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ABSTRACT

The effect of off-optimum rocket engine operating conditions on ablative
material performance is investigated theoretically and experimentally. Ex-
periments are conducted utilizing an arc plasma generator as the energy source
to simulate the products of combustion of Nzo4 - N2H4/UDMH for mixture ratio
varying from pure oxidizer to nearly pure fuel and for simulated characteris-
tic velocity ratio from 0.85 to 1.10. Calorimetric measurements reveal a
70 percent heat-transfer-coefficient increase associated with surface rough-
ness similar to the ablating surface. Silica phenolic nozzle test results
reveal the strong dependence of ablation magnitude and character upon mix-
ture ratio. For constant stream temperature minimum surface recession occurs
for oxidizer-to-fuel mass ratio of 1.0 and departures from this (lean or
rich) result in significant surface recession increases. Surface recession
decreases with temperature for all mixture ratios. Ablation predictions
sucessfully predict the trend and magnitude of ablation for high mixture
ratio (O/F 2.2.0) and high simulated characteristic velocity ratio but fail
to correctly predict the observed decrease in surface recession with de-
crease in characteristic velocity. Predictions of graphite phenolic ablation
in a FLox-prépane rocket nozzle lead to the conclusion that consideration of
only chemical erosion and the assumption of chemical equilibrium is adequate
for representing important energy and mass transfer events for this material-
propellant combination.
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- SUMMARY

Simulation of five oxidizer to fuel ratios of a liquid propellant rocket
engine operating on N204 - 50 percent N234/50 percent UDMH over a wide range
of off optimum propellant energy content were achieved, and the material re-
sponse of MXS-89 silica phenolic to these environments was recorded. an
arc plasma generator powered by a 1.1 megawatt DC power supply was utilized
to heat the simulation gases. The following operating parameters which were
identified as being important to the simulation were duplicated in the arc
plasma generator tests: .

1. Chemical composition of the free stream gas.

2. Total enthalpy of the free stream gas.

3. Boundary layer heat and mass transfer coefficients.

4. Chamber preSsure. '

5. The variation of nozzle area ratio in the streamwise direction in

the throat region. ’

A total of 57 calorimetric tests and 35 MXS-89 silica phenolic ablative
nozzle tests were performed. Nozzle throat calorimetric measurements re-
vealed increasing heat transfer coefficient with decreasing stream energy
content (C* ratio) and comparative measurements made with smooth and rough
surface calorimeters revealed that surface roughness simulating the ablating
surface results in a 70 percent increase in heat rate above smooth wall val-
ues. The matrix of test conditions obtained corresponded to all boundary
conditions which would reasonably be expected to occur in a silica phenolic
lined liquid propellant rocket engine. Trends in the silica phenolic abla-
tion response mechanisms with respect to test stream composition and energy
content are defined and possible explanations are offered. The data acquisi-
tion and presentation are sufficiently detailed that empirical ablation re-
sponse laws could be defined. Although being strictly applicable to only
the simulator operating conditions, these laws could be utilized to quanti-
tatively assist in estimating the response of silica phenolic in an actual
rocket nozzle (providing that suitable assumptions were applicable). 1In
addition, sufficient basic data were accumulated to provide an experimental
basis for the improvement and verification of current ablation analysis
techniques.



Computational'experiments using a specially modified ablation computer
code to predict the responge of the test models for O/F ratios of 2, 4, and
=, were partially successful. Excellent agreement between observed and pre-
dicted recession was obtained for the high C* ratio case for a uniform set
of values for the adjustable parameters of the code. This agreement spanned
the O/F ratio range considered; the code reproduced the O/F dependence of
recession exactly. The observed trend of recession rates with C* ratio was,
however, not predicted by the program. The code predicted little change of
recession rate with C* ratio, failing to match the observed decline of re-
cession rates. Part of the trend discrepancy may stem from systematic
trends in input quantities, particularly for convective transfer coeffi-
cient. Another contributing fact may be a departure from liquid layer con-
trol of the recession rate at low C* ratios. It is possible that the code
was pushed beyond the range of its applicability in this respect.

Computations of ablative material response are presented for a graphite
phenolic nozzle throat in a FLOX-propane environment. It is concluded that
consideration of only chemical erosion and the assumption of chemical equil-
ibrium is quite adequate for representing important energy and mass transfer
events for this material propellant combination.
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ABLATIVE RESPONSE OF A SILICA PHENOLIC TO SIMULATED LIQUID
PROPELLANT ROCKET ENGINE OPERATING CONDITIONS

SECTION 1

INTRODUCTION

Silica phenolic ablative materials provide a low cost, reliable means of
insulating rocket engine components from high temperature, corrosive combus-
tion product environments. Specification of ablative material composition
and thickness for adequate thermal protection with minimum weight requires
that consideration be given to a number of high temperature thermal, chemical,
and mechanical interactions between the ablative material and the environment
to which it is exposed. The phenomena requiring quantitative specification
include 1) boundary layer transfer rates of energy and chemical species to
and from the ablating surface, 2) the rates of reactions between the combus-
tion products, the char surface, and organic polymer degradation products,

3) the rate at which inorganic reinforcement fibers melt and are removed from
the surface, 4) fragmentation and departure of portions of the char layer from
the surface, and 5) energy, mass transfer, and chemical degradation events be-
low the ablating surface. The complicated interactions of the phenomena do
not readily lend themselves to quantification via simplifying analytical de-
velopments. Of necessity the rocket nozzle designer must utilize experimen-
tation to provide insight into the effects of varying engine operating condi-
tions, nonuniform propellant mixing, and film cooling techniques on the nozzle
insulation material integrity. The experimental input which the designer re-
quires may take the form of empirical material response laws. Alternatively,
experimental data may be utilized to improve and verify analytical capabili-
ties to the extent that analysis could be a more fruitful part of the ablative
rocket nozzle design process. The primary purpose of the investigation de-
scribed in this final report was to generate, for a particular material/pro-
pellant combination of interest, experimental information suitable for either
of the above applications. A secondary objective was to continue the develop-
ment of current ablative response prediction capabilities.

The effort was therefore performed to acquire and correlate experimental
information on the response of MXS-89 silica-phenolic to a simulated nitrogen
tetroxide-Aerozine rocket engine operating over a range of mixture ratios and
combustion efficiencies. The experimental approach employed an arc-plasma
generator to produce a high temperature, chemically reacting gas stream. The
technique for simulating rocket exhaust streams in an arc~plasma generator was
developed and reported in Reference 1 where successful operation was achieved
on gases required for simulating two rocket exhaust environments: H2'02' and
nitrogen tetroxide-Aerozine. 1In the study reported in Reference 2, the
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technique was further improved and ablation data for six materials were ac-
quired for a simulated nitrogen tetroxide-Aerozine rocket engine operating

at optimum conditions. The present investigation is directed toward acquir-
ing ablation data for simulated "off-optimum"” rocket engine conditions. The
investigation is unique in that ablation data were obtained over a wide range
of simulated mixture ratio and combustion efficiency, each being varied inde-
pendently. The basic experimental approach (Refs. 1 & 2) consists of heat-
ing appropriate gas mixtures with an arc-plasma generator such that a wide
range of test stream energy content may be achieved for a given mixture
ratio. Conversely, the energy content may be held constant while varying
test gas composition to simulate a wide mixture ratio range. The experiments
were accompanied by measurement of many parameters necessary for correlation
of ablative material phenomena. The basic experimental approach and results
are presented first, in Section 2, and are followed, in Section 3, by a de-
scription of data correlation efforts employing ablation computer codes. An
additional task of this program was the prediction of graphite-phenolic
ablation in the throat of a FLOX-Propane rocket engine. These calculations
are compared to measured data in Section 4. Conclusions and recommendations

for further efforts are presented in Section 5.




SECTION 2

EXPERIMENTAL SIMULATION OF ROCKET-ENGINE
ABLATIVE MATERIAL RESPONSE PHENOMENA

An experimental program has been conducted to characterize the
ablation of silica-phenolic in a nitrogen tetroxide-Aerozine rocket
engine environment. A wide range of off-optimum conditions were simu-
lated including oxidizer-to-fuel mass ratio (0/F) ranging from 0.38 to

» and gas stream energy content corresponding to characteristic velocity
ratios (C*/C* ) ranging from 0.85 to 1.05. The experimental approach

OPT
is presented first and is followed by a presentation of all test results.

2.1 EXPERIMENTAL APPROACﬁ

The experimental approach is described in four parts:

1. Simulation requirements.
2., Simulation technique.

3. Test apparatus,

4, Test procedure.

2.1.1 Simulation Requirements

In Reference 2 consideration is given to necessary simulation para-
meters for duplicating degradation mechanisms for a variety of material
types. Duplication of parameters in the following list is rationalized
as adequate for investigating degradation of silica-phenolic type ma-
terials:

1. Chemical compostion of the free-stream gas.

2. Total enthalpy of the free-stream gas.

3. Boundary layer heat and mass transfer coefficients.

4. Chamber pressure.

5. A/A* = same function of S in subscale and full scale experiments.

The first three parameters above are of primary importance for chemi-
cal erosion since they govern the reactivity of the chemical species
approaching the surface, the rate at which chemically reactive species
are transported to the surface, and the surface heat transfer rate which,
for a given ablation material, establishes the surface temperature. The
importance of the pressure depends on the degree of chemical equilibrium
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achieved at the ablating surface. 1If chemical equilibrium is achieved,
the chemical ablation rate will not change substantially for a chamber
pressure change of a factor of 2 or 3, provided the first three items are
held fixed. The last parameter (area ratio as a function of distance) is
included in the above list because of a desire to model liquid layer re-
moval phenomena. Duplication of liquid layer flow would require dupli-
cating nozzle geometry and size upstream of the point of interest; however
it is argued in Reference 2 that local modeling of liquid layer flow will
result if the streamwise derivatives of shear and pressure gradient are
duplicated (dTW/dS, and d2p/ds?). If the levels of shear and pressure
are duplicated, then duplication of area ratio as a function of distance
will result in duplicating the derivatives of shear and pressure as well.

The above list of simulation parameters is based upon reasonable
assumptions and is believed to represent most of the significant phenomena
which affect degradation of ablative materials. The experimental ablative
material test program includes the following two considerations in its
primary objectives: (1) to duplicate, as nearly as possible, each of the
five parameters in the above list, and (2) to monitor accurately each of
the five parameters so the observed results may be employed to infer what

the material response would be in the actual application being considered.

The above discussion has been perfectly general with respect to mate-
rial, environment, and experimental simulation device. In the following
sections consideration is given to simulating the environmental character-
istics of the throat region of a rocket nozzle. The propellant considered
is N204 - N2H4/UDMH and the experimental device is an arc-plasma generator.

2.1.2 Simulation Technique

The parameters to be duplicated for a meaningful ablative material
test have been identified. In this section, a specific technique is
described for achieving duplication of the requisite simulation parameters
for a rocket engine operating on N204 - 50% N2H4/50% UDMH propellant. A
wide range of arc plasma generator operating conditions are utilized to
simulate "off optimum" rocket engine operation. The correspondence be-
tween the plasma generator test conditions (chemical composition and
enthalpy) and the liquid propellant rocket conditions (local mixture
ratio and overall C*)is not obvious. In a rocket engine off optimum
conditions result from a number of non-ideal events which include incom-
plete mixing and non-adiabatic combustion. For the arc-plasma generator,
however, all chemical species are completely mixed and are effectively
in overall thermodynamic equilibrium, but their compositions and energy

content may be varied over wide ranges independently.




For the present investigation, the "off optimum" rocket operating
conditions simulated by the arc-plasma generator were defined consistent
with the following assumptions about flow in the rocket nozzle:

1.

The relation between characteristic velocity and total temperature
is defined by one~dimensional isentropic flow of the optimum rocket
mixture ratio (O/F of 2.0).

"Off optimum" characteristic velocities are simulated by adjusting
the total temperature of the arc heated gases.

Local mixture ratios at the boundary layer edge in the rocket nozzle
are in thermodynamic equilibrium and are at the total temperature
defined by the above assumptions.

The first assumption acts as the basis to relate simulation gas energy

content directly to rocket engine performance. Moreover, since simulation

test ablation data must be taken in terms of stream energy, it is the only

basis for directly relating the measurements to an anticipated rocket en-
gine performance. The most fruitful and meaningful use of the arc-plasma
generator data is, of course, to utilize it in combination with the accurately

known surface boundary conditions to adequately characterize the important
ablative phenomena and then, to utilize this basic understanding to pre-

dict the rocket engine performance.

In a rocket engine, the characteristic velocity is an easy-to-measure

indicator of overall combustion efficiency. This combustion efficiency

has been employed in the manner described above as a guide for selecting

simulation gas energy content for "off-optimum" conditions. The character-
istic velocity is defined as follows:

o o P_A* .
th
where Pc = chamber pressure
A* = throat area
ﬁ = propellant mass flow rate

The ratio of measured-to-ideal C* for equilibium isentropic flow is

typically designated the characteristic velocity ratio (C*/C*

OPT). For

the arc-plasma generator tests, the results are reported in terms of the
effective (C*/C*OPT) for an O/F of 2.0 mixture of N,0, - N,H,/UDMH oper-
ating at the equilibrium total temperature determined from the measured

enthalpy.

This quantity is notated as C*/C* This character~

opr)o/F = 2°

istic velocity ratio is shown in Figure 1 as a function of temperature.

For purposes of establishing the chamber-temperature range-of-interest a

nominal O/F ratio of 2.0 is assumed and characteristic velocity ratios
ranging from 0.85 to 1.0 are considered. It is noted from Figure 1 that
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this characteristic velocity range corresponds to chamber temperatures
ranging from 4500°R to 5700°R (2500°K to 3165°K).

The experiments were conducted over a wide range of mixture ratio
(0.38 < O/F < ») and chamber temperature (4500°R to 5700°R). The resulting
data may be correlated with such fundamental parameters as chemical composi-
tion and enthalpy or with more gross parameters such as characteristic ve-
locity ratio.

The desired levels of the various simulation parameters are achieved
by introducing a specially tailored gas mixture to an arc-plasma generator,
by dissipating the appropriate amount of electrical energy to increase the
gas total enthalpy to correspond to that in the rocket engine, and then by
expanding this high temperature gas mixture through an ablative material
test nozzle. Each of the parameters is listed and the means of achieving
duplication are given here:

Simulation Gas Elemental Composition (Kke) ~ The simulation gases

selected for a particular propellant environment are established by consid-
ering the chemical composition of the propellant. The quantity of each chem-
ical element in the simulation gas mixture is required to equal that in the
propellant. The following chemical balances may be written between the pro-
pellant (on the left) and the simulation gases (on the right) for the mixture
ratios considered in this program assuming 33.3 grams of fuel in each case:

O/F = 0 Propellant
A
(1 N\
0.52 N2H4 + 0,277 C2N2H8 -+
0.797 N, + 1.594 H, + 0.277 C,H (2
\ 2 2 274, )
Y
Simulation Gas
O/F = 0.38
0.1385 N204 + 0.52 N2H4 + 0.277 C2N2H8 >
0.936 N2 + 0.554 CO + 2.148 H2 (3)
O/F = 1.0
0.363 N204 + 0.52 N2H4 + 0.277 C2N2H8 -
1.160 N, + 1.804 H, + 0.554 Co, + 0.344 H,0 (4)
O/F = 2.0

0.725 N204 + 0.52 N2H4 + 0.277 C2N2H8

>

1,522 N, + 0,356 H, + 0.554 co, + 1.792 H,0 (5)




O/F = 4.0
1.45 N,0, + 0.52 N,H, + 0.277 C,N,Hg >
2.247N2 + 0.554 Co, + 1.272 0, + 2.148 H,0 (6)
O/F = o
NyO, * N, + 20, (7)

The above chemical balances serve to illustrate the simulation gas
composition employed for duplicating the elemental make-up for each mix-
ture ratio. Duplication of the molecular composition will also result
if the total enthalpy and pressure match those of the rocket engine to
be simulated.

It was initially intended to operate with a simulated O/F ratio of
0 as shown by reaction (2) above. Subsequent efforts to accomplish this
experimentally however were accompanied by the production of much soot as a

result of ethylene decomposition. This was an unrealistic modeling of rocket

phenomena. The substitute O/F ratio (0.38) shown in Reaction (3) was se-
lected on the basis of being as low as possible without resulting in soot
production. That is, all carbon is injected in the form of stable carbon
monoxide.

The mass fractions of each of the gases required for precise dupli-
cation of the particular propellant mixture ratios is shown in Table 1.

