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Scanning optical systems such as T.V. in effect make
one measurement of light intensity for each resolution element.
in the optical scene. When the incident light levels are low
or the resolution desired very high, the energy incident on
one resolution element is very low and system performance is
limited by the noise level of the detector element. For these
conditions a system is suggested here which makes the same
number of measurements per line but each is across the entire
scan line through a coded mask. When decoded the same resolu-
tion is achieved with a significantly improved signal-to-noise
ratio. The- - theory, based upon Hadamard transforms, is develoved
and it is shown that the improvement in signal-to-noise ratio

-1

over single resolution element scanning is N2 where N is the
number of resolution elements per line. Difference equations
are given for computing high resolution masks with desirable
cyclic properties for simplified implementation.
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Introduction

Optical systems which use a device other than a photo-
graphic emulsion as an energy detector commonly scan the image
as in television. Under conditions of low ambient lighting
and/or high desired resolution the energy incident on a single
resolution element is very low and the limiting parameter is
the noise at the sensor element itself. Infrared systems, in
particular are most often so limited. 1In such a system, each
scan line is sampled and encoded, say N times per line, then
these N samples can be considered to be N distinct measurements
made through an aperture whose width is L/N where L is the line
width. For dispersive spectrometers it has been shown that a
significant improvement in signal-to-noise ratio can be achieved
by making the N measurements through N different coded masks
across the entire scan line in the exit pupil of the instru-

ment.[l][21[3] These ideas are applied below in a system concept
for a scanning infrared camera. Since the improvement in signal-
to-noise ratio is obtained at the expense of computation time in
decoding, the maximum advantage is obtained in a system in which
a computer is inherently a part. The ten-band multispectral
scanner under development for Skylab produces 8-bit digital data
from a circular scan which will have to be reproduced by a
computer-like device. It would thus appear typical of the type
of device to which coded scanning would be applicable.

Construction and Basic Theory

The basic optical structure will be assumed to be a

Schmidt—Cassegrain[4] as shown in Fig. 1. A narrow horizontal
slot aperture which defines the scan line is placed on the
focal plane. Vertical scanning is accomplished by either the
motion of the satellite or aircraft or motion of the entire



slot as in a focal plane shutter. For simplicity, we assume
the former. The coded mask consisting of a pattern of verti-
cal slots cut into a completely reflecting material is placed
at an angle of 45° directly behind the horizontal slot. A
typical pattern for the mask is shown in Fig. 2b, but the
mathematical theory behind the mask will be covered later.
Exactly half of the mask is reflecting so that approximately
half of the radiation incident on the horizontal slot is
transmitted through the mask to a set of collimating optics
which condenses all of the transmitted light onto the detect-
ing element. The other half of the radiation incident upon
the mask is reflected and focused upon a second detector as
shown in Fig. 1. The output of each detector, with suitable
buffering goes to both a sum amplifier and a difference ampli-
fier. The sum amplifier is used for AGC and another purpose
to be covered later. The difference amplifier output is
digitally encoded.

In the usual raster-like scan the horizontal slot
would be sampled say N times through a single aperture as
shown in Fig. 2b. In other words, N separate measurements
would be made, and as N increases, the energy available to the
detector decreases with the area of the aperture. Since we
are only interested in the comparison of two different methods
of scanning across the horizontal slot, the width of the slot
will be assumed to be fixed. Thus, in this case the area of
the single slot aperture and the energy decreases as 1/N. To
obtain the same resolution, using coded masks again, at least
N measurements must be made through N different masks.
However, the radiant energy incident on a detector in a single
measurement through a mask is a weighted average of the total
energy across the slot and is independent of N and is approxi-

mately'% for each detector. Hence, a significant improvement

in signal-to-noise ratio can be achieved. By utilizing the
cyclic properties of the Hadamard matrices below, a single mask
can be constructed so that each measurement is made after shift-
ing the mask one indentation from the preceding measurement.
The computer decoding involves matrix multiplication, but
because the elements of the matrix are either +1 or -1 it can
be accomplished by using only addition and subtraction.

