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NOTICE 

This report was prepared as an account of Government-sponsored work. 
Neither the United States, nor the National Aeronautics and Space Admin- 
istration (NASA), nor any person acting on behalf of NASA: 

A.) Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the infor- 
mation contained in this repart, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in- 
fringe privately owned rights; or 

13.) Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of, any information, apparatus, method, or 
process disclosed in this report. 

As used above, "person acting on behalf of NASA" includes any employee 
or contractor of NASA, or employee of such contractor, to the extent that 
such employee or contractor of NASA or employee of such contractor pre- 
pares, disseminates, or provides access to any information pursuant to his 
employment or contract with NASA, or his employment with such 
Contractor. 

Requests for copies of this report should be referred to: 

National Aeronautics and Space Administration 
Scientific and Technical Informa~ion Facility 
P.O. Box 33 
College Park, Md. 20740 
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FOREWORD 

This report was prepared by the Pratt & Whitney Aircraft Division of 

United Aircraft Corporation, under Contract NAS3-7943, for Lewis Research 

Center of National Aeronautics and Space Administration. The work was admin- 

istered under the technical direction of the Lewis Research Center's Chemical 

Rocket Division. Mr. Werner R. Britsch was the NASA Project Manager, and 

Mr. Herbert W. Scibbe of the Fluid Systems Components Division was the NASA 

Research Advisor. 

This is Part I1 of the final report, prepared at the conclusion of the bear- 

ing test phase. The Part I study of the Materials Evaluation Phase was sub- 

mitted as NASA CR-72279. 
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ABSTRACT 

Twenty 110-mm ball bearing tests in  liquid hydrogen were conducted with 

bearings constructed of material combinations selected from the materials 

evaluation portion (Par t  I) of this program. In thirteen of these tests  the bearings 

consisted of AISI 440~( ' )  races and balls with Chemloy 719(~) cages supplying 

the lubricant. A successful 15 min test at  a rotational speed of 12,000 rprn 

(1256 rad/s) and an axial load of 9,000 lb (40,034 N) was completed with this 

configuration. Five tests  were made with bearings consisting of AISI 440C 

races, Stellite Star J ( ~ )  balls, and Salox M ( ~ )  for  the cage material. A suc- 

cessful 33 min test at  a rotational speed of 13,000 rpm (1361 rad/s) and an 

axial load of 7,200 lb (32,027 N) was completed with this combination. The 

remaining two tests were made with bearings consisting of AISI 440C ra.ces 

and balls and a Salox-M cage. A total of 35.1 min at 13,000 rpm (1361 rad/s) 

and a 7,200-lb (32,027 N) load was accumulated with this material combination. 

Star J ball failures that occurred in two tests were attributed to poor 

ball material grain structures. Failures experienced with the AISI 440C races 

and balls were associated with failure of the cages due to wear and/or fractures. 

(1 
High chromium hardenable steel 

(2 )~ lass - f ibe r ,  MoS2, Teflon mixture manufactured by Crane Packing Clo. , 
Morton Grove, Illinois 

( 3 )~omplex  alloy of cobalt, produced by Haynes Stellite Division, Union 
Carbide Corporation 

( 4 ) ~ i x t u r e  of bronze and Teflon manufactured by Alleghany Mastics, Inc., 
Corropolis , Pennsylvania. 



SECTION I 
INTRODUCTION 

Turbopumps for  advanced high pres sure liquid hydrogen fueled rocket 

engines require fuel cooled bearings capable of consistent operation at speed and 

thrust load conditions beyond the current state-of-the-art. These operating goals 

have been achieved in some instances, but bearing performance has not been 

consistent, and demonstrated reliability is below desirable levels. The advanced 

bearing technology required to improve bearing life at  increased loads and speeds 

must consider improved materials and material combinations as well a:; optimi- 

zation of the bearing internal geometry to reduce heat generation. In order to 

achieve the operating goals required for  advanced bearing technology the Lewis 

Research Center of the National Aeronautics and Space Administration sponsored 

this technical effort under Contract NAS3-7943. 

The program under this contract was directed toward the evaluation of 

materials suitable for  use as  balls, races, and cages for  bearings operating 

in a liquid hydrogen environment. In the f irst  phase of the Advanced Bearing 

Study (reported in NASA CR-72279), several material combinations were eval- 

uated in liquid hydrogen by endurance tests in a ball and plate rig. From this 

portion of the program, a single race material was selected to be used .with 

two ball materials and two lubricant cage materials in a 110-mm ball bearing, 

The second phase, as reported herein, provided for the fabrication and 

evaluation in 1 iquid hydrogen of ball bearings consisting of material com.bina- 

tions selected in Phase I. All of the bearings were 110-mm diameter bore. 

They were of the counterbore type, and all were of like geometry, using AISI 

440C races. Three ball and cage material combinations were evaluated with 

the AISI 440C races. These included AISI 440C balls with both Chemloy 719 

and Salox-M cages, and Stellite Star J balls with Salox-M cages. 

A test r ig designed to minimize radial loads and provide control of 

bearing thrust loads up to 20,000 lb (88,964 N) was used for the bearing 

testing. A 150-hp (112-kw) variable drive system capable of rotating speeds 

up to 24,150 rpm (2529 rad/s) was used. Bearing cooling was achieved by 

flowing liquid hydrogen through each bearing from separate supply lines,, The 

test r ig and procedures used during the program a r e  defined in Section 11. 



The design of the 110-mm counterbore ball bearing and inner land riding 

cage is described in Section 111. Sections IV and V of this report are  devoted 

to a detailed discussion of each of the tests, and a discussion of the results. 



SECTION I1 
TEST APPAI~ATUS AND Prtocli:nur:I< 

A. APPARATUS 

1. Test Stand 

Thc bcaring program was conducted on I3-14 stand located in Pr:ltt & Whit- 

ncy Ai rcral t l  s FR IIC liquid hydrogen component test facility. 'IAc s t:lntl is 

cquippcd with a variablc speed drivc system, liquid hydrogcn ancl :~ncillary g:ls 

sr~pply systems, ancl rlata reco rcling facilities. The principal components :r ntl 

critical instrumcntation locations a r c  depicted in  figure 1. 

The variable specd drive system includes a 150-hi3 (1190-1\w) electric 

motor driving a 7:l gearbox through a variable slip electric clutch. 'I'his d r i v c  

provides spced control ovcr a rangc of 0 to 24,150 rpm (2529 ratl/s), anti has 

a digital readout accurate to -+I5 rpm (1.57 racl/s). 

A schematic 01 thc liquid hydrogen and ancillary gaseous helium system 

is shown in figx~rc 2. 'l'hc liquid hydrogen flows through vacuum-jacketecil 

lines, and control is maintained by dewar pressurization and variable nrcn 

cryogenic valving. IIydrogen discharge from the r ig is ducted to a burn staclc 

Sor disposal. The high pressure gaseous helium is passed through prcssure 

rcgulators that provide preset pressure  levels lor  the bearing r ig axial 1o:ltl 

piston and thc r ig  shalt seals. 

Instm~mcntation compatible with the environmental operating conclit,ions 

is uscd to measure the Sollowing parameters: (1) Sront and rea r  bearing outer 

race  temperatures a t  two locations each; (2)  Sront and rea r  bearing, radial a11tl 

axial vibrations; (3)  shaft specd; (4) drive torque; (5) thrust load bellows pressure;  

(6) coolant flowrate to each bearing; (7) coolant inlet pressure;  and (8) cool:lnt inlet 

and discharge temperature. Vibration data a r e  recorded on magnetic tape, ; ~ n d  

all other data a r e  recorded on conventional two-channel s tr ip charts. 

2. Test Rig 

The 110-mm bcaring r ig shown schematically in figure 3 was designed 

lo provide high thrust load test conditions at little o r  no radial loading. A light- 

weight hollow shalt was dynamically balanced to minimize both static ant1 dyn:~znic 

mclinl loads. The tcst r ig consisted of a rigid cylindrical housing, a bellows- 

actuatccl piston, a hollow drive shalt, the two test bearings, the cnc1platcs 



and seals. Special consideration was given to simplifying the assembly for easy 

access to the test bearings. The test r ig materials were chosen for LH2 com- 

patibility. Detail parts a r e  shown in figure 4;  the rotating components a r e  re- 

presented by the lower grouping of parts. 

Figure 1. 110-mm Bearing Rig Installed in B-14 FD 42563 
Test Cell Showing Major Equipment 
and Instrumentation 



Shutoff 
Valve 

I Liquid 1 

Regulator 

Stack 

Figure 2. Schematic of the Liquid Hydrogen and FD 43863 
Ancillary Gaseous Helium System 

The test bearings were mounted onto the shaft from each end and retaining 

nuts secured them to the shaft. The first critical speed for the shaft wa.s com- 

puted to be 49,000 rpm (5130 rad/s), well above the maximum test speeld of 

13,500 rpm (1413 rad/s). The shaft seal consisted of a 1.5 in. dia (3.81 em) 

bellows assembly with a carbon face running on a chromium rub face. .A 

helium seal dam was used to prevent hydrogen leakage through the shaft seal 

and into the test cell. The seal dam was composed of a small chamber around 

the shaft, which was pressurized with helium gas to 1 psi (0.69 ~ / cm ' )  above 

rig internal pressure. The helium gas leakage from this chamber was mini- 

mized by a stack of Teflon wafers with tightly fitting knife edge shaft seals, 

Static sealing was accomplished with two Teflon-coated, metal O-rings under 

the bolted endplates. 

The bearing rig was mounted on external trunnion bearings to adapt it for 

measuring bearing torque using a reaction arm and load cell arrangement. This 

approach encountered data repeatability problems at cryogenic test temperatures 

due to unpredictable thermal effects on external plumbing and trunnion bearings. 

The problem was solved by changing to a torque measuring system baseid on 

drive shaft torque input. A water brake calibration of the drive system was 

completed at ambient operating temperatures to obtain torque data as  a function 

of the excitation current of the electric clutch over the expected operating 

range of the bearing rig. The motor and clutch, as shown in figure 1, are  well 

outside the cold affected zone of the rig, thereby providing ambient operating 

conditions regardless of test conditions, and good repeatability of torque data, 

5 





Figure 4. Bearing Test Rig Components FD 49349 

The thrust loads were applied to the rea r  bearing outer race by pres- 

surizing the bellow s-actuated piston with helium gas. The load was transferred 

to the front bearing through the inner race and shaft. This arrangement i s  

shown in figure 3. 

B. PROCEDURE 

The test procedure consisted of cooling the test r ig to LH2 temperature, 

applying a partial thrust load to prevent skidding of the balls while accelerating 

the r ig to 4000 rpm (419 rad/s), gradually applying the remainder of the thrust 

load and accelerating to test speed. Bearing outer-race temperatures and 

vibrations were monitored continuously for indications of a failure and shutdown 

was initiated at any sign of distress. Bearing distress was always exhikited 

a s  an increase in race temperature that could not be controlled by increasing 

the coolant flow (referred to as  overheating), o r  a s  an increase in r ig vibration. 

Other parameters such as  axial load, shaft speed, coolant flows-pressures- 

temperatures and bearing torque were also monitored, and adjusted when neees- 

sary to satisfy test conditions. 

