General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

5

Technical Memorandum 33-495

Solar Cell Performance as a Function of Temperature and Illumination Angle of Incidence

B. E. Anspaugh

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA

September 15, 1971

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-495

Solar Cell Performance as a Function of Temperature and Illumination Angle of Incidence

B. E. Anspaugh

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA

September 15, 1971

PRECEDING PAGE BLANK NOT FILMED

FOREWORD

The work described in this report was performed by the Guidance and Control Division of the Jet Propulsion Laboratory.

PRECEDING PAGE BLANK NOT FILMED

CONTENTS

「「「「「「」」」」

The set of set all an

Ι.	Introduction	- 1
п.	Experimental Apparatus	2
ш.	Experimental Procedure	3
IV.	Data Analysis	4
v.	Conclusion	6
Refer	rences	7
Appe	ndix	14
TAB	LES	
1.	Thermistor temperature as a function of angle of incidence	8
2.	Average values of normalized short-circuit current, current at maximum power and maximum power with percentage deviations from $\cos \theta$ and calculated transmitted energy	8
3.	Applicable values of $\cos \theta$ and t/t_0	8
4.	Temperature corrections applied to I s and P data for 2 Ω -cm 0.20-mm cells	9
5.	Temperature and intensity correction coefficients	9
6.	Comparison of measured and calculated values	10
A-1.	Calculated statistics of solar cell parameters for angle of incidence	15
FIGU	IRES	
1.	I-V Curves as a function of angle of incidence for $10 \ \Omega$ -cm 0.30-mm cell with 0.51-mm coverglass	11
2.	I-V Curves as a function of angle of incidence for 10 Ω-cm 0.30-mm cell with 0.15-mm coverglass	11
3.	I-V Curves as a function of angle of incidence for 2 Ω-cm 0.20-mm cell with 0.15-mm coverglass	11
4.	Reflectance, relative transmitted intensity, and cosine functions versus angle of incidence	12
5.	Normalized short-circuit current versus angle of incidence	12
6.	Normalized current at maximum power versus angle of incidence	13
7.	Normalized maximum power versus angle of incidence	13

I. INTRODUCTION

The response of solar cells to non-normal illumination has been measured. The accurate measurement of this response in the usual solar cell laboratory is quite often complicated by light source difficulties. A solar simulator usually produces a divergent light beam so that rotating a solar cell or a panel of solar cells places a portion of the sample into a more intense beam and another portion into a less intense beam. If the sun is used as a source, one must take care to block sky radiation from the cells and to continually follow the sun as it moves across the sky. A heliostat in the JPL Celestarium was available for performing pre-flight calibrations on the experimental solar panels to be flown on Applications Technology Satellite E (ATS-E). The heliostat produced an accurately parallel vertical beam inside a dark room with nonreflecting walls and ceiling. This source proved to be ideal for the required calibration runs, eliminating both light source deficiencies enumerated above. The results of this testing and a comparison with a simple theory are presented in this paper.

II. EXPERIMENTAL APPARATUS

Various types of solar cells were mounted on solar panels encompassing coverglasses ranging in thickness from 0.30 mm (12 mils) to 1.52 mm (60 mils). The cells were mounted on two different solar panels, 65 cells on a rigid aluminum honeycomb panel and 15 cells on a flexible Kapton panel. There were 13 types of solar cell/ coverglass configurations. Each configuration was represented by a sample size of 5 cells. Data for 3 of the solar cell/coverglass configurations are reported here: 10 Q-cm 0.30-mm (12 mil) cells with 0.51-mm (20 mil) coverglasses, 10 Ω-cm 0.30-mm (12 mil) cells with 0.15-mm (6 mil) coverglasses, and 2 Ω-cm 0.20-mm (8 mil) cells with 0.15-mm (6 mil) coverglasses. These cells were all mounted on the aluminum honeycomb panel. The 2 Ω-cm cells were solderless cells of Heliotek manufacture. The other types were solder-dipped cells manufactured by Centralab. Coverglass material was 7940 fused silica with ultraviolet filters and antireflection The coverglasses were mounted to the coatings. cells with RTV-602 silicone adhesive. During the Celestarium measurements, solar cell param-

eters measured were short-circuit current Isc, open-circuit voltage V_{oc} , and during one run the entire I-V curve was recorded for each cell at each of the following angles of incidence: 0, 30, 45, 60, and 75 deg. Some information was gained regarding the equilibrium temperatures of the cells at these various angles of incidence by monitoring the output of thermistors mounted behind the cells. The intensity of the normally incident sunlight varied as the day progressed, and was monitored by JPL Balloon Flight Standard Solar Cell BFS 511. During the measurements reported here, the solar intensity at the test panels ranged from 68 to 74 mW/cm². The values for shortcircuit current, maximum power P_{max} , and current at maximum power are corrected for temperature variations and compared with the cosine function and with a function representing solar energy transmitted through the coverglass. The values for open-circuit voltage are compared with values predicted from equations derived from the experimental data of other workers giving Voc as a function of cell temperature and solar intensity.

III. EXPERIMENTAL PROCEDURE

The heliostat in the Celestarium facility was used to produce the parallel bundle of solar radiation. The heliostat consisted of a mirror which automatically tracked the sun and cast the reflected bundle of light onto a second fixed mirror. The second mirror was mounted in the ceiling of the Celestarium and, in turn, reflected the light bundle vertically downward onto the test area. Tracking accuracy was such that the bundle was vertical to within ± 6 sec of arc after initial warmup of the tracking electronics. The light bundle is approximately 24 in. in diameter.

