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SUMMARY

The numerical integration of the equations governing

the development of a free shear layer from arbitrary initial
conditions, is carried out using a modification of Dorodnitsyn's
Method of Integral Relations. With this method the solution

j of the equations is undertaken in two main steps. First, the

system of partial differential equations is reduced to one
of first-order ordinary differential equations. Second, this
system is integrated by some standard technique.

The problem of the singularity at the origin is solved

by splitting the domain of integration into two strips; and,
also, transforming one of the dependent variables. The appar-
ent indeterminateness of the third boundary condition is
overcome by casting the equations in Crocco coordinates for
the purposes of the numerical integration. The requirement,
that continuity of normal stress be maintained for the higher
order corrections to the solution of the boundary layer equa-
tions, is used to determine the location of the dividing
streamline for the general case of a free shear layer growing
about a curved axisymmetric free streamline. This procedure
involves an asymptotic analysis of the complete Nawer-Stokes

equations.
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The effects of viscous heating (Pr # 1) are taken into

consideration and Sutherland's law is used to determine coef-

= -.qﬁ\d-‘;—

ficient of viscosity in the laminar case. A new eddy viscosity

ix



model is introduced for the turbulent free shear layer.
Essentially it is an extension of Clauser's model.

Results are presented showing the effects of compres-
sibility (Mach numbers ranging from 0 to 10), and total enthalpy
ratio (ranging from Q to 5), on the development of such
parameters as temperature and velocity along the dividing
streamline, heat transfer and shear stress coefficients, and
dividing streamline location; and on the position of the
virtual origin. The effects of variation in initial velocity
profile, and of a discontinuity in temperature at the origin,
are also studied.

The results display a strong dependence on Mach number,
total enthalpy ratio, and temperature discontinuity at origin;
but are only slightly affected by variation in the initial
velocity profile. It was found that any attempt, to approxi-
mate the total heat transfer across the dividing streamline

xvy

for values of ——————j-less than 1000, would be highly inaccurate.

* %k
Uy 8

Virtual origins downstream of the real ones were recorded for

some total enthalpy ratios.



SYMBOLS

l a £ = a is a side of domain A.
: az(a) Coefficient of the polynomial approximating ;u(g,a).
3 See Egn. (2.4.13).
|
§ aikz(g) Coefficient of polynomial approximating transformed
! independent variable v in kth strip.
§
ﬁ; A (i = 1,-—=-——- ,6; j = 1,-———--~6). See Eqns. (4.2.3-10).
b £ = b is a side of domain A. In section 1.2 only.
b (x) Width of shear layer.
i —
}4 bl(g) Coefficient of polynomial approximating cz(g,u).
ﬁ See Eqn. (2.4.13).
‘F
3 Bi (1 = 1,-~—=—=-~ ,6). See Egn. (4.2.2).
C Chapman-Rubesin constant.
cz(g) Coefficient of polynomial approximating ﬁu(g,ﬁ).
See Egn. (2.4.14).
Cp Specific heat at constant pressure.
Cp(l) Coefficient of pressure
Ci (i = 1,=-=———~ ,6). See Egn. (4.2.1).
Cf Shear stress coefficient. See Eqn. (4.8.5).
o
D Domain of general nonlinear system of partial dif-
ferential eguations.
a, (¢) Coefficient of polynomial approximating 7 (g, .
See Eqn. (2.4.14).
i e(x) e/p
fl(x) Unknown function arising from integration. Section
ki 2.2 only.
fz(x) Unknown function arising from integration. Section
2.2 only.
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f3(x)
fj(u)
£.9(Q)
sz(a)

fi(e)

Unknown function arising from integration. Section
2.2 only.

Set of weighting functions.

v
=f

Set of weighting functions for u

&l

Set of weighting functions for u <

(o}

Function premultiplying approximating polynomial for
transformed dependent variable v in kth strip.

See Egn. (2.5.7). Section 2.5 only.

Component of vector consisting of the zeroth order
terms of the general nonlinear system of PDES.

1, 2, 3; j=1,--——- (4). See Egn. (4.1.4).
5, 6; =1, 5, 6). See Egn. (4.1.9).

(i
(i

See Egn. (1.3.1.24).
(i=1,--~-~-,6). See Egn. (4.2.8).
(1 =1,-—=—— /6); j = 5,6). -See Egn. (4.2.8).

Unknown fuction arising from integration. Section
2.2 only.

Unknown function arising from integration. Section
2.2 only.

Set of weighting functions.

el
\
=

Set of weighting functions for

Set of weighting functions for u < u_.
Set of weighting functions.

See Egn. (2.5.7). Section 2.5 only.
(i=1, 2, 3). See Eqn. (4.2.9).

See Egqn. (1.3.1.27). Section 1.3 only.
Total enthalpy.

Total enthalpy in upper main stream.
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H2 Total enthalpy in lower secondary stream or gquiescent

region.
HW Hat x=0, v = 0.
H H/Hl
| e H for u > Ea.
i H for o < U_.
o
ﬁo Hat u=u_.
h, (e) See Eqn. (2.5.7). Section 2.5 only.
h. (1 =1,-~=- +4). Egn. (4.2.11).
e 1 (i = 5,--—--- ,8). Eqn. (4.2.15).
o - (1 = 1,-——=- ,4; § = 5,6). Eqn.(4.2.12).
gf 1] (i =5,--——- ,8; 3 = 5,6). Egn. (4.2.15).
? Hi(y) Initial total enthalpy profile.
ij (i = 0,-—~--,5). See Egn. (4.2.12).
iij (i =0,~---,5; J = 5,6). See Egn. (4.2.13).
ITi (i = 1,----- (6). See Egn. (4.2.18).
IYk (k =0, 1,-—~-——). See Egn. (4.6.6).
ji (i = 0,-~—-—- ;5). See Egqn. (4.2.16).
jij (i=0,---——,5; j=1,.5, 6). See Egn. (4.2.17).
JJi (i = 1,-—-——~ ,6). See Egn. (4.2.19).
JYk (k = 0,1,2,-—1——-- ). See Egn. (4.6.3).
k Coefficient of thermal conductivity.
ﬁ k (x) Radius of curvature of free streamline.
i Kl Universal constant.
? ki (1 = 0,~=—~- /7). See Egn. (4.4.5).
g' L Reference length.
¢ Li General nonlinear partial operator.
2 Length of the free streamline.
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25 (L=0,-—-~--,4). See Egn. (4.5.3).
zij (i =0,-—=- +4); = 2,~-——--,6). See Egn. (4.5.5).
n XLy 2
M Number of strips into which A is divided.
Ml Mach number in upper main stream.
N Number of weighting functions.
Nuo Local Nusselt Number. See Egn. (4.8.3).
P Pressure
M
b §=l Pk + Q
Pr Prandtl Number.
Pk Order of approximating polynomial in kth strip.

p(l)(x,y) See Egqn. (2.5.7). Section 2.5 only.

58) (x,9) See Eqn. (2.5.14). Section 2.5 only.

Q See paragraph below Egn. (1.2.7).
r Radial coordinate
R See Egn. (2.5.52).
r, Displacement of free streamline from axis of symmetry.
ri(e) See Egn. (2.5.14). Section 2.5 only.
r* (y) See Eqn. (2.5.52).
u.p,L
1”1
Rel "
1
* %
u1p160
Re . 44
60 u
1
s Metric. See Egn. (2.5.1).
si(s) See Egn. (2.5.14). Section (2.5) only.
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el g1 & &

=

i (E)

ui(y)

u(i)(x,Y)

u

I<

(1) (&

')

See Egn. (2.5.31).

See Eqn. (2.5.14). Section (2.5) only.
i=0,-—- ,11). See Egn. (4.4.4).
Temperature

Temperature in upper main stream.

Temperature in lower secondary stream or
region.

T/T,

Tat x =0, vy =0

=
i
el

Value of T at

Stress tensor.
Transformation mapping u to v, D to A.
Longitudinal velocity component.

Value of u in upper main stream.

Value of u in lower secondary stream.

a,/a,

Value of u at y = Yo

Vector of dependent variables.

(i =1,-——— /N). Component of u.

Initial velocity profile at x = 0.

See Egn. (2.5.7). Section 2.5 only.
See Egn. (2.5.14). Section 2.5 only.

Transverse velocity component.

quiescent

Trans formed vector of dependent variables.

(i =1,-——- (N). Component of v.
p|v|

v(l + v }: Turbulent case

{

v : Laminar case



€|

w(i)(x,y)

v (x,9)

"

w/ul

See Egqn. (2.5.7. Section 2.5 only.

See Egn. (2.5.14). Section 2.5 only.
Longitudal cartesian coordinate.

x/L

Displacement of wvirtual origin behind real one,.
Transverse cartesian coordinate.

y/L

Position of dividing streamline.

Yo/T

Displacement of virtual origin above real one.
(2.5.13).

Stretched coordinate. See Edgn.

Stretched coordinate. See Eqn. (2.5.37).

Greek Alphabet:

A* (%)

See Egn. (2.5.31).

Falkner-Skan parameter
Ratio of specific heats.
See Egn. (2.5.13).
See Egn. (2.5.29).
Boundary layer thickness at x = 0.
Displacement thickness at x = 0.
Momentum thickness at x = 0.

Transformed domain of general nonlinear system of
PDEs.

General symbol for a shear layer thickness parameter.
(3.4).

Velocity defect thickness. Egn.



Eddy viscosity in turbulent case.
in laminar case.

See Egn. (2.5.6). Section 2.5 only.
Value of ¢ in upper main stream.

Value of ¢ in lower secondary stream or quiescent
region.

Turbulent coefficient of thermal conductivity.
s/el.

an/du

Transformation maps y to n. Section 1.2 only.
See Egqn. (2.4.3).

Upper edge of kth strip in .

See Egn. (2.5.2).

H A3 o =
[Nayia N

=

Transformed general nonlinear partial operator.
Coefficient of viscosity
Value of u in upper main stream.

Value of 1 in lower secondary stream or quiescent
region.

u/ul
Kinematic coefficient of viscosity.
Value of v in upper main stream.

Value of v in lower secondary stream or gquiescent
region.

v/vl

Transformation maps X to §. Section 1.2 only.
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g See Egqn. (2.4.3).

o Density.

Py Value of p in upper main stream.

P Valge of p in lower secondary stream or dquiescent
region.

o /0y

56 Value of p at u = ﬁé.

o Jet spreading or similarity parameter.

T Longitudinal shear stress component.

o Third cartesian coordinate or aximuthal angle.

@ Velocity potential.

v Stream function.

w Chapman viscosity index.

Subscripts:

1 Upper main stream.

2 Lower secondary stream or guiescent region.

0 Dividing streamline.

Superscripts:

- (1/0),
u Quantity above dividing streamline.
[} Quantity below dividing streamline.

0; plane case.
1; axisymmetric case.

<
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1. INTRODUCTION

1.1 Definition of Problem

The objective of this investigation is to develop a method
for numerically integrating the differential equations which
govern the growth of a free shear layer starting from an arbi-
trary initial velocity profile. Figure 1 is a diagrammatic
sketch of this situation. The shear layer is assumed to de-
velop under constant pressure, and the interaction effects,
that would occur at the origin in a physically realistic case,
are overlooked. The integration scheme will encompass the
effects of compressibility and heat transfer at arbitrary
Prandtl number. It will apply to both turbulent and laminar,
and to both axisymmetric and plane free shear layers.

The study of free shear layers is partly motivated by
their widespread application in the Chapman-Korst type the-
ories for separated supersonic flows. This group of theories

3,4,5 treatment of the

originated with Chapmanl'2 and Korst's
problem of supersonic flow over a rearward facing step.
There are a large number of theories which treat the rear-
ward-facing step and the related problem of the supersonic
near-wake using the Chapman-Korst model, and these have been
extensively reviewed by the author in Reference 6.

In the past, investigators using the Chapman-Korst model
have taken the initial boundary layer into account by simply

replacing the real shear layer by an equivalent asymptotic

free shear layer. That is to say, they approximated the be-
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FIG. 1.1 A FREE SHEAR LAYER DEVELOPING FROM AN ATTACHED
BOUNDARY LAYER



havior of the real shear layer, by that of a longer shear
layer originating from a boundary layer of zero thickness.
It is partly the purpose of this investigation to evaluate
this type of approximation, particularly with regard to its
estimates for the heat transfer across and velocity along
the dividing streamline, i.e., the streamline which lies on
the interface between the air previously quiescent and that
previously part of the attached boundary layer.

The mathematical difficulties that arise in a study of
free shear layers make it a more interesting problem in many
ways than that of the boundary layer. This is most vividly
illustrated by the apparent non-uniqueness of the solution
to the boundary layer equations in the case of the free
shear layer.

To appreciate this situation a comparison of the bound-

ary conditions for the two cases must be made.
Attached boundary layer

u-»ul H y +t =
Y

u-+0 H 4 - Free shear layer

v=20 at y Yo (x)

Note that the position of the dividing streamline, Yo (x),
is unknown a priori; although the equations can be solved in

the x - u plane, leaving the orientation in space arbitrary.