Test rig cooldown data were recorded during tests No. 2 through 3.0, but 

delays imposed by last  minute adjustments to instrumentation and stand equip- 

ment resulted in variations in  cooldown time. Recording of the cooldow:n data 



wns di:;c.ontinuccl f o r  the remaining tests in I'avor. ol' rnalcing certain that f h c t  test 

woultl Ile contluctctl with n minimum of trouble. 'I'hc coolclown cycle was i~setl lo 

cor-reel fo r  any thermal problems that would compromise the success of the sub- 

sequent lesl run. Ii'rom the (lala that were talcen,cooltlown time varied Srom 22 to 

31 min. 

'The Eollowing detai1c.d tcst proccclurc was usetl: 

Purgc r ig with gascous nitrogen followcd by gascous hydrogcn 

Coolclown tcst stand plumbing to liquid hytlrogcn tcnlpcraturc 

Star1 instrurncntation rccordcr 

Coolclown rig to liquid hydrogcn t c m ~ ~ c r a t u r c  (rccord time nncl flow 
required) 

Load bearings to approxirnatcly 1000 l b  (4448 N) by prcssurixing 
loading bcllo ws 

Slowly accclcratc r ig  to 4000 rpm (419 rnd/s) 

Increase load to that required for test 

Accclcratc to full tcst spccd 

Ilun steady-statc tcst 

Dccrcasc spcecl to 4000 rpm (419 rad/s) 

Dccrcasc bearing load to 1000 lb (4448 N) 

Shut down r ig  ancl release bcaring load 

Purgc r ig  with gascous hydrogcn followccl by gascous nitrogcn 



SECTION 111 
DESIGN O F  TEST BEARINGS 

A. GENERAL 

Within the general constraints of bearing size and number of balls, as  

specified by the contract, P&WA completed a design of the 110-mm bearings. 

Previous successful designs of 35-mm and 40-mm bearings for the RLlO 

rocket engines, 55-mm bearings for a high pressure hydrogen pump, andl ex- 

perimental 80-mm bearings provided basic data on race and cage configurations. 

As in selecting the geometry for most bearing designs, various load and 

speed conditions were input into a computer to solve iteratively for Hertzian 

deflection, contact angle, Hertz stress,  and internal velocity relationships. In 

this case the computer was programed with a P&WA bearing program written 

for ball bearings under pure thrust load, a condition which was closely approxi- 

mated in the test rig. This bearing program was the same as  that used for all 

preceeding bearing designs for cryogenic application including a 4 x DN 

test bearing, RLlO engine bearings, 50K engine pump bearings and 350K 

engine pump bearings. This program is generally equivalent to the more re- 

cent computer program, presently used by P&WA, which was written by A. B. 

Jones. 'The program had not been developed at the time of the 110-mrn bearing 

design. This newer program affords a more detailed analysis of bearing internal 

kinetics such as  ball excursions and the effect of ball diameter deviation. 

If the test bearings used in this program were to be redesigned with the 

newer computer deck, the increased awareness of internal kinetics woulci 

probably result in smaller contact angles, with some sacrifice in expected 

life, as  well as reduced race curvature and larger ball size. The current 

state-of-the-art indicates that these changes in conjunction with more stringent 

control of the raceway waviness, ball diameter deviation, and surface f i r ~ s h  

of all contact area would considerably enhance the capability of the bearing to 

operate in the load/speed range of this test program. 

(1) The A. B. Jones bearing design computer program is based on bearing 
design theories as  expressed in Mechanical Design and Systems Handbooli, 
Rothbart, B. A. , Mac Graw Hill, 1964. (Section XIII, "The Mathematical 
Theory of Rolling Element Bearings, IT A. B. Jones. ) 



43, RACE DESIGN 

1. 1:nner Race Curvature 

One of the most important items that must be determined in a bearing 

design is  that of race curvatures, a s  this affects both life and heat generation. 

If other factors remain constant an increase in the inner race curvature decreases 

the heat generation. Lower heat generation will allow the bearing clearances to 

remain essentially constant, but at the same time the fatigue life is decreased. 

This interaction effect requires a tradeoff to be made between heat generation and 

fatigue life to optimize a bearing design. 

I?i,we 5 is a curve illustrating the reduced relative life with increasing 

inner race curvature expressed as  a percentage of ball diameter. (Relative life 

compared to that of 52% outer race curvature - 53% inner race curvature was 

used as a base for computation.) Figure 6 is a curve showing the heat gener- 

ations vs inner race curvature at an outer race curvature of 52%. (The figure 

52% is representative of most bearings and was selected only for convenience 

of eom.parison in this study. ) 

I 10-mm Bearing 

fo = 0.52 
/3* = 28.0 deg 
d = 0.719 in. (1.826 cm) 

Eg = 5.50 in. (13.98 cm) 
- 

Thrust = 15,000 Ibf (66,723 N) 
N = 15,000 rpm (1571 radlsec) I 

INNER RACE CURVATURE, f i  - % 

Figure 5, Life vs Inner Race Curvature FD 42560 

F i s  a result of the tradeoff study between fatigue life and heat generation, 

the inner race curvature of 54% was selected as optimum for this design. This 

point is plotted on both figures 5 and 6. 





2. Total Race Curvature 

Total curvature has a significant effect on the sensitivity of bearing con- 

tact angle to internal clearance changes. Figure 7 is a plot of free contact 

angle vs internal clearance for various values of total curvature (B - f i  + fo-1). 

'Where: fi = inner race  curvature, and fo = outer race curvature. The slope of 

each curve represents the sensitivity of the f ree  contact angle ( 4 0) to changes 

in internal clearance. The internal clearance (Pd) is defined a s  the difference 

between outer raceway diameter and the sum of twice the ball diameter plus the 

inner raceway diameter. 

The predicted change of internal clearances for the 110-mm bearing is 

0,0054 in. (0.0137 cm), nominal at the maximum DN of 2.5 x lo6.  This de- 

crease is based on centrifugal growth, thermal changes, and mechanical fits. 

(See inset of figure 7 for clearance change vs speed. ) 

For specific values of internal clearance, decreasing values of total 

curvature result in increasing contact angles and higher heat generation. Like- 

wise, increasing values of total curvature decreases the contact areas  in the 

bearing with resulting higher Hertz s t resses  and decreased life. Therefore, 

the selection of an optimum total curvature value is based on the curve that 

provides the lowest sensitivity of contact angle to change in internal clearance, 

but still provides adequate life. 

A minimum total curvature of 0.08 was selected for the 110-mm bearing 

design. This value was chosen because the contact angle sensitivity to change 

in internal clearance allows the bearing to operate in the desired range of con- 

tact angle and remain within the predicted range of internal clearance. In a 

prievious study, the equation for contact angle as  a function of internal clearance 

was differentiated with respect to clearance and was plotted for various initial 

angles. This study substantiated the fact that the slight decrease in sensitivity 

for values of total curvature greater than 0.08, although desirable, was not 

worth the resulting decrease in bearing life. 

3.  Outer Race Curvature 

The curvature of the outer race has little effect on heat generation if the 

ball has pure rolling on the outer race (outer race  control) and likewise an in- 

crease in outer race curvature does not reduce fatigue life appreciably since 



the inner race is much more susceptible to fatigue failure due to higher Hertz 

stress.  Therefore, the value of 0.54 was also selected for the outer race 

curvature to obtain the desired total curvature. 

With race curvatures of 0.54, the transition from inner raceway control[ 

to outer raceway control, at thrust loads of 20,000 lb (88964-N) or  less,  occurs 

at or  below a DN of 0.25 x lo6.  This transition point was well outside of the 

test condition envelope of this program. 

110-mm Bearing 

in. 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 
cm 

FREE INTERNAL CLEARANCE, Pd 

Figure 7. F ree  Contact Angle vs  Internal FD 42711 
Clearance 
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4, Race Control 

Race control is defined as  the race on which essentially pure rolling occurs. 

Due to the centrifugal loads of the balls, a divergence in contact angles occurs. 

Therefolre, pure rolling on both races is not possible. The ball will spin at the 

race hxving the smaller moment in the contact ellipse. 

It is possible to design for either inner or outer race control. The selection 

of the controlling race is  a function of the required load and speed conditions. 

Relatively constant conditions of high load at low speed dictate use of inner race 

control, while widely varying load and speed conditions, such a s  the 110-mm 

beatring,, dictate selection of outer race control. The transition from inner race- 

way control to outer raceway control is a function of friction and therefore is 

not precisely controlled. While the transition is occurring, it is theoretically 

possible to have skidding damage occur on both races. This was minimized in 

this program by designing the bearing to pass through the transition zone before 

achieving steady-state test conditions. Examples of this design approach used 

to prevent raceway control change in the steady-state operating range a re  the 

sueeessful low load-high speed bearings for the RL10 LH2 pump and the LH2 

pump for Contract NAS3-11714. For  reference purposes, the internal geometry 

of these two bearings and one other is included in table I. 

5. Contact Angle 

Low contact angles, like open curvatures, can decrease heat generation, 

but also decrease fatigue life. The contact angle (0") discussed here is defined 

as  the calculated static contact angle in the bearing corrected for changes in 

internal clearance due to centrifugal forces on rotating rings, thermals, press 

fits,  Poisson's effect, etc. These must be included as part  of the input to the 

eornputer program because the program considers only the effects of applied 

loads, centrifugal forces on the balls, and misalignments on the contact angle. 

For the 110-mm bearing, a contact angle of 28 deg (0.148 rad) was selected 

at the design point of 15,000 rpm (1571 rad/s) and 15,000 lb (66,723 N). Figure 8 

shows that the heat generation for this bearing does not change with contact angle. 

This is a result of a changing heat generation due to a changing normal load being 

offset b~r a changing heat generation due to a ball spin speed change with changing 

contact angle. Both Hertz s t ress  and life are  adversely affected by decreasing 

contact angle, as  shown in figures 9 and 10, respectively. Higher contact angles 

would appear to provide better conditions; however, the gyroscopic torque on 

the balls increased to a point where, under transient conditions, this can re-  

sult in ball-to-race skidding damage. 

14 
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EB = 5.5 (13.98 cm) 

0.05 
2 

0 

CALCULATED STATIC CONTACT ANGLE, 0" 

Figure 9. 110-mm Ball Bearing Mean Hertz Stress vs 4 * 



Figure 10. Life vs Contact Angle, 110-mrn 
Bearing 



C. MATERIALEFFECTS 

After definition of the bearing geometry, the effect of the materials to be 

tested was studied. This portion of the design study considered the Hertz stress,  

subsurface shear stress,  depth to maximum subsurface stress,  spin to roll 

ratios, maximum spin velocity, and spin power (heat generation) for the full 

scale bearing. 

Comparison of figure 11 and 12 shows that the 440C bearing would have 

lower spin-to-roll ratios, and lower spin-power generation than the equivalent 

Star J bearing. This is  primarily due to the greater divergence in contact 

angle between the inner and outer race for the Star J bearing because of its 

greater density and resultant greater centrifugal loading. 

Comparison of figures 13 and 14 shows that little difference i s  apparent 

i n  the mean compressive s t ress  value (2/3 of maximum compressive stress) 

between the Star J bearing and the AISI 440C bearing, but the AISI 440C bearing 

would experience slightly lower shear stresses and these would occur at greater 

depth than in the Star J bearing because of the greater modules of elasticity 
2 

(36 x 10' vs 32 x l o 6  lb/in2, 24.82 x 10' vs 22.06 x 10' ~ / c m  ) of the Star J 

material. This would tend to show a greater resistance to subsurface fatigue 

for the AISI 440C bearing as  compared to the Star J bearing. 

