# TECHNICAL MEMORANDUM 

## AUTHOR(S): D. G. Michael

TITLE: MUFAN, A Computer Program for the Analysis of Multi-Loop Fluid Flow Systems


#### Abstract

MUFAN may be used to determine flow rates, pressures, and pressure drops in systems involving one-dimensional incompressible steady state fluid flow. The system may consist of one or more branches or loops. The program is coded in FORTRAN IV (G) for the IBM 360/65 computer.

Key Words: MUFAN, Fluid Flow, One-Dimensional, Incompressible, Steady-State, Multi-Loop, Piping System


APPROVED:


## TABLE OF CONTENTS

| Section |  | Page |
| :---: | :---: | :---: |
| 1.0 | INITRODUCTION | 1 |
| 2.0 | USER ${ }^{\text { }}$ S GUIDE | 1 |
| 2.1 | Input Data Deck | 3 |
| 2.2 | Printed Output | 18 |
| 2.3 | Sample Problem | 19 |
| 2.4 | Limitations | 27 |
| 3.0 | ANALYSIS | 27 |
| 3.1 | Friction Head Loss Computations ___ _L_ | 30 |
| 3.2 | Fluid Density and Viscosity ___ | 36 |
| $3 \cdot 3$ | Solution Procedure | 37 |
| 4.0 | REFFERENCES | 43 |
| Appendix |  |  |
| A | MUFAN Program Listings | $A-1$ |
| B | K-Factors | B-1 |
| Figure |  |  |
| 1 | MUPAN Deck Set-Up | 4 |
| 2 | System Schematic _ | 20 |
| 3 | Additional System Data | 21 |
| 4 | Computer Input Coding Sheets | 22-24 |
| 5 | Input Card for Temperature, Density and Viscosity of Liquid Bismuth $\qquad$ | 26 |

### 1.0 INTRODUCTION

MUFAN is a computer program (coded in FORTRAN IV (G) for the IBM 360/65) which solves fluid flow systems involving one or more branches or loops for flow rates, pressure drops and pressures. The program is primarily intended for the analysis of piping systems and the flow is assumed to be one-dimensional, incompressible and steady-state. Friction head loss data for several fittings commonly found in piping systems is built into the program as well as density and viscosity data for liquid water, liquid NaK, liquid mercury and 4P3E.

### 2.0 USER'S GUIDE

The first step in preparing data for MUFAN is to make a schematic of the system to be analyzed. The schematic should include only the details necessary for the fluid flow analysis. The next step is to indicate nodes (or stations) on the schematic. There must be a node at both ends of each fitting, pump, component, etc. Each node is then assigned a unique number from 1 to 500 (inclusive). The nodes may be numbered in any manner desired; however, it is suggested that, for the sake of readability, the nodes be numbered in increasing order in the direction of fluid flow and that numbers be left out so that, if necessary, additional nodes can be inserted at a later time without disturbing the numbering scheme. An example of a schematic with node numbers appears below.


The next step is to describe each of the members (straight pipes, fittings, pumps, components, etc.) that make up the system. The number of the node at which fluid enters the member and the number of the node at which fluid leaves the member (in that order) must be specified for each member. These pairs of node numbers determine how the members are connected to form the system and also determine the positive direction for fluid flow in each branch of the system. Member data is coded on MEMBER cards which are described in Section 2.1.6. If the member is a pump or component, flow rates are coded on $C Q$ cards (Sec. 2.1.2) and the corresponding $\Delta P^{\prime}$ s are coded on CP cards (sec. 2.1.2).

To complete the description of the system it is necessary to specify the fluid to be used, the fluid temperature at each node point, the elevation at each node point, and the appropriate pressure and fluid flow constraints. The type of fluid to be used is coded on the BEGIN card (Sec. 2.1.1), the temperatures at the nodes and the elevations at the nodes are specified on the NODE card.s (Sec. 2.1.7), pressures which are to be fixed are coded on the PRESSURE cards (Sec. 2.1.8), and flow rates to be fixed are coded on the MEMBER card for the first member in the branch for which the flow rate is to be fixed.

The specification of proper fixed pressures and fixed flow rates is crucial to the analysis of the system. MUFAN will reject any system that is either underdetermined or overdetermined. As an example, consider a system which consists of a single straight pipe:
$1 \quad 2$
If the pressure is fixed at node 1 and node 2, the system can be solved. If, however, only the pressure at node 1 is fixed, the system is underdetermined and cannot be solved. If the pressure is fixed at node $l$ only and the flow rate in the pipe is fixed, the system can be solved. If, however, the pressure at node 1 , the pressure at node 2, and the flow rate are all fixed, the system is overdetermined and cannot be solved.

### 2.1 INPUT DATA DECK

The input data for MUFAN is contained on the following types of cards: BEGIN, $\mathrm{CP}, \mathrm{CQ}$, END, FD, FT, FV, LABEL, MEMBERS, IW $\overline{\mathrm{DE}}, \mathrm{PRESSURE}, \mathrm{AND}$ TEMPERATURE. The BEGIN card must be the first card in the data deck and the END card must be the last card in the data deck; the remaining cards may appear in any order in the data deck. The data decks for several cases may be "stacked" so that they will be processed in a single computer run. A sample MUFAN deck set up appears below in Figure 1.


Figure 1 - MUFAN Deck Set-Up
Detailed descriptions of each type of card appear in the sections below. The entries under the heading "Field Type" have the following meanings:

A - alphanumeric data (any legal character). If a letter or group of letters appears in capitals under the "Data" heading for that field, the letter or letters must be coded exactly as shown.

F - floating point (real) data. Must have a decimal point. If the E notation is used (for example $2.0 \mathrm{E}-6$ instead of .000002), the exponent must be coded in the right-most column(s) of the field. I - Integer data. Must be coded in the right-most columns of the field and must not have a decimal point.
X - blank

### 2.1.1 BEGIN CARD

The BEGIN card must be the first card in the data deck for each case. The format of the card is described below.

| CARD COLUMNS | $\begin{aligned} & \text { FIETD } \\ & \text { TYPE } \\ & \hline \end{aligned}$ | DATA |
| :---: | :---: | :---: |
| 1 | A | $B$ or blank |
| 2-3 | X | blank |
| 4 | I | Fluid type ```I = NaK 2 = Mercury - liquid 3=4P3E 4 = Not used 5 = Water - Liquid \sigma = Fluid properties input by the user on FD, FT, and FV cards``` |
| 5-14 | F | $X$ - acceleration, g's |
| 15-24 | $F$ | $Y$ - acceleration, $\mathrm{g}^{1} \mathrm{~S}$ |
| 25-34 | F | $Z$ - acceleration, g's |
| 35-44 | F | Maximum allowable absolute error in flow rate (- $1.0 \mathrm{lb} / \mathrm{hr}$ if left blank) |
| 45-54 | F | Maximum allowable relative error in flow rate ( $=0.01$ if left blank) |
| 55-58 | I | Maximum number of iterations to be performed (=50 if left blank) |
| 59 | X | blank |
| 60 | I | ```=0 or blank - lengths, bend radii and elevations are in feet =l - lengths, bend radii and elevations are in inches``` |
| $61-80$ | X | blank |

### 2.1.2 CP and CQ CARDS

CP cards are used to specify pressure drop versus flow rate for components. The component pressure drop (in psi) for selected flow rates is coded on a CP card and the corresponding flow rates ( $\mathrm{Ib} / \mathrm{hr}$ ) are coded on a CQ card. For pumps, the head in feet of fluid for selected flow rates is coded on a CP card and the corresponding flow rates (in GPM) are coded on a CQ card. MUFAN uses linear interpolation to find values of pressure drop (or fluid head) that correspond to flow rates between the selected values on the $C Q$ card. If a flow rate is less then the smallest flow rate on a $C Q$ card, the pressure drop (fluid head) corresponding to the smallest flow rate on the card is used; if a flow rate is greater than the largest flow rate on a $C Q$ card, the pressure drop (fluid head) corresponding to the largest flow rate is used. The flow rates must be coded in increasing order from left to right on each CQ card.