It will be shown that in order to fix Yo (x), it is
necessary to investigate the higher order corrections to
the boundary layer solutions. This is in sharp contrast
to the attached boundary layer where the zeroth order solu-
tion can be determined uniquely, independently of the higher
order corrections.

The other main mathematical difficulties peculiar to
the problem of the development of free shear layers are
connected with the singularity at the origin. This singu-
larity has two aspects.

(i) The algebraic singularity.

Goldstein7 was the first to point out that if one spec-
ifies an initial velocity profile arbitrarily, without re-
gard for the pressure distribution downstream, then the
existence of an algebraic singularity at the origin seriously
hampers any attempt to continue an integration of the bourd-
ary layer equations downstream. This occurs even with an
attached boundary layer.

In the case in question, this singularity is easily demon-
strated. Consider the incompressible boundary layer equation,

viz.

[+5

au L
9xX

+ v
y

u

<lE

Now at the origin (0,0) it is clear that in general %% # 0

and %3 # 0. But u = v = 0, therefore, in order for the above

equation to be satisfied %%’ 0(%) at (0,0).



I

(ii) Discontinuity in boundary conditions at origin.
This singularity is compounded here by the fact that at
the origin the initial conditions are such that u = 0 and
T = Tw at y = 0, but at the limit x + 0, u » 0 and T + T2

. . . . s s u
as y - -», However, this also implies an infinite ¢—, as

ax’
well as an infinite %%.

In addition, the infinite domain and behavior of the
solution at y » +~ make this a more difficult problem in
numerical integration than the corresponding attached bound-
ary layer.

The case of the turbulent free shear layer also pre-
sents the difficulty of finding a suitable eddy viscosity
model. The most common approach in the case of the asymp-
totic free shear layer, is to follow Gbrtler's8 version of

10

the Prandtl—Reichardtg' constant exchange coefficient

theory. That is to use

where ¢ is a constant, known as the jet spreading or simi-
larity parameter, which depends on the free stream Mach
number.

However, in the case of the developing free shear layer,
this is not a particularly useful approach, since o also
depends on x and on the shape of the initial profile. 1In
addition, there seems to be considerable confusion as re-

gards the variation of ¢ with M,. Therefore, because of



these difficulties a new approach was tried. Essentially
it is an extension of Clauser'sll model for the eddy vis-

cosity in the outer part of a turbulent boundary layer.

1.2 A Brief Exposition on the Method of Integration.

The method used for the numerical solution of the par-
tial differential equations, which govern the development
of a free shear layer, is based on Dorodnitsyn'slz’13
extension of Galerkin's method for nonlinear ordinary dif-
ferential equation. This method was chosen mainly because
it is thought to have several advantages for application to
the problem at hand. Its application to an extremely varied
group of problems, including those governed by elliptic,
parabolic, hyperbolic and mixed equations is thoroughly
discussed in Reference 14.

In the Russian literature the method is invariably refer-
red to as the method of integral relations, but some American
authors have called it the GKD (Galerkin-Kantorovich-
Dorodynitsyn) method, and, occasionally, the method of weighted
residuals. Despite its increasing popularity, the technique
is still subject to widespread misunderstanding, and there-
fore, it might prove useful to present below a brief explan-
ation of the general method of attack.

The numerical solution of a system of partial differen-
tial equations using this technique takes place in two main
steps., First, the system of partial differential equations

is reduced to a system of ordinary differential equations.



Second, the system of ordinary differential equations is
integrated numerically; in general, this is a much easier
task.

This reduction is achieved in the following way, al-
though it should be pointed out that the steps are not
necessarily carried out in the same order for every prob-
lem.

Consider a set of general nonlinear partial operators
Li' which involve derivatives with respect to x and vy, to
arbitrary ordef and degree. Consider a system of partial

differential equations

L;u = F,(x,y,uy,~===~==~ ruy)
(1.2.1)
u = (ul, -------- ,uN) s 1= 1, ,N

with the appropriate boundary conditions, which is to be
integrated over a domain D. Now suppose it is possible to
find a transformationﬁthat maps (x,y,ul, -------- (U ) to a

(E,n,vl, ———————— vn) space and D to A, such that the system

(1.2.1) becomes

Ai z= ¢i (E,n,vl, -------- 'VN) (1.2.2)
X = (Vl’ -------- ’VN) H i = 1’ ———————— ’N
to be integrated over A. And such that (n2 + vl2 d mm—————

+ sz)l/2 be bounded. Of course,17 may be an identity trans-



formation if (y2 + ul2 + mmm———— + uNZ)l/z

is already
bounded. The requirement of boundedness is necessary to
ensure the convergence of certain approximating polyno-
mails. For convenience, one more restriction is placed
on<§7; namely that the transformed domain A , have two

of its sides be lines t= a and £ = b, where b may be +=,

Now A is divided into M strips, as shown below,

N4 . |

Suppose there exists a function fik(n). 2 <i <N, 1<k <M
in each strip for each of N-1 dependent variable Vy=m=—= 'V,
such that it satisfies the boundary conditions and/or inter-
facial conditions to be imposed on the appropriate vy Then

the dependent variables are approximated by the expressions

Px (o] 2<icN
v, = fik(n) z aikg(g') n : L <x < (1.2.3)
L =1 -



in each of the M strips. Where P, is the order of the ap-

k
proximating polynomial in the kth strip.

It should be noted that in many applications, e.g.
attached boundary layer problems, only one strip is neces-
sary, i.e. M = 1, and that it is seldom necessary to have
more than three strips.

It is now assumed that a set of weighting functions
2 < i <N M

gil(n) : :P = Z
1 <12 <P k

_ ik + Q (1.2.4)

exist, such that they are linearly independent and piece-
wise continuous across the strips.* A further restriction
on the class of weighting functions will be introduced be-
low. Also the meaning of the symbol Q will be explained.

Next, the following set of (N-1)P equations is con-

structed.
Ryg v = 0, (&n,vy,-m==m—=m ') (1.2.5)
where
T, =g, (n) A + —gikin)
ig ig 1 d i
= dgiz(") 221N
00 = giz‘“) o+ 53— % (1.2.6)
: 1 < & <P

*Actually it is probable that the class of weighting func-
tions could be extended to include generalized functions,
such as the Dirac delta function.



Each equation in the system (1.2.5) is now integrated

with respect ton fromn = n_ to n = Ny i.e,

O
M "k : 2 < i <N
L ([ (R, v-79,)dnl=0 (1.2.7)
k =1 "k-1 : 1< g <P

The additional requirement on the set of weighting functions
is now introduced. They are to be picked in such a way that
the dependent variable vy be eliminated from the equations
(L.2.7).

The approximating expressions (1.2.3) are now substituted
into the system (1.2.7). The integratiéns in (1.2.7) are
carried out and the result is a set of (N-1)P ordinary dif-
ferential equations. The dependent variables of this system
of (N-1)P ordinary differential equations are the coefficients
of (1.2.3) i.e. aikz(g) of which there are (P-Q) (N-1l). The
remaining Q(N-1) variables are partly made up of those of
the nk(a) which are undetermined in advance. However, often
some of the aikz(g) can be eliminated by means of interfacial
conditions, so it is possible for the number Q to end up
negative.

The resulting approximating system of ordinary differ-
ential equations are now integrated by an appropriate numer-
ical method on an electronic digital computer.

The procedure outlined above can be generalized to higher

dimensions.
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The advantages of this technique are:

(a) It makes use of the well-developed area of numerical
integration of systems of ordinary differential equations.

(b) In effect, in this method it is an integral which is
being approximated. The accuracy of approximation in this is
increased to some extent as a result of a decrease in the
coefficient of the remainder term. In addition, an integral
represents a smoother function than the integrand function.
Finally, the integral has continuous representation even when
the integrand function has a finite discontinuity.

(c) The numerical instability, often encountered when

finite difference techniques are employed, can be avoided.

1.3 A Short Survey of Theoretical Studies on Free Shear

Layers

From a mathematical viewpoint free shear layers may be
divided into two main classes; namely, plane shear layers with
step~type initial conditions, vis-a-vis those that fall outside
this category. The distinction the former group enjoys is that
of self-similarity, that is to say there exists a transformation
of the independent variables such that the velocity and
temperature profiles are invariant with longitudinal displacement.
Mathematically this implies that the governing equations can be
reduced to a system of ordinary differential equations; indeed,
if the Prandtl Number is taken as one, a single equation will
result. Because of this essential simplification and because

free shear layers developing from arbitrary initial conditions
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tend toward the self-similar state as the distance downstream
approaches infinity, the plane free shear layer with step-type
initial conditions, usually referred to as the asymptotic half-
jet, has been a widely studied problem.

If in the turbulent case the eddy viscosity is approximated
by Prandtl's mixing length model, the governing equations reduce
to a linear ordinary differential equation, which was first
derived and solved by Tollmien15 in 1926. However, it was
later realized that the mixing length formulation is unsatis-
factory for free mixing problems and a new eddy viscosity model,
based on the idea of constant exchange coefficients, was proposed
by Reichardt9 and Prandtllo. Using this new model Gb’rtler8
solved the asymptotic half-jet problem: first deriving a non-
linear ordinary differential equation, and then integrating it

analytically, by expanding the solution in terms of the small

u, - u
parameter Gl~°'ﬁfé .
1 2

Owing to its instability the homogeneous incompressible
laminar free shear layer does not occur in nature; consequently
it did not, at first, receive the attention accorded its
turbulent counterpart. On the other hand, the inhomogeneous
case is of practical interest in meteorology, oceanography, and
to certain processes in chemical engineering; and for this

reason was tackled by Keulegan16 and Lockl7. In addition the

18 in the course of

homogeneous problem was considered by Lessen
a stability study. In contrast, at supersonic speeds the laminar

free shear layer becomes stable, and its occurrence in many

12



separated flow phenomena led to the numerical study of Chapmanlg.

More recently, Crane20 has extended Go'rtler's8 series solution
into the compressible regime; and MillSZl, as well as Jacques
and Gai11y22, have presented accurate numerical solutions for
the general compressible laminar and turbulent free shear layer.
The theoretical methods for solving the problem of free
shear layers developing from non-step-—-type initial conditions

may be further subdivided into five classes.

1. Methods based on local coordinates at the origin:

Inspired by Goldstein's7 treatment of the problem of the
wake behind a flat plate, Denison and Baum23 dealt with the
singularity at the origin by transforming the independent
variables in order to begin their numerical integration, which
was continued by means of finite differences. Their paper
presents the only accurate solution to date for the developing
free shear layer; albeit using only the Blasius profile as
initial condition, with Prandtl Number set as one, and determining
the coefficient of viscosity by the crude assumption py .- T.
Later Baum24 showed how their analysis could be extended to the
case of the self-similar blowing profile as initiél condition.
2. Momentum-Integral Methods:

The sole contribution to this category is due to Kubota
and Dewey25, Their method employs two free parameters, using
as the two governing equations momentum-integral relations
valid above and below the dividing streamline respectivelv.

Their results compare rather poorly tc those of Denison and Baum.

13



3. Methods based on linearization of equations of motion:
Taking note of the success of G<‘:5rtler8 and Pai's26

application of small perturbation techniques to the asymptotic

half-jet problem, Chapman and Korst27 advanced the following

linearization of the momentum equation

This can be transformed into a form of the heat equation and
integrated analytically. The basic method was extended to
compressible turbulent iso—energetic shear layers by Korst

et al.28; then to the non-isoenergetic case by Page29; and

finally to two-stream mixing by Korst and Chow30.
4. The Virtual Origin Approximation:

The basic idea, which was first introduced by Kirk3} is to
replace the real shear layer by an asymptotic half-jet growing
from a virtual origin upstream of the real one. Subsequently

Nash32 and Hill33'34

have refined and improved on the original
Kirk method.
5. Equivalent Bleed Approximation:

This concept was first used by Carriere and Sirieix35.
The idea is to replace the real shear layer by an equivalent
asymptotic half-jet starting from the same origin, but having
a small amount of mass flux, with an attendant momentum flux,
somehow interposed between the air in the upper stream and

that entrained from the gquiescent region. Golik36, and Korst

30

and Chow™", have also given this type of approximation some

attention.

14



From this brief and inadequate survey it could perhaps
be inferred that the problem of the general developing free
shear layer has not as yet been treated satisfactorily.* It
is the purpose of the investigation herein presented to go
some of the way toward correcting this state of affairs by
providing a reasonably accurate numerical study of the

development of the general compressible free shear layer.

