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ABSTRACT 

The behavior of inverse-power spherical harmonic 

expansions is presented when the origin of the coordinate 

system undergoes a translation. A seeming paradox, in-- 

volving large translations is discussed. 



THE TRANSFORMATION OF EXTERNAL 

HARMONIC SERIES UNDER A TRANSLATION 

OF ORIGIN* 

Stephen J. Madden, Jr. 

1. I n t r o d u c t i o n  

The o b j e c t  of  t h i s  r e p o r t  i s  t o  p r e s e n t  an elementary 

d e r i v a t i o n  of t h e  behavior  of e x t e r n a l  s p h e r i c a l  harmonics 

of t h e  form 

when t h e  o r i g i n  of t h e  coo rd ina t e  system d e f i n i n g  t h e  spheri- 

c a l  coo rd ina t e s  r , 8 , i $  undergoes a g e n e r a l  t r a n s l a t i o n ,  The 

corresponding problem f o r  s p h e r i c a l  harmonics of p o s i t i v e  

degree  has been so lved  by Aa~doom [ I ] ,  a s  has  t h e  r o t a t i o n a l  

problem, where t h e  s p h e r i c a l  coo rd ina t e  system undergoes 

a r o t a t i o n .  The r o t a t i o n a l  problem had been prev ious ly  solved 

by many a u t h o r s  and a most complete p r e s e n t a t i o n  i s  found 

i n  Courant and H i l b e r t  [ 2 ] ,  

The s p h e r i c a l  harmonics of t h e  form (1) a r e  of par- 

t i c u l a r  i n t e r e s t  i n  t h e  f i e l d s  of  s a t e l l i t e  t h e ~ r y  and 

geodesy which a r e  concerned wi th  t h e  g r a v i t a t i o n a l  potenti?&S 

e x t e r n a l  t o  t h e  body which g e n e r a t e s  it, A common potential 

* This  r e p o r t  ha s  been presen ted  a t  t h e  American Geoph, v s i c ~ l  
Meeting, Washington, D . C . ,  A p r i l ,  1971. 



representation in these fields is 

where y and a are the gravitational constant for the generating 

body and a characteristic radius for the body, respectively, 

The quantities r,0,$ are the spherical coordinates of the 

field point in a reference system. The angle 0 is the co- 

latitude and $ is the east longitude. The constants Cnm 

and Snm characterize the gravitational field of the body and 

its deviation from a point source field. 

The result of this report allows the series ( 2 ) ,  

usually expressed in a coordinate system located at the 

center of mass of the generating body, to be recast into 

a form which is valid in a coordinate system whose origin 

may be more conveniently located. An example of this 

procedure is given by Lee [6] where the translations des- 

cribed are used to compute the gravitational force between 

two bodies where neither body can be considered as a point 

mass. 

It is conceivable that the lunar potential can be ex- 

pressed in a coordinate system located at the center of 

mass of the earth and thus facilitate, in s2me cases, the 

earth satellite problem. 

The method to be described is a direct generalization of 

one due to Hobson [ 4 1 ,  who has considered the special case of 

translations along the z-axis. 

2 ,  The ~armonic Representation 

~t is possible to put the potential expression (2) 



ilkto a fc,rm in which terms such as (1) appear, To do "chi-, 

we introduce complex coefficients 

and (2) becomes 

where 

This form of the series eliminates separate consideration 

of the sin m$ and cos m$ cases. 

A simple examination of the functions V especially nmf 
when one considers that 

with Pn(x) the Legendre polynomial, shows that any direct 

approach to the translation problem with a substitution of 

translated quantities for r, 0, and $ leads to an extremely 

complex expression. It is therefore desirable to find 

an alternate representation for V (r,0 ,$) which allows nm 
translations to be applied. Such a representation, due to 

Maxwell, can be found in Hobson [4] or Cunningham 133 



I f  t h e  n o t a t i o n  of Cunningham i s  modif ied t o  agree  w ~ t h  

( 6 1 ,  

n-m - (-1) a a m a  
n  -m 

- Vnm (n-m) := +i -1 (-) (- 1 (7) ay a z  Irl 

w i t h  t h e  x , y ,  z d e r i v a t i v e s  taken i n  t h e  r e f e r e n c e  coo rd ina t e  

system, where r i s  t h e  p o s i t i o n  v e c t o r  of t h e  f i e l d  point - 
i n  t h i s  system. I t  w i l l  be shown i n  t h e  fo l lowing  para- 

graphs t h a t  t h i s  r e p r e s e n t a t i o n  f o r  t h e  s p h e r i c a l  har--  

rnonics i s  u s e f u l  f o r  t h e  t r a n s l a t i o n  problem and l e a d s  t o  

t r a c t a b l e  exp res s ions .  