Component or pump data coded on CP and CQ cards is referenced by assigning a component or pump type number on the CP and CQ cards and also coding that type number on any MEMBER cards that represent a member which is that type of pump or component. For example, suppose that in the system to be analyzed we have several check valves that all have the same pressure drop versus flow rate characteristics. We could code the pressure drop versus flow rate data on a pair of $C P$ and $C Q$ cards, assign a component type, number, say $l$, and then code that component type number on each MEMBER card that represents one of the check valves.

| $\begin{aligned} & \text { CARD } \\ & \text { COLUMNS } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { FIELD } \\ & \text { TYPE } \end{aligned}$ | DATA |
| :---: | :---: | :---: |
| 1-2 | A | CP or CQ |
| 3 | X | blank |
| 4-7 | A | COMP or PUMP |
| 8-10 | I | Component type, 1-41, or, pump type, 1-9 |
| 11-17 | F | lst P , pump head, or flow rate |
| 18-24 | F | 2nd $P$, pump head, or flow rate |
| 25-31 | F | 3rd P, pump head, or flow rate |


| CARD | FIEID |
| :--- | :--- |
| COLUMNS | TYPE |

32-38 F
39-45 F
46-52 $\quad$ F

53-59 F
60-66 $F$
67-73 F
74-80 F

DATA
4th $P$, pump head, or flow rate
5 th $P$, pump head, or flow rate
6th $P$, pump head, or flow rate
7 th $P$, pump head, or flow rate
8th P, pump head, or flow rate
9th $P$, pump head, or flow rate
loth $P$, pump head, or flow rate

### 2.1.3 END CARD

An END card indicates the end of the data cards for a case and must be the last card in the data deck for each case.
CARD FIELD
COLUMINS TYPE
1-3 A END
4-80 X blank

### 2.1.4 FD, FT, AND FV CARDS

If the user wishes to use a fluid other than those whose properties are built into the program (NaK, liquid mercury, 4P3E, liquid water), he must supply fluid density and viscosity versus temperature on FD, FV, and FI cards. Selected temperature values (degrees F.) are coded on the FT card, increasing from left to right. The fluid density values (pounds per cubic foot) corresponding to each temperature value are coded on the FD card and the fluid viscosity values (lb./hr.-ft.) corresponding to each temperature are coded on the FV card. Interpolation is performed by Subroutine INT4 (see Reference 10).

CARD FIETD
COLUMNS TYPE

| $1-2$ | $A$ |
| :--- | :--- |
| $3-10$ | $F$ |
| $11-18$ | $F$ |
| $19-26$ | $F$ |

DATA
FD or FT or FV
lst density, temperature or viscosity value
2nd density, temperature or viscosity value
3rd density, temperature or viscosity value


### 2.1.5 LABEL CARDS

LABEL cards are used to place title information at the top of each page of MUFAN printout. There may be up to 3 IABEL cards for each case.

| CARD | FIEID |
| :---: | :---: |
| COLUMNS | TYPE |
| 1 | A |
| 2-80 | A |

DATA

## I

Any title information desired.

### 2.1.6 MEMBER CARDS

MEMBER cards are used to describe the members (straight pipe, fittings, components, pumps, etc.) that make up the system that is to be analyzed. Each MEMBER card describes one member.

CARD FIEID
COLUMNS TYPE DATA

| 1 | A | M |
| :---: | :---: | :---: |
| 2 | X | blank |
| 3-5 | I | Number of the node at which fluid enters the member. |
| 6-7 | X | blank |
| 8-10 | I | Number of the node at which fluid leaves the member. |
| 11-17 | X | blank |
| 18-24 | F | If member is |
|  |  | Straight pipe, gradual expansion or contraction -code the length in feet or inches <br> A bend -- code the radius in feet or inches <br> None of the above -- leave blank |


| CARD COLUMNTS | FIETD TYPE | DATA |
| :---: | :---: | :---: |
| 25-30 | F | Upstream outside diameter, $D_{1}$, inches. (See Sect. 2.1.6.1) |
| 31-36 | F | Upstream wall thickness, inches |
| 37-41 | F | If the member is a bend, code the angle of the bend in degrees (maximum bend angle allowed is $180^{\circ}$ ). If the member requires a downstream outside diameter ( $D_{2}$ ), code the downstream wall thickness. If neither of the above apply, leave blank. |
| 42 | X | blank |
| 43 | I | 1 If fixed pressure drop (see sect. 2.1.6.2) <br> 2 If free pressure drop (see sect. 2.1.6.2) <br> 3 If fixed pressure rise (see sect. 2.1.6.2) <br> 0 or blank if none of the above |
| 44 | I | ```l If fixed flow rate (see Sect. 2.1.6.3) O or blank if not``` |
| 45 | I | If the member is a pump, code the type number of the pump, otherwise O or blank. |
| 46-47 | I | If the member is a component, code the type number of the component, otherwise 0 or blank |
| 48-49 | I | If a K-factor is to be used for the member, enter the K-factor code (see sect. 2.1.6.4), otherwise O or blank. |
| 50-51 | I | If an equivalent length ( $L e / D$ ) is to be used for the member, enter the equivalent length code (see Sect. 2.1.6.5), otherwise 0 or blank. |
| 52 | X | blank |
| 53-58 | F | Depending on what is coded in columns 48-51, enter value of K -factor, value of $\mathrm{Ie} / \mathrm{D}$, diameter of orifice ( $D_{0}$ ), or blank. |
| 59-65 | F | Downstream outside diameter, $\mathrm{D}_{2}$ (See Sect. 2.1.6.1) |


| CARD COLIMMNS | FIELD <br> TYPE | DATA |
| :---: | :---: | :---: |
| $66-72$ | F | Depending on what is coded in columns 43-44, enter value of fixed flow rate, value of fixed pressure drop, value of fixed pressure rise, or blank. |
| 73-79 | F | If the member is a straight pipe or an equivalent length has been selected, enter the roughness in inches, otherwise leave blank |
| 80 | X | blank |

### 2.1.6.1 OUTSIDE DIAMETER

If a member has a constant diameter from inlet to outlet, the outside diameter, D., is coded in columns 25 thru 30 of the member card and the field for $D_{2}$ is left blank. If a member has an upstream outside diameter that differs from the downstream outside diameter, the upstream outside diameter $\left(D_{1}\right)$ must be coded in columns 25 thru 30 and the downstream outside diameter ( $D_{2}$ ) must be coded in columns 59-65. Pumps require both $D_{1}$ and $D_{2}$ whereas $D_{1}$ need be coded for components only if a printout of Reynolds number based on $D_{1}$ is desired. Examples showing $D_{1}$ and $D_{2}$ appear below.