*A complgte survey and critique of the theory of free shear
layers is presented by the author in reference 37.
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2. GENERAL ANALYSIS

2.1 Governing equations

In the case of the laminar asymptotic free shear layer,
i.e. one with no initial boundary layer velocity profile, it.
can be shown-rigorously by means of asymptotic analysis that,
in the limit of Re; > =, the solution of the equations shown
below (viz. the regular compressible boundary layer equations)
furnishes the zeroth order terms in an asymptotic expansion of
the solution of the full Navier-Stokes equations. For a tur-
bulent free shear layer it is generally assumed that the terms
in the averaged Navier-Stokes equations involving the mean
quantities are of the same order as their counterparts in the-
laminar free shear layer.

However, the case of the free shear layer developing from
a given boundary layer velocity profile is somewhat different.

The existence of the singularity at the origin means that in a
bu _ 24

I = O(ay)'
dates the use of the regular boundary layer equations in this

small region around the origin, This fact invali-

region. In-actuality, the boundary layer equations would cease
1

Re
In this region the boundary lay&r would no longer behave para~

to be valid at a distance 0( ) upstream from the origin.
bolically and would start to adjust itself to the ‘presence of
the trailing edge. In addition, a complicated interaction with
the boundary layer on the rearward facing base wall, involving
the formation of a separation shock wave, would occur in most

real instances of supersonic flow over rearward facing steps
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17



and related configurations?s’ 39, 40

See Fig. 2.l1l.In what

follows these interactions are ignored, and the regular boun-

dary layer equations are assumed to be valid throughout the

region of interest. This attitude can be justified by noting

the small extent of the interaction region in most cases.

The boundary layer equations for compressible shear layers

developing under constant pressure can be written in the fol-

lowing form.

9 vy _
ﬁ(pur0)+—(pwr0)—0

e
+
<
|

p(u

|5
+
<
|
u
o
]R

e (u 3y’ 3y ‘Pr By

where
0 : plane

1 : axisymmetric

v : laminar

plvl

v(l + v

)¢ turbulent

u, molecular viscosity : laminar:

eddy viscosity : turbulent**

C.u

laminar Prandtl number = —%—

Pr = C e
turbulent Prandtl number = 5

t

(B + (Pr-1) 3-)]

(2.1.1)

(2.1.2)

(2.1.3) %

*Egn. (1.3.3) is derived by multiplyinyg. the energy equation writ-
ten in terms of temperature by Cp_and adding it to Egn. (1.3.2)

times u.

**Strictly the molecular viscosity should also be included, how-
ever it only becomes comparable to the eddy wviscosity at the
edges of the shear-layer where both are-negligibly small.
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At_= eddy conductivity coefficient

=
il

CT = specific enthalpy
2

CpTO = cpT-+ E? = specific total enthalpy

and r, is the displacement of x-axis from axis of symmetry.

H

See Fig. 1l.1.

The appropriate boundary conditions are given by:

u +ul H y > 4o
H -~ H

! (2.1.4)
ua >0 : y > =
H -» H2

Plus arbitrary initial conditions.
u = ui(y) :
at x = 0 (2.1.5)

H = Hi(y) :

2.2 Asymptotic behavior of solutions

It is necessary in the main body of the analysis

to have a knowledge of the asymptotic behavior of %% and H

as y —)~iw.
Introduce a stream function y, such that

w= —t 3 . Lo 1 3y (2.2.1)
v 3y v 9X
pro pro

whence the continuity equation is automatically satisfied,

and equation (2.1.2) becomes

1l 3y 3 1 3y 1 3y 23 1 a3y _ 9 9 1 3y
p{—=— = (o ) = — EE (= 2Ny} = Zf 2 )}
] X 3y 3 F] ]
prov 3y o9xX prov 3y prov X 3y prov )4 Yy Y prov Yy

(2.2.2)
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Now

u > ouy as y *> +=

i.e.
13, u as y > += (2.2.3)
v Ay 1l
Dro

Integration yields
b perV u; Yy £ (x) Yy > e (2.2.4)
where fl(x) is some unknown function of x.

Hence in the limit y > +«, eqg. (2.2.2) becomes

v
3 1 arg dfy) 5 1 3
pl{ul % (ul) - —r'—v' [plulY ax + d=x e ['a_y (_\) a_lky')]}
P1%0 PoTo
PO S N 1"
Dro

The first term is zero, since uy is constant, and there

are two possibilities, viz. "

v dr0
(i) ry = const. i.e. —g=— = 0 (2.2.6)
drov
(ii) Ix # 0 (2.2.7)
Taking the first possibility, equation (2.2.5) reduces to
af
1 13 1 oy 3 9 1 3y
- e 2 1) = 2 {e =— { =)} (2.2.8)
v dx 2?3y v’y 3y Y v 3y
ol Poto P
integrating once yields
3 1 oy 1 %1 gy
3y ( — v ay) = - — Ix ( v By) + const. : y >+ +o
P*o 0 °1 %o
or
df
au. 1 1 _ . -
31—”\:4‘ " -dT' (ul u) : Yy » (2.2.9)
o f1
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Turning to the second case, (2.2.7); eq. (2.2.5) reduces

to
d d 1 8y, _ 3 3 1 8y
- Py Vv oFx (log r,) v =— ( — =5) = 5o le 55 (—— )1
dx 0 3y prov 3y Yy 3y prov Y’ :
or
9 ]
- oy v 5= (log rg) ¥y g—; =5 (e 5 (2.2.10)
integrating once gives
1 d _.2u
EI LYy vV Fx (log ro) {y u - f uq dyl = 5y + const.
i.e
su _ P1™1 g
37 - e v I (log ro) {y(ul u) } (2.2.11)
Now consider the asymptotic behavior when y » -«
u = 12y, 0 as y +» - (2.2.12)
v 3y
pro
whence
Y _gl(x) as y » -« (2.2.13)

where g(x) is some unknown function.

In which case, equation (2.2.2) reduces to

dg
1 1l 3u _ 3 au
t ;—3 dx 3y 3y (e Ei) (2.2.14)

0

integrating once obtains

dg
_a_}.‘l.r\,_l___—J.'-u : y + ~= (2.2.15)
oy v dx
€2%0

The asymptotic behavior of H can be established by observ-

ing that if Pr = 1, then equation (2.1.3) becomes
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oH

oH
p(u-5—£+wa—§-

= 3 9H
) = 3y (e 5;) (2.2.16)

Whence on comparison with equation (2.1.2) it can be seen

that the solution to equation (2.2.16) is

H=A+ B u (2.2.17)
where
A = H2 (2.2.18)
H, - H
B= - 2 (2.2.19)
Y

in view of the boundary conditions (2.1.4).

The Prandtl number for air is close to 1, and moreover
the neglected term of equation (2.1.3) involves %% which is
zero in the limits y » +». Therefore equation (2.2.17) should
represent the asymptotic behavior of H.

It is also necessary to have some knowledge of the asymp-

totic behavior of w as y » +» in order to fix the position of

the dividing streamline. See section 2.5,
dr;

First consider the case of EEQ = 0.
From eqn. (2.2.4 and 1) is obtained the result
w = - 1 E££ + 0(l) : y t o (2.2.20)
R dx ‘ e

similarly from egns. (2.2.13 and 1)

1 991
W—E-z—r—o-d?—'FO(l) H Yy Y= (2.2-21)

In order to obtain additional terms in asymptotic expan-
sions for w as y + +», the expressions for %% must be integrated.

For instance, consider eqn. (2.2.9), integrating once gives

u=u; - exp(-fz(x)y) + o(e—y):y + = (2.2.22)
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integrating again with respect to y leads to
v

P1E £y -

bo=oequrVy + B (k) + e ¥ roe™) i oy +e (2.2.23)

2

Thus from egn. (2.2.1)
_ E! -f.y £! -f
1 fi(x) + g~y e s 2e

v
P1%o 2 2

2Y + o(e-y):y + = (2.2.24)

Similar treatment yields the following result for the lower

limit.

1

1 9% ;22 egzy +o(e¥y 1y = (2.2.25)

Pa¥o dx 9

where
.1 %
92 = L v ax
o
dr0
Turning to the case where I # 0. Integrating egn.

(2.2.11) once yields the following result.

2
- VAR
_ f3(x) 5 -y2
u=u -e + ofe ) 2 Yy 4+ ® (2.2.26)
where
p,u
_ 171 d
f3(x) = - 3= (log ro)

€1

integrating again with respect to y leads to

_ £ 1/2
b= pyuroy + £(x) - LT erf(y(—31 ):y + = (2.2.27)
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But 2
~X

erf(x) ~ 1 - e -
YT X 2x

//

+ ] 2% 4 = (2.2.28)

substituting this asymptotic expansion into eqn. (2.2.27)

results in the following expansions for Y

2 f3
/m 1 e 2 1
\U = plulroy + fl(X) - _;T + — % [l- ) + ———] Ty 4 «
V2f £.Y
3 3
(2.2.29)
Therefore from egn. (2.2.1)
<Gl )Y + —=— £ (x) 1 3 -'f'%yz
w = -1 - og ¥ Y — X - ye
1l dx 0 PE 1 P1%g 2(23‘_:3)1/2
2
+ olye™¥ ) ty 4o (2.2.30)

The behavior of w at the lower limit is similar to egn. (2.2.25).

2,3 Derivation of the integral relations

This step is roughly egqguivalent to obtaining the system of
equations (1.2.7), except that the application of transformation
:7 and the division into strips is. left to the next section.

Suppose there exists a set of weighting functions fj(u)
which are linearly independent and piecewise continuous in u.

An additional requirement will be imposed later. Now multiply
equation (2.1.1) by fj(u), and equation (2.1.2) by r; aﬁi and

integrate their sum with respect to y from -« to +=. Thus the

following system of equations are obtained.

o<1 o«© [==]

%; fpurovfj(u)dy + pwrovfj(u)[ =/ 3—(sr3 %%)f;(u)dy (2.3.1)

- 00 ——CO -0
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Now it is required that fj(u) be such that

fj(u = fj(O) =0 (2.3.2)

1)
whence integrating the right-hand side by parts equation:

(2.3.1) becomes

g - s a2 4°F, _
ax | eurg f (w)dy = - f ery (53 d——lz dy (3 =0,1,2,---
- u

(2.3.3)
Consider a second set of weighting functions gk(u), or
eqguivalently gk(H), with the same requirements. Multiply
equation (2.1.1l) by gk(H) and equation (2.1.3) by rov gﬁ gk(H),
add and integrate with respect to y from -« to +«, Thus a

second system of eguations are obtained, viz.

® @ 2 dgk

d ® Vv v _ v 2 £
= Impuro gy (H)dy + pwr gk(Hli —_i Ty §§{§- (H+ (Px- l) 5) Ygg-dy

Q)lo)

(2.3.4)

Require that- the weighting functions gk(H) be such that
gk(Hl) = gk(Hz) = 0 (2.3.5)

Thus integrating the right hand side by parts leads to

the following system of equations

© 2 .2

d v _ € v 9 _qyu ,d”g oH
a}—{- J' uro gk(H)dy = - ]—?? ro -3—y[H+(Pr 1)7—] ) 'a—y-dy
- -0 dH
k =10,1,2, -—- (2.3.6)

Note that one of the three dependent variables, namely
w, has been eliminated, and two sets of integral relations,
equation (2.3.3) and equation (2.3.6) replace the original

partial differential equations.
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2.4 Reduction of integral relations to a system of first

order ordinary differential equations.

1. As a first step, it is necessary to cast equations (2.3.5)
and (2.3.6) into non-dimensional form. In this way the follow-

ing systems of eqguations are obtained.

d O:— Ve Vag = el i Bu 2 n d 4
= :f.opoufj (u)ro dy = - ‘——Lulpl ji('a—;) £l (u)r Yy (2.4.1)
J = Olllzl ===
Q: f;ﬁgk(ﬁ)fovd§ = 1 Pr{IE( gﬁ(ﬁ)fovdi
dx = pl 1 y
2 ©
2(y-1)M _ 2= = )
+'-——-——l——7(Pr—l) Jeu EE i_ "(H)r dy}
2+(Y-1)Ml -—c0 ay y
k=10,1,2, --- (2.4.2)
where X =F, F=f . G-f  Be=g,5=fn ., F = fand

L is some characteristic length scale.

The integration of the left hand sides of equations
(2.4.1) and (2.4.2) will be greatly facilitated if the inte-
grand contains only known functions of u. Therefore the

following transformation is made.,

[£2Y ax = [por,’a (2.4.3)
whence equations (2.4.1) and (2.4.2) become’

o

a qu (u)dn =

az (2.4.4)

handl >
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and

o0

- a. - - El 2 _
= {:gk(n)dn Ty Pr{,rep( 28, gy (H) dn
N (2.4.5)
21w, ® ~o5 28 28 _
+ ———=——(Pr-1) jepu’s- 5= gp(H) dn}
2+ (y=1)M; - n 3n

k = 0’1,2, —
It also is necessary to ensure boundedness of the domain.
This is achieved by carrying out the following transformation.

(g,n) = (g,u) (2.4.6)

resulting in the systems of equations given below.

