) yiclds for erthor case

7

(h. 3 h(;) B ho(;) (—}—) nin l(.(\k-l)’l] >0
= - i

wacte o 1 dofead by (h012) wd ¢ s defaned by (5.9). Then (9 37)
topcthor with (5, '6) and (5.21) arplices (5 39) and together svath (5 28) 1plien

for cach a0 (8,0, ooy al

r‘l -
VT ) o (r6TTH
NI P ( )( "“’.'—’1") o 160 g . (—;)—).)m ,;1(,\ 1)‘(_1,.k,_~],__)
G (

- -
whoeh oo, with (o8 nplhie (0 20) stace Gla I) ¢ o' ]) .[’

e

Bofore proceed g furtoy vath the farst stoopest aswont step two
produarvar ) Toove g eac dealony vith staation k= 1 and the othier with
sterotrons ko2 o owi bl be atabliehied e rosutte of theso Jemmae have

0
diffcrent foras duc to the fct that 7 0 the startiyy point for 1teratton

L= 1, 16 a0 gracral not o appror it ite center for some provious storatton,

Jemas 5,0
AN A

o * )
(5. 3%) Jl-(?-?_uul-),. i (:__*_:L.) nas (6,1 for a1l x ¢ &
min [(G(n ), ] k,(xk)
an'd 7or cach 4o {1, vy Wi
Ry O) g o el
(9. 49) ST (—“‘(:‘) max [G(x7),1] for all x ¢ S,
min 5'_1(x ).} G(x )

Lioof:

By the dufnftion of G for cach 1 ¢ {1,2, ..., m}
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—— : b =( . )mx (¢(<2) 1)
sl(x‘).x] " min [6(x%),1) ¢ (x%)

(5.40)

nin

*
Then (5.38) follows from the cquality relation in (5.40) since () < f

for all x ¢ 91 and (5.39) follows frem (5.40) since g(x) - g for all

X € S1 .il

Lemna 5 3:

For cach futeger K > 2

() - fk-l) f* - £V e(r,r) 1
(5.41) o) b . 6‘—5L-~) for all x ¢ §
min [G(~ ), 1} G(x )
and for each 1 ¢ {1,2, ..., m)
g, (x) .
(5.42) 1 - < (0(%:c)) for all x ¢ Sk .
min gl(x ).ll
Progf:
By Lcmma 3.2
* - - -
(5.43) A At I A LY F for k = 2,3,
and by Lemma 3.5 and the definition of G
(
k-1 k=1 k=2./ ¢(x°) ( 1 )
(5.44) G(x" ") 2 8(f { )(f* RS for K = 2,3,

*
The defimition of £, (5.43) and (5.44) fmply for cach fnteger k > 2 that



(5 40) —il(tl~:¢Lt:ll- < (Li—:~ig) man G(\o),(m + (5)])(1 + ‘m + €v)

for all x ¢ bl

Wy

* ()
- * -
f(~) - lk ! £ - %= (_f;___[__)(’(‘(o) for all

Tus SIben b(.") 6oy (O 1) follovs from (5.46) and (5 14). Alsc for ecach

IPLto,or b 2 bodo oS0 ard the defimition of
noog ()
. k-1 L-1 k=2 JERS
(5.%) )~ f _ G - Dpm- ) ——i—E:T— + gy
1=1 ¢ {» )
1
R oo - -
Sined Tor 1l 1, ST & Sl ane L0 fk ! for all =» € Sk
implics
moop, () .
0sm- ) b (n), for all » ¢
= -1 )
1=] b.l(\ )

fherefore for cach anteger k2 2 and ecach 1 ¢ {1,2, ..., m}

31(X)

k-1
g, (x 7)

gm+ (%)y for all =x ¢ ék

which mplics

nl(x)

s ()] reran

< man
min ‘;',l(\k 1),ll -

1

S

b

b4

[ 51

N E

(5 47)

AN

for all

S

Since a|(h) < i for all x ¢ % . Then (5.42) follows from (5 48) since

]

on
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1 <1+ 8n+ ¢y amplies

max [é,m + (%)Yl < (gi%?sl) -

The next lemma employs the results of Lemmas 5.1, 5.2 and 5.3 to obtain

k

l) for each k > 1.

an uppev bound on dk(xk) - dk(z

Lemma 5.4:

1

(5.49)  d @ty - dl(zl

) < (1 + Bm) In [8 max (6(x°),111

and for k = 2,3, ...