TEE:


Changes of Section:


### 2.1.6.2 PRESSURE DROP CONSTRAINIS

If a fixed pressure drop (or rise) is specified for a member, the pressure drop (or rise) provided by the user in columns 66 thru 72 of the MEMBER card is taken to be the pressure drop (or rise) across the member regardless of the flow rate. If a free pressure drop is specified for a member, MUFAN computes the pressure drop required to satisfy the conditions imposed on the system. As an example of the use of a free pressure drop, consider the system shown below:


It is desired to size the orifice to obtain the flow distribution shown. To accomplish this, the flow rates shown are coded as fixed and the characteristics of the two components are coded on $C P$ and $C Q$ cards. Member 30-35 is coded as a free pressure drop and the outside diameter is coded in columns 25 thru 30 of the MEMBER card. The remaining members are coded on additional MEMBER cards and the pressure at node 70 is specified on a PRESSURE card. MUFAN will compute the pressure drop from node 30 to node 35 required to obtain that pressure drop. If the outside diameter is left blank on MEMBER card 30-35, the pressure drop will be computed but the orifice diameter will not.

It should be noted that if a fixed pressure drop (or rise) or a free pressure drop is called for, all but the following data items on the MEMBER card are ignored: the node numbers, the outside diameter ( $D_{1}$ ), the wall thickness, the fixed flow rate flag, and the value of the fixed flow rate (if any).

### 2.1.6.3 FLOW RATE CONSTRAINTS

If the first member in a branch is coded as having a fixed flow rate, the entire branch is considered to have the same fixed flow rate (to satisfy continuity of mass flow). MUFAN checks to see if the flows fixed by the user imply fixed flows in other branches, and, if so, fixes the flows in these branches. As an example of implicitly fixed flow rates, consider the system shown below:


The flow rates in branches "A" and "B" are fixed at the values shown. To satisfy continuity the flow rate in branch "C" must be $2000 \mathrm{lb} / \mathrm{hr}$. and the flow rate in branch "D" must be $5000 \mathrm{lb} / \mathrm{hr}$. , therefore MUFAN would automatically fix the flow rates in these two branches.

### 2.1.6.4 K-FACTORS

K-factors are used to compute the head loss through bends, fittings, components, etc. according to the relationship:

$$
\begin{aligned}
& \Delta \mathrm{h}=\frac{\mathrm{KV}{ }^{2}}{2 \mathrm{~g}} \\
& \text { Where: } \\
& \mathrm{h}=\text { head loss, ft. } \\
& \mathrm{K}
\end{aligned}=\text { K-factor, dimensionless } .
$$

If the user chooses to have the program use a K-factor in the head loss computation for a member, he should code one of the numbers listed below, otherwise the field (cols. 48-49) should contain zero or blank. In the descriptions below, "tubing" refers to roughness on the order of smooth tubing while "piping" refers to roughness on the order of cast pipe. See Section 3.1.1 for the K-factor values which are built into the program.

| CODE | DESCRIPTION |
| :--- | :--- |
|  |  |
| 2 | $30^{\circ}$ or $45^{\circ}$ tubing branch-flow out through branch |
| 3 | $60^{\circ}$ tubing branch-flow out through branch |
| 4 | $90^{\circ}$ tubing branch-flow out through branch |
| 4 | $45^{\circ}$ branch on a $90^{\circ}$ elbow-flow out through branch |
| 6 | $7^{\circ}$ branch on a $90^{\circ}$ elbow-flow out through branch |
| 7 | $15^{\circ}$ branch on a $155^{\circ}$ elbow-flow out through branch |
| 7 | $135^{\circ}$ tubing branch-flow out through branch |
| 8 | $45^{\circ}$ tubing branch-flow through main |
| 9 | $90^{\circ}$ tubing branch-flow through main |
| 10 | $135^{\circ}$ tubing branch-flow through main |
| 11 | $45^{\circ}$ tubing branch-flow in through branch |
| 12 | $90^{\circ}$ tubing branch-flow in through branch |
| 13 | $135^{\circ}$ tubing branch-flow in through branch |
| 14 | Tubing bend (code the angle of the bend in columns $37-41$ ) |
| 15 | Standard $90^{\circ}$ pipe elbow |
| 16 | Standard $45^{\circ}$ pipe elbow |
| 17 | Long $90^{\circ}$ pipe elbow |
| 18 | Standard pipe tee - flow through main |
| 19 | Standard pipe tee - flow through branch |
| 20 | Close return bend |
| 21 | Gradual contraction |
| 22 | Gradual expansion |
| 23 | Sudden contraction |

24 Sudden expansion
25 Orifice
99 K-factor provided by the user (K-factor value coded in columns 53-58)

### 2.1.6.5 EQUIVALENT IENGTHS

Equivalent lengths are used to compute the head loss through bends, fittings, components, etc. according to the relationship:
$\Delta h=f(\operatorname{Le} / D) \frac{V^{2}}{2 g}$

Where :
$\Delta h=h e a d$ loss, ft.
$f=$ friction factor
Ie/D $=$ equivalent length, diameters
$V=$ fluid velocity, ft./sec.
$g=$ gravitational acceleration ft./sec./sec.
If the user chooses to have the program use an equivalent length in the head loss computation for a member, he should code one of the numbers listed below, otherwise the field (columns 50-51) should contain zero or blank. In the descriptions below "tubing" refers to roughness on the order of smooth tubing while "pipe" refers to roughness on the order of cast pipe. See Section 3.1.2 for the equivalent length values which are built into. the program.

CODE
1

3 Standard $90^{\circ}$ pipe elbow
4 Standard $45^{\circ}$ pipe elbow
5 Long $90^{\circ}$ pipe elbow
6 Close return bend
7 Gate Valve
8 Swing check
9 Angle Valve
10 Globe valve

11 Standard pipe tee - flow thru main
12 Standard pipe tee - flow thru branch
99 Equivalent length ( $\mathrm{I} e / \mathrm{D}$ ) provided by the user in columns 53-58.

### 2.1.7 NODE CARDS

NODE cards are used to input elevation and temperature data for the nodes in the system. Temperature data may be coded on TEMPERATURE cards instead of on the NODE cards if desired. If a node does not have elevation data coded for it on a NODE card, the elevation at that node is considered to be $X=0, I=0, Z=0$. Thus for nodes that have elevation $X=0, Y=0$, $Z=0$ the NODE card may be omitted provided that the fluid temperature for that node is coded on a IIEMPERATURE card.

| CARD |
| :---: |
| COLTMNS |

I
2 X blank
FIEID TYPE

A

6 X blank
7-9 I
3-5 I Node number

I If a node number is coded in this field, the elevation and temperature data coded on the remainder of the card will be assigned to all node numbers from the node number coded in columns 3-5 to and including the node number coded in this field. If, for example, 10 is coded in columns 4 and 5 and 130 is coded in columns $7-9$, then nodes 10 thru 130 would all have the elevation and temperature coded on the remainder of the card. Any of the consecutive numbers between 10 and 130 that are not actual node numbers assigned by the user are ignored. If columns 7-9 are left blank, the temperature and elevation data re-assigned only to the node whose number appears in columns 3-5.