1 1
d - - - .= € -
= fuf.(wz(g,u)du = - ,rapf"(u)———— du (2.4.7)
de 2773 Luje; I g(e,m)
j = 011121 ==
and
1
= 2
d (= = = .= 1 oH 1 -
— Jug, (H)g(g,u)du = - ,f e(=) gpr(H)———— du
dg | 7k Lul 5u %k z(g,u)
(2.4.8)
+2(Pr-l)(Y-; IBEG oH gk(H)__l_:_ aa)
2+(y-l)Ml au z{(g,u)
k=0,1,2, -——-
where
c(g,a) = 20 (2.4.9)

au
The above transformation also has the advantage that the solu-
tion is unique in (£,u) coordinates, and is independent of the

position of the dividing streamline
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2. Partly because of the difficulty with the boundary condition
discontinuity at the origin, and in part owing to the asymptotic
behavior of r(£,u) and H(g,u), it is virtually a necessity to
divide the domain into two strips. The dividing streamline
yo(x) provides a logical choice for the interface.

Designating quantities in the upper and lower strips by
superscripts u and 2 respectively, the following choices for
weighting functions  are made.

_.j+l

u,=, _ _ -
fj (u) = (u 1) u > u,
. (2.4.10)
L,=y _ =3+l L= =
fj (u) = u :ou < ouy
J = 01112131 ===
g M(H) = B -1 B> H,
(2.4.11)
- - + - -
gkz(H)-= Hk+l _ >\k 1 5 < Ho
k=20,1,2,---
where
H)
A= H—' (2.4-12)
l \Y)
dr0

Leaving to one side the case of = # 0, the dependent

variables z (z,u) and H(g,u) are approximated by the following

expressions
Pl
(@) %0 = —2—] a 0@t :a > g
(17w ey (2.4.13)
L = 1 P2 -2-1 -
(b) ¢ (g,u) == ] b, (g)u u < u,
u =1
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P

—_ 3 —g =1 —
N+ (1L -A)u} z cz(s)u ta > u
g=1 o

—_ P4 —p =1 - —
i + (1 -x)ul & dz(E)u u < ug
=1

(a) I‘-fu( gra)
(2.4.14)
(b) #*(¢&,9)

The functions of u that premultiply the polynomials in
equations (2.4.13, 14) are determined from the analysis in
section 2.1, specifically equations (2.2.9 and 15). Strictly
speaking, the expansion in (2.4.13a and 1l4a) should be in
terms of powers of (1 - u), but this makes no practical dif-
ference.

The coefficients bz(g) can be obtained as functions of
the al(E) and 56(5), by requiring continuity of u and its

derivatives with respect to y at the interface, or equiva-

lently
n_u n_2
— gu ) = — (g,u))
° n (o) 2% n fo) (2.4.15)
n=0,l, _____ ,Pz_.l

Similarly, dg(s) are found in terms of cl(z), by re-
quiring continuity of H and its derivatives.
It is possible to reduce all the quantities in equa-

tions (2.4.7, 8) to functions of £ and u. For instance,
T=(l+m F-mu (2.4.16)

where
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<
1
=
=
N

m="5""
s= % (2.4.17)
T
and —u
T , or Sutherland's law is used : laminar
{Fé(s) : turbulent
(2.4.18)

e( &) is known as the kinematic eddy viscosity, and is gener-
ally assumed to be constant across turbulent free shear
layers.

Equations (2.4.10 to 18) are now substituted into equa-
tions (2.4.7 and 8). The result is a system of first order
nonlinear ordinary differential equations, with Eg, aj.,

N y A, 3 C,,=m=—=- ,CP3 as dependent variables. P1 +
1 of these equations are furnished by equations (2.4.7),

the remaining P3 came from equations (2.4.8). The system
can be represented succinctly by using a matrix formulation,
i,e.

B, = C, l1<i, j<1+P; +P (2.4.19)

3

summing repeated indices
where Aij and Ci depend on £ and the dependent variables,
and Bj are the first derivatives of the dependent variables
with respect to E&.

As things stand, the matrix Aij is singular at £ = 0.

This is because of the singularity at the origin, which re-
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du
sults in I " as ¢ ¢+ 0.

This difficulty can be overcome by replacing Bl by
du
EgNs Egg or equivalently making a change of dependent variable
N _+1
- 1l —="s . _
from u, to Ns+l u, in the system (2.4.19). NS = 1 when
ao(O) # 0, i.e. a regular profile; and NS = T'+2 when aP(O) = 0,

i.e. a power-law profile. This procedure can be seen to be
23

equivalent to the local coordinates used by Baum -, but has the
advantage of simplicity and flexibility. The discontinuity

in the boundary conditions on H, is handled by setting cl(O) =
)\w’ where Aw = Hw_/_Hz'

3 The case of dro = 0 is more complicated. The trouble is

dx
that equation (2.2.11) shows
Cu(gla) o~ l— al(g) : u + 1 (2.4.20)
n (1-u)

but the fact that — 1 is singular at the x-axis prohibits

n(l-u)
the use of an approximation like
P
u, = 1t —¢-1
z (gyu) = —— I al(g)u (2.4.21)
n(l-u) 2=1
near y = 0, or u = ﬁg.

Because of this difficulty, two alternatives are pro-
posed.
(i) Use the approximation (2.4.13a), since u t* 1 much

faster than y + +«, and since egns. (2.4.7 and 8) are
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the same in the two cases. However, this approach is really
not completely satisfactory.
(ii) Divide the domain into three strips, in which

the following approximations are made:

P
1 —p =
0<T <, : Mg =21 b aat (2.4.22)
u =1
P
T <ua<u : tXNegw = 22 a (g)E"’l (2.4.23)
uo _u_ur . E,, - 2'=l 2 . .
L

- = u' = 1 72 —2-1

u, . <u<l : ¢ (& u) = — & a' (&u (2.4.24)
r ' n(1-1) 2=1

where Er is some arbitrary convenient constant number, say
0.7.

It will also be necessary to modify the transformation
(2.4.3) in the third strip (2.4.24). Thus (2.4.3) is re-
placed by 7

g = ¢, n' = {or yay (2.4.25)

(o}

The above procedure does not necessarily involve any

additional dependent variables, because providing P2 > Pz'

and Pz'the bz(i) and at least some of the az'(e) can be
found in terms of the al(s) by requiring continuity of

s (Mg

—m forn =0, 1, =-=——- N, N < P.' or P., at two inter-
oy

— 2 lr
faces. However, there is one difficulty, namely, it is

now necessary to know the value of §6, i.e. the displace-
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ment of the dividing streamline from the x-axis, to relate
L
the a, to the a,.
In section 2.5 it is shown that §6 may be determined
by the step-by-step numerical integration of a first-order
ordinary differential equation. Thus, this second proce-~-

dure is feasible. However, no numerical results have yet

been obtained by following it.
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2.5 The Location of the Dividing Streamline
17

1. It may be recalled that Lock used the requirement that

the normal stress be continuous to fix the position of the
dividing streamline for the case of incompressible inhomogeneous
mixing. In the homogeneous case he found that the continuity
condition was automatically satisfied, and concluded that the
position of the interface was indeterminate. However, this
automatic satisfaction ceases to occur when the higher order
correction terms to the boundary layer solution are considered.

This fact allows Lock's principle to be extended to compressible

homogeneous mixing.
The extended principle may be stated as follows:

The dividing streamline must be so oriented that the dis-
placement effects of the shear layer on the main and secondary
streams lead to a higher order correction to the predicted flow

field maintaining a continuous normal stress at the interface.

In order to apply and understand this principle, it is
necessary to go through the motions of an asymptotic analysis
of the Navier~Stokes equations. This will be done for the case
of interest, namely that of a shear layer developing between a
guiescent fluid and a stream parallel to a free streamline. The
following exposition is an extension of ideas first presented

by Ting4l.

Consider the complete governing equations written in terms

of the coordinates shown in Fig. 2.2.
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Fig. 2.2

J, AXIS OF SYMMETRY

COORDINATE SYSTEM FOR FREE
STREAMLINE

for which, the metric s is defined

d52 = (1 + ky)zdx2 + dy2 + (ry + y cos e)zvd¢2

{2.5.1)
where ¢ is the azimuthal. angle for axisymmetric flow .and the

third cartesian coordinate for plane flow, and where

® = sin (rb); cos § = =k rB {(2.5.2)

The equations of motion in terms of these coordinates can

be written as follows:

2 {(I_‘O + y cos 8) ‘pul + 2 {1 «+ ky) (ry + y cos 8)Vowl}l = 0

X oy
(2.5.3)
(].Lify) . %% + pw—g% + ‘()—lf—llky) k = - _(l-]l:—ky) . g_}g{_'_ Ez(v-?)x
(2.5.4)
—pa W pu? kK = - 2R ¢ 2(v.T
(T+ky) B 3y  (I+ky) 3Y Y
(2.5.5)
where
2 ﬁ (2.5.6)
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All quantities are non-dimensionalized; reference- length,
velocity, density, and .viscosity being L , ul, Py and My

respectively.

The energy equation and details .of the wviscous terms have
been omitted for simplicity, since they are not essential in
what follows. See Ref. 42 for a complete description of the
general equations of motion. The boundary conditions are the

same as (2.1.4) and initial .conditions as (2.1.5).

Now suppose the .dependent variables are written in terms

of asymptotic expansions, 1i.e.

[ord
1]
~1 8

£, (e)u™) (x,y)

i=20
= 7 (1) .
w = gi(e)w (x,v) for the limit
i=20 e+ 0; x,y fixed
= (1)
p= ) hy (e)p ™’ (x,y)
i=20 (2.5.7)

where £, (e) = o(f; 1), g; =o0lg;_4), hy =o(h, ;) etc.

If the expansions (2.5.7) were substituted into egns.
(2.5.3 to 5) and the limit € + 0 keeping x and y fixed were to
be applied, the resulting reduced equations would be the

compressible Euler's equations with solutions as follows:
1 : y>0
u(o)(x,y) = if =—— =0

0 : y< 0

" (2.5.8)
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€
o
®
<
!
o

dr
0 _
if W_ 0
(0) _ _ .
P (x,y) = const = Py (2.5.9)
drO .
If = # 0, the solutions are more complicated, but it is
still true that

w0 (x,0%) =1
ul®(x,07) =0 (2.5.10)
w0 (x,0") = 0 (2.5.11)
p(o)(x,0+) = const,. (2.5.12)

It can be seen that this procedure has led to the predic-
tion of an infinite velocity gradient at y = 0. However, the
complete equations of motion do not permit the existence of a
discontinuity, therefore it is inferred that at y = 0 the
gradient is finite but very steep. But-if this is the case,
ou

3§=will no longer be 0(l) and the procedure leading to the

reduced equations will no longer be valid.

To correct this situation a stretched coordinate is intro-

duced, having the definition

¥ = o (2.5.13)

3 s s
§ must be of such an order that 3% = 0(1). An additional set
of asymptotic expansions, valid near y = 0, are also intro-

duced, viz.
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ro(e) @ x,9)

(o]
I
| ~1 8

i 0
. s. (e) &(i)(x v) for the limit
w = ) i !
i =0 ev0 ,x,y fixed
p = I ot 5 (x,9)
i=20 (2.5.14)

————————————— where r, = o(ri_l) etc.

§ 1s determined to be 0(e) by requiring the viscous dissipation
term in the energy equation to remain finite in the limit € + 0;
x,§ fixed. ro and t0 are evidently 0(l1), and it follows from

the continuity equation (2.5.3) that S =.0(€).

If the asymptotic expansions (2.5.14) are substituted- into
the equations of motion (2.5.3-5) and the appropriate limit pro-
cess applied, the result will be the regular boundary layer
equations (egns. 2.1l.1.-3) rewritten in non-dimensional form in
X,y coordinates), and the condition

a_’"(o)

5 =0 (2.5.15)

This is assuming k(x), ro'(x) are: 0(1). Thus the continu-
ity of normal stress.is ensured for the zeroth order approxima-
tion.

The boundary conditions are supplied by requiring

ﬁ(o)(x,m) = u(o)(x,0+) =1

049 (x,-0) = ul® (x,07) = 0

v x,5) = o0 (2.5.16)
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where 90 is the position of the dividing streamline,

In order to continue to the next highest order correction

terms, it is assumed that
f1 = efo, etc. (2.5.17)

If it transpires that this choice is incorrect an incom-

patibility will arise.