Total Enthalpy (Ho) - The desired total enthalpy of the simulation

gas mixture is obtained by arc-heating the gas with the appropriate amount
of electric energy. The amount of arc-heating required is determined by
considering the enthalpy of the propellant and the enthalpy of the simu-
lation gas mixture. The enthalpy of the injected simulation gas is evalu-
ated from

Ty

Tq
B3 =2<i Cpidt + AHfi (8)
Tq
The temperature, Ti’ is the injection temperature for each simulation gas
species, i, and Td is the enthalpy datum temperature. The amount of energy
which must be added to the simulation gas by the arc-heater is equal to

the difference between the desired total enthalpy and the enthalpy of
the injected simulation gases.,

AHarc = Hy - Hinj (9)

The range of desired total enthalpy (Ho) is shown for each mixture ratio
in Figure 2 as a function of total temperature. Figure 2 in conjunction
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with Figure 1 enables relating total enthalpy for each mixture ratio to the
characteristic velocity ratio for O/F = 2,0. Figure 3 shows the enthalpy
for various mixture ratios required to produce the chamber temperature
corresponding to a range of characteristic velocity for O/F = 2,0.

Heat Transfer Coefficient (peUeCH)— The relationship between the heat-

transfer coefficient in a simulation test and a rocket engine may be evalu-
ated approximately by referring to the simplified Bartz equation (Ref. 4).
This equation is approximate, but it does give a relatively accurate indi-
cation of the change in heat-transfer coefficient with chamber pressure

and throat diameter., Utilizing the simplified Bartz equation and forming
the ratio of heat-transfer coefficients in the arc (sub A) and rocket

(sub R) yields:

(p U C.) 0.8 0.2

e e H A = PA D§ (10)
{(p.UC.) P *

e e H R R DA

where CH is the Stanton number defined by:

9, = PUeCy (Hy - H,)

In order to duplicate the heat-transfer coefficient (peUeCH), the ratio

in Equation 10 must equal unity. It is apparent that if the pressure is to
be duplicated (PA = PR), then the throat diameter in the simulation test
must equal that in the rocket as well (DA* = DR*).
c), the throat diameter is

In an arc plasma gen-
erator, for a given pressure and enthalpy (AHar
limited by the available electrical power. Giving consideration to chamber
pressures in the vicinity of 100 psia with typical propellants, the present
Aerotherm constrictor arc unit is limited to throat diameters in the range
of 0.3 to 0.5 inch., With this restriction on throat diameter, or for any
subscale test, the simulation test pressure must be less than the actual

case in order to duplicate the heat-transfer coefficient.

As discussed in Reference 2, duplication of the heat-and-mass~transfer
coefficients is of prime importance, while pressure duplication is of
secondary importance. Based on this premise, it is reasonable to sacri-
fice pressure duplication in order to achieve heat-transfer-coefficient
duplication. Duplication of the mass-transfer coefficient will result
directly if the heat-transfer coefficient is duplicated since the boundary-
layer Lewis number will be the same in the simulation test and rocket

engine.

Employing equation 10, rocket~nozzle heat transfer coefficient simula-
tion capabilities for the N204 - N2H4/UDMH environment are shown in Figure
4, Shown in the figure are established operating conditions and lines of
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constant heat-transfer coefficient. The shaded region between the lines
represents the range of rocket engine operating conditions for which dupli-
cation of throat heat transfer coefficient may be achieved in the simula-
tion device. It is noted that as ablation of the throat occurs the throat
diameter will increase which will result in a drop in chamber pressure and
heat transfer coefficient. Simulation tests are normally continued until
the chamber pressure has dropped from 100 psia to 50 psia. This corres-
ponds to a change in throat diameter from 0.30 to 0.43 inches. The two
operating conditions shown in Figure 4 correspond to initial and final test
conditions.

'

Area Ratio Variation, A/A* = f(s) - The test nozzle area ratio vari-~

ation for the present test series was selected to be the same as reported
in Reference 2. 1In Reference 2 the test nozzle area ratio variation was
selected to match the area ratio variation in a particular rocket nozzle.
Both the rocket nozzle and arc-plasma simulation nozzle contours are
shown in Figure 5. Although the present test series was not directed at
simulating conditions in a particular engine, utilization of the same
nozzle geometry as previously employed better enabled comparisons to be
made with previous results.

2.1.3 Experimental Apparatus

The experimental apparatus for simulating rocket nozzle ablative
material performance is a modification of the apparatus described in
Reference 2. The basic apparatus consists of an arc-plasma generator to
add energy to a gas stream; a mixing plenum chamber in which the arc-
heated and other simulation gases are introduced for mixing to achieve
mechanical, thermal, and chemical equilibrium; a nozzle test section de-
signed to provide well defined and repeatable boundary layer heat-and
mass-transfer coefficients; and a gas metering and control system.

An overall simulation apparatus schematic is shown in Figure 6 which
represents the major apparatus components and their relation to each other.
The present experimental program was performed in two facilities. The
first half (Series A) of the experiments were conducted in Aerotherm's
previous experimental facility located in Palo Alto, California. The DC
power supply for these tests consisted of two railroad diesel electric
units operated in parallel to provide up to 1.2 megawatts. The second
half of the experiments (Series B) were performed in Aerotherm's new fa-
cility located in Mountain View, California. The new facility has a
1.1 megawatt }ectifier power supply which provides substantially more
versatility in available voltage - current combinations.
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Modifications to the basic experimental apparatus described in Refer-
ence 2 consisted of the following:
l. A new arc-plasma generator unit which enables increased power
levels and better control was installed.

2. A new mixing plenum chamber was fabricated with provision for ex-
hausting the simulation gas mixture through a bypass port and then
switching the flow from the bypass to the test nozzle during a
firing. This bypass flow and switching system enables keeping the
high temperature flow away from a test nozzle during the start-up
transient while operating conditions are being established. After
the desired values of gas flow rates and electrical energy input
have been obtained, the flow is switched from the bypass line to
the nozzle test section, thus producing an instantaneous exposure
of the test nozzle to the desired boundary conditions.

3. Gas handling and control systems for accomodating the several
different gas mixtures required for simulating five different oxi-
dizer-to-fuel ratios were added. The gas flow control system for
the different simulation mixtures is described in the following
section,

4. A new hot water heater was added prior to these tests. The old
hot water heater, (which provided cooling water to the mixing
plenum chamber) tended to produce a surging flow which made it
difficult to perform a steady state energy balance on the apparatps.

The modified simulator system is shown in Figures 7 and 8. Figure 7

is a section view of the mixing plenum with a bypass port and test nozzle
in place. The figure illustrates the relative location of primary (arc-
heated) and secondary flow injection ports, the location of the gas bypass
port, the position of the test nozzle, and the trap door assembly for flow
transfer. The purpose of the bypass port and trap-door assembly is to pro-
vide the means for establishing desired test conditions prior to exposing
the test nozzle to the high-temperature environment. The bypass flow port
leads to a heat exchanger for cooling the simulation gases, and then to a
flow control valve, and a solenoid valve. When the primary and secondary
flow rates have been established, and the desired arc-energy input level is
obtained, the flow control valve is adjusted until the plenum pressure
reaches the value it will have when all flow is going through the test noz-
zle. During this period, cold nitrogen gas enters through the trap door
and passes over the test nozzle to keep it cool. After the desired plenum
conditions have been achieved (10-15 seconds), the trap door is opened and
the bypass solenoid is closed. The transfer process is completed in less
than a second.

An overall view of the experimental apparatus is presented in Figures
8(a) through 8(f). Figures 8(a) and (b) are end views (looking into the
nozzle) with the trap door in the open and closed positions respectively.
Figures 8(c) and (d) are side views of the plenum section with the door
open and closed respectively. These figures also show the tubular heat




-11-

to the bottom of the picture. Figure 8(e) is an overall side view of the
entire apparatus showing the arc-plasma generator on the right and the old
(Series A) hot water heater on the extreme left The hot water heater

L A

\
exchanger on the bypass control system which runs from the plenum chamber
\
|

supplies high temperature water for cooling the plenum chamber. Figure 8(f)
shows an end view of the apparatus with the water-cooled calorimeter in
place.

The test apparatus instrumentation for measuring heat transfer co-
efficient and ablative material response is described subsequently along
with a presentation of the test data.

2,1.4 Test Procedures

The test procedures for the arc-plasma generator tests performed in
this program are described in this section. The procedure for each gas
mixture used was slightly different because of the various flow systems
required. 1In éddition, the use of hydrogen required special handling sys-
tems and pre- and post test purging procedures. A general test procedure
applicable to all gas mixtures is described first and is then followed by
specific requirements for each gas mixture.

The basic test procedure utilized for all tests is as follows:

l. The test nozzle is mounted, the trap door is closed and sealed,
and the by-pass port is opened.
2. All auxiliary supply systems such as the hot water generator, the
boilers, and the power supply are prepared.
3. Pre-test instrumentation calibration is performed.
4. Cooling water systems, including plenum hot water preheat (if
needed) are started.
5. Gas sources are opened to operator's console; supply lines are ' |
pressurized to the arc test stand; and trap door purge flow
is started and checked.
6. Primary and plenum start gas flows are set.
7. Voltage is applied to the arc, and the arc is started with a
radio frequency spark.
8. Shortly after arc start, solenoid valves transfer flow from purge
to test gases as required.
9. Flow rates are checked and adjusted if necessary.
10. Arc current is adjusted to achieve the desired arc-plasma generator
test condition. |
11. Trap-door is opened and by-pass port is closed.
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12, Interruption of electrical current terminates the test and returns
all gas systems to their off or purge conditions via solenoid
valves,

13. Flammable gas system is completely purged.

A schematic representation of the gas metering and control system re-
quired for the gas mixtures tested in this program is shown in Figure 9.
This schematic is a composite for the following five systems:

System 1:
O/F = o, Source 2; N2
Source 3: O2
System 2:
o/F = 4,0, Source 1:_CO2
Source 2: N2
Source 3: 02
steam
System 3:
O/F = 2,0 Source 1: H,
Source 2: Ni
Source 3: CO2
steam
System 4:
o/F = 1,0 Source 1: H,
Source 2: N2
Source 3: CO2
steam
System 5
O/F = 0.38 Source 1l: Mix S (CO and “z)

Source 2: N2

By comparing the above list to Figure 9, the specific plumbing and control
systems used for any particular gas mixture are defined. Gas systems 3,

4, and 5 were the only ones requiring special purge flow procedures because
of flammable gases. For these testé the flow rates of the flammable gases
were pre-set during calibration runs by the hand operated throttle valve

(see Figure 9). Two solenoid valves were therefore placed in the Source 1
system to provide a dual on-off capability only. The first was automatically
controlled by the power supply and could only be open while the arc was run-
ning. The other was manually actuated when the flammable gases were desired.

For systems 1 and 2 (the non-flammable gas mixtures), both primary and
secondary gas flows were controlled by standard hand throttling valves.
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Arc ignition was accomplished on the nitrogen primary flow and then plenum
injections flows were adjusted by hand while the arc was running.

2.2 EXPERIMENTAL RESULTS

A detailed definition of the simulation environments and the corres-
ponding nozzle responses requires the acquisition of a large guantity of
data. All of the pertinent raw data needed for interpretation and analysis
of the material/propellant interactions are included in this section. 1In
addition, basic results derived directly from the raw data are also in-
cluded here. All results from both the Series A and the Series B test
programs are given.

The test data may be conveniently divided into three categories;

® Arc plasma generator (APG) operating test conditions
® Heat Transfer coefficient boundary conditions
e Ablative nozzle response data

The APG test conditions are the specified independent variables which
control the boundary conditions during ablative nozzle tests. In order
to firmly establish these test conditions, numerous arc plasma generator
calibration tests were run utilizing a water cooled, steady state calorim-
eter nozzle which had the same basic dimensions as the ablative nozzles.
All important arc plasma generator test condition data for calibration
tests, calorimeter tests, and ablative nozzle tests are presented in
Section 2.2.1. The heat transfer coefficient boundary conditions for
each ablative test must be inferred secondarily from calibration test
data., All measured calorimeter response data, a discussion of the tech-
niques utilized to correlate the heat transfer data and the resulting
ablative nozzle transfer coefficient boundary conditions are presented
in Section 2.2.2., Finally, the measured surface and in-depth response
of each ablative nozzle tested is given in Section 2.2.3.

2.2.1 Arc Plasma Generator Operating Conditions

As was explained in Section 2.1, the Aerotherm arc plasma generator
is a versatile tool for the production of precise and accurately defined
thermal and chemical environments. In a typical APG test, all of the
following system properties may be independently defined:

® Test stream chemical composition.
® Total enthalpy {(or temperature).
® Total (or local) pressure.
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In this section, all useful measurements of these independent variables as
well as other pertinent quantities are presented.

Table 2 gives detailed arc plasma generator operating data for nearly
all test conditions at which ablative nozzles were tested. Condition num-
bers are in most cases useful in relating calibration test data to the
corresponding transient calorimeter and ablative nozzle test results. 1In
some cases, only extremes in enthalpy for a given oxidizer to fuel ratio
were calibrated and subsequent conditions were defined between the extremes
without the need for calibration or calorimeter tests. Tables 3 and 4
summarize measured arc plasma generator operating conditions obtained dur-
ing the transient calorimeter and ablative nozzle tests. The independent
operating variables presented in Tables 2,3, and 4 are discussed in the
following four subsections. Other information given in these tables are
discussed subsequently in Sections 2.2.2 and 2.2.3.

2.,2.1.1 Simulation Gas Compositions

As explained in Section 2,1, the actual fuel and oxidizer compositions
have been replaced by various amounts of nitrogen, oxygen, hydrogen, carbon
monoxide, carbon dioxide, or steam, The chemical composition of the test
stream is therefore defined by the relative amounts of these injected
species. The mass fractions of each of the injected species required to
simulate each O/F ratio were presented in Table 1. Tables 2,3, and 4
present those relative amounts which were determined from mass flow rate
measurements Auring each test in this program. Other gas composition related
data which are included in the tables are the nominal O/F rafio, the

equivalent N204 mass fraction and the total mass flow rates.

It should be noted that the maximum error of any one injected test
gas was below 2 percent. This is felt to be well within the accuracy re-
quired for the simulation tests.

2,.2,1.2 Chamber Pressure and Test Durations

A nominal maximum chamber pressure of 100 psia (6.8 atm) was achieved
in all tests, For typical ablative nozzle tests, where recession was
important, the chamber pressure decayed from the nominal value as the noz-
zle throat area increased. For these cases the tests were terminated when
chamber pressure had decayed to one-half its initial value; i.e., 50 psia
(3.4 atm). For those tests where no recession occurred, tests durations
were a minumum of 130 seconds, but in some cases, as much as 225 seconds.
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In Tables 2 and 3, the measured chamber pressures obtained in the
calibration and transient calorimeter tests are given. The variation of
chamber pressure with time during each ablative nozzle test is shown
graphically in Figure 10a through 10ii and the maximum and minimum values
for each test are listed in Table 4. Also tabulated are the total ex-
posure times for each nozzle.

2,2,1.3 Test Stream Enthalpy

Evaluation of the energy added to the simulation gas by the arc
plasma generator is accomplished by a system energy balance technique.
The net power input to the gas is obtained by subtracting losses to the
arc cooling water from the total electrical power dissipated into the
gas. The net enthalpy increase of the gas is then obtained by dividing
the net power to the gas by the total mass flow rate of gas; i.e.,

- Electrical Power Input - Rate of Coolant Energy Increase
arc Simulation Gas Flow Rate (11)

AH

An alternate form of equation 11 is written in terms of arc efficiency

AH _ Efficiency x Voltage x Current
arc Simulation gas flow rate
where
Efficiency = Electrical Power Input -~ Rate of Coolant Energy Increase

Electrical Power Input

For each calibration test, Table 2 gives the arc current, arc voltage,
overall efficiency and enthalpy increase of simulation gas. The test
stream total enthalpy is then represented by the sum of the enthalpy of

~
LA

the injected gases (Hinj) and the energy added by the arc (AHav )

H =H, . + AHarc

o inj (12)

The values of total enthalpy and injected gas enthalpy are also presented
in Table 2 for each calibration test,

Evaluation of the enthalpy history is subject to more error than the
other measurements because the rate of enérgy loss to the cooling water is
between 70 and 80 percent of the electrical power input and errors in the
measurement of either quantity tend to be amplified. A further difficulty
in the measurement of stream total enthalpy for transient colorimeter and
ablative nozzle tests is associated with the somewhat transient behavior
of the electrical power input and energy loss rates to cooling water.