The pattern on each mask corresponds to the rows of
a Hadamard matrix. A NxN Hadamard matrix.is a matrix whose
elements are either + or -1 with the property:

H'H = HH® = NI (1)



Furthermore, it is shown in the appendix that if N=2" then

Hadamard matrices, H, can be constructed from a matrix, H ,
whose rows (and columns) are cyclic permutations of one of the
rows (columns). (It is this property, of course, which allows

simple mask interchange.) The mask is divided into N=2" equal
areas across the length of the horizontal slot and each area
is labeled to correspond to a column of the Hadamard matrix.
Take any row i of the matrix except the first which consists

of all +1's. If the jEE component of the row vector i is -1,

the jEE area of the mask is made transmitting. If it is +1,

it is made reflecting. A typical Hadamard matrix for N=8 is
given below as an illustration.
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Note that the first row and column are all 1's. Consider the

matrix H below formed by deleting the first row and column
of H.

— (3)

H = -1 1 l1 -1 -1 -1 1
1 -1 1 1 -1 -1 -1
-1 -1 1 -1 -1




Each row is a cyclic permutation of the row preceding it.
Each row of H  can be made into a row of H by adding a +1 as
the first component. The mask can now be made from H™ by
repeating the first row of H™ twice. The first +1 component
is added by a fixed single area reflector as shown in Fig. 2c.
For each measurement the mask needs to be moved only one slit
position from the preceding position because of the cyclic
structure of the code. Since the first row of H is all +1's,
the encoding for this measurement is taken from the sum
amplifier.

Let I(x) be the intensity of illumination of the
slot as a function of the distance x measured along it with
the slot length normalized to 1, IE£ hij is the entry in the

iEE row and ji:-}—1 column of H, Y is the output of the differ-

ential amplifier-at the iEE measurement then we have

1 2 J
1 N N N
Yy, = _r I(x)dx = I(x)dx + I(xX)dx + ... + I(x)dx
0 0 1 3-1
N N
N
+ e +[ IT(x)dx
N-1
N
1 2 ]
IN N N
YV, = I(x)h,,dx + I(x)h,,dx + ... + I(x)h,.dx
2 0 21 1 22 ._1 275
N N
1
S N +f I(x)h2 dx
N-1
N

1

1
jﬁﬂ J{
¥, = I(x)h,,dx .... I(x)h, dx:
i 0 il N-1 1N

N



fa)

1

= 1
N
Yy = I I(x) thdx cene -[N—]_I (x)hNNdx (4)
0 o2
N

Since the hij are all either + or -1, they can be brought out-

j/N
side the integral. Denote by E. the integral jt I(x)dx
g y Ej gz j-1 T(x4

N
which is simply the noise-free response of a detector to the
illumination through a mask of a single resolution element.

g
y, = E.
1 521 3

N
y, = ) h.,.E, (4a)

Hence, to decode the measurements equations (4a) must be
solved for the Ej‘ In matrix notation, where y is the column

vector of the Yy E a similar vector of the Ej equations

(da) are:

i
=

y = (5)

thus (6)

[xs
]
2l
o
LB

Since HT consists of only +1's and -1's and N is a power of 2,
the matrix multiplication requires only additions and subtrac-
tions and a shift of the binary point,

Signal-to-Noise Ratio

Equation (5) must be modified to account for the
effects of noise. The development follows very closely that
of Sloan, et al.[1] The noise will be assumed to be primarily



due to the detector or sensor element and the first elec-
tronic stages. Consider .a measurement X made through a

single slot of width %. Then
Xx. = E, + n. (7)

where n, is the component of noise contributed by the detector

to the iEE measurement. All measurements are assumed to be
made for the same length of time including the measurements
through the masks. The mean <n;> averaged over the ensemble

. . . 2 2
of measurements is assumed 0 with wvariance <ni> = ¢ . Further-

more, noise in different measurements is uncorrelated, i.e.,
<ni,nj> = 0 for i#j. Thus, if the primary noise is behind the

aperture (e.g., in the detector) then the noise contribution
is independent of the coded mask and each measurement Y; is
then,

N
y: = ) h.,. E. + n, (8)

y = HE + n (9)

l ~
* = =
E SHEY (10)
where E* is now an estimate of E. Now

< E¥* - ﬁ> = < % H'HE + = Hn - E >



and hence, <E*> = <E> = E (ﬁ is deterministic) and the esti-

mate is unbiased. The variance c; = <(BE*~E)T, (B*-B)> is

Q% <ﬁTH,H
N

Ta> = £ «aT 5> = N 42 2 42 (11)

N

2

The signal-to-noise ratio ST is given by

<E>

T OT

Qs

(12)

The variance of the measurements through a single slot is

computed from (7) and is clearly <ﬁT,ﬁ> = ch with signal-to-

noise ratio

The improvement in signal-to-noise ratio is thus

St

s

N

= N

For N=1024, a reasonable number for high resolution
scanning, the improvement is a significant gain of 32 times.