CARD COLUMNS 10 11-18

$$
19-26
$$

$$
27-34
$$

$$
35-42
$$

$$
43-80
$$

FIEID

> TYPE

DATA

## 2.1 .8 <br> CARD COLUMNS

## PRESSURE CARDS

PRESSURE cards are used to fix a pressure at a node.

1
2
3-5
6-8
9-14
15-80

FIELD TYPE DATA
A P

X blank
I Node number
X blank
F Pressure, psi (must be a positive number or zero)
X blank

### 2.1.9 TEMPERATURE CARDS

If no elevation data is to be input (see Sect. 2.1.8), the TEMPERATURE cards are used to specify the fluid temperatures at the nodes. If each node has a different fluid temperature, there will be as many IEMPERATURE cards (with all but the first node number field left blank) as the re are nodes -one for each node. If, however, several nodes have the same fluid temperature, those node numbers may be listed on a single TEMPERATURE card. If a number is coded in the first node number field, the second node number field is left blank, and a number is coded in the third node number field, all nodes having consecutive node numbers starting with the number in the first field and up to (and including) the number in the third field will be assigned the temperature that appears in the fluid temperature field of the card. If some of the intermediate numbers are not actual nodes, they are merely ignored.

| CARD COLUMNS | $\begin{aligned} & \text { FTELD } \\ & \text { TYPE } \end{aligned}$ | DATA |
| :---: | :---: | :---: |
| 1 | A | T |
| 2-3 | X | blank |
| 4-6 | I | First node number |
| $7-8$ | X | blank |
| 9-11 | I | Second node number |
| 12-13 | X | blank |
| 14-16 | I | Third node number |
| 17-18 | X | blank |
| 19-21 | I | Fourth node number |
| 22-23 | X | blank |
| 24-26 | I | Fifth node number |
| 27-28 | X | blank |
| 29-31 | I | Sixth node number |
| 32-33 | X | blank |
| 34-36 | I | Seventh node number |
| 37-38 | X | blank |
| 39-41 | I | Eighth node number |
| 42-43 | X | blank |
| 44-46 | I | Ninth node number |
| 47-48 | X | blank |
| 49-51 | I | Tenth node number |
| 52-53 | X | blank |
| 54-56 | I | Eleventh node number |
| 57-58 | X | blank |
| 59-61 | I | Twelfth node number |
| 62-65 | X | blank |
| 66-72 | F | Fluid temperature, ${ }^{\circ} \mathrm{F}$. |
| $72-80$ | X | blank |
| Examples: |  |  |
| (a) If <br> in <br> to | EMPERAT <br> ümns 66 <br> 16. | URE card has 16 coded in columns 5 and 6 and 1201.0 coded thru 71 , a fluid temperature of $1201.0^{\circ} \mathrm{F}$. will be assigned |

(b) If a TEMPERATURE card has 10 coded in columns 5, and 6, a 55 coded in columns 10 and 11 , a 105 coded in columms 14 thru 16 , and 662.5 coded in columns 66 thru 70 , then a fluid temperature of $662.5^{\circ} \mathrm{F}$. will be assigned to nodes 10, 55, and 105.
(c) If a TEMPERATURE card has 5 coded in column 6, 200 coded in columns 14 thru 16 , and 1152.0 coded in columns 66 thru 71 , then all nodes having node numbers between and including 5 and 200 will be assigned a fluid temperature of $1152.0^{\circ} \mathrm{F}$.

### 2.2 PRINTED OUTPUT

MUFAN produces four types of printed output for each case: Card Input Listing, Member Flow Characteristics, Flow and Pressure Drop, and Pressure. Each type of printout is discussed in detail below and the printed output for a sample problem appears in Appendix A. The date (month/day/year) and the time of day (0000-2400) that the problem was run are printed at the top of each page of MUFAN printed output.

### 2.2.1 CARD INPUT LISTING

The cards in the deck for a case are listed exactly as they are punched. When errors in the data deck are detected by MUFAN, a descriptive error message is printed out and MUFAN skips to the next case (if any).

### 2.2.2 MEMBER FIOW CHARACTERISTICS

The following information is printed out for each member: member number (in ascending numerical order), type, length, outside diameter (D1), wall thickness, radius, angle, D2, roughness, Ie/D, K-factor. Items in the preceding list that do not apply to a particular member are printed out as asterisks for that member. In the event that errors in the data are detected, MUFAN prints out a descriptive error message and skips to the next case (if any).

### 2.2.3 FINW AND PRESSURE DROP

The flow rate ( $\mathrm{lb} / \mathrm{hr}$ ) in each branch is printed out immediately followed by the pressure drop through each member on that branch. The pressure drop is also broken down into pressure drop due to changes in elevation
and pressure drop due to friction losses. Cumulative pressure drop along the branch is also printed out. Fixed flow rates, pressure drops and pressure rises are followed by an $X$. Free pressure drops are enclosed in parentheses.
2.2.4 PRESSURE

The pressure at each node in the system is printed out. Fixed pressures are followed by an $X$.
2.3 SAMPI出 PROBLEM

The schematic for the system to be solved is shown in Figure 2. Node numbers have already been assigned. Additional system data appears in Figure 3.

Figure 4 contains the coding sheets filled out for this problem. The first card coded is the BEGIN card. A 1 in column 4 indicates that the fluid to be used is $N a K, 1.0$ in columns $15-17$ indicates that there is a 1.0 g acceleration in the $Y$-direction, and 1 in column 60 indicates that the lengths, bend radii, and elevations are to be coded in inches. The remaining fields are left blank, which means that the default values shown in section 2.1.I for the absolute error, relative error, and maximum number of iterations will be used. If for a problem which must be solved iteratively (such as this sample problem) it may be necessary to specify different values in order to get a satisfactory solution (see Section 3.3.1).

The next two cards coded are LABEI cards which provide a title to be printed at the top of each page of the printout. Since the HRPMA (185 to 10) is a pump, a pump type number is coded in column 45 ot the MEMBER card. The upstream and downstream diameters and wall thicknesses are also coded. A $C Q$ card gives the flow rates (in GPM) and a CP card gives the corresponding heads (in feet) for a type 1 pump. (Note that if there were other identical pumps in the system, they could all have a 1 coded in column 45 of their MEMBER cards ard only the single set of


FROM 10 TO 25 - 2.0"OD .049" wall
FROM $3070165-3.0^{\circ 0} 00.083^{\prime \prime}$ WALL
FROM 170 T0 185-2.0"00 .049 "WALL
FROM 200 to $230-1.0^{\prime \prime} 00.049^{\prime \prime}$ wall