{5.50) 6y - M) s a v 1 1°(§£%?£l)}

For some k 2 1 let x(1) = ).Lk'1 + XVf(xk‘l) for X > 0 such that

v

R *
x(2) € Sk and let A be such that

dk(x(k*)) = max {dk(x(A)) [ A >0 and x(\} € ék} .

*
Such & X exists by Lemma 5.1 and the continuaty of dk on the bounded

. * .
set Sk . Then z? = x{A } and with X as in Lemma 5.1
a () 2 a 6+ Sveedy)

and by (5.19) and (5.20)

02‘ k~1 2 02
) 2 1n j;) min {GG ),1f + 8 ) In =) mo
i=1

(5.51) dk(z§

xl(xkﬁl),li} .

v

Then (5.51) and the definition of dk(xg) imply for each integer k > 1



/v

Lok L{ L}
d" () - d (/_l)

N

In ()( () - f“)) .
o /\min [G(xb-l),l]

SL("k) 1

‘"
1n {—n)
1 \- /o lgl(xk l),l}

(5.52)

+ £
1

ir~3

lThen (5 44) fellevs from Lewewa 5 2 and (5.52) vaith k = 1 and (5.50) joll

] ~

n

k
from Jcwa 5. and (5 52) with 2 since » €S for all L > 1 and

>

by (5.13)

\
nwv
<
‘A\-l-
S ——
)
- o
o~ 7.
~ |
¥
\:’ -
s}
SN —

and

A

A A |
() () o

by cmploying, argtient s siuanlar to tnosce ased an proviag the previous

letwa, JTuwas 5 1, 5.2 and 5.3 nay be co bincd to provide lower boards on

., for all == ¢ lk wicre by

f¢G) - f and ﬂl(Y) fer 1= 1,2,
3 k

Gl | cuntdias the pornts /J for j > 1 generated by the rodified
steepest ascent algorithm,
Lemgta 5.5

. o _ - -1 1
(5.53) f(x) - £~ 2 g(bl(:)) for all x e T
and for ecacn 1 ¢ {1,2, ..., m}

- . =Y/C 1

(5 54) gi(\) > g(bl(r)) for all x ¢ T

and for kL = 2,3, ..

Os 6



T ——
’

1

h- hall O AN ol k-
(559 ) - N e, e 1(—(—;‘3—)) min (GG 1),1) for all

aad for ach 1 ¢ (1,2, ..., n}

(5.50) ,l(\) . (h( , ))—I/F(~—TT3—) rmin [0(\k_]),l] for all = ¢

Proat

For cach intepaer b2

m
} e INVARN
(5.57) () = Y (H () - 1) + 2 In gl(x) 2 d (LJ) for alt x ¢
1=1

Coasbaning (5 37) wath (5.5)) viulds
In (1(~) - fk—l) + 7 ) In gl(\) 2 In l(%r) nin [G(xk_l),]]] +

(;') tan Igl(xk-l),ll] for all x ¢ Tk

which 1wplies

v
Y

In (f(x) - fk_l) 2 In l(%;) min [C(xknl),l]] -

(5.59)
g](X)

m
- R z In (-q) ) for all =« ¢ Ik .
i=1 s /\min [gl(x ),l]

Then by (5.39) of tc¢=ma 5.2 and (5.59) with k = 1

In (1(x) - £7) > -1n (J%)(-—&*—)<%) max [6(x°),1]| - )
B \o N6/ \,

- tm 1n [/~%)(—~&-—) SN [G(xo),l]] for all x ¢ T1

G G(xo)

e

1
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0

>

oL SInee 5

o~

) G

In (F(x) - fo) > -1In }(

whitch by (5 15) 1s oguivalert to the desired result (5 53).

manner (5 55) follows from (5 42) of Lemma 5.3, (5.59) with k > 2

N
;

£

since 6 > (—”) . Relation (5 58) also implies for each 1 ¢ {1,2,

Ie
<

In gl(x) > _(

] 1
-] In - =
“) (V')(mxn [0(\k l),l]