The asymptotic expansions (2.5.7) are again substituted
into the governing equations (2.5.3-5) and the limit ¢ ¢ 0,x,y
fixed, is applied for a second time. It is immediately apparent
that the sum of the zeroth order solution and first order
correction still satisfies the flow equations for inviscid

irrotational flow, because the viscous terms are 0(32).
In addition, the equations

(1) (1)

p = 2p =

S 5y 0 (2.5.18)
are seen to hold for the lower stream i.e. for y < 0. This
implies

u =0, w® = const.: y <o (2.5.19)

Turning to the case of the first order correction to the
boundary layer solution; the asymptotic expansions (2.5.14) are
again substituted into the equqtions of motion (2.5.3-3) and
the limit ¢ + 0, %X, y fixed, is applied once more. One of the

results is that the transverse momentum equation becomes

~ (1) 2
3p T 2 5 (005007 (0 (2.5.20)

3y
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or applying the principle of stress continuity

~

- Yy . 2
5 (x,5) = p P (x,07) +x 7 50 (0 g5 (2.5.21)

-0

This means that the value of §0 must be such that the first
order pressure correction terms allow the condition (2.5.21)

to be satisfied as y + «.

The pressure correction terms, namely p(l)(x,0+) and
p(l)(x,O—) are found by applying Bernoulli's theorem to the
solutions of the irrotational inviscid flow equations. How-
ever, before this can be done it is necessary to formulate the

boundary conditions for these equations, and for this purpose

dr dr0
it is convenient to consider the cases ax - 0 and = # 0
separately.
dr
0 _
2. Ix 0

In this case the condition (2.5.21) becomes

+ -—
p(l) (x,0) = P(l) (x,0 ) (2.5.22)
and the boundary conditions for the sum of the zeroth order

solution and the first order correction are simply given by

w<l)(x,0+) = ﬁ(o)(x,m)

w (x,07) = @0 (x,-x) (2.5.23)
Now given the results of egn. (2.5.19) it is apparent from
Bernoulli's equation that
~ 2
p ™ (x,07) = 0(c?
or more correctly

p 1) (x,07) =0 (2.5.24)
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At this juncture the analysis is further divided into
subcases.
a) Supersonic Main Stream: (Ml > 1) Plane Flow

Using the linearized theory43, it can be shown that

(1) _ -2 . o(0) - 2
Cp = " 1732 w {(x,°) + 0(e™) (2.5.25)

a2 - 1)

Therefore §0(x) must be chosen so that
w 0 (x,=) =0 (2.5.26)

This condition can be rewritten in the following more con-

venient form

4, 1-79) a7+ (1- 5.0 —3 =0 (2.5.27)
dx = 070 -
Yo dx

Where use has been made of the continuity equation (2.1.1).
Note that eqn. (2.5.27) is written in terms of the notation of
Section 2.4., and is a first order ordinary differential equa-

tion for ?b, which can be written as

dy as
_0 + 1 1_9 (2.5.28
dax (1 - pouo) dx
where
l — — — —
6, = / (T - wt (g,u) du (2.5.29)
Go

is independent of the value of §0.

b) Supersonic Main Stream: Axisymmetric flow o = const.

&3

The coefficient of pressure on a slender body is given by
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the formula44, (with modification to the case in point) written below

C, (%,R) = -2 = (ég)zl
r=R or r=R
x~oR “
=1 S s" (y) 173 dy - [R'(x)]2 + 0(t4log l)
™0 2 2.2 1/ t
[(x~y) " -a"R"]
(2.5.30)
where t is the thickness
a = (M]_2 - 1)]'/:2
S = RR!
%) +
and R = ro + ef w (x,0 Ydx = r0 ger* (2.5.31)

0

It can be shown in a straight forward way that eqgn. (2.5.30)

leads to equation

r, X—-ar (1)
o,V ix,0h =25 0L y,0h &y =0
0

P dy 1/2
[(x-y) %=a?r % (x) ]

(2.5.32)

(1)
Now the question becomes, What form of %%— (y,0+) will satisfy

this integral equation, if Cp(l)(x,0+) is zero?
Assuming that (2.5.32) has a unique solution, then the

solution must be
e (y,0) =0 (2.5.33)

or from eqn. (2.5.27)

2—
(1 - oauy) ———dyo — ) — 0 2.5.34)
- pal - — Ld — pal + - = (.-
) 00 o2 = ovo 2




Integration leads once more to eqn. (2.5.28)

c¢) Subsonic Main Streamn, (Ml < 1): Plane Case

45 and

Use of the small perturbation theory of Munk
Glauert46, adapted to the case in hand, leads to the following

result.

2
(1 - M2 Cp(l)(§,0+)=—%fw(l)(y,0+)—(—iy——- 0 < x < =
0

1 X -y —
(2.5.35)
This equation does not have a unique solution, since it is sat-

isfied by any distribution of the form

W(l)(y,0+)r¢ ~%77 where n = 1,3,5....... . (a)
Yy

or = 0 (b)

However, all solutions of form (a) can be eliminated since
they are singular at the origin. Hence egn. (2.5.28) applies

to this case also.
dr

d) Subsonic Main Stream, (M1 < 1): Axisymmetric Case a§9 =0
In this case small perturbation theory45’46 yields the
following formula for coefficient of pressure.
1/2 r, % (1)
w2 (1) 0%y = 20 % aw + dy

(1 Ml ) Cp (x,0) = - S dy (y,0") 1732

0 2 2
[(x~y)"-xy"]
(2.5.36)

Again, assuming that the only admissable distribution which

satisfies this equation is one that is identically zero, one is

43



led to the conclusion.that.eqn. (2.5.28) applies:to.this.case

as well.
dr
0
3. = # 0

This case is quite.complicated in comparison.

In the first place it will be noted .from eqn. (2.2,30)
that the iim Q(O)(x,i) does not exist. Because of this fact
the simple*matching procedure used in eqgn. (2.5.23) is no
longer applicable. In order to obtain the upper boundary
condition in this instance, the technique of .intermediate
expansions is employed. This technique was introduced by
Kaplun4'7 in a study of the flow around a circular cylinder at
low Reynolds number. Its intuitive basis is the assumption
that there exists an overlap region, between the shear layer
and the main stream, where both sets of asymptotic expansions

are valid. Certain theorems have been proven, thereby setting

the technique on a fairly firm foundation.

To apply the technique an intermediate-limit process is

introduced, i.e.

e ¥ 0, x, y* = % fixed. (2.5.37)

where € < n < 1

or more correctly € o(n) = o(l)

If the asymptotic expansion (2.2.30) is written in terms

of the coordinates in (2.5.37) it becomes

dr
~(0) _ _ 1 0 * 1
EW = T, Ix " Y*n + z fi(x)e
0
f! £ 2 2 2, 2
1 3 3
- E. o -2—(-ﬁ );5 Y*n exp(—-—7 y* n2) + o(nen /E ): ev0
0 3 €
(2.5.38)
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since p; = u,; = 1
While the velocity in the main stream can be expanded in

a Taylor's series

w = w(x,0) + g—;’ (x,0)y + = = = - - (2.5.39)

or in terms of the asymptotic expansion (2.5.7)

(1)
w o= %§ w(o)(x,O)y + s[w(l)(x,O) + %% vy} + - - -

(2.5.40)

When this is expressed in terms of the intermediate variables

the result is
(0) (1)
w = ny* %% (x,0) + ew(l)(x,O) +en%¥ y*¥ + 0(en): €40

(2.5.41)

Now the postulation of the existence of an overlap domain

E‘;(O) + 82;\7(1) +

means that eqns (2.5.41) and w =
should match when written in terms of the intermediate variable.
Thus a comparison of egns (2.5.41l) and (2.5.38) shows that
. dr
v w0 =y 2 8 (2.5.42)

oy 0 dx

and

w ) (x,0) =% fi(x) (2.5.43)
0

The first statement contains no new information since it
follows directly from the continuity equation. The second one
yields the required boundary condition which can be rewritten

in a more usable form, viz.
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{0)
) (2.5.44)

[o% ) Xe3
Mlit

(1) - lim (o(®) _ ¢
w'™l(x,0) = MM (v y

By using the continuity equation and after some manipula-

tion, this equation becomes

- - dy,

(1) +y _ a_ T T Ty ao {1
W (x,0) = . = ro(l p w)dy + (1 pOuO)—Ef

Rl =
M -~ 8

(2.5.45)

Note that egn. (2.5.45) is written in terms of the notation of
section 2.4.

A similar difficulty is encountered when an attempt is
made to apply (2.5.21), because the integral is unbounded as
§ + », Again, intermediate expansions can be used to overcome

this problem,

Egn. (2.2.26) substituted into.eqgn. (2.5.17) leads to the

following asymptotic expansion for'ﬁ(l)(x,§).
N - 2. 1 - -~
p(l)(x,y) = kpjujy - 2 (%fkolul + P(l)(x,-m) + 0(1): yto
(2.5.46)

where p, = p(O)(X,O+) =1

u, = ul®(x,0%) =1 (2.5.47)

and as before ﬁ(l)(x, —o) = p(l)(x,O_) =0

In addition, application of a Taylor's series to the free

stream pressure produces the following result.

(0)

p(x,y) = p(o)(XrO) + %5 (x,0)y +--—+ ep(l)(x,0)+———

(2.5.48)
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If both of these, i.e. (2.5.46 and 48) are written in'
terms of the intermediate variable (2.5.37) the following
two asymptotic expansions will be obtained.

~ (0 2 mk
p = p( )(x,y*) + kplul y*¥n  + 2kplul (7f€ + ofe)

(0)
p=p 9 G,y*) + -3-5- (x,00y*n + p ) (x,00e + ole)

(2.5.49)

A matching of the two expansions provides the conditions

given below

ES(O) (Xrl;) = P(O) (x,y) = pl
(0)

. 2 _ 9p +

kplul = Ty— (X,O )

/0°) (2.5.50)

The first of these has already been used, the second merely
states that the centrifugal force per unit volume must be
balanced by the transverse pressure gradient, but the third

provides the requisite condition on p(l)(x,O)°

At this juncture it is convenient to consider the super-

sonic and subsonic cases separately.

dr
e) Supersonic Main Stream; (Ml > 1): Plane case I # 0

This corresponds to the situation encountered when applying
the Chapman-Korst model to separated flows. 1In plane super-

sonic flows, the free streamline is always straight so
dr0
Ix = const.,, and therefore this case can be treated the same
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way as a), providing the complicated .interactions. at the

origin are overlooked.

f) Supersonic Main Stream; (M > 1): Axisymmetric case

dr0

ax zZ 0

If small perturbation theory44 is applied to this case,
the coefficient of pressure will be given by egn. (2.5.32).

Whence it can be shown that

cp(l) (x,0")

1 0 Bryy)r*' (y) + 3ry" (y)r*"(y) + ro(y)r*''' (y)]
=7 , 272 T o dy
0 [(x-y)" = a"ry(x)]
1 K- ro réll(y)r* (y) d:'y'
+ =
i
K ({ [(x-y)°- 2rg(X)]2
- 1 * 1
2 rp(x)r*t(x) (2.5.51)
where
X X . b4
Y ! T2 o%0 Yo%y
0 0 0
(2.5.52)
using egn. (2.5.45), and where
1
§;(x) = [ (T-u) z(g,)du
U
For supersonic free streamlines ro"', ro"<< ro', therefore
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unless r*'(y) or r*(y) become large compared to r*'' and
r*''', the terms involving ro"' and ro" in the integral
of egn. (2.5.51) can be neglected. Making this approxi-

mation and using egn. (2.5.50), egqn. (2.5.51) becomes

1 X_[!ro
2(2m)*, _ 1 f Bry(y)e*" (y) + ro(y)r*''' (y)]
2 ™ T dy
My 0 [(x-y)2 - oczr(z)(X)]2
- 2r6(x)r*'(x) (2.5.53)
If egn. (2.5.52) is substituted into egn. (2.5.53) the
dy
result is the following integral equation for a;g'
. o
2(1-pguglry —g = Fy (x,M,)
X—aro
+ L J [Fz(y,Ml)yO(y)+F3(y,Ml)yo(y)]d
m 2 22 L Y
0 [{(x-y)" - « ro(x)]
X- rg
n T
+% | Faly/Myy' " (y) dy
2 2 2 b
0 [(x-y)" - o"ry(x)]
(2.5.54)
where
- 2
Fl(X,Ml) == [61 (y) + Gl(y)r—(y)- - 51(Y)——2']
0 0 roly)
dy
. 5 > 1

2r! 5
! 2(2
_ rO 61 - (2'”) k (a)
0 yMl
- L} | . 1]
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— ' . _ .
F3(x,Ml) = 3r, (1 000 2r0(p0u0)' (c)

F,(x,M) = - ro(l=pou) (d)
(2.5.55)

Since this integral equation is very complicated, a
further approximation is almost a necessity. This can be
achieved by observing that if k is set equal to zero,
egqn. (2.5.30) would lead to the following equation.

X=-a
1 2

R
0 [(X—y) -o R ]
r

where R = 0 + ¢ r*.

But only two solutions for R would generate a zero

coefficient of pressure, namely

R = r, implying r* = 0 (2.5.57)

0
(0)—r0

4

r
or R = const. = rO(O) implying r* = 0

The second possibility violates the order assumption on

r*, i.e. r* = 0(1), since at some point sufficiently far from

r,(0)-r, (x) _
the origin 0 . 0 = 0(¢ 1

). Therefore, it is rejected.

