CONVERGENCE RATES FOR A METHOD OF CENTERS ALGORTHHM

ROBERT B. MIFFIN

OPERATIONS

RESEARCH
CENTER

CONVERGENCE RATES FOR A NETHOD OF CENTERS ALGOR:TIM

by
Robert B. Mifflin
Operations Research Center
University of Calıfornıa, Berkeley

Unclassified
ramt Climitit:ann

Unclasizfied

KEV WCROS
Nonlinear Programming
Constrained Optimization
Algorithms
Rate of Convergence
Sequential Unconstrained Optimization

ACKNOWLEDGEMENTS

I would like to express my appreciation to the members of my dissertation commattee, Professors Donald M. Topkıs, C. Roger Glassey and Richard C. Grinold. I am especially grateful to Professor Tophis for his helpful suggestions and encouragement. I would also like to acknowledge the support of the Nat ional Aeronautics and Space Administration and the Operations Research Center of the University of Californa at Berkeley and to especially thank Catherine Korte and Linda Betters for the typing of the manuscript.

Abstract

Convergence of a method of centers algorithm for solving nonlinear programming problems whose feasible regions have nonempty strict interiors is considered. Conditions are given under which the algorithm generates sequences of feasible points and multiplier vectors which have accumulation points satisfying the Fritz John and the Kuhn-Tucker optimality conditions. Under stronger assumptions linear convergence rates are established for the sequences of objective function, constraint function, feasible point and multiplier values.

The feasible points generated by the algorithm may be exact or approximate solutions to unconstrained maximization subproblems and in the approximate case may be found by finite step procedures. upper bounds are derived for the number of steps required to solve each subproblem when the method of steepest ascent is employed.

Corsider the nonlincar programming problem of maximızing $f(x)$ subject to the constraints $g_{2}(x) \geq 0$ for $1=1,2, \ldots, m$ where $\varepsilon_{1}, \ldots, g_{m}$ and f are real-valued functions defined on E^{n} and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ Let

$$
S=\left\{x \mid g_{1}(\lambda) \geqq 0,1=1,2, \ldots, m\right\}
$$

S is the se: of fcasible points and a point $x^{*} \varepsilon S$ which maximizes f over S is an optimal solution and the corresponding number $f^{*}=f\left(x^{*}\right)$ is the optimal value. Let

$$
\hat{S}=\left\{x \mid g_{i}(x)>0, i=1,2, \ldots, m\right\} .
$$

\hat{S} is called the strict interior of S and only nonlinear programmang problems with $\hat{\mathbf{S}}$ nonempty will be considered in the sequel.

The method of centers introduced by Huard [15] is in a class of methods which solve nonlincar programming problems with \hat{S} nonempty by solving a sequence of unconstrained problems. The basic idea of this approach is to consider the objective function as an additional constraint, $f(x) \geqslant f\left(x^{0}\right)$ where $x^{0} \varepsilon \hat{S}$, and to define an auxiliary function called a distance function which depends on f, g_{1}, \ldots, g_{m} and x^{0} and is maximized by a point called a center in $\hat{S}^{1}=\left\{x \mid f(x)>f\left(x^{0}\right), g_{i}(x)>0\right.$, $1=1,2, \ldots, m$. If this maximization problem is solved then an $x^{1} \in \hat{S}^{1}$ is found such that $f\left(x^{1}\right)>f\left(x^{0}\right)$. The above process is then repeated with x^{1} replacing x^{0}. If this procedure is carried on then under certain additional asșumptions an approximation to an optimal solution results. An important property of such a method is that cach
point generated is a feasible solution and has a better objective value than the previous point.

Examples of distance functions given by Faure and Huard [6] and Huard [15] respectively are:
(1.1) $D(x, \alpha)=\left\{\begin{array}{ll}(f(\lambda)-\alpha)^{p} \prod_{i=1}^{m} g_{1}(x) & \text { for } x \varepsilon \hat{S}(\alpha) \\ 0 & \text { otherwase }\end{array}\right.$ with $p>0$
and
(1.2) $D(x, \alpha)= \begin{cases}\min \left[(f(x)-\alpha), g_{i}(\lambda), \ldots, g_{i n}(x)\right] & \text { for } x \in \hat{S}(\alpha) \\ 0 & \text { otherwise }\end{cases}$
where $\hat{S}(\alpha)=\left\{x \mid f(x)>\alpha, g_{i}(x)>0, i=1,2, \ldots, m\right\}$ and α is a parameter deterinined itcratively by a method of centers algorithm. Other examples of distance function which are slight modifications of the above or mıxtures of such modifications are given by Tremolıères [34]. A method of centers algorithm consists of finding an x^{k} which approximately marimizes $D\left(x, \alpha^{k}\right)$ where $\alpha^{k}=f\left(x^{k-1}\right)$ for $k=1,2, \ldots$ starting from some $x^{0} \varepsilon \hat{S}$. For $k=1,2, \ldots$ an ε_{k}-center is a point $\mathrm{x}^{\mathrm{k}} \varepsilon \hat{\mathrm{S}}\left(\alpha^{k}\right)$ such that $D\left(\lambda^{k}, a^{k}\right) \geqq D^{k}-\varepsilon_{k}$ where \tilde{D}^{k} is the maximum value of $D^{k}\left(x, \alpha^{k}\right)$ over $\hat{S}\left(\alpha^{k}\right)$ and $\left\{\varepsilon_{k}\right\}, k=1,2, \ldots$ is a sequence of nonnegative numbers converging to zero. For a class of general distance functions Bui-Trong-Lieu and Huard [1] have shown the convergence of $f\left(x^{k}\right)$ to f^{*} where $\left\{x^{k}\right\}$ is a sequence of ε_{k}-centers essentially assuming that f is continuous and bounoed on S and the closure of \hat{S} is S. Tremolieres [34] has also established this result for a relaxed version of the algorithm where $\alpha^{k}=\alpha^{k-1}+\rho\left[f\left(\lambda^{k-1}\right)-\alpha^{k-1}\right]$ with $0<\rho \leqq 1$ and has given numerical results on several test problems.

The method of centers algorithm based on the minamum function givin by (1.2) has been considered al:o by Kleibolm [18], Pironneau and Polak [28], Polak [29] and Zangwill [35]. This function suffers from a lack of differentability even when the problem functions are differeniable and for thas reason Huard [16] and Pironneau and Polak [28] developed modified algorithms with finite step subproblem procedures based upon this function. Huard's modified algorjthm is closely related to a feasible directions algorithm proposed by Topkis and Veinott [33].

The folloring distance function is essentially the natural logarjthm of the function given by (1.1) with $\beta=\frac{1}{p}>0$.
(1.3) $D(x, \alpha)= \begin{cases}\ln (f(x)-\alpha)+\beta \sum_{i=1}^{m} \ln g_{i}(x) & \text { for } x \in \hat{S}(\alpha) \\ -\infty & \text { otherwise . }\end{cases}$

It is simlar in behavior to the following "parameter free penalty function" due to Fiacco and McCormick [10].
(1.4) $D(x, \alpha)= \begin{cases}-\frac{1}{(f(x)-\alpha)}-\sum_{i=1}^{m} \frac{1}{g_{i}(x)} & \text { for } x \in \hat{S}(\alpha) \\ -\infty & \text { olherwise. }\end{cases}$

For a class of general distance functions Fiacco and McCormick [11] have shown the existence of a sequence $\left\{x^{k}\right\}$ of local maxima for $D\left(x, \alpha^{k}\right)$ over $\hat{s}\left(\alpha^{k}\right)$ for $k=1,2, \ldots$ such that accumulation points of $\left\{x^{k}\right\}$ are local maxima for the nonlinear programming problem with objective value v^{*} assuming the functions g_{1}, \ldots, g_{m} and f are contanuous and there exists a nonempty isolated compact set of local maxima with local maximup value v^{*} intersecting the closure of \hat{S}. Fiacco [7] has demonstrated
a direct relationship between the method of centers and the interior-point penalty function methods of Fiacco and McCormick [11] by showng there are corresponding classes of functions for these methods which give rise to equivalent procedures. The interior-point penalty function related to (1.3) is given by
(1.5) $\quad P(x, r)= \begin{cases}f(x)+r \sum_{1=1}^{m} \ln \delta_{1}(x) & \text { for } x \varepsilon \hat{S} \\ -\infty & \text { otherwise }\end{cases}$
and the one related to (i.4) is gaven by
(1.0) $P(x, r)= \begin{cases}f(x)-r \sum_{1=1}^{m} \frac{1}{g_{1}(x)} & \text { for } x \in \hat{S} \\ -\infty & \text { ctheruse. }\end{cases}$

The associated algorathmic procedure consists of sequentially maximazing $P\left(x, r_{h}\right)$ for a decreasing sequence of posilive r_{k} whach tends to zero. The function given by (15) was first proposed by Frisch [12,13] and later used by Parisot [27] for solving linear programing problens and by Lootsma [21,22] for nonlincar problems. The one given by (1.6) was first proposed by Carroll [2] and extensively developed by Fiacco and McCormick (8,9).

The logarithmic distance function $d^{k}(x)=D\left(x, \alpha^{k}\right)$ with convergence rate parameter 3 given by (1.3) wall be considered here along with the assumption that g_{l}, \ldots, g_{m} and f are continuously differentiable In order to obtain convergence rate results. The sequence of points $\left\{\mathrm{x}^{\mathrm{k}}\right\}, \mathrm{k}=1,2, \ldots$ generated by the algorithm as defined by $\mathrm{x}^{\mathrm{k}} \in \hat{\mathrm{S}}^{\mathrm{k}}=\hat{\mathrm{S}}\left(\alpha^{k}\right)$ satisfying $\left\|7 \mathrm{~d}^{k}\left(\mathrm{x}^{k}\right)\right\| \leq \varepsilon$ for $h=I, 2, \ldots$ where $\varepsilon \geq 0$ is a subproblem
termination parameter. For the case when $c>0$, if an algoritha uscu to maxinize $d^{k}(x)$ over \hat{s}^{k} has the property tnat any accimelditon poine \bar{x} sutisiles $\left\lceil d^{k}(\bar{x})=O\right.$, then only a firite: nuroce of eubproblem secpes will be required to find x^{k}. Ihis defiaition of an approxinate center does not depend on the usually unknown maximun value D^{k} used to define m c_{k}-center.

In Section 2 the logarithmic method of centers algoritha is difinc and under differentlability assuriptions it is shown that accumulation points of the sequence of feasible points $\left\{x^{k}\right\}, k=1,2, \ldots$ generaicu by the algorithm satisfy the Eritz John [17] optimality conditions lot the nonlincar programming problem. With the adaition of pseudo-concavi:y [25] assumptions on the constraint functions it is shown that the algot: also generates a tounded multiplicr sequence $\left\{\left(u_{1}^{k}, u_{2}^{k}, \ldots, u_{m}^{k}\right)\right\}$, $k=1,2, \ldots$ such that accumulation points of this sequence and whe foarible point sequence satisfy the Kuhn-Tucker [19] optinality condicions. for uc sperial case when $\varepsilon=0$, Lootsma [23] and Fiacco and McCormick [11] have also established this type of result for general classes of differcotiable distance functions under concavity assumptions on all the functions. If the objective function is also pscudo-concave then accumulation points of the feasible point sequence are shown to be optimal solutions to the nonlinear programing problem. The relation to Huard's original method of centers algorjthm for the case of concave objective and constraint functions is demonstrated by showing that the approximate centers x^{k} defined here are ε_{k}-centers $\boldsymbol{\alpha i t h}$ respect to the distance function $\exp \left(d^{k}(x)\right)$ which is a member of the class of disance functions for which huard [15] proved under concavity assumptions on all the functions that accumulation poitts of an ε_{k}-center sequence arc optimal solutions.

In Section 3 all functions are assumed to be concave and P^{*} is defined to be tiae number of positive components in a Kuñ-Tucher multiplier vertor which has tie largest number of positive components anong such vectors and q^{*} is defincd to be the number of positive constraint values for an optirial solution which has the largest number of positive constramet values among optinal sulutionc. It fas show that all the accurulation points of the feasible point sequence have the same q^{*} positive constraints and all the accurnulation points of the multaplier vector scquence have the
 is bounded above by a decrasing caponental function of h and for the special case when $q^{\dot{i}}=m$ whach raplace $p^{\dot{\prime}}=0$ there expets an upper bound which is a product of h Iractions where the $h^{\text {th }}$ fidetion converges to zero as k Lends to infinity. for the case whan $p^{*}>0$ whach implics $q^{*}<m$ it is shown that $i^{\lambda}-f\left(,^{k}\right)$ and $\| x^{*}-\lambda^{k}| |$ for any optamal point ${ }^{*}$ are bounded from below by decrasing expone tatal functions of k whech have the arre rates. It is alsu dinonstrated that $\mathcal{E}_{1}\left(x^{h}\right)$ for any i such that $u_{1}^{*}>0$ for sorace huhn-7ucher multaplacr vector $\left(u_{1}^{*}, u_{2}^{*}, \ldots, u_{m}^{*}\right)$ and that u_{j}^{h} for any j such that $f_{j}\left(x^{*}\right)>0$ for some optimal point ${ }^{*}$ convarge to zero with the same type of convergence bounds as $f^{*}-f\left(x^{k}\right)$. These results are established in part by finding an upper bound on $\left(\frac{f^{*}-f\left(x^{k}\right)}{f^{*}-f\left(x^{k}-1\right.}\right)$ for all $h: 1$ w, ich for the special case when $E=0$ is equal to $\left(\frac{\mathrm{Rm}}{1+6 \mathrm{~m}}\right)$ and is the sane as the bound found under stronger assumptions on the norlinear programang problem by Fuilc [5] foi iinear functions and by Tremolières [34] for gencral concave functicn-. Actually Tremolières' bound depends on the rulayation parameter $\rho \in(0,1)$ and is smallest and equals the one obtancd here when $\rho=1$ which is the casc of no relaxation. It is also shom here
that the sequence $\left\{\left(\frac{f^{*}-f\left(x^{k}\right)}{f^{x^{*}}-f\left(x^{h-1}\right)}\right)\right\}$ has dll of its accumulation points in the interval $\left[\left(\frac{B p^{*}}{1+E p^{*}}\right),\left(\frac{B\left(m-q^{*}\right)}{1+B\left(m-q^{*}\right)}\right)\right]$. This asymptotic result $1 s^{\prime}$; Independent of the value of the subproblem termination paraneter ε and justifies calling B a convergence rate parameter. For the special case when $p^{*}+q^{*}=m$ it agrees whth the result stated by Faure and Huard [6] and proved for $c=0$ under assumptions which $1 m p l y$ the problem nas a unique nondegencrate optamal point and Kuhn-Tucker multiplier vector pair by faure [5] for linear objective and constraint functions and by Lootsma [24] for concave problem functions. Under this uniquencss assumption with exact centers Lootsma found the limit of $\left(\frac{\left.f^{*}-f()^{k}\right)}{f^{k}-f\left(x^{h-1}\right)}\right)$ for a gencral class of dafferentiable distance functions and showed that the logarıthmic distance function 15 the only number of thas class for which the limit is independent of the value of the huhn-lucker multiplier vector. For the nondifferentiable minımum function defined by (1.2) assuming a unıque optimal point and exact centers Pıronneau and Polak [28] demonstrated that $\left(\frac{f^{*}-f\left(x^{k}\right)}{f^{*}-f\left(x^{k-1}\right)}\right)$ converges to a fraction with a value depending on the set of Kuhn-Tucker multiplier vectors.

In Section 4 the Lagrangian function $f(x)+\sum_{i=1}^{m} u_{2}^{*} g_{i}(x)$ for some Kuhn-Tucker multiplicr vector $\left(u_{1}^{*}, u_{2}^{*}, \ldots, u_{m}^{*}\right)$ is assumed to be strongly concave [20] in a nerghborhood of an optimal solution x^{*}. It is shown that $\left\|x^{*}-x^{k}\right\|$ and $\left|g_{1}\left(x^{k}\right)-g_{i}\left(x^{*}\right)\right|$ for $i=1,2, \ldots, m$ are bounded above by decreasing exponential functions of k having rates which are one half the rate for the exponential function whach bounds $f^{*}-f\left(x^{k}\right)$ from above.

This result represents a typical way of obtaining a rate for $x^{k} \rightarrow x^{*}$ given a rate for $f\left(x^{k}\right) \rightarrow E^{*}$. For example Pironncau and Polak [28] established this lype of result for their modified method of centers algorithm based upon the minimum function defined by (1.2) under the slightly stronger assumptions of twice continuously differentiable problem functions and f having a negative definite matrix of second partial derivatives in a ball about an optimal point. If ir additio.. to the stiongly concave Lagrangian, it is assumed that the first partial derivatives of the objective and constraint functions satisfy Lipschitz conditions, the gradient vectors of the constraint functions which are active at x^{*} are linearly independent and $u_{i}^{*}>0$ for all constraints 1 which are active at x^{*} then il is shown here that the above rates may be fmproved by a factor of two and that $\left|u_{i}^{k}-u_{i}^{*}\right|$ for $i r i, 2, \ldots, m$ is also bounded above by a decreasing exponential function of h which has the same rate as the one bounding $f^{*}-f\left(x^{k}\right)$ from above.

The converjence of the method of stecpest ascent $[3,4,14,29,33,35]$ on the subproblems for the case whon the subproblen termanation pazameter ε is positive is considered in Section 5. The number of steepest ascent steps required to find an approximate center x^{k} starting from x^{k-1} for each $k \geq 1$ is shown to be bounded above by an increasing function of k. Combined with the resulls of Section 3 this leads to an upper bounding function of t for the tolal number of stecpest ascent steps required to find a feasible point x^{k} starting from x^{o} such that $f^{*}-f\left(x^{k}\right) \leq t$ where t is a termination parameter for the algorithm.

2. DFFINITION ADD GENLRAL CONVI RGE\CE PROPERTILS OY THE AI GORITHY

In order to define the algorithm and establish its convergence properties certain assumplions will be required. The following two conditions will be assumed to hold throughout:

Thercensts an $x^{0} q \hat{S}=\left\{x \mid g_{1}(x)>0, i=1,2, \ldots, m\right\}$ such that $S^{1}=\left\{x \mid f(x) \geq f^{0}, g_{i}(x) \geq 0,1=1,2, \ldots, m\right\}$ is bounded where $f^{\circ}=\mathbb{f}\left(x^{0}\right)$.

$$
\begin{equation*}
f \text { and } g_{i} \text { for } i=1,2, \ldots, m \text { are } \tag{2.2}
\end{equation*}
$$ continuously differentiable on s^{1}.

If $S=\left\{x \mid \varepsilon_{\lambda}(x) \geq 0,1=1,2, \ldots, m\right\}$ is a closed conver ser, f is a concave and upper semi-continuous function on S and the srt of optimal points that maximize f over S is bounded then Tophis [32] has shown chat S^{l} is bounded. Similar results which imply Assumption (2.1) for $\hat{\mathrm{S}}$ nonempty are contained in Rockafellar [30] and Fiacco and McCormick [11]. Assumption (2.1) implies that if λ^{*} is an optimal solution to the nonlinear programming problem and $f^{*}=f\left(x^{*}\right)$ is the optimal value then x^{*} \& S^{1} and $f^{\star} \geq f^{\circ}$.

Define the norm of $y \in E^{p}$ by

$$
\| y| |=\left(y_{1}^{2}+y_{2}^{2}+\ldots+y_{p}^{2}\right)^{1 / 2}
$$

and define the gradient vector of partial derivatives of a differentiable function d defined on a subset of E^{p} by

$$
\nabla d(y)=\left(\frac{\partial d(y)}{\partial y_{1}}, \frac{\partial d(y)}{\partial y_{2}}, \ldots, \frac{\partial d(y)}{\partial y_{p}}\right)
$$

Algorithm:

Chuose numbers $\varepsilon \geq 0$ and $\beta>0$. Given $x^{k-1} \varepsilon \hat{S}$ for any integer $k \geqq 1$ terminate the algorithm with x^{k-1} if $\nabla f\left(x^{k-1}\right)=0$. Otherwise define

$$
\begin{equation*}
f^{k-1}=f\left(x^{l}-1\right) \tag{2.3}
\end{equation*}
$$

(2.4) $\hat{S}^{k}=\left\{x \mid f(x)>f^{k-1}, g_{i}(x)>0, i=1,2, \ldots, m\right\}$
and

$$
\begin{equation*}
d^{k}(x)=\ln \left(f(x)-f^{k-1}\right)+\varepsilon \sum_{i=1}^{m} \ln g_{i}(x) \quad \text { for } x \varepsilon S^{i x} \tag{2.5}
\end{equation*}
$$

and find $x^{k} \in \hat{S}^{k}$ sucn that

$$
\begin{equation*}
\left|\left|v d^{k}\left(\lambda^{k}\right)\right|\right| \leqq \tag{2.6}
\end{equation*}
$$

where by Assumption (2.2)

$$
\begin{equation*}
\nabla d^{k}(\lambda)=\frac{\nabla f(\lambda)}{\left(f(\lambda)-f^{k-1}\right)}+\beta \sum_{1=1}^{m} \frac{V_{\delta_{1}}(\lambda)}{g_{1}(x)} \quad \text { or } 2 . c \dot{s}^{k} . \tag{2.7}
\end{equation*}
$$

It should be noted that a stariing point x^{0} exists by Assumption (2.1) and if λ^{k} exists for some $k \geqslant 1$ then $f^{h}>f^{k-1}$ und $\hat{S}^{k+1} \subset \dot{s}^{k} \subset s^{l}$ by Definitions (2.4) and (2.3). The finding of x^{k} is to be accomplithed ty a subloutine which maiximizes $d^{k}(x)$ on, equivalently, exp $\left(d^{k}(x)\right)$ over $\hat{\mathbf{S}}^{k}$. Due to the behavior of $\mathrm{d}^{\mathrm{k}}(\mathrm{x})$ at the boundiry of $\dot{\mathrm{c}}^{k}$ this nubproblem optimbation is eseentially unconstrifmed.

The following two lemmels justify tire statement of the alforitha. The first lenma shows that if the aigorlthin dues not taminnte at x^{k-1} then the next set \dot{s}^{k} is norempty.

1,crma 2.1:

$$
\text { If } x^{k-1} \in \hat{S} \text { exists for some } k \geqq 1 \text { and } \nabla f\left(x^{k-1}\right) \notin 0 \text { then } \dot{S}^{k}
$$

is nonempty.

Proof:
Sance $\lambda^{k-1} \in \hat{S}$,

$$
g_{1}\left(x^{k-1}\right)>0 \quad \text { for } \quad i=1,2, \ldots, m
$$

Let $x(\lambda)=x^{k-1}+\lambda \nabla f\left(x^{k-1}\right)$ where λ is a real number. Since \mathcal{E}_{1} for $i=1,2, \ldots, m$ is continuous on S^{1}, there exists a $\bar{\lambda}>0$ such that for $i=1,2, \ldots, m$

$$
g_{i}(x(\lambda))>0 \quad \text { for } 0 \leqq \lambda \leqq \bar{\lambda} .
$$

Since $\nabla f\left(x^{k-1}\right) \notin 0$ there exists $\tilde{\lambda} \in(0, \bar{\lambda})$ such that

$$
f(x(\lambda))>f\left(x^{k-1}\right) \quad \text { for } 0<\lambda \leq \bar{\lambda} .
$$

Therefore, $\hat{\mathrm{S}}^{\mathrm{k}}$ is nonempty. $\|$

If $\nabla f\left(x^{k-1}\right) \neq 0$, then Lemma 2.1 shows that $\nabla f\left(x^{k-1}\right)$ is a feasible direction from x^{k-1} in which to start subproblem k maximization even though ∇d^{k} is undefined at x^{k-1}. In fact, $\nabla f\left(x^{k-1}\right)$ multiplied by any positive definite matrix will suffice. The next lemma which is a slight modification of an existence result given by Fiacco and McCormick [10] shows that if \hat{S}^{k} is nonempty then there exists a point maximizing $\mathrm{d}^{\mathrm{k}}(\mathrm{x})$ over $\hat{\mathrm{S}}^{\mathrm{k}}$.