D. BEARING TYPE 

A counterbored bearing with the counterbore on the outer race was 

selected. This allowed relatively simple disassembly by heating the outer 

race and cooling the inner race, and provided better assurance of retaining 

the ball identity. This type of bearing design also permitted the use of an 

inner land riding cage, the type with which P&WA has the most successful 

experience. Figure 15 shows the principal features of the final design. 

E. CAGE DESIGN 

Based on the successful cage design used in the RLlO engine bearings, 

the original 110-mm bearing cage design as  shown in figure 16 utilized a core 

of the Salox M o r  Chemloy 719 lubricant reinforced by an aluminum shroud. 

The cage was riveted together by steel rivets between each ball pocket. This 

design exposes the lubricant at  the inside diameter so that it may freely con- 

tact the inner race piloting surfaces. To allow assembly into the aluminum 

shroud the cage body of the lubricant material was split into two pieces. 

19 





NS/NR = Spin-to-Roll Ratio 
Vc = Cage Rub Velocity 

d = 0.719 in. (1.825 crn) 

E~ = 5.5 in. (13.98 crn) 

Ib (Thousands) 

0 30 60 90 120 
N (Thousands) 

TOTAL THRUST LOAD 

Fi-me 12. 110-mm Ball Rearing 440C Design Speed 
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Figure 13. 110-mm Ball Bearing 440C Design Speed 
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il detailed s t ress  and deflection analysis of the cage was performed using 

the best available data on the materials such as expansion coefficients, density, 

ete, This showed the design to be satisfactory in both strength and rigidity 

based on expected forces on the cage. 



SECTION IV 
TEST PROGRAM 

The test program on the 110-mm ball bearings included a prelimi~lary 

functional test of the facility, test rig, and instrumentation. This was a.ccom- 

plished using existing 110-mm ball bearings furnished by NASA instead of the 

110-mm test bearings designed and fabricated under the contract. The NASA 

bearings were used during this preliminary test to minimize exposure of any of 

the limited number of test bearings to a premature stand and/or rig malfunction, 

thereby providing some assurance that useful data would be obtained on all 

bearing samples. 

The NASA ball bearings were of the split inner race type using an outer 

land riding Armalon cage. A pair of these bearings was operated at load/ 

speed conditions ranging to 7000 lb (33,362-N) and 10,000 rpm (1047 rad/s),  

respectively. Testing was terminated by a sudden bearing temperature r i se  

above established steady-state values. The test verified the adequate func- 

tional characteristics of the r ig  and instrumentation over the range of vaiiues 

tested. 

Following the functional test, the 110-mm test bearings designed in this 

program were tested. Details of each test a r e  discussed in the following 

paragraphs and a summary is presented in table 11. 

A. TESTNO. 1, BEARINGSETNO. 1 

The initial test  of the 110-mm counterbore ball bearings designed and 

procured for this program was conductkd with bearings consisting of AISI 440C 

balls and races with Chemloy 719 cages (S/N 225 front and 226 rear) .  Fig- 

ure 17 shows the components of bearing S/N 226, including the two-piece 

Chemloy 719 cage and its riveted aluminum armor. Design details for this 

bearing a r e  shown in fi,aure 15, with cage details depicted in figure 16. 

The r ig  was mounted in test stand B-14, and an attempt was made to run 

the 12,000-rpm (1256-rad/s) and 9.000-lb (40,034-N) thrust load condition as 

specified in the test plan. Cooldown of the r ig and bearings was completed at  

zero rotation and load conditions. Subsequent to cooldown, an operational 

point of 500-rpm (52-rad/s) and 150-lb (667-N) thrust load was established, 

At this point the data indicated excessive power requirements for the drive 
motor, which was attributed to the binding of Teflon shaft seals. 
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2 2 2 2 2 2  
b b b b b b  

2  
LJ 

2  
b 

2 2 2 2 2 2  
u L J c C l n n  

2  2  
n n 

2  
n 

2 3 
n a 

m m 
t - t - C - W c r C -  C- C- C - C - C - C - t - C -  cr 
m  m  m  m  C - 2  2 x 2 r l 4 2 : : 2  4 4 2 2 2 2 2 2  L - C -  L- L- C- 
N N N C - L - N  N N ' N N N N N N  L- L- C- 

2 2 2 2 2 5  m 4 4 r l 4 r l 4  2 2 2 m rl ~ 1 2 c c m m m  
N N N N N N  N N N N N N N N  N N N 

2 2  
n n 

0 0 ~ w o o o o  C - L -  0 
C- 

0 0 
- . C " L - L - L - L -  f- C- 
I I I I I I  I  I  I  I  I  

a m 4  o o m % 2 Z :  m  m  + K 2 ,- rl 
L- 

I  I I I I I I  I  I  I  I  
c - c - ~ ( ~ N N  m m -I' e' -? 

X X X X  x X X  X  X X X 

0 4 

g d  . z z a J  
* 3 
Z 2 5 U  

C - X  

6 g $3 
u3 In In t- a, rl .s '5 .;;l , + s 

- V) 
u3 

c2 r r r + b s t - u 3  + U S N O O O  rl m -3 N 

m i u ; d u ; G  
-g 

A rl + e' 4 a b z  CI 0 

a, 

Q) m  03 m  w w = ' * w ? J  0 rl 0 4 il 8 8 : $ 3 3  J 8  ~ ~ 8 8 d d  J cl 2 J cl 
w  w  

m 
m  w m  0 D u 3 c r r l *  8 8 c l J J 8  $ 8  $ $ 8 g s $  m  m  C- N N 

J J 4 J d .E] * cr 
c r c r u  

aJ z z z  
a w - 4  
g " <  I  

N N m V u 3 N  0 1 l m  
a C - c r z  
k  mt -  
0 r l t - t -  

N C - X  2 22.3 
0 N N P  

* * * 
N c ? ~ Y u 3 3 C -  )C 



Figure 17. 110-mm Bearing, S/N 226 With FE 71034 
AISI 440 Races and Balls; Chemloy 
719 20-Pocket Cage 

To relieve this condition, the r ig  was allowed to  warm to a temperature 

of -130°F (183 OK) at which point shaft torque was within normal operating limits,  

A short  seal  wear-in run of 3 min was made at the 500-rpm (52-rad/s) a.nd 

150-lb (667-N) thrust  condition, then another cooldown to -420" F (22°K) was 

attempted. Again excessive dr ive motor power requirements were  experienced, 

and the t e s t  was terminated. Total rotating t ime was 15 min. 

A post-test examination revealed that the balls and r aces  of both bearings 

were  damaged by ball skidding. Some of the surface damage (figure 18) 

shows metal deposited on the ball t r ack  of the outer race. The cages sh~owed 

wear  on the ID piloting surfaces and in the ball pockets (figure 19). Close 

examination of the various pockets revealed heavy wear  in the a r e a  of the cage 

split ,  but only slight scuffing in  the other pockets. 

To determine the cause of the nonuniform pocket wear ,  one unmounted 

bearing was cooled in  liquid nitrogen. At liquid nitrogen temperature the bearing 

components would not rotate, but retained axial play, indicating sufficient ball-to-race 

radial clearance. 



li separate test  using only the cage and inner race, cooled to liquid nitrogen 

temperature, revealed sufficient thermal contraction of the Chemloy 719 cage to 

prevent motion in any direction. 

A single ball was then inserted into the cage and cooled to l i ~ i d  nitrogen 

temperature. The ball was locked firmly in place and no motion was possible. 

ti ser ies  of measurements was made at  room temperature, at dry ice 

temperature (-llO°F, 194°K) and at  liquid nitrogen temperature (-320°F, 77°K) 

to determine the coefficient of contraction of the composite Chernloy 719 and 

aluminum cage. 

F ibwe  18. Front bearing S/N 225 From Test FD 49331 
No. 1 Showing Ball Scuffing and 
Race Damage From Skidding 



Figure 19. Chemloy 719 Cage From Front FD 49332 
Bearing S/N 225 Showing Pocket 
Wear Patterns 

Because of the interaction between the aluminum cage supports, tine steel 

rivets, and the Teflon-based Chemloy 719, three different thermal coefficients 

for the composite structure were obtained. By extrapolation from liquid nitrogen 

to liquid hydrogen temperature these are:  

Cage ID 14.8 x in. /in. /" F (8.23 x cm/cm/'C) 

Ball Pocket 
-5 

Axial 6 . 8 x l 0 - ~  i n . / i n . / ' ~  ( 3 . 7 8 ~ 1 0  cm/cm/"C) 
- 5 

Circumferential 2.2 x l o m 5  in. /in. / O F  (1.22 x 10 c m / c m / ' ~ )  



The large diffcrcncc bctwccn the 'axial and circumferential contraction 

values is attributed to an interaction between the riveted aluminum cage armor  

and the Chcmloy 719 cagc. l)iIfcrcntial thermal coclficicnts bctwccn aluminum 

and Chcmloy, and a restriction 01 motion due to the rivetccl construction I>ctwccn 

the two parts, resulted in an elongation of the ball ~)ockcts. The deformation 

was enough to cause intcl*Icrcncc bctwccn the balls and ball r)ocl<cts in  the axial 

clirection. 

On the basis of the revised cocfficicnts of contraction, new cagc clearances 

were coml)uted and approved by the NASA program manager. 'I'hc ncw cagc 

dimensions gave 0.0325-in. (0.0825-cm) ball-to-cage pocltet clearance, and 

0.004-in. (0.0103-cm) to 0. 006-in. (0.01525-cm) cagc-to-inner racc clcarancc 

at  liquid hydrogen tcmpcrature (-420 O F ,  22°K). The cage changes (CKJ 7153) 

a r c  shown in figure 20. 

B. ' J~EST NO. 2, GEAIiING SET NO. 2 

A second sc t  of bcarings (S/N 248 and 249), made up of AISI 440C balls 

ancl races with modified (CKJ 7153) Chcmloy 719 cagcs, was installed in the 

bearing rig. This tcst was made with a 9000-lb (40,034-N) axial loat1 at  

12,200 rpnl (1277 rad/s). No difficulty was cncountcrcd, and the tcst com- 

pleted the p l m c d  15 min of running. 

Post-test cxamination showed all of the componcnts to be in good condition 

cxcept for some discoloration of thc balls and ball tracks on thc raccs from a 

material coating. Figurc 21 shows discoloration of the balls and raccs from 

the blalcli Chcmloy cagc material. Some slight, rusty yellow discoloration was 

also evident in the ball tracks, and a spectrographic cxamination was conducted 

to determine thc composition of the material. Thc black material was confirmed 

to be Chemloy 719 and the yellow to be iron oxiclc. Presumably, thc iron oxiclc 

originatcd in the hydrogcn supply piping bccausc the bcarings a r c  fabricated of 

a eorrcrsion resistant typc stccl and did not show signs of rust  on any surface 

prior to tcst. 





Figure 21. Ball Bearing From Test No. 2 FE 73969 
Showing Ball and Race Discoloration 
From Deposits of Chemloy 719 and 
Iron Oxide 

6. TEST NO. 3, BEARING SET NO. 2 

After careful measurement and examination of the bearing components 

folloaving test No. 2, the bearings (S/N 248 front and 249 rear) were reinstalled 

in the test r ig for additional testing. The accumulated deposits of Chemloy 719 

on the bearing elements were left in place to provide as  much lubrication of 

the surfaces as possible. All balls and cages were assembled in the same 

relative positions as in the previous test. 

The intended test conditions were 9000-lb (40,034-N) axial load and 

13,500 rpm (1413 rad/s). The test started with a normal cooldown and initial 

rotation with a partial load at 12,000 rpm (1256 rad/s). While the load was 

being adjusted near 9000-lb (40,034 N) the temperature of the rear  bearing 

rose sharply and rotation was stopped. 