Hence, if r* = 0 is taken as the solution it will lead

once again to the equation

wB) (x,04) = 0 (2.5.58)

or using egn. (2.5.45) with the notation of section 2.4 the

following first order differential equation for §0 is obtained
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dyo . 1 ] ddl
ro(1-558,)

= 0 (2.5.59)

Unfortunately, the assumptions of slender-body . theory are
often poorly met by free streamlines, in which case, the dis-
placement flow would have to be treated as a perturbation on

the undistrubed flow field containing the free streamline.
dr
g) Subsonic Main .Stream; (Ml < 1): 2-D case T # 0

This could correspond to the application of a Chapman-

Korst type model to subsonic near wake flow behind a .blunt
trailing edge.

Small perturbation theory will give

2 2
2 (1-M7) 3
21 (2m) k = - 2 [ wD(y,0h L ay
i Xy
My 0

(2.5.60)

where ¢ is the value of x at the 'end' of the streamline.

If the curvature, k(x), is.ignored as before, eqn.
(2.5.28) will be obtained. Otherwise the integral equation
(2.5.60) will have to be solved for w(l)(y,0+) which will
lead to a first order ordinary differential equation for

§O(X) of the form

7 as
o . 1 L_ s (2.5.61)

a 1~ o at
(1 pouo)

Q4

dr
h) Subsonic Main Stream; (Ml < 1): Axisymmetric case_ag—'# 0

This could also correspond to the application of the

Chapman-~Korst model to subsonic base flow.
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The treatment of this case.is fairly similar.to that of

(f), except .that (2.5.53) becomes

2 ;5 ;ik l 3 ] %, W . * W
(1-M7) 2(2m) 3 % | Bro(Y)r*" (y) + ryly)r*"(y) ] dy
2 . %
vMy 0 [(x-y)? - £2(x) ]
(2.5.62)
ay

which again leads to an involved integral equation for ==
If the same arguments are followed for this case, egn. (2.5.59)

will apply as an approximation.

4, The methods outlined above cannot be automatically applied
to turbulent free shear .layers with any degree of -confidence.
The reason is that the Reynolds stresses have-an unknown

order of magnitude, and .also contribute- to.a transverse
pressure gradient which is non-zero: to-zeroth-order. See,

for example, Rotta48.

However, Mills21 has shown that experimental data for

two stream homogeneous incompressible asymptotic mixing layers
agree quite well with solutionS'using'Tihg's4l"criterion at
least for EZ ranging from 0 to 0.4. For ratios above 0.4 the
discrepancy between the theoretical predictions of §b and the
experimental curve becomes increasingly large. A comparison
between available experimental data for a  compressible develop-

ing turbulent free shear layer and theoretical predictions

will also be made when suitable experimental data become available.

Finally, it might be pointed out- that-similar uniqueness

problems would probably arise whenever-interior layers are
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introduced in an asymptotic.analysis of systems of partial
differential equations .which are third erder or higher. Pre-
sumably it would be possible to generalize the technique

presented- above to cover .these problems.

2.6 The Inadmissability of Certain Orders of the Appneximating

Polynomials

P2 cannot be an even number in- egquation (2.4.13b). This

restriction is necessary because in the course of determining

the bz(E) from equations (2.4.15) an incompatibility arises
P2—l u P2—1 9
between 3 z and 3 4 which results in the lower
P2-l P2—l
su Ju

part of the profile being forced to ultimately turn up as u + 0
such that ¥ + +<. This situation can best be understood in
terms of an example.

Consider the case of P2 = 2,

Equations (2.4.15) yields

1 —
(1—ﬁ0)

(2.6.2)

Note that the left hand side of equation (2.6.2) must be
positive, because Cu(E,ﬁ) must be positive as u.4* 1. On the

other hand, b, must be positive, because Cz(E)G) has to be posi-

0

tive as u + 0. Therefore, there is an incompatibility in the
approximations for the slope of 7. This incompatibility

carries over to higher order derivatives of ¢ when the degree
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of the approximating polynomial is increased by 2n(n=1,2,3---).

It is also worth mentioning at this juncture that when
P3 = 1 in equation (2.4.14), the first equation of the system
(2.4.8) cannot be used. This is owing to the Prandtl number

not appearing on the right hand side of system (2.4.8) until

k = 1. Thus for P3 = 1, the equation from (2.4.8) corres-—
ponding to k = 1 must be used. This restriction is lifted
for P3 > 1.
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3. THE EDDY VISCOSITY MODEL

As noted in Section 1.1, a difficulty with the choice of
eddy viscosity model is encountered in developing turbulent
free shear layers. It was pointed out that the common
formulation for the eddy viscosity of an asymptotic half-jet,

viz.

e = = pu, x (3.1)
4qg

is not satisfactory because it ignores the nonlinear initial
development. However, to allow for the initial development, x

could be replaced by the function F(x/L). Some investigators

have attempted to determine F; most notably, Korst et al.28

49,50,51

by empirical means; and more recently Lamb analytically,

in the form of an implicit relationship. See the review by
Carpenter37 for a detailed survey and critique.

It may also be recalled from Section 1.1 that there is the
additional difficulty of determining the variation of the jet
spreading parameter, o, with Mach Number and total enthalpy ratio.

52

For this reason it would appear preferable to follow Nash™ 7,

and replace 12 F(x/L) by KlA*(x), i.e. write
4o

e(x) = K,u, A* (x) (3.2)

171

where A* (x) is some, as yet unknown, thickness parameter; and
Kl is a universal constant. In any case this conforms with

Prandtl9 and Reichardt'slO original idea of a constant exchange
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coefficient proportional to the characteristic size of the
large energy-carrying eddies.

In order for A*(x) to be satisfactory it must meet three
requirements, viz.

a) A*(x) -~ X as X 4+ ow.

b) It must be a real measure of the total width of the

free shear layer.

[~

¢) It must be such that the correlation u'v' =
should be very nearly invariant under a streamwise Gagilean
transformation.

The first requirement is necessary so that the shear layer
developes toward the correct, experimentally verified, asymptotic
state.

The second because the characteristic size of the large
energy-carrying eddies is supposed to be comparable to the
actual width of the shear layer.

The third requirement comes about because it is desired to
follow Morkovin's53 hypothesis on the effect of compressibility
on the Reynolds shear stress. He suggested that since the
velocity fluctuations are an order of magnitude smaller than
the average components, it followed that at moderate Mach
Numbers u'v' would be unaffected by compressibility. This

proposal has received support from other investigatorsS4’55’56'57.

It has been shown by Herxring and Mellor56 that for the

outer part of a compressible boundary layer, the formulation
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A*(x) = f (1 - u) dy (3.3)
o]

i.e. velocity-defect thickness, leads to Galilean invariance.
This is, in fact, the eddy viscosity model proposed by Clauserll.
It was discovered, or at leas£ explained, by drawing an analogy
between the turbulent boundary la§er and a laminar one having a
thin sublayer of a different fluid with much lower viscosity
near the wall. Maise and McDonald57 have confirmed that the use
of the velocity~-defect thickness, rather than displacement
thickness*, leads to a more satisfactory correlation with
experimental data.

There appears to be no reason why this formulation of
A* (x) would not be suitable for free shear layers, providing it

be appropriately generalized. To this end, A*(x) is defined as

Y, (%) -
A*(X) = [ udy + f (L - u) dy (3.4)
—o yo(x)

Moreover, in this form A*(x) also satisfies the three require-
ments.

In the absence of any better information, Mellor and
Herring's56 value of 0.016 for the universal constant is

retained.

*In the case of an incompressible boundary layer such as studied
by Clauser the velocity-defect and displacement thicknesses are
indistinguishable.

57



Thus the eddy viscosity is given by the expression below.
v

0 ]
e(x) = 0.016 pu; {/ udy + f (1 - 1u) dy} (3.5)
o Y

o}
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4. WORKED.EXAMPLE AND EXPLICIT. FORMULAE FOR.THE:CASE..Pl = 4,
P, = 2.

3= <

In this section the formulae and actual ordinary differ-
ential equations. for the.case where the velocity profile is
characterized by four free parameters (Pl.=.4), and the total

enthalpy profile by two (P3 = 2), are presented.

4.1 Relationships .Between Quantities-Above and .Below

Dividing .Streamline

1. Relationship between velocity profiles.

Egns. (2.4.13a and b) become

LD = gy [(3p(8) + A ()T + ay ()R] : @ > §
(a)
) - 1 — -2 - -
t*(6,@) = g [by(8) + b (£)T + by(e)d%] : d < §
(b)
(4.1.1)

9
&

Continuity of ¢z, %% and 9 g is required at u = GO. This

&
leads to the following expressions for bO’ bl’ b2 in terms
of agr a7/ g
-3
Yo
by = ———% [a0 +a; + a2] (a)
(1-u,)
b
B 1 - - 2 0
b2 = — [aO +a; + 2a2uO a,u, 1 + 5 (b)
(1—u0) 0
b
_ 1 - -2, _ %0 . =
bl (l;ﬁo) [a0 + ajuy + ayu, ] _ ﬁo b2uO (c)
(4.1.2)
Differentiation of egns. (4.1.2a,b,c) results in the

following formulae.
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du da da da
gﬁl—l=f.l—-%+fi2-—'—g+fi3—-—3€‘+fi4—%
& 1 (4.1.3)
i=1,2,3
where
-2 = 3
3u0 u0
£ = — (a, + a, + a,); £ = £ = f = —
11 (l—u0)4 0 1 2 12 13 14 (1-a )3
o)
2a 2b £
2 - - 2 2 0 11
f = (a + a + 2a.u a )+———_-—-——_—+_—-
31 (l_ﬁo)3 0 1 270 270 (1 uo) u03 u02
£ u
1 12 0 - f
£ = f = — + = ; £ = — (2- - u,) + 14
32 33 (1-u )2 u02 34 (1-a )2 0 53
0 0 0
£ = —2 (@ + a,i. + a.d.°) + = (a. + 2a.d.)
21 =, 2 0 170 270 (1-1.) 1 2°0
(l—uo) 0
R I & RPN
0,2 2 T 31 70
0 0
£ _ u £ _
£i0 (liﬁ y T 5= - £3,007 £,q = (1-‘9 y £ - £330,
0 Yo Yo Yo
- 2
£
0 14 =
f = — - - - f_,u
24 (l—uo) a, 3470
(4.1.4)
agr ays a2 and ﬁo are the four free parameters that character-

ize the velocity profile.
2. Relationship between the stagnation enthalpy profiles.

Egns. (2.4.14a and b) become

B (g,@) = D+ ~nul-ley +cu+ czazl -y (@)
RY(g,@) = D+ ~Mul s [dy + dyu + du’l u <y, (b)
(4.1.5)
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=4

Now since H' = A + (1L - A)u at u = 1 and B = A +(1 - A)u
at u = 0, it can be seen that
Sy + cq + c, = 1 H do =1

Therefore, egns. (4.1l.5a and b) become

fes]
|

B = Do+ (- M1 [ey(8) + o) (9)a+ (L-cp (8)-c ()’
(a)
[r + (1 - 2)al (1 + d;(5)d + d,(5)a’] (b)

jas]
Il

(4.1.6)

The d's can be found in terms of the c's by requiring

continuity of H and %%;at u = GO' Whence
1l -c
T T %) (a)
d, = ¢ + 2(1 - ¢l - CO)u0 - 2d2uO (b)

(4.1.7)

Differentiation of egns. (4.1.la and b) results in the

following formulae.

a d
ddi _ ¢ duo ‘s dcO ‘£ _fl
dg (i+4)1 dg (i+4)5 £ (i+4)6 dg
(4.1.8)
where
2(1L - c,)
N A - -1 - . - -
fe1 = T3 P fes = -l -gz3 7 fge=-1
0 0
fSl = 2(1 - cl - Co) - 2d2 - 2u0f61; f55 = - 2u0(1 + f65)
f56 =1 - 2u0(l + f66)
(4.1.9)
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Co and cq are the two free parameters

stagnation enthalpy profile.

that characterize the

4,2 Derivation of the System of Ordinary Differential

Equations

The left-hand sides of the system of equatieons (2.4.7

and 8) are the same in both the laminar and turbulent cases.