Lemna 2.2:

If $\dot{\mathbf{S}}^{k}$ is nonompty for some $k \geqslant 1$, then there exicis an $\dot{x} \varepsilon \hat{S}^{k}$

Proof:

$$
\text { Let } s^{k}=\left\{x \mid f(x) \geqq f^{k-1}, \varepsilon_{1}(x) \geqq 0,1=1,2, \ldots, m\right\} \cdot s^{k} \text { is }
$$ bounded by Assumption (2.1) sance $f^{k-1} \geqq f^{0}$ implies $S^{k} \subseteq s^{1}$ and S^{k} is nonempty by hypothesis since $\hat{S}^{k} \subset \mathrm{~S}^{k}$. $\mathrm{S}^{k} \quad 1 \mathrm{~s}$ closed since f and \mathcal{E}_{1} for $1=1,2, \ldots, m$ are continuous on $s^{1} \supseteq s^{h}$ b) Assumption (2,2). Let $D^{k}(x)=\left(f(x)-f^{k-1}\right) \prod_{1=1}^{m} g_{2}(x)^{\beta}$ and let \bar{x} maximize the continuous function $D^{h}(x)$ over the nonempty compact set S^{k}. Sance $D^{k}(x)>0$ for $x \in \hat{S}^{k}$ and $D^{k}(x)=0$ for $x \in S^{k}-\hat{S}^{h}, \dot{x} \varepsilon \hat{S}^{k}$. Since $d^{k}(x)=\ln D^{k}(x)$ and \tilde{x} maximizes $D^{k}(x)$ over $\hat{S}^{k} \subset S^{k}$, \tilde{x} must maximize $d^{k}(x)$ over \hat{s}^{k}. The continuity of f and g_{1} for $1=1,2, \ldots, m$ implies that \hat{S}^{k} is an open set and Assumption (2.2) implics $d^{k}(x)$ is differentiable on \hat{S}^{k}. Therefore $V d^{k}(\bar{x})=0 . \|$

If $\varepsilon>0$ and subproblem k is solved by an unconstrained maximization algorithm which has the property that any accumulation point $\overline{\mathrm{x}}$ generated by it satisfies $\operatorname{Vd}^{k}(\bar{x})=0$, then a pornt x^{k} such that $\left\|\nabla d^{k}\left(x^{k}\right)\right\| \leq \varepsilon$ wall be found in a finite number of subproblem sleps since d^{k} is continuously differentzable on \hat{S}^{h}. Fur gencral discusizous of unconstrained raximazation algorithms which have the above property see Fiacco and McCormick [11], Polak [29], Topkis and Vernott [33] and Zangwill [35].

The next result which is a general property of method of centers algorithms when S^{1} is compart and f is continuous on S^{l} has been essentially demonstrated by Huard [15].

Lemma 2.3:

Assume the algorithm does not terminate in a finite number of aterations. Then

$$
\begin{equation*}
f^{k}-f^{k-1}>0 \quad \text { for } k=1,2, \ldots \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(f^{h}-f^{h-1}\right)=0 . \tag{2.9}
\end{equation*}
$$

Pruof:
 sequence $\left\{\mathrm{r}^{k}\right\}, k=1,2, \ldots$ is bounded above sance f is contimous on s^{1} by issumption (2.2) and s^{1} is closed and bounded by Ashumplions (2 1)" and (2.2). Then (2.9) follows since there exasts an \bar{f} such that

$$
\lim _{k \rightarrow \infty} f^{k}=\overline{1} \cdot \mid!
$$

The following theoren shows that accumulation points of the sequence $\left\{x^{h}\right\}, k=1,2, \ldots$ generated by this method of centers algorichm satisfy the Fritz John [17] optimalits coliditions for the nonlinear progranmang probiem.

Theorem 2.4:

Either the algorithm terminates in a finite number of zterations with a point $\lambda^{k} \in S$ such that $\nabla f\left(\lambda^{k}\right)=0$ or the sequence $\left\{x^{k}\right\}, k=1,2, \ldots$ has at least one accumulation point and for each accumulation point \bar{x} there exist multipliers $\bar{v}_{2} \geq 0$ for $i=0,1, \ldots, m$ not all zero such that

$$
\begin{equation*}
\bar{v}_{0} \nabla f(\bar{x})+\sum_{i=1}^{m} \bar{v}_{i} \nabla g_{i}(\bar{x})=0, \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\bar{v}_{i} g_{i}(\bar{x})=0 \quad \text { for } \quad i=1,2, \ldots, m \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}(\bar{x}) \geqq 0 \quad \text { for } \quad i=1,2, \ldots, m \tag{2.12}
\end{equation*}
$$

Proof:
Either the algorithm terminates in a finite number of iterations with a point $x^{k} \varepsilon \hat{S}^{k} \subset \mathrm{~s}^{1}$ such that $\nabla f\left(x^{k}\right)=0$ or by Lemmas 2.1 and 2.2 applied inductively the algorithm generates a sequence $\left\{x^{k}\right\}, k=1,2, \ldots$ such that

$$
\begin{equation*}
\lambda^{k} \varepsilon \hat{s}^{k} \subset s^{1} \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
g_{1}\left(x^{k}\right)>0 \quad \text { for } \quad i=1,2, \ldots, m \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\nabla \mathrm{d}^{\mathrm{k}}\left(\mathrm{x}^{\mathrm{k}}\right)\right\| \leqq \varepsilon . \tag{2.15}
\end{equation*}
$$

By f isumptions (2.1) and (2.2) S^{1} is closed and bounded and therefore by (2.13) $\left\{x^{h}\right\}, h=1,2, \ldots$ has an accumulation point $\bar{x} \in S^{1}$. Let K_{1} be an infinite subset of $\{1,2, \ldots\}$ such that $\lim _{k \in K_{1}} \lambda^{k}=\bar{x}$. Then by Assumption (2.2)

$$
\begin{equation*}
\lim _{h \in K_{1}} \operatorname{Vf}\left(x^{k}\right)=V f(\bar{x}), \tag{2.16}
\end{equation*}
$$

$$
\begin{align*}
& \lim _{k \in K_{1}} \nabla_{g_{1}}\left(x^{k}\right)=\nabla_{g_{1}}(\bar{x}) \quad \text { for } 1=1,2, \ldots, m, \tag{2.17}\\
& \lim _{k \in K_{1}} g_{1}\left(\lambda^{k}\right)=\varepsilon_{1}(\bar{x}) \quad \text { for } i=1,2, \ldots, m
\end{align*}
$$

and by (2.14)

$$
g_{1}(\bar{x}) \geqslant 0 \quad \text { for } \quad i=1,2, \ldots, m
$$

which establishes (2.12). Let

$$
\begin{align*}
& g_{o}^{k}=\beta\left(f^{k}-f^{k-1}\right) \tag{2.18}\\
& \quad g_{i}^{k}=g_{2}\left(x^{k}\right) \quad \text { for } \quad 1=1,2, \ldots, \mathrm{~m}
\end{align*}
$$

and

$$
\begin{equation*}
h^{k}=\min \left[g_{0}^{k}, g_{1}^{k}, \ldots, g_{m}^{k}\right] \quad \text { for } k=1,2, \ldots \tag{2.20}
\end{equation*}
$$

Then by (2.8), (2.14), (2.18) and (2.19)

$$
\begin{equation*}
h^{k}>0 \quad \text { for } k=1,2, \ldots \tag{2.21}
\end{equation*}
$$

and by Lemma 2.3

$$
\begin{equation*}
\lim _{k \rightarrow \infty} h^{k}=0 . \tag{2.22}
\end{equation*}
$$

Multiplying $\nabla d^{k}\left(x^{k}\right)$ by h^{k} and using (2.7) yaelds
(2.23) $\quad h^{k} \nabla d^{k}\left(x^{k}\right)=\left(\frac{h^{k}}{f^{k}-f^{k-1}}\right) \nabla f\left(x^{k}\right)+\sum_{i=1}^{m}\left(\frac{B h^{k}}{g_{i}^{k}}\right) \nabla g_{i}\left(x^{k}\right) \quad$ for $\quad k=3,2, \ldots$

Let

$$
\begin{array}{r}
v_{1}^{k}=\frac{8 h^{k}}{g_{i}^{k}} \quad \text { for } i=0,1,2, \ldots, m \text { ard } \tag{2,24}\\
k=1,2, \ldots
\end{array}
$$

Then by (2.20) and (2.21)

$$
\begin{array}{r}
0<\mathrm{v}_{2}^{\mathrm{k}} \leqq \beta \quad \text { for } 1=0,1,2, \ldots, \mathrm{~m} \text { and } \tag{2,25}\\
k=1,2, \ldots .
\end{array}
$$

By (2.23), (2.24) and (2.18)

$$
\begin{equation*}
n^{k} \nabla d{ }^{k}\left(x^{k}\right)=v_{0}^{k} \nabla f\left(x^{k}\right)+\sum_{i=1}^{m} v_{1}^{k} \nabla_{g_{1}}\left(\lambda^{k}\right) \quad \text { for } \quad h=1,2, \ldots . \tag{2.26}
\end{equation*}
$$

Choosc an infinite subset $K_{2} \subset k_{1}$ such that

$$
\begin{equation*}
\lim _{\operatorname{kin}_{2}} v_{2}^{k_{0}}=\bar{v}_{2} \quad \text { for } \quad 1=0,1, \ldots, m \tag{2.27}
\end{equation*}
$$

which 1 possible by (2.25). Then choose $K_{3} \subset K_{2}$ such that for some〕 $\in\{0,1, \ldots, m\}$

$$
\begin{equation*}
h^{k}=g_{j}^{h} \quad \text { for all } k \in k_{3} \tag{2.28}
\end{equation*}
$$

This is possible since there are a fanite number of indices 1 and at least one must dentify the minmal g_{1}^{k} infinitely often. By (2.24) and (2.28), $v_{j}^{k}=B$ for all $k \in K_{3}$ and, therefore,
(2.29)

$$
\bar{v}_{\mathrm{J}}=\beta
$$

By (2.16), (2.17) and (2.27)
(2.30)

$$
\lim _{k \in K_{2}}\left[v_{o}^{k} v f\left(\lambda^{k}\right)+\sum_{i=1}^{m} v_{2}^{k} v g_{i}\left(x^{k}\right)\right]=\bar{v}_{0} \nabla f(\bar{x})+\sum_{i=1}^{m} \bar{v}_{i} \nabla g_{i}(\bar{x})
$$

By (2.15) and (2.22)

```
\operatorname{lin}\mp@subsup{|}{}{\prime}\cdot\mp@subsup{0}{}{\prime}(\mp@subsup{N}{}{i})\cdot0.
```

Tarrafore by (2.20), (2.30) and (n.31)

$$
\bar{v}_{0}: f(\bar{x})+{\underset{i}{l=1}}_{M}^{v_{i}^{\prime}} \bar{n}_{:}(\bar{l})=0
$$


```
.1117010 b) (2.29) mract corplet.s tur proc;.!
```


 for the nonlinar proframenf piubles.

Befinition:

A real-valued funcion f is pranio-recai: (25) on a corves sct $T \subset L^{n}$ if f is differeitible on i and $\operatorname{Pif}(y) \cdot(x-y) ; 0$ for $x, y \varepsilon$ I amplios $g(V) \leqq \varepsilon(y)$. It cun be stown thit a differentiable concave functicn 2 s pseudn-concive aid thot pseuco-conc we functions hive the property that local mayma are glebal maxima.

Conhining the results of Theorem 2.4 with pseudo-concaviey assumptions
on the coratrant functions and dcfaniro $u_{i}^{i}=\frac{E\left(f^{h}-e^{k-1}\right)}{\mathcal{E}_{1}\left(x^{n}\right)}$ for

Theorem 2.5.

Assume that \mathcal{E}_{i} for $i=1,2, \ldots, m$ are pscudo-concave on a convex set contaning S^{1} and that the alforithm does not termanate in a finite number of aterations. Then there exists a positive nurber b such that

$$
\begin{array}{r}
0<u_{1}^{k}=\frac{E\left(f^{k}-f^{h-1}\right)}{\varepsilon_{i}\left(\lambda^{k}\right)} \leq b \quad \text { for } i=1,2, \ldots, m \text { and } \tag{2,32}\\
h=1,2, \ldots .
\end{array}
$$

Futchermore the corbsued seruence $\left\{\left(,^{h}, u_{1}^{h}, u_{2}^{h}, \ldots, u_{m}^{h}\right)\right\}, k=1,2, \ldots$ has
 sthefles the following conditinns.

$$
\begin{equation*}
V f(\bar{x})+\sum_{1=1}^{M} \bar{u}_{1} f_{g_{2}}(\bar{y})=0 \tag{2,33}
\end{equation*}
$$

$$
\begin{equation*}
\bar{u}_{2} g_{1}(\bar{s})=0 \quad \text { for } \quad 1=1,2, \ldots, m \tag{2,3i}
\end{equation*}
$$

$$
\begin{equation*}
\bar{u}_{i} \geqslant 0 \quad \text { for } \quad i=1,2, \ldots, m \tag{2,35}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{E}_{1}(\bar{x}) \geqslant 0 \quad \text { for } \quad i=1,2, \ldots, m \tag{2,36}
\end{equation*}
$$

l'roof:

Let v_{1}^{k} for $i=0,1, \ldots, m$ and $k=1,2, \ldots$ be as in the proof of Theorem 2.4. If $\lim _{k \rightarrow 0} \operatorname{lnf} v_{0}^{k}=0$ then there exists an infinite subset $k_{0} \subset\{1,2, \ldots\}$ with $\lim _{k \in h_{0}} v_{i}^{k}=\bar{v}_{1}$ for $i=0,1, \ldots, m$ such that $\bar{v}_{0}=0$.
Choose $k_{1} \subset k_{0}$ onth $\lim _{k \in h_{1}} x^{k}=\bar{x}$. Then (2.10) reduces to

$$
\begin{equation*}
\sum_{i=1}^{m} \bar{v}_{i} \nabla g_{i}(\bar{x})=0 \tag{2.37}
\end{equation*}
$$

Let $y \in \hat{S}$ which is nonempty by Assumption (2.1). Then $g_{1}(y)>0$ for $1=1,2, \ldots, m$. If $\bar{v}_{1}>0$ then $g_{1}(\bar{x})=0$ by (2.11). Therefore

$$
g_{i}(y)>g_{i}(\bar{x}) \quad \text { for all } i \text { such that } \bar{v}_{1}>0
$$

Since $y, \bar{x} \in S^{l}$ and g_{1} for $i=1,2, \ldots, m$ are pseudo-concave on a conven set zontaining S^{1},

$$
\begin{equation*}
\nabla g_{i}(\bar{x}) \cdot(y-\bar{x})>0 \quad \text { for all } i \text { such that } \bar{v}_{1}>0 \tag{2.38}
\end{equation*}
$$

Since $\bar{v}_{0}=0$ and not all the \bar{v}_{1} are zero in Theorem 2.4, it must be true that $\bar{v}_{1}>0$ for some $i \geqslant 1$. Therefore by (2.38)

$$
\sum_{i=1}^{m} \bar{v}_{i} \nabla g_{i}(\bar{x}) \cdot(y-\bar{x})>0
$$

which contradicts (2.37). Therefore $\lim _{k \rightarrow \infty} \inf v_{0}^{k}>0$, and since $v_{0}^{k}>0$ for $k=1,2, \ldots$ there exists a positive number a such that $v_{0}^{k} \geqq a$ for $k=1,2, \ldots$. By the definition in (2.32) and (2.24)

$$
\begin{array}{r}
u_{i}^{k}=\frac{B\left(f^{k}-1^{k-1}\right)}{g_{i}^{k}}=\frac{g_{0}^{k}}{g_{i}^{k}}=\frac{v_{i}^{k}}{v_{0}^{k}} \quad \text { for } \quad i=1,2, \ldots, m \text { and } \tag{2.39}\\
k=1,2, \ldots .
\end{array}
$$

Therefore by (2.25)

$$
0<u_{i}^{k} \leq \frac{B}{a} \quad \text { for } \quad 1=1,2, \ldots, m \text { and } k=1,2, \ldots
$$

L. 'ing $b=\frac{B}{a}$ establishes the upper bound of (2.32). Now let

$$
\lim _{k \in K_{1}}\left(\lambda^{k}, u_{1}^{k}, u_{2}^{k}, \ldots, u_{m}^{k}\right)=\left(\bar{\lambda}, \bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{m}\right)
$$

which is possible by Theorem 2.4 and relation (2.32). Choose $K_{2} \subset K_{1}$ such that $\lim _{\operatorname{kEK}_{2}} v_{1}^{k}=\bar{v}_{1}$ for $1=0,1, \ldots, m$. Then $\bar{\lambda}$ and $\bar{v}_{1} \geqq 0$ for $1=0,1, \ldots, m$ satusfy (2.10) to (2.12) with $\bar{v}_{0}>0$. By (2.39) $\bar{u}_{1}=\lim _{k \in h_{2}} u_{1}^{k}=\frac{\bar{v}_{1}}{\bar{v}_{o}}$ ᄃor $1=1,2, \ldots, m$ and therefore $\left(\bar{x}_{1} \bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{m}\right)$ satasfy (2.33) to (2.36).||

The assumptions that the feasible set has a nonempty strict interior and the constraint functions are pseudo-concave constatute Slater's weak constraint qualification [26] for the nonlinear programing problem. For the case when $\varepsilon=0$ the results of Theorem 2.5 hase been obtanned by Lootsma 〔23〕 and Fiacco and McCormick [ll] under concavit] assumptions on the functions f and ε_{1} for $i=1,2, \ldots, m$.

For reference in the sequel a vector $\bar{u}=\left(\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{m}\right) \varepsilon E^{m}$ whach satisfics relations (2.33), (2.34) and (2.35) for some $\bar{x} \varepsilon S$ will be called a Kulm-Tucker multiplier vector.

In order to show that accumulation points of $\left\{x^{k}\right\}, k=1,2, \ldots$ are optimal solutions to the nonlinear progiamming problem an additional assumption on the objective function \mathcal{f} will be required.

Theoren. 2.6:

Assume that f and g_{2} for $i=1,2, \ldots, m$ are pseudo-concave on a convex set containing S^{1}. Lither the algorithm terminates in a fanite number of itcrations with an optimal solution to the nonlinear programmirg problem or every accunulation point \bar{x} of the sequence $\left\{x^{k}\right\}, k=1,2, \ldots$ is an optimal solution.

Proof:

Under the above assumptions the Kuhn-Tucker conditions, (2.33) through (2.36) of Theorem 2.5, are sufficient to imply optimality by Theorem 10.1.1 of Mangasarian [26].||

The above result was first established by Huard [15] urder concavity assumptions on the objective and constraint functions. For the distance function $D^{k}(x)=\exp \left(d^{k}(x)\right)$ Huard's algorithm is to find ε_{k}-centeis y^{k} such that $D^{k}\left(y^{k}\right) \geqq D^{k}\left(x^{k}\right)-\varepsilon k$ for $k=1,2, \ldots$ where \dot{x}^{-k} maximizes $D^{k}(x)$ over \hat{S}^{k} and $\left\{c_{k}\right\}$ is a sequence of non egative numbers converging to zero. The following analysis will show that the sequence $\left\{x^{k}\right\}$, $k=1,2, \ldots$ generated by the algorithm discusced here is a sçuence of ε_{k}-centers if f and g_{1} for $1=1,2, \ldots, m$ are concave functions on a convex set containing S^{1}. By the mean value theorem for all $k \geq 1$

$$
\begin{equation*}
D^{k}\left(x^{-k}\right)-D^{k}\left(x^{k}\right)=v D^{k}\left(\xi^{k}\right) \cdot\left(x^{k}-x^{k}\right) \tag{2.40}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi^{k}=x^{k}+\lambda^{k}\left(\dot{x}^{k}-x^{k}\right) \text { and } 0<\lambda^{k}<1 \text {. } \tag{2.41}
\end{equation*}
$$

From the concavity assumptions it is easy to see that $d^{k}(x)$ is a concave function on the convex set $\hat{\mathbf{S}}^{\mathbf{k}}$. Then

$$
\left(\nabla d^{k}\left(\xi^{k}\right)-\nabla d^{k}\left(x^{k}\right)\right) \cdot\left(\xi^{k}-x^{k}\right) \leq 0
$$

which implies since $\lambda^{k}>0$

$$
\left(\frac{1}{\lambda^{k}}\right)^{\left.\nabla d^{k}\left(\xi^{k}\right) \cdot\left(\xi^{k}-x^{k}\right) \leqq\left(\frac{1}{\lambda^{k}}\right)^{\nabla d^{k}}\left(x^{k}\right) \cdot\left(\xi^{k}-x^{k}\right) .\right) ~}
$$

$$
\begin{equation*}
\nabla d^{k}\left(\bar{s}^{i}\right) \cdot\left(\dot{x}^{k}-x^{k}\right) \leqq \because d^{k}\left(x^{k}\right) \cdot\left(x^{k}-x^{k}\right) \tag{2.42}
\end{equation*}
$$

By (2.40), the definition of $\mathrm{L}^{k}(x)$ and (2.42)

$$
D^{k}\left(\dot{x}^{k}\right)-D^{k}\left(\lambda^{k}\right)=D^{k}\left(\xi^{k}\right) \cdot d^{k}\left(\xi^{h}\right) \cdot\left(\dot{x}^{k}-x^{k}\right) \leqq D^{k}\left(5^{k}\right)\left\ulcorner d^{k}\left(x^{k}\right) \cdot\left(x^{k}-x^{k}\right)\right.
$$

which $2 m p l i e s$ by the definition of x^{k} and the Cauchy-Schrarz inequality

$$
D^{k}\left(x^{h}\right)-D^{k}\left(x^{k}\right) \leqq D^{k}\left(x^{-k}\right)| | \Gamma d^{i}\left(x^{h}\right)\| \| x^{-k}-x^{k} \| .
$$

Then since $\left|\left|r d^{k}\left(x^{k}\right)\right|\right| \leqq \varepsilon$

$$
D^{h}\left(x^{k}\right)-D^{k}\left(x^{k}\right) \leqq D^{k}\left(\lambda^{-h}\right) \varepsilon \gamma
$$

where $y=\sup _{x, y \in S}\|y-y\|$. Defining $\varepsilon_{k}=D^{k}\left(x^{k}\right) \varepsilon$, for all $k \geq 1$ yields

$$
n^{k}\left(x^{h}\right) \geqq D^{k\left(x^{h}\right)}-c_{k}
$$

nd

$$
\lim _{h \rightarrow \infty} \varepsilon_{h}=0
$$

since $D^{k}\left(\dot{x}^{k}\right)=\left(f\left(\dot{x}^{k}\right)-f^{k-1}\right) \prod_{1=1}^{m} g_{1}\left(x^{k}\right)^{\beta}, g_{1}$ for $i=1,2, \ldots, m$ is continuous on the compact set $S^{1}, f^{k-1}<f\left(x^{k}\right) \leqq f^{\star}$ and $\lim _{k \rightarrow \infty} f^{k-1}=f^{\star}$ by Theorem 2.6. Thus, x^{k} is an ε_{k}-center for each $k \geq 1$, but here the definition of an approximate center x^{k} docs not depend on the unknown maximum value $D^{k}\left(\bar{\lambda}^{k}\right)$.