%)[0 nas [G(\O),l]]Em+

b

Ve
£(.) - 1

) _

m , 4 (x)
S TR A Y S DA, | BN
(5.60) « 2 k-1
171 VA VIR YO BB AN ), 1y)
AES ]
-}
+ 1o |[-E nin ‘; (xk—]),ll fo
o2 1#2
Then for cach 1 e {1,2, +» 1} by Lemma 5.2 and (5.60
b o
In gl(x) > —(l) In l(la)(ﬁ——:;£~) nax [G(xo),l]
! o G(x)
- {m - 1) 1In

il -—é—— Man [G(Xo),ll -
[(cz>(0(ho))

- 1In (~—,—)( 1—)% max {G(x°),1]
o Ne(x")/\g

or by the definition of ©

1n gl(\) > ~In §(1}l0
Nes

which by (5.15) 1s equivalent to the desired result (5.54).

manner (5.56) follows from Lemma 5.3, (5.60) with

max {G(xo),l]]m+1,e}

k > 2

1) for all «x

$ :

In a similar

and (5.10)

.y M)}
r all x ¢ 1k .
Yy wvath k = )

1
for all x ¢ T

for all x ¢ Tl

In a similar

and (5.16) sincce



gl(xk_l) z G(\K—]) for 1=1,2, ..., m .I

k
For k = 1,2, . let H (x) be the matrix of second par.ciral derivat:se -

of dk(x) for x ¢ 8" . The results of Lemma 5.5 may be used to bound the
norn of Hk(x) for all x e lk .
Lenma 5.6

For atl y ¢ L"

"t
).(_'I]

aup 3 (-1t 1y < h(i)(bl(s) + Sm(ol(f))llp +
2¢/ |
(5.61)

o () foyeen” Bm(bl(B))z/ﬁl}HyHZ

_J_
2
and for k = 2,3, .

/8

){[b(g,c) + Bm(b(B.C))l

sup y[-Hk(x)]y < n( > ).
chk 26(x )
* o /
(5.62) ( ; {—_;) * (—-—1—0——)[&(3,:))2 + emo(8,) /M) :
f - f¢ 26(x )
.(_Q:;:_£g_)2 Iyl
L
Proof:
For cach integer k > 1
mn Vg (x)
de(X) = Vf(i)—r--l' B —'tx) for x ¢ ék i
(£(x) - £5) 1=1 &4 §
;
which implies by Assumption (5.1)
B (x) T m \H, (x) lVg (x)vg (x)'r )
Hk(x) - o Ve Ve ) +8 i - { ! _
(e - 5N ey - THET g5 [H gt |



8uU

whoere I{J(\) for 1 =0,1, ..., m are defired by (5.4) and (5.,) and

Pr(s) s ( )]] , for erauple, is arx n ¥ n symmetric matrax whose lJLh
clement 1 (lfi))(—%—)—) . Then for any vy ¢ E"
oy ;
- 2 - C “w)"
: y L= ()13 (TF Gy 2 no sl 0l Cr )7
yl-1" (D ]y = A e W 5 (%) + - T
(G -7 (fG) -1 7) i=1 l 1 B s

1N
for v ¢ &S

and by the defnatron of . and Relation 3.8) and the defirttie .. of

and /7 ad otne Camchiy=Schhary ancquality

| . Ai
yl-1' )y | |t et
() -17 ) ) -1 )
(5.63)
" 2 .
+ 7 ) (._-"..-- 4 ——— - {\H‘Z for all o ¢ ’;k .
AT I 81())

i
)

?
iy ;,2 ] y (5.67%) wmplics for any y ¢ L™ that

Then sinee 0o 2 nax

N '\ | ]
sli-th o)y (B e b st
( NGO T 26 () - 1?2

(5.06%)

m )
+F ). (“’)‘"’* l“,‘)[l)"lz for chl‘.

. )
.gl(X)

For the case when h = 1, Lemnia 5.5 dmplics

(5.65) —1 (l)bl(s) for all x ¢ T

and for cach 1 ¢ {1,2, ..., m} 4



(5.65) ———%—r - (l)(h](’))llz for o1} > ¢ 1

fucn (o.01) follone fron (H.065), (5.66) and (5.04) w:tn w = 1 . ‘lor the

cace then k> 2 (5 4%) 1wplies

* - *
RO e (_f i -_‘.o_)<s:<£.‘_’_>_)
= s

[
min (GL(x T),1])

A

v wien conbined with Teama 5.9 inplies

* 0
VA=
(> 67) ~————£—*§:T < b(s,c)/-l—— (ﬁ;——métT) for all «x 1k
£(x) - ¢ - \G(xo) £ -1
aad for cach 1 ¢ (1,2, ..., m}
] 1/2 N
(5.068) oy < (b(c,f)) / ——l——)(~;-:—tji for all » r TL .
£, GO I\E - T

v
»N
.