If the four equations corresponding to j = 0, 1, 2, 3 from

(2.4.7) and the two corresponding to kX = 0,1 from (2.4.8)

are considered, the integrals on the left hand side may be

carried out analytically. This leads
ordinary differential equations which

matrix formulation as

to a set of first order

may be written in

3B = Oy i=1,-——, 6; 3 =1,~--, 6 (4.2.1)
where
B = ?‘i)_ . B = (_ii . B _ 6:2
1 g ! 72 g ' 73 £
aa u Ngtl dc de
4 0 e~ a ‘mFr) i Ps ar ' Pe az
(4.2.2)
L ., 502 a.3 a04
Ajp = -zl muy) o £y e £+ 5 £y, (a)
a2 a3 a2
_ 1, _ =3 0 0
Bip = -3 —up™) + = 14+ == £33 + —— £33 (b)
= 2 =3 =4
1., _ -4 0 0
Big = - gl —ug ) + 5= £+ 5=, + 7 5 (c)
aO : Ns =
Ajg = ¢ =0
al : NS = 2
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N =

Wl

- 2 -3 , %
bo)u0 + (al + bl)u0 + (a2 + b2) u, + —— fll
1_1‘04 1
£a1 ¥ 7 £34! — N 28>0
0 (@)

: ordinary initial velocity profile.

: parabola—-type velocity profile (i.e. §552)

(e)

23

24

24

25

(1

AN

(4.2.3)
=3 _ 4 =5
_2 1 ~ 3 _ 0 0 0
ug) - 3@ -ty o+ Ey w7+ By, o
(a)
a3 T a2
-3 1 _4 0 0 0
ug) - gl - ug) g ==+ £y 7 Ly
(b)
a3 T u>
-4 1 5 0 0 0
) - gd -ug) + £, 5+ E, 7+ 5y, 5
(c)
-1
s
= 2
S
(a. + b. + a)a? + (a a. + b.)a> + (a_+b.)a?
0 1 2 1% otbylug
al T
0 0 1
11 Pttt £yl Ty ¢ E00 (D)
u
0
(e)
(4.2.4)
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31

32

33

34

35

41

34

42

1 -2 1 -3 1 -4
- E(l - uo) - ?(l - uo) - Z‘(l - uo)
: ”
0
* £ 7
1 -3 1 -4 1 -5
- 5 - up) -7 - ug) - 5l - ug)
=6
0
+ i, %
1 -4 1 -5 1 -6
- Z(l - uO) - g(l - uO) - g(l - uo)
6
0
tfi4
aO NS =1
al NS = 2
- ~2
[aou0 + (ao + al)u0 + (bO + a0 + a
+(a; + a, +Db )ﬁ4 + (a, + b )55 +
1 2 1’ %0 2 2’ %0
a2 ol
0 0 1
s it ial o
u
0
By = 0
1 -2 1 -3 1 -4
- 5(1 - uo) g(l - uO) - Z(l - uo)
a2 a8 al
0 0 0
+ s £, 5 5y, t = 5,
1 -3 1 -4 1 -5
- §'(l - uO) - Z(l - UO) - g(l - uO)
a ag al
LA T S S M

1

=)}

4

+

+

+

3

+ a2)uO

4
0

fll

£>0 (d)

(e)
(4.2.5)
1 -5
- g(l = uo)
(a)

1 -6.
- g(l - uO)



43

44

44

45

51

52

53

54

91 -2
_7(1 - uO) +

97

—

+ GGl’f12 + GG2'f2

91
-3

=3

(1 - uo) +

%2

+ GGl'fl3 + GG2-f

g -
—i(l - ug)

7 +

92

— (1

2

+ GGl'f14 + GG2‘f2

9130

9181

N

N

S

S

2

3

4

65

ug) 6

+
|
=
|

+ GG3-£

33

g
+ 2

+ GG3-f

34

- u

=6 1

7
o) © 7

(1 - uy)

(c)

()

(e)
(4.2.6)

(a)

(b)

(c)



- -2 -3
54 = [- glaOuO - (glal + gzao)uo - (gla2 + g2al + g3a0)u0

-4 s _ _2
= (g2, + gja;)uy - gzayuy + gubguy + (guby + ggbglug

-3 ~4
+ (gyby + ggby + ggbglug + (ggby, + g4bi)u,
-2 =3
-5 Yo Yo
+ ggbyug + 9Py 5+ (9P F I51P0) 3
_4 -5
Y0 Y9
+ (gy1by * I51Py t gkl (g5 by F IgP)
_6
Y9 1
+ g6lb2—€ + GGl-fll + GG2~f21 + GG3-f31 ] - Ns
0
£-0 (d)
a a a
_ 0, =2 1,, _ -3 By . -4
Agg = [ -ug) + =50 -ug) + 70 -ug)l g5
6 6
a a a
0 -3 1 ~4 2. =5
+ [—3- (1 - uo) + —4(1 - uo) + '3(1 - uo)] Iy
6
a a a
0 —4 1 -5 2 -6
+ [_Z(l - uo) + —g(l - uo) + —g(l - uo)] 935
6
=2 =3 =4 =3 -4 =5
0 0 0 . 0 0 0
; bg 5 + by 5+ by 5 lg,0 + by —= + by — + b,—7 lgg,
6
=4 =5 =6
0 0 0
+ by 4+ by 5+ Dby . Jgg (e)
6
(4.2.7)

where 9, = Aco - 1; g, = (1L - >\)c0 + x(cl + co) + 1

Q
w
I
=
|
S
Q
o
+
Q
=
+
>
|
=

66



g, = (l - A) + Adl; gg = (1 - A)dq + Adz; 9 = (1 - A)d2

gls = A 916 = 0; g25 = 1 = A7 g35 = (1 - 2)

Q
[3®)
(o)}

936 = Y357 J41 = A5y7 945 = AMg5i Jue = Mg

gg; = (1 = Mfgy + AMgy7 ggg = (1 - N Egg + gy
g66 = (1 - >\)f66 (4.2.8)
a2 as a?
B 0 0 0
GGl = 94—~ * 9573 * 9677
5, 8, G
GG2 = 9,5 * 957 * 9675
ag  dy @

i i i i

_ Yo, =2 1,._ =3 2, =4 3. =5
A6l = —5(1 uo) + —g(l uo) + _E(l uo) + 5(l uo)
i4 -6 iS =7
+ _E(l_uo) + —7(1—u0) + GG4-f12 + GG5-f22 + GG6~f32
(a)
i i i i
_l0,._=3 1,,_=4 2,0 =5 3 . =6
A62 = —§(l uo) + _Z(l uO) + 5(l uo) + 6(l uo)
J.'4 -7 i5 -8
+ —7—(1—u0) + -—8-(l—u0) + GG4'fl3 + GG5-f23 + GG6'f33

(b)
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i i i i . i
0 -4 1 -5, 2 6 3,4.57 4 . -8
—Z(l—uo) + —g(l—uo) + —g(l-uo) + —7(1 uo) + —g(l uo)

63
i5 =9
+ —g(l—uo) + GG4'f14 + GG5-f24 + GG6-f34 (c)
- 1Oa0 : NS = 1
64 = 2 £=0
- 10al : Ns = 2
gq = [GG4-f,; + GG5-f,, + GG6-£4, + JTL-jy,

+ 33203 + I35, + JT4 Gy + TT575,,

+ JJ6'j51 + (Jobo-loao)uO + (jobl+jlbo—10al

. -2 . . . . . . _3
—ijagluy + (Ggby*i by+iby-ijas-ija -isag)uy

. . . . . . _4
(J1by+],by+igbg-1jay-1ia -13a)u,

+

+

. . . . . . _5
(Joby*+isby+ibg-ijay-isa -1 a4)uy

+

. . . . . . -6
(33by*+iyby+ighbg-isa,-1 8 -1a4)uy,

. . . . 7 . . -8 . 1
(34by+ighy-ijay-iga;)uy + (Jgby-igajy)ug | R

+

Yo

(a)
65 = JJl‘j05 + JJ2'j15 + JJ3'j25 + JJ4']35
6 6 6 6 6

+ JJS']45 + JJ6'j55 + IIl'l05 + I12'115

6 6 6 6

+ I13'125 + II4'135 + II5'145 + II6':L55 (e)

6 6 6 6

(4.2.10)
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= Aco + 1; h, = rc, + (1 - A)c0

1 1

Al - cy - co) + (1 - A)cl; hy = (1 -1 - ¢y ~ ¢p)

(4.2.11)

hjgy7 1 = hyg, + hyg;7 i, = hyjg5 + hyg, + higy

hygy + h39, + hygy7 1) = hyg; + hyg,; ig = h,g,
(4.2.12)
Ao h16 = 0; h25 =1 - A; h26 = A; h35 = =)
1-20; hyg == (1-2); hy =hy,
higgy * 9y5hyi 1gg = Dygay + 960y
hyg9y + hyg9; + hyg,5 + hygyg
6 6 6 6
hy593 * Dyg9, + h3g9; + higsg + hygog + hiygyg
6 6 6 6 6 6
hy593 * D359, + hy59; + hygsg + hyg,g + hygg
6 6 6 6 6 6
higgy + hyg9, + higyp + hyg,g
6 6 6 6
h,c93 + hyg5g (4.2.13)
6 6
20 3 hg = djA + (1= 05 hy = dyn +d (1 - )
dy(1 = 1) (4.2.14)
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75

85

IT1

IT2

h = £

5A; h

fo6

7%

+ h

695

A+ £

hege

+ h

6941
5
6

1 + h

5
6

+ h

695

g9s57 Jg

1941

5
6

+ h

= h

= fgeti hgy = fgqat £5,(1 - 2)

- 1) h81 = fsl(l—x)

(4.2.15)

794

896

(4.2.16)

6961 T 7957 + hg 94,

895

5127 Bgs 5 66
= f65>. + f55(1 - A); h76 =
= hg9y4s 3y = hggg + heg,i 3,
= hgdg + hy95 + hggyi j, = h
= hggg
= 9417 331 = hg194 *+ bg9gy
5 5 5 5
6 6 6 6
= hg195 * hyy9, + hggey + B
5 5 5
6 6 6
= hg19¢ + D195 + hgy9, + h
5 5 5
6 6 6
= D719 * hgy95 * hygey th
5 5 5
6 6 6
= hgy9¢ *+ hgggy
5 5
6 6
a a
_ %0, =2 1,, =3
= —7(1 uo) + 3(l uo) +
a a
_ 30, =3 1,, =4
= (1 -G + @ - G5 +

70

5
6

1
5
6

5
6

5
6

(4.2.17)



a a a
_%0,. -4 41 . _ =5 2,, _ =6
II3 = _Z(l uo) + 5(l uo) + —g(l uo)
a a a
_ %, _ =5 %1, -6 2 . =7
a a a
_%,, _ =6 41,0 _ =7 92 . _ -8
II5 = —g(l uo) + 7(l uO) + 8(l uo)
a a a
_ %0, _ =7 1,, _ =8 2 . _ -9
116 = —7(1 uo) + -—8(1 uO) + 9(l uo) (4.2.18)
52 =3 -4
a 0 0 0
JJl = by — + by — + b, —
a3 ol a2
: 0 0 0
J32 = by — + by —x + b, —=
5, ug ug
a a al
7% o/ ud
JJjs = b _0 Y 0
o gtPL 7 *Db, 3
a’ a8 a2
B 0 0 0
JJ6 = by — + by 5 + by, 5 (4.2.19)

The integrals that make up the Ci are integrated numeri-

cally.

4.3 Initial Conditions for the Integration

a a, and a., are determined by a least squares polynomial

0’ "1 2
fit to data representing the initial velocity profile. Initi-
H
ally u, is zero. =h is set equal to ﬁﬂ while cq is determined
2
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by requiring the stagnation enthalpy.approximation, eqgn.
(4.1.6a) and the actual initial value of H at u = 0.5 to

coincide.

The system of ordinary first order differential.equa-
tions, (4.2.1), are integrated starting from these initial

conditions, by following a step by step process downstream.

When the initial velocity profile is a parabola-type
(i.e. NS = 2), there is the additional difficulty that the
i =1 and k = 1 integral relations are inadmissable at x .= 0,
owing to the singularity of the integrals on the right hand
side. This problem is overcome by setting cq = 0, introducing

the "j=4" integral relation and reducing the number of inde-

pendent variables_to five for the first integration step.

