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ABSTRACT

For any binary n-tuple the functions Ek and Qk are defined
by Ek=Fk+Fn_k am:l.Qk=Fk—Fn_k where Fk is the usual k-th non-
periodic correlation coeficient of a sequence. In Chapter 1 it
is shown that these two functions play a doﬁinant role in band-
width spreading signal schemes and certain general properties
about them are developed. In Chapter 2 a cyclotomic sequence
is defined as a sequence s(x):so-i—slx+...+sn_lxh_l which satis-
fies s(x)+s(x)2=x+x3+x5+...+xn-2 modulo 1+x". It is shown that
for a given n, such a sequence exists if and only if every cy-
clotomic coset of integers moaﬁlo n contains an even number of
odd integers and that in thié case there are exactly 2K(n)
such sequences where A(n) is the number of cyclotomic cosets;
and furthermore it is shown that there exists an infinite num-
ber of such integeré. It is also shown that for cyclotomic se-
quences Qk5(~l)kE2k where 2k is reduced modulo n.

In.Chapter 3 a self-dual sequence is defined as a sequence
which satisfies Qk=(-l)kEk. Two methods are given to construct
such seguences.

In Chapter-4 a Weakly-Barker sequence is defined as a se-
quence which satisfies |Fn~kL§Il,'f§r 0< k< (n+1)/2. It is shown
that for these sequences ”Ekl;lgk” < 2 , a property not usually
satisfied by most-commonly encountered sequences.'A method is
given for the construction of these sequences.

Lastly in Chapter 5 certain results are given about sequen-

ces obtained from Arithmetic codes.
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CHAPTER 1
BASIC DEFINITIONS AND GENERAL RESULTS

A. THE FUNCTIONS Fo. £, AND 8,

k
1 t
Let I=FqsTyseeeesT 4 be a sequence of +1 s and -1 s,
and consider a bandwidth-spreading binary signal Scheme[l,Z,B]

in which the data sequence ""b-l’bD’bl""' is transmitted

as the expanded stream ....,b_lg,bgg,blg,....(where biE denotes

the sequence b.r_,b.r.,....,b.T ). We refer to each segment
i~ 0

it1’ iTn-1
biE as a baud of the transmitted stream since only ane infor-/
mation bit is transmitted in this interval.
Let <§;§>=nilr.s. denote the correlation between any two
n-digit sequénceg of real numbers. A correlation receiver re-
covers the data digits in the above signal scheme by correla-

ting the received bauds with r, since

n-1

<b.r;jr > 3% b.r.r.=nb.. (1.1)
i-"- j=0 133 1

Bandwidth—§preading is used in order to make the correla-
tor sensitive to small{with respect to one baud) shifts of the
received signal and thus enable the receiver to acquire and
maintain good.baud synchronization and/or to reject extraneous
delayed versions of the received signal as might be encountered
in a multipath environment,

Consider the non-periodic correlation function_Fk for the

sequence r which is defined{4] as

n-k=1
Fk='2 rjrj+k < k< n

j=0

' (1.2)
Fk=0 k >n



2

When the possibility of confusion arises we will write Fk(f)
instead of simply‘Fk. This correlation function is commonly
employed in single pulse synchronization studies[d,S]. When
the correlator for the above signal scheme is k bits out of

phase with the baud edges, the correlator output is given by

<:bi—lrn-k"'"bi—lrn—l’birD""’bi:n—k-l;z:>
=b. 1 F_ktbiFy (1.3)
Hence feollowing Massey and Uhran[2] we define
Ee=Ftf ok
(1.4)
8= Pk

which are called the even and the odd correlation functions

for r respectively to emphasize the facts that En_k=Ek and

8 Qk. We note that the correlator cutput will be either

n—k=—-

:Ek ar tQk depending on the values of bi— and bi' For .acqui-

1
ring and maintaining baud synchronization and/or for rejec-
tion of extraneous multipath delayed versions of the received
signal, it is desirable to minimize the magnitude of the cor-
relator output when the correlator. is not in phase with the

"baud edges., That is, it is desirable to minimize P=max(PE,PQ)

where

PE= max lEk|= max le+Fn—k|

O0< k< n 0< k< n
(1.5)
o Lo e

are the off-peak maximum magnitudes of the even and the odd

correlation coefficients respectively,



We also define the off-peak maximum magnitude PF of the non-

periodic correlation coefficient as

PF= max |F (1.6)

0< k< n o

In the study of sequences it is usually more fruitful to
work with sequences over GF(2) instead of sequences of +1's and

-1's, If r={(r ) is a sequence over GF({2), then

grTyrer s Thoy

we shall take by way of convention

n-k-1
F ()= & o=r*r* : (1.7)
k j=0 JTj+k
where r?:(—l)rj ) (1.8)

where rj is treated as a réal number in (1.8).

Lemma 1.1: If E:(ro,rl,..;,rn_l) is a sequence over GF(2),

then

L (2) () (1.9)

Fl (£)=(n=k)-2d,(f_

H

where dH( , ) is the Hamming metric and fj(£)=(r0,rl,...,r._l),

J

bj(£)=(rn_j,rn_j+l,.. ,I‘n_l).
n-k-1
- — * ¥ 5 3
Proof: By (1.7) Fk(f)— jEU TITY K where r? is defined by (l.8?.

* ¥ : : XX -1 s
Now rir¥  is equal to 1 if r3=rt K and equal to -1 if r§£r§+k.

. - . .
The number of times rj;érj_l_k is simply dH(fn_k(E),bn_k(E)) and

the i *=rp¥ i i -k)-
e number of times rJ rJ+k is simply {(n-k) dH(fn_k(E),bn_k(r)),

hence (1.9) follows.

Q.E.D.

From now on we will call a sequence over GF(2) a binary sequ-

ence. We define two operators T and N by setting



T(rD’rl""’rn—l)z(rn—l’ro’rl""’rn72) (1.10)
N(ro,rl,...,rn_l)=(rn_l,r0,rl,...,rn_z)
where (rO’rl""’rn—l) is a binary sequence and r. is the bi-

nary complement of T, T is the well known cyclic shift opera-

tor which is widely used in the study of cyclic cades[6,7]. The

operafor N was first considered by Massey and Uhran[2] in

the study of Sub-Baud codes. For any integer i >0 we define T+

and NV inductively by setting Tl(£)=T(T1_l(£)) and Nl(£)=N(Nl-l

(r)). N will be called the compacyclic shift operator. We now

EXpress Ek and Qk in terms of T and N respectively.

Theocrem 1.1: If E#(rc,rl,...,rn_l) is a binary sequence, then

,Tkg)
K (1.11)
r).

(R}

Ek(E)zn'ZdH(

Qk(£)=n—2d (z,N

H
Proof: 1) By equation (1.4) and Lemma 1.1 Ek(£)=Fk(£)+Fn_k(r)

=(n—k)—2dH(fn_k(£),bn_k(f))+k—2dH(fk(£),bk(§))=n—2[dH(f (r),b, (z))

k k'=

+dH(fn_k(£),bn_k(5))]. Comparing £=(r0,rl,..,rk_l,rk,.,,rn_l)

and T Ez(rn—k""rn-l’rD’rl""rn—k—l) it is apparent that

dy (2, THE)=dy, (£, (2),b, (2))+d, (f__ (x),b__ (£}) from which the

first part of (1.11) follows.

2) By (1.4) and Lemma 1.1 we have that Qk(£)=F (r)-F ()=

k= n-k =

(n-k)=2dy (f | (£),b__\ (£))-k+2d,(f, (£),b, (£)). If E=(F,%,,...

"En—l) denotes the binary complement of r, then clearly dy (f (),

'bk(E))=k—dH(fk(£),bk(§)) which upon substituting in the above



expression for Qk(g) yields Qk(£)=(n—k)—2dH(fn_k(£),b (r))-

k+2k-2d, (f, (z),b, (F))=n-2[d, (f, (£),b (E))+d, (f__ (z),b__ (£))].

k H

k -
) and N £=(rn—k’rn—k+l""

Comparing £=(r0’rl""rk—l’rk""rn-l

£, N z)=d (F, (£),b (£))+

rn—l’rD’rl”"rn-l) we note that d

b
(r)), and so the second part of (1.11) follows.

Q.E.D.

We remark that T is a linear operator, i.e. if r, s are

any two binary sequences of length n and £+§£(r0aso,rlasl,...

"’rn—l$sn;l) where e denotes modulo 2 sum, then T(r+s)=Tr+Ts.
Note that we need not worry about scalar multiplication since
we are working over the trivial field GF(2). On the other hand

N(r+s)#Nr+Ns, i.e. N is non-linear.

We also remark that Ek is phase independent, that is Ek(f)

=Ek(Tl£) for any integer i >0 and any binary sequence r. On the
other hand Qk is highly phase dependent. For example if Ez(l,l,

0,1,0), then 8 =1, 8,=-1, and 8,=1, but for s=(0,

2 3 4

D=5’ Ql=—l, 92=—3, Q§=3, and del. Hence for a

given binary sequence there exists at least one phase which

0=, 8,=-1, 8

1,1,0,1)=Tz, 8

‘minimizes Pg= max \Qk|. There is no known way, excluding an

0< k< n

exhaustive search, for finding such an optimum phase.
B. COUNTING COMPACYCLIC CLASSES

In this section we will give a few results about the
operator N. With respect to the cyclic shift operator T the

cyclic order of a binary n-tuple ( i.e., a binary sequence




of length n ) r is defined as the smallest positive inte-
ger d such that_Tdr=£[8,9]. It is well known[8,9] that d must
divide n, and that conversely for a given d which divides n

there exists a binary n-tuple whose cyclic order is d. If r

is a binary n-tuple, then the cyclic clasS[9] of T is defined

as the set consisting of r and all distinct cyclic shifts of r.