These concavity assumptions will be used in the next section to derive convergence rate results.

3. COVEGGLOCL WIIE R!SUITS RIQLIRING COVCAVITY

For purposes of establishing convergence rate results the following condition In addilion to Assumptions (2.1) and (2.2) will be assumed to hold.

```
    f alid & for i m 1,2,\ldots,m are concave functions on a
(3.1)
    conver sel containing S '
```

It should be noted that this assumption implies that S^{1} is a convex sct and together with (2.2) implies that f and g_{1} for $1=1,2, \ldots$ m are pacudo-concave functions on s^{1}.

It will also be assumed throughout the sequel that the algorithin does not terminate in a finite number of iterations so that a fuasible point sequence $\left\{x^{k}\right\}, k=1,2, \ldots$ and a rultiplicr sequence $\left\{\left(u_{1}^{k}, u_{2}^{k}, \ldots, u_{p}^{k}\right)\right\}, k=1,2, \ldots$ as defined $1 u$ Section 2 are generated. The stronger assumpticn that $\nabla f(x) \neq 0$ for all $x c^{1}$ will be explicilly stated where needid for additional results.

The following lemma is a direct consequence of the concavity and differentiability of the prublem functions.

Lemma 3.1:

$$
\begin{aligned}
& \text { For } k=1,2, \ldots \\
& f(x)-f^{k} \leq\left(f^{k}-f^{k-1}\right)\left[g m-8 \sum_{1=1}^{m} \frac{g_{1}(x)}{g_{1}\left(x^{k}\right)}+\varepsilon\left\|x-x^{k}\right\|\right] \quad \text { for all } x \in S^{1} .
\end{aligned}
$$

Proof:

By the concavity and differentiability of f and g_{i} for $1=1,2, \ldots, m$ on s^{1}
and

$$
\begin{equation*}
g_{i}(x) \leqq g_{1}\left(x^{k}\right)+V g_{1}\left(x^{k}\right) \cdot\left(x-x^{k}\right) \quad \text { for } \quad i=1,2, \ldots, m \tag{3.3}
\end{equation*}
$$

for all $x \in S^{1}$ since $x^{k} \in S^{1}$ for $k \geqq 1$. Multiplying the $2^{\text {th }}$ inequality ; of (3.3) by $\left(\frac{B\left(f^{k}-f^{h-1}\right)}{g_{1}\left(x^{k}\right)}\right)>0$ and adding the resultant inequalities to (3.2) yields

$$
\begin{aligned}
& f(\lambda)+\sum_{2=1}^{m}\left(\frac{\sum\left(f^{k}-f^{k-1}\right)}{g_{1}\left(\lambda^{k}\right)}\right) \mathcal{E}_{1}(\lambda) \leqq f\left(x^{k}\right)+B\left(f^{k}-f^{h-1}\right) \mathrm{m}+ \\
& \quad+\left[\nabla f\left(\lambda^{k}\right)+\sum_{2=1}^{m}\left(\frac{\beta\left(f^{k}-f^{k-1}\right)}{g_{1}\left(\lambda^{h}\right)}\right) \neg g_{1}\left(\lambda^{k}\right)\right] \cdot\left(x-x^{k}\right) \quad \text { for all } x \varepsilon S^{1}
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
f(x)-f^{k} & \leqq B\left(f^{k}-f^{k-1}\right) m-B\left(f^{h}-f^{k-1}\right) \sum_{i=1}^{m} \frac{g_{1}(\lambda)}{g_{1}\left(x^{k}\right)}+ \\
& +\left(f^{k}-f^{k-1}\right) \nabla d^{h}\left(x^{k}\right) \cdot\left(x-x^{k}\right) \quad \text { for all } x \varepsilon S^{1}
\end{aligned}
$$

since

$$
\nabla d^{k}\left(x^{k}\right)=\frac{\nabla t\left(x^{k}\right)}{\left(f^{k}-f^{k-1}\right)}+\beta \sum_{1=1}^{m} \frac{\nabla g_{1}\left(x^{k}\right)}{g_{1}\left(x^{k}\right)}
$$

The result then follows since

$$
\nabla d^{k}\left(x^{k}\right) \cdot\left(x-x^{k}\right) \leqq\left\|\nabla d^{k}\left(x^{k}\right)\right\|\left\|x-x^{k}\right\| \leqq \varepsilon\left\|x-x^{k}\right\|
$$

by the Cachy-Schwartz inequality and the definition of x^{k} for $k=1,2, \ldots . \|$

A well-known [19] consequence of the concavity of the problem functions is the following:
(3.4)

$$
f^{\star}-f(x) \geq \sum_{i=1}^{m} u_{2}^{*} g_{2}(x) \quad \text { for all } x \in S^{1}
$$

where $u^{*}=\left(u_{1}^{*}, \ldots, u_{\mathrm{m}}^{*}\right)$ is any Kuhn-Tucker multiplier vector associated with an optimal solution to the nonlinear programming problem and f^{*} is the optimal objective value.

By combining Lemma 3.1 with the above result bounds on $f^{*}-f^{k}$ can be obtained. The followi:s' lemma is the key lemma from which most of the results of this section are derived. It will require some preliminary definitions which will be used throughout the sequel. Let X^{*} be the set of optimal solutions to be nonlinear programming problem and $U{ }^{*}$ be the set of Kuhn-Tucker multiplier vectors associated with optimal solutions.

Let

$$
\begin{equation*}
Y=\sup _{x, y \in S^{1}}\|x-y\| \tag{3.5}
\end{equation*}
$$

which is a finite number since S^{1} is assumed to be bounded.

Lemma 3.2:
Let $X^{\star} \varepsilon X^{\star}$ and $u^{*} \in U^{*}$. Then
$0 \leqq \sum_{1=1}^{m} \frac{u_{i}^{*}}{u_{i}^{k}} \leqq \frac{\left(f^{*}-f^{k}\right)}{\beta\left(f^{k}-f^{k-1}\right)} \leq m-\sum_{i=1}^{m} \frac{g_{i}\left(x^{*}\right)}{g_{i}\left(x^{k}\right)}+\left(\frac{\varepsilon}{B}\right)\left\|x^{*}-x^{k}\right\| \leq$

$$
\leqq m+\left(\frac{\varepsilon}{B}\right) r \quad \text { for } k=1,2, \ldots
$$

$\underline{M 100 f}$
Any optimal solution x^{*} is $2 \mathrm{n} \mathrm{S}^{1}$ and, therefore, by the result of Lemma 3.1 with $x=\lambda^{\text {x }}$

$$
\frac{\left(f\left(x^{*}\right)-f^{k}\right)}{B\left(f^{k}-f^{k-1}\right)}=m-\sum_{1=1}^{m} \frac{g_{1}\left(\lambda^{*}\right)}{g_{1}\left(i^{k}\right)}+\left(\frac{\varepsilon}{f}\right)\left\|\lambda^{*}-x^{k}\right\| .
$$

Furtheimore, since $\lambda^{k} \leqslant S^{1}$ for $k=1,2, \ldots$

$$
-\sum_{1=1}^{m} \frac{g_{1}\left(\lambda^{2}\right)}{g_{1}\left(x^{k}\right)}+\left(\frac{\varepsilon}{6}\right)!\lambda^{*}-\lambda^{k} \| \leqq\left(\frac{\varepsilon}{E}\right) \quad \text { for } k=1,2, \ldots
$$

by the definitions of S^{1} and γ. Thus, the last two of the desired inequalities are established. From (3.4) with $x=x^{k}$ for $h=1,2, \ldots$

$$
f\left(\lambda^{*}\right)-f^{h} \geqq 2\left(f^{k}-f^{k-1}\right) \sum_{i=1}^{m} \frac{u_{1}^{*}}{u_{1}^{h}}
$$

since

$$
u_{1}^{k}=\frac{B\left(f^{k}-f^{h-1}\right)}{g_{1}\left(\lambda^{k}\right)}>0 \quad \text { for } \quad:=1,2, \ldots, m
$$

These last two relations establish the first two desired inequalities.||

This lema shows that the convergence of $\mathfrak{f}^{\boldsymbol{k}}-£^{h}$ to zero 25 at least as fast as $f^{k}-f^{k-1}$ which converges to zelo by Lemuna 2.3.

The next lemma which gives a basic convergence result also requres some preliminary definitions. Let $q(x)$ be the number of indices $1 \in\{1,2, \ldots ; m\}$ such that $g_{1}(x)>0$ for $x \in S$ and $p(u)$ be the
number of indices i $\varepsilon\{1,2, \ldots, m\}$ such that $u_{1}>0$ for $u=\left(u_{1}, u_{2}, \ldots, u_{m}\right) \geq 0$. Define

$$
\begin{equation*}
q^{\star}=\max _{x \in X^{\star}} q(x) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
p^{*}=\max _{u \in U^{*}} p(u) \tag{3.7}
\end{equation*}
$$

It should be noted trat if $u^{*} \varepsilon U^{*}$ and $X^{*} \varepsilon X^{*}$ then (X^{*}, u^{*}) satisfy the Kuhn-Tucker condilions and $p\left(u^{*}\right)+q\left(x^{*}\right) \leqq m$ since $u_{i}^{*} g_{i}\left(x^{*}\right)=0$, $u_{1}^{*} \geq 0$ and $g_{1}\left(x^{*}\right) \geqq 0$ for $1=1,2, \ldots, m$. If $p\left(u^{*}\right)+q\left(x^{*}\right)=m$, then the pair $\left(x^{*}, u^{*}\right)$ is said to be nondegenerate.

Lemma 3.3:

$$
\text { For } k=1,2, \ldots \text { and } i=1,2, \ldots, m
$$

$$
\begin{equation*}
g_{i}\left(x^{k}\right) \geqq\left(\frac{1}{m+\left(\frac{\varepsilon}{\beta}\right) \gamma}\right) \sup _{x \in X} g_{i}(x) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{i}^{k} \geqq\left(\frac{1}{m+\left(\frac{\varepsilon}{B}\right)_{\gamma}}\right) \sup _{u \varepsilon U} u_{i} ; \tag{3.9}
\end{equation*}
$$

and if \bar{x} is an accumulation point of the sequence $\left\{x^{k}\right\}, k=1,2, \ldots$ and $\bar{u}=\left(\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{m}\right)$ is an accumulation point of the sequence $\left\{\left(u_{1}^{k}, u_{2}^{k}, \ldots, u_{m}^{k}\right)\right\}, k=1,2, \ldots$, then
and
(3.11)

$$
p(\bar{u})=p^{\star}
$$

Proof:

The results of Lemma 3.2 mply that for any $X^{*} \varepsilon X^{*}$ and any $u^{*} \varepsilon U^{*}$

$$
\sum_{1=1}^{m}\left(\frac{u_{1}^{*}}{u_{1}^{h}}+\frac{g_{1}\left(x^{k}\right)}{g_{1}\left(\lambda^{k}\right)}\right) \leqq m+\left(\frac{\varepsilon}{B}\right) y \quad \text { for } k=1,2, \ldots .
$$

Then (3.8) and (3.9) follow mmedately from this anequality. From (3.8)
and (3.9) and Definitions (3.6) and (3.7)

$$
q(\bar{x}) \geqq q^{*}
$$

and

$$
p(\bar{u}) \geqq p^{*} .
$$

Furthermore,

$$
q(\bar{x}) \leqq q^{*}
$$

and

$$
p(\bar{u}) \leqq p^{*}
$$

since $\bar{x} \in X^{*}$ and $\bar{u} \in U^{*}$ by Theorems 2.5 and 2.6. Thus, (3.10) and (3.11) are established.\|

This lema combined with Theorems 2.5 and 2.6 shows that there are q^{*} constraint indices 1 satisfying $\lim _{k \rightarrow \infty} 3 n f g_{1}\left(x^{k}\right)>0$ and $\lim _{k \rightarrow \infty} u_{i}^{k}=0$,
P^{*} constraint indices 2 satigiving $\lim _{k \rightarrow \infty} g_{i}\left(x^{k}\right)=0$ and $\lim _{k \rightarrow 0} \operatorname{lnf} u_{1}^{k}, 0$ and $m-q^{*}-p^{*}$ constraint indices i satisfying $\underset{k \rightarrow \infty}{\lim g_{1}\left(x^{k}\right)=0 \text { and }, ~}$ $\lim _{k \rightarrow \infty} u_{i}^{k}=0$.

The next lema conbines the results of Leasas 3.2 and 3.3 to show that
the sequence $\left\{\frac{\left(f^{k}-f^{k}\right)}{E\left(f^{k}-f^{h-1}\right)}\right\}, k=1,2, \ldots$ has accumulation points in the interval $\left\{p^{*}, m-q^{*}\right\}$ ard if there exisis a nondegenerate opiand nolution and Kuhn-Tucher multiplier vector pair, then the labiting value .. $p^{\star}=m-q^{\star}$. Note that X^{\star} is bourded ty Asstmption (2.1) and U^{\star} is bounded by Lerma 3.3. Define

$$
\begin{equation*}
p_{k}=\sup _{u c U^{+}}\left[\sum_{i=1}^{n} \frac{u_{i}}{u_{i}^{k}}\right] \quad \text { for } k=1,2, \ldots \tag{3.12}
\end{equation*}
$$

and
(3.13)

$$
s_{k}=\operatorname{lnf}_{x \in X^{*}}\left[n-\sum_{j=1}^{m} \frac{g_{1}(x)}{g_{1}\left(x^{k}\right)}+\left(\frac{\varepsilon}{z}\right)\left\|x-x^{k}\right\|\right] \quad \text { for } k=1,2, \ldots .
$$

Lemma 3.4:

$$
\text { For } k=1,2, \ldots
$$

$$
\begin{equation*}
P_{k} \leq \frac{\left(f^{k}-f^{k}\right)}{6\left(f^{k}-i^{k-1}\right)} \leq s_{k} . \tag{3.14}
\end{equation*}
$$

$$
\begin{equation*}
p^{*} \leq \lim _{k \rightarrow \infty} \operatorname{lnf} p_{k} \leq \lim _{k \rightarrow \infty} \sup p_{k} \leq a-q^{*} \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
p^{\star} \leqq \lim _{k \rightarrow \infty} \ln \left[s_{k} \leqq \lim _{k+\infty} \sup s_{k} \leqq m-q^{\star}\right. \tag{3.16}
\end{equation*}
$$

Furthermore, if there exists an $x^{*} \varepsilon X^{\star}$ and $a u^{*}=\left(u_{1}^{*}, u_{2}^{*}, \ldots, u_{m}^{*}\right) \varepsilon U^{*}$ such that $p\left(u^{*}\right)+q\left(\lambda^{*}\right)=m$ then
(3.17) $\quad \lim _{h \rightarrow \infty} p_{k}=\lim _{h \rightarrow \infty} \frac{\left(f^{*}-f^{h}\right)}{e\left(f^{h}-f^{h-1}\right)}=\lim _{k \rightarrow \infty} s_{k}=m-q^{*}=p^{*}$.

Proof:

Relation (3.14) follows ituredately irc Lemma 3.2 and Definitions (3.12) and (3.1j). Let \bar{x} be any accuralation point of the sequence $\left\{x^{k}\right\}, k=1,2, \ldots$ and $\bar{u}=\left(\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{m}\right)$ be any accumulation point of the sequence $\left\{\left(u_{1}^{k}, u_{2}^{k}, \ldots, u_{m}^{k}\right)\right\}, k=1,2, \ldots$. By Definitions (3.12) and (3.13)

$$
P_{k} \geqslant \sum_{i=1}^{m} \frac{\bar{u}_{i}}{u_{i}} \quad \text { for } \quad k=1,2, \ldots
$$

and

$$
s_{k} \leq m-\sum_{i=1}^{m} \frac{\varepsilon_{i}(\bar{\lambda})}{\varepsilon_{i}\left(x^{h}\right)}+\left(\frac{\varepsilon}{z}\right)| | \bar{x}-x^{k}| | \quad \text { for } \quad k=1,2, \ldots
$$

since for any such \bar{u} and $\bar{x}, \bar{u} \varepsilon U^{*}$ and $\bar{x} \varepsilon X^{*}$ by Theorems 2.5 and 2.6 . Let k_{1} be an infinite subset of $\{1,2, \ldots\}$ such that $\lim _{k \in K_{1}} p_{k}=\bar{p}$ and choose $k_{2} \subset k_{1}$ such that $\lim _{k \in k_{2}} u^{k}=\bar{u}$. Then by Lemma 3.3

$$
\bar{p}=\lim _{k \in K_{2}} \quad p_{k} \geq \lim _{k \in K_{2}} \sum_{2=1}^{m} \frac{\bar{u}_{i}}{u_{k}}=p(\bar{u})=p^{*}
$$

Therefore, $\lim _{k \rightarrow \infty}$ inf $p_{k} \geqq p^{*}$. Now let K_{3} be an infinite subset of $\{1,2, \ldots\}$ such that $\lim _{\operatorname{lif}_{3}} s_{k}=\bar{s}$ and choose $k_{4} \subset K_{3}$ such that $\lim _{k \in K_{4}^{\prime}} x^{k}=\bar{x}$. Then by Lemna 3.3

$$
\begin{aligned}
\bar{s}=\lim _{k \varepsilon K_{4}} s_{h} & \leqq \lim _{k \varepsilon K_{4}}\left[m-\sum_{i=1}^{m} \frac{g_{1}(\bar{x})}{g_{i}\left(x^{k}\right)}+\left(\frac{\varepsilon}{B}\right)| | \bar{x}-x^{k}| |\right]= \\
& =m-q(\bar{x})=m-q^{*}
\end{aligned}
$$

Therefore, $\lim _{k \rightarrow \infty} \sup s_{k} \leqq m-q^{*}$ which together with $\lim _{k \rightarrow \infty} \operatorname{lnf} p_{k} \leqq p^{*}$ and (3.14) implies (3.15) and (3.16). Now suppose there evists an $x^{*} \in x^{*}$ and $a u^{*} \varepsilon U^{*}$ suck that $p\left(u^{*}\right)+q\left(x^{*}\right)=m$. Then by the definitions of p^{*} and q^{*}

$$
p^{*}+q^{*} \geq m
$$

But by the remarks preceding Lemma 3.3

$$
p^{*}+q^{*} \leqq m
$$

Therefore, $\mathrm{p}^{*}+\mathrm{q}^{*}=\mathrm{m}$ which together with (3.14), (3.15) and (3.16) establushes the final result (3.1?). \||

It should be noted that if $q^{*}=m$ then this lemma inplies that $\lim _{k \rightarrow \infty} \frac{\left(f^{k+1}-f^{k}\right)}{\left(f^{k}-f^{k-1}\right)}=\lim _{k \rightarrow \infty} \frac{\left(f^{k}-f^{k}\right)}{\left(f^{k}-f^{k-1}\right)}=0$ since $f^{k+1} \leq f^{*}$ for all $k \geq 0$. To show that ($\mathrm{E}^{*}-\mathrm{f}^{k}$) does not converge to zero any faster than ($f^{k}-f^{k-1}$) requires the existence of a positive number \tilde{p} which bounds
$p^{*}>0$ and $2 n$ order to obtain an expression for \dot{p} requires upper bounds on the multiplier values u_{1}^{k} for $1=1,2, \ldots$, m and $k=1,2, \ldots$. The next lemma which follows from Lemma 3.1 provides these bounds along with lower bounds and upper and lower bounds on the constraint function values $g_{1}\left(\lambda^{k}\right)$ for $1=1,2, \ldots, m$ and $k=1,2, \ldots$ Define

$$
\begin{equation*}
\tilde{s}_{1}=\sup _{x \operatorname{} S^{1}} g_{\lambda}(x) \quad \text { for } i=1,2, \ldots, m \tag{3.18}
\end{equation*}
$$

and
(3.19)

$$
\tilde{u}_{i}=(1+\varepsilon m+\varepsilon \gamma)\left(\frac{f^{*}-f^{0}}{g_{1}\left(x^{0}\right)}\right) \quad \text { for } \quad 2=1,2, \ldots, m
$$

Lemma 3.5:
For $k=1,2, \ldots$ and $1=1,2, \ldots, m$
(3.20)

$$
0<\frac{B\left(f^{k}-f^{k-1}\right)}{\tilde{u}_{i}} \leqq g_{1}\left(x^{k}\right) \leqq \dot{g}_{i}
$$

and
(3.21)

$$
0<\frac{\beta\left(f^{k}-f^{k-1}\right)}{\bar{g}_{i}} \leqq u_{i}^{k} \leqq \bar{u}_{i} .
$$

Proof:
Since S^{1} is assumed to be compact and g_{i} for $i=1,2, \ldots, m$ are assumed to be continuous on S^{1} the quantities \tilde{g}_{1} defined by (3.18) are finite numbers and the upper bound of (3.20) follows inmediately since $x^{k} \in S^{1}$ for all $k \geqslant 1$. Since $x^{0} \varepsilon S^{1}$, Lemma 3.1 implies

$$
\begin{aligned}
& f^{0}-f^{k} \leqq\left(f^{k}-f^{k-1}\right)\left[B m-\beta \sum_{j=1}^{m} \frac{g_{j}\left(x^{o}\right)}{g_{j}\left(x^{k}\right)}+\varepsilon\left\|x^{o}-x^{k}\right\|\right] \\
& \text { for } k=1,2, \ldots .
\end{aligned}
$$

Real ranging this expression yleids

$$
\begin{aligned}
& \sum_{j=1}^{m} \frac{g_{j}\left(x^{0}\right)}{g_{j}\left(x^{k}\right)} \leqq\left(\frac{1}{B\left(f^{k}-f^{k-1}\right)}\right)\left[\left(f^{k}-f^{0}\right)+\left(f^{k}-f^{k-1}\right)\right. \\
&\left.\cdot\left(\beta m+\varepsilon\left\|x^{0}-x^{k}\right\|\right)\right] \quad \text { for } k=1,2, \ldots .
\end{aligned}
$$

Then for $i=1,2, \ldots, m$ and $k=1,2, \ldots$
(3.22) $\frac{g_{i}\left(x^{0}\right)}{g_{i}\left(x^{k}\right)} \leqq \sum_{j=1}^{m} \frac{g_{j}\left(x^{0}\right)}{g_{j}\left(x^{k}\right)} \leqq\left(\frac{1}{B\left(f^{k}-f^{k-1}\right)}\right)\left[\left(f^{*}-f^{o}\right)(1+B m+\varepsilon \gamma)\right]$
since $f^{*}>f^{k}>f^{k-1} \geqq f^{0}$ and $\left\|x^{0}-x^{k}\right\| \leq \gamma$ for all $k \geqq 1$. Then the remaining bounds of (3.20) follow from (3.22) and (3.19). Since

$$
\begin{array}{r}
u_{i}^{k}=\frac{\beta\left(f^{k}-f^{k-1}\right)}{g_{i}\left(x^{k}\right)} \text { for } i=1,2, \ldots, m \text { and } \\
k=1,2, \ldots,
\end{array}
$$

(3.21) foflows from (3.20).||

The existence of upper bounds for all the multiplier values u_{i}^{k} has been shown in Theorem 2.5 under pseudo-concavity assumptions on the constraint functions. Heie the stronger concavity assumptions of this section specify these bounds. The next corollary uses these bounds to provide a lower bound on the sequence $\left\{p_{k}\right\}, k=1,2, \ldots$ Define

$$
\begin{equation*}
\tilde{\mathfrak{p}}=\sup _{u \in U^{*}} \sum_{1=1}^{m} \frac{u_{1}}{\dot{u}_{1}} \tag{3.23}
\end{equation*}
$$

The following is immediate from (3.12) and (3.2i).