A s  the temperatures had not reached levels that would damage the balls 

or  races, a second attempt to run was made with a higher coolant flowrate. A s  



before, the bearing temperatures rose sharply, so the test was terminated. 

Total time at 12,000 rpm (1256 rad/s) and 9000-lb (40,034-N) load was 1.25 

min. 

Post-test examination of the bearings showed severe wear on the cage of 

the rear  bearing (S/N 249). Six cage pockets were worn through the Chemloy 

719 and the balls were rubbing directly on the steel rivets. Fiewe 22 shows 

the typical wear pattern in the pockets of this bearing cage. The front bearing 

(S/N 248) was undamaged and in a condition suitable for further tests. 

Figure 22. Rear Ball Bearing, S/N 249 Cage FD 49334: 
Showing Heavy Ball Pocket Wear 
Patterns During Test No. 3 



D. 'l'ESrl' NO. 4, BEARING SET NO. 3 

This test was conducted using a new set  of AISI 440C bearings (S/N T,5 

front and LG rea r )  with Chcinloy 719 cagcs modified in the same manner as  

bearing cagcs S/N 245 and 249 (CKJ 7153). The intended tcst point was 

12,000 lb (53,379 N) axial load at  12,000 rpm (1256 rad/s). After 2.5 min at 

thc test condition, the clrivc-end (front) bcaring overhcatetl and the. tcst was 

tcxrrn~~nated. 

Post-test inspcction of thc bearings failed to show the causc of the over- 

heating, a s  both bearings were in good condition with only light wear marks on 

the cages. Bolth bearings were acceptable for further testing. 

A careful inspcction of the bearing rig failcd to reveal any abnormalities, 

such as  misalignment o r  improper clearances that could have contributed to 

the bcaring heating problem. 

Analysis of the tcst data revealed the possiblity of unequal flow of coolant 

to the two bearings. This condition was possible because the coolant was in- 

trocluced bctwccn thc two bcarings and discharged from the rig case after 

passing through the bearings. High flow resistance in one bearing could cause 

that bearing to operate a t  a higher temperature. 

To prevent uneven division of the coolant flow, the coolant system was 

modil'ied to provide a separate, regulated, measured flow to each bcaring. 

The plumbing changes that were madc a r e  reflected in figure 2. Valve CV-1 

controlled the flow split between bearings and valve CV-2 controlled the total 

flowrate. 

33, TEST NO. 5, BEARING SET NO. 4 

This test was the f i rs t  using the bearings (S/N L4 front and L5 rear)  

made up of AISI 440C races,  Stellite Star J balls and a composite cage using 

Salox-M lubricant with aluminum armor. The cagcs had been modified for 

addillonal internal clearance per  CKJ 8836 (same a s  CKJ 7153) except for 

mnate~rials a s  shown i n  figure 20. 

The tcst was intended to be madc at  9000-lb (40,034-N) axial load and 

12,OOCl rpm (1256 rad/s), but before tcst conditions could be set, the rear  

bearing overheated. After cooling the r ig  and setting a higher flowrate, a 

second attempt was made. Again the rea r  bearing overheatcd, and the test 

was terminated. 

3 6 



Post-test examination showcd that thc front bcaring (S/N 1,4) was i n  good 

condition and showcd only slight wear marks. Thc rca r  bearing cage (S/N 1,s) 

had abnormally high wcar in thrcc ball poclccts and moderate wcar in the 

remaining j)ockets. 

The wcar mnrlis in thc badly worn poclccts wcrc on the r c a r  face, which 

indicated that these balls were dragging, at a lower ball speed. This can hc 

explained by oversized balls (Appendix 73-5, P. 103), which operate at a lower 

contact angle ,and lower peripheral spced, thereby acling a s  a braltc on the cage. 

The braliing action can result in Lhe wear experienced. 

To investigate this theory, a comparison was made of the pretest and 

post-test ball diameters. A total ball s izc variation in the ball set  was found 

to be 0.000160 in. (0.00040(i cm). The blueprint called for a c lass  25 ball LhaL 

allows 10.000025-in. (0.000063-cm) variation from nominal size. The badly 

worn pocl<cts were matched to thc three largest  balls. 'These data a r c  not con- 

clusive, however, a s  the bcaring that operated normally also had a poorly 

matched se t  of balls [0.000130 in. (0.00033 cm) variation], and no excess wcar 

occurred in the ball poclicts. 

F. TES'I'NO. (5, BEARINGSETNO. 5 

Bearing set  No. 5 (S/N L1  front and LR rcar) ,  consisting of AISI 440C 

raccs with Star J balls and Salox-M cages, was tested a t  12,000 rpm (12!S(i 

rad/s).  Ball failures occurred in both bearings a s  the load was being appliccl 

[about 6000 lb (2(i,(i89 N) load a t  failure]. 

Inspection of the bearings showed that four balls in the front bcaring L l  

and one ball in the r c a r  bearing L3 had failcd. Size variation of the ball se t  

in the front bcaring was O.OOOl(i0 in. (0.00040(i cm), again well above the 

specifications, whcreas the variation in s izc of the r e a r  se t  was only 0.000020 

in. (0. 000051 cm). The bearings wcrc returned to the vendor for failure 

analysis and the findings were that the balls failed due to internal voids formed 

during the casting process. Figure 23 shows photomicrographs of voids found 

in one of the failed balls from bearing L1. Figure 24 shows the surface con- 

dition of the raccs  and one of the failcd balls from bcaring L3. Figure 25 

shows thc damaged cage after test from bcaring L3. One pocket that contained 

a failed ball i s  fractured; the other poclict shows light wear patterns. 



1 OOX 

Figure 23a. Photomicrograph Shows Various FE 99110 
Sized Voids a t  Surface of No. 4 
Ball From L l  Bearing 

1 OOX 

Figure 23b. Crack Through Voids Located at FE 99110 
0.035-in. to 0.040-in, Beneath 
Ball Surface. 



Figure 24. Balls and Races After Test  No. 6 FE 77811 
(Bearing S/N L3) 

G. TEST NO. 7, BEARING SET NO. 2 

The bearings (S/N 248 front and 249 rear)  used for test No. 2 were rein- 

stalled in the test r ig  after replacement of the Chemloy 719 cage in bearing 

S/N 249. While the load was being adjusted from 5500 lb (24,465 N) at  13,000 

rpm (1361 rad/s),  both bearing temperatures rose sharply and the test was 

terminated. 

Post-test examination disclosed heavy circumferential wear in two ball 

pockets and wear in the axial direction on several other pockets (figure 26). 

Thermal contraction problems, as  well a s  cage dynamic problems due to the 

split cage, were suspect. Balls and races appeared to be in good condition, 

with some minute surface pitting noted on the balls. 



Fi,o;ure 25. Wear Pattern on Cage After Test No. 6, FD 49335 
Showing Typical Wear and Damage To 
Pocket in Which Star J Ball Failed 
(Bearing S/N L3) 

I-I. TEST NO. 8, BEARING SET NO. 3 

The bearing set (S/N L5 front and L6 rear)  used in test No. 4 was rein- 

stalled in the test rig. Intended test conditions were 12,000 lb (53,500-N) load 

and 12,000 rpm (1256 rad/s). Operation was normal until the load was increased 

over 5800 lb (25,800 N). A s  the load reached i ts  maximum point, the drive 

torque and the rea r  bearing temperature increased and the r ig speed decreased. 



Split 

Figure 26. Bearing Cage S/N 249 Showing 
Damaged Pockets at Cage Split 
Lines During Test  No. 7 

Post-test examination showed the front bearing (S/N L5) to be in ex- 

cellent condition, while the r e a r  bearing (S/N LG) showed heavy wear in[ four 

pockets. 

I. TEST NO. 9, BEARING SET NO. 2 

Bearing set  No. 2, (S/N 248 front and 249 rea r ) ,  previously used in tests 

No. 2, 3, and 7, was installed in the test r ig  with new cages, modified for in- 

creased ball clearance (figure 27). The intended test condition was 9000 lb 

(40,034 N) load at  13,500 rpm (1413 rad/s). After test speed was attained, the 





load was brought from 2500 lb (11, 120 N) to the tcst condition of 3000 lh (40,034 N), 

a t  which time the load bellows prcssurc fluctuatcd widcly and the r e a r  Ilearing 

tc.mpcraturc rose sharply. The tcst was tcrminatcd. 

I'ost-test cxamination of thc rig rcvcalcd that thc load bellows had ru1)turcd 

ancl allowcd high pressure,  ambient tcmpernturc, gaseous hclium to Slow through 

thc r c a r  bcaring, resulting in  the tcmpcraturc rise. 

Thc r c a r  bcaring (S/N 249) had modcratc wcar in the cage pocl<cts; the 

front bearing (S/N 248) was in cxccllent condition. 

A visual comparison of the ball surfaces bcforc ancl after thc tcst rcvcalcd 

that thc 11umbcr of minute pits had increased. The surfaces of the races did not 

show a visual change. 

J .  TEST NO. 10Aq BEATZING SET NO. 3 

This se t  of bcarings (S/N L5 front and L(i r ca r )  was cquippcd with 3 new 

se t  of Chcmloy 719 cagcs and rcinstallcd for further tcsting. The bearings 

opcratcd a t  11,000 lb (48,930 N) load and 12,000 rpm (1256 rad/s) for 20 sce,  

before the front bearing (L5) overheated from -154°F (161°K) lo -170°F ((170°K) 

and a shutdown was made. 

K. TEST NO 10B, BEA RING SET NO. 3 

This test  was a rcrun of bearing set  No. 3 (S/N L5 front and LG rcalr) for 

evaluation a t  a lower load condition of 2900 lb (12,900 N). After running a t  

12,000 rpm (1256 rad/s) for 1.5 min, the front bearing overheated again. Post- 

tcst cxamination showcd the r e a r  bearing (S/N Lfi) to be in excellent condition, 

but thc front bcaring (S/N L5) showcd severe cage pocket wcar. Thcrc was 

lit t le o r  no wear on thc ID cage piloting surface. Figure 28 shows thc severe 

wcar in the cage pockets from bcaring S/N L(i. 

L. CAGE REDESIGN 

Following this test,  thc program was reviewed to determine if majobr 

bearing design modifications were required to improvc bearing pcrformancc. 

Problcm areas  involved dimensional control of the bearing components and 

quality control of thc Stcllitc Star J material. It was mutually agreed upon with 

thc NASA Project Managcr that the bcaring cage design should bc changed; 

howcvcr, other component changes, although desirable, were not feasible within 

thc scope of this program. 
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Figure 28. Bearing Cage S/N L5 Showing FD 49338 
Pocket Wear Through the Web 
in Two Places During Test  No. 10B 

The 20-ball pocket cages had 0.029 in. (0.073 em) of material between 

the ball lubricating surface and the cage rivet. The cage was redesigned for a 

eompllement of 19 balls to provide for a greater web thickness to increase life. 

The cage web thickness was increased from 0.028 in. (0.073 em) to 0.054 in. 

(0.13'7 em). Another change was the use of one-piece cage bodies to provide 

a more uniform s t ress  distribution and to minimize the tendency to fail in the 

manwfacturing split area. The two-piece cage was necessary in the 20-ball 

cage to permit assembly of the cage body into the wraparound armor. The 

19-ball cage featured split- rail armor to allow assembly with one-piece cage 



bodies; the cage was also scalloped at the ID between each ball pocket to improve 

cooling. The 19-ball cage design is  presented in figure 29. 