This induces a partition on the set of all birnary n—fuples. It

min, it is known[6] that there are exactly
E 52%(m/d) ~ (1.12)
m
~d|m
cyclic classes of order m where pu( ) is the Mobius function(p.

234 of [lD]) and is defined for any positive integer k by

1 if k=1
}J(k)=ﬁ 0 if k has a repeated prime

t _ (1.13)
L(—l) if k is the product of

t distinct primes

Arnalogously we define the compacyclic order of a binary

n-tuple r as the smallest positive integer d such that Ndr=£.

The compacyeclic class of T is defined as the set consisting

of r and all its distinct compacyclic shifts.

Theorem 1.2: If r is a binary n-tuple and d its compacyclic

order, then dl2n but dfn. Conversely, if dl2n but dYn, then
there exists a binary n-tuple r whose compacyclic order is d.

In particular d is even.

Proof: Let r have compacyclic order d and suppose dln, then



f:Nnr=qur=£ which is absurd, therefore dfn. Let 2n=qd+m,

0< m< d, then qu£=£_implies that N2n~m£=£ which in turn im-

plies that Nm£=£.'But since m< d, we must have that m=0 and
so dl2n. _

Conversely, suppose dl2n but dfn, then letting §=(l,D,U,.
.«.,0) where the number of trailing zeros is (d/2)-1, we see
that,£=wﬁwﬁ...§§(i.e. the concatenation of these) of length n

has compacyclic order d.

g.E.D.

Theorem 1.3: If n is odd and min, then the number of binary

n-tuples of compacyclic order 2m is

z Z%H(m/d). . (1.14)
dlm

In particular, the number of binary n-tuples of compacyclic
order 2m is equal to the number of binary n-tuples of cyclic

order m..

Proof: Let m|n and suppose N2m£=£, then since mln we can par-
tition the sequence T into g blocks of length m where both m

and q are odd. Pictorially we have

A
gg; 711 |2 -4 [q-3 g-2

where the top array represents r and the bottom array repre-

sents N2m£ the first two blocks in the bottom array being cross-



hatched to indicate that the coefficients contained in these
are the complement of the coefficients contained in the cor-
responding blocks in the upper array. Now since both these
arrays represent one and the same n-tuple, it follows that

the coefficients in block 1 are equal to those of block 3 etc.

.. up to block g. Similarly the coefficients in block 2 are equal

to those of block 4 etc... up to block g-l1l. But the coeffici-
ents of block g-1 are equal to the complement of those in
block 1, hence it follows that the first m bits of x Qomﬁle—
tely determine r, since the bits in block i are simply the
complement of those in block i-1(the same order being main-
tained).

We have therefore shown that if min, then there are ex-

2m£=£. To obtain

actly 2™ binary n-tuples r which satisfy N
the number of binary n-tuples which have compacyclic order

2m we must‘subtract from 2™ the number of sequeﬁces with comp-
acyclic order 2k for every k which divides m but is not equal
to it, since these are all accounted for in 2". Hence if

o(n,2m) denotes the number of binary n-tuples of compacyclic

order 2m, then

a(n,2m)=2"- % aln,2d), (1.15)
dim
d£m
which can be rewritten as
2" % a(n,2d). (1.16)
dim

Applying the M&bius inversion formula{p. 236 of [10]) %o



(1.16) we obtain

al(n,2m)= & 2§p(m/d). (1.17)
dlm

We remark that this last step cannot be carried odt when n
is even since (1.16) does not hold for all divisors m of n,
because when n is even 2m may divide both 2n and n.

From equations 1.12 and 1,17 it is clear that the num-
ber of binary n-tuples of compacyclic order 2m is equal to
the number of binary n-tuples of cyclic crder m whenever m
divides n.

Q.E,D.

We remark that there exists a onerto one correspond-
ence between the binary n-tuples of compacyclic order 2m,
min, and the binary 2n-tuples of cyclic order 2m which are
of the form-fg(i.e. T concatenated with its binary comple-
ment E), The one to one correspondence is realized by the
mapping r—>rr. Noting that Nfﬂng(Eg), it follows that r
has compacyclic order 2m if and only if EE has cyclic order

2m. We also have from this correspondence

Theorem 1.4: If r is a binary n-tuple, then

1 -
8 ()= ?Ek(ff)’ 0< k< N (1.18)

C. DUALIZING SEQUENCES

We define & special binary n—tuplé z by setting

(1.19)

Z=

<{DlDlDl...DlD n odd

010101...101 n even.

—
~h

INE
.
(O]

the binary. complement of z we have
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Lemma 1.2: If r is any binary n-tuple, then

(£+z)=(-1)°F (x). (1.20)

Proof: 1) n odd. Clearly fn (z)+b (z)=(0,0,...,0) if n-k

-k n-k

is odd and (1,1,...,1) if n-k is even, where both these seqg-

uences are n-k digits long. Now Fk(£+g)=(n-k -2d,, [f (r+z),

n-k
— - ’ . N—
bn_k(£+3)]—(n—k) ZW[fn_k(£+Z)+bn_k(£+z)] where V[ ] is the Ham

ming weight function. We therefore have Fk(£+z)=(n—k)—2W[fn k(g)

#b L ()#f | (2)eb () ]=(nak)-2wlr _ (x)+b _ ()]=F__ (2)-
(“l)an_k(E) if n~k is odd and equal to (n-k) 2W[f _ (£)+bn~k(£)
+(l,l,...,i)]=(n—k)—2fn—k—W[fn~k(§)+bn_k(§)]]=—[(n—k)—ZW[fn_k(g)

(r)]]_ ) (- l) F _k(r) if n-k is even. All these arg-

n k
uments hold true for g also.

2) n even. All the arguments of part 1) hold here except that
in this case fn_k(5)+bn_k(z)=(l,l,...,l) if n-k is odd and (O,

0,...,0) if n-k is even.

Theorem 1.5: If n is odd and r any binary n-tuple, then

Proof: By Lemma 1.2 we can write Qk(£+5)=F

8, (r+2)=0, (z+2)=(-1)"

£, (z). (1.21)

(E+E)‘F T+z)

k n-k(._ z

=(-1)"F Fooy (z)=(-1) Fk(:_:)-(—1)”+an_|<(5)=(—1)k

[F (2= (-1 () ]=(=1)[F (2)+F__ (2)]=(-1)%E (). The same

is true for g. Notice that the second to last step does not

hold when n is even.



We remark that the transformation £—4>£+E has been considered

{u

ns5=—

by Golomb and Scholtz[11] as one of the Barker preserving ==z

formations.

Example: If r=(1,1,0,1,1) then r+z=(1,0,0,0,1). The even cor-
relation coefficients of r are 5,1,1,1,1 and the odd corrsleticn
coefficients of r+z are 5,-1,1-1,1.

Since 8, (r+z)=(-1)"E, () and £ (z+z)=(-1)"a (z), then, with
respect to the even and odd correlation coefficients, r© anc r+z
are in a sense duals of each other. For this reason we mzke the

follawing definition

Definition 1.1: If r is a biﬁary sequence of odd length n, then

T will be called gself-dual if

k
Qk(5)=(—l) Ek(g).

~—~

This type of séquence will be studied in Chaptér 3.

It is sometimes more convenient to work with polyncmizls
instead of seqﬁences. We therefore associate with the binaczy
n-tuple r=( ) the polynomial r(x)=r0+rlx+ .....

n-1

SFT X% and conversely. This association sets up a onz %o

TsTysee-sT 4

one correspondence between the set of all binary n-tuples ang
the set of all.binary polynomials of degree n-1 or less. IT

r{x) and s(x) are any two binéry polynomials of degree n-1 or
less, then by r(x)+s(x) we mean the polynomial (r.es_)+(z.=

070 X
teseot+(T #s )xn-l where ® denotes modulo 2 sum. Hence =he
n-1 "np-~1°

4]
~
X

four

r

=

w

(@]

1]

binary n~tuple corresponding to r(x)+s(x) is simply r+s={r

I‘lﬁsl,...,r

will mean Fk(

&S —l)' By Fk[r(x)], Ek[r(x)] and Qk[r(x)} Wwe

n-1""n
r), Ek(r) and Qk(f) respectively., All polyncmizls
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considered in this thesis will be over GF(2). If z(x) is the
polynomial corresponding to z and z(x) the one corresponding

to z we have

Theorem 1.6: If n is odd, then

r l+x  if 4|n-=1

g.c.d.(l+xn,z(x))= < (1.23)
L1 if 4fn-1
rl+x  if 4ln+l

g.c.d. (1+x",Z2(x) )= < (1.24)
L 1 if 4fn+1

Proof: Before entering into the proof per se we make the fol-

lowing remarks: 1) If f{x)=f +1’lx+....+kak is any polynomial

0
. 2% 2% k2b .
over GF(2) and i >0 then f(x) =Pty x” 4oL 4T x since by

the binomial theorem all other coefficients are even hence 0 mod-

ule 2. 2) If s and t are any two positive integers such that
g.c.d.(s,t)=1, then g.c.d.(l+xs,l+xt)=l+x. To see this let F be
an extension field of GF(2) which contains all the roots of l+x°
and l+xt. Let a¢F be a root of l+x° and l+xt, then the multi-
plicative order of « must divide s and t, but since g.c.d.(s,t)
=1 it follows that a=1l, hence g.c.d.(l+x5,l+xt)=l+x. 3) Let t -
be an integer, t >0, then an irreducible factor g{x) of 1ax®
over GF(2) is said to have multiplicity s if g(x)sll+xt but
g(x)s+lYl+xt. Now it is well.known[lZJ that over GF(2) all ir-
reducible factors of l+xt, t >0, have the same multiplicity and
that this multiplicity is Zk where k is the largest integer such
k

that 2°|t. With these remarks in mind we proceed  to the proof.