The uniformity of the light bundle was measured by means of two solar cells. One cell, Balloon Standard BFS 511, was maintained at a fixed position, and a second Balloon Standard cell, BFS 510, was moved about the bundle as a probe. An intensity map of the bundle was constructed from this data. During subsequent measurements, the solar cells were positioned in the light beam, using the intensity map as a guide so that the intensity variation over the surface of the panel was no more than $\pm 1.5\%$.

The panels were mounted on a dividing head capable of rotation about two axes. Special fixtures were constructed for mounting the panels on the dividing head which allowed the panels to be accurately adjusted perpendicular to the beam at the zero reference marks. The aluminum panel was rotated about only one axis for the measurements reported here. However, it was established that the axis of rotation made no difference in cell short-circuit current output (a function which varies linearly with light intensity) for rotation about either the dividing head axis or for a compound angle rotation.

Current-voltage (I-V) curves are taken of each cell using a variable resistive load and an X-Y plotter. I-V curves representative of each of the three cell/coverglass configurations reported here are shown in Figs. 1 through 3. These figures show I-V curves resulting from each of the five noted angles of incidence. The curves for each cell were taken in sequence, starting at 0 deg and proceeding through 75 deg. Noted on each curve are values of short-circuit current, maximum power point, and voltage and current at maximum power. Open-circuit voltage was read out separately on a digital voltmeter and is not shown on the curves.

Solar cell temperature and panel temperature were not controlled during these measurements, but were spot checked for a limited number of cells. Typical temperature variation with angle of incidence under our experimental conditions is shown in Table 1. Sufficient time was allowed at each angle for the panel and cells to attain thermal equilibrium. As these data show, there is approximately a 10 °C drop in temperature in going from 0 to 75 deg incidence.

IV. DATA ANALYSIS

Data was taken from the I-V curves and processed with the aid of a computer. Statistical parameters have been calculated for I_{sc} , V_{oc} , current at maximum power, I_{mp} , voltage at maximum power, V_{mp} , and P_{max} for both absolute values and values normalized to the normal incidence data. Results of these calculations are presented in the Appendix (Table A-1).

The behavior of the solar cell parameters with angle of incidence was compared with the parametric data of Sandstrom (Ref. 1) and Yasui (Ref. 2) who measured the performance of several different types of solar cells under varying conditions of solar intensity and cell temperature.

Solar intensity incident on the solar cell surface decreases as the cosine of the angle of incidence. However, at large angles of incidence, a significant amount of solar energy is lost due to reflection from the front surface of the coverglass. Reflectance ρ , defined as the ratio of reflected intensity to incident intensity, can be calculated as a function of angle of incidence with the aid of the Fresnel formulas. The reflectance, neglecting the effect of the anti-reflective coating on the coverglass and considering only one reflective surface, is expressed as follows:

$$\dot{\rho}(\theta) = 1/2 \left[\frac{\tan^2(\theta - \theta')}{\tan^2(\theta + \theta')} + \frac{\sin^2(\theta - \theta')}{\sin^2(\theta + \theta')} \right] \quad (1)$$

where θ and θ' are the angles of incidence and refraction, respectively (Refs. 3 and 4). From Snell's law

$$\theta' = \arcsin\left(\frac{\sin\theta}{n}\right)$$
 (2)

where n is the index of refraction of the reflecting surface. For fused silica n = 1.46. As θ goes to zero, Eq. (1) has the limit

$$\lim_{\theta \to 0} \rho(\theta) = \frac{(n-1)^2}{(n+1)^2}$$

Energy transmitted through the coverglass can be described in terms of energy transmitted at $\theta = 0$ by

$$\frac{t}{t_0} = \frac{t(\theta)}{t(\theta=0)} = \frac{1 - \rho(G)}{1 - \rho(\theta=0)} \cos \theta$$
(3)

and Fig. 4 depicts the functions $\rho(\theta)$ and t/t_0 calculated for n = 1.46. For comparison, $\cos \theta$ is also shown. Some values of $\cos \theta$ and t/t_0 are also given in Table 2. It can be seen that t/t_0 and $\cos \theta$ are essentially the same at small angles and diverge approximately 5% at 60 deg.

Since I_{sc} , P_{max} , and I_{mp} are expected to depend linearly on the transmitted energy and not very strongly on cell temperature (Ref. 1), these experimental values are normalized to $\theta = 0$, and compared with $\cos \theta$ and relative transmitted intensity t/t_0 . Results of this comparison are shown in Table 3. Also shown are the percentage deviations of the experimental values from $\cos \theta$ and t/t_0 . As a general rule, the prediction given by t/t_0 is always better than $\cos \theta$ at $\theta = 75$ deg, always better at $\theta = 60$ deg when predicting P_{max} , and better about half the time when predicting I_{sc} or I_{mp} at $\theta = 60$ deg. However, just using $\cos \theta$ to predict these parameters at angles up to $\theta = 45$ deg is nearly always better.

The results are even better when the cell temperature change is accounted for. Sandstrom gives data (Ref. 1) directly applicable to the 2 Ω -cm 8-mil cells. Empirical fits to the Sandstrom data gave the following formulas, which predict I_{sc} and P_{max} as a function of both solar intensity and cell temperature:

$$I_{sc} = (0.870 + 0.000582 \text{ T}) \text{ I}$$
 (4)

$$P_{max} = (0.440 - 0.00172 \text{ T}) \text{ I}$$
 (5)

where I is illumination intensity in mW/cm² and T is temperature in degrees Celsius. These relationships can be applied in the temperature range $-20 < T < 60^{\circ}$ C and over intensities from 5 to 250 mW/cm². They should not be regarded as highly accurate functions, but do represent an average behavior over the temperature and intensity range indicated. Temperature corrections using Eqs. (4) and (5) were made to the 2 Ω -cm I_{sc} and P_{max} data of Table 3 and the Appendix. The magnitude of the corrections, and comparison of corrected data to cos θ and t/t_0 is given in Table 4. The corrections to I_{sc} make no appreciable difference, but the corrections to P_{max} data are substantial and the t/t_0 function is seen to agree with the corrected data to better than 2% over all angles of incidence, which is approaching the measurement uncertainties.