Figure 2 system schematic

| Condenser |  |
| :---: | :---: |
| Q, Ib/hr | $\Delta \mathrm{P}, \mathrm{psi}$ |
| 30,000 | 2.3 |
| 40,000 | 3.5 |
| 54,000 | 6.4 |
| 70,000 | 12.5 |


| PLR |  |
| :---: | :---: |
| Q, $\mathrm{lb} / \mathrm{hr}$ | $\Delta \mathrm{P}, \mathrm{psi}$ |
| 32,000 | 0.33 |
| 40,000 | 0.48 |
| 48,000 | 0.70 |
| 56,000 | 1.00 |
| 65,000 | 1.35 |
| 70,000 | 1.56 |


| Radiator |  |
| :---: | ---: |
| Q, $1 \mathrm{~b} / \mathrm{hr}$ | $\Delta \mathrm{p}, \mathrm{psi}$ |
| 30,000 | 3.0 |
| 50,000 | 5.0 |
| 70,000 | 7.0 |


| $\frac{\text { Cooling Circuit }}{\text { Q, } \mathrm{b} / \mathrm{hr}}$ |  |  |
| :---: | :---: | :---: |
|  | psi |  |
| 0 | 0 |  |
| 4,000 | 16.0 |  |
| 8,000 | 64.0 |  |


| HRPMA |  |
| :---: | :---: |
| Q, GPM | Head, ft. |
| 0 | 143 |
| 30 | 142 |
| 60 | 135 |
| 90 | 118 |
| 120 | 93 |
| 150 | 64 |
| 180 | 30 |

Fluid Temperature
Nodes 10 thru $85 \quad 417^{\circ}$ F Nodes 90 thru $135 \quad 490^{\circ}$ F Nodes 140 thru 185 4170F

| Node (s) |  |
| :---: | :---: |
| $\frac{Y}{\text { Y Elevation }}$ | $Y$ inches |
| 10 thru 85 | 40.0 |
| 90 thru 95 | 85.0 |
| 100 thru 120 | 75.0 |
| 125 thru 135 | 120.0 |
| 140 thru 185 | 40.0 |




$C Q$ and $C P$ shown would be required.) The concentric reducers are coded as a Gradual Expansion (22 in columns 48-49) in the case of member 25-30, and as a Gradual Contraction (21 in columns 48-49) in the case of member 165-170. The HRNDV is coded as having its K-factor input by the user (99 in columns 48-49) ; the K -factor is coded in columns 53-58.

Suppose we wish to find the pressure drop needed across the valve HRFCV such that the flow rate in that branch is 55,000 $\mathrm{lb} / \mathrm{hr}$. We can fix the flow rate in the branch by indicating a fixed flow rate (a 1 in column 44) on the MEMBER card for the first member in the branch, 50-55. We can then make member 60-65 a free pressure drop by coding a 2 in column 43 of its MEMBER card, and the program will compute the required pressure drop.

The Condenser, PLR, Radiator, and Cooling Circuit are coded as component types 1, 2, 3 and 4, respectively; and their characteristica are coded on the corresponding CQ and CP cards. Member 205-210 is coded as an orifice by coding 25 in columns $48-49$ of its MEMBER card. The orifice diameter ( $D_{0}$ ) is coded in columns 53-58 and the outside diameter and wall thickness are coded in columns 25-30 and 31-36 respectively. Fluid temperature data is coded on TTEMPERATURE cards and elevation data is coded on NODE cards. The pressure at node is 5.0 psi by a PRESSURE Card. A listing of the MUFAN computer program appears in Appendix A.

Suppose that the system to be analyzed contains liquid bismuth instead of liquid NaK. Liquid bismuth has the properties shown below (Ref. 9):
Temp., ${ }^{\circ}$ F.
600
800
1000
1200
1400
$\rho, 1 \mathrm{lb} / \mathrm{ft}^{3}$
625
616
608
600
591
$\mu, 1 \mathrm{~b} / \mathrm{sec}-\mathrm{ft}$
$1.09 \times 10^{-3}$
$0.90 \times 10^{-3}$
$0.74 \times 10^{-3}$
$0.62 \times 10^{-3}$
$0.53 \times 10^{-3}$

A 6 would be coded in column 4 of the BEGIN card and FT, FD, and FV cards would be coded as shown in figure 5. Note that the viscosity data must be converted to $\mathrm{lb} / \mathrm{hr}-\mathrm{ft}$.

### 2.4 LIMTTATIONS

The following limitations apply to the current version of MUFAN:
(a) Node numbers must be integers between (and including) I and 500.
(b) The maximum number of members allowed is 600 .
(c) The maximum number of Branches allowed is 150 .
(d) The maximum number of Branch Points allowed is 100 .
(e) Pressure cannot be fixed at a Branch Point.
(f) An open Branch must have either a fixed flow rate and/or have the pressure at its End Point fixed.

### 3.0 ANALYSIS

The problems handled by MUFAN are limited to those involving one dimensional incompressible steady state fluid flow. The approach taken involves an application of the Bernoulli equation:
(3.1) $z_{1}+\frac{P_{1}}{144 \rho_{1}}+\frac{V_{1}^{2}}{288 g}=z_{2}+\frac{P_{2}}{144 \rho_{2}}+\frac{V_{2}^{2}}{288 g}+\Delta h_{12}$

Where: $Z=$ elevation, ft.
P = pressure, psi
$\rho=$ weight density, $\mathrm{Ib} / \mathrm{ft}^{3}$
$\mathrm{V}=$ bulk velocity, ft/sec
$\mathrm{g}=$ gravitational acceleration, $\mathrm{ft} / \mathrm{sec} / \mathrm{sec}$.
$\Delta h_{12}=$ friction head loss between 1 and 2 , ft.
Subscript 1 denotes the upstream station and subscript 2 denotes the downstream station. Use is also made of the continuity equation:
(3.2) $P_{1} A_{1} V_{1}=P_{2} A_{2} V_{2}$

Where: $A=$ area, $f t^{2}$
If we assume that the density is the same at stations 1 and 2 , that is:

$$
\rho_{1}=\rho_{2}=\rho_{12}
$$

we can rewrite equation 3.1 as:
(3.3) $144 \rho_{12} Z_{1}+P_{1}+\frac{\rho_{12} v^{2}}{2 g}=144 \rho_{12} z_{2}+P_{2}+\frac{\rho_{12} v^{2}}{2 g}+\Delta P_{12}$

Where: $\Delta \mathrm{P}_{12}=144 P_{12} \Delta h_{12}=$ friction head loss, psi
The subscript 12 denotes properties of the member connecting stations 1 and 2. It is convenient to define a fluid resistance, $r_{12}$, as follows:

$$
\begin{aligned}
&(3.4) \mathrm{P}_{1}+144 \rho_{12} \mathrm{Z}_{1}=\mathrm{P}_{2}+144 \mathrm{P}_{12} \mathrm{Z}_{2}+\mathrm{r}_{12} \mathrm{Q} \\
& \text { Where: } \mathrm{r}_{12}=\text { resistance, psi-hr/lb } \\
& Q=\text { weight flow rate, } 1 \mathrm{~b} / \mathrm{hr} \\
&=3600 \rho_{12} A_{1} V_{1}=3600 \rho_{12} A_{2} V_{2}
\end{aligned}
$$

Then, from 3.3 and 3.4:
(3.5) $r_{12}=\frac{1}{Q}\left[\frac{P_{12}\left(V_{2}^{2}-V_{1}^{2}\right)}{2 g}+\Delta P_{12}\right]$