z(X)=x+x3+xS+...+xn_2=x(l+x2+x4+...+xn_3)=x(l+x+x2+ .....

wx(M=30/2)2 L) 7 (14x) 2. Hence g.c.d. (1+x™, 2(x))=g.c.d. (1+x"
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x(l+xn-l)/(l+x)2) and by remark 2) it follows that this is 1

n-1 1

i} . 3 -
i (Lax)F1ex™™ L and 14x if (Lax) 2 l1+x™ Y, Now if (1+x)7|24x"7T,

then l4x must have multiplicity at least 4 by remark 3, hence

~1

(l+x)4=l+x4|l+xn and this. can be if and only if 4|n-1. It

therefore follows that (l+x)3 divides J_~l—><n“l if and only if
4ln-1 from which (1.23) follows.
Equation (1.24) can be established in a perfectly analo-

gous way.

D, REVIEW AND PREVIEW

The purpose of this section is to briefly review what
has been done in the first three sections and to briefly out-
line the remainder of the thesis.

In section A a bandwidth-spreading binary signal scheme
was described which required a binary n-tuple with small par-
ameter P:max(PE,PQ). This gives rise to a new problem in the
design of sequences. There are methods available for the cons-
truction of sequences with small PE. For example the maximal
length sequences[l3], the Legendre seqﬁences[l?], the twin-
prime sequences[l?] and the Hall sequences[l9] all have P_=1

E

and are all of odd length. In fact for these sequences E =-1,

k
0< k<tn, eor Ek=l’ O< k< n, By the results of section C we can

use the above techniques to construct sequences for which P_=1,

8
simply by adding z or z to the sequences obtained by these me-

thods. However the problem of constructing sequences with small

P has never been considered before. From the expression for Ek



" tructing sequences with small P

uences which satisfy Qk=(—l)kE

14

and 8, (equation 1.4) it readily follows that

n

P<< P (1.25)

F

A

ZPF

Hence if we have a sequence with small P we automatically

have a sequence with small P Sequences with small PF are

Fe
very important in radar ranging problems[S,ZD]. However there

are no known technigques, similar in nature to those for cons-

for constructing sequences
B’ }

with small PF'

In the following three chapters three classes of sequ-

ences will be presented for which Ek and Qk bear certain rels-

tions to each other. More specifically in Chapter 2 we present

=(—l)kE2k where 2k is reduced

for this class. The con-

a class of sequences for which Qk

modulo n. In particular we have P=PE=Pg

struction technique for this class gives rise to an interesting

problem in Number Theory(see Theorem 2.1). The study of this class

of sequences alsoc gave birth to an interesting result( see
Theorem 2.6) on thé factorization of the polynomial 1+x" over
GF(2).

In Chaptér 3 we give two methods for constructing seqg-
K O< k<< n. One of these classes
(see section B of Chapter 3) seems to be a good source of se-
quences with small P, In particular it is shown that the Barker
sequences[S] of lengths 5 and 13 belong to this latter class.

In Chapter 4 2 class of sequences is described which satis-

fy HEk‘-‘QkH <2, 0< k< n.



CHAPTER II

CYCLOTOMIC SEQUENCES

In this chapter we describe a class of sequences which

satisfy Qk=(—l)kE O0< k< n, and where 2k is reduced modulo

2k’
n, In particular we have PE=Pg for this class.
n-1 . ' .
Let r(x)=r0+rlx+....+rn_lx be a binary polynomial.

Then when n is odd, it is well known(p. 54 of [13]) that the

even correlation coefficients of r(x)2(reduced modulo 1l+x") are
a permutation of the even correlation coefficients aof r(x). In
fact, Ek[rﬂx)2]=E2k[r(x)] where 2k is reduced modulo n.

Let n be odd and suppose r{x) has the property that r(x)
+r(x)zzz(x)modl+xn. Then by the above remarks and Theorem 1.5
k

Ek[r(x)2]=

(—l)kEZk[r(x)] where r(x)2 is reduced module l+x" and 2k is re-

it follows that @k[r(x)]:(-1)kEk[r(x)+z(x)]=<—l)

duced modulo n. The following Theorem tells us when such an

r{x) exists.

Theorem 2,1: Let n be odd, then there exists an r(x) such that
)2

r(x)+r(x)=z(x)mod 1+x ' if and only if every cyclotomic coset
y

of integers modulo n contains an even number of odd integers,

A(n)

and in this case there are exactly 2 such r(x)'s where A(n)

is the number of cyclotomic cosets modulo n.

Progf: In the following arguments all polynomials are reduced

modulo l+x'.
Necessity. The cyclotomic coset modulo n of an integer k,
0< k< n, is the set < k >={2%kmod n | i=0,1,....3[13]). The for-

mation of these cosets induces a partition on the set of inte-

15
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gers {0,1,2,...,n-1% . Hote alss thz% since for any integer k,

3

o< k< n, Zlkmod(n)=k[21mod(n)jm:i(ﬁ} Tor any integer i =0, then

the cyclotomic caoset of k is << k >=x< 1 >={kmimod(n)| 1i=1,2,...

.,s+ where < 1 >= {ml,mz,...,ms}is the cyclotomic coset of 1.
}.‘

. 2
Suppose there exists an r(x} such that r{x)+r(x)"=z(x).

Let kl be any odd integer, O< k£< n, then the elements of <ikli>

can be arranged as

k Zkl,..,2 kl,k

i -1 S e | (2.1)
m

e, 2. K K 2K _,.uy2

l!

where kl’kZ""’km are the only o522 intsgers in the coset(ij
' 1.
- . . - ~ e 3 .
is the smallest positive integsr for which 2 “kj >n). Since
k ¥ |
X is a term in z(x), then x must e a term in r(x) or
k

2 1. . T . .
r(x)°., Suppose x is a term in ri{x}, then since z(x) contains

no even powers of x, but x" 1 zppszrs in r({x)

. 2k
. 1 . :
have the cancelling term x ~ 3in =ix}). B

2 1, i
2 kl 2 T« k2
r(x) must include x y o se s X ~ but wmust not include x

s We must also

r similar reasoning,

[

ct

since this term will appear in x{x

[

znd must not be cancelled
k

. . ; .. mo.
since it appears also in z(x}. Alss wes must not have x = in r(x),
km
for if x is in r(x), thesn by the sresvicus argument, we must
ka kl
also have x etc... in r(x) which shows that x will be in

2 . . . . . .
r(x)” resulting in the undesired carcellation with the similar

term in r(x).

k.

The same arguments hold fer k. i=1,2,...,m. Hence if x =
ki 1 ) Kie1

is a term in r(x), then x ‘ =T
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k. k.
r(x). Lastly, since x © is in r(x)2 if and only if x * L is in
. ky
r{x), then it follows that we must include in r(x) the terms x ~,
2k k 2k k 2k k 2k
4
X l,...,x 3,x 3,.... etc or x 2,x 2,...,x , X 4,...etc, and

this can be done successfully if and only if there are an even

number of odd integers in <:kl >, This must be true for every

cyclotomic coset since every cyclotomic coset(except < 0 >) con-
tains an odd integer and all odd powers of x are terms in z(x).
Sufficiency. Conversely, suppose that every cyclotomic coset

of integers modulo n contains an even number of odd integers,

_ | - Kk, 2k, k. 2k
then construct r{x) by including in r(x) x —,x s e ey X T ,X ,

k 1 2k k, 2k, k, 2k, k_
e reaaa » X s X gees O X ,X P e et et ana e s X

X s4+.. Tor sach coset <Ikr>£ 0 . Since xD corresponds to < 0 >,
it may be included or excluded. By the arguments used in the

proof of the necessity, this will yield an r(x) which satisfies

r(x)+r(x)2=z(x).

From the above proof we see that in the construction of

| 2

1 an r(x) which satisfies r(x)+r(x)“=z(x) we have exactly two

A(n)

choices for each coset, hence there are exactly 2 solutions

‘where A(n) is the number of cyclotomic cosets modulo n.

