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Abstract

The question of what information about an asteroid's

surface is contained in a measurement of the phase coefficient

between phase angles of 10 1 and 30° is examined in detail.

Contrary to some past claims ,.t is shown that absolute reflec-

tivities cannot be derived from Ahase coefficients. Further-

more, typical asteroid phase coefficients cannot be interpre-

ted unambiguously. This is because the observed phase coef-

ficient may depend as much on the photometric properties of an

individual surface element as on the degree of large-scale

surface roughness, and these two effects are impossible to

separate if only disk integrated measurements are available.

The wavelength dependence of asteroid phase coefficients

should be small; and should contain little important informa-

tion about the surface. In the case of very irregular asteroids

with macroscopically rough surfaces the importance of large-

scale shadowing, and hence the observed phase coefficient will

depend on the aspect of the asteroid. Hence in such cases

phase coefficients must be carefully defined to be meaningful.

It should, in some cases, be possible to estimate the relative

surface roughness of two quasi-spherical asteroids by combining

photometric end polarimetric observations. For example, if the

two asteroids have almost identical polarization curves, but

quite different phase coefficients, it is likely that the

asteroid with the larger phase coefficient has a macroscopically

rougher surface.
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1.) Introduction

One of the aims of asteroid photometry is to obtain

information about the physical characteristics, such as

texture, composition, and large-scale roughness, of asteroid

surfaces. In this paper I wish to concentrate on a single

aspect of asteroid photometry and consider in detail what

information can be derived from observed phase coefficients.

For instance, is it possible, as Bell (1917), Stumpff (1948),

Widorn (1964) and recently Gehrels et al. (1970) have tried

to do, to determine the absolute reflectivities of asteroids

in this way?

I will use the term phase coefficient in a restricted

sense. From Earth, few asteroids can be observed at phase

angles larger than 30°. Also, at very small phase angles an

additional surge in brightness (the "opposition effect") is

usually present (Gehrels, 1956; 1967). The details of this

opposition surge contain important information about the

surface texture (Hapke, 1963; Irvine, 1966), but few aster-

oids can be observed at sufficiently small phase angles to

determine accurately this part of their phase curves. I will

therefore use the term phase coefficient to mean the slope

(in magnitudes per de-ree of phase) of the observed phase

curve between 10 0 and 30°. The problem of understanding the

physical implications of this quantity (which I will denote

by 6) can be divided into two parts:

a) To adequately describe the scattering properties of an

individual small element of the surface of a typical asteroid.

1
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b) To determine what additional effects are introduced

by shadowing due to large-scale roughness.

These two .q uestions are dealt with in turn in the next

two sections.

2.) The Scattering Properties of a Small Surface Element

Observational evidence suggests that the surface of a

typical asteroid is similar to that of the Moon: that is,

microscopically rough and intricate, and made up largely of

a dark material in which multiple scattering is not dominant.

The scattering properties of such surfaces have been considered

by Irvine (1966); his model gives an exact treatment of the
scattering properties of a dark, particulate layer, under the

following assumptions:

a) All particles are spherical and of uniform radius r.

b) The particles are large enough that shadowing can

be dealt with in terms of geometric optics.

c) The particles are dark enough for multiple

scattering to be negligible.

When a parallel beam of light is incident on an element

of such a surface, at an angle i, the specific intensity of the

light scattered at an ang]? E (making a phase angle a with the

incident direction) is given by:

(1)	 I(i,E,a)	 {wo	 m(a)}	 {cos i o+ cos EJ S(i,E,a;D)

where	 wo = scattering albedo of a single particle
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Ca) = phase function of a single particle, and

R

S(i,E,a;D) = Irvine shadowing function for the surface. The
U

11	 parameter D is related to the compaction of the surface; if p

r.:

.r
is the mean density of a macroscopic volume element of the sur-Tr

face, and po is the mean density of a single particle, then

D E (3/4n)(p /po). For uniform, equally hard spheres, D cannot

exceed 0.176 (Beresford, 1969). For the Moon's top surface,

Hapke (1963) estimates p/ po ti 0.1, which corresponds to D = 0.024.