Similar corrections may be made to the 10 Ω -cm cell data using the approximate relationships

$$I_{cc} = (1.004 + 0.000977 \text{ T}) \text{ I}$$
 (6)

$$P_{max} = (0.465 - 0.002090 \text{ T}) \text{ I}$$
(7)

obtained from the parametric studies of Yasui (Ref. 2) on 10 Ω -cm, 2 × 2 cm Centralab cells 0.46 mm (18 mils) thick, and may not apply as well to cells 0.30 mm (12 mils) thick. Again the corrections to short-circuit current are negligible. but do tend to improve the agreement with the t/t_0 prediction. The corrections to maximum power are again sizeable, but the disparity with values of t/t_0 becomes greater. Figures 5, 6 and 7 show the normalized I_{sc} , I_{mp} , and P_{max} data plotted with the t/t_0 curve for all three cell/coverglass configurations. Data in these figures are uncorrected for temperature variations.

The values for V_{OC} do not change with tilt angle as fast as the values for current and power, because V_{OC} depends logarithmically on illumination intensity. V_{OC} does depend rather strongly on temperature. Data from Refs. 1 and 2 were used to formulate V_{OC} in terms of illumination and temperature. Two methods of predicting the V_{OC} performance were used. The first applied an intensity correction at constant temperature using

$$V_{oc} = A + B \log I$$
 (8)

followed by application of a correction factor for temperature, usually called β , in the following equation:

$$V_{oc} = V_{oc} + \beta(T - T_0)$$
(9)

 β is found to be quite constant over illumination intensities between 25 and 140 mW/cm². The coefficients A and B in Eq. (8) were found to have an approximately linear temperature dependence, so they were fit to the equations $A = A_1 + A_2 T$ (10)

$$B = B_1 + B_2 T$$
 (11)

which give Eq. (8) the form

F

and

$$V_{oc} = (A_{1} + A_{2}T) + (B_{1} + B_{2}T) \log I \begin{cases} -20 \le T \le +40^{\circ}C \\ 25 \le I \le 250 \text{ mW/cm}^{2} \end{cases}$$
(12)

Method II consisted of direct application of Eq. (12).

Method I, using Eqs. (8) and (9) was found to give better agreement with JPL experimental data when Eq. (8) was used with values of A and B appropriate to 40 °C. Table 5 lists the values found for A, B, A₁, A₂, B₁, B₂, and β for both the 2 and 10 Ω -cm cells. A summary of the Voc calculations using both methods I and II is given in Table 6. Note that both methods of data correction involve the absolute calculation of Voc. No ratioing is done. As expected, the method I calculation is usually better, because method II involves fitting functions to data which, in turn, was derived from previous fits to experimental data. The calculations for the 2 Ω -cm cell are best, possibly because parametric data were available for the same cell thickness used in the experiment. Ten Ω -cm parametric data used was always for 0. 46 mm (18 mil) cells while the JPL experimental cells were 0.30 mm (12 mils) thick.

V. CONCLUSION

It is found that silicon solar cell output can be predicted as the angle of incidence of solar illumination is varied within the limited illumination and temperature levels used here. The methods used in this paper are found to predict $V_{\rm OC}$ to accuracies better than 4%, $I_{\rm SC}$ to better than 6%, and $P_{\rm max}$ to better than 4%, at all tilt angles up to and including 75 deg. At tilt angles smaller than 60 deg, prediction accuracy for P_{max} increases to 2%. Cell temperature information used in the work reported here was of unknown accuracy and may have been the major contributor to the discrepancy with prediction. No significant difference in off-axis solar cell performance between cells covered by 0.15-mm (6 mil) coverglasses and cells covered by 0.51. mm (20 mil) coverglasses was observed in these measurements.

REFERENCES

- Sandstrom, J. D., "Electrical Characteristics of Silicon Solar Cells as a Function of Cell Temperature and Solar Intensity," <u>Proceedings of the</u> <u>IECEC Conference</u>, Boulder, Colo., August 1968.
- 2. Yasui, R. K., unpublished experimental data, Jet Propulsion Laboratory Photovoltaics Group, October 1970.
- Sears, F. W., <u>Optics</u>, p. 174. Addison-Wesley Publ. Co., Reading, Mass., 1949.
- Ross, R. G., Jr., "Solar-Panel Approaches for a Venus-Mercury Flyby," paper presented at the Space Technology and Heat Transfer Conference, Los Angeles, Calif., June 21 to 24, 1970.