An alternate way to ascertain that the number of solutions

Mn) is the following: Let r{x) be such that r(x)+r(x)2=

is 2
z(x) and let e(x) be an idempotentl9] in the Algebra of poly-

nomials modulo l+x over GF(2), i.e. e(x)2=e(x). Then [r{x)+

E(X)]+[r(x)+e(x)]2=r(x)+r(x)2+e(x)+e(x)2=z(x) énd so s{x)=r(x)

(x)

+e(x) satisfies s(x)+s(x)2=z(x). Conversely, suppose that Ty

and r2(x) satisfy ri(x)+ri(x)£z(x), i=1,2; then [rl(x)+r2(x)]2+
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[rl(x)+f2(x)]:rl(x)+rl(x)2+r2(x)+r2(x)2=z(x)+z(x)=0 which impl-

ies that r,(x)+r,(x) is an idempotent. We have therefore shown

1 2
that the set of solutions {r(x)|r(x)+r(x)2=z(x)}, when it is not
empty, forms a coset of the space {e(x)le(x)zze(x)} of idempo-

tents and this space is known to have dimension A(n) over GF(2)

[9].

Because of Theorem 2.1 we are led tQ

Definition 2.1: A binary sequence r of odd length n for which
) .

r{x)+r(x)“=z(x) will be called a cyclotomic sequence.

Example: If n=5, then the cyclotomic cosets are {0} and £1,2,4,
3%. Hence following the notation used in the proof of Theorem

2.1 we have kl=l and k,=3. Using the construction technique des-

2
cribed there the cyélotomic seguences of length 5 are(in poly-

) 4
nomial form) x+x2+x', l+x+x2+x4, x3 and l+x3.

Suppose n is a prime such that nzlmod(4) and for which 2
is primitive(i.e. 2 is a primitive element of GF(n))}. In this
case the cyclotomic cosets are {0} and {1,2,3,...,n-1% and both
these cosets contain an even number of odd integers. We there-

fore have

Theorem 2.2: Cyclotomic sequences of length n exist for all

primes n for which 2 is primitive and such that n=zl mod(4).
We single out this subclass by making

Definition 2.2: A cyclotomic sequence of prime length n for

which 2 is primitive will be called a primitive cvclotomic sequ-

ence,
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The following Table lists all primes up to 4649 for which

there exists primitive cyclotomic sequences.

TABLE 1
PRIMES LESS THAN 4650 FOR WHICH PRIMITIVE

CYCLOTOMIC SEQUENCES EXIST

s, 13, 29, 37, 53, 61,101,149,173,181,197,269,
293,317,349,373,389,421,461,509,541,557,613,653,
661,677,701,709,757,773,797,821,829,853,877,941,
1061,1109,1117,1213,1229,1237,1277,1301,1373,1381,
1453,1493,1549,1621,1637,1669,1693,1733,1741,1861,
1877,1901,1949,1973,1997,2029,2053,2069,2141,2213,
2221,2237,2269,2293,2309,2333,2357,2389,2437,2477,
2549,2557,2621,2677,2693,2789,2797,2837,2861,2909,
2957,3037,3253,3413,34461,3469,3517,3533,3557,3581,
3613,3637,3677,3701,3799,3733,3797,3853,3877,3917,
3989,4013,4021,4093,4133,4157,4229,4253,4261,4349,
4357,4373,4397,4493,4517,4621,4637

Source: A, Cunningham, H.J. Woodall and T.G. Creak,
"Proc, of the Londor Math., Scc.," Vol.21, 1922,pp.
343-358,

By Theorem 2.1, if n is as specified by Theorem 2.2, then
there are exactly four primitive cyclotomic sequences of length

n. In fact, if E:(r ’rn-l) is & primitive cyclotomic se-

grTyre-e

quence then the other three are r =(

rD,rl,...,rn_l), £3=(r0,rl,
r2,...,rn_l) and £4=(rD’El’EZ""’En—l) where Ei is the binary
complement of r.. It is clear from equation (1.11) that if =

and s are two binary n-tuples differing only in one coordinate,

then lPE(E)"PE(E)l < 4 and similarly for PQ and PF' Hence since
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a sequence and its binary complemsnt have exactly the same cor-

relation coeficients(even, odd and Tinite) then for any two pri-

mitive cyclotomic sequences r zncd s we have lPF(r)-PE(s)\sgd
e collect these results as

and similarly for Pg and PF. W

Theorem 2.3: If r and s are any *two osrimitive cyclotomic segu-

ences of the same length, thern

P(z)-P_(sii< 2
|Polx)-Poleii< 4 (2.2)

By (2.2) it follows that for lzrge n 21l cyclotomic sequ-

} which

)
3J
0
Q
)
a
iy
|
)
3
[ta]
ot
oy
3
-3
H
| —
=
Q.
He
)
je)
}__)
0
(3
n
0
i
)
©
e
m
ck
©
H
0
i
&

;aX(PE,Pg

is approximately the same.

For all n's less than 2355 wnich satisfy the conditions of
Theorem 2.2 the primitive cycloic=ic segusnces of length n with
rD=rl=l has been analyzgd on the UNIVAC 1107 Computer in the

University of Notre Dame Computing Cznter end the results are

(@5

contained in Table 2., The Legesndrs{or guadratic residue) sequ-

ences[17] have also been analyzec Tor comparison's sake and the

results of this investigation =rsz ziven in the Appendix,
Whether or not primitive cyclctiomic segusnces exist for

arbitrarily long lengths is unkncown since it is unknown whether

or not there exists an infinite number of primes for which 2 is

primitive[é]. However the folleowing Theorem shows that there

-
m
]
6]

exist cyclotomic sSequences o itrarily long lengths,

f distinct primes which

[w]

Theorem 2.4: Let PysPorecesP be & sest
satisfy

1) p

| -
=l
0
[
i

nt
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TABLE 2

F 1

P

EY

~
n/PF, n/PE, FOR THAT

PRIMITIVE CYCLOTOMIC SEQUENCE OF LENGTH n

21

WHICH STARTS WITH rD=rl=l, FOR ALL m<C 2358
n PF n/PF PE n/PE n PF n/PF PE n/PE

5 1 5.00 1 .15.00 1109 |8 13.20 103 10.75
13 4 3.25 3 2.60 1117 {101 111.0%5 113 9.87
29 12 2.42 13 2.23 1213 |99 12.26 1105 11.55
37 8 4,62 9 4,12 1229 {81 15,18 |93 13.20
93 16 3,31 17 3.12 1237 {82 15.10 {107 11.56
61 10 6.10 11 5.55 1277 {102 {12.50 {109 11.70
101 18 5.61 23 4,40 1301 {154 18.45 161 8.09
149 26 5.74 31 4,80 1373 120 {11.45 {127 10.81
173 20 8.65 25 £.92 1381 |106 113.01 (119 11.61
181 24 7.55 31 5.85 11453 {100 {14.53 (123 11.81
197 26 7.59 35 3,64 1493 131 {11.41 {133 11.24
269 38 7.08 45 5.98 1549 111 13.93 141 13.97
2913 28 10,45 {37 7.92 1621 119 113.53 {131 12.39
317 41 T.74 53 5.98 {1637 {142 }11.52 . {149 11.00
349 38 9.19 53 6.59 1669 {124 113.45 {125 13.33
373 65 5.74 65 5.74 1693 |118 |14.35 139 .}{12.20
389 52 7.48 53 7.35 1733 126 |13.76 (139 12.50
421 53 7.95 57 7.40 1741 {109 [16.00 {128 13.50
461 57 8.10 73 6.33 1861 {120 |15.50 |139 13.40
509 55 9.25 57 8.53 1877 J110 117,095 [135 13.90
541 49 11.05 (61 g8.89 1501 ]125 {15.21 {163 j11.68
557 64 8.70 79 7.05 1G4S ;132 (14,75 |149 13.06
613 64 9.58 65 9.45 1973 (120 16,45 143 [ 13.80
653 87 7.91 103 16,35 1997 146 [13.68 {173 }11.52
661 68 }9.74 85 7.79 2029 156 |[13.01 167 12.15
677 198 6.91 - 1103 {6.57 2033 [152 {13.50 (161 (12.74
701 59 11.80 {75 9.35 2069 | 112 |18.50 [145 14,29
709 66 10.72 |77 9,20 2141 {166 |12.90 |181 11.84
757 54 9.01 91 8.33 2213 1132 |16.74 (161 13.72
773 70 11.01 |93 8.32 {2221 149 {14.91 |157 14.17
197 95 8.40 103 |7.74 2237 | 142 [15.74 161 13.88
821 87 9.45 91 9.03 2269 {131 |17.32 |169 13.41
829 74 11.20 {81 10.22 {2293 ;136 |16.85 {147 15,60
853 94 9.08 97 §.80 23009 | 158 |14.60 |181 12.75
B77 64 13.70 {79 11.10 2333 {155 {14.95 [173 13.49
941 30 11.79 {91 10.35 12357 {123 {19.15 }163 14,45
18061 {90 11.80 | 131 {8.11
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2) 2 is primitive modulo p;.

o a a
e =Py lp2 2"'pr T =1, then there exists a cyclotomic sequ-

ence of length n.

Proof: 1) Let p be a prime such that B|lp-1, then by Theorem 95
in Hardy and Wright[lD] 2 is a quadratic residue modulo p. That

is to say, there exists an integer a such that 8252 mod{p), hen-

. lEap—l (82)(p—l)/252(p—l)/2

mod{p) from which it follows that
2 is not primitive modulo p. By condition 2 of the Theorem it
follows that (pi—l)/d must be odd for i=1,2,...,r.