Corollary 3.6:
For $k=1,2, \ldots$

$$
P_{k} \geqq \sup _{u \in U^{\star}} \sum_{i=1}^{m} \frac{u_{1}}{\dot{u}_{i}}=\tilde{p} .
$$

The next lemma gives a sufficient condition for the existence of a positive number \dot{p} which bounds $\frac{\left(f^{*}-f^{k}\right)}{\beta\left(f^{k}-f^{k-1}\right)}$ from below for all k.

Leman 3.7:

If $\nabla f(x) \neq 0$ for all $x \in S^{1}$, then

$$
0<\dot{p} \leq \frac{\left(f^{k}-f^{k}\right)}{B\left(f^{k}-f^{k-1}\right)} \quad \text { for } \quad k=1,2, \ldots .
$$

Proof:
Choose $u^{*} \varepsilon U^{*}$ and $x^{*} \varepsilon X^{*}$. Then

$$
\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} u_{i}^{*} \nabla g_{2}\left(x^{*}\right)=0
$$

Since $\nabla f\left(x^{*}\right) \neq 0$ there exists an $1 \in\{1,2, \ldots, m\}$ such that $u_{i}^{*}>0$. Therefore, $\bar{p}=\sup _{\operatorname{u\varepsilon U}^{*}} \sum_{i=1}^{m} \frac{u_{i}}{\tilde{u}_{i}}>0$ and the desired result follows from

The results of Lemma 3.4 may be used to find upper and lower bounds on the ratio $\frac{\left(f^{*}-f^{k}\right)}{\left(f^{\lambda}-f^{h-1}\right)}$ for all k. This result provides an objective value convergerce rate for the algorithm.

Theorem 3.8:

$$
\begin{aligned}
\text { For } & k=1,2, \ldots \\
& \frac{\beta p_{k}}{1+8 p_{k}} \leqq \frac{\left(f^{*}-f^{k}\right)}{\left(f^{*}-f^{h-1}\right)} \leqq \frac{\beta s_{k}}{1+\beta s_{k}} \leqq \frac{8 m+\varepsilon Y}{1+\beta m+\varepsilon \gamma}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\frac{\left(f^{k}-f^{k}\right)}{\left(f^{k}-f^{k-1}\right)} & =\frac{\left(f^{*}-f^{k}\right)}{\left(f^{k}-f^{k}+f^{k}-f^{k-1}\right)} \\
& =\frac{1}{1+\frac{\left(f^{k}-f^{k-1}\right)}{\left(f^{*}-f^{k}\right)}} \quad \text { for } k=1,2, \ldots .
\end{aligned}
$$

Then from (3.14) when $P_{k}>0$

$$
\frac{\left(f^{\star}-f^{k}\right)}{\left(f^{\star}-f^{k-1}\right)} \geqq \frac{1}{1+\frac{1}{\beta P_{k}}} \quad \text { for } k=1,2, \ldots
$$

and from (3.14) and Lemma 3.2

$$
\frac{\left(f^{*}-f^{k}\right)}{\left(f^{*}-f^{k-1}\right)} \leqq \frac{1}{1+\frac{1}{B s_{k}} \leqq \frac{1}{1+\frac{1}{B m+\varepsilon Y}}, \frac{1}{1+n}}
$$

For the case when $\varepsilon=0$ the upper bound result $\frac{\left(f^{k}-f^{k}\right)}{\left(f^{\star}-f^{k-1}\right)} \leqq \frac{8 m}{1+8 m}$ for $k=1,2, \ldots$ has been established r; Tremolieres [34] under the
a unaque optimal solution x^{*} with $g_{i}\left(x^{*}\right)=0$ for $2=1,2, \ldots, n$ and the constraint gradient vectors $\nabla_{\varepsilon_{1}}(x)$ are linearly independent for all $x \in S^{1}$. Under similar assumptions with linear objective and constraint functions this result has been established with equality holding by Faure [5].

To obtain a nonzero lower bound on $\frac{\left(f^{*}-1^{k}\right)}{\left(f^{*}-f^{k-1}\right)}$ for $k=1,2, \ldots$ requires the assumption of Lemma 3.7 which amplies there exists a nonzero $u^{*} \varepsilon U^{*}$, 2.e., $P^{*}>0$. The following is an 1 mmediate consequence of Corollary 3.6 and Theorem 3.8.

Corollary 3.9:
If $\nabla f(x) \neq 0$ for all $x \in S^{1}$, then

$$
0<\frac{B \tilde{p}}{1+B \tilde{f}} \leq \frac{\left(f^{*}-f^{k}\right)}{\left(f^{*}-f^{k-1}\right)} \quad \text { for } k=1,2, \ldots
$$

By combining the results of Lemma 3.4 and Theorem 3.8 the asymptotic behavior of $\frac{\left(f^{*}-f^{k}\right)}{\left(f^{k}-f^{k-1}\right)}$ can be determined.

Theorem 3. 10:

$$
\frac{B p^{*}}{1+B p^{*}} \leqq \lim _{k \rightarrow \infty} \operatorname{lnf} \frac{\left(f^{k}-f^{k}\right)}{\left(f^{*}-f^{k-1}\right)} \leqq \lim _{k \rightarrow \infty} \sup \frac{\left(f^{*}-f^{k}\right)}{\left(f^{*}-f^{k-1}\right)} \leqq \frac{B\left(m-q^{*}\right)}{1+B\left(m-q^{k}\right)}
$$

Furthermore, if there exists an $x^{*} \varepsilon X^{*}$ and a $u^{*} \varepsilon U^{*}$ such that $P\left(u^{*}\right)+q\left(x^{*}\right)=m$ then

$$
\lim _{k \rightarrow \infty} \frac{\left(f^{k}-f^{k}\right)}{\left(f^{k}-f^{k-1}\right)}=\frac{\beta p^{k}}{1+B p^{*}}=\frac{\beta\left(m-q^{*}\right)}{1+\beta\left(m-q^{*}\right)} .
$$

It should be noted that if $q^{*}=m$ then $\lim _{k \rightarrow \infty} \frac{\left(f^{*}-f^{k}\right)}{\left(f^{*}-f^{h-1}\right)}=0$, i.e., the sequence $\left\{f^{k}\right\}, k=1,2, \ldots$ converges to \mathcal{f}^{*} superinearly.

For the case when $\varepsilon=0$ the concluding result of Theorem 3.10 has been stated by Faure and Huard (6). It has also been proved for thas case under assumptions which mply the problem has a unique nondegencrate optimal solution and Kuhn-Tucker multiplier vector par by Faurc [5] for lincar objective and coristraint functions and by lootsma [24] for gencral concave problem functions. Theorem 3.10 shows that the assmptotic rate of convergence of the algorithm is independent of c and is better for smaller valucs of B. For example, if $\beta=\frac{1}{m}$ then $\frac{B p^{*}}{1+\beta p^{*}} \leq \frac{1}{2}$. The following corollary is the result of inductively applying Theorem 3.8 and gives upper and lower bounds on $f^{*}-f^{k}$ for $h=1,2, \ldots$ in terms of products of k fractions and gives an upper bounding exponential function of k.

Corollary 3.11:

$$
\text { For } k=1,2, \ldots
$$

$\prod_{j=1}^{k}\left(\frac{B p_{j}}{1+B p_{j}}\right) \leqq \frac{\left(f^{*}-f^{k}\right)}{\left(f^{*}-f^{o}\right.} \leqq \prod_{j=1}^{k}\left(\frac{B s_{j}}{1+B s_{j}}\right) \leqq\left(\frac{B m+\varepsilon \gamma}{I+B m+\varepsilon \gamma}\right)^{k}$.

This corollary can be used to obtain a lower bound on the number of Iterations k which is sufficient for $f^{*}-f^{k} \leq t$ where t is a termination parameter for the algorithm.

Corollary 3.12:

$$
k \geqslant \frac{\ln \left(\frac{\mathrm{f}^{\star}-\mathrm{f}^{0}}{\mathrm{t}}\right)}{\ln \left(\frac{1+\mathrm{sm}+\varepsilon \mathrm{y}}{\mathrm{Em}+\varepsilon \gamma}\right)} \quad \text { for } t>0,
$$

then

$$
f^{*}-f^{k} \leq t
$$

Proof:

Suppose

$$
k \geqq \frac{\ln \left(\frac{f^{*}-f^{0}}{t}\right)}{\ln \left(\frac{1+\rho_{m}+\varepsilon Y}{k m+\varepsilon Y}\right)} \quad \text { for } t>0 \text {. }
$$

Then since $\frac{1+\varepsilon m+\varepsilon Y}{E M+\varepsilon Y}>1$

$$
k \ln \left(\frac{1+\varepsilon m+\varepsilon \gamma}{\operatorname{Rn}+c y}\right) \geqq \ln \left(\frac{f^{*}-f^{c}}{L}\right)
$$

or

$$
\left(\frac{1+\beta m+\epsilon Y}{\beta m+\varepsilon \gamma}\right)^{k}>\left(\frac{f^{\star}-f^{0}}{t}\right)
$$

whach implies

$$
t \geqq\left(f^{*}-f^{o}\right)\left(\frac{\beta m+\varepsilon y}{1+\beta m+\varepsilon y}\right)^{k}
$$

Then the conclusion follows from Coroilary 3.11.||

It should be noted that an upper bound on ($f^{*}-f^{0}$) is known atter one iteration of the algorithm provided an upper bound on Y is known since
$f^{*}-f^{1} \leqq\left(f^{1}-f^{0}\right)(E M+\varepsilon \gamma)$ by Lemma 3.2 which amplies $f^{*}-\mathrm{E}^{0} \leqq\left(\mathrm{f}^{1}-\mathrm{f}^{0}\right)$. $\cdot(1+b m+\varepsilon \gamma)$. Thus, a lower bound on the number of iterations k which is sufficient for $f^{*}-f^{k} \leqq t$ may be determined from Corolizry 3.12 after one iteration of the algorithm.

Another interesting feature of this particular method of centers algorithm is that it is possible to choose values of the algorithm parameters ε and, β such that $f^{*}-f^{1} \leqq t$.

Corollary 3.13.

If $\beta>0$ and $\varepsilon \geqq 0$ are such that

$$
B m+\varepsilon Y \leqq \frac{t}{\left(f^{*}-f^{0}\right)-t}
$$

where

$$
0<t<\left(f^{*}-f^{0}\right)
$$

then

$$
f^{*}-f^{1} \leqq t .
$$

Proof:

$$
B m+\varepsilon \gamma<\frac{t}{\left(f^{*}-f^{o}\right)-t}
$$

implies

$$
\frac{1}{\beta m+\varepsilon Y} \geq \frac{\left(f^{*}-f^{0}\right)}{t}-1
$$

$$
\left(\frac{1+\varepsilon m+\varepsilon \gamma}{8 m+\varepsilon \gamma}\right) \geqq \frac{\left(f^{*}-f^{0}\right)}{2} .
$$

Then the result follows from Corollary 3.11 with $k=1 .| |$

The above result has been obscrved by Lootsma [21] and Fiacco and McCormich
[11] for the case when $\varepsilon=0$.
The next corollary which follows from inductive application of Corollary
3.9 provides an expunential function of h which bounds $f^{*}-f^{h}$ from below for $k=1,2, \ldots$.

Corollary 3.14:
If $\nabla f(x) \neq 0$ for all $x \in S^{1}$, then

$$
0<\left(\frac{E_{n}^{j}}{I+B j}\right)^{k} \leqq \frac{f^{*}-f^{h}}{f^{i}-f^{o}} \quad \text { for } k=1,2, \ldots .
$$

A lower bound on the number of aterations k which is necessary for $f^{*}-f^{k} \leqq t$ can be derived from the previous corollary.

Corollary 3.15:

If $\nabla f(x) \neq 0$ for all $x \in S^{\mathcal{L}}$ and

$$
f^{*}-f^{k} \leqq t
$$

then

$$
k \geq \frac{\ln \left(\frac{f^{*}-f^{0}}{t}\right)}{\ln \left(\frac{1+B \dot{p}}{B \tilde{p}}\right)}
$$

Proof:
Since the alforitha dees not terninate d:a finite nuzber of lithes:ions $f^{*}-f^{h}>0$ for all $h \geq 1$. Therefore, if $f^{*}-f^{h} \leq t$ then $t, 0$ ars by Corollary 3.14

$$
0-\left(\frac{-\dot{n}}{1+\varepsilon_{j}^{-}}\right)^{k}=\frac{t}{\left(f^{k}-i^{0}\right)}
$$

T:Cn

$$
\left(\frac{1+s^{j}}{6 p}\right)^{k}=\frac{\left(2^{*}-e^{0}\right)}{t}
$$

or

$$
k \ln \left(\frac{1+\varepsilon \dot{i}}{R \dot{p}}\right) \geq \ln \left(\frac{f^{*}-f^{0}}{t}\right)
$$

which implies the result since $\left(\frac{1+\dot{p}}{6 \dot{p}}\right)>1 .| |$

Corollary 3.24 can also be used to obtain in exponential function of k which bounds $\left\|x^{*}-x^{k}\right\|$ froe below ther, x^{*} is any optinal solueion to the nonlinear programing problea. Cambined with lema 3.5 it also yields lower bounding exponential functions of k for all of the corstraint function values $g_{i}\left(x^{k}\right)$ and all of the nuleiplier values u_{i}^{k}. Define

$$
\begin{equation*}
s_{0}=\sup _{x \in S^{1}}\|v f(x)\| \tag{3.24}
\end{equation*}
$$

Theorem 3.16:

$$
\begin{equation*}
0<\left(\frac{f^{*}-f^{0}}{\Delta_{0}}\right)\left(\frac{\varepsilon \dot{p}}{1+E p}\right)^{k} \leqq \inf | | x-x_{x \in X^{k}}^{k} \|, \tag{3.25}
\end{equation*}
$$

(3.26)

$$
0<\left[\frac{\left(f^{*}-f^{0}\right)}{u_{1}\left(r+\left(\frac{\varepsilon}{3}\right)\right)}\right]\left(\frac{E \dot{p}}{1+E j}\right)^{k} \leq g_{1}\left(x^{k}\right) \quad \text { for } \quad i=1,2, \ldots, m
$$

and
(3.27)

$$
0<\left[\frac{\left(f^{k}-f^{0}\right)}{g_{2}\left(r+\left(\frac{\bar{\zeta}}{j}\right)\right)}\right]\left(\frac{i j}{1+f j_{j}}\right)^{k} \leqq u_{1}^{k} \quad \text { for } \quad i=1,2, \ldots, \mathrm{~m} \text {. }
$$

Proot:
Since $£$ is continuously differentiable on S^{1} and S^{1} is compact, $\Delta_{0}=\sup ^{x c s}{ }^{1}\|\nabla f(x)\|$ if finite. Luen $l ;$ the mian value theorem

$$
\begin{array}{r}
f\left(x^{*}\right)-f\left(x^{k}\right) \subseteq 厶_{0}\left\|x^{*}-x^{k}\right\| \quad \text { for any } \lambda^{*} \varepsilon x^{*} \text { and } \\
\text { for } k=1,2, \ldots .
\end{array}
$$

By assumption $A_{0}=0$ whach irplics

$$
\begin{equation*}
\frac{\left(f^{*}-f^{k}\right)}{\Delta_{0}} \leqq \operatorname{lnf}_{x \in X^{*}}\left\|x-x^{k}\right\| \quad \text { for } k=1,2, \ldots \text {. } \tag{3.28}
\end{equation*}
$$

From Lemma 3.2

$$
\frac{\left(f^{*}-f^{h}\right)}{(E m+E \gamma)} \leqq f^{k}-f^{k \cdot 1} \quad \text { for } \quad k=1,2, \ldots
$$

which combincd with Leman 3.5 yields for $k=1,2, \ldots$

$$
\begin{equation*}
\frac{B\left(f^{*}-f^{k}\right)}{\dot{u}_{i}(B m+\varepsilon \gamma)} \leqq g_{1}\left(x^{k}\right) \quad \text { for } \quad i=1,2, \ldots, m \tag{3.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\beta\left(f^{*}-f^{k}\right)}{g_{i}(\beta m+\varepsilon \gamma)} \leq u_{1}^{k} \quad \text { for } \quad i=1,2, \ldots, m . \tag{3.30}
\end{equation*}
$$

Then (3.25), (3.26) and (3.27) follow from Coroliary 3.14 and (3.28), (3.29) and (3.30) respectively.||

It should be recalled that positive lower bounds on the constraint function value and multiplier value sequences which have positive accumulation points are given in Lemma 3.3.

As demonstrated by the next two theorems, upper bounds which converge to zero are available for constraint function values $g_{i}\left(x^{k}\right)$ with i such that $\sup _{*} u_{i}>0$ and multiplier values u_{j}^{k} with j such that $u \in U^{\star}$
$\sup _{k} g_{j}(x)>0$.
$x \in X^{*}$

Theorem 3.17:

For all $1 \in\{1,2, \ldots, m\}$ such that sup $u_{i}>0$

$$
\mathrm{u}_{\mathrm{E}} \mathrm{U}^{\star}
$$

$$
\begin{equation*}
g_{i}\left(x^{k}\right) \leq \frac{\left(f^{\star}-f^{i}\right)}{\left(\sup _{u_{\varepsilon} U^{*}}^{u_{i}}\right)} \quad \text { for } k=1,2, \ldots \tag{3.31}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}\left(x^{k}\right) \leq\left[\frac{\left(f^{k}-f^{0}\right)}{\left(\sup _{u \varepsilon U^{*}}{ }^{k}\right)}\right]\left(\frac{\rho_{M}+\varepsilon y}{1 \cdot b a+\varepsilon y}\right)^{k} \quad \text { for } \quad t=1,2, \ldots . \tag{3.32}
\end{equation*}
$$

Proof:

By Relation (3.4) for any $u^{*}=\left(u_{1}^{*}, u_{2}^{*}, \ldots, u_{m}^{*}\right) \in U^{*}$

$$
f^{*}-f\left(x^{k}\right) \geqq \sum_{j=1}^{m} u_{j}^{*} g_{j}\left(x^{k}\right) \geqq u_{1}^{*} g_{1}\left(x^{k}\right) \quad \text { for } \quad i=1,2, \ldots, m
$$

since $x^{k} \varepsilon S^{1}$ for $k=1,2, \ldots$. Then (3.31) follows for any 1 such that sup $u_{1}>0$, and (3.32) follows from (3.31) by Corollary 3.11.|| $u \in U^{*}$

Theorem 3.18:

For all $i \in\{1,2, \ldots, m\}$ such that $\sup _{x \in X^{*}} g_{2}(x)>0$
(3.33)
and
(3.34)

$$
u_{i}^{k} \leq\left[\frac{\left(f^{*}-f^{0}\right)(1+\varepsilon m+\varepsilon)}{\left(\begin{array}{l}
\text { sup } \\
x \in X^{*}
\end{array} \mathbf{g}^{(x)}\right)}\right]\left(\frac{\frac{\varepsilon m}{}+\varepsilon \gamma}{1+\operatorname{Rm}+\varepsilon \gamma}\right)^{k} \quad \text { for } k=1,2, \ldots .
$$

Proof:
By (3.8) for $i=1,2, \ldots, m$ and $k=1,2, \ldots$

$$
\left(\frac{1}{m+\left(\frac{\varepsilon}{G}\right) \gamma}\right) \sup _{x \in X^{k}} g_{i}(x) \leq g_{i}\left(x^{k}\right)=\frac{B\left(f^{k}-f^{k-1}\right)}{u_{i}^{k}}
$$

Then
(3.33) follows for all i such that $\sup _{x \in X} \mathcal{E}_{1}(x)>0$, and (3.34) fcllows from (3.33) by Corollary 3.11 since $f^{k}-f^{k-1} \leqq f^{*}-f^{k-1}$ for all $k \geq 1 . \|$

Upper bounds on $\left\|x^{*}-x^{k}\right\|,\left|g_{1}\left(x^{k}\right)-g_{1}\left(x^{*}\right)\right|$ for indices i such that $g_{i}\left(x^{*}\right)>0$ and $\left|u_{j}^{k}-u_{j}^{*}\right|$ for indices j such that $u_{j}^{*}>0$ where x^{*} is an optimal solution and $u^{*}=\left(u_{1}^{*}, u_{2}^{*}, \ldots, u_{m}^{*}\right)$ is a Kuhn-Tucker multiplier vector require stronger assumptions on the problem functions. Such assumptions will be considered in the next section in order to obtain further convergence rate results.

4. CONVERGENCE RATE RLSULTS RLQUIRING STRONG CONCAVITY

In order to obtain further convergence rate results such as upper bounding functions of k for $\left|\mid x^{*}-x^{k} \|\right.$, and $| u_{2}^{k}-u_{i}^{*} \mid$ and $\left|g_{1}\left(x^{k}\right)-g_{1}\left(x^{*}\right)\right|$ for all $1 \varepsilon\{1,2, \ldots, m\}$ where x^{*} is an optimal solution and $u^{*}=\left(u_{1}^{*}, u_{2}^{*}, \ldots, u_{m}^{*}\right)$ is a Kuhn-Tucker multiplier vector assumptions stronger than concavity and continuous differentiability will be required. It $i s$ for this reason that the following definition is considered.

Definition:

A real-valued function L is strongly concave [20] on a conv'x set $T \subseteq E^{n}$ if there exists a $\lambda>0$ sucin that

$$
L\left(\frac{1}{2}(x+y)\right) \geq \frac{1}{2} L(x)+\frac{1}{2} L(y)+\frac{\lambda}{2}| | x-\left.y\right|^{2} \quad \text { for all } x, y \in T
$$

It can be shown that if T is compact, L has continuous second partial derivatives on T and the matrix of second partial derivatives of L is negative definite on T, then L is strongly concave on T.

In addition to Assumprions (2.1), (2.2), (3.1) and nonfinite termination of the aigorithm it will be assumed throughout this section that
(4.1) there exists an $x^{*} \in X^{*}$ and a $u^{*} \in U^{*}$ such that
(a) $L(x)=f(x)+\sum_{i=1}^{m} u_{i}^{\star} g_{i}(x)$ is strongly concave on S^{1} with the correspording constant $\lambda>0$.
(b) $\nabla_{g_{i}}\left(x^{\star}\right)$ for $i \in A\left(x^{*}\right)=\left\{i \mid g_{i}\left(x^{*}\right)=0,1 \in(1,2, \ldots, E)\right\}$ are linearly independent vectors.

[^0](c) $\mathrm{p}\left(\mathrm{u}^{*}\right)+\mathrm{q}\left(\mathrm{x}^{*}\right)=\mathrm{m}$.