Clearly, the improvement is obtained by increasing
the average signal level while the noise for different
measurements is uncorrelated and adds in an RMS way. This
raises the question of dynamic range. In each measurement
exactly half of the mask is transmitting, half reflecting.
The output from the sum amplifier will be the average across
any scan line. Over any given scene (but excluding contrived
scenes such as a bar chart) the peak-to-peak variation of the
line averages is less than the peak-to-peak variation of the
entire scene. Therefore, the dynamic range of the sum ampli-
fier can be used as an AGC to set the operating point of the



differential amplifier so that it does not overload. Thus,
dynamic range is not likely to be a problem in amplifier
design but only in the sensor elements. The input upper level
will increase over that of single slot scanning by the number
of slots in the horizontal line. The lower bound is of
course, zero. In single slot scanning the entire dynamic
range will be realized in a single scan as long as there is a
very strong source and a very weak source in the same scan
line which is not unrealistic. However, this situation can
occur in coded scanning only if the distribution of light
intensity across the entire slot corresponds exactly to the
pattern of one of the rows of H, a most unrealistic and
unlikely happenstance. In fact, there is considerable empir-
ical evidence from related work on dispersive spectrometers
that the dynamic range is reduced by using coded scanning.
However, the dynamic range is a function of the spatial fre-
quencies present in the scene and there is at present insuf-
ficient information available for an analytic solution.

Conclusions

It has been shown that coded scanning offers a sig-
nificant improvement in signal-to-noise ratio at the possible,
but unlikely, expense of increased dynamic range. The optical
system in front of the focal plane is completely independent
of the scanning system and hence, can be optimized for any
application. Mechanically, the scanning system is simple
rectilinear motion located where its interference with the
optical path is minimal except for its designed coding func-
tion. The precision of the slots in the coded shutter is to
micrometer tolerances not optical. The associated electronics
would be unchanged except to take advantage of the significant
signal-to-noise ratio improvement. The binary difference
equations to calculate the aperture codes for 128<N<1024 are

given in the appendix.
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FIGURE 2 - EXAMPLE OF CODED MASKS



APPENDTX

We shall use the theory of cyclic error correcting

codes to construct Hadamard matrices of order Zk. First, a
matrix of the desired dimension with components of 0's and
1's from GF(2) (the Galois field of characteristic 2), is
constructed with the property that both the rows and columns

form a group of order 2k. Making the usual correspondences
0<++1, l<-»-1 between GF(2) and the reals converts the matrix
into a character table and the orthogonality relations for

characters gives the desired Hadamard property.

Given any polynomial ¢(x) of degree n, the reciprocal

polynomial is defined as xn¢(%). The reciprocal of the product

of two polynomials is the product of-.-the reciprocals. It is
well known that any polynomial over a finite field is a factor

of x"+1 for some n sufficiently large. Below all polynomials
are to be considered over GF(2). Let the irreducible factors

of x"+1 be

b1 (%) 9,(x) ..v b (%) = x"+1 (A-1)

Since the reciprocal of x7+1 is xP+1 if $.(x) is a factor of
x7+1 of degree r then its reciprocal xr¢j(§) also is a facto:
of x™+1. The exgonent of a polynomial ¢(x) is the smallest n
for which ¢(x) is a factor of xn+l, Clearly, a polynomial
and its reciprocal have the same exponent.