2) Since 2 is primitive modulo Py then there exists an inte-

2k

ger k such that ZkE—lmod(pi) which implies that 2 Elmod(pi)

and this in turn implies that (pi—l)IZk. Since k< ﬁi’ we must

(Pifl)/z

have that k:(pi-l)/2. We therefore have that 2 s-lmod(pi)

for i=1,2,...,r. If a=zbmod(p), p any prime, then by a simple

application of the binomial theorem we obtain ap;bpmod(pz) and

t t
by induction aP =bP mod(pt+l) for any integer t >0. Applying

o.-1
(pi—l)/Z (2(pi—l)/2)pi1

this to 2 E—lmod(pi) we obtain =-1mod(

C O . . o.~-1 .
pil)where -1 remains -1 since p;i is odd.

-1 -1 ~1 -
P17, (P2Thypde ™, L., (P

Let T=Lcm[ (P1™1) 5
o 2 2 <
LCM stands for least common multiple, then by part 1) of the

proof 2|7 but 4ft, which implies that 21/(pi—l)p§ifl is odd for

ar—l]

where
Pr

i=1,2,...,r. We therefore obtain that ZTE—lmod(pgi) for i=1,2,.
..,r and' consequently 2%=-1mod(n).

We have therefore shown that -1 belongs to < 1 >
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which shows that k and -k belong toc the same cyclotomic co-

set for every integer k, O0< k< n, since < k >=k< 1 >. This in
turn shows that in each cyclotomic coset (except the trivial
coset < 0 >) the number of odd integers is equal to the num-
ber of even integers because if k is odd(even) then -kzn-kmod(n)
is even(odd). If we can now show that the order of each cyclo-
tomic coset(except the trivial one) is divisible by 4 we will
have completed fhe proof that each cyclotomic éoset contains an
even number of odd integers as required by Theorem 2.1.

3) If k is an integer, O< k< n, then the order of < k > is the
smallest positive integer 1 suéh that Zikskmod(n), i.e. such
that nlk(Zi—l). Since k<< n, then pt|2i-l for some t, 1< t< 1.
But, since 2 is primitive modulo P this implies that (pt—l)|i

which in turn implies that 4|1 since Al(pt—l).

g.£.D.

Though Theorem 2.4 produces an infinite number of integers for
which cyclotomic sequences exist, yet these do not exhaust all
such integers. Consider for example n=17, then the cyclotomic
cosets are < 0 >={0}, <1 >={1,2,4,8,16,15,13,9} and < 3 >=43,
- 6,12,7,14,11,5,10}. Since all these cosets contain an even num-
ber of odd integers it follbws from Theorem 2.1 that there exi-
st cyclotomic sequences of length 17, yet 17 is not of the form
speﬁified by Theorem 2.4, A list of all n's up to 269 for which
cyclotomic sequences exist is given‘in Table 3.

The following Theorem gives two necessary conditions for

the existence of cyclotomic sequences.
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TABLE 3
INTEGERS UP TO 269 FOR WHICH THERE

EXIST CYCLQTOMIC SEUQUENCES

5, 13, 17*, 25, 29, 37, 41%, 53,61,65,
97%,101,109%,113%,125,137*%,145,149,157%,
169,173,181,185,193%,197,205%,229%,241%,
257%,265,269

*¥ Integer not of the form specified by
Theorem 2.4.

Theorem 2.5: If n is odd and if there exists a cyclotomic se-

quence of length n, then 4|n-1 and n is not divisible by an

integer of the form 27-1 for i >1.

Proof: 1) The weight(i.e. the number of non-zero coceficients)

of z(x) is clearly (n-1)/2. Since r(x) and r(x)2 have the same
weight, then the weight of r(x)+r(x)2 is even., Hence if there
exists an r(x) such that r(x)+r(x)2=z(x) it follows that (n-1)/2
must be even, i.e. 4 must divide n-1l.

2) Suppose 2i—l|n for some i >1, then n=q(2i—l) and the cycla-
tomic coset of gq is q,2q,...,2ial which contains only one odd
integer(namely q itself). By Theorem 2.1 nao cyclotomic sequ-

ence of length n exists.

The conditions of Theorem 2.5 however are not sufficient.
For example'the cyclotomic coset of 3 modulo 89 is {3,6,12,24,
48,7,14,28,56,23,46% which contains only 3 odd integers, yet

89 satisfies the conditions of Theorem 2.5.
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The problem of finding the irreducible factors of 14x"
over GF(2) is a very important problem in the study of cyclic
codes[6,7] and as a methoa of finding irreducible polynomials
over GF(2)[7,18], Theorem 2.4 affords an interesting Corolla-

ry in this direction which we state as

Theorem 2,6: If n is of the form specified by Theorem 2.4, then

a2ll the irreducible factors of l+><n over GF{(2) are self-reci-

procal and all(except l+x) have degree a multiple of 4.

Proof: It is well known[ 9] that there exists a one to one cor-
respondence between the irreducible factors of l+x" gver GF(2)
and the cyclotomic cosets of integers modulo n. In fact if «
is a primitive n-th root of unity belanging to some extension
field of GF(2) and k an iﬁteger, 0< k< n, <fki>={m
its cyclotomic coset, then g(x):’;'(x—ami) is an irreducible

i=1
factor of l+x' of degree s, If n is of the form specified by

l,mz,...,mS}

Theorem 2.4, then my and -m. belong to < k > which implies that
if T is a root of g(x) then so is T—l which in turn implies
that g(x) is self-reciprocal(a polynomial f{(x) of degree s is
said to be self-reciprocal if f(x)=x"f(1/x)).

Since the order of every cyclotomic coset(excepf < 0 >)
is a multiple of 4 it follows by the above correspondence that

all the irreducible factors(except l+x) have degree a multiple

of 4.

Q.E.D.

Examples: 1) The irreducible factors of l+x25 over GF(2) are

1+x, l+x+x2+x3+x4 and l+x5+xlo+x15+x20.
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[ =

2) The irreducible factors of l+xGJ over GF(2) are l+x, 1+x

+x2+x3+x4, Lxx st o +x12; l+x4+x5+x6+x7+28+x12, Lax%ax>

+x6+x7+xlo+x12,'l+x2+x3+x4+x6+x8+x9+><lD+x12 and l+x+x3+><5+x6

+x7+x9+xll+x12. We remark that l+x65 contains all the self-re-

ciprocal irreducible polynomials of degrees 1,4 and 12.

A binary cyclic code is said to be reversible[22] if when-
n-1

) ] n
ever v(x)=va+v.oX+...4V X is a code word then so is x v{(1/x),

0 1 n-1
where n is the length of the code. The following Corollary is

immediate.

Corollary:-If n is as specified in Theorem 2.4, then all binary

cyclic codes of length n are reversible.



CHAPTER III

SELF-DUAL SEQUENCES

In Chapter 1 a self-dual sequence was defined(Def'n 1.1)
as a binary n-tuple r for which Qk(f)z('l)kEk(f)’ The follow-
ing Theorem characterizes the self-dual sequences in a slightly

diffefent manner.

Theorem 3.1: If n is odd and r a binary n-tuple, then r is self-

. dual if and only if F, (r)=0 for all odd k, O< k< n.

Proof: 1) Suppose r is self-dual, then for odd k, Fk(f)—Fn_k(f)
=_Fk(£)-Fn;k(£) which implies that Fk(£)=0'
2) Suppose Fl.(r)=0 for all odd k, O< k<< n, then Qk(£)=Fk(£)
~Fn—k(£)=(_l)kEk(£)' If k is even, then n-k is odd and so Qk(f)
k
Q‘E.D.
It is therefore clear that for self-dual sequences P=PE=PQ=PF'

In this chapter we give two methods for the construction
of self-dual sequences. The strategy in both of these techniques
is to consider an operator H which maps binary n-tuples into
binary n-tuples and which leaves the even correlation coef=-
ficients invariant, i.e. Ek(H£)=Ek(£), and then loock for sequ-

ences r which satisfy r+z(or z)=Hr.
A, THE CYCLIC SHIFT OPERATOR

Let r be a8 binary n-tuple, T the cyclic shift operator

defined in Chapter 1, then it is well known(Theorem 5.4 of [13])

27
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that Ek(TiE)zE (r), 0K i< n. Suppose r has the property that

k'=
r+z=Tir far some i, 0O< i<< n, then by the above remark and Theo-

rem 1,5 if follows that Qk(£)=(—l)kEk k(Tl£)=(—l)k

Ek(r), hence by is self-dual. The same of course is true if z

is replaced by E. Theorem 3.2 will tell us for which values of

(x+z)=(-1) €

i and n such an r exists. In the proof of Theorem 3.2 we will
use polynomials modulo 1+x" instead of binary n-tuples and so

we make the following observation: if r(x)=r0+rlx+...+rn_lxn_l,

i~1 i n-1
+T X +a...4T X Ymod

i
then x"r(x)=(r_ .+ Tho1X 0 n-i-1

T . X+a.aet
n-1i "n-~i1+1

1+x" and so the n-tuple corresponcing to x'r(x)mod l+x is sim-
ply TlE. Hence to find a binary n-tuple r such that £+E=Tl£ is
equivalent to finding a binary polynomial r(x) such that r(x)

/
+z(x)sxlr(x)mod 1+x.

Theorem 3.2: There exists a binary n-tuple r such that r+T

=z(z) if and only if 4In-1(4{n+l) and g.c.d.(n,i)=1; and in

that case, there are exactly two such n-tuples.

Proof: We will prove the Theorem for z, the proof for z being

perfectly analogous.