M. REVISION OF BEARING TEST PARAMETERS 

During the period of inactivity while the cage was redesigned, the contract 

tasks were modified, reducing the number of bearings to be tested from 32 to 

16. Under this realignment of the test program, the goal of the next test was to 

determine a safe level of operation of the bearings. This was to be accomplished 

by testing one pair of bearings for 5-min periods at increasing levels of load and 

speed until a failure occurred. The maximum level at which successful running 

was achieved was to be used a s  the test  condition for extended duration testing 

(3 h r  o r  failure) of the remainder of the available bearings. 

To obtain a better idea of the change in surface finish and ball t rack wear, 

one set of each bearing (AISI 440C balls and races, and AISI 440C races and 

Star J balls) was inspected at NASA LeRC and profilometer traces were made 

prior  to testing. These bearings were inspected after testing to complete the 

comparison. 

N. TEST NO. 11, BEARING SET NO. 2 

This bearing set (S/N 248 front and 249 rear) ,  frequently tested before, 

was modified with the new 19-ball cages (figure 29) and prepared for a test to 

determine usable test  levels. The test r ig  was accelerated to 13,000 rprn 

(1361 rad/s) with a 2500 lb  (11,120 N) load. When the load was increased, the 

front bearing (S/N 248) temperature increased rapidly to -240 OF (122OKj, 

necessitating a shutdown because experience had shown that a rapid r ise  to 

that temperature level indicated bearing distress. 

Visual examination after the test failed to show any cause for the over- 

heating, and only light to moderate wear was evident at the r e a r  of the cage. 

0. TEST NO. 12, BEARING SET NO. 2 

Test No. 12 was identical to Test No. 11, except that the positions of 

the bearings were reversed to assure that the overheating was not due to the 

bearing location in the rig. During application of the load 7000 lb (31,130 N) , 
the rea r  bearing (S/N 248) temperature gradually increased to about -260°F 

( l l l °K) .  Increasing the coolant flowrate did not control the temperature in- 

crease, so the test was stopped. 
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ALL DIMENSIONS ARE INCHES (cM) 
DKJ 1015 (cHEMLoY 719) D K J  1016 (SALOX-M) 

1 9  PLACES 
EQ SPACED 

Figure 29. Original 19-Ball Cage Configuration 



Visual inspection showed severe wear on the r ea r  side of the cage pockets 

of the r e a r  bearing (S/N 248). One pocket was worn through the lubricant to 

the rivet. Figure 30 shows the condition of the cage after testing. 

P. TEST NO. 13A, BEARING SET NO. 3 

This set  of bearings, consisting of AISI 440C balls and races and the 

19-ball Chernloy 719 cages, was tested in a further attempt to establish con- 

ditions for the 3-hr tests. 

FE 95528 

Figure 30. Bearing Cage S/N 248 Showing Wear FD 49340 
Scar Depth to the Rivet 



Testing started with accelerations to 13,000 rpm (1361 rad/s) a t  an axial 

load of 2700 lb (12,010 N). The load was then increased to 4400 lb (19,572 N) 

and maintained for  a 5-min stabilizing period, followed by 5-min at  6500 lb 

(28,913 N). Four minutes after establishing a load of 7200 lb (32,027 N) at  

13,000 rpm (1361 rad/s),  the hydrogen coolant supply was exhausted, so testing 

was stopped. 

PI total of 26 min at  13,000 rpm (1361 rad/s) were accumulated, of which 

8 , s  mi.n were at  6500 lb  (28,913 N) load o r  greater. 

Q. TEST NO. 13B, BEARING SET NO. 3 

This test was an extension of the previous test after replenishment of the 

coolant supply. Startup was made as usual, with a moderate load applied while 

aceelelrating 13,000 rpm (1361 rad/s). As the load was increased to the level 

of 6500 lb (28,913 N), the r e a r  bearing (S/N L6) outer race temperature in- 

creased and could not be stabilized with an increase in coolant flow, so testing 

was terminated. 

Post-test inspection of the bearings showed the balls and races to be in 

good condition, but the cages showed severe damage. Radial cracks were 

evident, in the Chemloy 719 in alternate ball pockets; circumferential cracks 

were a:hso evident in about half of the webs between the pockets. Seven rivets 

had failed by fatigue. Examination of the wear patterns, evident on both the 

ID and OD of the cages, suggests a lack of cage rigidity, which promoted the 

rivet fatigue and resultant cage failure. Figure 31 shows the cage from bearing 

S/N L5, which illustrates the wear pattern and deterioration of the Chemloy 

719. 

Total running time a t  13,000 rpm (1361 rad/s) for the two tests  was 

32 min 15 sec, with 14 min at  a load of 6500 to 7500 lb (28,913 to 33,362 N). 

Study of the cage condition indicated that the lack of stiffness of the 

aluminum-reinforced cage contributed to the failure. A suggested further 

modification to the composite cage was substitution of stainless steel for  the 

aluminum side rai ls  and increasing the diameter of the retaining rivets. The 

resulting increase of stiffness should be approximately 2.5 to 3 times that of 

the aluminum-reinforced cage, with only 0.006-in. (0.015-cm) apparent diametral 

growth due to the change of coefficient of expansion when cooled to  liquid 

hydrogen temperature. 



Figure 31. Cage From Bearing S/N L5 After Test  FE 96145 
No. 13 Showing Fractures to Chemloy 
719 After Rivet Failures Due to Fatigue 

With the concurrence of the NASA Program Manager, one pair of bearings 

was equipped with the steel-reinforced cages for  testing of this modification. 

The cage modification is shown in figure 32. 

R. TEST NO. 14A, BEARING SET NO. 6 

This se t  of bearings (S/N L9 front and L10 r e a r ) ,  with AISI 440C races 

and Star J balls, was equipped with the steel-reinforced Salox-M cages. Test- 

ing was initiated at conditions of 4000 rpm (419 rad/s) and 2500 1b (11,120 hT) 

load. 

After stabilizing the test conditions, the speed was increased to 

13,000 rpm (1361 rad/s) and 7200 lb (32,027 N) load. The test continued 

normally until fuel depletion caused the test to be stopped, 





During this tcst, total running timc of 41 min (i scc was accumulatctl, 

with 23 min 40 scc a t  the 13,000 rpm (1361 rad/s) and 7200 lb (32,027 N) 

condition. 

S. TEST NO. 1413, BEARING SET NO. G 

After replenishment of the fuel supply, testing was resumed at the same 

conditions a s  above. After the test conditions had stabilized, the coolant flowratc 

was reduced about 15% to conserve fuel. The bearings continued to run at 

constant temperature at this lower flowratc. Testing was terminated when a 

sudden increase in the rca r  bearing temperature could not be controlled by 

increased coolant flow. 

Tcst timc during this tcst portion was 25 min 41 scc, with 9 min 20 see 

at I:], 000 rpm (1361 rad/s) and 7200 lb (32,027 N) load. Total tcst time aceumu- 

lated by this bcaring set was 33 min at the maximum load/spccd condition. 

Post-test examination rcvcalcd one fractured ball in the rca r  bearing 

(S/N LlO), a s  shown in figure 33. The failed ball and an intact ball lrom an 

adjacent ball pocltet werc subjected to laboratory analysis. No certain cause 

for the failurc could be pinpointed, although slightly different structures ap- 

pcarcd in the sectioned specimcns (figure 34). Spectrographic examination 

did not show any material discrepancy in eithcr ball. Hardness measurements 

werc made and a re  presented in table 111; these measurements show no signif- 

icant material hardness difference between the intact and failed balls. 

Since the new bcaring cages (DKJ 6202) seemed to perform well in this 

test, the remaining bearings were similarly modified for the balance of the 

test program. 

T. TEST NO. 15, BEARING SET NO. 7 

Bearing set No. 7 (S/N 7 front and 8 rear) ,  consisting of AISI 440C races, 

Star J balls and Salox-M cages with steel reinforcing rings, was used for test 

No. 15. This test was intended to run for 3 h r  at 7200 lb (32,027 N) load at 

13,000 rpm (1361 rad/s). The test started normally by acceleration to an 

indicated 13,000 rpm (1361 rad/s). At this condition, higher than normal 

vibration was encountered. The test was stopped to investigate the cause for 

this vibration. The investigation rcvealcd that the digital counter being iused 



for spleed control had been improperly preset, causing the counter to indicate 

13,000 rpm (1361 rad/s) when the rig was actually rotating at 17,000 rpm 

(1780 rad/s). 

The operating conditions above 13,000 rpm (1361 rad/s) consisted of a 

transi.ent lasting approximately 2 min as shown in figure 61. 

Subsequent removal of the test r ig and inspection of the bearings showed 

numerous radial and circumferential cracks in the Salox-M cage lubricant 

material. Figure 35 shows some of the cage fractures. The cage conditions 

warranted replacement prior to further testing, but this was not possible under 

the present program. The balls and races were undamaged. 

A total running time of 8 min 4 sec was accumulated. 

Figure 33. Test No. 14 Cage DKJ 6202, Bearings F E  97057 
2137774, S/N L10, With Fractured 
Star J Ball and Damage to Cage 





Table 111. Hardness Comparison of the Failed Ball and the 
Adjacent Ball Following Test 14B 

Location Rockwell C Hardness 

Failed Ball Outer Edge 60h1 

Failed Ball Center 56*2 

Adjacent Ball Outer Edge 62 *l 

Adjacent Ball Center - 5 9 *l 

FE 98102 

Figure 35. Cage L7, Fractures and Outer Race FD 49343 
Rub, Test No. 15 



U. TEST NO. IGA, BEARING SET NO. 8 

Bearing set No. 8 (S/N L2 front and LG rear)  was modified at  the request 

of the NASA Program Manager to include AISI 440C races and a Salox-M cage, 

with AISI 440C balls substituted for the Star J balls that werc schcclulcd to be 

tested. 

The test ran without incident a t  13,000 rpm (1361 rad/s) and a 7200 lb 

(32,027 N) thrust load until the fuel supply was exhausted. This tcst completed 

43 min 37 sec  of running, of which 32 min werc at  the established test conditions. 

V. TEST NO 1613, BEARING SET NO. 8 

This tcst was a continuation of the previous test. Before test conditions 

werc reached, the front bearing overheated and the tcst was terminated. Running 

timc accumulated was 10 min 13 sec. 

Post-test inspection showed the rea r  bcaring (S/N LG) to be in excellent 

condition, except for two cagc poclcct fractures, (figure 36). The front bearing 

(S/N L2) showed severe wear and fracture to two cagc pockets 180 dcg apart. 

(Scc figure 37.) 

Total timc accumulated on this se t  of bearings was 53 min 50 scc,  with 

32 min at  13,000 rpm (1361 rad/s) and 7200 lb (32,027 N) axial load. Balls 

and races for both bearings were undamaged. 
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Fieme 36. Cage L6, Wear and Typical Radial FD 49344 
Crack Test No. 16A and 16B 

Figure 37. Cage L2 Pocket Wear and Fracture, 
Ball No. 7, Test No. 16A and 16B 



SECTION V 
TEST RESULTS 

A. INTRODUCTION 

A series of 20 tests with eight bearing sets  was conducted as  described 

in Section IV. Basic information concerning test conditions and test results 

in summarized in table 11, P. 28. 