Using the equations given by Irvine, it is easy to show

that S(i,E,a;D) does not depend strongly on either i or E indiv-

idually, so that S(i,E,a;D) ti S(a,D). Therefore equation (1)

may be rewritten as:

(2)	 I(i,E,a) ti Wo cos i o+ cos e f(a,D)

where f(a,D) = S(a,D) • Ca).

Although this equation is based on very simplified

assumptions, it does adequately represent laboratory measure-

ments on dark, microscopically rough surfaces. Furthermore,

it holds even for surfaces in which the individual particles

are not physically separate, but are fused together, as, for

example, in furnace slag.

The validity of equation (2) can be easily tested for

any surface in the laboratory by making measurements of

I(i,E,a) as a function of a at a series of fixed values of E,

say at E - 0 1 , e = 30 °, and E = 60 1 . From each set of measure-

ments corresponding to a given E, an empirical f(a,D) can be
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determined using equation (2). If this equation is applicable

to the surface, all the f(a,D)'s so obtained will be identical.

Such a test is carried out, using measurements on a

sample of dark furnace slag (Halajian, 1965), in Figure 1

where all the f(a,D)'s have been normalized to unity at a = 100.

Since a single f(a,D) is indicated, equation (2) appears to be

valid for this surface, even though this surface is not "par-

ticulate" in the usual sense. This test can be carried out

with equal success for dark surfaces which are particulate in

the normal sense. In fact, Hala,ian (1965) finds that many

particulate surfaces (volcanic cinders, for example) have

f(a,D)'s almost identical to that shown In Figure 1, which

incidentally, is very similar to that of the lunar surface.

I will now show that the f(a,D) shown in Figure 1 can

be adequately reproduced using the Irvine model. In doing

this, it is convenient to choose for P(a), the one parameter

family of single particle phase functions introduced by

Henyey and Greenstein (1941):

(3)	 4^HG(a,G) =	
2 1-G2	

3,2
{1+0 -2G cosa}

The parameter G = <cos a> describes the nature of the scattering.

For G = +l, there is complete backscatterin g; for G = -1, com-

plete forward scattering, and for G = 0 the scattering is Aso-

tropic.

The measured f(a,D) shown in Figure 1, can only be matched

for a very small range of G (+0.30 to 0.35) (Figure 2). This

,
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indicates that effectively the individual particles are

slightly backscattering, a result to be expected for large,

opaque particles with rough surfaces. In Figure 2, a reason-

able choice of D = 0.03 is used, but the conclusions do not

depend strongly on the value of D.

I conclude that the Irvine model is adequate for describing

the scattering properties of dark, microscopically intricate

surfaces. Furthermore, it seems immaterial whether or not the

particles of the surface are physically free, or fused together.

3.) The Effects of Large-Scale Roughness: Macroscopic

Shadowing

Unfortunately, the general problem of shadowing on a

randomly rough two dimensional surface is extremely compli-

cated. Ideally, one wishes to know for each angle of

illumination and each angle of observation, what parts of the

surface are both illuminated and seen. The surface can be

specified statl9tically in terms of the height deviations from

an arbitrary mean level, or in terms of the distribution of

surface slopes. So far solutions exist only for one-dimensional

surfaces (for example Beckmann, 1965; Saunders, 1967), and I

will therefore use a contrived, but convenient model, first

introduced by ham6en-Antilla et al. (1965). In this model the

surface is assumed to be bounded on top by a plane which is

punctured by countless paraboloidal craters, whose axes of

revolution are perpendicular to the plane. The shape of a

crater is determined by the parameter Q HE H/R, where H is the

crater depth, and R is its radius at the top level.

i
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To study the effects cf large-scale shadowing on the

photometric properties of asteroids, it is convenient to

first consider a model planet which is spherical and completely

covered with paraboloidal craters of shape Q. (It is assumed

that t ►:e craters do not overlap). As Q increases from zero, so

does the roughness of the model planet. The RMS slope of such

a surface is given by:

(4)
eRMS = arctan (2Q/V-3)

and Q is related to the maximum surface slope by the relation:

(5) Q = (tan 6 max )/2

For 6
max << 35 0 , for example, Q < 0.35.

It is implicitly assumed in the model that, on the one

hand, the number of craters per resolution element is very

large, while on the other, each crater is large enough to

contain a large number of individual scattering elements.