‘Sufficiency. Suppose 4in-1 and g.c.d.(n,i)=1, then by remark 2

in the proof of Theorem 1.6 we have that g.c.d.(l+xn,l+xi)=l+x
and since n is odd{which in particular implies that 1+x" has

no repeated factors) it follows that g.c.d.[l+x", (1+x™)/(1+x)]

=1. If g(x) is a polynomial over GF(2) which is relatively prime

to 1+x", then there exists polynomials f(x) and h(x) such

that 1=f(x)g{x)+h(x)[1+x"] from which it follows that f{x)g(x)

=1lmod l+xn(see Theorem 3H in [14]). Hence there exists a poly-
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nomial s(x) such that s(x)[(1+x*)/(1+x)]=1 mod 1l+x" which, upon
multiplying both sides by z(x), becomes [z(x)s(x)/(14+x)](1+x™)

=z(x) mod 1+x". Letting t(x)=z(x)s(x)/(1+x) mod 1l+x' we have

o(x){l+x)=z(x) mod 1+x" from which it follows that £+Tl£=5

which is what we wanted to show. We now show that if there is

one solution, then there are exactly two.

Suppose we have two binary n-tuples I and I, such that T,

i i i .
+T7r;=z and r,+T r,=z, then (El+£ )=T (£l+£2) and since g.c.d.(

Z2 °F L1TIoe

Necessity. Suppose there exists a polyncmial r(x) such that

n,i)=1, this can occur only if )=

r(x)+z(x)5xir(x)mod 1+x", then it follows that (l+xi)r(x)zz(x)
mod 1+x', which in equation form is (l+xi)r(x)=z(x)+f(x)(l+xn)
for some polynomial f(x). Let g.c.d.(n,i)=d, hence n=qld and i=
q,d where(g.c.d.(ql,q2)=l. We therefore have (l+qud)r(x)=z(x)
+f(x)(l+xq2d) which implies that (l+xd)kg.c.d.(z(x),l+xn) which

by Theorem 1.6 implies that 4ln-1 and d=1.

Q.E.D.

If n is an odd integer, then 4ln-l or 4in+l(but not both),
hence by Theorem 3.2, given an odd integer n, there exists ex—-
actly 28(n) binary n-tuples r which satisfy £+Ti£=5(or z) for
some i, O< i< n, and P(n) is the Euler-Phi function of n(see

Section 5.5 in [10]). #(n) is simply the number of integers less

than n and prime to it.

Example: When n=3, 2/ (3)=4 and the solutions to r+Tir=z are

(1,1,0),(0,0,1,),(0,1,1) and (1,0,0).

Definition 3.1: We define the reciprocal operstor R by setting




(@S]
o]

R(ro,rl,...,r y=(r ).

n=1’" o1 Fr-27 0000 T
Lemma 3.1: For any binary n-tuple r we have that RTl£=Tn_lR£
i :
Proof: RT z=R{r, _s,eeory 1omgomysees T g g)=(T0 5 q0 %0 s ores
-1 N1
rD’rn—l""rn—i)’ On the other hand T le: T l(rn_l,...,rD)

=(r )T T ). Hence it follows that

. r . . .
n-i-1’"n-i-2" n-1’""?"n-1i

RTir=7"" ¥Ry

Theorem 3.3: If §+Tl£=5(g), then R£+Tn-er=z(E).

Proof: By Lemma 3.1, R£+Tn—lR£=R£+RTl£=R[£+Tl£]:Rg:z and simi-

larly for 2.

pau)
m
s

By Theorem 3.3 when finding the solutions of‘£+Tl§=E(or

) we oniy need consider those i's which are less than or eguel

(O R

to (n=1)/2.

For all n's up to 51 the best sequence(in the sense of mi-
nimizing P=max(PE,Pg)) in the above class, i.e. the class <
£+Ti£=§(or z), g.c.d.(n,i)=1 , was found on the IBM 1132 com-
puter of the Engineering College of the University oerotre Jam
'~ The results of this investigation are given in Table 4.
of giving a best sequence explicitely the corresponding i, i.=.

that i such that £+Tl£=§(of g), is given.
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TABLE £
SELF-DUAL SEQUEXKCIS WHICH

SATISFY r+T r=zior z)

n i|P=P.ln i ¥P=3F
3 |1t |ezs oz } 5
s {2 |1 1311z 12
7 12 |3 13zl l1s
9 |2 |5 |35 & 13
113 |5 |37 o a7
13 1 s 3 a5 16 19
15 | 4 Ter iz 17
17 | S 7 43 - 1z 119
19 | 7 7 143 | 1s v
21 | 8 5 47 1z 121
23 (7 |11 {49 ‘1z |13
25 1 7 111 !s1 . |29
27 | 8 11 §

B, THE RECIPRCCAL SEIRATOR

It is clear that if r is a binary n-tuple, n odd, then

E (Rr)=E (r), i.e. R leaves the even correlation coeficients
k\NEIER D)

invariant. Hence if r+z=Rr then r is self-dual. We note here
that we cannot use z because z_ ,=2 whnereas the corresponding
- [l

coordinate of r+Rr is always zero. &= have

- Theorem 3.4: If dln—l, then the sstirz+Rr=z} forms a coset of

the space {£|R£=£}. In particular, the number of binary n-tu-

ples r which satisfy r+z=Rr is 2(n+;;/2.

Praocf: It is clear that the set of 21l binary n-tuples forms
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a vector space over GF(2)(with the natural operations) of dim-
ension n. Since R is e linear transformation on this space then
V= gerr=r§ is a.vector subspace. Now Rr=r if and only if

= iddl di-
(rn—l"""r(n+l)/)_(r0’rl""'r(n~3)/2)’ the middle coordi
nate being arbitrary, hence the dimension of V over GF(2) is
(n+l)/2.

Let s=(0,..,0,0,1,0,1,..,1,0) where the number of leading
zeros is (n+l1)/2. Let w belong to V and let r=s+w, then r+Rr=
s+w+R(s+§)=§+R§+§+Rﬂ=§+R§=E and so I satisfies r+z=Rr.

lLet T11I5

z+z=0 which implies that (£l+£2) belongs to V. Hence r satisf-

satisfy £i+E=R£i i=1,2, then (r +r )+R(£l+£ ) =

ies r+z=Rr if and only if r belongs to s+V.

g.t.D.

Corcllary: The set {£|£+E=R£} ﬂs closed under R, binary comp-

lementation and the map r—> r+z

"
|
|

Example: If n=5 the set of r's which satisfy r+z=Rr is{(D,D,D,

1,0),(0,0,1,2,0),(0,1,0,0,0),(0,1,1,0,0),(1,0,0,1,12),(2,0,1,1,

1),(x,1,0,0,1),(1,1,1,0,1)}.

A best possible sequence, in the sense of minimizing
P, which satisfies r+z=Rr has}been found for n=5,9,13,17,21,
25 and 29, These results are given in Table 5. These results
seem to indicate that this class of sequences is a source of
good sequences{unfortunately it is large). For example we note
from Table S5 that the Barker sequences(sequences which satisfy

le|s;l for O< k< n) of lengths S5 and 13 are in this class,
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TABLE S
SELF-DUAL SEQUENCES WHICH SATISFY

r+z=Rr

n Sample Sequence P=Pr

S {18111

9 (100001011

13}11111100110101
17{10100100010001111
211111101100001011000101
25,1000111000000101011011011

29 lllDDlilDDDUDDUlDlDlDOlUDllDl

W W W W ok~ W

Because of the wide attention paid to Barker Sequences we single

this out as

Theorem 3.5: The Barker sequences of lengths S5 and 13 satis-

fy r+z=Rr.

For the lengths 9,17,21,25 and 29 the seguences given
in Table 5 arerthe best (in the sense of minimizing P) for these
lengths since there do not exist Barker Sequences for these
lengths[15].

For lengths 33,37.and 41 a sequence in the above class was
found for which P=S. These are given below.
n=33, llDllDllDlDDDDDDDlDlDlDdDOlllDDDl
n=37, 1001101011110010000101110010111110011
n=41, 11011001011011000000010101001110000110001

We remark that these may not be the best for these lengths.



CHAPTER IV

WEAKLY-BARKER SEQUENCES

In Chapter 1 a binary signal scheme was introduced which
gave birth to a new problem in the design of sequences, name-
ly the problem of finding sequences having small P:max(PE,Pg).
Hence given n we would like to find an n-tuple r which mini-
mizes P. A Barker Sequence[S] is a binary n-tuple r such that

|F (r)< 1, 0< k< n. Since E _=F +F and 8, =F -F it foll-
n-k n n

k™ k -k k7 k
ows that for a Barker Sequence T, PE(Ekg 2 and PQ(Ekg_Z from

-k

which it follows that P(E)S§2v We can say a little more for

since F| (r)=(n-k)-2d,[f _ (z),b__ ()] then F

If n is odd and k is odd then Z‘Fk(f). Hence if r is a Barker

(r)=(n-k)mod(2).

Sequence of odd length n, then F, (r)=0 for k odd and iF (E)l=l

3 k
for even k. Therefore for a Barker Sequence r of odd length
P(r)=1 and for a Barker sequence r of even length P(r)=2. In
both cases this 1s an optimum solution to the ébove minimiza-
\tion praoblem. Unfortunetely, Barker sequences are known to ex-
ist only for n=1,2,3,4,5,7,11 and 13, It is known that if any
other Barker sequences exist, they have n even and a perfect
square[4,15,16]. Whether any such exist for n greater than 13
and of this form is unknown, but the educated guess seems to
be ﬁno".