The test program served to answer some questions and pinpoint some 

problem areas. The load/speed capability of the AISI 440 C- Chemloy 719 

bearing was demonstrated to be at  least 9000 lb (40,034 N) and 12,000 rpm 

( 1256 rad/s).  This limit is intuitively a function of time, so  due to the limited 

test matrix, no absolute limit can be given. 

The Stellite Star J balls - Salox-M combination was subject to ball failure 

due to the nonhomogeneity of the ball castings. However, one Star J bearing 

test (test No. 14A and B) ran  longer than any of the AISI 440C-Chemloy '719 

bearings. The Star J bearing also was the only bearing that was successfully 

restarted following a shutdown from a test in which there was no distress 

indicated. 

A definite conclusion of the test program is that once a bearing ha:; indi- 

cated distress in the form of an outer race overheat, the bearing cannot be 

operated in the same maximum load/speed regime as  a new bearing. 

A discussion of the results of the test program is presented below,, The 

test program is broken down into a discussion of new bearing tests and previously 

tested bearing tests. The new bearing tests a r e  subdivided into tests in which 

no distress was evident and tests in which distress was evident. 

The previously tested bearing tests a r e  subdivided into tests of bearings 

that had no previous distress during testing and bearings that had been subject 

to distress during previous testing. 

Graphs of recorded data for all tests,  except the shakedown tests with 

the NASA furnished Armalon cage bearings and Test No. 1 which did not, rotate 

due to thermal contraction problems, a r e  presented in Appendix A. Vik~ration 

data were recorded on tape and displayed on a meter for  all tests. Folltowing 

each test, the tapes were checked to verify the meter. No excessive vibration 



was noted on the meter  o r  on the tape until test 15 (figure 61). While com- 

piling the data in curve form, following test 10B, it was determined that the 

vibration tapes for the f i rs t  10 tests  had been inadvertantly erased and no 

permanent record could be made. 

'The coolant flow rates established in the shakedown tests were such as  

to make the coolant inlet and discharge pressure and temperature insensitive 

to speed and thrust load changes during the shalcedown tests. A shortage of 

record.ing instrumentation at  that time would have delayed the testing so a 

decision was made to record the coolant inlet and discharge pressures and 

ternpe~rature manually when steady state values were reached. This procedure 

was us'ed through test No. 9 after which instrumentation became available and 

was w e d  for the remainder of the tests. Steady state data were reached and 

record.ed during tests No. 2 and 4 but steady state conditions were not reached 

during tests 3 and 5 through 9. The coolant inlet and discharge pressure and 

tempel-ature a r e  missing for test No. 10 due to a recorder malfunction. 

Bearing physical characteristics, such as  dimensional data, surface 

finish ,and weights a r e  presented in Appendix B. These data were taken after 

each test unless the bearing was destroyed o r  the test r ig was not disassembled 

prior to the subsequent test. In one instance, following test No. 12, three 

measurements were not recorded on the inspection sheet and the oversight was  

not discovered prior  to the release of the bearings to NASA at  the end of the 

test program. 

B, TESTS 

Three of the eight new bearing sets  tested (No. 2,6, and 8) reached 

and ma.intained prescribed values of load and speed and did not show any sign 

of distress during their initial test. These were tests  No. 2, 14A and 16A. 

Bearing distress is defined here a s  an increase in race temperature that could 

not be t:ontrolled by increasing the coolant flow (the condition referred to as  

overheating), o r  an increase in r ig vibration. The remaining five se ts  of 

bearings overheated before reaching the desired load and speed conditions 

during their initial test. Of these, se t  No. 1 failed because of interference 

between the balls and the cage, set No. 3 had a coolant shortage, se t  No. 4 had 

mismatched balls, and se ts  No. 5 and 7 were subject to ball failure and over- 

speed respectively. 



With the possible exception of se t  No. 5 in test No. 6, the inability of 

five of the eight se ts  of bearings to operate in the load/speed regime typically 

prescribed in the test program (7000 to 12,000 lb (31,138 to 53,379 N) axial 

load and 12,000 to 13,500 rpm (1256 to 1413 rad/s) ) cannot be attributed 

solely to the prescribed load/speed condition, but was influenced by other 

factors such as ball material and dimensional quality control, and r ig  mal- 

functions. These five bearing sets  (sets No. l, 3, 4, 5, and 7) a r e  disewssecA 

in the following paragraphs. 

Bearing se t  No. 1 (test No. 1) suffered severe skidding because the un.- 

predictable dimensional effects caused by the interaction of the various cage 

material thermal coefficients resulted in the cage interferring with rotatior? 

of the balls at  liquid hydrogen temperatures. 

Bearing se t  No. 3 (test No. 4) operated for 2,4 min at  12,000 lb  (53,379 N) 

load and 12,000 rpm (1256 rad/s) before overheating. Post-test inspection 

disclosed no mechanical problem. Analysis of the coolant flowpath indictated 

the possibility of unequal coolant distribution, which could occur if the resistance 

to flow through one bearing was higher than through the other. There was no 

means of controlling flow through the individual bearing in the original test 

setup, in which the flow entered the rig between the two bearings, flowed 

outward through the bearings and discharged into a common manifold. This 

arrangement did not provide flow control to each bearing, but o d y  total flow 

control by means of the rig discharge contol valve. Modifications to this system 

were made for better coolant control during later testing by supplying separal;e 

flow control to each bearing. These modifications a r e  discussed in section ITT, 

An additional benefit of the modification was derived from the reversal 

of the flowpath through the bearing. This benefit came from utilizing the 

pumping action of the bearing to assist  the coolant flow. Reference 1 describes 

test  made with oil-lubricated bearings in support of this theory. The pumping 

action of the bearing was evident, for after the change of flow direction, 

subsequent tests showed a pressure drop across the bearings of approximately 

1 psi (0.69 N/cm2). 

Bearing set  No. 4 (test No. 5) was the f i rs t  bearing with Stellite Star J 

balls that was tested. The r ea r  bearing overheated while operating at 121,000 

rpm (125 6 rad/s) before the scheduled load of 9000 lb (40,034 N) was rea.ehed, 



Post-test examination of the overheated bearing disclosed severe wear on the 

rear  face of three of the ball pockets. The wear coincided with the locations 

of the three largest balls in the bearing. A check of pretest measurements 

disclosed a maximum ball diameter variation of 0.000160 in. (0.000406 em). 

The larger balls had operated at a lower contact angle and the resulting lower 

relativ'e speed had acted as  a brake on cage rotation. 

Bearing set  No. 5 (test No. 6) experienced extensive failure of the Stellite 

Star J balls at approximately 5500 lb (24,465 N) while the load was being ad- 

justed at a speed of 12,000 rpm (1256 rad/s). Four balls failed in the front 

bearing and one ball failed in the r ea r  bearing. 

Bearing set  No. 7 (test No. 15) was inadvertently operated through a 

transient up to 17,000 rpm (1780 rad/s) because of an incorrect preset in the 

digital counter used for speed control in the test stand. The transient at  con- 

ditions above the preset values lasted for approximately two minutes. 

Twelve tests  were made with bearing sets  that had been tested previously. 

Three of the twelve tests  were made with bearings that had not overheated during 

their previous test. These tests were No. 3, 14B and 16B and the bearings used 

were sets  No. 2, 6, and 8 respectively. Set No. 2 was visually inspected prior 

to test No. 3 and the cages were not changed because only light wear was evident. 

Test No. 3 operated a t  9000 lb  (40,034 N) load and 12,000 rpm (1256 rad/s) for 

1,25 rnin, but the race  temperature would not stabilize, so the test was stopped. 

Prior  to tests No. 14B and 16B the bearings were not inspected because there 

were no indications of distress from the monitoring instrumentation during 

preceding tests No. 14 and 16. The test r ig  was down just long enough to re-  

plenish the hydrogen supply. In test No. 14B the bearings operated at  7200 lb 

(32,027 N) load and 13,000 rpm (1361 rad/s) for 9.33 min before overheating. 

In test No. 16B the bearings operated at 2900 lb (12,900 N) load and 13,000 rpm 

(1361 rad/s) for 3.1 min, but when the load was increased the race temperature 

would not stabilize, so  the test was stopped. 

1Vine of these twelve tests  with used bearings were made with bearing 

se ts  of which one o r  both bearings had overheated during their previous testing. 

These were tests  No. 7,  8, 9, 10A, 10B, 11, 12, 13A and 13B. The balls 

and races were visually inspected and approved before each of the above tests ,  

and new cages were installed in each case except tests  No. 10B, 12  and 13B, 

as explained in section IV. Six of the nine tests  were scheduled for loads of 

6 0 



f rom 9000 to 12,000 lb (40,034 to 53,379 N) at  speeds of 12,000 to 13,500 rpnl 

(1256 to 1413 rad/s). Overheating occurred in each case before the desired 

load/speed condition was reached. In one case (test No. 9), failure was due 

to the load bellows rupturing. The other three tests were scheduled to operate 

at  lower load/speed conditions. The bearings in test No. 10B would not operate 

for  more than 1.5 min at  2900 lb (12,900 N) load without overheating, and the 

result was a severely worn cage that was removed from the bearing after 

test No. 10B. Tests No. 11, 12, 13A and 13B were made to establish maximelm 

values of load and speed for the endurance testing of the three remaining se ts  

of new bearings. All bearings had been equipped with the 19-ball, split rail  

cages (DKJ 1015) just prior  to test No. 11. The NASA LeRG Project Mallager 

requested that bearing set  two be tested for 5 min each at  successively higher 

values of load and speed until distress was evident, after which the highest 

values of load and speed that the bearing negotiated successfully for 5 min 

would be chosen. Tests No. 11 and 12, using bearing set  two, were an attempt 

to operate initially at  a load and speed of 9000 lb (40,034 N) and 12,000 rpm 

(1256 rad/s). Both tests  were stopped by bearings overheating at 7000 lk ,  

(31,138 N) load o r  less. Tests No. 13A and 13B were then conducted with 

bearing set three to accomplish the objective of tests No. 11 and 12, These 

tests resulted in the selection of 13,000 rpm (1361 rad/s) and 7200 lb (32,027 N) 

loads a s  the test conditions for the subsequent endurance tests. 

The net result of the nine tests with bearings that had previously over- 

heated was that only one bearing s e t  operated with a stabilized race temperature 

at  a load value of 7200 lb (32,027 N) o r  greater. This test (No. 13A) ran for 

4 min at this condition and then would not repeat in test No. 13B when coolant 

supply depletion caused test  No. 13A to be stopped. 

C. PROBLEM AREAS 

Each bearing that experienced distress during testing reflected that. dis- 

t r ess  in the post-test cage condition. Bearing overheat always caused, o r  was 

the effect of, severe cage wear, a s  seen typically in fi-gures 21, 24, 25, 27, 

29, and 36. Excessive vibration was always exhibited a s  cracks in the side 

and pocket separating webs. These cracks can be seen in figures 32 and 36. 

Two different cage designs, with two modifications to the f i rs t  and one to 

the seconcl, were used during this test program (figures 16, 19, 26, 28, :and 31) 



in an atttempt to minimize any cage dynamic problems. However, it was not 

possible to determine whether the cage problems were cause o r  effect, due to 

the limited test matrix of this program. 

All bearings that had overheated during test had badly worn cage pockets. 

The only time that a cage was inspected between a successful and an unsuccessful 

test was following run No. 2. The cage was in good condition, exhibiting only 

slight rubbing. When the cage was removed following overheating aftcr 1.25 min 

at  the same operating conditions in test No. 3 as  in test No. 2, severe pocliet 

wear had occurred. The sequence of events cannot be established with the 

available instrumentation; therefore, this problem area  cannot be defined as  

other than a change in the dynamics of the bearing components. 