Sola The Sola	ar cells No. 70 - rmistor RT-15 ar intensity = 65	74 5 mW/cm ²
Pacific daylight time	Angle of incidence, deg	Temperature, °C
12:10	0	41.7
12:13	10	41.7
12:17	20	41.1
12:20	30	40.6
12:26	40	38.9
12:31	50	36.1
12:38	60	34.4
12:43	70	32.2

Table 1. Thermister temperature as a function of angle of incidence

Table 2. Applicable values of $\cos \theta$ and t/t_0

0, deg	cos θ	t/t ₀
0	1.00000	1.00000
30	0.86603	0.86474
45	0.70711	0.69998
60	0.50000	0.47540
75	0.25882	0.20246

Table 3. Average values of normalized short-circuit current, current at maximum power and maximum power with percentage deviations from $\cos \theta$ and calculated transmitted energy

Isc Isc0	% Deviation from cos	% Deviation from t/t ₀	Imp Imp0	% Deviation from cos	% Deviation from t/t ₀	Pmax Pmax0	% Deviation from cos	% Deviation from t/t ₀
	10 \$	2-cm, 0.30-	mm cel	ls, 0.51-m	m coverglas	ses		
1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
0.878	+1.36	+1.51	0.886	+2.31	+2.46	0.886	+2.25	+2.40
0.732	+3.45	+4.51	0.717	+1.38	+2.41	0.710	+0.41	+1.43
0.497	-0.62	+4.52	0.494	-1.13	+3.99	0.485	-3.00	+2.02
0.222	-14.33	+9.52	0.215	-16.82	+6.34	0.201	-22.26	-0.62
	10 \$	2-cm, 0.30-	mm cel	ls, 0.15-m	m coverglas	ses		
1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
0.871	+0.56	-0.71	0.859	-0.81	-0.66	0.866	-0.01	+0.14
0.713	+0.80	+1.82	0.704	-0.45	+0.56	0.704	-0.46	+0.55
0.490	-2.06	+3.01	0.481	-3.70	+1.28	0.472	-5.62	-0.74
0.213	-17.67	+5.25	0.203	-21.67	+0.14	0.191	- 26. 39	- 5. 90
Cite in	2 5	2-cm, 0.20-	mm cell	ls, 0.15-mr	n coverglas	ses		
1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00
0.872	+0.72	+0.87	0.873	+0.82	+0.97	0.868	+0.17	+0.32
0.709	+0.30	+1.32	0.705	-0.36	+0.66	0.690	-2.44	-1.45
0.487	-2.69	+2.34	0.480	-4.06	+0.90	0.464	-7.24	-2.44
0.217	-16.21	+7.12	0.211	-18,48	+4.22	0.192	-25.94	-5.32
	Isc Isco Isco 1.00 0.878 0.732 0.497 0.222 1.00 0.871 0.713 0.490 0.213	$\begin{array}{c} \frac{I_{sc}}{I_{sc_0}} & \frac{\%}{Deviation} \\ from cos \\ 10 & s \\$	$\begin{array}{c c} I_{sc} \\ \hline I_{sc_0} \\ \hline \\ \hline \\ Deviation \\ from cos \\ \hline \\ Deviation \\ from t/t_0 \\ \hline \\ Deviation \\ from t/t_0 \\ \hline \\ Deviation \\ from t/t_0 \\ \hline \\ \hline \\ 10 \ \Omega-cm, 0.30 \\ \hline \\ 1.00 \\ 0.878 \\ +1.36 \\ +1.51 \\ 0.497 \\ -0.62 \\ +4.51 \\ 0.497 \\ -0.62 \\ +4.52 \\ 0.222 \\ -14.33 \\ +9.52 \\ \hline \\ \hline \\ 10 \ \Omega-cm, 0.30 \\ \hline \\ 1.00 \\ 0.00 \\ 0.871 \\ +0.56 \\ -0.71 \\ 0.713 \\ +0.80 \\ +1.82 \\ 0.490 \\ -2.06 \\ +3.01 \\ 0.213 \\ -17.67 \\ +5.25 \\ \hline \\ 2 \ \Omega-cm, 0.20 \\ \hline \\ 1.00 \\ 0.872 \\ +0.72 \\ +0.87 \\ 0.709 \\ +0.30 \\ +1.32 \\ 0.487 \\ -2.69 \\ +2.34 \\ 0.217 \\ -16.21 \\ +7.12 \\ \hline \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{I_{sc}}{I_{sc_0}} \begin{bmatrix} \frac{\%}{1000} & \frac{\%}{100000000000000000000000000000000000$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

JPL Technical Memorandum 33-49

I_{sc}/I_{sc0}	Temperature correction	Correction value ^a	% Deviation from cos	% Deviation from t/t ₀
1.000	1.000	1.000	0.00	0.00
0.872	0.999	0.871	+0.57	+0.72
0.709	0.997	0.707	0.00	+1.00
0.487	0.995	0.485	- 3.00	+2.02
0.217	0.993	0.215	-16.93	+6.19
Pmax Pmax ₀	Temperature correction	Correction value ^b	% Deviation from cos	% Deviation from t/t ₀
1.000	1.000	1.000	0.00	0.00
0.868	1.005	0.872	+0.69	+0.84
0.690	1.019	0.703	-0.58	+0.43
0.464	1.037	0.481	- 3.80	+1.18
0.192	1.051	0.202	-21.95	+0.00
	I_{sc}/I_{sc_0} 1.000 0.872 0.709 0.487 0.217 $\frac{P_{max}}{P_{max_0}}$ 1.000 0.868 0.690 0.464 0.192	$\begin{array}{c c} I_{sc}/I_{sc_0} & Temperature correction \\ \hline 1.000 & 1.000 \\ 0.872 & 0.999 \\ 0.709 & 0.997 \\ 0.487 & 0.995 \\ 0.217 & 0.993 \\ \hline \\ \hline \\ \hline \\ P_{max_0} & Temperature correction \\ \hline \\ 1.000 & 1.000 \\ 0.868 & 1.005 \\ 0.690 & 1.019 \\ 0.464 & 1.037 \\ 0.192 & 1.051 \\ \hline \end{array}$	$\begin{array}{c c} I_{sc}/I_{sc_0} & Temperature correction \\ \hline Correction \\ value^a \\ \hline \\ 1.000 & 1.000 & 1.000 \\ 0.872 & 0.999 & 0.871 \\ 0.709 & 0.997 & 0.707 \\ 0.487 & 0.995 & 0.485 \\ 0.217 & 0.993 & 0.215 \\ \hline \\ \hline \\ P_{max_0} \\ \hline \\ \hline \\ P_{max_0} \\ \hline \\ \hline \\ 1.000 & 1.000 & 1.000 \\ 0.868 & 1.005 & 0.872 \\ 0.690 & 1.019 & 0.703 \\ 0.464 & 1.037 & 0.481 \\ 0.192 & 1.051 & 0.202 \\ \hline \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 4. Temperature corrections applied to $I_{s\,c}$ and P_{max} data for 2 $\Omega\text{-cm}$ 0.20-mm cells