AlsD, the surface reflectivity is assumed to be low enough

that shadows are not affected by multiple scattering.

To determine the total amount of light, J(a), scattered

by the model planet toward the Earth at a phase angle a, an

integration over the illuminated part of the disk must be

performed:

(6) j (a) - SS  I ' cos E ' do
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where cos E • do is the projected area of the surface element

do, and I is the effective specific intensity of the light

scattered by that element toward the Earth. Numerically, this

process is conveniently carried out by the method of Horak

(1950) in which the integration is replaced by a weighted sum

over a grid of points covering the illuminated part of the

disk. At each point of this grid, I is found by calculating

the mean specific intensity of the light scattered from a para-

boloidal crater, (see Ham6en-Antilla et al. (1965) for details),

each element of which scatters according to Irvine's law.

Clearly, the j(a) calculated in this way for a surface

with Q > 0, will be less than that found when Q = 0, at all

phase angles a > 0. We will, in fact, have the following

relationship:

(7) J(a,Q) - J(a,0) • E(a,Q)

where E(a,Q) is a macroscopic shadowing function which depends

only on a and Q (and, of course, on the model of surface rough-

ness), but not on f(a,D). Thus, the effective scattering law

for the rough model planet may be considered to be

(8) IR(i,E,a) = I(i,E,a) • E(a,Q)

where I(i,E,a) is given by (1) and E(a,Q) can be determined

by the calculation described above. For a macroscopically
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smooth planet (Q-0), E(a,0) = 1 for all a, and IR(i,e,a)

I(i,e,a).

The values of E(a,Q) for this model, found using either

a 36 or 100 point grid over the illuminated part of the planet,

and a 2500 point grid over each crater, are shown in Figure 3.

The numerical accuracy of these values is better than one

percent. The results of Figure 3 can now be used to study the

effects of large-scale surface roughness on the photometric

parameters of the model planet once f(a,D) is specified. Since

the f(a,D) shown in Figure 1 is very similar to that of the

Moon, it i q of interest to use it in these calculations. For

this purpose, it may be extended linearly (on a magnitude

scale) from a - 10° to a - 0°, that is, at 0.026 magideg, thus

in effect neglecting any opposition effect. Values of the

phase coefficient, 6 (between a - 10 1 and a - 30°) and of the

phase integral

rn

(9)	
q=2 J 0

((X	 )	 sin a•da
J(OIQ)

for this model planet, are shown in Figure 4 as functions of

the roughness parameter Q. The phase coefficient is seen to

increase significantly as the surface gets rougher until about

Q = 2; for larger values of Q the additional increase in 6 is

slight. The phase integral, on the other hand, decreases

appreciably as Q increases, but again a levelling off occurs

beyond Q ti 2. Note that the phase coefficient 6 of the disk

integrated light is related to 
0lab 

the slope of f(a,D) (on a



1

9

magnitude scale), the'laboratory phase coefficient", by the

relation:

(10)	 B = S lab + Bls

where B ls is the phase coefficient of a Lommel-Seeliger planet

(that is, a planet with Q = 0 and f(a,D) = 1). Between a = 100

and a = 30" S ls ti 0.006 mag/deg. Hence, since over the same

interval of phase angles, S lab = 0.026 mag/deg for the surface

of Figure 1, B = 0.032 mag/deg for Q = 0 in Figure 3.

For a scattering law of type (1), the geometric albedo p

of the model planet is independent of Q.

Thus, for the above model, it can be concluded that:

a) Large-scale surface roughness has a strong effect on

both the phase integral and the phase coefficient, but none on

the geometric albedo.

b) From equation (1) it follows that the phase coeffic-

ient is independent of the single particle albedo w o , but the

geometric albedo is not.

c) Therefore, in view of (a) and (b), there can, in

general, be no correlation between B and p.

d) Within the framework of this model, B and q are

independent of wavelength, unless 4)(a) has a wavelength depen-

dence. But since it is assumed to at the particles of the model

surface are opaque, and large compared to the wavelength, the

wavelength dependence of 0(a) will be small.
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4.) Some Relevant Laboratory Results