Then (5.62) follows from (5.67), (5.68) and (5.04) with k >

The next lemma provides an upper bound en %(F) , the numher of steps

required by the modified steepest ascent alporithm to find xk = z¥(k)
L

starting from xk-l = ?2 for cach k > 1 . Clearly &(k) =1 and xk = zt

if l[de(zt)Xf 2 ¢ . Othcrwise £(k) > 1 and the remaining steepest ascenr

k .
steps are carried out on T . For k = 1,2, ... let

(5.69) w = sup (KGO .
k
xeT

Lemma 5.6 implics the esistence of Vi for k= 1,2, ... since for a negative

. k
seridefinite symmetric matrix such as R (x)

(5.70) l|Hk(\)ll a Sup v(-Hk(y)]v .



1
- ~ [N
AEC T N oo {302) a e oo piteons of W () nl Lo -
NN O S R Y 1¢ 1 corve  set Acsuoptron (O I) 2 plics o cho

veoo onder b ovtm 'y theorem that feor 3 -

n s
+ '], ’ VL‘{‘<?L)HL(l)‘]dk({i) for 11 v 0 such Lot
- Ji7 ) =
. !
/k + 3 dly )
J \ o}
|- © Jies on the lindg sesment counecting /§ and 2? + Ade(’k) fro-
J
(5 o)y anld (5 70)
2
'SA aup )‘[-—Hk(.\)]v < “k”\'“ for all vy ¢ I .
\ Z
ael’

Thon (59.71) and (5 72) 1mply thot for 3 > 1
(».72)

[N AN h k Lk k 2 1,2 4, k(k ?
d (’,1 + . (J)) > d (,J) + 2] |vd (/J)H > 2w, v </J,)||
for all A > 0 such that 7? + Ade(/ﬁ) e 77

X
Ter A mrainL e over pconnegatave real numbers the function of A on the

ropht pud aee of (5.73) winch 15 a concave function of X . Then

1

1N
IS

- O oad cance thr, funct oy yaereases to ity mosxoauae c alue
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1, 2 *
dk(zk) + (—l—)llndk(z;\)lf~ as M increases from 0 to X , (5.73) inplies
3 \

k

By ‘
1 *
E) ¢ T~ for all A ¢ [0,A ) . Then by the definition of zJ+l

dk()J‘H) > dk(z'; ML (.4;‘)) > ¢b (zl;) + (2—1—)| {va* (z‘J‘)l |2

k

and 1f 3 < £(X) then ‘]de(zﬁ)i! > ¢ which implies

dk(zk ) dk(zk) + 1 cz .
)+l ] 2uk

Then by induction on 3 for j = 1,2, ..., (k) -1

v

dk(zt(k)>

v

dk(z‘;) + () - 1)<§—i~)

k

which is equivalent to the desired result since xk = zt(k) -1

Now Lemmas 5.4, 5.6 and 5.7 and Corollary 3.14 may be combined with the
definition of a(B,e) to give an exponentially increasing function of k

which upper bounds £(k) for all k > 1.
Theorem 5.8:

(5.74) 2(1) g a;(Bye) + 1
and for k = 2,3, ...
(5.75) 2(h) g 32(3'5)(0(3.5))k-1 + aJ(B.E)(a(B.c))z(k-l) +1

wvhere




A () = ('2)(3)‘nj(u) + ;m(bl(g))l/? +

£ B

Iln (bl( )

! 2. 2/
+ (— )I(hl( )Y) T+ -l(bl(u))

i
‘n

/

(5.7 o,(,0) B) 1 o

P4

-~'—)n:(',c> + i (C,e))]

i
———
A

I~
S
——
[

~
.
jal
~

dtrd

2 R .
---——) (GG oG 1 e, ) .

(5.7¢) a (" ,¢)
3 6 ( u)

!
——
e

to)—
et
—_———
—
——

P caf

From Yorma 5 % ard toe definitions of bl(ﬁ) and b(3,c)

(5. 19) adely - d’(,;) S 1 (b))
and for L = 2,3, ...