The tactic in this Chapter is to relax the strict Barker
criterion sufficiently to guarantee the existence of many seq-

uences without eliminating all the useful implications which

the condition imposes on E and 8. To this end, we define a

34
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Weakly-Barker Sequence(or WB-sequence for short) to be a bina-
ry n-tuple r such that

an_k(rﬂ:g 1 < k< (n+l)/2 | (4.1)
The following result shows that this relaxation of the full

Barker criterion has indeed greatly widened the number of sequ-

ENCes.,

Theorem 4.1: There exist WB-sequences of length n for every n.

Proof: The proof follows by noting thet r=(1,0,1,0,..,1,0,0,.
...,0), where the number of trailing zeros is (n=1)/2 for odd
n and (n/2)+1 for n even, is always a WB-sequence(Unfortunat-
ely, this particular sequence has poor £ and 8 functions for

large n).

Q.E.D.

That the relaxation of the Barker condition has not comple-
tely destroyed its utility with respect to describing E and 8
follows from the féllowing Theorem which states essentially
that for WB-sequences either the even and odd correlation func-

tions are both good or they are both bad.

Theorem 4.2: For a WB-sequence,

le ) -1e ll <2, o< k<. (4.2)
Proof: From (1.4) we have that

ko2 nk -
0< k< n (4.3)

Ek+Qk=2Fk

But (4.3) with the definition of a WB-sequence shows that



that |F
- n

36

< 2 0< k< (n+1)/2
BEOES n | (4.4)
<

2 [(n—l)/2]<1k<:n.

But (4.4) in turn implies (4.2).

Q.E.D.

The fact that for a WB-sequence both the even and the odd
correlation functions are of the same quality is a feature not

charactheristic of most commonly encountered sequences. For in-

stance, PN—sequences[l3] have optimal even correlation coeffici-

ents(in fact Ek=—l for 0< k< n) but can have fairly poor odd
correlatioﬁ coefficients, i.e. there may be values of k for which

Qk is quite large. For example, the PN-sequence 100001101

0100100010111110110011 of length 31 has QlB=l3.

For any given length n, the set of all WB-sequences can
be generated as follows. First pick Tq and To_1 arbitrarily.
Hence there are four starting points for the construction. Next,

choose Ty and ro_o in such a way that an_zls;l. Recall that

F . i1s a function of TsTysesesT he-

. r .,T . see,T
n-i i=-1’"n-i’ n-i+1’ 'Th=1’

nce can be computed. On the kth step choose T _1 and Tk such

_klsgl. If n is odd , then the last step in the algori-

h . . . .
thm will consist in choosing r(n—l)/Z such that !F(n—l)/2hg 1.
If we only consider the construction of WB-sequences of even

length, then the above algorithm generates a tree in which each

branch is labelled with a binary 2-tuple, namely ( ).

Tk-1"Tn-k
All the paths of length k starting from the first node will

give all the WB-sequences of length 2k. In the construction of
this tree a path will terminate when it is no longer possible

to choose and T in such a way that |F l< 1. See figure

k-1 -k n-k
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1 for aﬁ example.
FIGURE 1.
PARTIAL TREE FOR THE GENERATION OF

WB-SEQUENCES OF LENGTH 8

01
/
W
, 01
01 , 10
10 \DD‘

01

Following the path with arrow heads we obtain the WB-sequence
08010010 of length B8, The above algorithm was implemented on the
UNIVAC 1107 computer in the University of Notre Dame Computing
Center, and all the WB-sequences wefs generated for lengths 13,
14,16,18,19,20,21,22,25,27,31.and 32. In Table 6 a sample of the
best WB~sequences(in the sense of minimizing P) obtained is given
for each of the above mentioned lengths. In Table 7 all the best
WB~sequences of length 31 are given. It is interesting to note
that the smallest value af PQ obtainable with PN-seguences of

length 31 is 7. Hence the WB-sequences given in Table 7 are stric=-

tly better than the best PN-seguences(in the sense of minimi-
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zing P);
TABLE 6
SAMPLE OF BEST WB-SEQUENCE OF VARIOUS
LENGTHS
Number of
n PE PQ Sequences Sample Sequence
1311 11 4 1111200110101
14 12 14 54 11100011101101
16 {4 |2 8 . 0000110010010101
18 |2 |2 8 : UlUllDlDDDDDllDDll
19 15 {3 8 1010101001111110011
20 {4 |4 64 00111100100010010101
21 IS |5 T2 0101101001000002110011
22 |2 |4 8 0110010101100011111111
25 |5 |5 40 1010101001100111111001111
27 1S |5 24 101010100101100001111110011 -
31 {5 5 12 0000110000110111011101010010101
32 _4 6 16 lllDDDllllllDlDDUlDDDlDlDllDllDl




TABLE 7

BEST WB-SEQUENCES OF LENGTH 31

0000110000110111011101010010101
1111001111001000100010101101010
01011001011060010001000000111111
1010011010011101110111111000300
0000001111110111011100101100101
1111110000001000100011010011010
01010110101000158001001111001111
1010100101011101110110000110000
0000000111100100111001011010101
1111111000011011000110100101010
0101010010110001101100801111111
10101011010011100100111100000080

39



CHAPTER V
SEQUENCES OBTAINED FROM AN-CODES

There exists very few methods of obtaining sequences
with desirable correlation properties. The only real success
obtained in this area has been the construction of binary two-
level autocorrelation sequences(i.e. binary sequences for
which ED=n and Ek=m, < k< n, and m an integer, -n< m< n)[lB]
The success obtained here can be mainly attributed to the
fact that the construction of binary two-level autocorrelation
sequences has a perfect analog in Mathematics, namely the cons-
truction of special difference sets[l?,l9]. As has been pointed
out before, there are no’construction techniques available for

the construction of sequences with a prescfibed value of PF=

max |F.|.
0< k

This Chapter is mainly a compendum of results obtained
about sequences derived from Arithmetic Codes, more specifically
from cyclic AN-codes. These results seem to indicate that this
is a source of good correlation sequences and hopefully more
work will be done in this area.

For any positive integer A the AN-code generated by A is
the set of integers AN for O N B where B is a specified in-
tegér which determines the number of integers in the code[21].
With each integer(or code point) in an AN-code we associate a
code word as follows: Let the largest code point A(B-1) in the
AN—code'reduire n places for its radix two form, then we asso-

ciate with each code point in the AN-code its n-place radix

40
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two form which is called the corresponding code word and n the
length of the code. For example if A=3 and B=4 then the AN-code
is £0,3,6,9} and the corresponding set of code words is {0000,
0011,0110,1001} where the rightmost digit in the radix two
form corresponds to 20. An AN-code is said to be cyclic if the
corresponding set of code words is closed under the cyclic-shift
operator T. In the study of cyclic AN-codes the convention is
adopted that a cyclic AN-code of length n is not to contain the
integer corresponding to the all 1 code word. With this conven-
tion it is known(see Theorem 3.1 of [21]) that an AN-cbde with
B code points is cyclic if and only if AB=2"-1. For example if
A=3 and B=5 then the AN-code is {0,3,6,9,12} and the correspon-
ding set of code words is {0000,0011,0110,1001,1100} which is
cleariy closed under T. Given an odd integer A the convention
is adopted that B=(2"-1)/A where n is chosen such that Al2"-1,
but AYZi—l, for any i, O0< i< n. This particular n is called
the exponent of 2 modulo A aﬁd denoted by e(A)( e(A) is there-
fore the length of the cyclic AN-code generated by A). Sequ-
ences obtained from two classes of cyclic AN-codes have been
analyzed, namely the Mandelbaum-Barrows cyclic AN-codes and the
modified Mandelbaum-Barrows cyclic AN-codes. In the first case
the sequence analyzed was taken to be the first half of the co-
de word corresponding to A(the reason for this is given in sec-
tion A) and in the second case the sequence was taken as the
code word corresponding to A.

A. MANDELBAUM-BARROWS

We state Theorem 3.7 of [ZlJ even though it uses terms
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which have not been defined here. The definitions can be found

in [21].

Theorem 5.1 (Mandelbaum-Barrows): If B is any prime such that

2 is primitive in GF(B), -then A=(2°71

-1)/B generates an equi-
distant cyclic AN-code of length n=B-1 and minimum distance

Dmin=int[(B+l)/3].

Thé codes given by the above Theorem are the Mandelbaum-
Barrows cyclic AN-codes. It has been observed in this work that
the code words of the Mandelbaum-Barrows code are all of the
form E% where r is an n/2~tuple. This follows directly from the
fact that the set of non-zero code-words for these codes forms
a single cyclic class which is closed under complementation and
the only way this can be is that the code words be of the form

suggested above., We collect this as

Theorem 5.2: The non-zero code words corresponding to the Man-

delbaum-Barrows cyclic AN-codes are all of the form f?’ where

r is an n/2-tuple and n is the length of the code.

Because of Theorem 1.4 we have used for our sequence the
first half of the code word corresponding to A. The results of
this investigation are given in Table 8.