The original 19-ball cage shown in figure 29 was severely damaged in 

a fatigue mode in test No. 13B, although the indicated vibratory acceleration 

was no more severe than in the two previous tests with this cage design. The 

cage was strengthened as  shown in figure 31, and only moderate damage 

occurred in later  tests,  even though the indicated vibratory accelerations were 

much more severe, Whether these vibrations a r e  inherent in the cage design, 

o r  caused by something external to the cage, such a s  race waviness, cannot 

be determined within the scope of this program. 

Four sets  of Stellite Star J balls were tested during this program; these 

were i~n tests No. 5, 6, 14A, 14B and 15. Ball fractures occurred in tests 

No, 6 and 14B at  5800 lb (25,800 N) and 7200 lb (32,027 N) respectively. The 

highest load that the Stellite Star J ball was subjected to was 7500 lb (33,362 N) 

during test No. 14A. The failed balls and adjacent balls were sectioned and 

cornpaired on the basis of: (1) photomicrographs showing typical voids; (2) 

spectrographic examination, which did not disclose any material discrepancy; 

and (3) hardness tests,  which did not disclose any significant differences be- 

tween balls. Some of the failed balls were returned t~ the vendor for failure 

analysis; the findings were that the balls failed due to internal voids formed 

during the casting process. Photomicrographs (figures 23a, 23b, and 34) show- 

ing the voids in the castings and a hardness comparison (table I) a re  presented 

in Section IV. 

In  four instances a res tar t  was attempted when no distress was exhibited 

during a bearing test. The restarts ,  tests No. 3, 13B, 14B and 16B, were 



reported in Section IV. The bearings used were se ts  No. 2, 3,  6, and 8. Set 

No. 3 had previously overheated, but the remainder had not. Two of the sets 

(No. 3 and 8) would not accept the axial load used in their previously successful 

tests without the outer race temperatures rising sharply. The other two sets 

(No. 2 and 6) achieved the load/speed condition used in their previously suc- 

cessful tests and maintained a steady outer race temperature for 1, 25 and 9,33 

min respectively. Due to the limited number of available samples, it is no% 

known if the two unsuccessful attempts and one partially successful attenrlpt 

to res tar t  and reach previously achieved values of load and speed a r e  indicative of 

of a problem area  associated with thermal coupling of the bearings and rig. 

Allowable ball diameter deviations were specified by P&WA a s  

&0. 000025 in. (0.000064 em). Bearing set  No. 4 was delivered with a varia"ion 

of & 0.000080 in. (0.000203 em) in the rea r  bearing and 0.000065 in. (0,000165 em) 

in the front bearing. When set  No. 4 was tested, (test No, 5 ) ,  damage occurred 

in the r ea r  bearing in the three pockets coinciding with the largest balls, a s  ex- 

plained in Section IV, but not in the front bearing that also had a poorly matched 

set  of balls. 

Bearing set  No. 5, with the r ea r  bearing containing a matched se t  of balls 

and the front bearing mismatched similar to the bearings in set  No. 4, was used 

in test No. 6. Both bearings overheated and experienced ball failures within 

0.5 min at test  conditions. Insufficient pocket wear was evident to provide 

additional data necessary to explain the cause for bearing overheating, and the 

effect of variations in ball diameters on cage wear remains undefined. 

Another parameter that may have affected the testing results was the 

surface finish of the balls and races. The P&WA specification was for a No, 4 

r m s  finish on both balls and races. (See figure 15. ) Appendix B contains a 

listing of the dimensions, fits, clearances, surface finishes and the weights 

of the bearing components, both before the test and after, except when bearing 

failure occurred. 

The bearings a s  received from the vendor were all within specification on 

surface finish and most were roughened two to three points during a test, re-  

gardless of whether overheating occurred. Therefore, i t  is concluded that this 

type of surface measurement is not sufficient to predict the operating cap~ability 

of the bearing. 



Just  prior to the last  ser ies  of tests  (tests No. 11 through 16B), the 

NASA Project Manager requested that a new set  of bearings with Stellite Star J 

balls and a new set  bearings with AISI 440C balls be submitted to NASA for 

pretest and post-test profilometer traces of the bearing races. Bearing set  

No* 6 with Stellite Star J balls, was sent to NASA LeRC to be traced, but a ' 

new set  of bearings with AISI 440C balls was not available, a s  all of them had 

been tested. Bearing se t  No. 3 was selected, based on a visual examination, 

a s  the best remaining set  and was subsequently sent. 

The profilometer tracings were made a t  NASA LeRC using methods de- 

scribed in NASA TN-D 3730. The pretest and post-test tracings have been 

arranged in pairs  for ease of comparison and a re  presented a s  figures 38 

through 44. 

Comparisons of the race profiles from the Star J ball bearing (S/N L9) 

of set No. 6 shows an insignificant change to the inner o r  outer races after the 

33 mi11 of running a t  13,000 rpm (1361 rad/s) and 7200 lb (32,027 N) load. 

During this test, bearing S/N L10 overheated and forced the termination of the 

tlest. The effect of overheating is clearly shown on the post-test tracing of 

tlhe inner race (figure 40). Unfortunately, the outer race could not be traced 

after testing because of damage from a fractured ball, so the continuity of the 

comparison is not complete. 

The other pair of bearings compared by profilometer traces was set  No. 3, 

(bearing S/N L5 and L6) selected on the basis of visual examination as  being in 

tlhe best condition. These bearings had accumulated 19.5 rnin of rotation (mostly 

at  low speed) and 2.4 min a t  12,000 rpm (1256 rad/s) and 12,000 lb (53,379 N) 

load. 

The pretest profilometer traces show wear paths that a r e  quite deep (up 

to 375 millionths) as  results of the previous tests. These tests (No. 4, 8 and 

10) all had been terminated because of overheating of one bearing (front bearing 

(S/N E5) on test No. 4, r e a r  bearing (S/N L6) on test No. 8, and front bearing 

(S/N L5) on test No. 10); therefore, both bearings had been subjected to over- 

heating a s  well a s  to the high axial load. 

The post-test profilometer traces were made after an additional 5 1 min 

of rotation, of which 4.0 rnin were at 13,000 rpm (1361 rad/s) and 7200 lb 

(32,027 N) load. Examination of these traces shows little additional wear due 

to the additional rotation and load test conditions. 
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From AISI 440C Outer Race Run 
With Star J Balls and Salox-M 
Lubricant (L9) 
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Figure 40, Gon~parative Profilometer Traces  of AISI 440C Inner Race Run With Star J 
Balls and Salox-M Lubricml; (L10) 
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Fiewe 41. Comparative Profilometer Traces From FD 43461 
AISI 440C Outer Race Run With AISI 
440C Balls and Chemloy 719 Lubricant 
(L5) 
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Figure 42. Comparative Profilometer Traces From FD 43455 
AISI 440C Inner Race Run With AISI 
Balls and Chemloy 719 Lubricant (L5) 
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Figure 44. Comparative Profilometer Traces From AISI 440C Inner Race Run With 
AISI 440C Balls and Chemloy 719 Lubricant (L6) 



Based on this small sample of profilometer traces,  i t  is apparent that 

overheating the bearing races and balls has a definite deleterious effect on the 

bearing load/speed capability. 

D. RECOMMENDATIONS 

The decision to make profilometer tracings occurred too late to include 

before and after test tracings of any bearing sets except No. 3 and 6. The results, 

as discussed above, a r e  definitive for the one test  in which profiles were measured 

before and after the initial test. However, corroborative evidence i s  desirable 

because of the limited sampling. 

CVhile no pretest traces a r e  available, se ts  No. 7 and 8 might provide 

insight into race wear problems if post-test tracings were made of the race 

profiles. Set No. 7 did not overheat but was subject to excessive vibration, 

It is  desirable to determine if excessive vibration resu1.t~ in a wear tracli such 

a s  the track in the S/N L10 race (figure 40) that was attributed to bearing 

overheat. 

Also, further evidence concerning the effect of race overheating is 

available in set  No. 8. The races of bearing S/N L2  have been overheated 

while those of S/N L6 have not. Analysis of post-test profilometer tracings of 

bearing se ts  No. 7 and 8 was desireable, but tracings were not available. 

NIoderate to severe cage pocket wear and/or vibration cracks occurred 

in a majority of the tests in this program. Although frequency of wear failure 

was decreasing during the latter portion of the test program, cage web cracks 

due to vibratory acceleration were becoming more evident. A test program to 

determine the effect of cage dynamics on cage wear is recommended. Also, 

while the last  modification to the cage appeared to enhance the capability of the 

cage to withstand vibration, some damage was still present. Therefore, a means 

of predicting, detecting and controlling destructive vibration levels is needed. 

The previous ball failure discussion pointed out that a coarse grain 

structure including voids i s  a problem in Stellite Star J casting, and this was 

determined to be the cause of failure of the bearing that was submitted to the 

bearing vendor for ball failure analysis, It also prevented the fabrication and 

testing of Star J races. Because two of the three Star J bearings that reached 

prescribed load/speed conditions resulted in ball failures, i t  is not possible 



to evaluate this material properly until homogeneous fine grain castings a re  

developed. Improvements in casting methods are  also required to provide 

material for fabrication of Star J races. In addition, machining techniques 

must be developed to produce Star J races with the proper surface and waviness 

control. Current literature indicates the possibility that close control of 

surface finish, race roundness, and ball diameter and sphericity variations is 

necessary in the relatively pure thrust load regimes such as  those required in 

this program. These effects and limits have not been determined quantitatively 

at  this time. 

A problem area that was not within the scope of this program, but one 

that needs to be investigated to enable bearing design advancements of the 

state-of-the-art of cryogenic bearings operating in a reducing atmosphere, 

i s  the determination of the proper applications of coolants and an understarading 

of the heat transfer characteristics of cryogenically cooled bearings. In this 

area  of interest, the Bearing Branch of the NASA Lewis Research Center's 

Chemical Rocket Division developed a pilot cooling program for hydrogerl cooled 

bearings based upon a simplified heat transfer analysis. Results a re  given in 

NASA TN1s D-4616 and D-5607. 
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TEST R 
..-a ..-.. 

Cage Config.  : O r i g i n a l  Cage: Chemloy 719 b l ls :  AISI 440C - 

Sltal'l F i t ,  t i g h t  ( i n . )  
(cm-1 

Housing F i t ,  l o o s e  
( i n . )  
(cm.) 

T o t a l  Dall S i z r  Var. 
( p i n . )  
(kllt.) 

Tlleor. I n t .  Cledrance  
( i n . )  
(..-I 

Ba 11 Pararnetcrs 

Average l ieiglt t  (gm.) 
Average Sur face  F i n i s h  

( p i n . ,  rms 
(grm, rms) 

Average Diame ce r  
( i n . )  

Cage Parameters  

Weight (grn.) 
Average Pocket  Dia. 

i n . )  C i r c u m f e r e n t i a l  
(cm.) C i r c u m f e r e n t i a l  

I n s i d e  Diameter 

I n n e r  Race Parameters  

Weight (gm.) 
Sur face  F i n i s h  

( p i n . ,  rms 
(pm, rms) 

Outer  Race Parameters  

Weight (gm.) 
Su r face  F i n i s h  

p i n . ,  rms 

Bear ing 

F a i l u r e  

Bear ing 

F a i l u r e  



TEST RUN NO.: 2 
BEARING SET N?l . : 2 
BEARING PART NO . : 2 132 197 
DATE : 12-26-67 

Front Bearing S/N 248 Rear Bearing S/N 249 

Cage Config. : CKJ 7153 Cage: Chemloy 719 Ba l l s :  AISI 440C 

Shaf t  F i t ,  t i g h t  ( i n . )  

Housing F i t ,  loose 
.oo 50 .oo 50 
.0127 .0127 

Tota l  Dall  S ize  Var. 
40 60 60 

1.016 1.524 1.524 
Theor. I n t .  Clearance 

.008 .009 .0083 

.0203 .0229 .0211 

Ba l l  Parameters  - I I 
24.3166 24.3309 

Average Surface Finish 
2 - 3  * 

762 .0508--0762 
Average Diarni i e r  

( in . )  0.71855 0.71840 0.71877 

(m-1 1.82512 1.82474 1.82568 

Gage Parameters  I I I 
Weight (gm.) 141.97 142.60 140.44 
Average Pocket Dia. 