Laboratory work with dark, microscopically complex surfaces

(Hala,jian, 1965; Hala,jian and Spagnolo, 1966) is in accord with

these conclusions. Even in the laboratory, where macroscopic

shadowing is not important, no general correlation 'between alab

and the surface reflectivity is found. Also, the observed wave-

length dependence of B lau is very small, but there is an inter-

esting trend for Blab to decrease slightly with increasing

wavelength. Since the reflectivity of the samples used in this

work tends to increase slightly with increasing wavelength, this

suggests that the breakdown of the Irvine model is at least in

part due to the increased importance of multiple scattering at

longer wavelengths. Multiple scattering makes it easier for

light to escape from the surface; this effect is relatively more

important at large phase angles since it is then more difficult

for singly scattered photons to escape from within the surface.

Thus multiple scattering helps to get relatively more light

out of the surface at large phase angles than near opposition.

This tends to make phase coefficients smallest at those wave-

lengths at which multiple scattering is most important, that

is usually in the red. But for dark surfaces this effect is

very small.

The Grumman laboratory work referred to above (Hala,jian,

1965; Hala,jian and Spagnolo, 1966) shows conclusively that no

mineralogical information is contained in phase coefficients;

at best one can distinguish materials in which multiple

scattering is dominant from those in which it is negligible.
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In addition, this work shows that away from opposition (a>100)

phase coefficients contain no information about whether or not

a surface is particulate. For example, as already noted in

Section 2, both particulate samples of volcanic cinders and

solid samples of furnace slag reproduce the lunar photometric

function in V equally well at phase angles larger than a few

degrees.

5.) A Serious Complication: Non-Spherical Asteroids
A serious complication in interpreting phase coefficients

is that many asteroids are not even approximately spherical.

What can be said about the brightness variations with phase

of an irregular asteroid whose aspect changes with time?

Clearly, as the aspect changes, so will the importance of

large-scale shadowing.

Consider the following idealized example of an ellipsoidal

asteroid. Two of the semi-axes are equal to A, and the third

is equal to B >> A. The asteroid rotates about one of the short

axes. Two extreme cases may occur: (a) the asteroid is viewed

pole-on and the light fluctuations are minimum, and (b) the

rotation axis of the asteroid is perpendicular to the line of

sight and the light variations are maximum. Also, suppose that

a spherical planet of the same material and surface macrostruc-

ture has a phase coefficient 6sphere*

In case (b), at maximum light, the situation is identical

to case (a) and

(11)	
Smax	 S (a)	 Ssphere'
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The inequality follows from the fact that on the ellipsoid,

at maximum light, effectively the average i and e is smaller than

on the sphere, and the effects of shadowing are therefore less

important. However, at minimum light, the average i and a are

effectively larger than in the case of a sphere and therefore

shadowing is more important. Hence:

(12) amin > S sphere > ^(a)

Usually, in case (b), a would be determined oy using the mean

magnj.tude of the light curve, so that

Smax + amin
(13) S(b) -	 2	 > s(a)

Therefore, it is possible to predict that for an irregular

asteroid whose aspect changes with time and whose surface is

macroscopically rough:

a) The apparent a is largest when the amplitude of the

light curve is maximum.

b) If the aspect of an asteroid stays approximately

constant during an opposition, thon the phase coefficient

determined from the minima of the light curve should be

larger than that determined from the maxima; that is

smin	 max'

Thus, tc even meaningfully define a phase coefficient

it

I	 '
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for a very irregular asteroid whose aspect changes signifi-

cantly with time, may require a long series of accurate

observations.

6.) Conclusions

In summary, the situation appears bleak. One cannot Rxpeet

to derive the geometric al.be;os of asteroids from their phase

coefficients. The contrary claim by Widorn (1964) and others

is largely based on a fortuitous empirical relationohip ob-

tained by plotting S against p for the Moon an6 some of the

large planets. Jupiter and Venus are intrinsically bright

(large p) and have cloud decks in which multiple scattering

is important (low a). Mercury and the Moon are intrinsically

dark (low p) and have rough dark surfaces (high A). Thus one

can arrive at the unfounded conclusion that a must always be

inversely correlated with p, which in the case of nark surfaces

certainly need not be true.