The calculated enthalpy histories shown in Figure 11 for the ablative
nozzle tests and Figure 12 for transient calorimeter tests, have result-
ed from rather careful consideration of these transient effects to the
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extent that time lags between a measured power input fluctuation and the
corresponding cooling water energy increase fluctuation have been account-
ed for. It will be noted from the results that in some instances, signif-
icant total enthalpy fluctuations still remain. Study of the primary data
indicate that these trends are real. For convenience, time integrated
average enthalpy values are also given for applicable tests in Tables 3
and 4. In addition, for each value of total enthalpy given in Tables 2,

3 and 4, the corresponding values of total stream temperature and equiv-
alent C*/C¥* ) 0/F=2 are given. These correspondence were defined via

OPT
Figures 2 and '3 (see Section 2.1).

2,2.2 Heat Transfer Coefficient Boundary Conditions

Because the boundary layer heat transfer phenomena which occur in
an ablative nozzle test can never be precisely duplicated in either steady
state or transient calorimeter experiments, a certain amount of theoreti-
cal and empirical adjustment to the calorimeter data is required to obtain
the ablative nozzle heat transfer coefficient boundary conditions. All
important calorimeter data are discussed in Section 2.2.2.1 and the basic
calorimetric information are then presented. The correlation and sub-
sequent application of this data to ablative nozzle tests are described
in Section 2.2.2.2.

2,2.2,1 Calorimeter Heat Transfer Measurements

Data taken during steady state calorimeter tests are described in
Section 2.2.2.1.1 and transient calorimeter data are presented in Section
2,2,2.1.2,

2.2.2.1.,1 Steady State Calorimeter Data

The 0.3 inch diameter steady state calorimeter nozzle which is
described in Reference 2 was reused in this program for each arc plasma
generator calibration test. Figure 13 shows a schematic drawing of this
nozzle. The figure shows two throat segments although for some cali-
bration tests only one was utilized. Because the exposed surfaces of this
nozzle were all water cooled, heat transfer data were only taken when
the arc operating conditions had reached steady constant values.

The measurement of the energy increase of the cooling water flowing
in the throat segments of this nozzle, combined with a knowledge of the
heat transfer area gave the throat heat transfer rate per unit area.
Those data have already been presented in Table 2. Also given there
are the calculated values of calibration test heat transfer coefficient
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based on enthalpy potential. This quantity is defined as follows:

q v
p UC = —CW__ (13)
e e Ho Ho Hw

where Ho is the test stream total enthalpy and Hw is the enthalpy of the
test stream gas in equilibrium at the calorimeter surface temperature,

here taken as 720°R (400°K).

2,2,2.1.2 Transient Calorimeter Data

There were three types of transient calorimeter data utilized in
this experimental test program. These were (1) a smooth wall copper calo-
rimeter nozzle, (2) a smooth wall, molybdenum nozzle, and (3) a molyb-
denum calorimeter nozzle with a mechanically roughened internal surface
contour. The copper calorimeter was utilized in the Series A test pro-
gram to obtain additional data on the convection of energy in the various
simulation gas environments. A schematic diagram of the copper transient
calorimeter is shown in Figure 14. The design is identical to the trans-
ient calorimeter described in References 1 and 2. Tests of this nozzle
were important because the surface temperatures achieved during the trans-
ient response of the calorimeters were higher than the condensation temp-
eratures of the HZO in the test gas stream (about 720°R). Data taken
by this instrument are, therefore, expected to represent ablative nozzle
test events more accurately than did the steady state, cold wall calorim-
eter used in the calibration tests.

The molybdenum nozzles which were tested in the Series B program
were a further attempt to accurately simulate with a calorimeter nozzle
the convective heat transfer phenomena which cccur in ablative nozzle
tests. Molybdenum was selected because its melt temperature is much
higher than that of copper, (2883°K compared to 1356°K). This allowed
data to be taken for surface temperature approaching those observed
during the Series A ablative nozzle tests. The basic features of the
molybdenum nozzles are shown schematically in Figure 15. The design
is conceptually the same as the previously described copper calorimeter
but small changes were incorporated to accomodate the higher temperatures
which were anticipated. These changes include: 1) use of tungsten-
rhenium thermocouples, 2) use of beryllia thermocouple insulation tubing,
3) and use of a revised technique for bringing thermocouple leads into
the tubular heat sink element,

Two different molybdenum calorimeter nozzles were fabricated and
tested in the Series B program. One had a smooth internal surface with
the basic dimensions of the copper transient calorimeter. Direct
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comparisons to define the effect of surface temperature were therefore
possible. The second molybdenum nozzle was initially fabricated identical
to the first but was then mechanically roughened on its inner surfaces.
Nominal roughness was comparable to that observed in post-test examinations
of the Series A ablative nozzles. By testing both molybdenum nozzles at

the same test condition, the effects of surface roughness on heat transfer
coefficients were defined. A detailed discussion of the comparisons afford-
ed by the molybdenum calorimeter data are included in Section 2.2.2.1.2.2
and later in Section 2.2,2.2.

The primary data from which heat flux and subsequently heat transfer
coefficient values were obtained consisted of the transient millivolt
response of thermocouple imbedded in the short tubular throat sections of
each calorimeter. The resultant temperature history measurements for all
transient calorimeter tests are shown as symbols in Figures l16a through
lé6t. 1In addition, each figure shows the distance of each thermocouple
below the exposed surface, Also shown are thermocouple response predic-
tions for the copper calorimeter tests. These predictions and the tech-
niques utilized to evaluate heat flux from these data for the copper
calorimeters are described in Section 2.2,2.1.2.1, while the techniques
utilized in the molybdenum calorimeter data reduction are presented in
Section 2.2,2,1.2.2,

2,2.2,1.2,1 Copper Calorimeter

For tests of the copper transient calorimeter, the surface heat flux
was obtained from the measured subsurface temperature histories utilizing
a transient, axisymmetric conduction solution computer program. The com~-
puter code utilized for these calculations required as input the thermal
properties of the calorimeter material (OFHC Copper) and the surface
temperature history of the calorimeter throat section. The code then
computed the surface heat flux and predicted the in-depth temperature
response of the thermocouples. Since the surface temperature histories
are not measured directly during these calorimeter tests, an iterative
procedure is required to obtain the correct heat flux. That is, a sur-
face temperature history is estimated and the corresponding in-depth
response is computed and compared to the measured (thermocouple) response.
Depending on the discrepancies between predicted and measured, a new
surface temperature history estimate is generated and the computations
are repeated. Approximately five such iterations were required to ade-
quately match the predicted to the measured. The final predicted thermo-
couple temperature histories for the copper transient calorimeters are
shown as lines on the same figure that presented the measured data
(Figures 16a through 1l6r).
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The surface heat flux histories corresponding to these temperature histories
are shown in Figures 17a through 17r. Also, time integrated averages of
heat flux are given for each test condition in Table 3.

The measurement of surface heat flux by this technique is remarkably
accurate. A good feeling for its accuracy was gained during the iterative
evaluation. It was found that predicted internal temperature histories
which bracketed the measured data corresponded to surface heat flux vari-
ations of only two to five percent in the range of useful data. It is
thus concluded that the surface heat flux measurement by this technique
is accurate to within five percent.

The evaluation of transient calorimeter heat transfer coefficient
values was performed utilizing equation 13 (See Section 2.2.2.1.1). For
the transient calorimeters, the enthalpy of the surface gases and the test
stream total enthalpy, as well as the surface heat flux were changing with
time, The resulting heat transfer coefficient histories are given in
Figure 18a through 18r for the copper transient calorimeter tests. 1In
addition, time integrated averages of heat transfer coefficient for the
transient calorimeter tests are given in Table 3.

2.,2.2,1.2,2 Molybdenum Calorimeter

Two tests featured molybdenum calorimeters. These runs had a dual
purpose: 1) to provide "hot wall" heat transfer coefficient data for
use in improving the heat transfer coefficient prediction scheme and in
the ablative model analysis studies, and 2) to provide an idea of the
effect of ablative model surface roughness on the heat transfer co-
efficient, For this second purpose, one of the two calorimeters had
an artificially roughened surface.

Figure 15 shows the molybdenum calorimeter assembly, which was the
same for the smooth and rough nozzles, and which was conceptually the
same as the calorimeter assembly described in Reference 2. The molyb-
denum parts were machined from bar billets of climelt (R) CMX-WB-LC-1
arc—-cast molybdenum supplied by The Climax Molybdenum Company. The
rough nozzle was roughened by a number of intersecting V-shaped cuts
or grooves made in the 0.300 ID throat surface. The width of the
individual grooves approximately equalled the nominal depth of 0.015
inches. Cuts were made as to remove approximately 70% of the original
surface area.

The two calorimeters were each instrumented with six in-depth
thermocouples at various depths. The thermocouple installation is
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illustrated in Figure 15; the six 3-mil tungsten-rhenium thermocouples were
peened into holes drilled into the molybdenum throat segment. Two addition-
al thermocouples are peened into the back-wall of each calorimeter.

The molybdenum calorimeter exposures received the test numbers 1353
(smooth) and 1354 (rough). Section 2.2.1 above presents the arc operating
test data for these two runs. Table 3 summarizes the physical parameters
of the tests.

Figures 16s and 16t show the thermocouple responses obtained from the
two arc test exposures. The temperature rises were less than expected
due to heat leaks in the axial direction from the calorimeter throat segment.
Nevertheless, the response was adequate for the hot-wall effects analysis
purposes of Section 2.2.2.2. and also adequate for studying the relative
effects of roughness, as will be seen from the reduced data presented
below.

Data reduction for these molybdenum calorimeters differed from that
used for the copper calorimeter. Surface heat flux was inferred not from
iterative calculations with a direct transient heat conduction computer
code (trying to match or predict the measured thermocouple responses),
but rather from solutions obtained from an inverse finite difference heat
conduction program (Reference 5). The inverse code performed essentially
the same kind of iteration done by the user of a direct code for thermo-
couple matching, but does it automatically at each finite difference time
step in the solution (rather than examining retrospectively a thermocouple
prediction for the entire test time history).

The inverse procedure requires as input the same kind of property
and finite difference nodal data as required by a direct solution, plus
the measured thermocouple responses. These latter were smoothed to a
very slight degree to improve the smoothness of the predicted surface
heat fluxes. Molybdenum properties were taken as the recommended values
from Reference 6, with a density of 639.3 1lb/ft?® (1.024x10" kg/m?).

Ideally, the inverse conduction code would predict the same surface
heat flux history using each of the measured thermocouple response inputs
to the code. A variety of experimental errors combine to cause a spread
in the predicted heat flux histories. Figure 19 shows the mean predic-
tibns for the smooth and rough molybdenum calorimeters; the actual pre-
dictions with the various thermocouple responses scattered about +15 per-
cent around the mean value lines. For times less than four seconds, the
scatter was about 15 percent.

These heat flux results served to yield convective heat transfer
coefficients peUe CH‘when divided by the appropriate enthalpy difference
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driving force (Ho - H ). The total enthalpy H  is presented in Figures 12s
and 12t, the wall enthalpy H is shown as the 3 atm pressure curve for
O/F=.38 in Figure 2, Note that the gas is assumed to be frozen at temp-
eratures below 1800°R (1000° K). Figure 20 shows the transfer coefficients
thus derived, as well as the ratio of the rough calorimeter transfer co-
efficient to the smooth wall transfer coefficient. Both Pe U C curves

drop steadily throughout the test (disregarding the first few seconds .of
data, which are presumably not reliable). This drop is a result of the
axial heat leaks in the calorimeters, which cause the inferred one-dimen-
sional heat flux into the calroimeter to be less than the actual throat
heat flux. Since the data reduction process has ignored the possibility of
heat leaks, the computed peUeCH values are artifically depressed. Despite
these flaws in the data, Pe U C values extrapolated to zero time should

be acceptably accurate, and the ratios of rough to smooth peU C values
should be reliable. This latter assertion is supported by the unlform
ratio of Pe U CH rough/p U C smooth at a value of 1.7. This value is

used in Sectlon 2.2.2.2 below An absolute value for p U CH smooth is
taken as 0,180 1lb/ft? sec (.880 kg/m? sec). An absolute value for

peUeCH rough is less certain and is taken as 1.7 times the smooth value

of 0.180 1b/ft? sec or 0,306 lb/ft? sec (1.50 kg/m? sec). These values are
cited in Section 2,2.2.2 below as part of the analysis of hot wall

effects on the convective transfer coefficient.

2.2,2.2 Heat Transfer Coefficient Data Correlation

In the previous section (2.2.2.1) all data measured and determined
from calorimeter tests were presented. In this section, the calculations
performed to interpret the data and estimate the heat transfer coefficient
boundary conditions imposed during the ablative nozzle tests are described.
These correlation efforts are required because the heat transfer co-
efficient values which apply during ablative nozzle tests are not measur-
able. 1In addition since the boundary layer heat and mass transfer pheno-
mena have such a strong dependence on flow geometry, surface temperature,
surface roughness, and gas mixture thermal and transport properties, the
slight differences in arc plasma generator operating conditions between
calorimeter tests and ablative nozzle tests mean that measured calorimeter
coefficient values could not be applied directly to the ablative nozzle
tests. The steps taken to obtain the heat transfer coefficient boundary
conditions during each ablative material test were as follows:
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1. The empricially defined simplified Bartz equation was utilized to
obtain a baseline coefficient value for both calorimeter and abla-
tive nozzle test conditions.

2. The steady state and the transient calorimeter results along with
the Bartz calorimeter result was utilized to generate a Bartz "test
condition" correction factor for each test condition.

3. The transient calorimeter rough and smooth wall heat transfer data
was utilized to generate a "hot rough wall" correction factor (=1.7,
see Section 2.2.2.1.2.2).

4. The more sophisticated Aerotherm Boundary Layer Integral Matrix
Procedure (BLIMP) was utilized to verify the evaluation techniques
described here.

5. The results of the correlation studies (Items 2, 3, and 4) were
combined with the baseline Bartz equation predictions of the heat
transfer coefficient histories.

Successful correlation of the available calorimeter data by the techniques
outlined above insured that the heat transfer coefficient boundary condi-
tions to the ablative nozzles were adequately determined. Detailed descrip-
tions of the correlation activities are presented in Sections 2.2.2.2.1 and
2.2.2.2.2. below.

2.2.2.2.1 Comparisons to Theoretical Predictions

The calorimeter nozzle heat transfer coefficients were predicted first
by employing a modified form of the simplified Bartz equation. This re-
lation, which was based on the work of Reference 4, is described in detail
in Appendix A of Reference 1. Equation 14 shows the currently used form

of the relation:
2 .8 .8

0.026 fu”_ \fe~ (P Ug) (14)

p UC., =
e e H D2

Prz pe
where the primed quantities are evaluated at the boundary layer reference
enthalpy.

Calorimeter nozzle throat heat transfer coefficients calculated using
the Bartz equation are listed in Table 5, Time average values of pressure
and enthalpy, also shown in Table 5, were used for these calculations, and
the Aerotherm Chemical Equilibrium (ACE) program (Reference 7) was utilized
to calculate the transport properties and to predict peUe at the calorimeter
throats assuming one dimensional isentropic flow, Previous experience
(References 1, 2, and 8) indicates that the Bartz equation usually over-
predicts experimentally measured heat transfer coefficients for arc~tested
calorimeter nozzles. This was also the case for the present program as
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may be observed from Table 5, the average ratio of experimentally measured

to Bartz calculated heat transfer coefficient (excluding the molybdenum noz-
zles) being 0.437.

In order to define the effects of test stream chemical composition
(O/F ratio) and energy content, C*/C*opr)o/p=2' the measured to Bartz cal-
culated ratio was plotted as a function of C*/C*OPT)O/F=2 for each O/F
ratio tested. These plots are shown in Figures 2la through 2le. While
there is scatter, Figure 21 shows definite variations of the experimental
to Bartz heat transfer coefficient ratio with both O/F and c*/C*OPT)O/F=2'
This variation will be discussed subsequently in Section 2.2.2.2.2.

The disparity between the experimental heat transfer measurements and
the predictions based on the Bartz correlation was somewhat greater than
expected. While there are a variety of potential reasons for this dispar-
ity, the'existence of laminar or transitional (rather than turbulent) flow
in the calorimeter nozzles is the most likely.

In order to provide an additional check on the heat transfer coeffi-
cients calculated by the Bartz relation and measured using calorimeters, a
sophisticated boundary layer solution procedure was employed to calculate
the heat transfer coefficient, momentum thickness Reynolds number, etc., as
a function of boundary layer running length for several selected calorimeter
tests. These solutions were obtained employing the Boundary Layer Integral
Matrix Procedure (BLIMP) computer program. The BLIMP program employs an
integral strip technique to solve the boundary layer equations for non-
similar multicomponent chemically reacting laminar or turbulent flows sub-
ject to very general boundary conditions (References 9 and 10).