For members having the areas at stations 1 and 2 equal, 3.5 reduces to: (3.6) $r_{12}=\frac{\Delta_{1} P 12}{Q}$

A Branch is a line consisting of one or more members connected end to end. The weight flow rate in each member of a Branch is the same (from continuity; equation 3.2). The system to be analyzed may consist either of a single branch, or, of three or more branches connected to form a network. The points at which three or more branches meet are called Branch points. Examples:

Branch


System with 4 Branches and 2 Branch Points


If a node is connected to only one other node, then it is an End Point. Both examples above have 2 End Points each. The resistances of the members in a Branch may be summed along the Branch to give the total resistance of the Branch, $R$; and, the elevation head at each node in the branch (relative to the node preceding it in the branch) may be summed to give the elevation head of the end of the branch relative to the beginning of the branch, E:
(3.7) $\quad R_{I J}=\sum_{i=1}^{n-1} \quad r_{i,} i+1$
(3.8) $\mathrm{E}_{\mathrm{IJ}}=\sum_{i=1}^{n-1} \quad P_{i}, i+1 \quad\left(Z_{i}+1 \mathrm{Z}_{i}\right)$

The subscripts on $R$ and $E$ indicate that the Branch connects Branch (or End) Point I to Branch (or End) Point J. The fluid conductance of a branch is:
(3.9) $G_{I J}=\frac{1}{R_{I J}}$

The net flow out of each Branch Point must be zero. This requirement is satisfied for the $I \frac{\text { th }}{}$ Branch Point if:

$$
\begin{equation*}
\sum_{J} G_{I J}\left[P_{I}-P_{J} \pm\left(E_{I J}+\Delta P_{I J}\right)\right]-\sum_{K} \pm Q_{I K}=0 \tag{3.10}
\end{equation*}
$$

$$
J \neq K
$$

Where: $P_{I}=$ pressure at Branch Point $I$
$P_{J}=$ pressure at Branch Point $J$

$Q_{I K}=$ fixed flow rate in Branch $I K$

The index $J$ runs over 111 Branch Points (and End Points) connected to Branch Point I by a Branch not having a fixed flow rate; the index $K$ runs over all Branch Points (and End Points) connected to Branch Point I by a Branch having a fixed flow rate. The signs in front of $\mathrm{E}_{\mathrm{IJ}}, \Delta \mathrm{P}_{\mathrm{IJ}}$ and $Q_{I K}$ are positive if the positive direction of flow in a Branch is from $J$ (or K) to I. The positive direction of flow in a branch depends on how the members are coded (see section 2.0 ).

The solution of the set of equations 3.10 proceeds as follows:
(a) An initial guess is made for the values of the flow rates in all the Branches with non-fixed flow rates.
(b) In each of the Branches with non-fixed flow rates the current estimate of the flow rate in that Branch is used to compute the conductance of the Branch.
(c) The set of equations (3.10) is set up and solved for the Branch Point pressures.
(d) The new values of the Branch Point pressures along with the current values of the Branch conductances are used to compute a new estimate for the flow rate in each Branch not having a fixed flow rate.

Steps b through a are repeated until successive estimates of each Branch flow rate agree sufficiently.

The sections which follow contain a more detailed discussion of the items discussed.
3.1 FRICTION HFAD LOSS COMPUTATIONS

The method by which the friction head loss through a member is computed depends on the type of member. Three distinct methods are used:
$\Delta P=K \frac{\rho V^{2}}{288 g}$

$$
\begin{equation*}
\Delta P=f \frac{I}{D} \quad \frac{\rho V^{2}}{288 g} \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
\Delta P=F(Q) \tag{3.13}
\end{equation*}
$$

Where: $\quad \Delta \mathrm{P}=$ friction head loss, psi
K $=K$-factor, dimensionless
$f$ = friction factor, dimensionless
$\mathrm{L}=$ length, ft.
D = diameter, ft.
$\rho=$ weight density, $\mathrm{lb} / \mathrm{ft}^{3}$
$\mathrm{V}=\mathrm{bulk}$ velocity, ft/sec
$\mathrm{g}=$ gravitational acceleration, ft/sec/sec
$F(Q)=a$ relationship between $\Delta P$ and $Q$ which is specified by tabular data (see section 2.1.2)

Q = weight flow rate, $\mathrm{Ib} / \mathrm{hr}$

### 3.1.1 K-FACTORS

The K-factors listed in Table $I$ below are computed by the program from input supplied by the user. In the table below the velocity used to compute the friction head loss in equation 3.11 is identified as either 1 for inlet velocity or 2 for outlet velocity. K-factors which are not given by a constant, a simple table of values, or an algebraic expression are given in Appendix B. In the descriptions below "Tubing" refers to fittings having wall roughness on the order of smooth tubing, while "piping" refers to fittings having wall roughness on the order of cast pipe. Linear interpolation is used in the tables for pipe fittings to determine $K$-factors for
intermediate values of inside diameter. Fittings with inside diameters less than 0.5 inches are assigned the K-factor for 0.5 inches; fittings with inside diameters greater than 4.0 inches are assigned the K-factor for 4.0 inches.



### 3.1.2 EQUIVALENT LENGITHS

The equivalent lengths ( $\mathrm{Le} / \mathrm{D}$ ) listed in table 2 below are computed by the program from input supplied by the user. The following relationships are used by the program to compute the friction factor: (Reference 6):
(3.14) $\quad R=\frac{48 Q}{3600 \pi D \mu}$
(3.15) $f=\frac{64}{R}$ for $R \leqslant 2100$
(3.16) $\frac{1}{\sqrt{f}}=2 \log _{10}\left(\frac{D}{e}\right)+1.14-2 \log _{10}\left[1+\frac{9.28}{R\left(\frac{e}{D}\right)_{\sqrt{f}}}\right]$ for $R \leqslant 4000$

Where: $R=$ Reynold's number
$Q=$ Weight flow rate, $1 \mathrm{~b} / \mathrm{hr}$
$D=$ Inside diameter, in.
$\mu=$ Viscosity, lb/ft-hr.
$f=$ friction factor
$e=$ Roughness, in.
In the transition region ( $2100<\mathrm{R}<4000$ ) interpolation is performed between the value of the friction factor a $R=2100$ and the friction factor at $R=4000$.