 ${}^{a}I_{sc}/I_{sc_{0}} \times temperature correction = correction value.$

 ${}^{b}P_{max}/P_{max_{0}} \times temperature correction = correction value.$

Table 5. Temperature and intensity correction coefficients

Cell type	A(40°C)	B(40°C)	A ₁	A ₂	B ₁	B2	β , mV/°C
2 Ω-cm, 0.20 mm	388.8205	72.72053	494	-2.6	63.85	+0.23121	-2.33
10 Ω-cm, 0.46 mm	394.0302	58.35	513	-2.97212	42.4	0.38329	-2.36

Angle of incidence θ , deg	Cell temperature	Measured V _{oc}	Method I ^V oc	% Deviation from measured	Method II V _{oc}	% Deviation from measured
	10 Ω-cm, 0.	30-mm cell,	0.51-mm	coverglass (Cells	25 to 29)	
0	42	513.3	498.4	-2.91	497.5	- 3.08
30	41	511.3	497.1	-2.79	496.1	-2.97
45	38	507.4	498.8	-1.70	497.7	-1.91
60	34	501.5	498.4	- 0. 61	497.7	-0.76
75	31	478.4	483.7	+1.15	484.7	+1.32
	10 Ω-cm, 0.	30-min cell,	, 0.15-mm	coverglass (Cells	40 to 44)	
0	42	515.7	497.3	- 3. 56	496.5	- 3. 73
30	41	512.9	496.0	- 3.29	495.1	- 3. 48
45	38	508.8	497.7	-2.18	496.7	-2.38
60	34	500.1	497.4	-0.54	496.7	-0.68
75	31	476.4	482.9	+1.36	483.7	+1.54
	2 Ω-cm, 0.	20-mm cell,	0.15-mm	coverglass (Cells	65 to 69)	1
0	42	527.2	517.4	-1.86	519.6	-1.44
30	41	523.0	515.2	-1.50	517.2	-1.12
45	38	518.3	515.5	- 0. 56	517.1	+0.31
60	34	508.4	512.6	+0.82	513.8	+0.25
75	31	488.0	492.7	+0.96	494.4	+1.30

Table 6. Comparison of measured and calculated values

AN SHE AN

「「「「「」」

and the second second

Fig. 4. Reflectance, relative transmitted intensity, and cosine functions versus angle of incidence

JPL Technical Memorandum 33-495

12

Fig. 6. Normalized current at maximum power versus angle of incidence

IPI, Technical Mamanan dum 22

APPENDIX

SOLAR CELL PARAMETERS FOR ANGLE OF INCIDENCE

Table A-1. Calculated statistics of solar cell parameters for angle of incidence

ATS-E 10 DHM-CM, 0.30 MM CELL, 0.51 MM CDVERGLASS

10 CA

ANCI E DE INCIDENCE = DO DECREES

ANGLE OF INC	IDENCE =	00 DEGREES				
CELL NO.	ISC (MA)	VOC (MV)	IMP (MA)	(AW)	PMAX (MM)	
25	80.100	514.100	71.300	416.000	29.660	
26 27	79.200	508.300	71.600	416.000	29.536	
28	81.000	514.100	73.200	411.000	30.085	
29	80.400	522.200	72.800	418.000	30.430	
AVG.	79.740	513.320	71.980	414.800	29.856	
VARIANCE	1.368	33.875	.932	7.700	.151	
STD DEV	1.169	5.920	• 965	2.174	.388	
95 CON LIM	1.452	7.225	1.198	3 • 4 4 4	.482	
ANGLE OF INC	IDENCE =	30 DEGREES				
CELL NO.	ISC (MA)	150/1500	(MV)	V0C/V0C0	(MM)	I/dWI
36	69.800	871410	507-900	0487940	61.900	.8681

CELL NO.	I SC (MA)	15C/15C0	VDC (MV)	V0C/V0C0	(MM)	Udw1/dw1	(MM)	OdWA/dWA	(MM)	OM4/M4
25	69.800	.871410	507.900	.987940	61.900	.868162	418.000	1.004807	25.874	.872336
26	68.600	.879487	507.900	.998231	62.900	.885915	417.000	1.002403	26.229	.888045
27	69.500	.877525	505.100	.995467	64.200	.896648	403.000	.975786	25.872	.874937
28	72.000	.888888	513.500	.998832	64.700	.883879	410.000	.997566	26.527	•881729
59	70.100	.871890	522.000	.999617	65.200	.895604	425,000	1.016746	27.710	.910602
AVG.	70.000	.877840	511.280	.996017	63.780	.886042	414.600	6999462	26.442	.885530
VARIANCE	1.565	.000050	45.225	•000022	1.837	.000132	70.300	.000225	.576	.000233
STD DEV	1.250	•007102	6.724	•004780	1.355	.011496	8.384	.015000	• 159	.015296
95 CON LIM	1.553	.008817	8.348	.005934	1.682	.014272	10.409	.018621	. 942	.018989