Boundary layer solutions, assuming real gas one<-dimensional isen-
tropic core flow with fully turbulent'boundary layer flow, were performed
for conditions corresponding to two transient calorimeter tests at each
O/F ratio (total of ten cases). The predicted heat transfer coefficients
for a streamwise location just into the throat are given in Table 5. The
heat transfer coefficients predicted using the BLIMP program are in
approximate agreement with those calculated using the Bartz relation,
the BLIMP predictions being about 10 to 20 percent less than the Bartz
calculations for most cases.

Typical predicted boundary layer profiles of velocity, total enthalpy,
and temperature are illustrated in Figure 22. Typical chemical species
concentration profiles are illustrated in Figure 23. These predictions
are for steady state calorimeter test 1109A (0/F=2.0) and the profiles
illustrated are for a streamwise location just inside the nozzle throat
section. Note that the enthalpy thickness is about double the momentum
thickness and. since the wall is cold relative to the edge gas, compres-
sibility results in a negative displacement thickness.



~24-

turbulent boundary layers. These calculations over-predict the experi-
mentally measured heating rates and the suspicion naturally arises as to
the possibility of laminar flow in the calorimeter nozzles and perhaps the
ablative nozzles. Indeed, this suspicion was partially responsible for
the implementation of the rough-wall molybdenum calorimeter nozzles as
discussed previously in Section 2.2.1. The state (laminar vs. turbulent)
of the boundary layer is traditionally estimated by applying some tran-
sition criteria. commonly a critical momentum thickness Reynolds number.
For simple flat plate flows, transition is usually assumed to occur at

a critical momentum thickness Reynolds number of about 360 (Reference

11). However, since this flow is significantly different from simple flat
plate flow, the critical Reynolds number may be quite different as well,
The effects responsible for this difference include the accelerating nozzle
flow, the large Te/Tw ratio, the relatively high Mach number, the axisym-
metric geometry, and the potential effects of arc generated free stream
turbulence. In addition, the ablative nozzles differ from the calorimeter
nozzles in that they have hot, ablating, rough surfaces. Because of these
effects, a precise transition criteria cannot be applied with confidence
to either the calorimeter nozzles or the ablative nozzles,

In order to estimate the laminar heating rates and momentum thickness,
Reynolds number distribution, the BLIMP program was utilized to perform
additional calculations assuming laminar flow., Figure 24 illustrates
some of the results of these calculations for the conditions of transient
calorimeter nozzle test 1357B (0/F==), Presented here is the predicted
Ree and heat transfer coefficient distributions assuming fully turbulent
flow, fully laminar flow, and flow with transition at Ree = 200, Also
plotted are the corresponding experimentally measured and Bartz-predicted
heat transfer coefficients.,

Figure 24 illustrates the typical result that the experimentally
measured heat transfer coefficients are roughly midway between the ex-~
pected laminar and turbulent values. Also, the laminar momentum thick-
ness Reynolds number ranges up to about 400, which is within the range
of uncertainty relative to transition., Thus, no firm conclusions can
be drawn as to whether the boundary layer flow in the calorimeter nozzles
was laminar or turbulent. The only speculation supported by the cal-
culations presented here is that the calorimeter nozzle boundary layer
flow is transitional.

L

2.2.2,2.2 Application Of Results To Ablative Nozzle Tests

The heat transfer coefficient histories for the ablative nozzles
were estimated by employing a combination of experimental measurements
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and empirical correlations. The formula utilized to calculate the no-
blowing heat transfer coefficients subsequently input to ablation
prediction calculations (Section 3) may be written as;;

pUC o UC
pUC = pUC x [ ©H x| x[ e H xr
e%eCH e’eCn —_ XC — ¥R (15)
A BA Po0.Ch 520,
: BC Xs

where subscripts are:
A - Ablative nozzle heat transfer coefficient boundary con-
dition (function of time).

BA - Bartz equation prediction of ablative nozzle coefficient
(function of time).

BC - Bartz equation prediction of corresponding copper calorim-
eter coefficient.

XCc - Experimenyally determined transfer coefficient for copper
calorimeter operating at the ablative nozzle O/F and
C* ratios.

XR - Experimental rough wall molybdenum coefficient.
XS - Experimental smooth wall molybdenum coefficient.

This formula is predicated on the assumption that, except for rough wall
and mass addition.effects, the prediction error of the Bartz relation is
the same for both the ablative nozzles and calorimeter nozzles. Also,
it is assumed that rough wall effects on heat transfer are the same for
the ablative nozzles relative to the calorimeter nozzles as for the
rough wall.molybdenum calorimeter nozzle relative to the smooth wall molyb-
denum calorimeter nozzle. Given these assumptions, the ablative nozzle
heat transfer coefficient histories were calculated by correcting the
value calculated from the Bartz relation (first term in equation) by the
ratio of experimentally measured to Bartz-calculated calorimeter heat
transfer coefficient (second term in equation) and by the ratio of rough
to smooth wall molybdenum calorimeter nozzle heat transfer coefficients
(third term in equatioﬁ).

The time dependence of the ablative nozzle heat transfer coefficients
(duve to the nozzle throat enlargement and resultant chamber pressure de-
crease) is of course accounted for by the first term in equation 15. The
ratios of experimentally measured to Bartz-predicted heat transfer co-
efficient for each calorimeter nozzle are plotted in Figure 2la through
2le and were discussed in Sections 2.2.2,2.1. Since this ratio may be
expected to be a function of the chemistry associated with a particular
test condition (i.e., O/F and c*/C*OPT) o/F=2)+ the value of the second
bracketed term in equation 15 was taken to be a simple linear function
of c*/C*OPT)o/§=2if°r each O/F as indicated by the line in Figures 2la
through 2le. The value of the third bracketed term in equation 15 is
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1.70 as discussed previously in Section 2.2.1. The ablative nozzle heat
transfer coefficient histories estimated in the fashion described in this

section are presented in Figures 25a through 25ii.

2.2.3 Ablative Nozzle Response Measurements

Those measurements which established the environmental boundary condi-
tion to which the ablative nozzles were exposed have been presented in the
previous sections. The ablative response of the nozzles is described here.
Measurements of the nozzle responses may be conveniently divided into two
categories:

e Ablative material recession response
° Ablative material temperature response

Recession response includes all data related to the amount that a given noz-
zole is thermally degraded or chemically and mechanically eroded. Included
in this category are surface recession, surface recession rate, char depth,
and all quantities required to obtain recession data as a function of time.
These data are presented in Section 2.2.3.1. The temperature responses,
which includes in-depth and surface measurements, are presented in Section
2.2.3.2,

2.2.3.1 Nozzle Throat Recession Data

If the throat of each ablative nozzle had eroded at a constant rate in
all radial directions, the definition of total recession, recession histor-
ies, and recession rate would be simple. Pre- and post-test diameter meas-
urements would define all needed recession response quantities. Post-test
examinations of several of the nozzles showed considerable non-symmetrical
ablation at the throat. In addition, measured chamber pressure histories
(Figures 1l0a through 10ii) indicated that in several cases recession did not
begin until well into the tests. Since the chamber pressure is essentially
proportional to the nozzle throat area by sonic flow relations, the reces-
sion and recession rate histories can be inferred from measured pressure
data using pre- and post-test dimension measurement as scaling factors. The
techniques utilized to define the pre- and post-test nozzle throat dimen-
sions including the circumferential variation of throat erosion are described
in Section 2.2.3.1.1, and the techniques employed to obtain recession and
recession rate histories are presented in Section 2.2.3.1.2.

2.2.3.1.1 Pre- and Post-Test Ablative Nozzle Dimension Measurements

Pre-test throat diameters were accurately measured with a bore microm-
eter. Nominal internal diameter for all ablative nozzles was 0.30 inches
(0.0076 meters). The measured nozzle diameters were within 1 percent of
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nominal, although two nozzles, NL-1l and NL-35, were over machined 1.7 and
3.3 percent respectively. The exact pre-test diameters for each nozzle are
included in Figures 26a through 26ii. An additional pre-test machining
parameter of potential interest is related to the concentricity of the inner
and outer surfaces of each ablative nozzle. Machining tolerances were such
that at the throat the center of the nozzle internal circumference was within
0.002 inches (5x107°
fact was utilized in the subsequent data reduction as described below.

meters) of the center of the outer circumference. This

The evaluations of the post~test ablative nozzle throat contours were
performed by two unique techniques. The first technique was utilized in
the Series A arc plasma generator tests and the second was employed during
the Series B tests. Comparisons to obtain the relative accuracy of each
method were also performed. Each technique required the sectioning of the
tested nozzles to obtain a wafer of the nozzle at the throat location.
This sectioning is shown schematically in Figure 27, Cuts were made per-
pendicular to the nozzle centerline roughly 1/8 of an inch upstream and
downstream of the thermocouple plane. Photographs of these nozzle throat
wafers are shown in Figures 28a through 28ii.

In the Series A ablative nozzle tests, the internal nozzle contours
were obtained from enlarged shadowgraphs of the throat wafers. These
shadowgraphs were made by passing a beam of roughly collimated light through
the nozzle wafers and through a focusing lens in such a manner as to achieve
a 10 to 1 amplification of the throat contour. The amplification factor
was calibrated utilizing a steel wafer with a known internal diameter. Re-
duced versions of the shadowgraphs for the Series A ablative nozzles are
shown in Figures 26,

Also shown on these figures are the pre~test circular contours. The
pre~test centers required to define these contours were obtained by refer-
encing a crossvhair grid to the outer circumference of the throat wafer.
As was described above, the pre-test inner and outer circumferences were
essentially concentric and as such the grid center represented the nozzle
centerline. This determination was very useful in defining the degree of
non—symmetricél ablation which occurred in each test.

In the Series B ablation tests, the internal nozzle contours were
defined from photographs of the nozzle wafers (Figure 28). To obtain a
consistent amplification of the contour, the distances from wafer to lens
to film were maintained at constant values for all nozzles. Slide prints
of the exposures were then projected a distance sufficient to again achieve
a 10 to 1 amplification of the throat contours and the contours were hand
aketched. As a check on the amplification, the contour of one of the
ablative nozzle throat wafers from the Series A tests was defined by this
method. The results for the two methods were effectively identical.
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The pre-test nozzle centers for these wafers were defined during the
machining process. Reference lines were drawn at 90° intervals on the faces
of the wafers, so that, during the sketching of the nozzle contours, inter-
secting diameters could also be defined. The resulting pre~ and post test

nozzle contours are shown along with Series A contours in Figure 26.

The following additional data is given for each ablative nozzle in
Figure 26:
Post-test integrated average diameter.
Average net surface recession.
Surface recession in thermocouple plane.

Char depth in thermocouple plane.

Depth of thermocouples.

e Circumferential location of thermocouple plane,
The surface recession and post~test diameter measurements were taken direct-
ly from the contour sketches (or shadowgraphs), and char depths were deter-
mined by measuring the char thickness with a machinists rule and adding to
it the surface recession_inhfhe thermocouple plane. Recession measure-
ments in the thermocouple plane are important because of their subsequent
use in the analytical evaluation of the ablative material responses (see
Section 3), particularly if circumferential variations in erosion result
in local recessions adjacent to the thermocouples which are significantly
different from the average.

The measurements of the thermocouple depths were performed by the
X<ray technique described in References 1 and 12. This technique consists
of measuring the depths of the thermocouples from X-rays taken of the
ablative nozzle after they have been instrumented but before they are test-
ed. A study of the accuracy of the measurements taken in this manner was
performed in Reference 13, For thermocouples at any depth below the sur-
face, the measurement was found to be within 0,002 inches (5x10_5meters)
of exact. An example of an instrumented nozzle ready for X-ray is shown
in Figure 29, and a typical X-ray photograph showing three imbedded ther-
mocouples is given in Figure 30. Accurate determinations of these thermo-
couple depths are essential to relating predicted material response to
the thermal measurements described in the Section 2.2.3,2,

2.2.3.1.2 1Inferred Recession and Recession Rate Histories

Because of the transient nature of the ablation phenomena which
occurred in the nozzles tested in this program, the variation of recession
with time could not be assumed linear between initiation and completion

of exposure. For constant values of mass flow rate, total enthalpy, and
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isentropic exponent, one-dimensional sonic flow theory states that throat
flow area is proportional to chamber pressure. The desired variation of

recession with time was obtained utilizing the following procedure for each
ablation test.

® A baseline pressure (usually either the calibration condition
pressure or the measured peak pressure) was selected to correspond
to zero recession, i.e. pre-test throat area.

® A prediction of the variation of recession with time was then made
based on the measured chamber pressure history and the linear re-
lation described above,

e The predicted trend based on chamber pressure was then adjusted so
that final predicted recession matched the measured final recession.

The third step was required since non-ideal effects usually resulted in

the final predicted recession being different from the measured average
recession and/or the measured thermocouple plane recession. Curves of
these recession histories are shown in Figures 3la through 31ii for all
ablative nozzle tests., The values of recession rate as a function of

time were then easily defined by graphically differentiating the curves

of Figure 31.

2.2.3.2 Nozzle Thermal Responses

Two types of thermal measurements were taken for each ablative nozzle
tested in this program. Surface temperatures were measured by an optical
pyrometer. In depth thermal response measurements were taken by three
thermocouples imbedded at the throat axial plane. The optical pyrometer
utilized to measure the material surface temperature histories during the
ablative nozzle tests senses 0.8 micron thermal radiation. In Reference 2,
a study of the effects of ablation products and simulation gas on the sur-
face temperature indicated by the pyrometer was reported. Also given was
the effect of surface emissivity uncertainties on temperature measurement.
It was concluded that for the same materials and gases tested in this pro-
gram the surface temperature measurements were accurate to within 8 per-
cent, Surface temperature histories measured during the Series A and
Series B test programs are shown in Figure 32a through 32ii. Also shown
in Figure 32 are the in-depth temperature measurements and some predictions
which are described subsequently in Section 3.

The subsurface temperature histories were measured with fine wire ther-
mocouple probes. A number of different thermocouple instrumentation tech-
niques have been considered for obtaining internal temperature histories.
The prime requirement for an accurate temperature measurement is that the
sensor does not disturb the heat flow at the point of interest. To satisfy
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this, the sensor should be as small as is practical, and the thermocouple
leads in the vicinity of the junction should be placed in an isothermal
plane. This last consideration is particularly important in low-conductivity
materials and is impressively illustrated in Reference 14. Also, the thermo-
couple junction must be in intimate contact with the material in order to
minimize errors due to contact resistance.

Considering these requirements and the practical aspects of fabrication
the thermocouple installation scheme shown in Figure 33 was selected. Three
thermocouple ports 0.040-inch-diameter were drilled into the ablation nozzles
at nominal depths of 0.125, 0.20, and 0.275 inch. The thermocouple probes
employed are similar to those described in Reference 2. Small changes in the
design were required to accommodate the different nominal thermocouple depths
utilized in this program. Each nozzle was instrumented with two Chromel-
Alumel probes and one tungsten-5 percent rhenium/tungsten-26 percent rhenium
probe. The probes are inserted into the test nozzle so that they are tangent
to an isotherm at their junction. The thermocouples are spring-loaded against
the bottom of the thermocouple-probe hole to insure good contact of the ther-
mocouple junction with the ablation material. Thermocouple location and con-
tinuity are verified prior to testing by X-ray photographs and electrical
resistance measurements.

2.3 SUMMARY OF OBSERVED SILICA PHENOLIC ABLATION RESPONSE TRENDS

Simulation of five oxidizer to fuel ratios of a liquid propellant rocket
engine operating on N204 - Sb percent N2H4/50 percent UDMH over a wide range
of off-optimum propellant energy content were achieved. The material re-
sponses of MXS-89 silica phenolic to these environments were observed and
measured. In this section the identifiable trends in the material response
with respect to changing O/F ratio and stream energy content are described.
These observations are then used to support conclusions about the mechanisms
of silica phenolic ablation. Trends in post-test nozzle appearance are pre-
sented in Section 2.3.1. Trends in recession rate data are described in Sec-
tion 2.3.2. The apparent ablation response mechanisms are discussed in
Section 2.3.3.