It is a well-known saddle point result [19] that any optimal solution to the nonlinear programming problem maximizes $L(x)$ over S^{1}. Assumption (4.1.a) implies that x^{*} is the only point maximizing $L(x)$ on S^{1} and therefore x^{*} is the unique optimal solution to the nonlinear programing problem. It is easy to see from the Kuhn-Tucker conditions (2.33) to (2.36) of Theorem 2.5 that Assumption (4.1.b) implies u^{*} is the only Kulin-Tucker multiplier vector. Therefore, under these assumptions Theorems 2.5 and 2.6 imply $\lim _{k \rightarrow \infty} x^{k}=x^{\star}$ and $\lim _{k \rightarrow \infty}\left(u_{1}^{k}, u_{2}^{k}, \ldots, u_{m}^{k}\right)=\left(u_{1}^{*}, u_{2}^{*}, \ldots, u_{m}^{*}\right)=u^{*}$. Assumption (4.l.c) is a nondegeneracy assumption which implies that $\Lambda\left(x^{*}\right)$ has $p^{*}=p\left(u^{*}\right)$ elements, i.e., $u_{i}^{*}>0$ for all i $\varepsilon A\left(x^{*}\right)$. If the index set $Q\left(x^{*}\right)$ is defined by

$$
Q\left(x^{*}\right)=\{1,2, \ldots, m\}-A\left(x^{*}\right)
$$

then $Q\left(x^{*}\right)$ has $q^{*}=q\left(x^{*}\right)$ elements. Since it is implicitly assumed that $m \geq 1$, at least one of the index sets $A\left(x^{*}\right)$ or $Q\left(x^{*}\right)$ is nonempty and

$$
\delta^{\star}=\min \left[\begin{array}{c}
\left.\min u_{i}^{*}, \min _{i \in A\left(x^{*}\right)} g_{i}\left(x^{*}\right)\right] \tag{4.2}\\
\end{array}\right]
$$

is a finite positive number tine re the minima over the empty set is defined to be to.

In addition to the above, it will be assumed in this section that the following Linschitz conditions are satisfied: there exists a positive number μ such that for all my c S^{1}

$$
\|\nabla f(x)-\nabla f(y)\| \leqq \mu\|x-y\|
$$

and

$$
\left\|\nabla g_{1}(x)-\nabla g_{1}(y)\right\| \leqq \mu\|x-v\| \quad \text { for } \quad i=1,2, \ldots, m .
$$

Since S^{1} is assumed to be bounded thas latter assumption will hold if f and g_{1} for $1=1,2, \ldots, m$ have continuous second partial derivatives on S^{1} by the generalized mein value theorem [14]. Simalar bounds exist For the function values since f and g_{1} for $i=1,2, \ldots, m$ are assumed to be continuously differentiable on S^{1}. That 15 , for all $x, y \in S^{1}$

$$
|f(x)-f(y)| \leqq \Delta_{0}\|x-y\|
$$

where by (3.24)

$$
\Delta_{0}=\sup _{x \in S^{1}}\|\nabla f(s)\|
$$

and

$$
\begin{equation*}
\left|\varepsilon_{1}(x)-\varepsilon_{1}(y)\right| \leq \Delta| | \lambda-y \| \quad \text { for } \quad i=1,2, \ldots, m \tag{4.4}
\end{equation*}
$$

where
(4.3)

$$
\Delta=\max _{1<1<n}\left[\sup _{\sec ^{1}}\left\|\mid \operatorname{rig}_{1}(x)\right\|\right] .
$$

The following lema uscs st-ong concavity to provide a sccond order extension of Relation (3.4).

Lerwis 4.1:
For all $x \in S^{1}$.

$$
\left\|x^{*}-x\right\|^{2} \leqq\left(\frac{1}{\lambda}\right)\left[s^{*}-f(x)-\sum_{i=1}^{m} u_{i}^{*} g_{1}(x)\right] .
$$

Proof:
Since x^{*} \& S^{1} and $L(x)$ is strongly concave on S^{1}

$$
\begin{equation*}
L\left(\frac{1}{2}\left(x^{*}+x\right)\right) \geqq \frac{1}{2} L\left(x^{*}\right)+\frac{1}{2} L(x)+\frac{\lambda}{2}| | x^{*}-x \|^{2} \quad \text { for all } x \in S^{1} . \tag{4.6}
\end{equation*}
$$

Since S^{1} is a convex set, $\frac{1}{2}\left(x^{*}+x\right) \in S^{1}$ for all $x \in S^{1}$. By the remark following Assumption (4.1) x^{*} maximizes $L(x)$ on S^{1} and, therefore,

$$
\begin{equation*}
L\left(x^{*}\right) \geqslant L\left(\frac{1}{2}\left(x^{*}+x\right)\right) \quad \text { for all } x \in S^{1} \tag{4.7}
\end{equation*}
$$

Inequalities (4.6) and (4.7) imply by the definition of $L(x)$ that

$$
\left.\frac{1}{2}\left[f\left(x^{*}\right)+\sum_{i=1}^{n} u_{1}^{*} \varepsilon_{i}\left(x^{*}\right)-f(x)-\sum_{i=1}^{m} u_{i}^{*} g_{i}(x)\right] \Rightarrow \frac{\lambda}{2} \right\rvert\,\left\|x^{*}-x\right\|^{2}
$$

$$
\text { for all } x \in S^{1}
$$

Then the desired result follows since $\sum_{1=1}^{\infty} u_{1}^{*} g_{2}\left(x^{*}\right)=0 .| |$

It should be noted that the uniquenesa of x° follous ingediately fron this 1ema. Conbining the result of this lewe with the sequences $\left\{x^{k}\right\}$ and $\left\{\left(u_{1}^{k}, u_{2}^{k}, \ldots, u_{a}^{k}\right)\right\}, k=1,2, \ldots$ gencrised by tho algorithn yields the following lemain. By (3.12) and the uniqueness of H^{*}

$$
\begin{equation*}
P_{k}=\sum_{i=1}^{0} \frac{u_{i}^{0}}{u_{i}^{k}} \quad \text { for } k=1,2, \ldots \tag{4.8}
\end{equation*}
$$

$$
\begin{equation*}
q_{k}=\sum_{i=1}^{m} \frac{g_{1}\left(x^{\star}\right)}{g_{1}\left(x^{k}\right)} \quad \text { for } k=1,2, \ldots \tag{4,9}
\end{equation*}
$$

Lemma 4.2:

$$
\begin{aligned}
& \text { For } k=1,2, \cdots \\
& \left\|x^{*}-\lambda^{k}\right\|^{2} \leqq\left(f^{k}-f^{k-1}\right)\left(\frac{1}{\lambda}\right)\left[\equiv\left(n-p_{k}-q_{h}\right)+\varepsilon\left\|x^{*}-\lambda^{k}\right\|\right] .
\end{aligned}
$$

Proof:

Since $\lambda^{k} \varepsilon S^{1}$ for $k=1,2, \ldots$, Lemma 4.1 implies

$$
\begin{equation*}
\left\|x^{k}-x^{k}\right\|^{2} \leqq\left(\frac{1}{\lambda}\right)\left[f^{*}-f^{k}-\sum_{i=1}^{m} u_{1}^{k} \varepsilon_{1}\left(x^{k}\right)\right] \quad \text { for } k=1,2, \ldots . \tag{4,10}
\end{equation*}
$$

By Leman 3.2 and (4.9)
(4.11) $\left.\quad f^{*}-f^{k} \leq\left(f^{l}-f^{k-1}\right)\left|=\left(n-q_{k}\right)+i\right| \lambda^{\star}-x^{k} \|\right] \quad$ for $k=1,2, \ldots$.

Combining (4.10) and (4.11) with (4.8) yields the desired result since

$$
E_{1}\left(x^{k}\right)=\frac{8\left(f^{k}-f^{k-1}\right)}{u_{i}^{k}} \quad \text { for } i=1,2, \ldots, m
$$

From this lama it is easy to see that the convergence of $\left\|x^{n}-x^{k}\right\|^{2}$ to zero is at least as fast as $\left(f^{k}-f^{k-1}\right)$ since $\quad-P_{k}-q_{k} \leq a$ and $\left\|x^{*}-z^{k}\right\| \leq y=\sup _{x, y \in S}\|x-y\| \operatorname{cor} a l \mid k \geq 1$. The next corollary shows that it is even faster due to the nondegeneracy assumption (4.1.c).

Corollary 4.3°

$$
\lim _{k \rightarrow \infty} \frac{\left\|x^{k}-x^{k}\right\| \|^{2}}{\left(f^{k}-f^{k-1}\right)}=0
$$

Proof:

By (4.8) and (4.9)
(4.12)

$$
\lim _{h \rightarrow \infty}\left(n-p_{k}-q_{k}\right)=m-p\left(u^{*}\right)-q\left(x^{*}\right)
$$

Then by $(4,12)$ and Assumption (4.1.c)

$$
\lim _{k \rightarrow \infty}\left[B\left(m-p_{k}-q_{k}\right)+\varepsilon\left\|x^{\star}-x^{k}\right\|\right]=0
$$

and the desired result follows from lemma 4.2.11

In fact as the remainder of this section will show, a result stronger than Corollary 4.3 is true. The next lemal begins this development by providing an algebraic cquivalent for the expression $\left(m-p_{k}-q_{k}\right)$ which appears in Lema 4.2.

Loma 4.4:
For $k=1,2, \ldots$

$$
0-\sum_{i=1}^{m} \frac{u_{i}^{k}}{u_{i}^{k}}-\sum_{i=1}^{m} \frac{\delta_{i}^{\left(x^{*}\right)}}{\varepsilon_{i}\left(x^{k}\right)}=\sum_{i=1}^{0}\left(\frac{u_{i}^{k}-u_{i}^{a}}{u_{i}^{k}}\right)\left(\frac{s_{i}\left(x^{k}\right)-g_{i}\left(x^{*}\right)}{s_{i}\left(x^{k}\right)}\right) .
$$

Proof:
Ey the assusptions on x^{*} and $t^{*}=\left(u_{1}^{*}, u_{2}^{*}, \ldots, u_{0}^{*}\right)$

Thus,

$$
\begin{aligned}
m-\sum_{i=1}^{m} \frac{u_{1}^{*}}{u_{i}^{k}}-\sum_{2=1}^{m} \frac{g_{1}\left(x^{*}\right)}{\varepsilon_{1}\left(x^{k}\right)} & =\sum_{2=1}^{m}\left[\frac{u_{1}^{h} g_{1}\left(x^{k}\right)}{u_{1}^{k} g_{2}\left(x^{k}\right)}-\frac{u_{1}^{*} g_{2}\left(x^{k}\right)}{u_{1}^{k} g_{2}\left(x^{k}\right)}-\frac{u_{1}^{k} g_{1}\left(x^{*}\right)}{u_{1}^{k} g_{1}\left(x^{k}\right)}+\frac{u_{2}^{*} \delta_{1}\left(x^{*}\right)}{u_{i}^{k} \delta_{2}\left(x^{h}\right)}\right] \\
& =\sum_{2=1}^{m}\left[\frac{\left(u_{1}^{k}-u_{1}^{k}\right) g_{1}\left(x^{h}\right)-\left(u_{1}^{k}-u_{1}^{k}\right) g_{1}\left(x^{k}\right)}{u_{1}^{k} \varepsilon_{2}\left(x^{k}\right)}\right]
\end{aligned}
$$

which is equivalent to the desired result. \||

An upper bound for $\left(m-p_{k}-q_{k}\right)$ can be found by combining this lemma with the nondegeneracy assumption (4.1.c), the positive lover bounds on u_{i}^{k} for $1 \in A\left(x^{*}\right)$ and $g_{i}\left(x^{k}\right)$ for $1 \in Q\left(x^{*}\right)$ provided by Lemma 3.3 and the definition of δ^{*}.
1.eruma 4.5:

For $k=1,2, \ldots$

bier sumption over an empty index sec is assumed to be zero.

Proof:
Since $\varepsilon_{1}\left(x^{*}\right)=0$ for all $1 \in A\left(x^{*}\right), u_{i}^{*}=0$ for all $1 \in Q\left(x^{*}\right)$ and $A\left(x^{*}\right) \cup Q\left(x^{*}\right)=\{1,2, \ldots, a)$ the result of Leman 4.4 implies

$$
=-p_{k}-q_{k}=\sum_{\operatorname{icA}\left(x^{*}\right)} \frac{\left(u_{i}^{k}-u_{i}^{\pi}\right)}{u_{i}^{k}}+\sum_{i c Q\left(x^{*}\right)} \frac{\left(E_{1}\left(x^{k}\right)-E_{i}\left(x^{n}\right)\right)}{g_{1}\left(x^{k}\right)} \text { for } k=1,2, \ldots
$$

where sumation over an empty index set is assumed to be zero. Since $u_{i}^{*}>0$ for $a i l\left(f A\left(x^{*}\right)\right.$ by Assumption (4.1.c) and $g_{i}\left(x^{*}\right)>0$ for all

$$
\begin{aligned}
& \text { for : } \quad 1,2, \ldots \text {. }
\end{aligned}
$$

fun the deatrid it .ut follows (rom (it). il
in order tu proceed further it is necessary to bound the expresidons
 $-\hat{i} \lambda\left(x^{*}\right) \quad \operatorname{LcQ}\left(x^{*}\right)$
$\left(f^{i}-e^{k-1}\right)$ and $\left\|x^{6}-x^{k}\right\|$. The latter can be accost: in shed by using; (',4) and the former will be enoldered after a preliminary result dep whats on Assumption (4.1.b) is established.

For $0 \quad p \times q$ matrix $\|$ denote the transpose of $\|$ by $n 4^{T}$ and dine the norm of t using the Euclidean norm for the vectors $y \in L^{q}$ and by E L^{p} by
(4.13) $\quad \mid i n \|$ aud $\|y\|=1| | . y \|$.

If p^{A}, Q. slumber the constraint functions, if necessary, so that $A\left(r^{*}\right)=\left\{1,2, \ldots, p^{*}\right\}$ and for $x c^{1}$ let $f^{2}(x)$ be the p n matilda whose $i^{\text {th }}$ roo is $\nabla_{\varepsilon_{i}}(x)$ for each $i \in A\left(x^{*}\right)$.

Lena 4.6:

If $p^{\wedge}>0$. then there exist positive numbers \bar{a} and n such that $\left[H^{A}(x) H^{*}(z)^{T}\right]^{-1}$ exists and

$$
\left\|\left\|\|^{\oplus}(x):\left.^{*}(x)^{T}\right|^{-1}!=\frac{1}{0} \quad \text { fro all } x \in 5_{n} f^{*}\right) \cap s^{l}\right.
$$

$$
B_{n}\left(x^{*}\right)=\left\{x| | \mid x-x^{*} \| \leqq n\right\} .
$$

Proof:

Since $\nabla_{g_{1}}(x)$ for $x=1,2, \ldots, m$ is continuous on S^{1}, $\rho(x)=\min _{\|y\|}\left\|^{y}\right\|^{*}\left(H^{*}(x) H^{*}(x)^{T}\right] y$ is contanuous on S^{1}. By Assumption (4.1.b) $H^{*}(x)$ has fuil row rank $p{ }^{*}$ and, therefore, $\rho\left(x^{*}\right)$ is positive. Thus, there exist positive numbers $\bar{\rho}$ and η such that $\left[H^{*}(x) H^{*}(x)^{T}\right]^{-1}$ exists and $\rho(x) \geqq \bar{\rho}>0$ for all $x \varepsilon B_{n}\left(x^{*}\right) \| S^{1}$. It can be shown that $\rho(x)$ is the minamum eigenvalue of $\left[H^{\dot{*}}(\lambda) H^{*}(\lambda)^{T}\right]$ and, therefore, $\frac{1}{\rho(\lambda)}$ as the maximum eqgenvalue of $\left[1^{x}(x) H^{*}(x)^{1}\right]^{-1}$. Then

$$
\left.\max _{\| y| |=1}\right\}\left[H^{\star}(x) n^{\star}(x)^{T}\right]^{-1} y=\frac{1}{\rho(x)} \leqq \frac{1}{\rho}
$$

for all $x \in B_{n}\left(x^{*}\right) \| S^{1}$ and the desired result follows since as in Goldstein [14; p. 22]

$$
\begin{gathered}
\left\|\left[\mu^{*}(x) H^{*}(x)^{T}\right]^{-1}\right\|=\left\|_{\|y\| x}^{\operatorname{man}}\right\|\left\{\left\|^{*}(x)\right\|^{*}(x)^{T}\right]^{-1} y \|= \\
=\max _{\|y\|=1} y\left[\left\|^{*}(x)\right\|^{*}(x)^{T}\right]^{-1} y \cdot \|
\end{gathered}
$$

By combining the result of this lemma with bounds provided by Assumptions (2.2) and (4.3) an upper bound on $\sum_{i c A\left(x^{*}\right)}\left|u_{i}^{k}-u_{i}^{*}\right|$ for $k=1,2, \ldots$ can be found in terms of $\left(f^{k}-f^{k-1}\right)$ and $\left\|x^{k}-x^{k}\right\|$.

Lemma 47:

If $\mathrm{p}^{\lambda}>0$, then there exists a fositive number ρ such that for $k=1,2, \ldots$

$$
\begin{aligned}
& \left.+\mu\left(1+\sum_{i=1}^{m} u_{1}^{*}\right)| | \lambda^{*}-x^{k}| |\right\} \text {. }
\end{aligned}
$$

Proof:
By tn c definitions of x^{*} and u^{*}
(4.14)

$$
\operatorname{Vf}\left(x^{*}\right)+\sum_{i=1}^{m} u_{i}^{*} \nabla g_{i}\left(x^{*}\right)=0
$$

and by the definitions of $\nabla d^{k}\left(x^{k}\right)$ and u_{i}^{k} for $i=1,2, \ldots, m$

$$
\begin{equation*}
\nabla f\left(x^{k}\right)+\sum_{i=1}^{m} u_{i}^{k} V_{V_{j}}\left(x^{k}\right)=\left(f^{k}-f^{k-1}\right) \nabla d^{k}\left(x^{k}\right) \quad \text { for } k=1, ?, \ldots \tag{4,15}
\end{equation*}
$$

Subtracting (4.14) from (4.15) yields

$$
\begin{gathered}
\nabla f\left(\lambda^{k}\right)-\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} u_{2}^{*}\left(\nabla{C_{i}}_{i}\left(x^{k}\right)-\nabla g_{i}\left(x^{*}\right)\right)+\sum_{i=1}^{m}\left(u_{i}^{k}-u_{i}^{*}\right) v_{g_{1}}\left(\lambda^{k}\right)= \\
=\left(f^{k}-f^{k-1}\right) V_{d}^{k}\left(x^{k}\right) \quad \text { for } k=1,2, \ldots
\end{gathered}
$$

and by rearranging terms

$$
\begin{aligned}
\sum_{\operatorname{icA}\left(x^{*}\right)}\left(u_{i}^{k}-J_{1}^{*}\right) \lg _{1}\left(x^{k}\right) & =-\sum_{i \in Q\left(x^{*}\right)}\left(u_{i}^{k}-u_{i}^{*}\right) v_{g_{1}}\left(x^{k}\right)+\left(f^{k}-f^{k-1}\right) \nabla d^{k}\left(x^{k}\right)+ \\
& +\operatorname{Vf(x^{*})-\operatorname {Vf}(x^{k})+\sum _{i=1}^{m}u_{1}^{*}(\operatorname {vg}_{1}(x^{*})-\Gamma _{g_{1}}(x^{k}))\quad \text {for}k=1,2,\ldots }
\end{aligned}
$$

$$
\begin{aligned}
& \left\|\underset{\operatorname{irA}\left(x^{*}\right)}{ }\left(u_{1}^{k}-u_{1}^{*}\right) \cdot \varepsilon_{1}\left(x^{k}\right)\right\| \leqq \underset{\operatorname{i\in Q}\left(x^{*}\right)}{u_{i}^{k}\left\|: g_{i}\left(x^{k}\right)\right\|+} \\
& \text { (4.16) }+\left(f^{k}-f^{k-1}\right)\left\|V d^{h}\left(\lambda^{k}\right)\right\|+\left\|\nabla f\left(x^{k}\right)-V f\left(x^{k}\right)\right\|+ \\
& +\sum_{i=1}^{m} u_{i}^{*}\left\|_{1 / g_{1}}\left(x^{*}\right)-\nabla g_{i}\left(\lambda^{k}\right)\right\| \quad \text { for } k=1,2, \ldots
\end{aligned}
$$

since $u_{1}^{*}=0$ for all $i \varepsilon Q\left(x^{*}\right)$. Since $Q\left(x^{*}\right)$ has q^{*} elements,
 for $1=3, \therefore, \ldots, m$ by levi.. 3.3 and $t^{*} \underset{\leq \in Q\left(x^{*}\right)}{\left.\min _{i n} f_{i}^{*}\right)}$

$$
\begin{equation*}
\sum_{\operatorname{icQ}\left(x^{k}\right)} u_{i}^{k}\left\|v_{g_{i}}\left(x^{k}\right)\right\|=\sum_{\operatorname{icQ}\left(x^{*}\right)}\left(\frac{\left.\sum_{\left(f^{h}-f^{k-1}\right)}^{g_{1}\left(x^{k}\right)}\right)\left\|v_{L_{1}}\left(x^{h}\right)\right\| \leq}{\leq}\right. \tag{4.17}
\end{equation*}
$$

$$
\leq 4\left(\frac{q^{*}}{s^{k}}\right)(t m+c r)\left(f^{h}-f^{h-1}\right) \quad \text { for } h=1,2, \ldots .
$$

By Assumption (4.3)
(4.18)

$$
\left\|v f\left(x^{*}\right)-v f\left(x^{k}\right)\right\|+\sum_{i=1}^{m} u_{i}^{*}\left\|v \varepsilon_{1}\left(x^{*}\right)-v g_{i}\left(x^{k}\right)\right\| \leq
$$

$$
\leq \mu\left(1+\sum_{i=1}^{m} u_{i}^{k}\right)| | x^{\star}-x^{k} \| \quad \text { for } k=1,2, \ldots .
$$

Combining (4.16), (4.17) and (4.18) with $\left\|v d^{k}\left(x^{k}\right)\right\| \leqq \varepsilon$ yields

$$
\left\|\sum_{i \in n\left(x^{k}\right)}\left(u_{i}^{k}-u_{i}^{k}\right) \cdot{夕_{1}}^{\left(x^{k}\right)}\right\| \leq\left[\varepsilon+c\left(\frac{q^{k}}{\delta^{k}}\right)\left(\varepsilon_{m}+\operatorname{cr}\right)\right]\left(\mathfrak{r}^{k}-f^{k-1}\right)+
$$

$$
\begin{equation*}
+\mu\left(1+\sum_{i=1}^{m} u_{i}^{*}\right)| | \lambda^{*}-x^{k} \| \quad \text { for } k=1,2, \ldots . \tag{4.19}
\end{equation*}
$$

Son let w^{k} be a p^{*} vector for $k=1,2, \ldots$ with

$$
\begin{equation*}
w_{2}^{k}=u_{1}^{k}-u_{2}^{*} \quad \text { for } 1 \varepsilon \lambda\left(x^{*}\right)=\left\{1,2, \ldots, p^{*}\right. \tag{4.20}
\end{equation*}
$$

Then for $h=1,2, \ldots$

$$
w^{k} 1^{k}\left(v^{k}\right) n^{*}\left(v^{k}\right)^{T}=\left[\begin{array}{c}
i \\
\operatorname{ic\lambda }\left(x^{*}\right)
\end{array}\left(u_{2}^{k}-u_{1}^{k}\right) i^{\prime} \varepsilon_{2}\left(x^{k}\right)\right] H^{i}\left(x^{k}\right)^{T}
$$

Since $\lim _{\mathrm{k}}^{\mathrm{m}} \mathrm{x}^{\mathrm{k}}=\mathrm{x}^{k}$, Lemma 4.6 in.plies there exists an integer $\overline{\mathrm{h}}$ and a positive number $\overline{0}$ such that $\left[1^{*}\left(x^{k}\right) H^{*}\left(x^{k}\right)^{T}\right]^{-1}$ exists and

$$
\begin{equation*}
\left\|\left(n^{*}\left(x^{k}\right) n^{*}\left(x^{k}\right)^{T}\right)^{-1}\right\| \leq \frac{1}{\bar{p}} \quad \text { for } a \| 1 \quad k \equiv \bar{k} \tag{4.21}
\end{equation*}
$$

Then

$$
w^{h}=\left[\sum_{i \varepsilon A\left(x^{*}\right)}\left(u_{i}^{k}-u_{i}^{*}\right) V_{\mathcal{E}_{i}}\left(x^{k}\right)\right] u^{*}\left(x^{k}\right)^{T}\left[1^{*}\left(x^{k}\right) n^{*}\left(x^{k}\right)^{T}\right]^{-1} \quad \text { for all } \quad k:
$$

and by the sencralifed Cauchy-Schwarz inequality [31; p. 185]
 for all $k \geqq \vec{k}$.