B. MODIFIED MANDELBAUM-BARROWS AN-CODES

The main result about the Modified Mandelbaumearrows cyclic

AN-codes is contained in Corollary 3.3 of [21] which we state

as

Theorem 5.3: If B is a prime such that RB(-2)=B—2 is primi-
B-1)/2

tive in GF(B) but 2 is not primitive, then A=[2( -1]/B
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generates an equidistant cyclic AN-code of length n=(B-1)/2 and

. minimum distance Dmin=(l/2)int[(B+l)/3].

TABLE 8

SEQUENCES OBTAINED FROM MANDELBAUM-BARROWS

CYCLIC AN-CODES

n A Sequence PF PE Pg
121|315 110111 2 |2 |2
18 |13,797 101001111 3 {3 |3
289,256,395 11010011101111 3 |6 |4
36 |1,857,283,155 | 110010100010011111 6 16 |6
52 (84,973,577, 11000111101101010011011111 5 |6 |6

874,915
66{1,101,298,153,|10101001110011011101101110110100|11{13]11
654,301,589 00111111 !

The results obtained with sequences obtained from the

Modified Mandelbaum-Barrows cyclic AN-codes are given in Ta-

ble 9
TABLE 9
SEQUENCES OBTAINED FROM MODIFIED MANDELBAUM-
BARROWS CYCLIC AN-CODES
A
n Sequence PF PE PQ
11 (89 10011010000 3
23(178,481 10001100100111010100000
35{483,939,977 10010001011010100001101100112 17 {11l9
000000
39 6,958,934,353 10001010100101110001001101111 |11]13|9
’ 0011000000 |
51111,862,134,113, |100101010010060100101001001111 (10111115
449 0111001001101010000000




CHAPTER VI

CONCLUSIONS

In Chapter 1 & bandwidth-spreading binary signal scheme

was introduced which required a binary n-tuple with small pa-

rameter P=max{P_.,P.) where P_.=max IF +F and P.= max |[F, -
E* 8 E o< ke i K 8 o< k<! 0k
Fn kl' This gave birth to a new problem in the design of se-

quences.

A sub-baud codel2] of length n is a set V={£l’£2""’£M}

of M binary n-tuples where no two ri's belong to the same cyclic
class nor to the same compacyclic class. With V we associate

the parameters P_(V)= max P_.(r.), P,(V)= max P_(r.), P._.(V)=
< i Mo Tt € 1< i M@ 7 EC

max[ max|n-2d (r.,TkE.)l].and PQC(V)=max[ maxln—Zd

i] O< k< n - 3 i£j 0K k< n

Given an n and M then the problem is to construct a V of order

£

H

k
H(ri,N r_])l ].

M which minimizes P(V):max[PE(V),PQ(V),PEC(V),PQC(V)]. When M=1

y

we define Pp (V)=0 and Pg.(V)=0 in which case P(V)=max[P(V)
PQ(V)]. Hence the problem described in Chapter 1 is but the de-
generate case of this more interesting and correspondingly more

difficult problem.

In Chapter 2 a class of sequences was described for which

k
Fk—Fn—k_ k 2k

and 2(n-k) are reduced modulo n. For this class P:PE=PQ. The

construction of these sequences gave rise to an interesting

(-1) (F2k+F2(n—k)) or equivalently 8 =(-l)kE where 2k

problem in Number Theory, namely that of characterizing the inte-
gers n for which all cyclotomic cosets contain an even number

of odd integers. This problem was only partly solved there.

44
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In Chapter 3 a class of sequences was described for which

8 (—l)kEk. Two methods were described to generate such se-

=
guences, The class given in section B of Chapter 3 looks pro-
mising as a source of good sequences and perhaps deserves more
study. It should be pointed out that there exist other operators
which leave the even correlation coefficients invariant but that
T and R were chosen because they could be handled analytically
and because the corresponding sequences could easily be genera-
ted. It is however possible that other operators may yield bet-
ter sequences. |

In Chapter 4 the Weakly-ﬁérker sequences were introduced
for which "Ek|—|QkILg 2 a property not usually possessed by
most encountered sequences., Unfortunately not much more seems
to be possible here.

Lastly in Chapter § certain computer results were given
about sequences obtained from AN-codes. Though no analytical
results Have been obtained here it is hoped that the results
presented will stimulate some research in this area.

In Table 11 of the Appendix we have collected some results
about the best éequences(in the sense of minimizing P) found

during this work.




TABLE 10
P. FOR THE ZERD PHASE AND THE [ (N+1)/4]-TH
PHASE OF THE LEIGENDRE SEQUENCES
Zero Phase (n+l)/4*PHas§ . Zero-?hase%(n+l)/4 phase
n -
i !
Pl n/Pp | Pp n/Pe P | n/Pc ‘PE n/Pc

3 2 11.50 1 3.00 367 129 ;12,65 |16 22.94
7 312.33 1 7.00 379 {29 113,07 |14 |27.07
11 {4 {2.75 3 3.67 283 30| 12.76 |19 20.16
19 |6 |3.17 3 6,33 £19 {34 112,32 116 | 26.18
23 |6 ]3.83 3 7.66 431 140 118,77 20| 21.55
31 |7 (4.43 4 7.75 439 134 112,31 |19 |23,11
43 18 15,37 5 B.60 443 {34 113,03 |16 | 27.69
47 | 10{4.70 4 11.75 463 {36 122,86 |16 | 28.94
59 | 12/4.92 5 11.80 457 :35 !12.34 |16 | 29.15
67 110{6.70 6 11,17 479 137 {12.94 | 20 |23.95
71 | 12{5.92 6 11.82 487 36 {13,352 |19 |25.63
79 1 13]6.08 7 11.28 491 38 ;12,92 119 |25.84
83 {15/5.53 8 10.37 4%9 39 [ 12,79 |21 |23.76
103 ' 14]7.36 |10 | 10.30 503 .36 {13,597 |18 |27.94
107 | 14;7.64 8 13.37 523 :41 112,76 20 |26.15
127 | 19/ 6.68 10 | 12.70 3547 (41 (13,34 |23 (23.78
131 | 18] 7.28 8 16,37 563 .40 [14.07 18 |31.27
139 [ 18] 7.72 9 15.44 571 {45 [ 1Z.59 22 | 25.95
151 {211 7.19 9 16.77 587 (47 | 12.4% |23 |25.52
163 | 19:8.58 10 | 16.30 599 [41 {14,580 |23 126.04
167 | 2018.35 11 | 15.18 637 141 114,80 19 |31.9%4
179 [2317.78 {11 16,27 619 {41 {15.09 |21 |29.48
191 | 20{9.55 13 | 14.65 631 (42 {15.02 |21 |30.G5
199 [ 19;10.47 11 |18.05% 643 {44 |14.61 |22 |29.23
211 | 22{9.59 13 | 16.23 647 143 115.D04 |24 |26.96
223 | 22{10.14 |12 |18.58 659 144 |14,97 125 |26.36
227 1 25{9.08 13 | 17.45 683 135 [17.51 |23 ]29.67
239 |20{11.95 |14 {17.07 691 46 115,02 |23 |30.04
251 {2818.96 15 1 16.73 713 |48 114.93 {28 ]25.67
263 {2819,39 13 | 20.232 727 |41 {17.73 {25 |29.08
271 |23{11.78 |15 |1B.06 739 (4% 115.08 125 29.56
283 [ 2919.76 14 1 20.21 743 147 115,80 25 |29.72
307 {27:11.37 |15 | 20.47 751 ;S0 [15.02 .26 {28.88
311 {27}11.52 {15 [20.73 737 148 |16.39 {27 {29.15
331 {29(11.41 |15 {22.07 811 {49 {16.55 ;25 |32.44
347 {30{11.57 {17 |20.41 8£23 {45 {18.29 26 |31.65
359 |29112.38 16 |22.44 827 155 '15,04 25 i33.08

* By the (n+l)/4 phase is meant the seguence T(n+l)/4

iy

where r is the zero phase
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TABLE 11

THE BEST FOUND SEQUENCES IN THE

SENSE 0OF MINIMIZING P

47

Length{P|P.|PL|P Sample Sequence Type
3 111 J1 {1 (110 Barker
4 210 {2 |1 [1l01 Barker
5 111 41 11 (10111 Barker
7 111 (1 {1 }1110010 Barker
9 3|3 |3 {3 |{100001011 rspt
11 1J1 |1 {1 {11100010010 Barker
13 141 {1 {1 (1111100110101 Barker
14 412 14 |3 |11100011101101 W82
16 44 |2 {3 ;0000110010010101 WB
17 313 |3 §3 110100100010001111 RSD
18 212 |2 |2 (010110100000110011 Wh
19 215 {3 {4 }1010101001111110011 W
20 A4l4 14 {4 |00111100100010010101 |WB
21 3{3 |3 {3 (111101100001011000101 {RSD
22 412 14 |3 011001010110001111111|WB
1

23 5{1 (5 {3 {010000111110101100110 Legendre3
o1

25 313 |3 }3 {100011100000010101101|RSD
1011

27 345 |5 |5 1101010100101100001111 ({WB
110011

29 3{3 |3 {3 {111001110000000101010|RSD
01001101

31 515 15 |5 {000011000011011101110(WB
1010010101

32 6|4 |6 |5 |111000111111010001000|WB

10101101101

1. Self-dual sequencé from Table 5

2. Weakly-Barker sequence

3. The (n+l)/4 phase of the Legendre sequence
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