The equivalent length values in Table 2 are for fully turbulent flow. A correction is made for laminar flow as follows (Reference 4):

$$
\begin{equation*}
(\mathrm{Le} / \mathrm{D})_{\text {LAMINAR }}=\frac{\mathrm{R}}{1000} \quad(\mathrm{Le} / \mathrm{D})_{\text {TURBULENT }} \tag{3.17}
\end{equation*}
$$

for $R<1000$
The equivalent length and friction factor values described above are used in equation 3.12 to compute the friction head loss.

| Description | Le/D | Ref. |
| :---: | :---: | :---: |
| Straight pipe | (Pipe Length)/(Inside diameter) |  |
| Tubing bend, $\theta$ deg. | (Le/D) $=0.0202 \mathrm{X}^{1.10} \mathrm{R}^{1} 0.032$ | 5 |
|  | $\begin{array}{llllllll}\mathrm{r} / \mathrm{D} & 1.0 & 1.5 & 2.0 & 2.5 & 3.0 & 4.0\end{array}$ |  |
|  | $\begin{array}{llllllll}\mathrm{X} & 3.0 & 1.7 & 1.3 & 1.2 & 1.3 & 1.8\end{array}$ |  |
|  | $\begin{array}{lllll}\mathrm{r} / \mathrm{D} & 5.0 & 6.0 & 7.5\end{array}$ |  |
|  | $\begin{array}{llll}\mathrm{X} & 2.1 & 2.7 & 3.5\end{array}$ |  |
|  | $X=0.482 \mathrm{r} / \mathrm{D}$ for $\mathrm{r} / \mathrm{D}>7.5$ |  |
|  | $r=$ Bend radius |  |
|  | D = inside diameter |  |
|  | $\mathrm{R}=$ Reynold's number |  |
| $90^{\circ}$ standard pipe elbow | $(\mathrm{Le} / \mathrm{D})=30.0$ | 2 |
| $45^{\circ}$ standard pipe elbow | $(\mathrm{Le} / \mathrm{D})=16.0$ | 2 |
| $90^{\circ}$ Long pipe ellbow | $(\mathrm{Le} / \mathrm{D})=20.0$ | 2 |
| Close return pipe bend | $(L e / D)=50.0$ | 2 |
| Gate Valve | $(\mathrm{Le} / \mathrm{D})=13.0$ | 2 |
| Swing Check | $(\mathrm{Le} / \mathrm{D})=135.0$ | 2 |
| Angle Valve | $(\mathrm{Le} / \mathrm{D})=145.0$ | 2 |
| Globe Valve | $(\mathrm{Le} / \mathrm{D})=340.0$ | 2 |
| Standard pipe tee flow thru main | $(\mathrm{Le} / \mathrm{D})=20.0$ | 2 |
| Standard pipe tee - | $(\mathrm{Le} / \mathrm{D})=60.0$ | 2 |
| flow thru branch |  |  |
| 3.2 FLUID DENSITTY AND VISCOSITY |  |  |
| The density and viscosity (as a function of temperature) of $\mathbb{N a K}$, |  |  |
| liquid mercury, and 4P3E used by MUFAN was obtained from reference (8); that |  |  |
| of liquid water was obtained from reference (9). The data is coded in tabu- |  |  |
| lar form in the program and subroutine INT4 (see ref. 10) is used to perform |  |  |
| interpolation in the tabl |  |  |

The set of equations represented by (3.10) may be written in matrix form as follows:

$$
\left[\begin{array}{cccccc}
b_{11} & b_{12} & \cdot & \cdot & \cdot & b_{\mathbb{I N}}  \tag{3.18}\\
b_{21} & b_{22} & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
b_{N I I} & \cdot & \cdot & \cdot & \cdot & b_{\mathbb{N N}}
\end{array}\right\}\left\{\begin{array}{c}
P_{1} \\
P_{2} \\
\cdot \\
\cdot \\
\cdot \\
P_{\mathbb{N}}
\end{array}\right\}=\left\{\begin{array}{c}
F_{1} \\
F_{2} \\
\cdot \\
\cdot \\
\cdot \\
F_{\mathbb{N}}
\end{array}\right\}
$$

Where: $\mathbb{N}=$ number of Branch Points

$$
\begin{aligned}
& b_{I I}=\sum_{J=1}^{\mathbb{N}+M} G_{I J} \\
& b_{I J}=-G_{I J} \\
& \text { M = number of End Points } \\
& P_{I}=\text { pressure at Branch Point } I \\
& F_{I}=-\sum_{\substack{J=1 \\
J \neq K}}^{N} \pm G_{I J}\left(E_{I J}+\Delta P_{I J}\right)+\sum_{K} \pm Q_{I K} \\
& +\sum_{\substack{\mathrm{L}=\mathrm{N}+\mathrm{I} \\
\mathrm{~L} \neq \mathrm{K}}}^{\mathbb{N}+\mathrm{M}} \quad G_{I I}\left[\mathrm{P}_{\mathrm{L}} \pm\left(\mathrm{E}_{\mathrm{IJ}}+\Delta \mathrm{P}_{I J}\right)\right] \\
& P_{L}=\text { fixed pressure at an End Point }
\end{aligned}
$$

Gaussian elimination (with pivoting) is used to solve the system of equations (3.18) for $P_{1}$, . . , $P_{N}$. The new estimate for the flow rate in each Branch not having a fixed flow rate is computed as:

$$
\begin{equation*}
Q_{I J}^{\prime}=\frac{1}{2}\left\{Q_{I J} \pm G_{I J}\left[P_{I}-P_{J} \pm\left(E_{I J}+\Delta P_{I J}\right)\right]\right\} \tag{3.19}
\end{equation*}
$$

Where: $Q^{\prime}{ }_{I J}$ is the new flow rate estimate
$Q_{I J}$ is the old flow rate estimate
The $Q^{\prime}{ }_{I J}$ are used to compute a new set of $G_{I J}$ and pump $\Delta P^{\prime}$ s which are in turn substituted in the system of equations (3.18) which are solved for a new set of $P_{I}$ 's, . . . etc. This process continues until sufficient convergence of flow rates is obtained.

### 3.3.1 CONVERGENCE CRITERIA

In any iterative solution process it is necessary to have some method of deciding when a sufficiently accurate solution has been achieved or, failing this, a method of terminating the process after some reasonable number of steps. A good estimate of the accuracy of the solution at any point is the "closeness" of two successive estimates of flow rates. The iterative process is terminated if either of the following relationships hold for each Branch in the system:

$$
\begin{gathered}
Q_{I J}^{\prime}-Q_{I J} \mid \leqslant \epsilon_{A}, \\
\text { or, } \\
\left.\frac{Q_{I J}^{\prime}-Q_{I J}}{D} \right\rvert\, \leqslant \epsilon_{R}
\end{gathered}
$$

Where: $Q^{\prime}{ }_{I J}$ is the new estimate for the flow rate in Branch IJ
$Q_{I J}$ is the old estimate for the flow rate in Branch IJ
$\varepsilon_{A}$ is the absolute error tolerance
$D$ is the smaller of
$Q^{\prime}$ IJ
and $\quad Q_{I J}$
$\epsilon_{R}$ is the relative error tolerance
If the criteria given above are not met after the number of iterations specified by the user have been performed, the iteration process is halted and an error message is printed.

### 3.3.2 STABILTTY AND RATE OF CONVERGENCE

As an illustration of the behavior of the iter ion procedure, consider a system with a fixed pressure drop across it.


Starting with an initial estimate of the flow rate, $Q_{0}$, the resistance is determined. Using the resistance and the fixed pressure drop a new estimate of the flow rate, $Q_{1}$, is determined, . . . etc. A graphical example of this process follows.


It is evident from the first four iterations that the process is diverging from the solution. In order to remedy this situation, let the new estimate for the flow rate be:

$$
Q_{n+1}=\frac{1}{2}\left(Q_{n}+Q_{n+1}^{\prime}\right)
$$

Where: $\quad Q^{\prime}{ }_{n+1}$ is the flow rate determined by the method used above. A graphical example with this new flow rate follows.