By a matrix norm property $\{31 ; \mathrm{p} .188\}$ and the definitions of a and p^{*}
(4.23) $\left\|1^{*}\left(x^{k}\right)^{l}\right\|=\left[\sum_{1 \varepsilon \Lambda\left(x^{*}\right)} \sum_{j=1}^{n}\left(\frac{\partial g_{1}\left(\lambda^{k}\right)}{\partial x_{j}}\right)^{2}\right]^{\frac{1}{s}} \leq\left(p^{k}\right)^{1 / 2} \quad$ for $k=1,2, \ldots$.

$$
\left.\left\|w^{k}\right\| \leqq\left(p^{*}\right)^{1 / 2} L\left(\frac{1}{\rho}\right)\right\}\left\{=+i\left(\frac{q^{*}}{\delta^{x}}\right)(5 m+\varepsilon \gamma)\right]\left(f^{k}-f^{k-1}\right)+
$$

$$
\begin{equation*}
\left.+u\left(1+\sum_{i=1}^{m} u_{i}^{*}\right)!1 x^{*}-x^{k}| |\right\} \quad \text { for all } k \geqq \bar{k} \tag{4.24}
\end{equation*}
$$

By (4. 20)
(4.25)

$$
\sum_{\hat{A\left(x^{*}\right)}}\left|u_{i}^{k}-u_{i}^{*}\right| \leqq\left(p^{*}\right)^{1}| | w^{k}| | \quad \text { for } h=1,2, \ldots .
$$

lhenfrom (4.24) and (4.2j) there exash a positive numocr $0=\bar{\rho}$ such that the destited tcsult tolds. ||

In arder to rombanc lertata $4.2,4.5$ and 4.7 to obtain an upper bound on $\left\|x^{i}-x^{k}\right\|$ in tame of $\left(f^{k}-f^{k-1}\right)$ a lanad not dupending on problem as ounpllons wh, be required.

Le: 1.1 , 18 :

let a , b, c and d be nonneg.ulive numbers such that
(4.26)

$$
a^{2}-h a d-c d^{2} \div 0
$$

Inen

$$
a \leq \frac{1}{2}\left[b+\left(b^{2}+4 c\right)^{\frac{1}{2}}\right] d
$$

Proof:

The result is trivial if $d=0$ so suppose $a>0$. Then slearly

$$
n-\frac{1}{2}\left(b-\left(b^{2}+4 c\right)^{1 / 2}\right) d>0 .
$$

Kolation (4.26) is equivilent to
$(4.28) \quad\left\{7-\frac{1}{2}\left[b+\left(b^{2}+4 c\right)^{1} \leq\right] d\right]\left\{a-\frac{1}{2}\left[b-\left(b^{2}+4 c\right)^{\frac{1}{5}}\right] d\right] \leq 0$.

When the desured result follows from (4.27) and (4.28). ||

Now all of the previous resulis may be combind to show that $\mid!,^{*},>^{*}$

1.emma 4.9:

Suppose $p^{*}, 0$ and let p be as in Lemma 4.7. Then for $k=1,2, \ldots$
(4.29) $\left|\mid x^{\star}-x^{k} \| \div\left(\frac{1}{2}\right)\left(\left.b_{1}+\left(b_{1}^{2}+4 b_{2}\right)^{\frac{1}{2}} \right\rvert\,\left(r^{k}-f^{k-1}\right)\right.\right.$
and
(4.30)

$$
\sum_{i \varepsilon \Lambda\left(x^{*}\right)}\left|u_{i}^{k}-u_{i}^{k}\right| \leqq b_{3}\left(f^{k}-f^{k-1}\right)
$$

where
(4.31) $b_{1}-\left(\frac{\varepsilon}{\lambda}\right)+\left(\frac{\Lambda}{\lambda}\right)\left[\left(\frac{q^{*}}{\delta^{*}}\right)+\left(\frac{\mu}{\rho}\right)\left(1+\sum_{i=1}^{m} u_{i}^{*}\right)\left(\frac{p^{*}}{\delta^{k}}\right)\right](\Gamma m+\varepsilon \gamma)$,
(4.32)

$$
\mathrm{b}_{2}=\left(\frac{1}{\rho}\right)\left(\frac{\Delta}{\lambda}\right)\left(\frac{p^{\star}}{\delta^{*}}\right)\left[\varepsilon+\Delta\left(\frac{q^{*}}{\delta^{*}}\right)(\beta \mathrm{m}+\varepsilon \gamma)\right](8 \mathrm{~m}+\varepsilon \gamma)
$$

and
(4.33) $b_{3}=p^{+}\left(\frac{1}{\rho}\right)\left[c+\Delta\left(\frac{q^{*}}{\delta^{*}}\right)\left(\beta_{n}+c \gamma\right)+\left(1+\sum_{\{=1}^{m} u_{i}^{*}\right)\left(\frac{u}{2}\right)\left(b_{1}+\left(b_{1}^{2}+4 b_{2}\right)^{\prime 2}\right]\right]$.

Proof.

By combining the results of Lemma 4.2 and Lemma 4.5
(4.34)

$$
\begin{aligned}
& \left\|x^{*}-x^{k}\right\|^{2} \leq\left(f^{k}-f^{k-1}\right)\left(\frac{1}{i}\right)\left(\frac{1}{\delta^{\gamma}}\right)(\xi n+\varepsilon \gamma)\left[\sum_{\operatorname{l\varepsilon A(x^{*})}}\left|u_{i}^{k}-u_{i}^{*}\right|+\right. \\
& \left.+\sum_{1 \varepsilon Q\left(x^{*}\right)}\left|\varepsilon_{1}\left(x^{k}\right)-\varepsilon_{1}\left(x^{*}\right)\right|\right]+\varepsilon| | x^{x}-x^{k} \|_{\mid}^{\prime} \text { for } r=1,2, \ldots .
\end{aligned}
$$

by (it) and the definition of q^{*}
(4.35)

$$
\sum_{Q\left(x^{k}\right)}\left|i_{1}\left(s^{\prime}\right)-g_{1}\left(*^{*}\right)\right| \leqq q^{*} i| | x^{k}-x^{*}| | \quad \text { for } k=1,2, \ldots
$$

By combining (4.3') and (4.35) and the result of Lemma 4.7

$$
\begin{aligned}
& \left.+\left[\left(1 \pi+\varepsilon_{r}\right)\left(\frac{p^{k}}{x^{x}}\right)\left(\frac{1}{i}\right) \cdot\left(1+\sum_{i=1}^{m} u_{1}^{*}\right)+\left(1 n+\varepsilon_{y}\right)\left(\frac{q^{*}}{\delta^{*}}\right) \cdot \varepsilon\right]\left\|x^{*}-x^{k}\right\|\right\} \\
& \text { fro } k=1,2, \ldots \text {. }
\end{aligned}
$$

Defining; b_{1} and b_{2} by (4.31) and (4.32) yields
(4.36) $\left\|x^{\hbar}-x^{k}\right\| \leq b_{2}\left(f^{k}-f^{h-1}\right)^{2}+b_{1}\left(f^{k}-f^{k-1}\right)\left\|x^{*}-x^{k}\right\|$

$$
\text { for } k=1,2, \ldots
$$

Then (4.29) follows monediately $\operatorname{Irom}(4.36)$ and Lemma 4.8 with $a=\left\|x^{*}-x^{h}\right\|$, $b=b_{1}, c=b_{2}$ and $d=\left(f^{k}-f^{h-1}\right)$. Then (4.30) follows directly from 1 emma 4.7 and (4.29) when b_{3} is defined by (4.33). If

Combining the above iesult with Corollary 3.11 yields the following upper bounding decreasing exponential functicns of k for $\| x^{*}-x^{k} \mid!$, $\underset{\mathcal{L L A}\left(x^{*}\right)}{\sum_{1}}\left|u_{1}^{k}-u_{1}^{k}\right|$ and $\left|g_{1}\left(x^{k}\right)-g_{1}\left(x^{*}\right)\right|$ for $1=1,2, \ldots, m$.

Theoren 4.10
Suppose $p^{ \pm}>0$ and let $a_{1}=\left(\frac{1}{2}\right)\left[b_{1}+\left(b_{1}^{2}+4 b_{2}\right)^{\frac{1}{2}}\right]$. Then for $h=1,2, \ldots$

$$
\begin{equation*}
\left\|x^{*}-x^{k}\right\| \leqq a_{1}\left(f^{*}-f^{o}\right)\left(\frac{\beta m+\varepsilon \gamma}{1+\beta m+\varepsilon \gamma}\right)^{k-1} \tag{4.37}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\operatorname{1\varepsilon A}\left(x^{*}\right)}\left|u_{1}^{k}-u_{1}^{*}\right| \leqq b_{3}\left(f^{*}-f^{o}\right)\left(\frac{\beta m+\varepsilon \gamma}{1+\operatorname{Bn}+\varepsilon \gamma}\right)^{k-1} \tag{4.38}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|g_{1}\left(x^{k}\right)-g_{1}\left(x^{*}\right)\right| \leqq \Delta a_{1}\left(f^{*}-f^{0}\right)\left(\frac{\varepsilon m+\varepsilon \gamma}{1+\beta m+\varepsilon \gamma}\right)^{k-1} \text { for } 1=1,2, \ldots, r 1 \text {. } \tag{4.39}
\end{equation*}
$$

Proof:
By Corollary 3.11
(4.40) $f^{k}-f^{k-1} \leq f^{k}-f^{k-1} \leq\left(f^{k}-f^{0}\right)\left(\frac{\beta m+\varepsilon y}{1+B m+\varepsilon \gamma}\right)^{k-1} \quad$ for $k=1,2, \ldots$.

Then (4.37) and (4.38) follow from (4.40) and (4.29) and (4.30) of Lemma 4.9, respectively. The final result (4.39) follows from (4.4) and (4.37).||

Fur the case when $p^{*}=0$ correspondang upper bounds can be gaven in terms of products of $k-1$ fractions where the fractions converge to zero.

Theorem 4.11:

Suppose $p^{*}=0$ and let $a_{2}=\left(\frac{\varepsilon}{\lambda}\right)+\left(\frac{\Delta}{\lambda}\right)\left(\frac{m}{\delta^{\star}}\right)(\varepsilon m+\varepsilon \gamma)$. Then for $k=1,2, \ldots$

$$
\begin{equation*}
\left\|x^{*}-,^{k}\right\| \leqq a_{2}\left(f^{*}-f^{o}\right) \prod_{j=1}^{k-1}\left(\frac{\beta s_{J}}{1+\beta s}\right) \tag{4.41}
\end{equation*}
$$

and
(442) $\quad\left|g_{1}\left(x^{k}\right)-g_{1}\left(x^{*}\right)\right| \leqq \Delta d_{2}\left(f^{*}-f^{0}\right) \prod_{j=1}^{\kappa-1}\left(\frac{\beta s_{j}}{1+\beta s}\right) \quad$ for $\quad 1=1,2, \ldots, m$
where

$$
\lim _{\mathrm{J} \rightarrow \mathrm{a}} \mathrm{~s}_{\mathrm{J}}=0 .
$$

Proof.
From (4.34) and (4.35) with $A\left(x^{*}\right)$ empty

$$
\left.\left.\begin{array}{rl}
\left\|x^{*}-x^{k}\right\|^{2} \leqq\left(f^{h}-f^{k-1}\right)\left(\frac{1}{\lambda}\right)
\end{array}\right]\left(\frac{1}{\delta^{k}}\right)(8 m+\varepsilon \gamma) q^{*} \Delta+\varepsilon\right]\left\|x^{*}-x^{k}\right\| .
$$

Then since $\mathrm{q}^{*}=\mathrm{m}$

$$
\begin{equation*}
\left\|x^{*}-x^{k}\right\| \leqq a_{2}\left(f^{k}-f^{h-1}\right) \quad \text { for } k=1,2, \ldots \text {. } \tag{4.43}
\end{equation*}
$$

By Corullary 3.11
(4.44) $\quad f^{k}-f^{k-1} \leqq f^{k}-f^{k-1} \leqq\left(f^{*}-f^{0}\right) \prod_{j=1}^{k-1}\left(\frac{B s}{j+B s}\right) \quad$ for $\quad k=1,2, \ldots$.

Then (4.41) follous from (4.43) and (4.44) and $\lim _{j \rightarrow \infty} s_{j}=0$ by Lenna 3.4 since
$m-q^{\prime \prime}=p^{*}=0$. Then (4.42) follows from (4.4) and (4.41).||

The convergence rate given by (4.37) of Theorem 4.10 is an improvement by a factor of 2 over the following convergence rate result winch represents the usual way of getting a rate for $x^{k} \rightarrow x^{*}$ gaven a rate for $f^{k} \rightarrow f^{*}$. This result follows drectly from Lemma 4.1 and Corollary 3.11 and does not require Assumptions (4.1.b), (4.1.c) or (4.3).

Theorem 4 12:

$$
\begin{aligned}
\text { For } k= & 1,2, \ldots \\
& \left\|x^{*}-x^{k}\right\| \leqq\left(\frac{f^{*}-f^{0}}{\lambda}\right)^{\frac{1}{2}}\left(\frac{B m+E \gamma}{1+8 m+\varepsilon \gamma}\right)^{k / 2}
\end{aligned}
$$

Proof:
From Lemma 4.1 with $x=x^{k} \varepsilon S^{1}$ for $k=1,2, \ldots$

$$
\left\|x^{*}-x^{k}\right\|^{2} \leqq\left(\frac{1}{\lambda}\right)\left[f^{*}-f\left(x^{k}\right)-\sum_{1=1}^{m} u_{1}^{*} g_{1}\left(x^{k}\right)\right] \leqq\left(\frac{1}{\lambda}\right)\left(f^{k}-f^{k}\right)
$$

Then the desired result follows from Corollary 3.11.||

[^1]
5. SUBPROBILII CO.VTRGRACE

In this section the convergence of Cauchy's [3] method of steepest ascent for cach subproblem h will be studied and an upper bound on the number of steepest ascent steps reauired to find x^{k} from x^{k-1} will be dcrived. Combine' with the result of Corollary 3.12 , this will lead to an upper bourd on the total number of steefest ascent steps required to find a point x^{k} starting from x^{o} such that $f^{*}-f\left(x^{h}\right) \leqq t$ witere t is a termanation parcrietel for the algorathm.

In addition to Assumptions (2.1) and (3.1) which inply S^{1} is bounded and conves, it will be assumed throughout 1 , section that
f and g_{i} for $1=1,2, \ldots, m$ are twice
contrimously differentiable on S^{1},

$$
\begin{equation*}
\nabla f(\lambda) \neq 0 \quad \text { for } a!1 \quad x \in S^{1} \tag{5.2}
\end{equation*}
$$

and
(5.3)
$\varepsilon>0$.

The $n \times n$ symmetric matrices of second partial derivatives of the respective problem functions which exist and are continuous by Assumpition (5.1) wili be denoted by

$$
\begin{equation*}
H_{0}(x)=\left[\frac{\partial^{2} f(x)}{\partial\rangle_{j} \partial x_{\ell}}\right] \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{1}(x)=\left[\frac{\partial^{2} \varepsilon_{1}(x)}{\partial \lambda_{j} \partial x_{\mathcal{L}}}\right] . \quad \text { for } \quad 1=1,2, \ldots, m \tag{5.5}
\end{equation*}
$$

$$
\left.u=\operatorname{riax}_{0 \leq 1}^{0 . m} \left\lvert\, \begin{array}{ll}
\operatorname{iup} & \left\|H_{1}(v)\right\|_{1} \tag{5,6}\\
\vdots S^{1} &
\end{array}\right.\right]
$$

 for $1=1,2, \ldots, \ldots$ aplies that the mitraces $h_{j}(x)$ for $1=0,1, \ldots, "$ are nerative sembur nite for ali $v e S^{1}$. Then as in [14, $\left.i, 22\right]$ (3.7) $\left.\quad\left\|H_{2}(x)\right\|=\sup _{\|!\| 0]} y[-H(x)]\right\rangle \quad$ for $1=0,1, \ldots, m$ anc all $\gamma \in \mathbb{S}^{1}$.

Combinali (5.6) and (5.7) Sives the useful result, that for all x e s^{l} and ally $y E^{n}$

$$
\begin{equation*}
y\left(-H_{j}(x)\right) y \leq u\|y\|^{2} \quad \text { for } i=0,1, \ldots, m \tag{5.S}
\end{equation*}
$$

Asu ption (3.2) amplies the algorathm does not termanate ari a finite number oi iteiations and toghthor with (5.1) irplice that $0>0$ where

$$
\begin{equation*}
\sigma=\sin _{x \in s^{1}}\|\ln (x)\| \tag{5.9}
\end{equation*}
$$

It will be convenfent to define a function $G(x)$ wh_ch gaves the smallest conetrast value for feasible points x by

$$
\begin{equation*}
G(x)=\min _{1<i \leqslant m} f_{1}(x) \quad \text { for } x \in S \tag{5.10}
\end{equation*}
$$

In addition to bepprameters defined by (3.5), (3.24), (4.5), (5.6) and (5 9)

$$
\dot{g}=\max _{\underline{2}=}=\left[\begin{array}{ll}
\sup & \delta_{1}(\lambda) \tag{5.11}\\
\lambda_{1} &
\end{array}\right]
$$

$$
\begin{equation*}
n=2 \max \left\{1,2 i_{0}^{2}, 2 u^{2}\right\} \tag{5.12}
\end{equation*}
$$

$$
\begin{equation*}
0=\left(\frac{H^{2}}{0^{2}}\right) \cdot\left[\left(\frac{6-1^{0}}{G\left(0^{0}\right)}\right),\left(\frac{\bar{\delta}}{G\left(a^{0}\right)}\right)\right] \tag{5.13}
\end{equation*}
$$

(2 13)

$$
b_{1}()=\left[i \min \left[G\left(x^{0}\right), 1\right]\right]^{\{m+1}
$$

(5.16)

$$
b(f,=)=\left|:\left(\frac{c(1,5)}{\because}\right)\right|^{f 0+1}
$$

and
(5.17)

$$
a(B, E)=\left(\frac{1+\dot{\rho}}{r \dot{p}}\right)
$$

where \check{f} is defined by (3.23) and depends on \dot{u}_{2} for $i=1,2, \ldots, m$ defined b) (3.19) which is a function of the algordthi parameters B and E.
is will be shown in the sequel, Assumption (5.3) guatantees that only
a finite number of subproblem steps will be raquired to find each x^{k} when a slight modification of the following algorithm is used to solve each subproblem.

Method of Stcepest Ascent with Optimal Step size: ${ }^{\dagger}$
Let d be a real-valued function defined on E^{n} and $z_{o} \in E^{n}$ be a startung point. Assume :hat $T=\left\{2 \mid d(z) \geqq d\left(\alpha_{0}\right)\right\}$ is bounded and that d is contanuously differentable on T^{*}.

[^2]for $j=1,2, \ldots$ lot λ_{j-1} be a positive number satisfying
$$
d\left(/_{J-1}+\lambda_{J-1} F d\left(\left(_{J-1}\right)\right)=\max _{\lambda \geqslant 0} d\left(z_{J-1}+\lambda^{r} d\left(z_{J-1}\right)\right)\right.
$$
and let
$$
z_{J}=z_{J-1}+\lambda_{J-1} \operatorname{Vd}\left(z_{J-1}\right)
$$
 has shown that if $; 15$ an accumulation point of the sequence it, $\}$, $y=1,2, \ldots$ then $V d(j)=0$.

For solving subproblem k the first step of this algorathin will have to be modified in order to take into account that d^{k} is to be maximize d over an open set s^{k} starting from a point λ^{k-1} on the boundary of s^{k} where d^{k} as not defined. By employing the result of Lemma 2.1 a step of oithial side it be made from $7_{0}^{k}=x^{k-1}$ in the direction Vf(x^{k-1}; to ind a point $a_{1}^{k} \in S^{k}$ and a set

$$
\begin{equation*}
\mathrm{r}^{k}=\left\{x \mid x \operatorname{r} \hat{S}^{k}, d^{k}(x) \geqq d^{k}\binom{k}{c_{1}}\right\} \tag{5.18}
\end{equation*}
$$

on which to carry out the remainder of the steepest ascent steps. The $\operatorname{modified}$ algorithm essentially defines $\nabla d^{h}\left(z_{0}^{k}\right)$ to be $\nabla f\left(x^{k-1}\right)$.

FaCt each integer $k \geqslant 1$ let $\left\{z_{j}^{k}\right\}, j=1,2, \ldots$ be the sequence of points generated by the modified steepest ascent algorithm starting from $z_{0}^{k}=x^{k-1}$. Since $V d^{k}$ is continuous on T^{k} and T^{k} is compact by the continuity of d^{k} on the bounded set $\dot{S}^{k} \supset T^{k}$, each accumulation point \dot{z}^{-k} of $\left\{\begin{array}{c}k \\ z^{k}\end{array}\right\}, i=1,2, \ldots$ satisfies $\nabla d^{k}\left(2^{k}\right)=0$ and therefore space $\varepsilon: 0$ there exists an muteger f such that $\left\|V d^{k}\binom{z_{j}^{k}}{j}\right\| \leqq \varepsilon$. Let $\hat{f}(k)$ be the smallest integer j such that $\left\|\nabla d^{k}\binom{k}{1}\right\| \leq \varepsilon$ and set $x^{k}=z_{i}^{k}(k)$.

Ihin $i(h)$ is the nurinc $u f$ stepe requared to solve subproblem k and, tou, find a etartan, posut for subproolem $k+1$.