2.3.1 Trends in Post-Test Nozzle Appearances

Identification of significant trends in the variation of the post-test
nozzle appearances provided valuable gualitative insight into the phenomono-
logical aspects of the silica phenolic response. To facilitate the defini-
tion of these trends, the matrix of environmental conditions tested during
the two experimental series have been divided into fifteen groups (three
stream energy content levels for each of five O/F ratios). Specific descrip-
tions of the throat surfaces are given for each of these groups in Table 6.
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Photographs of the nozzle wafers corresponding to the descriptions in Table 6
are given as Figure 34. The effect of decreasing stream energy content on -
surface appearance for each O/F ratio is presented below and is followed by
ccmments on the trends with respect to changing O/F ratio.

For O/F = 0.38, the surface appearance does not depend on the stream
energy content, i.e., c*/C*OPT)O/F=2.0 . The surface appears carbonaceous
with no change in composition between the surface and the in-depth char.
This surface appearance was peculiar to the O/F = 0.38 nozzles. For all
other O/F ratios somé amount of white solidified melt flow was present on
or near the surface. For the O/F = 1.0 nozzles, decreasing C* resulted in
greater percentages of the carbonaceous char being covered by the solidi-
fied melt. Presumably the lower stream energy content resulted in more melt
formation and/or high melt layer viscosity values, such that the flow could
not as readily be swept away. This same trend was apparent in the O/F = 2.0
nozzles. For the lowest C* tests of O/F = 2.0 series, the melt formation
was sufficiently large as to result in a net surface buildup.

Tests conducted‘at both O/F = 4.0 and « resulted in nearly identical
response trends with decreasing stream energy content. For the higher energy
content tests where significant recession occurred, the nozzle throat surface
char was covered with near continuous layers of white (silica) material. At
lower effective C* values for these O/F ratios, the white material was also
prominent but other species also appeared to be present on the post-test
throat surfaces. The low C* O/F = 4.0 tests produced nozzle throat surfaces
containing black shiny metallic appearing particles. A thin, pink layer of
particles covering the white melt layer was evident in the low C*, O/F = o
test nozzles.

The variation of general post-test nozzle appearance with O/F ratio in-
dicated the significant effect that boundary layer chemical composition has
on the silica phenolic response mechanisms. The oxygen available to react
with surface material appears to be the key parameter defining the response
mechanism. A non-obvious conclusion obtainable from the experiments per-
formed is that a certain amount of oxygen at the surface can have a positive
value in protecting silica phenolic from chemical and mechanical erosion.
This conclusion is discussed further in the followiﬁg sections. The trend
of post-~test surface appearance with increasing O/F ratio is that of increas-
ing amounts of white (silica) melt on or downstream of the nozzle throat.

The melt flow phenomena created some interesting effects at the nozzle
exit plane. Photographs of the exact flow pattern for eight different con-
ditions are shown in Figure 35. The exit patterns shown for O/F ratios of
@, 4.0, and 2.0 are presumably silica which has flowed downstream from the
nozzle and solidified. Figures 35a and 35c show that higher total temperature
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associated with higher C* condition had the effect of making the exit pattern
whiter and fluffier for the two most oxygen-rich O/F ratios. ‘Figures 35b and
354 show the opposite end of the total temperature scale for these O/F ratios.
Figure 35e is a similar flow pattern for an O/F of 2.0 nozzle tested at

C*/C*opr Jo pez = 1-028-

The post-test exit configuration given in Figure 35f shows that a small
amount of melt flow occurred during O/F of 1.0 tests. The O/F of 1.0 test at
a lower total temperature which is pictured in Figure 359 also shows small
traces of white material although no recession and hence no melt flow occurred.
‘This should be compared with Figure 35h where the typical O/F of 0.38 is shown.

2.3.2 Trends in Recession Rate Data

The trends in recession data are best compared in terms of recession
rate, since the effects of varying test time are somewhat lessened. For the
purposes of this discussion the average test recession rate as defined in
Table 4 are used even though the transient nature of the silica phenolic re-
sponse means that the instantaneous recession rates, once recession begins,
can be considerably larger than average. The effect of changing the test
stream energy content on recession rate is shown in Figure 36a through 36e
for each O/F ratio tested in this program. Although anomalies do exist, it
is obvious that as the stream total temperature was increased average reces-
sion rate also increased. These trends are, of course, reasonable since
higher stream temperatures typically result in a more chemically reactive,
thermally hostile environment, independent of the particular O/F ratio being
tested.

The effects of the test stream chemical composition (O/F ratio) are not
so easily defined. To visualize the variation of recession rate with O/F
while still indicating the above mentioned C* trends, a three-dimensional
model of surface recession rate, C*/C*OPT)O/F=2’ and effective N204 mass
fraction was constructed. A photograph of this model is shown in Figure 37.
The model roughly shows that the recession rate data creates a surface con-
tour which describes the effects of both O/F ratio and C* on recession rate.
The shape of this 3-D model could be used to quantitatively estimate the
effects of changing boundary layer composition and temperature on total noz-
zle ablation response.

A more quantitative description of these trends in the simulator tests
is shown in Figure 38. This curve represents the intersection of the surface
contour with the plane at c*/C*OPT)O/F=2 of 1.0 (ideal O/F of 2 combustion).
Points were obtained by cross plotting the intersections of the data fit
curves of Figure 37 and the C*/C*OPT 0/F=2 value against the respective Ko«
for each O/F. The figure shows that a minimum point exists near O/F of 1.0
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and that the addition of oxidizer increases recession rate only to a point.

Above O/F ratio of 4.0 increased oxidizer had only a small effect on reces-
sion rate.

Figures 36 and 38 (or alternately Figure 37) may be used as an empirical
material ablation response law for the interaction of silica phenolic with
the N204-N2H4/UDMH liquid propellant. Quite obviously the qualitative ef-
fects of varying rocket nozzle boundary layer composition and boundary layer
edge temperature can be seen. Utilizing the assumptions and definitions
about the meaning of the simulation gas C* ratio (as given in Section 2.1.2),
a crude quantitative characterization of the effects of varying conditions
on material response may also be obtained from Figures 36 through 38.

2.3.3 Ablation Response Mechanisms

Possible explanations for the trends described above are offered here
but more detailed analysis of the material response are deferred to Section
3. The comments given below about the chemical events are based upon the
elemental compositions of the various test gases and the silica phenolic,
and from calculations of the molecular compositions of the test gases at
nozzle throat conditions. Chemical equilibrium studies of gas systems con-
taining various amounts of hydrogen, carbon, nitrogen, oxygen and silicon
have shown that the following qualitative "basic principles" are applicable
for the materials, temperatures, and pressures characteristic of silica

phenolic ablation in the N204-N2H4/UDMH propellant environments.

° nitrogen is isolated (effectively inert)

o carbon most actively bonds with any of the other elements

° as oxygen becomes increasingly available, the important molecular
species oxidize in the following order:

(1) ¢ + %-02 > Co (16-3)
(2)  si + 30, sio (16-B)
(3) Sio + % 02 - SiOz* (cqndensed phase) (16-C)
l -
(4) Hy + 30, > Hy0 (16-D)
1 -
(5) co + 30, ~cCo, (16-E)

° in MXS-89 silica phenolic, sufficient Sio2 is available for oxida-
tion of all carbon in the char (i.e. once temperatures are suffi-
cient to reduce Sioz).

These "principles" can provide some qualitative insight into the erosion
mechanisms of silica phenolic, even though a full explanation of the detailed
ablation events is not possible from the studies performed to date.
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Assuming that the in-depth material response of the MXS-89 silica
phenolic is characterized by the pyrolysis of the phenolic resin followed
by the reaction of the residual carbon with the silica reinforcement, the
gases arriving at the surface from the ablative material consist of CO,
Sio, and small amounts of hydrocarbons.* The surface recession rate of
the silica (Sioz*) char is then governed by the chemical reactions and
the amount of mechanical (melt) removal occuring at the surface.

In the range of O/F ratio from 2.0 to «, recession is evidently con-
trolled by melt removal, Both the apparent chemical events and the in-
ternal surface appearances of the nozzles, as described in the following
section, confirm this conclusion, Furthermore, for the C*/C*OPT) 0/F=2
near unity tests, surface temperatures for this O/F ratio range were all
roughly 4200°R (2330°K), the apparent silica (SiGé*) flow temperature.
The recession trends over this range are heuristically explicable from
the oxidation reactions given above as equations 16C through 16E. For
O/F ratios of 4.0 and «, oxygen is sufficiently availably at the surface
to oxidize all of the silica phenolic decomposition products via these
reactions. Hence the plateau region shown in Figure 36 results because
all possible exothermic reactions occur, independent of further oxygen

availability.

The significant reduction of recession rate as the available oxygen
is decreased below O/F of 4.0 seems, therefore, to be due to the decrease
of exothermic chemical events (reaction 16-C through 16-E) at the surface.
At O/F of 2.0 the available oxygen is split between the reactions 16-C
and 16~D leaving some free Hz, while for O/F of 1.0 only a small amount
of silica is apparently being formed via 16-C. As discussed in Section
3, the surface response may not even be controlled by the silica melt layer
for O/F of 1.0.

For the tests at O/F ratio of 0,38, the oxygen reactions described
above cannot occur at the nozzle surface since no free stream oxygen is
available to oxidize any decomposition products. The propellant com-
position at these conditions is basically CO, N2, and H2, all of which are
relatively inert to the CO, SiO and hydrocarbons from the silica phenolic.
The observed increase in surface recession rate at this O/F ratio must,
therefore, be due to reactions between the carbon rich hydrocarbons and
the silica char. 1In this respect the minimum point near O/F of 1.0 is a
logical result since, as small amounts of oxygen become available to oxi-
dize the pyrolysis gases, silica remains on the surface to inhibit the
surface removal. Moreover, these conclusions are again substantiated by
the post-test appearances of the ablative nozzle. For O/F of 1.0 slight
traces of silica could be seen (though very little melt flow occurred),
while for O/F of 0.38 only a black carbonaceous char surface was apparent.

* = K3
Note that this model is consistent with SCRIMP program formulation (Section 3).
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SECTION 3

ABLATIVE DATA CORRELATION USING ABLATIVE COMPUTER CODES

This section describes the results of a number of "computational
experiments" made with ablation computer codes to predict the ablation
actually observed in the arc test cases, These calculations served to

(1) illuminate many of the physical ablation mechanisms occuring

in silica~phenolic.

(2) establish same confidence in the ability of a complex ablation

computer code to predict ablation and temperature response,

(3) "tune up" the computer codes for the prediction of rocket nozzle

ablation.

This section contains five subw-sections. The first of these, Section
3.1, decribes the computer codes employed in the study (Appendices A, B,
and C supply more detail). Sections 3.2 through 3.4 describe Qdetails of
the calculations, and Section 3.5 presents some conclusions about the pre-
dictive correlation effort.

3.1 DESCRIPTION OF COMPUTER CODES

The computer codes used for the predictive calculations are of two
kinds. The first kind treats the in-depth transient thermal and pyrolysis
events in the ablating material. Two codes were used for this purpose.
The first is the Aerotherm Charring Material Ablation (CMA) code. This
program treats transient heat conduction in a charring material and
accounts for the organic pyrolysis (gas generation) decomposition events.
Appendix A describes this program in some detail. References 15, 16, 17,
and 18 describe the CMA code more completely. The second in-depth re-
sponse code used in these calculations is a modification of the CMA code
denoted SCRIMP. This code considers additional in-depth events which
were felt to be important in the thermal response of silica reinforced
materials: in depth chemical reactions between the silica reinforcement
and the carbonaceous char residue at high temperatures, and the formation
and flow of a thick layer of liquid silica at the heated surface. Appen~-
dix B describes the SCRIMP code in more detail. References 2 and 19
provide other background information about SCRIMP, For present purposes,
it may be observed that the SCRIMP code is an exploratory code which
contains a number of adjustable parameters. It was believed that a
systematic exploration of various values of these parameters would reveal
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interesting aspects of some of the complicated physics of silica-phenolic
ablation response and thus point the way to possible future refinements in
analytical models used in the SCRIMP program,

In addition to these two in-depth response programs, a second kind
of code is required for the ablation calculations. This program supplies
certain thermochemical erosion information necessary for computing. the
heated surface energy balance and the associated surface recession rates.
The code used for this chemical information is the Aerotherm Chemical
Equilibrium Program (ACE)? A brief overview of ACE is given in Appendix
C and it is described in detail in References 7 and 21.

3.2 ASSIGNED SURFACE TEMPERATURE AND RECESSION RATE CALCULATION TO BACK-

out MATERIAL PROPERTIES

Use of the ablation computer codes naturally requires the user to
assemble material property data for thermal conductivity, specific heat,
density, pyrolysis kinetics, and certain thermochemical information,
Reference 2 describes the generation of the required specific heat, den-
sity, pyrolysis kinetics, and thermochemical data required for the MXS-
89 silica phenolic used in the present series of experiments. During
the conduct of the present effort, the thermal conductivity and the
silica~carbon reaction kinetic parameters remained to be better defined.
An initial essay at this definition was made by running the CMA and SCRIMP
codes on certain of the arc-test model cases with the surface temperature
and recession rate assigned to be the measured experimental values, The
in<depth thermal response prediction generated by the computer codes in-
cludes predicted thermocouple temperature response histories; these re-
sponses may be compared with the measured thermocouple responses and
certain conclusions drawn about the adequacy of the thermal property data
employed in the in-depth prediction. The thermal conductivity of char-

ring materials is often defined in this manner (References 2 and 22).

Table 7 gives an overview of the total test program, The table
identifies cases examined by the assigned - temperature -~ and - recession
rate computations., Figures 32a-i, 321-y, 32dd, and 32ff show the thermo-
couple response predictions produced by the two in depth computer codes

*Naturally the computations required for this purpose could, if desired,
be included as part of the in-depth codes. For various practical reasons,
however, as discussed for example in Reference 20, it usually proves more
convenient to keep the thermochemical calculations entirely separate from
the in-depth calculations, supplying the needed thermochemical information
to the in-depth calculation as pre-computed tables.
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(CMA and SCRIMP) compared with the experimental data. Comparisons between
the predicted in-depth temperature histories with these two codes reveals
the importance of in-depth silica-carbon reactions upon predicted sub-
surface temperature histories. The CMA code was used mainly for tests at
O/F ='.38,'1.0 and 2.0, although isolated CMA runs were made at some
O/F=4.0 and ~ conditions. SCRIMP runs were made principally at O/F=4.0 and
o, with an isolated 0/F=2 case. It was subsequently decided to confine all
ablation correlation attempts to the SCRIMP program; therefore, it is these
runs which are of the most interest.

It will be noted from those figures displaying SCRIMP results for
the assigned - surface - temperature and - recession rate calculations
(Figures 32b-g, 32i, 32 l-m, and 32q) that although the predictions match
the data fairly well the thermocouple response predictions are in most
instances somewhat below the data. Likely explanations for the differences
between predictions and data include (a) a faulty reported surface tem-
perature, (b) an inaccurate thermal conductivity model, (c) bad silica-
carbon reaction kinetics rates, and (d) inappropriate enthalpy-temperature
relationship for pyrolysis gas and reaction gas. Since some of these
parameters were to be subject to revision in the actual ablation correla-
tion calculations (which do not specify the surface temperature and re-~
cession rate but compute them from thermochemical data) there was little
purpose in attempting to adjust these parameters during the initial, explor-
atory phase of the work reported here. These exploratory runs serve to es-
tablish whether major deficiencies exist in either the data or the analytical
model employed.

3.3 ITERATIVE ABLATION CALCULATIONS ON SELECTED MODEL TEST CASES

TO DEFINE CERTAIN COMPUTER CODE PARAMETERS

The main part of the computational correlation efforts involved re-
peated runs of the SCRIMP ablative code on certain selected test model
cases, using surface thermochemistry data pre-prepared by the ACE code
for defining the surface temperature and ablation rate. The SCRIMP code
was selected for this effort because most test models developed, during
test, a thick "liquid" silica layer at the heated surface. The CMA code
does not account for this phenomenon; the SCRIMP code was developed from
the predecessor CMA code specifically to account for this liquid layer.
As noted in Appendix B, however, the SCRIMP code is not a finished code
in the sense of having a well defined physical model for each physical
phenomenon of importance. Rather, SCRIMP is a developmental code with
some rather crude physical models featuring adjustable parameters., It
was expected that repeated runs of SCRIMP over a variety of these para-
meter values would (a) "tune up" a useful data correlation computer code
and thus allow some predictions of rocket nozzle erosion, and (b) point
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the way toward improved physical modes for later incorporation in future
computer codes,

The parameters of interest in this regard derive from a rudimentary
treatment of the liquid layer flow. As discussed in some detail in Appen-
dix B, the liquid silica layer in SCRIMP is treated with two overall aspect
parameters: a local carbon density (in pounds of carbon char residue per
cubic foot) which defines thé lower edge (and thus the depth or thickness)
of the liquid layer, and a maximum allowed thickness of the liquid layer.
In-depth reactions between silica and carbon residue lower the local carbon
content, eventually leading to some liquid layer thickness defined through
the first parameter. The second parameter requires surface recession
(ablation) to occur so as to prevent growth of this liquid layer thickness
beyond the maximum allowed.