10 DHM-CM. 0.30 MM CELL. 0.51 MM COVERGLASS

ATS-E

ANGLE OF INCIDENCE = 45 DEGREES

CELL NO.	ISC (MA)	15C/15C0	VDC (MV)	VDC / VUCD	IMP (MA)	Ddw1/dw1	(MM)	0dwn/dwn	(MM)	OMAIMA
25 26 28 28	57.700 56.900 56.900 59.000	.720349 .721794 .718434 .728395	504.800 505.300 502.100 507.100	.981910 .993121 .986383 .986383	51.300 51.400 53.200 53.200	.719495 .723943 .706703 .726775 .707417	408,000 411,000 406,000 412,000	.980769 .987980 .983050 1.002433	20.930 21.125 20.543 21.918 21.475	.705658 .715242 .694725 .728544
AVG.	58.340 4.763	.731526	507.38U 35.825	.988432	51.600	.716867	410.800	.000087	21.198	.000160
STD DEV	2.182	.021092	5.985	•004415	.96	.009326	4.207	.009348	. 524	•012669
95 CON LIM	2.709 IDENCE = 0	.026185 50 DEGREES	7.430	.005482	1.194	.011577	5.223	•011606	• 651	•015729
CELL NO.	I SC (MA)	15C/15C0	VDC (MV)	VOC / VOCO	IMP (MA)	Daw1/aw1	(NW)	0dwn/dwn	PMAX (MM)	OMAIMA
25 26 28 28 29	40.100 38.800 39.900 40.800 38.500	.500624 .497435 .503787 .503703	499.000 499.900 497.400 501.900	.970628 .982507 .980291 .976269	35.900 35.900 35.900 36.600 34.500	.503506 .492957 .501396 .500000	402.000 405.000 406.000 414.000	.966346 .973557 .987893 .987834	14.431 14.175 14.647 14.859 14.283	.486561 .479922 .493927 .493917 .469366
AVG. VARIANCE	39.620 .907	.496881 .000108	501.460 20.875	.976922 .000021	35.580 .687	.494352 .000146	407.000 20.000	.981212 .000113	14.479	•485018 •000114
STD DEV	.952	.010410	4.568	•004655	.828	.012100	4.472	.010644	.276	.010712

•013298

• 343

•013214

5.552

.015022

1.028

•005779

5.672

•012924

1.182

95 CON LIM

16

ATS-E 10 DHM-CM, 0.30 MM CëLL, 0.51 MM COVERGLASS

S
LL.
ш
¥
9
ш
0
_
5
~
LL.
5
₹
-
2
-
5
\cong
~
-
u.
0
LL.
-
C
Z
4
-

(MW) Owd/we XVMe Odwa/dwa	00 • 932692 5• 820 • 196218 00 - 947115 5• 910 • 200094		00 .939467 6.052 .204688	0 •939467 6.052 •204688 00 •934306 6.566 •218260 00 •918660 5.683 •186760	00 •939467 6.052 •204688 10 •934306 6.566 •218260 10 •918660 5.683 •186760 10 •934448 6.006 •201204	0 •939467 6.052 •204688 10 •934306 6.566 •218260 10 •918660 5.683 •186760 00 •934448 6.006 •201204 00 •000109 •116 •000134
(MM)	388.00 394.00	388.00	384.00	387.60	16.80	
OdwI/dwI	.210378	.217877	.203296	.215285	.000131	
(MA)	15.000	15.600	17.100	15.500	.890	
voc/vuco	.925500 .938286	.938312	.932308	.932098	•000039	
VDC (MV)	475.800 477.400	476.100	479.300	478.440	10.225	
150/1500	.218476	.224747	.237037	.221727	.000157	
15C (MA)	17.500	17.800	19.200	17.680	1.067	
CELL NO.	25	27	29	AVG.	VARIANCE	

ATS-E 10 DHM-CM, 0.30 MM CELL, 0.15 MM COVERGLASS

ANGLE OF INCIDENCE = 00 DEGREES

CELL NO.	150	VDC	I MP	VMP	PMAX	
	(MA)	(AW)	(MA)	(MM)	(MW)	
40	76.000	518.200	70.100	410.000	28.741	
41	75.500	523.400	69.000	422.000	29.118	
42	74.800	511.300	69.100	413.000	28.538	
43	73.800	516.900	67.200	416.000	27.955	
44	74.300	508.600	68.700	407.000	27.960	
AVG.	74.980	515.680	68.820	413.600	28.462	
VARI ANGE	•695	34.175	1.097	33,300	.255	
STD DEV	.831	5.845	1.047	5.770	.505	
95 CON LIM	1.032	7.257	1.300	7.164	.627	
ANGLE OF INC	CIDENCE =	30 DEGRIES				
CELL NO.	ISC	ISC/ISCO	NUC	VOC./VOCO	dWI	MI