The development to bound $i(h)$ begins with the following leman which 15 an extcnsion oE lemm 2.1 dealins with a step from x^{k-1} in the direction "i (t-l) 10 apoint (i) $10 \mathrm{~s}^{k}$. It not only shows the er.istence of A(.) but uses secund irder amformation to provide positive lower bounds for $r(r)).-i^{1-1}$ and $\xi_{1}(\cdot(i))$ for $1=1,2, \ldots, m$.
11.1
for eath integer $t: 1$ there exses a poostive murber i dependage on k such that
(5.19)

$$
f\left(x^{k-1}+\therefore f\left(x^{k-1}\right)\right)-f^{k-1}=\left(\frac{E^{2}}{1}\right) \operatorname{nin}\left[\sigma\left(x^{k-1}\right), 1\right], 0
$$

and for each $1 \in\{1,2, \ldots, m\}$
(5.20)

$$
\varepsilon_{1}\left(x^{k-1}+\tilde{\lambda} \because\left[\left(x^{k-1}\right)\right) \doteq\left(\frac{0^{2}}{1}\right) \operatorname{man}\left|\varepsilon_{i}\left(x^{k-1}\right), 1\right|>0 .\right.
$$

Proof:

For some $h \geqq 1$ let

$$
\begin{equation*}
x(\lambda)=x^{k-1}+\lambda \nabla f\left(\lambda^{k-1}\right) \tag{5.21}
\end{equation*}
$$

$$
\begin{equation*}
h_{0}(\lambda)=\lambda| | \nabla C\left(x^{h-1}\right)\left\|\left.\right|^{2}-\frac{1}{2} \lambda^{2} \mu\right\| \nabla f\left(\lambda^{k-1}\right) \|^{2} \tag{5.22}
\end{equation*}
$$

and
(5.23) $h(\lambda)=G\left(x^{h-1}\right)-\lambda \Delta\| \| f\left(\lambda^{h-1}\right)\left\|-\frac{1}{2} \lambda^{2} u\right\| v f\left(\lambda^{k-1}\right)\| \|^{2}$
for $\lambda \geq 0$ such that $x(\lambda)$ c S^{\prime} where $\mu, ~ A$ and C are defined by (5.6), (4.5) and (5.10) rapuctively. Asoumption (5.1) and (5.21) amply by the second order talyor's theo.em (31) thit
(5.24) $i(x(1))=f\left(x^{h-1}\right)+\cdots f\left(x^{k-1}\right) \cdot \operatorname{l}\left(x^{k-1}\right)+\frac{1}{2}, \operatorname{lig}^{2}\left(x^{h-1}\right) H_{0}\left(c_{0}^{h-1}\right) \cdot f\left(x^{k-1}\right)$
and

$$
\begin{equation*}
\left.\varepsilon_{1}(x())\right)=b_{1}\left(x^{k-1}\right)+\lambda \cdot g_{1}\left(x^{p-1}\right) \cdot \because f\left(x^{k-1}\right)+\frac{1}{2} \lambda^{2} \because f\left(x^{k-1}\right)_{H_{1}}\binom{1-1}{1} . \tag{5.25}
\end{equation*}
$$

$$
\cdot \because f\left(x^{h-1}\right) \quad \text { for } \quad 1=1,2, \ldots, m
$$

Where ξ_{1}^{h-1} lies on the line sigment connectinh x^{h-1} and $x(x)$ for 1 $=0.1, \ldots . \mathrm{m}$. Then (5.26), (5.8) and (3.22) Imply

$$
\begin{equation*}
f(x(\lambda))-f^{k-1}: n_{0}(\lambda) \quad \text { fos all } 1: 0 \text { such that } \tag{5.26}
\end{equation*}
$$

$$
x(1) \text { \& } s^{1} .
$$

Similarly (5.25), the Guchy-Schwar: Inequality and the difinfileor of A and u imply that for each i c (1,2,.... m)

$$
g_{i}(x(\lambda)) \geqslant g_{1}\left(x^{k-1}\right)-\lambda A\left\|\in\left(x^{k-1}\right)\right\|-\frac{1}{2} \lambda^{2} w\left\|_{1} f\left(x^{k-1}\right)\right\| \|^{2}
$$

or
(3.27)

$$
\begin{aligned}
& \binom{c\left(x^{k-1}\right)}{g_{1}\left(x^{k-1}\right)} N_{i}(x(\lambda)): G\left(x^{k-1}\right)-\binom{6\left(x^{k-1}\right)-1}{x_{1}\left(x^{k-1}\right)} . \\
& \left.\cdot|x i|\left|v\left(x^{k-1}\right)\right| i+\left.\frac{1}{2} \lambda^{2} u| | i r\left(x^{k-1}\right)\right|^{1} \right\rvert\, .
\end{aligned}
$$

Imply eline for each 1 e $11, \ldots . . .$. mi

Not. that $I_{0}(0)=0$ and $\frac{d h_{0}(0)}{d}=\left\|/ f\left(x^{k-1}\right)\right\|^{2}>0$ and $h(0)=G\left(a^{h-1}\right)>0$
 and . . 0 bs the boundechess of s^{1}. Consider increasing λ from aero until tither $h_{0}(\cdot)=h(\cdot)$ or $h_{0}(1)$ as maximized whichever occurs first.
 -111,11; concave for, $\geqq 0$. Then
(2. 9)

$$
\bar{\zeta}=\frac{1}{\mu}
$$

all

$$
\begin{equation*}
h_{0}(\bar{\lambda})=\left(\frac{1}{I_{0}}\right)\left\|\sqrt{1}\left(\lambda^{h-1}\right)\right\|^{2} . \tag{0.30}
\end{equation*}
$$

if $:=0$, define $\bar{\vdots}=+a$. Define $\hat{\lambda}$ by $h_{0}(\hat{\lambda})=h(\hat{\lambda})$ so
$\left\|\left\|\cdot 1\left(\lambda^{h-1}\right)\right\|^{2}-\frac{1}{2} \lambda^{2} \cdot\right\|: f\left(\lambda^{h-1},\| \|^{2}=G\left(\lambda^{h-1}\right)-\hat{\lambda} \Delta| | \nabla F\left(\lambda^{k-1}\right) \|^{2}-\right.$

$$
-\frac{1}{2} i^{2} \mu\left\|v \rho\left(\lambda^{h-1}\right)\right\|^{2}
$$

then

$$
\begin{equation*}
\hat{\lambda}=\left(\frac{G\left(x^{h-1}\right)}{\left|\left|V f\left(x^{h-1}\right)\right|\right|^{2}+t_{1}| | \because f\left(x^{k-1}\right)| |}\right)>0 \tag{5.31}
\end{equation*}
$$

. Ind

$$
h_{0}(\hat{\lambda})=h_{1}(1)=\left(\frac{G\left(x^{k-1}\right)\left\|\cdot \rho\left(x^{k-1}\right)\right\|^{2}}{\left\|\cdot f\left(x^{k-1}\right)\right\|\left\|^{2}+\right\| v i\left(x^{h-1}\right) \|}\right) .
$$

('. 32)

$$
\cdot\left|1-\left(\frac{4}{2}\right)\left(\frac{\left(\cos \left(\frac{k-1}{}\right)\right.}{\left\|\ln \left(x^{k-1}\right)\right\|^{2}+\operatorname{lng}\left(x^{k-1}\right) \|}\right)\right| .
$$

(5.33)

$$
\left.h(\bar{i})=h_{0}(\bar{x})=\left(\frac{1}{2}\right)\left(\frac{1}{1}\right)\right) \mid v f\left(x^{k-1}\right) \|^{2} .
$$

If $\bar{\lambda}>\hat{\lambda}$ then $\bar{\lambda}=\hat{\lambda}$ and by (5.29) and (5.31)
(5.34)

$$
\left(\frac{1}{11}\right),\left(\frac{G\left(x^{k-1}\right)}{\left\|\operatorname{lvr}\left(x^{k-1}\right)\right\|^{2}+\operatorname{si|vr}\left(x^{k-1}\right)!\mid}\right)
$$

and by (5.3.)
(5.35)

$$
h(\tilde{\lambda})=h_{0}(\tilde{\lambda})=\left(\frac{1}{2}\right)\left(\frac{c\left(x^{k-1}\right)\left\|\operatorname{lv}\left(x^{k-1}\right)\right\|^{2}}{\left\|\operatorname{vf}\left(x^{k-1}\right)\right\|^{2}+A| | v f\left(x^{k-1}\right) \|}\right) .
$$

$$
\cdot\left[2-\left(\frac{u_{G}\left(x^{k-1}\right)}{\left\|v i\left(x^{k-1}\right)\right\|^{2}+1\left\|v \varepsilon\left(x^{k-1}\right)\right\|}\right)\right]
$$

Then combining, (5.34) and (5.35) yiclds

$$
h(\tilde{\lambda})=h_{0}(\tilde{\lambda})>\left(\frac{1}{2}\right)\left(\frac{G\left(x^{k-1}\right)\left\|\operatorname{VV}\left(x^{k-1}\right)\right\|^{2}}{\left\|\operatorname{VE}\left(x^{k-1}\right)\right\|^{2}+\Delta\left\|\operatorname{VE}\left(x^{k-1}\right)\right\|}\right)
$$

which implies by the defimition Δ_{0}
(5.36) $h(\bar{\lambda})=h_{0}(\bar{i})>\left(\frac{1}{2}\right)\left(\frac{1}{\Delta_{0}^{2}+\Delta \lambda_{0}}\right) G\left(x^{k-1}\right)\left\|\nabla f\left(x^{k-1}\right)\right\|^{2}$.
;

(i.j1) $\quad n(j)=h_{0}(i)-\left(\frac{?}{i}\right) \operatorname{rin}\left[c_{1}\left(i^{h-1}\right), 1\right]>0$

109n: 'コ.
(5.38)

$$
\frac{\left(1(9)-1^{0}\right)}{\min \left[\left(x^{0}\right), 1\right]}=\left(\frac{1^{*}-r^{0}}{6\left(x^{0}\right)}\right) \sin \left[\left(x^{0}\right), 1\right] \quad \text { for all } x \text { \& } i^{1}
$$

and for cath $1,\{1$, , l. $\}$
(5.3)

$$
-\frac{r_{1}(x)}{\left.\min \mid r_{1}\left(y^{n}\right), 1\right]}=\left(\frac{j_{1}}{6\left(x^{n}\right)}\right) \operatorname{mix}\left[6\left(x^{0}\right), 1\right] \quad \text { sor all } x \in \hat{S}^{1}
$$

1'roos:

By the dimition of $($ for ©
(5.40) $\frac{1}{\left.\operatorname{rin} \mid \delta_{1}\left(x^{\circ}\right), 1\right]} \leqq \frac{1}{\operatorname{man}\left\{\sigma\left(x^{\circ}\right), 1\right]}=\left(\frac{1}{G\left(x^{\circ}\right)}\right) \max \left[6\left(x^{0}\right), 1\right]$.

Then (5.38) follows from the equality relation in (5.40) since $f(x) \leqq f$; for all $x \in S^{1}$ and (5.39) follows frer (5.40) since $g(x)=$ is for all $x \in S^{1} .| |$

Lemma 53:

$$
\text { For each snteger } h \geq 2
$$

$$
\begin{equation*}
\frac{\left(f(\lambda)-f^{k-1}\right)}{\operatorname{man}\left[G\left(x^{k-1}\right), 1\right]} \leqq\left(\frac{f^{\star}-f^{0}}{G\left(x^{0}\right)}\right)\left(\frac{e(f, r)}{f}\right) \quad \text { for all } x \varepsilon S^{1} \tag{5.41}
\end{equation*}
$$

and for each i $\varepsilon(1,2, \ldots, n\}$

$$
\begin{equation*}
\frac{g_{1}(x)}{\min \left|g_{2}\left(x^{k-1}\right), 1\right|} \div\left(\frac{c\left(g_{1}, f\right)}{k}\right) \quad \text { for all } x \in ;^{k} \tag{5.42}
\end{equation*}
$$

Proof:

By Lemma 3.2

$$
\begin{equation*}
f^{*}-f^{k-1} \leq\left(f^{h-1}-f^{k-2}\right)(B m+r \gamma) \quad \text { for } k=2,3, \ldots \tag{5.43}
\end{equation*}
$$

and by Lemma 3.5 and the definition of G
(5.44) $\quad G\left(x^{k-1}\right) \geq B\left(f^{k-1}-f^{k-2}\right)\left(\frac{G\left(x^{0}\right)}{f^{k}-f^{0}}\right)\left(\frac{1}{1+M_{0}+G y}\right) \quad$ for $h=2,3, \ldots$.

The definition of $£^{*},(5.43)$ and (5.44) imply for each integer $k \geq 2$ trat
$(040) \quad \frac{\left(1(:)-1^{h-1}\right)}{\operatorname{mon} \mid G(-1), 1]} \leqq\left(\frac{f^{*}-1^{0}}{6\left(s^{0}\right)}\right) \max \left|G\left(a^{0}\right),\left(n^{1}+\left(\frac{\varepsilon}{i}\right) i\right)(1+4 m+\varepsilon r)\right|$ for all $x \in S^{1}$
amle for. 1 h $n=1$

$$
f(v)-1^{h-1}=1^{*}-1^{0}=\left(\frac{f^{*}-f^{0}}{c\left(\gamma^{0}\right)}\right)\left(,\left(x^{0}\right) \quad \text { for all } x \varepsilon s^{1}\right.
$$

\therefore ande $\left(.\left(.0^{\circ}\right)=0,(5,1)\right.$ iollus from (5.40) and (5 34). Also fon each Ant, it 2 , i. 3.1 ard the definition of r
(j.4, $\quad(x)-f^{h-1}-\left(1^{h-1}-f^{h-2}\right)\left[.7-\sum_{1=1}^{m} \frac{g_{1}(x)}{g_{1}\left(\lambda^{h-1}\right)}+\varepsilon \gamma\right] \quad$ for all $\begin{aligned} & \lambda \varepsilon S^{1} .\end{aligned}$
 1rplas

$$
0 \equiv \cdots-\sum_{1=1}^{m} \frac{\varepsilon_{1}(v)}{\varepsilon_{1}\left(\therefore^{l-1}\right)}+\binom{-}{,} \quad \text { for all } \lambda \varepsilon \hat{S}^{h}
$$

the erore ion cich anter, $k=2$ and each $1 \in\{1,2, \ldots, m\}$

$$
\frac{\S_{1}(x)}{\delta_{1}\left(x^{h-1}\right)} \leqq m+\left(\frac{\varepsilon}{D}\right) Y \quad \text { for all } x \varepsilon \hat{S}^{k}
$$

Which ariplics
(5.48) $\frac{\varepsilon_{1}(\lambda)}{\operatorname{man}\left|\rho_{1}\left(\lambda^{h-1}\right), 1\right|} \leqq \operatorname{man}\left|\dot{\delta},\left(n+\binom{\bar{j}}{5} y\right)\right| \quad$ for all $\lambda r \hat{S}^{k}$

$1<1+8 m+\varepsilon \gamma \quad 2 m p l i e s$

$$
\max \left[\tilde{g}_{,} m+\left(\frac{c}{g}\right) \gamma\right] \leqq\left(\frac{e(B, c)}{\beta}\right) \cdot \|
$$

The next lemma employs the results of Lemas $5.1,5.2$ and 5.3 to obtann an upper bound on $d^{k}\left(x^{k}\right)-d^{k}\left(z_{1}^{k}\right)$ Eor each $k \geqq 1$.

Lemma 5.4:

(5.49) $d^{1}\left(x^{1}\right)-d^{1}\left(z_{1}^{1}\right) \leqq(1+B m) \ln \left[\theta \max \left[G\left(x^{\circ}\right), 1\right]\right\}$
and for $k=2,3, \ldots$
(5.50)

Proof:
For some $k \geqq 1$ let $x(\lambda)=x^{k-1}+\lambda \nabla f\left(x^{k-1}\right)$ for $\lambda \geqq 0$ such that $x(\lambda) \varepsilon \hat{S}^{k}$ and let λ^{*} be such that

$$
d^{k}\left(x\left(\lambda^{*}\right)\right)=\max \left[d^{k}(x(\lambda)) \mid \lambda \geqq 0 \text { and } x(\lambda) \varepsilon \hat{s}^{k}\right\}
$$

Such a λ^{*} exists by Lemma 5.1 and the continuzty of d^{k} on the bounded set \hat{S}^{k}. Then $z_{1}^{k}=x\left(\lambda^{*}\right)$ and with $\dot{\lambda}$ as in Lemma 5.1

$$
d^{k}\left(z_{2}^{k}\right) \geqq d^{k}\left(x^{k}+\bar{\lambda} \nabla f\left(x^{k}\right)\right)
$$

and by (5.19) and (5.20)
(5.51) $U^{k}\left(z_{1}^{k}\right) \geq \ln \left[\left(\frac{a^{2}}{n}\right) \min \left[G\left(x^{k \sim 1}\right), i\right]\right]+B \sum_{1=1}^{m} \ln \left[\left(\frac{0^{2}}{n}\right) \min \left\{g_{3}\left(x^{k-1}\right), 1\right]\right\}$.

Then (5.51) and the definition of $d^{k}\left(x^{k}\right)$ imply for each anteger $k \geqslant 1$

10
(5.52)

$$
d^{k}\left(x^{k}\right)-d^{k}\left(c_{1}^{k}\right) \leqq \ln \left[\left(\frac{n}{-c^{2}}\right)\left(\frac{\left(r\left(x^{k}\right)-f^{k-1}\right)}{\text { mos }\left[6\left(x^{k-1}\right), 1\right]}\right)\right]+
$$

$$
+6 \sum_{1=1}^{m} \ln \left[\left(\frac{n}{z}\right)\left(\frac{E_{1}\left(\lambda^{h}\right)}{\left(11 n\left|v_{1}\left(x^{h-1}\right), 1\right|\right.}\right)\right]
$$

Then (5 (y) follots from heald 52 and (5.52) with $k=1$ and (5.50) iollo.,
 b) (5.13)

$$
\equiv\left(a^{\prime}\right)\left(\frac{i^{0}-f^{0}}{6\left(x^{\circ}\right)}\right)
$$

and

By (mployane alablat, blabar to thone ased an proving the previous leama, jelams $51,5.2$ and $; 3$ mas be co bincd to provide lower boands on $f(x)-f^{1-1}$ and $g_{1}(y)$ for $1=1,2, \ldots, n$ for all $x \varepsilon i^{h}$ wacre by (518) 1^{t} contams the posinis i^{t} for $3 \geqq 1$ generated by the rodified sterpest ancent alsorithre

16cruat 5. 5

(5.53)

$$
f(x)-f^{0} \geq \dot{g}\left(b_{1}(;)\right)^{-1} \quad \text { for all } x \in T^{1}
$$

and for eacn $1 \in\{1,2, \ldots$, m $\}$

$$
\begin{equation*}
\underline{\underline{g}}_{1}(\cdots)=\dot{B}\left(b_{1}(E)\right)^{-1 / C} \quad \text { for all } \times \varepsilon \mathrm{T}^{1} \tag{array}
\end{equation*}
$$

and for $h=2,3, \ldots$

and fot ach $1 \in(1,2, \ldots, m)$

Prorit

$$
\text { for ach antames } t \equiv 1
$$

$(3.57) d^{i}(N)=\ln \left(1()-,i^{n-1}\right)+5 \sum_{1=1}^{m} \ln \varepsilon_{1}(x) \leq d^{h}\binom{h}{1}$ for ala $x \in 1^{h}$.

$$
\left.\ln \left(1(\Omega)-f^{h-1}\right)+i \sum_{i=1}^{n} \ln n_{1}(N)=\ln \left[\left(\frac{1}{2}\right) \min \left[G\left(\lambda^{k-1}\right),\right]\right]\right]+
$$

(5.58)

$$
+\hat{B} \sum_{1=1}^{m} \ln \left[\binom{1}{\cdots} \sin \left|\beta_{1}\left(\lambda^{1-1}\right), 1\right|\right] \quad \text { for } a l l \quad x \in T^{k}
$$

whinh miplos
(5.59)

$$
\ln \left(f(x)-f^{k-1}\right)=\ln \left[\left(\frac{n^{2}}{n}\right) \min \left[G\left(\lambda^{k-1}\right), 1\right]\right]-
$$

$$
-R \sum_{i=1}^{m} \ln \left[\binom{\because}{\cdots}\left(\frac{\varepsilon_{1}(x)}{\operatorname{mn}\left|\varepsilon_{1}\left(\lambda^{h-1}\right), 1\right|}\right)\right] \quad \text { for all } \lambda \in I^{k}
$$

Then by (5.39) of icma 5.2 and (5.59) with $k=1$

$$
\begin{aligned}
\ln \left(f(x)-f^{0}\right) & \geqq-\ln \left[\left(\frac{r_{1}}{\sigma^{2}}\right)\left(\frac{\dot{\varepsilon}}{G\left(x^{0}\right)}\right)\left(\frac{1}{b}\right) \max \left[G\left(x^{0}\right), l\right]\right]- \\
& -6 m \ln \left[\left(\frac{n}{\sigma^{2}}\right)\left(\frac{\dot{g}}{G\left(x^{0}\right)}\right) \text { and }\left[G\left(x^{0}\right), 1\right]\right] \quad \text { for all } x \in T^{1}
\end{aligned}
$$

78

- on sunce $0 \geq\left(\frac{n}{2}\right)\left(\frac{i}{0.0}\right)$

$$
\ln \left(f(x)-r^{0}\right) \geqq-\ln \left\{\left(\frac{1}{g}\right)\left[0 \max \left[G\left(\lambda^{\circ}\right), i\right]\right]^{6 m+1}\right\} \quad \text { for all } x<r^{1}
$$

which by (5 15) is -quivalert to the desired resule (5 53). In a similar manar (5 5, follows fion (542) of Lemma 5.3 , (5.59) with $k \geqq 2$ and (5.10) annce $0 \geqq\left(\frac{i}{c^{2}}\right)$. Kelulun $(j 5 \delta)$ also mplies for each $1 \in\{1,2, \ldots, m\}$

$$
\ln E_{1}(x) \geqq-\left(\frac{1}{n}\right) \ln \left[\left(\frac{1}{\because}\right)\left(\frac{f(3)-f^{k-1}}{\min \left(0\left(r^{k-1}\right), 1\right)}\right)\right]-
$$

(5.60)

$$
\begin{aligned}
& -\sum_{\substack{j=1 \\
j \neq 1}}^{m} \ln \left[\left(\frac{1}{2}\right)\left(\frac{\varepsilon_{j}(x)}{i_{2} \ln \left|\varepsilon_{j}\left(x^{k-1}\right), 1\right|}\right)\right]+ \\
& \quad+\ln \left[\left(\frac{n}{2}\right)^{-1} \operatorname{rin}\left|j_{1}\left(x^{h-1}\right), 1\right|\right] \quad \text { for all } x \in 1^{h} .
\end{aligned}
$$

Then for each $2 \in\{1,2, \ldots, n\}$ by Lemma 5.2 and (5.60) with $k=1$

$$
\begin{aligned}
& \ln \varepsilon_{1}(x) \geq-\left(\frac{1}{1}\right) \ln \left[\left(\frac{n}{0}\right)\left(\frac{f^{\circ}-f^{0}}{G\left(\lambda^{0}\right)}\right) \operatorname{mar}\left[G\left(x^{0}\right), 1\right]\right]- \\
&-(m-1) \ln \left[\left(\frac{n}{\sigma^{2}}\right)\left(\frac{\dot{g}}{G\left(\lambda^{0}\right)}\right) \max \left[G\left(x^{0}\right), 1\right]\right]- \\
&-\ln \left[\left(\frac{n}{0^{2}}\right)\left(\frac{\dot{\varepsilon}}{G\left(\lambda^{0}\right)}\right)\left(\frac{1}{\dot{g}}\right) \max \left[G\left(x^{0}\right), 1\right]\right] \quad \text { for all } x \in T^{1}
\end{aligned}
$$

or by the definition of 0

$$
\left.\ln \varepsilon_{1}(\lambda) \geqq-\ln \left\{\left(\frac{1}{j}\right) l 0 \max \left(G\left(x^{0}\right), 1\right)\right]^{m+1 / e}\right\} \quad \text { for all } x \in T^{1}
$$

which by (5.15) 19 equivalent to the desired result (5.54). In a similar manner (5.j6) follows from Lemma 5.3, (5.60) with $k \geqslant 2$ and (5.16) since
$E_{1}\left(A^{k-1}\right) \cong G\left(\lambda^{k-1}\right)$ for $1=1,2, \ldots, m \cdot \mid$
for $k=1,2$, let $H^{k}(x)$ be the matrix of second par.al derivat: $:$ of $d^{k}(x)$ for $x \varepsilon \hat{S}^{n}$. The results of lemna 5.5 mas be used to hound the norm of $H^{k}(x)$ for all $x \in 1^{k}$.