This feature of the SCRIMP code introduces two parameters requiring
numerical definition: the carbon density marking the liquid layer edge,
and the allowed liquid layer thickness. Additional required parameters do
not derive from simplified physical models, as it happens, but from basic
uncertainties within the more completely modeled aspects of the ablation
problems. These uncertainties concern; (a) the thermal conductivity associ-
ated with the silica-carbon reaction zone, (b) the kinetic rate data for
the in-depth silica-carbon reactions, and (c¢) the basic thermochemical
model to be employed at the heated surface. The nature of the uncertainties
associated with the reaction zone thermal conductivity and the silica-
carbon reaction kinetics are rather evident: no well established numbers
are available for these quantities. The heated surface thermochemical model
involves more complex issues. It is not known, for example, whether full
chemical equilibrium at the surface is a good assumption or whether various
kinetically controlled reactions must be considered. Thus, the ablative-
prediction correlation effort with the SCRIMP code necessarily involves
an examination of the effects on the prediction of the five ill-defined
parameters discussed above., The paragraphs following discuss the ranges
considered (in the calculations) for each of these five unknown input
quantities.

Liquid Layer Edge Carbon Density. The density of carbon in the char
after complete pyrolysis but before any silica carbon reactions have

taken place is 12.8 1lb carbon/ft® material (205 kg/m?®). During the numeri-
cal experimentations, the liquid layer edge carbon density was assigned
values of 7 lb/ft?® (106 kg/m3®), 5 1lb/ft® (80 kg/m®),and 3 1lb/ft® (48 kg/m?).

Allowed Liquid Layer Thickness. Runs were made for liquid layer
thicknesses of 2 mils (50.8 um), 5 mils (127 um), 10 mils (254 pm) and
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20 mils (508 um), which approximately cover the range of observed values
on the post test specimens from the runs at O/F=2, 4, and «,

Silica-Carbon Reaction Kinetics Data. Reference 2 cites a reference
-1

value for the pre-exponential factor A (see Appendix B) of 9x107 sec
and a value for the activation energy E of 80000 cal/gr mole (334,700
joules/gr mole). In this report, these values are referred to as the
"nominal” values of the kinetic parameters. They were used for some of

the computations. Most computations employed values described ".l x nomin-
al”; which used A= 9x10% sec™?.

Thermal Conductivity Associated With The Silica~Carbon Reaction Zone.
Since temperature is by far the most important variable determining the

state of the in-depth material, it is possible to obtain thermal conduc-
tivity values for the silica-carbon reaction zone as an extension of the
temperature dependent char thermal conductivity values into that tem-
perature: range where silica-carbon reactions are ocguring. Actual con-
ductivity values for this range are purely conjectural, however, and repre-
sent extrapolations of data obtained experimentally for the silica phenolic
char. The iterative computer runs used two conductivity-temperature func-
tions, denoted as "low" and "high" and illustrated in Figure 39. The "low"
conductivity represents char data from Reference 23 covering the range
530°R (294°K) to 3000°R (1670°K) for the Fiberite silica-phenolics MX2600
and MX2600-96, which are quite similar to the Fiberite MXS-89 used in

this program. These harmonize well with the values of char conductivity
reported in Reference 2 specifically for MXS-89 in the range 530°R (294°K)
to 2000°R (1110°K) but are somewhat lower than the values reported at
3000°R (1670°K). The lower values seemed to be somewhat preferable based
on numerical comparisons {(not reported here) of predictions and model
thermocouple responses for temperatures less than 3000°R (1670°K). The
extrapolations to temperatures above 3000°r (1670°K) are based partly on
the high temperature data of Reference 2, which are based on CMA correla-
tions but are adjusted upward to compensate for the endothermic in-depth
silica.carbon reaction accounted for by SCRIMP but not by CMA, The

"high" and "low" adjustments were tried in the present iterative calcula-
tions merely to assess the importance of the conductivity assumptions.

Thermochemical Model 0Of Surface Thermochemistry. At the high surface
temperatures observed in the ablation experiments (-~ 4000°R, or 2220°K)
it seems that full equilibrium should be achieved between the boundary
layer edge gases diffusing to the surface, the pyrolysis gas and silica-
carbon reaction gas being injected at the surface from in-depth, and the
char structure being eroded. About half of the iterative calculations
were made with the full-equilibrium assumption. An important consequence




-40Q-

of this assumption is that the SiO produced in-depth by the silica--carbon
reaction reacts with oxygen at the surface to form Sioz* in an extremely
exothermic reaction (References 2 and 24). This reaction helps support
high predicted surface temperatures, which in most cases are well above
the reported experimental values. An alternative thermochemical model,
which holds any silica-carbon reaction gas out of chemical equilibrium
with the other surface species (but in equilibrium with itself), eliminate
this precipitation reaction and yields much lower predicted surface tem-
peratures. For the calculations cited below, the full equilibrium sur-
face thermochemistry model is identified as the "active" model; the iso-
lated reaction gas model is identified as the "inert" model.

Other property values required in the ablation calculations were
not varied during the iterative runs. These quantities included virgin
and char material chemical compositions, densities, specific heats, and
heats of formation; pyrolysis rate kinetics; virgin material conductivity;
and pyrolysis and reaction gas enthalpy-temperature relationships. Ref-

erence 2 gives values for these parameters.

Table 8 provides an overview of the iterative calculations. The
primary test cases selected were one each from the three experimental O/F
ratios of 2, 4, and «, all on the "hot" end of the C* ratio sequence:
1125/NL22, 1092/NL14, and 1084/NL12 respectively, For some predictions,
1083/NL11l was substituted for 1084/NL12 because it had a smoother and
possibly more accurate enthalpy history (See Section 2.2.1.3 above)., In
addition, two runs were made at the "cold" end of the C* ratio scale at
0o/F=2, for 1121/NL20.

Table 8 reveals that the surface temperatures predicted by the
active model are much higher than the measured temperatures, although
the predicted recessions are generally in the correct neighborhood of
the measured results. The inert model predictions show surface tem-
peratures near the measured temperatures, with a mixed pattern of re-
cession predictions. A hoped for result of the parametric study was
a single combination of the iterated parameters which produced satis~-
factory predictions for all cases, No such single combination of para-
meters predicts both measured temperatures and recessions for the inert
case. One might imagine that, even though a single combination of
parameters will not predict the measured data, an orderly sequence of
parameter values might suffice. For the inert cases, however, even
this objective cannot be realized, particulary due to difficulties with
the 0/F=» case. The active model predictions, by contrast, do show a
single combination of parameter settings which yields good predictions
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of recessions for 1125/NL22, 1092/NL14, 1084/NL12, and 1083/NL11. These
are: ,

e 3 1lb/ft (48 kg/m®) liquid layer edge criterion

e 20 mils (508 pm) maximum liquid layer thickness

e low conductivity model '
The surface temperature predictions for the above settings are much higher
than the measured data, but it is at least possible that the measured data,
taken by pyrometer, represent the lower temperatures of the carbon in the
structure below the translucent silica layer on the surfaqe.* More weight
can therefore be attached to a correct prediction of recession than of
temperature. The case 1121/NL20, a low C* ratio firing, is very poorly
predicted, however.

Figures 40a through 40p give a more detailed view of the iterative
calculation results, showing predicted histories for the surface tem-
perature, the liquid layer thickness, and the net surface recession, as
well as the experimental data for surface temperature and post test
average surface recession, with an experimental surface recession history
interpreted as described in Section 2,2.3.1 above. These graphs confirm
the overview provided by Table 8, but indicate that the single surface
temperatures cited in Table 8 are rough averages of somewhat oscillatory
data and prediction results. Note also that the recession rate data are
formed from simple ratios of net AS to total exposure time, with no
attempt made to account for the "induction time" for recession to start
shown in Figure 40 for both experimental data and computer predictions,
It is interesting that the computed induction times are in general, quite
comparable to those inferred from the experimental data.

The overall conclusion drawn from the comparisons offered by Table
8 and Figure 40 is that the active model with the low conductivity data
and liquid layer parameter of 3 1lb/ft® and a 20 mil liquid thickness has
a fair chance of predicting surface recession in the test models.

To test this conclusion further, a complete set of predictions was
run, with this provisional best estimate of parameter values, for all the
model test cases. The results of this battery of runs are reported in
the next section.

F 2 nmunensnanman s ol

In this regard it is interesting that the detailed computer outputs show
that surface temperatures correlate rather well with the temperatures pre-
dicted to occur at a location where the local density is 30 1lb/ft?, for
all cases. This density corresponds to a local carbon density of 3 1lb/ft?,
the lowest carbon density considered in the calculations as a liquid layer
edge density. This lends some additional support to the belief that the
pyrometer temperatures might represent carbon structure temperature,
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3.4 ABLATION CALCULATIONS ON ALL MODEL TEST CASES WITH UNIFORM SET
OF PARAMETER VALUES

A single SCRIMP program prediction was made for each ablation test
case (for O/F=2, 4, and ~ cases) with the parameter values identified in
Section 3.3 as most promising for accurate recession predictions: The
active surface thermochemistry model, the low thermal conductivity function,
a 3 1b/ft® (48 kg/m?®) liquid layer edge carbon density, and a 20 mil (508 pm)
allowed liquid layer thickness., Table 9 gives an overview of the results
of the calculations and compares them to the experimental data.

Table 9 shows that recession predictions for the high c* ratio cases
for all three O/F ratios are quite good, as was expected based on the
good results of the iterative calculations for the best cases in this area
of the test case map. However, at lower C* ratios, the high recession
trend presaged by the 1121 NL20 test case shown in Table 8 is also con-
firmed. Recession predictions become gradually worse as C* ratio de-

creases, eventually becoming worse by an order of magnitude.

Predicted surface temperatures are quite high, as expected, but, as
noted previously, it is not clear that the experimental data truly repre-

sent the liquid layer surface temperatures. Therefore, less weight may
be attached to this discrepancy.

The general recession prediction situation may be illustrated by the
following qualitative graph:
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The same general situation is true for all O/F ratios, even though the S
values near c ratio = 1 are quite a strong function of 0/F. The pre-
dictions have the correct O/F ratio dependence, but not the observed de-
pendence on the C ratio. The discrepancy between observed and expected
trends is so great that some careful thought is clearly required to assess’
the general predictive situation and to estimate what changes are in-
dicated for the predictive efforts. These suggested reasons for the dis-
crepancy between predicted and observed trend with C* ratio may be divided
into two groups. The first includes possible changes in numbers input
into the basic predictive scheme; the second includes fundamental changes
in the predictive scheme itself.

In the first groﬁp may be listed the following input quantities for
*
which the basic trend with C ratio may be suspect:

Convective Transfer Coefficient, Figure 25 shows the input transfer

coefficient histories used for the ablative nozzle predictions. There is
a distinct upward trend of p U C with decreasing C ratio which 1s in
the proper direction to y1e1d over—predlctlons of recession at low C
ratios, This peUe CH trend derives from the considerations of Section
2.2,2.2 above and seems well-founded, but in view of the ablative pre-
diction results it may bear review. One hesitates, however, to disqualify
the calorimeter results, based on heat transfer studies of simple copper
and molybdenum bodies, in favor of computed results from a complex abla-
tion model; the SCRIMP program should not be used to discover peUe C
values,

H

Surface Roughness. The transfer coefficients used in the ablation

predictions were all computed with a 1.7 factor to account for roughness
effects. Examinations of the actual ablatlve models indicate that the
roughest surfaces are found at the high C ratios, and that at low C*
ratios the roughness elements (which are silica globs and rivulets) have
somewhat smaller sizes and are noticeably more spaced out, with rough-
ness element spacing being several times the roughness height. This
trend, if quantified in terms of its effect on a roughness factor to
apply to the transfer coefficient predictions, may assist in bringing the

*
predicted and observed recession trends (with C ratio) closer together.

Surface Equilibrium Model. It is possible that a shift toward the
inert surface thermochemistry model should be made at the lower surface

temperatures characteristic of the low C* ratio tests. This would reduce
predicted surface recession at the lower c* ratio values by a substantial
amount, judging by direct comparisons of active and inert runs made dur-
ing the iterative calculations reported in Section 3.3.

In addition to the above first group of possible defects, it is pos-
sible to list a second group of suspected defects which are related to the
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basic computational models of the SCRIMP code. In particular, the follow-
ing might be suspect:

Assumption of Chemically Homogeneous Surface, The thermochemical
erosion calculations performed by ACE presume that the heated surface is
chemically uniform. Inspection of the post test models reveals that this
is not the case for the lower O/F and C* ratios, where the surface con-

sists of both exposed carbon and silica. Hence more general thermochem-
ical erosion calculations might be required.

Liquid Layer Recession Model. The SCRIMP code computes recession

rates with a liquid layer thickness model. Post-test examinations of

the models confirms that there is indeed a relatively thick liquid layer
covering the surface at high C* ratio values for all O/F ratios greater
than 1.0 but that at lower C* ratio values the surface becomes more
heterogeneous in character, as discussed above. The idea that the liquid
layer controls the recession rate may therefore not be a uniformly sound
one, and may need supplementing in certain response regimes.

3.5 SUMMARY OF COMPUTATIONAL EXPERIMENTS

Thé computational experiments using a specially modified ablation
computer code to predict the response of the test models for O/F ratios
of 2, 4, and », was partially successful. Agreement between predicted and
measured subsurface temperature histories was good when the measured sur-
face temperature and recession histories were employed as boundary con-
ditions. It appears that treatment of subsurface energy transfer and
absorption events is adequate. Excellent agreement between observed and
predicted recession was obtained for the high C* ratio cases for a uni-
form set of values for the adjustable parameters of the code. This agree-
ment spanned the O/F ratio range considered; the code reproduced the O/F
dependence of recession exactly. The observed trend of recession rates
with C* ratio was, however, not predicted by the program. The code pre-
dicted little change of recession rate with C* ratio, failing to match
the observed decline of recession rates. Part of the trend discrepancy
may stem from systematic trends in input quantities, particularly for
convective transfer coefficient. Another contributing factor may be
a departure from liquid layer control of the recession rate at low C*
ratios. It is possible that the code was pushed beyond the range of
its applicability in this respect.
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SECTION 4

FLOX-PROPANE ROCKET ABLATION PREDICTIONS

Ablation predictions were performed for conditions corresponding to
two tests of an FM-.5064., Graphite Phenyl-aldehyde rocket nozzle. These
tests were performed at NASA Lewis Research Center and are designated Runs
115 and 150. The propellant utilized in these tests was FLOX (0.76 flourine,
0.24 oxygen by mass) =« propane (C3H8). A summary of the test operating con-
ditions is given in Table 10.

Predictions were performed by the Aerotherm Charring Material Ablation
(CMA) computer program with surface thermochemical boundary conditions gen-
erated by the Aerotherm Chemical Equilibrium (ACE) computer code. These
two programs are described briefly in Appendices A and C and in more de-
tail in References 15, 16, 21 and 7. All necessary input is described
in Section 4.1 and a summary of the results and a comparison to measure-
ments are given in Section 4.2.

4,1 COMPUTER PROGRAM INPUT

The ACE computer program which generated the surface thermochemical
boundary conditions for the CMA predictions required as input the edge
gas elemental composition, the pyrolysis gas elemental composition, the
char material elemental composition, the edge gas thermodynamic state,
and parametrically assigned values of normalized pyrolysis gas and char
ablation rates.

The elemenfal compositions of the three components are given in
Table 11. The edge gas thermodynamic state was obtained from an isen-
tropic expansion calculation performed by the ACE program. Equilibrium
flow was assumed, and real gas effects were accounted for. The important
throat edge gas properties were as follows:

, Run 115 Run 150
Static Pressure, psia (MN/m?) 54,7(.377) 56.5(.390)
Edge Enthalpy, Btu/Lbm (kJ/kg) -626.(-1455,) -611.(~1420.)
Recovery Enthalpy, Btu/Lbm (kJ/kg) ~286.(-665.) -263.(-611.)

Recovery enthalpy is, of course, required as input to the CMA code.

The results of the surface equilibrium thermochemistry calculations
are shown in Figures 4la and 41b. Curves of normalized char ablation
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rate versus discovered surface temperature for several values of normalized
pyrolysis gas rate are shown for each run.