3. Desc r ip t ion  of  t h e  T r a n s l a t i o n  

I n  a d d i t i o n  t o  t h e  s p h e r i c a l  harmonic r e p r e s e n t a t i o n ,  

we must s p e c i f y  t h e  t r a n s l a t i o n  of t h e  coo rd ina t e  system. 

Thi s  w i l l  be  used t o  t rans form t h e  s c a l a r  Irl and t h e  Zeri- - 
v a t i v e s  i n  ( 7 ) .  The t r a n s l a t i o n  i s  d e s c r i b e d  i n  F igure  1, 

Figure  1. ~ e s c r i p t i o n  of t h e  T r a n s l a t i o n  



The v e c t o r  6 g i v e s  t h e  p o s i t i o n  of t h e  o r i g i n  of t h e  old - 
system wi th  r e s p e c t  t o  t h e  new. A t y p i c a l  f i e l d  p o i n t ,  P, 

i s  desc r ibed  by t h e  v e c t o r s  r and R i n  t h e  o l d  and new sys- - - 
terns r e s p e c t i v e l y .  I n  what fo l lows  w e  w i l l  a s s o c i a t e  t h e  

s p h e r i c a l  coo rd ina t e s  i n  t h e  new system, R ,  0 8 ,  4 with  

R and 6 , 0 , +  with  6 where 8 and 8 '  a r e  c o l a t i t u d e s .  - - 
A t  t h i s  p o i n t ,  a l l  t h e  necessary  n o t a t i o n  has  been 

in t roduced  wi th  t h e  except ion  of t h e  p o s i t i v e  degree  

s p h e r i c a l  harmonic corresponding t o  (5 )  

This  w i l l  be of u se  l a t e r .  

4 .  The Transformat ion Process  

I n  o r d e r  t o  use  on ly  q u a n t i t i e s  which a r e  de f ined  w i t h  

r e s p e c t  t o  t h e  new system, w e  f i r s t  examine t h e  q u a n t i t y  

I f  $ i s  t h e  ang le  between R and 6 ,  t hen  accord ing  t o  t h e  - - 
g e n e r a t i n g  f u n c t i o n  f o r  Legendre polynomials,  



If we use the addition theorem for spherical harmonics, 

Jackson [5], and some elementary manipulations, then 

where P:(B) = ~:(cos 8) , for the sake of brevity. This depends 
also on the definition of the associated Legendre polynomials 

for negative order, MacRobert [ 7 ] ,  

-m (n-m) ' m 
Pn !x) = .e Pn (x) r m > 0. 

If the definitions (5) and (8) are used, we find the result, 

1 
"3 n 

- -  (n-m) ' 
- 1  1 . e  

R-6 1 n=O m=-n I _  - 

The asterisk superscript denotes the complex conjugate, 

It is at this point that the convenience of the represen- 

tation (7) becomes more apparent. With the result given in 

(9) , the term l/lr - 1 in (7) has been dealt with. All that re- 

mains is the transformation of derivatives, From the def;ni- 

ti3n of the transformation, 



and since the coordinate axes remain parallel, it is a simple 

process to transform derivatives from those with respect 

to the old coordinates, x,y,z to those with respect to the 

new quantities, components of R or 6. - - 
Consider first the case where R > 6 .  Symbolically, 

from (lo), 

and if we look at (7) the derivatives of interest are 

a a a a m a n-m m a k-m 
(= +i -1 (=) = (= +i -) a Y 

3~ I 

where the derivatives with respect to capital letters refer 

to derivatives with respect to components of R. We can B:hus - 
use this result, and the first part of equation ( 9 ) ,  to find 

(-ilk-a n (n-m) I a a I, a k- P, 
Vka.(~) = 1 TGGJ-! Him 6 -  - ax ay - az vnmS~:* 

n=O m=-n 

The derivatives acting on Vnm(R). - can be simplified with the 

additional use of (7) , and finally 

This result holds for R > L .  