It is evident that this modified iteration procedure converges rapidly to the correct solution. As a further illustration of the behavior of the iteration procedure, consider a system with a pump.


Starting with an initial estimate of the flow rate, $Q_{0}$, the resistance and the pump $\Delta P$ are determined. Using the resistance and the pump $\Delta P$ a new estimate of the flow rate, $Q_{I}$, is determined, . . . etc. All pump $\Delta P^{\prime} s$ after the initial one are computed as:

$$
\Delta P_{\mathbb{N}+1}=\frac{1}{2}\left(\Delta P_{\mathbb{N}}+\Delta P_{\mathbb{N}+1}^{\prime}\right)
$$

Where $\Delta P^{\prime}$ is the value of pump $\Delta P$ which corresponds to $Q_{\mathbb{N}+1}$.
A graphical example of this process appears below.


The example indicates that the iteration process converges to the solution rapidly.

### 4.0 REFPRETVCES

(1) Daniels, C.M. and Pelton, H.A., "Pressure Losses in Fydraulic Branch-Off Fittings", Product Engineering, July 20 1959, pp. 61-62.
(2) Dodge, L., "Local Resistance + Fluid Flow", Product Engineering, March 2, 1964.
(3) North American Aviation Report 1808, 1951.
(4) Crane Technical Paper No. 410, "Flow of Fluids", Crane Industrial Products Group, 1957.
(5) Perry, J. H., Chemical Engineer's Handbook, McGraw Hill, 1950, p. 390.
(6) Streeter, V. I., Handbook of Fluid Dynamics, McGraw Hill, 1961, pp. 3-12, -14.
(7) Spink, L.K., Principles of Flowmeter Engineering, The Foxboro Co., 1958, p. 25.
(8) Aerojet-General Corp. Design Manual H-100B, "Properties of Fluids", section IV-2, 19 February 1968.
(9) Kreith F., Principals of Heat Transfer, International Textbook Co., 1964, p. 537.
(10) Programmer's Reference Manual, Computing Sciences Dept., Aerojet-General Corp., Azu.sa, 1970, pp. 25.13-1, -2.

APPENDIX A

MUFAN Program Listings











$\varepsilon 8 \angle \pm 00=4 \exists S=70 \wedge 070$



$\mathrm{OLD} V O L=S E R=004783$
FILENAME =MUFAN

WHZ (1Z)IdOI'IJNI) (TIIdOI'11WIT)


$\varepsilon 8 \angle 700=87 S=70 A \quad 070$





.50,
 $\left.\begin{array}{|c|ccc|ccc|ccc|cc|cc|c|cc|cc|cc|cc|cc|cc|cc|c|cc|cc|}\hline & \infty \\ \hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
SEI $=3$

$L=I N O D E S N$ COMPUTE AVERAGE BULK TEMP, DENSITY AND VISGOSITY $J=J N O D E(N)$ TBAVG=0.5*(TBULK(L) + TBULKIJ)) RISC(MEM) $=V \times X X T$ (TBAVG, ISTEP, IERR)

LOUT $(L, I O)=$ LABEL $[L, M E M)$
MUU $(1 \cdot 10)=J N O D E(N)$

CONSTS $(1, M E M)=D I N$

TYPE (TYPES (1, 45), TYPOUT, IO) CONSTS $(2$, MEM $)=Q(M E M)$ GO TO 1000
IF (EPSLON(MEM).LE.O.O1 EPSLON(MEM)=1.OE-7




 0
0
0
0
0
0
0
$K-F A C T O R S$






0
0
0
$i n$
-1
-8
0

## NEW VOL $=S E R=007208$

$\begin{array}{ccc}* \\ \stackrel{1 N}{N} & 10 & 0 \\ \cdots & 0 & 0\end{array}$










NEW $V O L=S E R=007208$
DECKNAME = MUF AN


- $\quad$ 五



OLD $V C L=S E R=004783$






















NEW VOL = SER $=007208$
DECKNAME=MUFAN

CALL INT4(R2KTAB,RTAB,R2K,R) URTD=R*CONSTSTL,MEM)
ORFD $=$ RTAB (5) \%CONSTS (I) MEM)
232 CDNTINUE
GRFD=RTAB(1)*CONSTS(1,MEM)
$G O T O 233$
228 CONTINUE 230 CONTINUE
224 CONTINUE
IFIR2K-R2
226 CONTINUE
IFIR2K-R2KTAB11) $234,226,228$
226 CONTINUE




APPENDIX B

K-Factors

AZUSA. CALIFORNIA
subecr_K-Factors

$$
\begin{aligned}
& \text { PAGE_ } \frac{1}{\text { or }} \frac{8 / 23 / 70}{\text { Pages }} \\
& \text { work order } 1475-02-0183
\end{aligned}
$$





Read upper edge of curves for $D_{\text {BRANCH }} / D_{\text {MAIN }}=1 / 3$ lower edge for $\operatorname{DBRANCH}^{\text {oman }}=1$

$7^{\circ}$ Branch
$90^{\circ}$ Elbows
$15^{\circ}$ Branch
$25^{\circ}$ Elbow
suancer K-Factors
os m
work orosere 1475 -02-018


AZUSA. CALIFORNIA
sumecr K-Factors
$\qquad$ . 97 ym
Gradual Contraction


subject $\qquad$ K -Factors
${ }_{8}$ 92 M Dате $9 / 28 / 70$ work order $1475-02-0183$

Gradual Expansion


subject $\qquad$ K-Factors $2 \$ m$ work order $1475-02-0183$

Sudden Contraction

$$
\begin{gathered}
D_{1} \underset{+\infty}{\square} D_{2} \\
A_{1}=\frac{\pi D_{1}^{2}}{4} \quad A_{2}=\frac{\pi D_{2}^{2}}{4}
\end{gathered}
$$



Square Edged Orifice
The flow coefficient data from reference (4) has. been modified to include pressure recovery. The pressure recovery factors used (from ref. 7) are shown below.

| $D_{0} / D_{1}$ | $\lambda$ |
| :---: | :---: |
| 0.20 | 0.95 |
| 0.30 | 0.90 |
| 0.40 | 0.83 |
| 0.50 | 0.75 |
| 0.60 | 0.645 |
| 0.65 | 0.59 |
| 0.70 | 0.535 |
| 0.75 | 0.465 |
| 0.80 | 0.400 |

For an orifice:

$$
Q=3600 P C A_{0} \sqrt{\frac{29\left(P_{1}-P_{2}\right)}{144 P}}
$$

Where: $Q=$ weight flow rate, $1 \mathrm{~b} / \mathrm{hr}$.

$$
c=f l o s e n \text { coefficient }
$$

$$
A_{0}=\frac{\pi D_{0}^{2}}{576}=\text { area of orifice, } f t^{2}
$$

$p=$ pressure, psi
$p=$ weight density, $16 / f t^{3}$
suaver $\qquad$ K -Factors work opuses $1475-02-0183$

$$
K=\left(\frac{D_{1}}{D_{0}}\right)^{4} \frac{1}{c^{2}}
$$

Where: $K=K$-factor
$D_{1}=$ pipe inside diameter
$D_{0}=$ orifice diameter