Lenma 5.6.
For all $y \in L^{n}$

$$
\sup _{x . c 1^{1}} s\left[-1^{1}(\Omega)\right] y \leqq\left.\left(\frac{1}{a g}\right)\right|_{b_{1}}(G)+\operatorname{sm}\left(\mathrm{o}_{2}(f)\right)^{1 / f}+
$$

(5.61)

$$
+\left(\begin{array}{c}
1 \\
- \\
2 \bar{p}
\end{array}\right)\left|\left(h_{1}(3)\right)^{2}+\beta m\left(b_{1}(\beta)\right)^{2 / E}\right|_{\}}| | y \|^{2}
$$

and for $k=2,3, \ldots$
(5.62)

$$
\begin{gathered}
\sup _{x c T^{k}} y\left[-H^{k}(x)\right] y \leq n\left(\frac{1}{2 G\left(x^{0}\right)}\right)\left\{\left\{b(B, C)+\beta m(b(B, \varepsilon))^{1 / \beta}\right] .\right. \\
\cdot\left(\frac{f^{*}-f^{\circ}}{f^{*}-f^{h-1}}\right)+\left(\frac{1}{2 G\left(x^{0}\right)}\right)\left[(b(B, \varepsilon))^{2}+\rho m(b(B, \varepsilon))^{2 / R}\right] \\
\left.\cdot\left(\frac{f^{*}-f^{\circ}}{f^{k}-f^{h-1}}\right)^{2}\right\}\|y\|^{2} .
\end{gathered}
$$

Proof:

For each integer $k \geq 1$

$$
\nabla d^{k}(x)=\frac{\nabla f(x)}{\left(f(x)-f^{k}\right)}+\beta \sum_{1=1}^{m} \frac{\nabla_{g_{1}}(x)}{g_{1}(x)} \quad \text { for } x \in \hat{s}^{k}
$$

which implies by Assumption (5.1)

$$
H^{k}(x)=\frac{H_{0}(x)}{\left(f(x)-f^{k-1}\right)}-\frac{\left[V f(x) V f(x)^{T}\right]}{\left(f(x)-\left\{^{k-1}\right)^{2}\right.}+B \sum_{i=1}^{m}\left\{\frac{H_{i}(x)}{g_{1}(x)}-\frac{\left|V_{g_{1}}(x) V_{g_{1}}(x)^{T}\right|}{g_{1}(x)^{2}}\right\}
$$

where $H_{1}(V)$ for $1=0,1, \ldots$, in are defined bs (5.4) and (5., s) and \lfloor "f($)$) $\left.f()^{\prime}\right\rfloor$, fol example, is an $n \times n$ symmetric matrix whose $j^{\text {th }}$ element is $\left(\frac{\partial f(A)}{\lambda_{1}}\right)\left(-\frac{f(}{-l_{j}}\right)$. Then for ans $y \in E^{n}$

$$
\text { for } \vee \in s^{h}
$$

and by the defmatancf and Kulatan (5.8) and the defiritura of

$$
\begin{align*}
& y\left[-1^{h}()\right) y=\left\lvert\, \frac{-1}{\left(1(\lambda)-1^{h-1}\right)}+\frac{\Delta_{0}^{2}}{\left(i(\lambda)-r^{h-1}\right)^{\prime}}+\right. \tag{5.63}
\end{align*}
$$

(5.6.6)

$$
y\left(-11^{h}(x)\right)_{\pi}\left(\frac{!}{i}\right) \left\lvert\, \frac{1}{\left(1()-i^{h-1}\right)}+\frac{1}{2\left(f(x)-1^{h-1}\right)^{2}}+\right.
$$

$$
\left.+k \sum_{i=1}^{m}\left(\frac{1}{\varepsilon_{1}(x)}+\frac{1}{2 g_{1}(x)^{2}}\right)\right] \mid\|y\|^{2} \quad \text { for } x \in \hat{s}^{k} .
$$

For the case when $h=1$, Leman 5.5 implies

$$
\begin{equation*}
\frac{1}{\left(f(\lambda)-f^{0}\right)} \leq\left(\frac{1}{\delta}\right) h_{1}(\Omega) \quad \text { for all } \times \varepsilon T^{1} \tag{5.6}
\end{equation*}
$$

and rot each 1 : $\{1,2, \ldots, m\}$

$$
\begin{equation*}
\frac{1}{r_{1}(i}=\left(\frac{1}{1}\right)(1,1())^{1 i ;} \quad \text { for } 111=12^{:} \tag{5.65}
\end{equation*}
$$

$$
\frac{\left(f^{*}-f^{1-1}\right)}{\left.m+11\left(x^{1-1}\right), 1\right]} \leq\left(\frac{f^{*}}{6\left(x^{0}\right)}\right)\left(\frac{r^{r}}{1}\right)\left(\frac{e^{\prime}(x)}{1}\right)
$$

buch mikn cunbued with lenma 5.5 smples

and for ach i $\in\{1,2, \ldots, m\}$

$$
\begin{equation*}
\frac{1}{\xi_{1}(x)} \leqq(b(c, f))^{1 / 2}\left(\frac{1}{c_{1}\left(x^{0}\right)}\right)\left(\frac{1^{k}-f^{0}}{f^{k}-f^{k-1}}\right) \quad \text { foi all } 2 . r T^{k} \tag{5,68}
\end{equation*}
$$

Thicn (5.62) ! 0 llow's from (5.61), (5.68) and (5.64) with $k \geq 2.11$

The next leman provides an upper bound on $f(t)$, the number of steps required by the modified steepest ascent algorithin to find $x^{k}=z_{i}^{k}(k)$ starting: from $x^{k-1}=7_{0}^{k}$ for carh $h \geq 1$. Clearly $h(k)=1$ and $x^{k}=z_{1}^{k}$ if $\left\|V d^{k}\left(z_{1}^{k}\right)\right\|=E . \quad$ Otherwise $\ell(h)>1$ and the remanning, stcepest ascen' steps are carried out on T^{k}. for $k=1,2, \ldots$ let

$$
\begin{equation*}
H_{k}=\sup _{x \in T^{k}}\left\|H^{i}(x)\right\| \tag{5.69}
\end{equation*}
$$

[^3](r. $701 \quad\left\|n^{k}(),\right\|=\operatorname{san} \quad v\left[-11^{k}(y)\right] y$.

```
:
```

$$
1: \quad r \quad 1, \therefore \quad .
$$

$$
(n)-\binom{2 \cdot 1}{-}\left(a^{i}\left(a^{!}\right)-a^{i}\binom{1}{j}\right) i 1
$$

then (5.71) and (5,2) ply that for $3 \geqslant 1$

$$
\text { for all } \lambda \geqq 0 \text { such that } \gamma_{J}^{k}+\lambda 7 d^{h}\binom{k}{\jmath} \leq m^{i}
$$

Let λ^{*} biximaze our ionnegitive real numbers the function of λ on the

$$
\begin{aligned}
& \text { • Ur, } \\
& \text { U. icier } 1 \text {, los': theorem that for } 1 \equiv 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { (.) 11) }
\end{aligned}
$$

$$
\begin{aligned}
& ,^{h}+, d(1,1) \quad:
\end{aligned}
$$

$$
\begin{aligned}
& \text { (r.,.9) A! (} 570 \text {) } \\
& \text { (•小 } \\
& \sup _{x \in 1^{\prime}} y\left[-H^{k}(z)\right] v=u_{k}\|v\|^{2} \quad \text { for all ye } \|^{n} \text {. }
\end{aligned}
$$

$\mathrm{d}^{\mathrm{h}}\left(\mathrm{z}_{\mathrm{j}}^{\mathrm{h}}\right)+\left.\left(\frac{1}{2 \mu_{\mathrm{k}}}\right)\left|\| \mathrm{d}^{\mathrm{k}}\left(\mathrm{z}_{\mathrm{j}}^{\mathrm{h}}\right)\right|\right|^{2}$ as λ increases from 0 to $\lambda^{*}:(5.73)$ implies $z_{j}^{k}+\lambda \nabla d^{k}\binom{z_{1}^{h}}{\underset{1}{2}} \varepsilon T^{h}$ for all $\lambda \in\left\{0, \lambda^{*}\right\}$. Then by the definition of z_{j+1}^{k} for $3 \geqq 1$

$$
d^{k}\left(\varepsilon_{j}^{k}+1\right) \geqq d^{k}\left(z_{\jmath}^{k}+\lambda^{*}-d^{k}\left(z_{\jmath}^{k}\right)\right) \geqq d^{k}\left(2_{\jmath}^{k}\right)+\left(\frac{1}{22_{k}}\right)| | \nabla d^{k}\left(z_{\jmath}^{k}\right) \|^{2}
$$

and if $j<\ell(h)$ then $\left\|\nabla d^{k}\left(z_{j}^{k}\right)\right\|>\varepsilon$ which implies

$$
d^{k}\left(z_{j+1}^{k}\right) \geqslant d^{k}\left(z^{k}\right)+\left(\frac{1}{2 \mu_{k}}\right) \varepsilon^{2}
$$

Then by induation on j for $j=1,2, \ldots, \ell(k)-1$

$$
d^{h}\left(\begin{array}{l}
z_{\ell(k)}
\end{array}\right) \geqq d^{k}\left(2^{k}\right)+(\ell(k)-1)\left(\frac{\varepsilon^{2}}{2 \mu_{k}}\right)
$$

which is equivalent to the desired result since $x^{k}=z_{\ell(k)}^{k} \cdot \|$

Now Lemmas $5.4,5.6$ and 5.7 and Corollary 3.14 may be combined with the definition of $\alpha(B, C)$ to give an exponentially increasing function of k which upper bounds $\ell(k)$ for all $k \geqslant 1$.

Theorem 5.8:
(5.74)
$\ell(1) \leq a_{1}(B, \varepsilon)+1$
and for $k=2,3, \ldots$
$(5.75) \quad \ell(k) \leq a_{2}(B, \varepsilon)(a(B, \varepsilon))^{h-1}+a_{3}(B, \varepsilon)(\alpha(B, \varepsilon))^{2(k-1)}+1$
$\therefore:$

$$
\begin{aligned}
& a_{1}(\therefore, \ldots)=\binom{\frac{1}{2}}{\varepsilon}\binom{-}{-} l_{1}(\ldots)+m_{1}\left(b_{1}(\xi)\right)^{10}+ \\
& \text { (2..1) } \\
& \left.\left.+\left(\begin{array}{c}
1 \\
-1 \\
b_{b}
\end{array}\right) \right\rvert\,\left(l_{1}()\right)^{?}+\operatorname{mon}_{1}\left(b_{1}\right)\right)\left.^{2 / E}\right|_{\mid} \ln \left(b_{1}(\cdots)\right.
\end{aligned}
$$

$(5.71) \quad \quad_{2}(,!)=\left(\frac{1}{-2}\right)\left(\frac{-}{G(\cdot)}\right)\left[1 \cdot(\cdot, c)+\operatorname{sn}(b(a, \varepsilon))^{1 / B}\right] \ln (b(c, c))$
and

Pung
Fion lenthe $r_{\text {: }}$ ard the detimations of $b_{1}(t)$ and $b(3, c)$
$(5.19) \quad d^{3}\left(x^{1}\right)-d^{1}\binom{1}{1}=\ln \left(0_{1}()\right)$
and fo: $1 .=2,3, \ldots$
(5.80)

$$
d^{h}\left(x^{h}\right)-d^{k}\binom{h}{1} \leqq \ln (b(\ldots, \varepsilon)) .
$$

Laind 5.6, (5.6.5) and (3.70) 1 mply

$$
\begin{aligned}
& \text { and for } k=2,3, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { (5.8.) }
\end{aligned}
$$

From Corollary 3.14 and (5 17)
(5.83)

$$
\left(\frac{f^{\star}-f^{o}}{f^{k}-f^{k-1}}\right) \leqq(a(\therefore, \varepsilon))^{k-1} \quad \text { for } k=1,2, \ldots .
$$

Hhen (574) follows from (579), (5.81) and Lemma 5.7 with $h=1$ abere $a_{1}(6,6)$ la definct by (5.76) and (5.75) follows from (5 80), (5 82), (5 83) and Lemma 57 with $h \geq 2$ wiere $a_{2}(S, C)$ and $a_{3}(B, C)$ are defincis by (577) and (5.78) respectively. 1 |

It should be noted that it is posible to find an upper bound in teams of the definitions of this section for the factor $\alpha(e, \varepsilon)=\frac{1+i \tilde{p}}{\varepsilon \dot{p}}$ appearing In Theorem 5.8 from (3.19) and the definition of G

$$
\begin{equation*}
\dot{u}_{1} \leqq(1+6 \mathrm{~m}+\varepsilon \gamma)\left(\frac{\mathrm{f}^{\star}-\mathrm{f}^{0}}{G\left(\mathrm{x}^{0}\right)}\right) \quad \text { for } \quad 1=1,2, \ldots, \mathrm{~m} \tag{5.84}
\end{equation*}
$$

and from (3.43)

$$
\begin{equation*}
\tilde{p} \geqslant \sum_{i=1}^{m} \frac{u_{1}^{*}}{\bar{u}_{i}} \quad \text { for all } u^{*}=\left(u_{1}^{*}, u_{2}^{\star}, \ldots, u_{i n}^{*}\right) \in u^{*} . \tag{5.85}
\end{equation*}
$$

For $x^{*} \varepsilon X^{*}$ and $u^{*} \in U^{*}$

$$
\nabla f\left(x^{*}\right)=-\sum_{i=1}^{m} u_{i}^{*} v_{g_{i}}\left(x^{\star}\right)
$$

and by the definitions of 0 and Δ and the triangle inequality
(5.86) $0 \leq\left\|\operatorname{VI}\left(x^{\kappa}\right)\right\|<\sum_{i=1}^{m} u_{i}^{*}\left\|v_{b_{i}}\left(\lambda^{*}\right)\right\| \leqq \Delta \sum_{i=1}^{m} u_{i}^{*}$.

86

$$
\dot{p}=\binom{\because!")}{\hdashline-i^{"}}(-)\left(\frac{1}{1+!1+\varepsilon_{r}}\right)
$$

 depalinue on l^{\prime} bith depradence on c and s.
 bounding; formtan of t riw be found for the total momber of stecpest ascent sicper required tu find an a h starting fion x^{o} such that $f^{\prime}-f\left(x^{k}\right) \leq t$ wheic l is a termition pirmeter for the algorithm.

$11 \operatorname{cosem}^{59}$

I.CL $a_{1}(B,-), a_{2}(\xi, s)$ and $a_{3}(E, c)$ be as defined in Theorem 5.8 and let $n(t)$ be the total amber of steepest ascent steps zequired to find a point $x^{h} \in \hat{S}^{h}$ swating from $x^{0} \varepsilon \hat{S}$ such that $f^{*}-f\left(x^{k}\right) \leqq t$ where $t<s^{*}-f\left(x^{o}\right)$. Then

$$
n(t) \leqq k(L, 6, \varepsilon)+1+a_{1}(B, \varepsilon)+a_{2}(\beta, \varepsilon)\left(\frac{a(B, \varepsilon)}{a(B, \varepsilon)-1}\right)
$$

(5.87) $\cdot\left[\{a(\varepsilon, \varepsilon))^{h(t, \beta, \varepsilon)}-1\right]+a_{3}(B, \varepsilon)\left[\frac{(\alpha(\beta, \varepsilon))^{2}}{(\alpha(\beta, \varepsilon))^{2}-1}\right]$.

$$
\cdot\left[(\alpha(\beta, \varepsilon))^{2 k(t, \beta, \varepsilon)}-1\right]
$$

$k(t, B, \varepsilon)$ is the greatest integer lcss than $\frac{\ln \left(\frac{f^{*}-1^{0}}{t}\right)}{\ln \left(\frac{1+\frac{1}{\varepsilon+1}+1}{\varepsilon m+\varepsilon \gamma}\right)}$.

Proof:
From Corollary 3.12 2f $k \geqq \frac{\operatorname{in}\left(\frac{f^{k}-f^{\circ}}{t}\right)}{\ln \left(\frac{1+\rho^{2}+\varepsilon \gamma}{B m+E \gamma}\right)}$ then $f^{*}-f^{h} \leqq t$ which mples $i^{\dot{*}}-\mathrm{r}^{\mathrm{h}(\mathrm{t}, 5, \mathrm{f})+1} \leqq \mathrm{t}$ and

$$
\begin{equation*}
n(t) \leqq \sum_{k=1}^{k(t, \varepsilon, \varepsilon)+1} \ell(h) \tag{5.88}
\end{equation*}
$$

where $2(h)$ is number of steepest ascent steps requared to solve subpioblea k. For the case when $h(t, R, E)=0$, (5.87) folluws amediately from (5.88) and (5.74). For the case when $k(t, \beta, \varepsilon) \geqq 1,(5.88)$ and Theorem $5 . \delta \mathrm{mply}$

$$
\begin{aligned}
& n(t) \leqq h(\tau, B, \varepsilon)+1+a_{1}(\beta, \varepsilon)+a_{2}(B, \varepsilon) \alpha(B, \varepsilon) \sum_{k=2}^{k(t, \beta, \varepsilon)+1}(\alpha(\beta, \varepsilon))^{k-2}+ \\
& \quad+a_{3}(B, \varepsilon)(\alpha(B, \varepsilon))^{2} \sum_{k=2}^{k(t, \beta, \varepsilon)+1} \alpha(\beta, \varepsilon)^{2(k-2)}
\end{aligned}
$$

which is equivalent to (5.87). $\|$

RuIMRLCLS

 (19ヶ1)

 pp. $\quad(1-338,(164 \%)$.

 on Uperaticas ritstaich, Bostoa, (1ソ66).
 Aonluacal pograving," lnests, oiti iestern laversily, Lvanston, lllinois, (1967)
[8] Fuacco, A. V. and G. P. 'fcCortich, "ik Sequen-ial Inconstramed
 lechod," anage ut sf1., ol. 10, pi. 36(1-360, (1964).
[9] Facco, A. V. and G. P. "iccormać, "cu putational ilgorithm fo: Lae Sequential Lncoistralicj linine, tion lceairfue for oondmear Programing," lanasimml Scı, lol. 10, pp. 601-617, (1904).
[10] liacco, A. V. and G. P. "iCormich, "ine Scquential Lnconstramed Manindzation lechnaque ilhout faramelers," Opns Res., $=01.15$, pp. 820-827, (1967).
[11] Fuacco, A. V. and G. P. "cCormich, ©OVII:FAR PROGRDPiL`G: SI.Q.E:TIAL
 New Lort, (1968).
[12] Irısch, K. R., "principles of Linear Programing with Particular Refercirn to the louble Gradient form of the Logarithinc Potential 'icthod," : morandu" of October 18, 1954, University Instatute of kconorics, Oslo.
[13] Insch, R. K., "The Logarithric Potential :lethod of Convex Programire," Memorandurn of 'ias 13, 1955, Laversity Instatute of Economics, Oslo.
[14] Goldstein, A. A., COvSIRUCTILE REAL isALYSIS, Harper and Row, New York, (1961).
[15] Huard, P., "Résolution des P. \because. à Constraintes Non-linéaires par la Néthode des Centres," Note E.D.F. No. I!k 5, 69J du 6 Ya: 1964; also, "Resolution of vatheratical Progiaming with Nonlinear Constraints by the Method of Centers," in J. Avadie (ed.), io LINEAR PROGRiciIVG, iorth-Holland Pudishang Co., Ansterdan, pp. 207-219, (1967).
[16] Huard, P., "Programmation "lathematique Convexe," R.I.R.O., Vol. j, pp. 43-59, (1968).
[17] John F., "Lxtrenum Problems with Inequalities as Subsidiary Conditions," in Studies and tssavs, Courant inniversar: Volume, lntcrscience, .ew hork, pp. 187-204, (1948).
 Restraktionen und einer Folge von Optamaerungsproblemen orne Restrintionen," Liteirehmensiorschung, Vol. 11, pp. 111-118, (1967).
[19] Kuhn, H. W. and A. W. Tucher, "honlinear Programming," in J. Neyman (ed.), Proccedings of the Second Borkeley Symposium in Mathenatical Statistics and Probability, Pp. 481-492, University of Califormia Press, Berheley, Califorma, (1951).
[20] Levitan, E - S. and B. [. Polyah, "Constrained Minimızation Methocis," 2h. vichicl. Nat. mat. Fiz. (an Kussian), Vol. 6, pp. 787-823, (1966), also, l.S.S k. Co putational Mathematics and Mathearical Physics (an Englash), pp. 1-50, (1968).
[2:] Lootsma, F. A., "Logarithmic Programming: A Method of Solving Nonlinear-programming Problems," Philips Res. Repts., Vol. 2三, pp. 329-344, (1967).
[22] lootsma, F. A., "Extrapolation in Logarithmic Programming," Philips Res. Repts., lol. 23, pp. 108-116, (1968).
[23] Lootsma, F. A., "Constraincd Optimization via Penalty Functions," Philips Kes. Repta., Vol. 23, pp. 408-423, (1968).
[24] Lootsna, [. A., "Constrained Optimization via Parameter-free Penalty Functions," Philips Res. Repts., Vol. 23, pp. 424-437, (1968).
[25] Ilangasarian, 0. L., "Pseudo-conveג Functions," SIAM J. Control, Vol. 3, pp. 281-290, (1965).
[26] Mangasarian, 0. L., NONLLNEAR PROGRASMLiNG, McGraw-Hill Book Co., New York, (1967).
[27] Parisot, G. R., "Resolution Numerique Approche du Problème de Yrograrmation Linéalre par ipplication de la Programation Logarithmique," Kev. Fr. Recherche Operationelle, Vol. 20, pp. 227-259, (1961).
[28] Pircmeau, 0. . nd t. Polah, "On the Kate of Convergence of Certann dethods of Centera," "Looranumi no. LKL- !290, Electromics Rescatch Labotatory, Universily of California, berheley, (1971).
[29] Polan, E. Cuni rational luifhodS Iiv opilillation, icademic press, New lork, (1971).
[30] Rochaicllar, R. T., COnMl walysis, Princelon laversity Piess, pianceton, ..ew Jcisis, (1970).
[31] Rudin, W., PRI CIPLLS OF MACHEXTICAL ANALYSIS, XcGraw-Hall Booh Co., New loth, (1964).
[32] I'Rphis, D. 'i., "Cutting Plane Methods without dested Constiaint Sets," Oms. Res., lol. 18, pp. 404-413, (1970).
[33] Topkis, I. 'i. and A. F. Veanott, "On the Convergence of Sore Feasible Dilection ifgorith.s 1 or ionlinear Prograiming," SIAM J. Coltrol, Vol. 5, pp. 260人-279, (190́7).
[34] Ficroličres, A., 'la V'thode des Centres à Ironcatere Vartable," these, Paris, (lyos).
[35] Zangwill, h. I., NONLINEAR prograisiJuG: a LaItIED AprodaCh, Prentacc-iall, Inc., Lnglewood Cliffs, New jersey, (1969).

[^0]: t Actually this assuraption only need hold in the insection of S^{1} and a ball about x^{*}. The stronger condition is assumed for corvenience of exposition. It also implies that s^{1} is aboanded set which is part of Assumpticn (2.1).

[^1]: †or example see [20], [28], [29] and [32].

[^2]: ${ }^{7}$ Ior gencral algoidthms of thas type see Tophas and Vernote [33].

[^3]: lemma 5.6 implics the csistence of u_{k} for $k=2,2$,... since for a negative - emiderimite sumetric matrix such as $h^{k}(x)$