The thermophysical properties of the FM5064, Graphite Phenyl-aldehyde
material required as input to the CMA program were estimated from the pro-
perties of a similar material for which properties were known (MX4500,
Reference 8). The values of specific heat and thermal conductivity for
both virgin plastic and charred material are shown in Figures 42 and 43
as a function of material temperature. The other variation which must
be input to the CMA code is the pyrolysis gas enthalpy as a fuﬁction of
temperature. This variation is shown in Figure 44.

The heat transfer coefficient boundary conditions existing in the
two rocket test runs were estimated by utilizing the simplified Bartz
equation given as Equation 13 in Section 2., Since this equation typically
overpredicts, the values employed were taken to be 70 percent of the com-
puted values, For Run 115 the initial "cold wall" value was 0.200 1lb/ft?
sec (0,977 Kg/m?sec) and the "hot wall® value was 0.162(.791); correspond-
ing values for Run 150 were 0.197(.962) and 0,165(.805). Finally, the
nozzle surfaces were assumed to be in radiation equilibrium (no net radi-
ation heat transfer) and the ratio of mass~to-heat transfer coefficient
was taken as the two-;hirds power of the ACE computed Lewis number (CM/CH =
0.866 for Run 115 and 0.895 for Run 150).

4,2 SUMMARY OF RESULTS

The predicted responses of the FM-5064, graphite phenyl-aldehyde ma-
terial are shown in Table 12 for Runs 115 and 150. Also given are the
measured average recessions for each run. Two predictions were performed
for each run, The first, no char swell, calculation was performed before
measured results were available. The second prediction, including the
effects of char swell, was performed after the measured pressure history
was analyzed (Reference 26 ). These data showed that considerable swell-
ing of the graphite phenyl-aldehyde had occurred during the firing. An
attempt was therefore made to include the effect of swell on the pre-
diction. This phenomena was observed in the work of Reference 8 and a
crude model was devised to account for it in Reference 23 , Briefly,
the amount that the char swells is assumed proportional to the thickness
(relative to the instantaneous surface) of the char. This relation was
built in to the CMA computer code and used to correct the transfer co-
efficient via the radius ratio correctiop‘pn‘heat transfer coefficient
(see Reference 16 ). Figures 45a and 45b show the two predicted re-
cession histories and the recession history inferred from the measured
pressure data and from the final measured recession for each run.
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Surface and backwall temperature histories for the two predictions are
also shown in Figure 46a and 46b.

Figure 45 shows that the char swell model does predict the recession
trends accurately. It is encouraging that the difference between pre-
dicted and measured recession is less than 0.1 inch (2.54 mm) for the two
cases. The predicted surface recession trends with temperature (Figures
4la and 41b) reveal that no chemical erosion will occur for surface tem-
peratures less than about 3500°K. Once this temperature level is reached,
however, surface recession increases rapidly with temperature due to
attack of the carbon char by hydrogen in the propellant stream. It is
apparent that differences between predicted and measured recession are
well within differences in predicted recession associated with heat trans-
fer coefficient uncertainties. It is concluded that the prediction tech-
nique, which considers only chemical erosion and the assumption of chemical
equilibrium, is quite adequate for representing the physics of important
energy and mass transfer events for the material-propellant environment
considered.
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SECTION 5

Major conclusions reached during the study are summarized first and
are followed by a list of recommendations for logical future effort in the
light of these conclusions and anticipated future system requirements.

5.1 CONCLUSIONS

1.

A technique has been demonstrated for simultaneously duplicating
many of the parameters appropriate to simulating rocket nozzle
thermal protection system response. The technique has been demon-
strated for nitrogen tetroxide-Aerozine propellant over a wide
range of mixture ratio and simulated characteristic velocity.

For sufficiently high temperature levels in a nitrogen tetroxide-
Aerozine combustion product environment, the ablation rate of silica-
phenolic is a strong function of mixture ratio. Minimum surface
recession occurs for O/F=1.0 and departures from this mixture ratio
in either direction result in substantially increased surface re-

cession.

The fundamental mechanism of surface recession for silica phenolic
depends strongly upon free stream oxygen content. For high free
stream oxygen content, surface recession is governed by production
and flow of a liquid silica layer whereas for low free stream oxygen
content surface recession is governed by gas phase producing re-
actions between silica fibers and carbon char matrix. No liguid
layer is present in this case.

Silica phenolic surface recession is a relatively monotonic function
of gas stream enerqgy content for all oxidizer to fuel ratios.

The SCRIMP computer program enables accurate predictions of silica
phenolic ablation rate for high O/F ratios (2.0 2 o/F s «) and high
gas stream total temperature, but it fails to predict the proper

trend of decreasing recession rate with decreasing temperature.

The surface roughness on an ablating silica-phenolic nozzle may
result in as much as a 70 percent increase in surface heat flux
over the smooth wall value.

A

For (2.0 = o/F
ficient experienced a 30 to 35 percent increase with decreasing C*

»)} the calorimetric measured heat transfer coef-

ratio (from 1.0 to 0.85) whereas the corresponding predicted in-
crease is only about 10 percent.
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The experimental data presented in this report are accompanied by
accurate measurements of the fundamental parameters controlling silica
phenolic ablation (heat transfer coefficient, enthalpy, free stream
chemical composition, and pressure). These data could provide an ex-
cellent basis for confirming mathematical models of silica phenolic
response over a wide range of free stream chemistry conditions.

Based upon comparisons between predicted and measured ablative per-
formance of graphite phenolic in a FLOX-propane rocket nozzle, it

may be concluded that consideration of only chemical erosion and the
assumption of chemical equilibrium is quite adequate for representing
important energy and mass transfer events for this material-propellant
combination.

5.2 RECOMMENDATIONS

1.

It is recommended that the rocket engine simulation apparatus be
modified to accomodate other propellant systems. Giving consider-
ation to the space shuttle and future deep space missions, it would
seem appropriate that hydrogen-oxygen, fluorine-hydrogen, and FLOX-
hydrocarbon propellant systems be considered.

The modified simulation apparatus should be employed to experiment-
ally investigate the thermal and chemical compatibility of candidate
thermal protection materials to the above environments. Because

the same fundamental simulation parameters are appropriate to ab-
lative and nonablative systems, these experiments should include
consideration of both types of thermal protection systems.

The observed calorimetric trend of increasing heat transfer coeffi-
cient with decreasing stream energy content (C* ratic). should be
investigated further in order to learn the reason for the observed
trend.

Surface roughness effects on heat transfer have been shown to be
substantial (as much as a 70 percent increase for measured rough-
ness heights) and these effects should be considered in design and
correlation efforts.

With respect to better understanding silica phenolic ablation, future
work should concentrate on identifying more certainly the reasons
for prediction success in one area of the O/F ratio - C* ratio space,
and failure in other areas. A review of the input quantities should
be made, and further computations done at O/F of 1.0 and 0.38 to add
a broader view. It seems likely that failure to predict recession
accurately can be correlated with the disappearance of a uniform
liquid layer at the surface in favor of globs and rivulets; ablative
recession models can then be considered for this regime. Very val-
uable insight can be gained from a set of calculations using the
"fail temperature" approach to silica phenolic ablation described

Ao DAFAncvnmman a1 ~wmA 2&
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Analysis of the char layers from the present studies should be performed to
yield density and chemical composition profiles. This information will be
valuable for formulating or verifying correlative mathematical models of the
silica phenolic ablation process.

The present effort resulted in a complete description of silica phenolic
ablation in terms of local O/F ratio and temperature. Techniques such
as those reported in Reference 27 should be employed and generalized in
order to enable relating these quantities to measurable injector and
rocket engine performance parameters.

It is recommended that additional ablation calculations be performed for
FLOX-hydrocarbon rocket engine firings in order to verify the computa-
tional models for different materials and chamber conditions.
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TABLE 7
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OVERVIEW OF ALL MODEL TESTS SHOWING THOSE CASES
STUDIED BY ASSIGNED SURFACE TEMPERATURE & RECESSION RATE COMPUTER RUNS

1.083
1.056
1.055
1.049
1.046
1.034
1.027
1.024
l.021
1.017
1.006
1,005
1.000
.998
.992
.988
.980
.945
+939
,938
914
. 904
.900
.899
.892
.891
.883
.871
»865
.840
.838
.827

*
C RATIO

1145
1348
1146

1350

1347

1349

Test Nozzle

.38

*
NL-10
NL-37

*
NL-27

NL-39

NL-36

NL-38

O/F RATIO
1.0 2.
Test
No.

1098
1099

1338

1336

1339

1337

*
NL-16
NL-15"

NL-34

NL-32

NL-35

NL-33

1135
1134

1124

1125
1128

1129

1120

1117
1121

1116

0

Nozzle
No.

*
NL-26
NL-25"

*
NL-21

*

NL-22
*

NL-23

K ]
NL-24

*
NL-19

*
NL-18
NL-20"

%*
NLfl?

4.0

Test|Nozzle

No.

1091{NL-13"

+

1092|NL-14"

1329 NL-28

1332 |NL~-31

1330| NL-297

1331} NnL-30%

Test| Nozzle

1083|NL-11

1358| NL-42"

1359

1084

1361

1362

1360

i
i
i

oo

NL-43"

NL-12"1

NL-40%

nL-41"

NL-44

*
CMA Option 2 predictions

+SCRIMP Option 2 predictions
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TABLE 10

SUMMARY OF FLOX-PROPANE ROCKET TEST CONDITIONS?

RUN 115

RUN 150

— L ———————————

Chamber Pressure, psia (MN/m?)

Oxidizer Flow Rate, lbm/sec (kg/sec)

Fuel Flow Rate, 1lbm/sec (kg/sec)
Total Flow Rate, lbm/sec (kg/sec)
Oxidizer~To-Fuel Ratio

Total Enthalpy, Btu/lbm (kJ/kg)b
Total Temperature,c °r (°K)
Vacuum Thrust, 1lbf (N)

C* Efficiency, percent (based on
thrust)

Total Run Time, sec
Flourine in Flox, Mass Fraction

Initial Diameter, Inch (m)

95.4(.658)
.4366 (.1980)
.1171(.0531)
.5537(.2511)
3,73
~224,5(-522.)
7272. (4040,)
157.3(699.7)

95.0

165.0

0.76
1.20(.0305)

98.2(.677)

.4306 (.1953)

;1049(.0476)
.5355(.2429)
4.11
~203.4(-473,)
7472, (4151,)
155.2(690.4)

97.6

111.0

0.76
1.20(.0305)

aAverage values where applicable.
b

JANAF Thermochemical Base State (Reference 3); ideal combustion,

cEquilibrium composition at given total enthalpy and pressure.
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A)

B)

FIGURE
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END VIEW OPEN

END VIEW CLOSED

EXPERIMENTAL SETUP
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SIDE VIEW OPEN

C)

SIDE VIEW CLOSED

D)

CONTINUED

FIGURE 8
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E) OVERALL VIEW

F) COLD WALL CALORIMETER

FIGURE 8 CONCLUDED
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Post-Test Contour

Pre-Test Contour

4
-

TC PLANE
Pre-Test Diameter 0.301
Post-Test Average Diameter 0.289
Average Surface Recession -0.006
Surface Recession at Thermpcouple Plane -0.016

Average Char Depth 0.444

THERMOCOUPLE DEPTHS

#1 0.133
#2 0.204
#3 0.271

Char and T.C. depths relative to initial surface.
All dimensions in inches.

II) Test 1349, Nozzle NL-38, O/F = 0.38

Figure 26, concluded. ATkl
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A) Test 1083, O/F=w, NL-11l

C) Test 1359, O/F=w, NL-43

179

B) Test 1358, O/F=«, NL-42

D) Test 1024, O/F=«, NL-12

FIGURE 28 PHOTOGRAPHS OF ABLATIVE NOZZLE WAFERS
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E) Test 1361, O/F=w, NL-40 F) Test 1362, O/F=~, NL-41

G) Test 1360, O/F=», NL-44 H) Test 1091, O/F=4.0,NL-13

FIGURE 28, CONTINUED

illlllllllllIlllllllllllllllllllllIlll--lllllllllllllllllllllllllllllllllllllll
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I) Test 1092, O/F=4.0,NL-14 J) Test 1329, O/F=4.0,NL-28

K) Test 1332, 0O/F=4.0,NL-31 L) Test 1330, O/F=4.0,NL-29

FIGURE 28, CONTINUED
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M) Test 1331, O/F=4,0,NL-30 N) Test 1135, O/F=2.0,NL-26

0) Test 1134, O/F=2.0,NL=25 P) Test 1124, O/F=2.0,NL-21

FIGURE 28, CONTINUED
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Q) Test 1125, O/F=2,0,NL~22 R) Test 1128, O/F=2.0,NL-23

S) Test 1129, O/F=2.0,NL<24 T) Test 1120, O/F=2,0,NL-19
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U) Test 1117, O/F=2.0,NL~18 V) Test 1121, O0/F=2,0, NL-20

W) Test 1116, O/F=2,0,NL-17 X) Test 1098, O/F=1.0,NL-16

FIGURE 28, CONTINUED
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Y) Test 1099, O/F=1.0,NL-15 Z) Test 1338, O/F=1,0,NL-34

AA) Test 1336, O/F=1.0,NL-32 BB) Test 1339, O/F=1.0,NL-35

FIGURE 28, CONTINUED
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CC) Test 1337, O/F=1.0,NL-33 DD) Test 1145, O/F=0.38,NL-10

EE) Test 1348, O/F=0.38,NL-3 FF) Test 1146, O/F=0.,38,NL~-27

FIGURE 28, CONTINUED
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GG) Test 1350, O/F=0.38,NL-39 HH) Test 1347, O/F=0.38,NL-36

II) Test 1349, 0/F=0.38,NL-38

FIGURE 28, CONCLUDED
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FIGURE 29. ABLATIVE NOZZLE SETUP
FOR X-RAY PHOTOGRAPHY

FIGURE 30. TYPICAL X-RAY PHOTOGRAPH OF
AN ABLATION NOZZLE SHOWING
IN-DEPTH THERMOCOUPLE

R RO RERRERTRBDS=SRSm=R=RmRmmmmR——=
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SUREACE RELES9ION, MILS

&

SURFAL

RELCESSION | MiLS
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ALk

BB FIGURE 31 A) FOR LE4END

120 3.0
/V,
30 %'I > 1.0
|
£
Lo £
o
<
o 4 & 12 e o o 4 & Iz o 0w
TIME , 98<ONDS TIME, 9ELONP%
B) TEST 1368, ofkr %, NL-42 ) TE4T 1269 offz o, NL-43
FIGURE 31, CONTINUED
S FlGURE B|A) FOR LEGEND A-tewe
(7~ ] 2.0
‘ 3
{o ] - /s *
bo // //‘3 1.0
// A
e / ///. S
4 .
4o /’ Lo €
1= ————
o o
-1e -
o 4 8 ¥ =S [r> o o 7Y 30 a4 50
TIME , 4ELONDS TIME , S6CONPS
D) TEsT 1084, o/Fax, NL-1Z &) TEST 136!, ok 0 NL-40O

F4QURE 3\, CONTINUEBD




SURFACE RECESSION | MILS
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SEE FIGURE 3) &) FOR LEGEND

1o A .601
oo
(o}
do} /0_
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//l
oo ANy
4o '/
(Te)
N /
P _\_ﬂ_/__
-1c » l
o 7oy 40 oo do oo o o oo 150 10 o
TIME |, 4ecoND? TIME |, SECONDS
F) TEST 1262, 0/F o0 NL-4) q) TEST ™o, off o NL-44
FIGURE 3| , (ONTINUED
A28 Se¥ FIGURE 3 &) FOR LEGEND
1o T =1.5
&0 / 1.¢
3 /p A
i &0 / Il ’// =) 5
- 77 2 '
2 7/
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/ S
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1) TEST 1092, oF=4.0, NL-14
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SURFACE RECES%ION | MiL%
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4BE HOURE 31A) FOR LEGEND

Alobd

[ (=] 30
10

&o 10

o
o
-10 X-X1
o 4 & 12 e 1> o =) 10 30 40 5
TIME | 9ECONPS TIME, 4ECONDS
J) TE4T 1319, ofF-x4.0,NL-18 K) TEST 1331, of=4.0, NL-3|
FIAURE 31, CONTINUEP
SEE FIGURE 3) A) FOR LE4END o 2ees

e 30
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8o =q1.0

/o)

oo /

a0 Lo
10

[>] [~
> -05

o 1= a0 (¥ & o o LY 100 150 e 1

TIME | SECONDS TIME, SECOND%S
L) TEST 1320, o= 4,0, NL-19 M) TEST 1331, Of 4.0, NL-30

FILUBE 31, CONTINUED
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SUREACE RECESSION, MILS

SUBFACE RECESSION, MILS
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A-1184 SEB FIGURE 3i A) FOR LEGQEND
1ee 100

‘om
]

&o f/ﬂ 1.0

60
do 7 / ///

8o £

0 40 —
?// // 1.
wol— 14 0 Vi
7 y 4
v’ %
N ° °
= =) 1o 30 46 S 1o 10 30 40 o5
TIME, $ECONDS TIME, SECONDS
N) TEST 1135, of-=2.0,NL- 26 ©) TE4T W34, OfF=2.0 NL-25
GURE 3|, C(oNTINUED
- SEE FIGURE 31 A) FOR LEGEND
100 oo
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mm

mm



SEE FIGURE 31 A) FOR LEGEND

A 1180
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A) O/F=~, TEST 1358, NL-42 B) O/F=«~, TEST 1360, NL-44
HIGH C* LOW C*

C) O/F=4, TEST 1332,NL-31 D) O/F=4, TEST 1331, NL-30
HIGH C* ILOW C*

FIGURE 35 PHOTOGRAPHS OF ABLATIVE NOZZLE
EXIT CHARACTERISTICS ‘
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FIGURE 37
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APPENDIX A
AEROTHERM CHARRING MATERIAL ABLATIVE PROGRAM (CMa)

General Description

The CMA program is a coded procedure for calculating the in depth thermal
response of a charring, ablating material. The basic physics included corres-
pond to simple charring. Initial versions of the program were described in
Reference A-1, and subsequently a more complete description of the physics
and mathematical treatment is given in Reference A-~2. Reference A-3 is a
program user's manual which describes input-output details.