S i m i l a r l y ,  i f  R < 6, w e  f i n d  from ( 1 0 )  t h a t  

I f  an analogous procedure i s  fol lowed,  we f i n d  

This  ho lds  i f  R < 6 .  

5. Discuss ion  

I f  t h e  exp res s ions  (11) and ( 1 2 )  are examined, t hen  we 

s e e  t h a t  t h e  c h a r a c t e r  of  an i n v e r s e  harmonic s e r i e s  such as 

( 2 )  may change i f  t h e  t r a n s l a t i o n  d i s t a n c e  i s  l a r g e  enough, 

The s e r i e s  may change from one i n  i n v e r s e  powers t o  one 

i n  p o s i t i v e  powers. However, a s  was po in t ed  o u t  by Lee 

( p r i v a t e  communication), t h i s  i s  a seeming paradox. If w e  

t a k e  a s i n g l e  l a r g e  ( R  < 6) t r a n s l a t i o n ,  t hen  t h e  s e r i e s  

changes from one i n  nega t ive  powers t o  one i n  p o s i t i v e  powers, 

But i f  we c o n s i d e r  a f i n i t e  sequence of  sma l l  t r a n s l a t i o n s ,  

each of which keeps R > 6 ,  w e  may o b t a i n  an expansion with 

t h e  same o r i g i n  b u t  w i t h  an i n v e r s e  power expansion.  The 

exp lana t ion  f o r  t h i s  can be  found i n  F igu re  2 .  There a r e  

i n  c e r t a i n  c i rcumstances ,  two series which a r e  meaningful ,  

and a choice  must be  made between them depending on t h e  

c i rcumstances  under cons ide ra t ion .  I n  p a r t  A of F igure  2 

w e  see t h e  u s u a l  s i t u a t i o n  where a s p h e r i c a l  harmonic ex- 

pansion converges o u t s i d e  t h e  s m a l l e s t  sphe re ,  cen t e red  at 

t h e  c e n t e r  of mass, con ta in ing  a p l a n e t .  I n  p a r t  B ,  we 

s e e  t h e  c a s e  where t h e  o r i g i n  has  been s h i f t e d  through a 

d i s t a n c e  which i s  s m a l l e r  t han  t h e  r a d i u s  of t h e  sphere  of 

convergence.  I n  t h i s  c a s e  t h e r e  i s  s t i l l  only  one s e r i e s ,  





which i s  a p p l i c a b l e .  I f ,  however, t h e  o r i g i n  i s  s h i f t e d  

through a  d i s t a n c e  which i s  g r e a t e r  t han  t h e  r a d i u s  of the 

o r i g i n a l  sphere  of convergence, t h e r e  a r e  two a p p l i c a b l e  series, 

One s e r i e s  converges o u t s i d e  t h e  s m a l l e s t  sphere  cen te red  

a t  t h e  new o r i g i n  which con ta ins  t h e  p l a n e t  and t h e  o t h e r  

converges i n s i d e  t h e  s ~ h e r e  about t h e  new o r i g i n  which i s  

t angen t  t o  t h e  o r i g i n a l  sphere  of  convergence. Whether 

t h i s  second s e r i e s  converges down t o  t h e  s u r f a c e  of t h e  

p l a n e t  seems t o  be  an open q u e s t i o n  a t  t h e  moment i n  s p i t e  

of  a  d i s c u s s i o n  due t o  Moritz [ 8 ] .  

The a n a l y t i c a l  exp res s ions ,  (11) and ( 1 2 )  , can be  

s u b s t i t u t e d  i n t o  t h e  series ( 2 )  and t h e  summations i n t e r -  

changed s o  t h a t  a  new s p h e r i c a l  harmonic expansion,  r e f e r r e d  

t o  a  new o r i g i n ,  i s  ob ta ined .  This  i n t e r change  of sununations 

i s ,  however, v a l i d  only  i n  t hose  r eg ions  where convergence 

of t h e  o r i g i n a l  series i s  guaranteed.  I n  any p r a c t i c a l  

c a s e ,  t h e  numerical  behavior  of t h e  summations i nvo lv ing  

t h e  o r i g i n a l  c o e f f i c i e n t s  should be i n v e s t i g a t e d  t o  

i n s u r e  t h a t  measurement e r r o r s  a r e  n o t  magnified t o  t h e  

p o i n t  where t h e  r e s u l t s  a r e  i n s i g n i f i c a n t .  
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