CELL NO.	I SC (MA)	15C/15C0	(N)	VOC/VOC0	IMP (MA)	Ddw I / dw I	(MP)	Ddwn/dwn	PMAX (MM)	DWJ/Wd
40	66.100	.869736	514.000	.991895	60.100	.857346	411.000	1.002439	24.701	.859437
41	66.000	.874172	522.000	.997325	59.500	.862318	424.000	1.004739	23.228	.866405
42	65.000	.868983	507.800	• 993154	60.300	.872648	413.000	1.000000	24.903	.872648
43	64.400	.872628	515.500	192799.	57.000	.848214	427.000	1.026442	24.339	.870643
44	65.000	. 868983	505.200	.993314	58.700	.854439	410.000	1.007371	24.067	.860737
AVG.	65.300	.870901	512.900	.994596	59.120	.858993	417.000	1.008198	24.647	.865974
VARI ANGE	.530	•00000	44.000	•000000	1.792	•000084	62.500	.000111	•209	•000034
STD DEV	.728	.002371	6.633	.002539	1.338	.009186	7.905	.010558	.457	.005850
AS CON LIM	.903	•002944	8.234	.003152	1.661	.011405	9.814	.013107	.568	.007262

ATS-E 10 DHM-CM, 0.30 MM CELL, 0.15 MM COVERGLASS

AS DECUEDS TMC LDENCE ANGLE OF

NOLE UP INU	IDENCE =	+> DEGREES								
CELL NO.	ISC (MA)	15C/15C0	VDC (MV)	V0C/VUC0	IMP (MA)	Udw1/dw1	(MM)	0dwA/dwA	(MM)	OM4/M4
4 4 1 0 0 4 4 0 0 4 4 4 0 4 4 4 1 0 0 4 4 4 1 0 0 4 4 1 0 0 4 1 0 0 1 0 0 1 0 0 1 0 0 0 0	54.000 54.100 53.500 52.800 52.800	.710526 .716556 .715240 .715447 .705882	508.900 519.500 503.500 511.700 500.400	.982053 .992548 .984744 .989940 .983877	48.900 48.500 49.200 47.600 48.000	.697574 .702898 .712011 .708333	410.000 426.000 406.000 416.000 410.000	1.000000 1.009478 .983050 1.000000 1.007371	20.049 20.661 19.975 19.801 19.680	.7095574 .709561 .699943 .708333
AVG.	53.440	.712730	508.800	.986632	48.440	.703901	¢13.600	086666*	20.033	.703850
VARIANCE STD DEV	. 393	.000020 .004474	55.375 7.441	•000019 •004421	.423	.000038	60.800 7.797	.0000107 010385	.144	.000026
S CON LIM	.778	.005555	9.238	.005489	.807	.007698	9.680	.012892	.471	•006435
כברר אס. אפרב סב ואכ	(MA)	50 DEGREES ISC/ISCU	VDC (MV)	000/000	I MP	0dw1/dw1	(^W)	0dWV/dWV	(MM)	OW4/Wd
40 41 42 43	37.600 37.200 36.500 36.200 36.100	.494736 .492715 .487967 .490514 .482620	499.800 510.500 494.900 503.800	.964492 .975353 .967924 .974656 .974656	34.400 33.200 33.700 32.200 32.200	.490727 .481159 .487698 .479166 .479166	401.000 419.000 398.000 410.000 499.000	.978048 .992890 .963680 .985576 .985576	13.794 13.910 13.412 13.202 12.847	.479955 .477738 .469985 .459985 .459491
AVG.	36.720	.000022	500.10U 55.725	.969761 .000024	33.140 .918	.481491 .000073	405.400 80.300	.980108 .000116	13.433 .188	471885
STD DEV 5 CON LIM	•653 •811	.004698 .005832	7.464	•004947 •006141	.958 1.189	.008557	8.961 11.124	•010814 •013425	• 434 • 539	.004012

95 CON LIM

ATS-E 10 DHM-CM, 0.30 MM CELL, 0.15 MM CDVERGLASS

DECOEC ANCIE

0	
1	
~	
2	
2	
-	
~	
-	
L	
د	
Z	
L	
-	
د	
Ż	
-	
1	
5	
_	
٠,	
-	
¥.	
-	

CELL ND.	ISC (MA)	15C/15C0	(NUC	VDC/VDC0	(MM)	Odw I / dw I	(MM)	CIdwA/dwA	PMAX (MM)	DM4/M4
40	16.900	.222368	477.800	.922037	15.400	.219686	382.000	.931707	5.882	.204683
41	16.200	.214569	485-200	.927015	13.800	.200000	398.000	.943127	5.492	.188625
42	15.900	.212566	473.400	.925875	14.600	.211287	386.000	.934624	5.635	.197474
43	15.800	.214092	477.900	.924550	13.100	.194940	391.000	.939903	5.122	.183225
44	15.100	.201371	467.500	.919189	12.900	.187772	387.000	.950859	4.992	.178545
AVG.	15.980	.213093	476.360	.923733	13.960	.202737	388.800	• 9400 44	5.425	.190510
VARI ANGE	.427	•000053	42.475	•00000	1.043	.000163	36.700	.000056	.134	.000112
STD DEV	•653	.007338	6.517	•003146	1.045	.012772	6.058	.007513	.366	.010596
95 CON LIM	.811	011600.	8.090	•003906	1.297	.015857	7.520	.009327	.455	.013155

Carlo and a state of the

		(MW)
LASS		(MM)
COVERG		IMP (MA)
CELL, 0,15 MM	= 00 DEGREES	(JM)
• 0.20 MM	INCIDENCE	ISC (MA)
WO-	ОF	. ON
ATS-E 2 DHM	ANGLE	CELL