0.7559 0.7553 0.7513 
1.9200 1.9185 1.9083 

f e r e n t i a l  0.7531 0.7524 0.7526 
f e r e n t i a l  1.9129 1.9111 1.9116 

~ n s i d e  Diameter 

g:] 
Inner  Race Parameters I I I 

Weight (gm.) 621.80 622.42 
Surface Finish 

4 * 
.10 16 

Outer Race Parameters I I I 
Weight (grn.) 
Surface Finish 

t 
* Not measured, cage a t e r i a l  dep sits l e f t  i p lace  f o r  1 1  

aoo 

Parameter Change 
~ / ~ 2 8 8  S/N 249 
0 -.0002 
0 -.0005 

0 0 
0 0 

+20 + 140 
+.SO8 +3.556 



TEST RUN NO.: 3 
BEARING SET I&. : 2 
BEARING PART ND . :-I 97 
DATE: 4-16-68 

Front Bearing S/N 248 Rear Bearing s/N 249 

Cage Config. : C K J  7153 Cage: Chemlov 719 Balls: A I S I  44012 - 

Housing F i t ,  loose 

Ba 11 Parameters 

Cage Parameters 

Inner Race Parameters 

Weight (gm.) 

Outer Race Parameters 

%eight (gm.) 
Surface Finish 



TEST RUN NO.: 4 
BEARING SET $3. : 3 

BEARING PART NO . : 2132197 
DATE: 4-18-68 

F:ront Bearing S/N L-5 Rear Bearing S/N L-6 

Cage eonfig. : CKJ 7153 Cage: Chemloy 719 Balls: AISI 440C 

Inner Race Parameters 

Weight (@.) 

Outer Race Parameters 



TEST RUN ND.: 5 
BEARING SET &. : 4 
BEARING PART NO : 2137774 
DATE: 5-15-68 

Front Bearing S/N L-4 Rear Bearing S/N L-5 

Cage Config. : C K J  8836 Cage : Salox-M Balls: Star-J - 

Shaft  F i t ,  t i g h t  

Housing F i t ,  loose 
( in .)  
(em-) 

Total D a l l  Size Var. 
( p i n . )  
( Y  "'-1 

Theor. I n t .  Clearance 

Bal l  Parameters 

Average Ve iglit (gm .) 
Average Surface Finish 

t p i n . ,  nns 
pm, nns) 

Average Diameter 
i n  .) 

Cage Parameters 

Weight (gm.) 
Average Pocket Dia. 

Circumferential 
Circumferentia 1 

Inside Diameter 

Inner Race Parameters 

Weight (gm.) 
Surface Finish 

p i n . ,  nns 
p m ,  m s )  

Outer Race Parameters 

Weight (gm.) 
Surface Finish 

t p i n . ,  nns 
C l m ,  ms) 

P r e t e s t  Post  Test 



TEST RUN NO. : 6 
BEARING SET Nb. : s 
BEARING PART NO. : a 7  74 
DATE: 5-22-68 

Front Bearing S/N L-1 Rear Bearing S/N L-3 

Cage Config. : CKJ 8836 Cage : Salox-M Balls: Star-J 

To ta l  D a l l  Size  Var. 

B a l l  Parameters 

Average Diame Ler 

Cage Parameters 

Weight (gin.) 

Inner Race Parameters 

Weight (gm.) 

Outer Race Parameters 

Weight (gm.) 
Surface Finish 



TEST RUN NO. : 7 
BEARING SET I&. : 2 
BEARING PART ND . : 2 132197 
DATE: 5-13-68 

Front Bearing S/N 248 Rear Bearing S/N 249 

Cage Config. : CKJ 7153 

Ball Parameters 

Cage Parameters 

Weight (gm.) 

Inner Race Parameters 

Weight (gm.) 
Surface Finish 

Outer Race Parameters 

Weighr (gm.) 
Surface Finish 



TEST RUN NO. : 8 
BEARING SET &. : 2 
BEARING PART NO. : 2132197 
MTE : 6-4-68 

Front Bearing S/N L-5 Rear Bearing S/N L-6 

Cage Canfig. : C K J  7153 Cage: Chemloy. 719 Balls: AISI 440C 

Ball Parameters  

Inner Race Parameters 

Weight (gm.) 
Surface Finish 

Weight (gm.) 
Surface Finish 



TEST RUN NO. : 9 

BEARING SET 5. 
BEARING PART NO. : 2132197 
DATE: 7-1-68 

Front Bearing S/N 248 Rear Bearing S/N 249 

Cage Config.: CKJ 7256 Cage: Chemloy 719 Bal ls :  AISI 440C - 

Shaft  F i t ,  t i g h t  ( in . )  
(m.1 

Housing F i t ,  loose 
( in . )  
(cm.1 

Total  &ill Size Var. 
( p i n . )  
( ~ ~ ~ 1 . )  

h e o r .  I n t .  Clearance 

B a l l  Parameters 

Average %eight  (gm .) 
Average Surface Finish [;w;.,y 
Average Diame i-er 

( in . )  
(m.1 

Cage Parameters 

Weight (gm.) 
Average Pocket Dia. 

in . )  Axial  
[;n~:[ Axial  

Circumferent i a  1 
cm. Circumferent ia l  

Ins ide  Diameter 

t e s t  

0.0018 
0.0046 

0.0050 
0.0127 

120 
3.048 

0.0086 
0.0218 

24.3077 

6 -  8 
1524-.2032 

0.71860 
1.82524 

Inner  Race Parameters I I 
Weight (gm.) 

Outer Race Parameters I 
Weight (gm.) 
Surface Finish 

t 



TEST RUN NO. : 10A & 106 
BEARING SET a. : 3 

BEARING PART NO . : w 1 9  7 
DATE: 7-9-68 

Front Bearing S/N L-5 Rear Bearing s/N L-6 

Cage Config. : Cage : 9 Balls: AISI 440C 

Theor. Int . Clearance 

B a l l  Parameters --- 

Inner Race Parameters 

Weight (gm.) 
Surface F in i sh  

Outer Race Parameters 

Weight (gm.) 



TEST RUN NO. 
BEARING SET 
BEARING PART NO. : 2132197 
DATE: 1-21 & 28-70 

Front  Bearing S/N * Rear Bearing S/N * 
Cage Config. : D K J  1015 Cage: Chemloy 719 Ba l l s :  AISI  4 4 O C  - 

Ba 11 Parameters 

Cage Parameters 

Weight (gm.) 

Inner  Race Parameters 

Weight (gm.) 
Surface Finish 

Outer Race Parameters 

Weight (gm.) 



- 
BEARING PART NO. : 2 
DATE: 2-19 & 20-70 

F ron t  Bear ing S/N L-5 Rear Bear ing S/N L-6 

TEST RI 
BEARING SET NO. : 3 

132197 

Cage Config. : DKJ 1015 Cage: Chemloy 719 B a l l s :  AISI 440C 

P r e t e s t  P o s t  T e s t  

S i ta f t  F i t ,  t i g h t  ( i n . )  
(cm.1 

Housing F i t ,  Loose 
( in . )  
(em.> 

T o t a l  bll S i z e  Var. 
( p i n . )  
(rill.) 

Theor. I n t  . Clearance  

e r s  - 
Weight (gm.) 
Average Pocket  Dia. 

I n s i d e  Diameter 

I n n e r  Race Parameters  I 
Weight (9.) 
Sur face  F i n i s h  

Outer  Race Parameters  I 
Weight (gm.) 
Su r face  F i n i s h  



TESTRUNNO.: 1 4 A & 1 4 B  
BEARING SET m.: 6 
BEARING PART NO. : 2137774 
DATE : 3-19-70 

F ron t  Bearing S/N L-9 Rear Bear ing S/N L-10 

Cage Config.  : DKJ 6202 Cage : Salox-M B a l l s :  S t a r  J - 

S h a f t  F i t ,  t i g h t  

T o t a l  B a l l  S i z e  Var. 

B a l l  Parameters  

.0509-,0762 

Cage Parameters  

Weight (gm.) 

I n s i d e  Diameter 

I n n e r  Race Parameters  

Weight (gm.) 

Oute r  Race Parameters  

Weight (gm.) 
Sur face  F i n i s h  



TEST RUN NO..: 1 5  
BEARING SET ~ b .  : 7 
BEARING PART NO. : 2137774 
DATE : 3-19-70 

f r o n t  Bearing S / N  L-7 Rear Bearing S / N  L-8 

Cage Config. : DKJ 6202 Cage : Sa lox-M Ba l l s :  S t a r  J 

Prl 

S h a l t  F i t ,  t i g h t  ( in . )  

Housing F i t ,  l oose  

T o t a l  Ball S i z e  Var. 
( p i n . )  
( M I ~ I - )  

Theor. I n t  . Clearance 
( i n  .) 
(m.1 

B a l l  P a r a m e t e r -  

Average Weight (gm .) 
Average Surface  F in i sh  

I p i n . ,  rmz 
g m ,  rms) 

Average Dian~e r e r  
( i n . )  
(m.1 

Weight (gm.) 
Average Pocltet Dia. 

( i n . )  Axial. 

I cm.) C i rcumfe ren t i a l  
I n s i d e  Diameter 

I n n e r  Race Parameters  I 
Weight (@.:I 
Surface  F in i sh  

p i n . ,  rms 

Outer  Race Parameters  

Weight (gm.) 
Surface  F in i sh  

p i n . ,  rms 



TEST RUN NO. : 16A & 16B 
BEARING SET 
BEARING PART NO. : D K J  7743 
DATE : 4-27-70 

F ron t  Bearing S/N L-2 Rear Bear ing S/N L-6 

Cage Config. : D K J  6202 Cage: Sa1ox-N B a l l s :  AISI  440C - 

Housing F i t ,  l o o s e  

B a l l  Parameters  

Average Diame ce r  

Cage Parameters  

I n n e r  Race Parameters  

Ou te r  Race Parameters  

Weight (gm.) 
Su r face  F i n i s h  



Cage Pocket Wear Scar 

Test No. Minor Diameter of Largest Scar, 
in. cm 

% 

2 

3 

4 

5 

6 

7 

8 

9 

10A 

BOB 

11 

12 

13A 

13.B 

14A 

14 B 

15 

16A 

P6B 

Minor Diameter of Typical Scar, 
in. 
--- 

cm 

(a) 1Ball.s seized in cage and the only sca r  was at  manufacturing split 

(b) Was not measured due to negligiable wear 

( c )  Coolant flow split caused overheat with no damage to cage 

( d )  Rig was not disassembled before next test 

( e )  Minor axis greater than cage thickness. 
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