Polynomials over GF(2) are often written as n-tuples
or vectors where the components represent the coefficients.
Thus

(1 1 1 0 1 0 0) «1x% + 1x! + 1x% + o0x> + 1x°
(A-2)

+ Ox5 + Ox6 =1 4+ x + x2 + x4



Here it is understood that the term of highest degree (x6) is
on the right. It could equally as well be on the left in
which case:

(L1 1 1 0 1 0 0) «»xP + x>+ x¥+ x2 (A-3)

but (A-3) is the reciprocal of (A-2). Clearly the same result
could be obtained by leaving the interpretation the same and
writing the vector from right to left as

(0o 0 1. 0 1 1 1)

As is very well known,[5][6] the elements of a
cyclic code form an ideal in the ring of polynomials modulo

(x"+1). Let n = 2k—l. Then the ring is semi-simple and the

minimal ideals are generated by primitive orthogonal idempo-

[7]

tents . We shall be concerned here only with the minimal
ideals all of which are isomorphic to finite fields. That is,
to the field of polynomials modulo ¢k(x) where ¢k(x) is irre-

ducible and of degree k. There are 2k-l non-zero elements in
the field and, likewise, in the ideal. Let p(x) be the idem-
potent generating a minimal ideal where

_ 0 i n-1 _
p(x) = anx + a;x + e.s a;x + ve. + a _1¥ (A-4)

for aieGF(Z), n = 2k

given-mod(xn+l) by

-1. Obviously, the polynomial xp(x) is

0 1 i n-1

xp(x) = a X + apgx" + ... @, X7 4+ ... 8, X (a-5)

n-1

a cyclic permutation of (A-4). Writing the 2k-l polynomials

xlp(x) as row vectors one obtains the circulent matrix where
the a; are 0 or 1:



r =
ao al a2 PR al “« oo an_z an_l
ah-1 %o 8y 8pre+ 81 & 83 3o
%n-2 -1 %o, - %n-4 ®n-3
. R (A-6)
. ﬁao a;
| a1 a, ceee a,_1 2 ]

If one considers columns as polynomials with high-degree terms
on the bottom, then the last column is the reciprocal poly-
nomial of the first row considered as a polynomial with high-
est degree terms to the right. Also, the other columns are
cyclic permutations of it. From the above properties of poly-
nomials and their reciprocals, it can be easily shown that if
pl(x) is the primitive idempotent generating a minimal ideal,

then if pz(x) is its reciprocal, pz(x) also generates a mini-

mal ideal of the same dimension. Therefore, the columns of
(A-6) considered as polynomials are elements of an ideal of-

dimension 2k—l and with the addition of a vector of all 0's

form an additive group under addition of order 2k generated by

k independent elements each of order 2. By adding a row and
column of all 0's to (A-6) one obtains a modular representa-

tion[S] table in which both the rows and columns display
the group operations. As an example, consider the case k=3,

7

n=7 and the ring of polynomials modulo (x'+1). One minimal

ideal is generated by p(x) = 1 + x + %% + x* and the elements
are:
p(x) =1 +x + x2 + x4
xp(x) = x + x2 + x3 + x5



x2p(x) = x2 + x3 + x4 + x6
x3p(x) = 1 + x3 + x4 + x5
x4p(x) = x + x4 + x5 + x6
x5p(x) = 1 + %% + x> + x6
x6p(x) =1+ x + x3 + x6

Writing these polynomials in matrix form gives

Fl 1 1 0 1 0 0‘
0 1 1 1 0 1 0
0 0 1 1 1 0 1
1 0 0 1 1 1 0
0 1 0 0 1 1 1
1 0 1 0 0 1 1

- -

Here the first three rows or columns may be chosen as the
generators of the group. Writing e for the identity and a,

b, and c for either the first three rows or first three columns
gives the following modular representation table.

TABLE I

e e a b c (atc) (atb+c) (atb) (b+c)

e 0 0 0 © 0 0

a 0 1 1 1 0 1 0 0

b 0 0 1 1 1 0 1 0

c 0 0 0 1 1 1 0 1
(a+b) 0 1 0 o0 1 1 1 0
(b+c) o 0 1 o 0 1 1 1
(atb+c) 0 1 0 1 0 0 1 1
(a+c) 0 1 1 o 1 0 0 1



n

Making the substitution 0<++1, 1l<«»>-1 converts the above table
to the Hadamard matrix (2). We shall now show that the
process holds in general. By the above methods, it is clear

that a modular representation table of size 2k can be construc-
ted for arbitrary k and the substitution of the real numbers