(MM)	25.127 26.092 24.534 24.563 25.269	25.137 .379	.616 .764
(MM)	437.000 443.000 435.000 446.000 441.000	440.4U0 19.8U0	4.449 5.524
(MM)	57.300 58.900 56.400 55.300	57 . 080 1.792	1.338 1.661
(M V)	525.900 533.500 522.400 529.000 525.200	527.200 17.900	4.230 5.252
ISC (MA)	60.900 62.600 59.400 55.300 62.600	60.960 2.643	1.625 2.018
CELL NO.	65 65 68 69	AVG. VARIANCE	STD DEV 95 CON LIM

ANGLE OF INCIDENCE = 30 DEGREES

CELL ND.	ISC (MA)	150/1500	VDC (MV)	V0C/V0C0	(MM)	ŪdwI/dwI	(MM)	UMM/JMM	PMAX (mm)	Omd/md
65 65 69 69	53.300 54.500 51.400 51.500 55.200	.875205 .870607 .865319 .868465 .881789	522.600 530.400 515.800 527.200 518.900	.993725 .994189 .987366 .98597 .988004	49.400 52.000 48.900 48.300 50.600	.859130 .882852 .867021 .873417 .883071	437,000 441,000 430,000 443,000 443,000	1.000000 .995485 .988505 .993273 .990929	21.587 22.932 21.027 21.396 22.112	.859130 .878866 .857055 .867542 .87562
AVG. VARIANCE	53.180 2.957	.872277	522•980 35•300	• 9191976 • 000016	49.840 2.173	.873098 .000106	437 . 600 24.800	.993638 .000019	21.811	.867531 .000091
STD DEV 95 CON LIM	1.719 2.134	.006422 .007973	5.941 7.376	.004080 .005065	1.474 1.830	.610329 .012823	4.979 6.182	.004407 .005471	.738 .917	.009569 .011868

ATS-E 2 OHM-CM, 0.20 MM CELL, 0.15 MM COVERGLASS

ANGLE OF INCIDENCE = 45 DEGREES

CELL NO.	ISC (MA)	150/1500	V 0C	νος/νυςο	(MM)	0dw1/dw1	(MV)	Cdwn/dwn	(MM)	OWA/Wd
65	43.300	.711001	517.500	.984027	40.400	.702608	426.000	.974828	17.210	.684922
66	44.600	.712460	525.800	.985567	41.800	.19601.	433.000		18•044	100060.
67	42.000	.707070	508.700	.973774	39.600	.702127	425.000	.977011	16.830	.685986
68	41.900	.706576	524.100	767099.	38.800	.701627	442.000	.991031	17.149	.695334
69	44.400	.709265	515.400	.981340	40.500	.706806	430.000	.975056	17.415	.689176
AVG.	43.240	.709274	518.300	.983089	40.220	.704569	431.200	010616.	17.340	.689815
VARI ANCE	1.633	•000000	47.750	•000038	1.252	.000012	46.700	•000046	.223	.000021
STD DEV	1.277	.002509	6.910	.006238	1.118	.003528	6.833	.006791	.473	•004596
S CON LIM	1.586	.003116	8.578	.007745	1.389	.004380	8.483	.008431	.587	.005706
NUGLE OF INC	IDENCE =	60 DEGREES								
CELL NO.	I SC (MA)	I SC/I SCO	VDC (MV)	V0C/VUCD	IMP (MA)	0awI∕awI	(MM)	Ddwn/dwn	(MM)	0Wd/Wd
45	29.900	490968	508-300	.966533	27.700	.481739	427.000	.977116	11.827	410115
24	30.500	487220	515.700	.966635	28.500	.483870	428.000	.966139	12.198	.467487
67	28.700	.483164	502.800	.962480	26.600	.471631	425.000	.977011	11.305	.460789
68	28.800	.485666	509.900	.963894	27.100	.490054	427.000	. 457399	11.571	.469177
69	30.400	.485623	505.100	• 961728	27.000	.471204	422.000	.956916	11.394	.45'9902
AVG.	29.660	.486528	508.360	.964254	27.380	.479699	425.800	.966916	11.659	.463814
VARIANCE	.743	.000008	24.450	•00000	.547	•000066	5.700	660000°	.130	•000066
STD DEV	.861	.002876	4*6*4	.002280	.739	.008157	2.387	996600.	.361	.008151
S CON LIM	1.070	173500-	A-138	.002830	.918	.010127	2.963	.012375	.443	.010120

JPL Technical Memorandum 33-495

ATS-E 2 DHM-CM, 0.20 MM CELL, 0.15 MM COVERGLASS

ANGLE OF INCIDENCE = 75 DEGREES

		1 110110								
CELL NO.	ISC (MA)	150/1500	VDC (MV)	VDC/VDCD	(MM)	Odw1/dw1	(MM)	UMP/VMP()	PMAX (MM)	OM4/M4
65	13.500	.221674	487.600	.927172	12.600	.219130	404.000	.924485	5.090	.202582
66 67	13.400	.214057	491.900	•922024 •928981	12.000	.212765	410.000	.912643	4.764	•18881•
68 69	13.000	.219224	489.900 485.400	.926086 .924219	11.900	.215189	402.000 387.000	.901345 .877551	4.783 4.527	.193960 .179185
AVG.	13.220	.216366	488.020	.925696	12.040	.211001	400.000	.908306	4.817	.191693
VARI ANGE	.172	.000014	8.250	.00000	.113	•0000	74.500	.000392	• 043	•000014
STD DEV	.414	•003848	2.872	.002683	.336	.006818	8.631	.019817	.207	.008604
65 CON LIM	.514	.004778	3.565	.003331	.417	.008465	10.715	.024603	.258	.010682

23