Since the degree of surface roughness (Q in the above

model) of any particular asteroid is not known, one cannot

convert an observed phase coefficient (a) in its laboratory

counterpart (Slab)' Furthermore, even if this were possible,

little diagnostic information could be obtained from alab

(Section 4).

In addition, for very irregular asteroids with rough

surfaces it may be difficult to even define a mearing:ul phase

coefficient (Section 5). Fortunately, there are some asteroids,

Ceres and Flora, for example, which are almost spherical, so
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that at least this complication does not arise. Flora has a

phase coefficient similar to that of the Moon: 0.028 mag/deg

in V (Veverka, 1971). If it is composed of photometrically

similar material, its surface roughness must also be 2imilar.

If it is rougher than the Moon, its surface material must be

less backscattering, 	 and vice versa.	 The phase coefficient of
z

Ceres,	 0 .050 mag/deg in V (Ahmad,	 1954),	 is	 considerably larger

than that of the Moon. 	 This is probably not entirely due to

t surface roughness, since as Figure 4 shows,	 for lunar-like

materials it is difficult to increase a to this value

by increasing surface roughness. This suggests that the
i

surface material of Ceres is intrinsically more backscattering

than that of the Moon.

According to the above model the color dependence of

asteroid phase coefficients should be small. This does seem

to be the case. For Vesta, for example, B(V) = 0.0253 mag/deg,

$( B) = 0.0264 mag/deg and ^(U) = 0.0291 mag/deg (Gehrels, 1967).

Since the reflectivity of Vesta increases with increasing

wavelength in the UBV region of the spectrum, this slightg	 g	 P	 ^ 

decrease in 6 with increasing wavelength may perhaps be attrib-

uted to the increased importance of the small multiply scat-

tered component at long wavelengths, as suggested above. If

this is true, then the wavelength dependance of asteroid

phase coefficients mostly contains information about the wave-

length dependance of the surface reflectivity, information

which can be obtained more easily from a single spectral reflec-

tiv^ty measurement.
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Finally, I would like to stress E.gain that typical

asteroid phase coefficients (0.025-0.035 mag/deg) cannot be

interpreted unambiguously. This is because the observed phase

coefficient may depend as much on the photometric properties of

an individual surface element (f(a,D) in Section 2) as on the

degree of large scale roughness (E(a,Q) in Section 3). If only

disk integrated measurements of the scattered light are avail-

able, these two effects cannot be separated. In spite of this,

there does seem to be some point in looking for objects with

unusual phase coefficients, such as Ceres.

In some cases, it should be possible to estimate the

relative surface roughness of two quasi-spherical asteroids by

combining photometric and polarimetric observations. For example,

if the two asteroids have almost identical polarization curves,

but quite different phase coefficients, it is likely that the

asteroid with the larger phase coefficient has a macroscopically

rougher surface.
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FIGURE CAPTIONS

Figure 1: The f-function for a layer of dark furnace slag,

from measurements in V by Halajian (1965). This sample has

a normal reflectivity of 0.09 and photometric properties

very similar to those of the lunar surface. The function

is normalized to unity at a - 100.

Figure 2: Comparison of the f-function of Figure 1 with two

theoretical predictions using the Irvine model and a Henyey-

Greenstein phase function. See text for details. The points

represent the mean values of f at each phase angle, taken

from Figure 1.

Figure 3: The macroscopic shadowing function E(Q) versus phase

angle, for various values of Q. The nature of E depends on the

specific model of large-scale surface roughness used (in this

case the surface is assumed to be covered with paraboloidal

craters), but is independent of f(a,D). Note that beyond Q - 2,

increasing the surface roughness produces little change in E.

Values of E(Q) were calculated for a - 0 0 , 10 0 , 20 0 , 50 0 , 900,

130 0 and 170 1 ; for all Q>0.1 E(170 0 , Q) was found to be less

than 0.001.

Figure 4 - TOP: The phase integral q of the model planet, versus

the surface roughness (represented by the parameter Q). The

f-function shown in Figure 1 extrapolated to a - 0 0 as described

in the text was used in this calculation. BOTTOM: The

corresponding variation of the phase coefficient measured

between a - 10 0 and a - 300.

18
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