+1 and -1 for the elements 0 and 1 of GF(2) made. Note that
multiplication of +1's and ~-1's, i.e.,

-1 x-1= 1+«>1+1

it
o

it

-1 x 1 -1 <>~ 1+ 0

i
-

Thus the modular representation table of the example becomes
the character table

TABLE II
e a b c (a+c) (atb+c) (atb) (b+c)

e 1 1 1 1 1 1 1

a i -1 -1 -1 1 -1 1 1

b 1 1 -1 -1 -1 1 -1 1

c 1 1 1 -1 -1 -1 1 -1
(a+b) 1 -1 1 1 -1 -1 -1 1
(b+c) 1 1 -1 1 1 -1 -1 -1
(a+b+c) 1 -1 1 -1 1 1 -1 -1
(a+c) 1 -1 -1 1 -1 1 1 -1

Vector addition of two rows (or columns) modulo 2 in Table I
becomes component-wise multiplication of the same rows (columns)
in Table II and holds for any size of such tables. Each row
(column) of a character table can be made into a diagonal
matrix. Thus for the column labeled a in Table II:
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J

o

I
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= [A]
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o
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Similarly for c. It is obvious from the above remarks that
matrix multiplication is isomorphic to group multiplication,
i.e.,

a <> [a] c <> [C]

(atc) <« [A]IC]

and the matrices are a group representation of the additive
group of the ideal. Furthermore, the irreducible representa-
tions are obviously of dimension 1 and there are precisely

2k of them. The characters of a group representation are the

traces of the matrices in that representation. The charac-
ters of the irreducible representations are given by the one
dimensional +1's and -1's of the above matrices. Hence, a
modular representation table can be made directly into a
character table by the same substitution that took Table I
into Table II.

In the general theory of group representations,
there are several theorems establishing orthogonality rela-
“tions between the characters of the irreducible representa-
tions of the group. For the above additive group Ck’ these

relations become (using Slepian's notation)

Iox*m xPa) = 2%, (a-8)
ach
I x%@) " e = 255, (a-9)

ach



where x*(a) is the entry in the character table in row A and
column a and aas is the Kronecker delta. Thus, (A~-8) says

that any two columns of the character table multiplied together
component-wise and summed will be zero unless a column is
multiplied and summed with itself. Equation (A-9) expresses
the same relation for rows. Consider the character table as

a matrix [K] and take its transpose [K]T. Then (A-8) and
(A-9) express the ordinary row by column matrix multiplica-

tion of [K] and [K]T and thus imply that [K] has the Hadamard
property

kI1T[k1 = 2¥[1]

the desired resuit.

Finally, it is desirable to have a simpler method of
generating the minimal ideals. As noted before, the minimal
ideals are isomorphic to the finite fields of the polynomial
ring modulo an irreducible polynomial. To generate a sequence
of 0's and 1's which interpreted as a polynomial will be a
cyclic permutation of the primitive idempotent select from a
suitable table an irreducible polynomial of degree k whose

exponent is 2k—l. It has been shown[7] that these polynomials
can be considered as delay operators and used to construct

binary difference equations or "shift registers." Let y(n) be
a sequence of 0's and 1's and xy(n) = y(n-1). Thus,
p(x)y(n) = 0 is a homogeneous binary difference equation. As

an example, take the polynomial x3 + x2 + 1 of exponent 7.

Then,
(x3 + x% + 1) y(n) =0
and vy(n-3) + y(n-2) + y(n) =0

or y(n) = y(n-2) + y(n-3). The first k=3 places of the sequence
are arbitrary so pick {1, 0, 0,...}. Using the difference
equation the other terms are computed as

{, 0, 0, 1, 0, 1, 1, 1, 0, 0,...1}



the sequence repeating after the first 7 places. Written as
a column vector it can be seen that the sequence corresponds

to column a of Table I.

various N are given below.

N

127
255
511
1027

2047

y (n)
y (n)
y (n)
y (n)
y (n)

[l

Appropriate difference equations for

Difference Equation

y (n-1)
y(n-1)
y (n-4)
y (n-3)

y (n-2)

<+

+

y(n-7)

y(n-3) + y(n-4) + y(n-8)
y (n-9)

v (n-10)

y(n-11)
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