The program is an implicit, finite-difference computational procedure for
computing the one-dimensional transient transport of thermal energy in a three-
dimensional isotropic material which can ablate from a front surface and which
can decompose in depth. Decomposition (pyrolysis) reactions are based on a
three-component model. The program permits up to eight different backup
materials of arbitrary thickness. The back wall of the composite material may
transfer energy by convection and radiation,

The ablating surface boundary condition may take one of three forms:

Option 1 - Film coefficient model convection-radiation heating with
coupled mass transfer, including the effects of unequal heat
and mass transfer coefficients (non-unity Lewis number)
and unequal mass diffusion coefficients. Surface thermo-
chemistry computations need not presume chemical equilibrium
at the surface,

Option 2 - Specified surface temperature and surface recession rate,

Option 3 -~ Specified radiation view factor and incident radiation flux,
as functions of time, for a stationary surface.

Any combination of the first three options may be used for a single
computation., Option 3 is appropriate to cooldown after termination of convec-
tive heat input and is often useful inconjunction with Options 1 and 2.

The program permits the specification of a number of geometries, including
plane, cylindrical or annular, and spherical. In the most general case,
area may vary arbitrarily with depth.

The rear surface of the last node may be specified as insulated, or may
experience convective and radiative heat transfer to a "reservoir" at a
specified reservoir temperature if a rear surface convection coefficient and
an emissivity are input.

Material properties such as thermal conductivity, specific heat, and
emissivity are input as functions of temperature for virgin plastic and char.
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For partially decomposed material, the program performs an appropriate averag-
ing on density to determine effective material properties.

The basic solution procedure is by a finite difference approach. For
each time step, the decomposition relations are solved and then the in-depth
energy fluxes constructed in general terms. These are then harmonized with a
surface energy balance (if a surface energy balance option is being used) and
the in-depth temperatures determined. New material property values are set
up and the solution is ready for the next time increment.

The CMA program outputs instantaneous mass ablation rates and blowing
parameters for char and pyrolysis gas, total integrated mass ablation of char
and pyrolysis gas, total recession and recession rates of surface, of the char
line, and of the pyrolysis line. It also outputs the surface energy flux
terms, namely, the energy convected in, energy radiated in, energy reradiated

out, chemical generation, and conduction away (g Further, it describes

cond)'

how the input energy of g is "accommodated" or "partitioned" in the solid

cond
material. Part of the energy is consumed in decomposing the plastic, part is
consumed in sensible enthalpy changes of the solid, and part is "picked up"
by the pyrolysis gases as they pass through the char. Thermocouple and iso-

therm output can also be called for.

Some Surface Energy Balance Details

In calculations under Option 1, the in-depth solution is coupled to a
general film-coefficient boundary condition. This coupling could be accom-
plished through a direct calculation of the surface mass transfer, energy
transfer, and chemical reaction events, but due to the non-linear aspect
of the complicated surface events some complex iteration scheme would be
required to accomplish this direct coupling. Instead of direct coupling, it
has proved more expedient to prepare in advance a series of tables which
include all the surface mass transfer and chemical relations. The in-depth
solution may then be coupled to the surface events through a surface energy
balance. For example when chemical equilibrium is achieved at the ablating
surface and when no mechanical removal is occuring, the development presented
in Reference A-4 describes the means for obtaining the thermodynamic state of
the gas at the ablating surface in terms of the pressure, and char and
pyrolysis off-gas rates.

Thermodynamic state = f(Bé,Bé,P)
where

By %xuc (normalized pyrolysis off-gas rate)
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m . .
Bé = c (normalized char recession rates)
p.ucC
eeM

o)
Il

boundary layer edge pressure

The thermodynamic state includes definition of surface temperature and gas
molecular composition. This, in turn, enables evaluation of the various
quantities'appearing in the boundary layer driving potential for heat and
mass transfer (Ref. A-4). Tables representing solutions to the functional
relationship (A-1) are generated for a complete map covering the range of
Bé Bé and P, of interest. These tables have, in the past, been generated
with the Aerotherm EST program, Version 2 (Ref. A-5).

As an example of this procedure, suppose a table is prepared, which,
for a parametric array of dimensionless char erosion rates (Bé), dimensionless
pyrolysis off-gas rates (Bé), and pressure, presents the relevant ablating
surface temperature and requisite boundary layer composition and enthalpy
quantities. During each time step in the course of the in-depth solution
the program generates a pyrolysis gas rate Bé and computes the rate at which
energy is conducted into the material from the surface. With Bé and the
pressure known, the input parametric tables then serve to define that Bé
which yields temperature and enthalpy quantities which provide a balanced,
harmonized set of energy fluxes at the surface.

References to Appendix A

A-1 Rindal, R.A., Flood, D.T., and Kendall, R.M: Analytigal and Experimental
Study of Ablation Material for Rocket-Engine Application. Contract
NAS 7-218, Vidya Report No. 201, NASA CR-54757, May 15, 1966.

A-2 Moyer, C.B. and Rindal, R. A.: Finite Difference Solution for the
In-Depth Response of Charring Materials Considering Surface Chemical
and Energy Balances. Aerotherm Corporation Final Report 66-7, Part 1I,
March 14, 1967.

A-3 User's Manual, Charring Material Ablation Program (CMA) Version 2.
Aerotherm Corporation, Palo Alto, California, June 1966.

A-4 Kendall, R.M., Rindal, R.A., and Bartlett, E.P.: A Multicomponent )
Boundary Layer Chemically Coupled to an Ablating Surface, AIAA Journal,
Volume 5, No. 6, June 1967, pp. 1063-1071
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(EST) Version 2, Aerotherm Corporation, Palo Alto, California, June 1966.
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AEROTHERM CHARRING MATERIAL ABLATION PROGRAM
AS MODIFIED FOR SILICA~CARBON REACTIONS
INCLUDING MELTING PHENOMENA (SCRIMP)

The SCRIMP code is a modified version of the CMA program (see Appen-
dix A) developed specifically for silica reinforced charring materials,
Two physical features important in the ablation of silica reinforced ma-
terials are not accounted for in CMA: subsurface chemical reactions be-
tween silica and carbon residue, and the removal of silica in liquid layer
form,

The in-depth silica-carbon reaction is assumed to be;

* *
5102 + C -+ Si0 + CO (B~1)

The rate of this reaction is computed for each node in the fully pyroly-
ed char according to the rate expression

o~E/RT

BmC/BO = m,A (B-2)

C
The rate parameters A and E are discussed in Reference 2, Nominal values,
subject to much uncertainty, are A = 9 x 107 sec'l, E = 80000 cal/gr mole

(.334 MJ/gr mole).

The computation of equation (B-2) involves two assumptions:

har does not contribute

Q

1. The pyrolysis gas passing through the
carbon for this reaction. All the carbon supply is provided by
the original carbon residue of pyrolysis.

2, The Si0 + CO gas generated by this reaction differs sufficiently
in its thermal and chemical properties from the pyrolysis gas
originating from the decomposition of the resinous constituents
of the virgin material that it is necessary to account for the
amounts of each gas in calculating the in-depth response (and
hence it is necessary in the construction of the surface thermo-
chemistry tables to have two gas-rate parameters, rather than
one, in the CMA program, as noted below).

The surface recession rate computed by SCRIMP is taken as the sum
of any thermochemical erosion (usually zero, as will be discussed below)

and a liquid layer removal term,

The accurate specification of the liquid layer removal rate would
appear to be a highly complex matter involving pressure and shear stress
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gradients, surface tension and stability phenomena, viscosity, and the role
of the carbon residue matrix in supporting and retaining the silica layer.
For the exploratory purroses of SCRIMP, the following simple assumptions
were employed to obtain a reliable, rudimentary computation scheme which
still appeared to model observed physical events with reasonable fidelity.
(These assumptions are in addition to the assumptions regarding silica-
carbon reactions described above; the numbering is continued):

3. A "liquid layer thickness" can be defined as the distance between
the heated surface and the area where the density of carbon has
been reduced, through the carbon silica reaction, to some specific
value.

4. Liquid layer run off occurs so as to maintain a constant liquid
layer thickness,

5. Any carbon particles in the liquid layer do not float off with any
liguid layer flow.

6. The temperature drop across the liquid layer is small enough such
that the removed liquid layer may be presumed isothermal and at
the surface temperature.

This crude liquid layer treatment introduces two important input
parameters: the carbon density Pe defining the location of the lower edge
of the liquid layer, and the allowed liquid layer thickness GQ. It is
hoped that calculations with a number of values of the two parameters can
provide valuable insight useful in the construction of a more complete
pPhysical model.

The only computational aspect of this liquid layer model of particular
interest concerns the calculation of the surface recession rate due to
run-off. If the liquid<layer thickness is less than the maximum, the run-
off recession rate is zero. If the thickness is momentarily greater than
that allowed. the run.off recession rate is set equal to some value suffi-
cient to reduce the liquid~layer thickness to the maximum allowed within
the next few time steps in the computation.

The in depth reaction and liquid layer modification made to CMA to
produce the SCRIMP code made necessary some changes in the surface thermo-
chemistry treatment. Experience shows that economy of computation time and
core storage limits the number of parameters in the surface thermochemistry
tables to three. One must obviously be the usual thermochemical erosion
rate Bé . Another is, as uvsual, the pyrolysis gas injection rate Bé « The
third must be the injection rate of SiO + CO gas resulting from carbon-
silica reactions in depth. The chemical composition of the "char" must
be unique in order to avoid a fourth parameter, and in the absence of any




definitive information to the contrary, the composition of the chemically
eroded char is assumed to be pure silica.

Thus the surface thermochemistry tables for SCRIMP have three para-
meters: The injection rate of pyrolysis gas; the injection rate of re-
action gas, and the injection rate of char, Bé . This contrasts with the
CMA code treatment of the surface tables, which has the three parameters:
pressure, pyrolysis gas rate, and char rate Bé .

The SCRIMP program is discussed in detail in Reference 2 and 19.
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AEROTHERM THERMOCHEMICAL STATE CODE (ACE)

General Capabilities

The ACE program solves for the equilibrium or kinetically controlled
chemical composition for a variety of open or closed systems of arbitrary
chemical composition. The equations which are solved, the solution procedure
which is utilized, and the program characteristics are described in detail
in Reference 21 and are summarized in Reference 7.

The ACE program has the following major options:

A. Closed System Chemistry

1. Evaluation of equilibrium (or kinetically controlled time
dependent) chemicél state for assigned pressure, elemental
composition of up to three component mixtures, and either en-
thalpy, entropy, or temperature. Provision is made for read-

« ily carrying out isentropic expansion and compressions.

2. Solution of normal and oblique shock relations to provide the
state of the gases downstream of the shock and the isentropic
stagnation state.

B. Open System Chemistry
l. Calculation of surface mass balances to determine a relation-
ship between normalized char recession rate, normalized pyrol-
ysis gas rate, surface temperature, and pressure while con-
sidering either equilibrium between the char and gases adja-
cent to it or while considering selected rate-controlled sur-
face reactions.

All of fhese options are formulated for completely general chemical
systems. Consideration of any molecular, atomic, ionic, or condensed species
requires only the inclusion of the basic thermodynamic data appropriate for
that species. These data are obtained, for example, from the JANAF Thermo-
chemical Data Tables and include curve fit constants for entropy, specific
heat, and heat of formation.

All options generate a complete state of the system, including mole-
cular composition and thermodynamic and transport properties. The surface
state option provides additional information as discussed below.

The surface state option of the ACE program contains a number of
features which make it very powerful in the analysis of ablation data and
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thus enables the determination of the governing surfacé physicochemical
phenomena. In the first place, one does not have to choose a priori the
surface species. For example, in the case of a silica reinforced material,
even if minor constituents are neglected, the char surface could be Sioz*,
C*, SiC*, Si¥* or Si3N4*. The thermochemically controlling species will

be discovered by ACE as part of the solution process. Secondly, it is
possible to isolate species or component gas mixtures from the system or
to consider rate—controlled surface reactions or surface-catalyzed homo-
geneous reactions. Thirdly, each condensed species can be assigned a

fail temperature above which it cannot serve as the surface. This latter
capability can be used to represent mechanical removal of a species or
removal of a species above its melt temperature. A fourth major capabil-
ity of the ACE program is that it permits consideration of unequal dif-
fusion coefficients as well as unequal heat and mass-transfer coefficients
through an application of an approximation for binéry diffusion coeffi-
cients. A principal limitation of the ACE program is that the surface is
considered to be homogeneous. To illustrate, the surface of a silica
reinforced material would be predicted to be one of the species listed
above, but not a mixture of two or more of these species.

The surface state options of the ACE program provide a char recession
rate normalized by a mass-transfer coefficient, and other information need-
ed to perform an energy balance on the surface of a charring ablation ma-
terial, as a function of pyrolysis gas rate normalized by the same mass-
transfer coefficient, surface temperature, and pressure. It thus does
not by itself constitute an ablation prediction tool. In the first place,
it is necessary to specify the mass-transfer coefficient and this cannot
be done precisely without solving the boundary-layer equations. Secondly,
the determination of surface temperature requires the solution of a sur-
face energy balance. One procedure which is used for ablation predictions
is to generate surface state solutions with the ACE program in the form
of punched card output. This is then used as input to the CMA and SCRIMP
programs (Option 1) which perform the surface energy balance; the operation
of this coupled ablation prediction is discussed in Appendices A and B.
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A

A*

Bl

C

C*
c*/c*
c*/C*

OPT

dt

dt,/ds, d®p/ds?

D
E/R
£()

o/F

El

[ 2]

c 3 w

UDMH

Td
fi

OPT) 0/F=2

LIST OF SYMBOLS

Area or pre-exponential in Arrhenius equation.
Throat area.

Mass flux normalized by mass transfer coefficient.
Specific heat.

Characteristic velocity (see equation 1)

Ratio of characteristic velocity to optimum
characteristic velocity.

Specially defined C* ratio for relating arc plasma

generator operating conditions to characteristic
velocity.

dummy temperature increment (see equation 8).

derivatives of shear and pressure gradient with
axial coordinate.

diameter

activation energy of Arrhenius equation
function of

enthalpy, various subscripts defined locally.
mass fraction of 1i.

mass fraction of element K in the free stream.
mass flow rates

propellant mass oxidizer to fuel ratio
pressure, various subscripts

Prandtl Number

heat rate per unit area

momentum thickness Reynolds number.'

axial nozzle flow dimension, or surface recession
surface recession rate.

temperature, various subscripts defined locally
velocity

unsymmetrical dimethyl hydrazine (C2N2H8)

GREEK

finite change

heat of formation of the ith species at the temperature

datum (Td).
density, various subscripts.



A or arc

heat transfer coefficient (Stanton No. times mass flux),
kg/m? sec.
viscosity (see equation 14)

time.

SUBSCRIPTS

arc plasma generator test.

datum

edge condition.

summation index.

per injection species.

total (chamber) condition, or non-blowing.
oxidizer (i.e. nitrogen tetroxide, N204).
recovery.

rocket

wall (or surface)

throat.
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