(5. 50) S A FRLN IS
Lama 5.6, (5.64) and (5.70) 1mply

(" 81) wu

[N

(})(l:‘)i»,l<:> + om0 E 4 ({——)l(hl(enz + w60
b ( 2¢ 1

"

and for L 2,3, ...

*
oz (;)ﬁjﬁi;)g[b(”,C) + ?m(b(L,C))]/LJ(;{ _-fifT) +

2
ES 0 "I
+ ( LA e -m(n.(z.,r)>2”’1(——f«' :-1) i

“
i -
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From Corollary 3.14 and (5 17)

* o}

* e

(5.83) (T%__——%:T) < (a(ye)) ! for k= 1,2,
A

then (5 74) follows from (5 79), (5.81) and Lemma 5.7 with Kk = 1 L.here
al(ﬂ,c) 1s defined by (5.76) and (5.75) follows from (5 80), (5 82), (5 83)
and Lemma 5 7 witn Kk > 2 waere aZ(S.c) and a3(8,c) arc defincd by (5 77)

and (5.78) respeztavely.||

It should be noted that 1t 1s possible to find an upper bound in terms

1+ Ep
of the definitions of this section for the factor a(B,c) = == appearing

Ep
in lheorem 5.8 From (3.19) and the definition of G
£ - f°
(5.84) u < (1 + Bm + cy)(———:——- for 1=1,2, ..., m
1 = o
G(x )
and from (3..3)
*
m u
. * * X *
(5.85) P> ) 2 for all u = (u Sy .a, ) c vt
i=1 u 1772 n
i
* * * *
For x € X and u ¢ U
* mo *
. Vi(x ) =~ } u Vg (x)
ie1 1 i

and by the definitions of o and & and the triangle inequallty

mo
Lo

< m ® *
(5.86) o < ViG] ¢} wllvg, 6] g8
1=1 1

i

Combining (5.84), (5.85) and (5.86) yiclds



BO

warch mplies

This Yound could slse be used 1o conjuaction with Corollarics 3 9, 3 14 and
315 ard Twerem 3 1y to obtiin corresponding Lounds vhich replace the
depar Bnee on " tath dependence on o nd 4 .

by combrinay the results of Ibeoram 5.8 and Corollary 3.12 an uppcr
bounding function of t may be found for the tetal number of stecpest ascent

N ¥
oteps required to find an starting froa x® such that f - f(xk) t

[LIFN

where L 3s a terninatron paireweter for the algorithm.

Heorem 5 9

Let n](B,") . 62(3,5 and a3(6,c) be as defined in Theorem 5.8 and

let n(t) be the total aumber of steepest ascent steps required to find a

k AN o * k
point x € S scarting from »" £ § such that £ - f(x7) <t where
%
t < f - f(\o) . Then

_al8,e) )

n(t) < k(L,B,e) + 1+ a,(B,e) + aZ(B’C)(a(ﬁ,s) —

@eEen? |
(u(B,c))2 -1

h(t,B,e)

(5.87) [ La(R,e)) - 1] + a3(3,€)

2k (t,8,¢) _

*[(«(B,¢€)) 1)

wiere
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* o
In (E——QL—L—)
t

k(t,B,e) 1s the greatest integer less than — .
1n (l + oo 4 Ly)

Proof: '
k 1
. (e - «£° '
S S
Fror Corollary 3.12 1f k > S then { - f < t which
= 1 (l + "fm 4 g‘{) =
Bm + €y
% ]
implies 1 - fk(t’s’c)+~ <t and
k(t,g,c)+l
(5.88) n(t) < ) (k)
k-1

where 2(k) 1s number of steepest ascent steps requ:zred to solve subproblenm
k . For tne case when k{(t,B,e) = 0 , (5.87) follcws .mmediately from (5.88)

and (5.74). Tor the case when k(t,B8,¢) 21, (S.éS) and Theorem 5.6 imply

k(t,;},c)fl k=2
() < h(t,B,e) + 1+ a (B,e) + a,(8,e)a(8,c) ) (a(B,e))" “ +
k=2
k( €)+1

t,B,
Z G(B,C)z(k—z)
k=2

+ a,(8,6) (a(8,e))

which 1s equivalent to (5.87).{]
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