4.4 Determination of Velocity-Defect Thickness

1
at*cran + 01 - 9) Tt an (4.4.1)

=l I

2

T = (L + m)HE - mu (4.4.2)

Carrying out the integration leads to the following expression
*

A
for (f ).
' 3%t t t
A, o= 0 2 =3 3 ~4 4 -5
T %% T 2t 39 YTt Y
t t
5 =6 ~ 7 -2
+ T uo + t6(l - uo) + _E(l - U.O)
t t t t
8,, _ =3 9 4 10 5 11 -6
+ —=(1 - ujy) + —(1 o) ¥ == o) + 7@ - uy)
(4.4.3)
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byi t, = kgb, + k;by + k,b

ty = KoPo? t1 = koPy * kg 2 T KoPa * kyby + Kb
t3 = klb2 + k2bl.# k3bo; t4 = k2b2 + k3bl; t5 = k3b2
t6 = k4a0; t7 = k4al + ksao; t8 = k4a2 + k'5al + k6a0
t9 = ksa2 + k6a1 + k7a0; t10 = k6a2 + k7al; tll = k7a2
(4.4.4)
k0 = (1L +m)r ; ky = (L +m)(1 - 2 + Adl)
k2 = (1 + m) [Ad2 + dl(l - )1 - m; k3 = (1 + m) (1 - A)d2
ky = (1 + m) rcyi kg = (1 + m) [Acy + (1 - A)col
k6 = (1 +m) [a(L - cy - cO) + (1 - A)cl]
ko = (1 +m) (1 - ML - ¢y - cp) (4.4.5)

4.5 Determination of Location of Dividing Streamline

This is achieved by the integration of egn. (2.5.28),

which, it will be recalled, is written

dy asé
dg+ 1 4 = 0 (4.5.1)
' (1-p4ug)
Now
8, 1 o o
= J (T -wz(g,wau
Yo
L L £
= -3 L - 32 24 - 33 30 - &8
= 20(1 uO) + 2(1 uo) + 3(l uo) + 4(l uo)
A
4 -5
+ —5°(l - uo) (4.5.2)
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where 2y = (1 + m)(gl + l)ao

g, 0= (1 + m) (g, + l)a; + [(1 + m)g, + ml a,

2, = (1 + m) (g, + Da, + [(1 + m)g, + ml a; + (1 + m)gja
2y = U1 +mlg, +mja, + (1 + m)gaa,

Ly = (1 + m)g3a2 (4.5.3)

Differentiation of eqn. (4.5.2) leads to the following

form for egn. (4.5.1)

dy - - -
" - —A—— ([ -Tg)eg, * 3G ay, + TR 4y )
(1_001-10)

da da
0 1 -2 1 -3 1, =4 1
5t [5(1"10”13 + -3-(1—u0)9,23 + g(l-ug) Log ]"—da

da
1 =3 1 -4 1 -5 2
+ [-3:(1_110)124 + -4-(1—110)134 + -5-(1—110))2,44 ] ——E_:

a5

- -2 -3 -4 1 - N 0

+ [- 2. - 2% uO - zzuo 23uo 24uo ] — u0 s w3
Uy s

~ 1 -2 1 -3 1 -4
+ [(l—uo)205 + 5(1—u0)215 + §(l—u0)125 + Z(l-uo)235

dc
1 -5 0

g
- 1 ~2 1 -3 1 -4
+ [(l-uo)z06 + 7(1—u0)216 + §(l—u0)226 + Z(l—u0)236
dcl

1. -5
+ 5(ug) 2yl —F f

(4.5.4)
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202 = (1+m)(gl+1); 205 = (l+m)aogls; Log = 0; 215 = (l+m)g2 + m
213 = (l+m)(g1+1); 215 = (1+m)alg15 + ao(l+m)g25; 222 = (1+m)g3
6 6 6
223 = (l+m)g2 + m; 224 = (l+m)(gl+1);z25 = (l+m)a2g15
6 6
+ (1+m)alg25 + (1+m)aog35
6 6
232 = 0; 233 = (l+m)g3; 234 = (l+m)g2 + m; 135 = a2(1+m)g25
6 6
+ al(1+m)g35
6
242 = 243 = 0; 244 = (l+m)g3; 245 = (l+m)a2g35 (4.5.5)
6 6

There is some difficulty in starting the integration of
this differential eguation because the right hand side becomes
infinite at £= 0. There are a number of ways of dealing with
this problem. However the simplest, which only involves a
small error, is to approximate 1 - EOGO by 1 in equation
(4.5.1), and to set §0(£) = 61(0) - 61(5) at the first step,
from thereon egn. (4.5.4) may be integrated by a step by step

process.

4,6 Calculation of Velocity Profile

Lower part:

u

- = P A
Y“YO_)
u
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= ¥y -~ [ty JY0 + t;°JY1 + £,°J¥2 + £,°JY3

1 2 3
+ t,"JY4 + t.°JY5] (4.6.2)
where _
uo _
gvk = [ & 2B . p = 0,120 (4.6.3)
- u
u
1—10 — - 1,-2 -2
JYO = log (—); JY¥Y1 = (uy - u); JY2 = Flug - u”)
u
_1,=3 _ =3, _l,-=4 =4 l1,-5 =5
JY3 = z(u, u’); Jy4 = z(uy - u’); JY5 = z(uy )
(4.6.3)
Upper part:
u
vy =3, + [ T au u - oa, (4.6.4)
1_10

=Yg + t6'IY0 + t-IY1 + t,°IY2 + t,°IY3 + t, . "IY4

7 8 9 10
+ t;4IY5 (4.6.5)
where _
Tk as
vk = | = k =0,1,2~==——=- (4.6.6)
GO (l-U)
(1-u,) _ _
IY0O = log | —1 (a}; IYl = uy - u + IYO (b)
(1-u)
1 - 2 -2
12 = 2 [(l_uo) - (1-1) 1 + u, - u+ IVl (c)
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Iv3 = [- ©° + 3 {—(1—ﬁ)+(1-ﬁ)2-%(1—ﬁ)3}] log (1-u)

+ [ﬁg + 3 {(1—60)—(1—30)2 + %(1—50)3}] 1og(1—ﬁo)

+ 3 [(1-3)-(1-T,) - %(1-5)2 + %(1—50)2+ %(1—5)3

1,. = .3
- g(l-uo) 1 (a)
Iva = [- 3% + 4 (-(1-2)+ %(1—6)2—(1—5)3+ %(1—5)4}]10g(1—ﬁ)
- - Gg A0 (=T )+ %(1—60)2—(1—60)3+ %(1—50)4}]log(l—ﬁo)

+ 4 [(1-u) - (1—60) - %(1—5)2 + %(1—60)2 + %(1—&)3

(=S

- %(l—u0)3 - %5(1-6)4 + 31 (e)

=

IVS = [~ G2 + 5 {=(1-T)+2(1-0)2=3(1-7) 3+ (1-0)%- %(l-ﬁ)s}]log(l—ﬁ)

5

(._ ao

+ 510-(1-) +2 (1-7,) 2-3(1-g,) >+ (1-5 ) *

- %(l—ﬁo)s}] log(l—ﬁo)

+ 5[(1-u) - (1-60) - (1-m)° + (1-60)2 + %(1-5)3

- %(1-&0)3 - %(1—6)4 + %(1—60)4 + %g(l—G)S - %5(1—60)5]
(£)
(4.6.7)

.7 Calculation of Temperature Profile

Lower part:
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Y -k + kT 4+ kG2 + Kk a3 :

ot ¥t 2 3 u < u, (a)
Upper part:
9= k. + k.0 + k,a° + k_a° . uw > a (b)
at ks 6 y : 0

(4.7.1)

4.8 Calculation of Properties on Dividing Streamline

Velocity gradient:

u,, - 1 (1 - ug)
EF(EIUO) = —~ = — =
z(g,u4) ag(g) + a;(gluy + a,(E)uy
(4.8.1)
Temperature gradient:
3T, =~ B - -2, du,, =
5ﬁ(g’u0) = [kl + 2k2uO + 3k3u0] gﬁ(g,uo) (4.8.2)
Nusselt number:
X BQO 1 £
Nu, =+ 9y T -7 7 ==-ky == =— —
0 0 kl(Tl T2) 0 bon TO (1 AT)
(4.8.3)
T 3T dT
where Anp = Tg = (1 + m)a and 3—9 % = ——g
1 n T, 3y

In the laminar case Brown and Donoughe58 are followed i.e.,

it is assumed

_ “Ocpo
ko = = o)
0

and in the turbulent case it is assumed that k = 1.

I
=l

(4.8.4)
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Shear stress coefficient:

L - -
Cop = —go—n L 24 (4.8.5)
£0 8§54 u,/v T an
0 %1/

4.9 Calculation of Position of Virtual Origin

Take the position of the virtual origin to be
(—xv,yv). Suppose Xa and Xp to be two different .values of
x that are sufficiently great for the shear layer to be con-

sidered as having reached asymptotic conditions for all

practical purposes. This being so it can be written that

Yv - Y Vv - Y
v 0A ~ v OB (4.9.1)
v/2" v/2 o
(xA+xv) (xB+xV)
Yge95 ~ Yy Yo.95_ 7 Yy
A _ B

——77 = 572 (4.9.2)
(xA+xV) (xB+xV)

1 : laminar

where v =
2 : turbulent

and ¥5.95 = value of y at which u = 0.95.

The above two equations give the required expressions for
Xy and yy.
3-v 3-v
X Y -y - X Y -y
. - B[ 0.95A 99] Al 0.95B OB]
v ) 3-v 3-v
ly -vg )l - ly -y, |
0.95B OB 0.95A 0A

(4.9.3)
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Y Y
0A 0B
v/2 v/2
(xA+xV) (xB+xv)
1 1
v/2 v/2
(xA+xv) (XB+XV)
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5. DISCUSSION

5.1. Preliminary Remarks

Before entering into a detailed discussion of the re-
sults, it will be helpful to examine the basic physical
processes involved in the development of free shear layers.

If, as is assumed here, the free shear layer develops
from an attached boundary layer; then, the shear force,
which was responsible for the body drag, begins to drive
the quiescent air as the shear layer leaves the body,
causing fluid to be entrained into the mixing layer from
below. Concomitant with this process, the velocity along
the dividing streamline rises from its value of zero at
separation until it reaches its asymptotic level far down-
stream,

Perhaps the process described above can best be under-
stood in terms of a vorticity transfer. Since vorticity
cannot be created in the interior of a fluid, the vorticity
flux through a cross-section of the free shear layer remains
constant. Owing to the boundary-layer approximation, tﬁe

vorticity at a point in the shear layer is given by

= du
3y

Thus, the total vorticity below a particular streamline at

a specific station x is given by
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y (x) y(x)

[ way = ;3

5y dy = u(x)

This shows that ﬁs(x) is a measure of the ratio of
the total amount of vorticity below the dividing stream-
line to the total vorticity flowing through a cross-section
of the shear layer.

The development of the free shear layer can be ex~-
plained by observing that vorticity will be diffused across
the dividing streamline in order to balance the torgque about
the origin arising from the change in the rate of convection
of angular momentum which occurs during.the passage down-
stream. Eventually, sufficient vorticity is transferred
into the lower region for the change in convection rates
above and below the dividing streamline to counter-balance
one another. When this condition is reached, the velocity
along the dividing streamline becomes constant.

The effect of such factors as compressibility and heat
transfer on this basic process will be discussed in the

ensuing sections.

5.2. Discussion of Results for Laminar Case

5.2,1 A Comparison of Various Approximations for the Coef-
ficient of Viscosity

V,a,X

Plots of Eo versus 5 are shown in Fig. 5.1 corre-

* %
u160
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sponding to three different expressions for the coefficient

of viscosity, viz.

(i) w =T : w= 1.0
(i1) @ =T : W= 0.75
T, + 198.6
(iii) w = Tlf;—rgg—g(%— 3/2 : Sutherland's law

The calculations were performed for the case of Ml =

3.0 with a Blasius profile in (&, n) coordinates as an
initial condition. The free stream stagnation temperature,
To , was set at 500°R. Here, and in subsequent computations,

1

T1 was assumed to correspond to an isentropic expansion from

M =0 to Ml' i.e.

- y =1 2

As might be expected, approximation (i) leads to rather

poor results. However, the second approximation is shown
to compare quite favorably with Sutherland's law.

Also, shown in Figure 5.1 are some points calculated

from Denison and Baum's23 results. The conversion factor
v.X
between their distance coordinate, s*, and 1 2 is ) 34863'
u, 8 *% °
o

A comparison between the curve for w = 1.0 and these
points gives a good indication of the accuracy of the results
herein presented. The small discrepancy occurring at the

early stages of development could be more apparent than real,

owing to the small size of the figure in reference 27
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and the necessity of transforming from semi~log coordinates
to natural ones and back again. Another indication of the

accuracy of the results is given by the fact that the exact
asymptotic value for Eé, namely 0.587 is attained in the

w = 1 case.

5.2.2 The Effect of Compressibility

One would surmise that since the effect of compressibility
is to intensify the diffusion process then the development
of a free shear layer would be more rapid the higher the Mach
number. Examination of Figures 5.2 a~e show this to be, in
fact, the case.

At first sight it might seem odd that, as Figure 5.2a
shows, the asymptotic value for ﬁ; is not significantly in-
creased at higher Mach numbers. It would seem that, as the
gas in the lower part of the shear layer becomes more rari-
fied, the relative angular momentum flux of the upper portion
would increase considerably requiring a greater proportion of
vorticity to be transferred to the lower stream. However,
this condition also produces a much increased displacement
effect leading to a substantially larger displacement of the
dividing streamline downward, as shown in Figure 5.2d. This
tends to negate the effect of the rise in angular momentum
flux.

Figure 5.2c shows plots of the develcopment of the shear

stress coefficient for various wvalues of the Mach number.
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Note that the asymptotic level of (xReG**)l/zc at first
o

fo
decreases with Ml' but somewhere between Ml = 3.0 and 4.0,
this trend is reversed. This is in contradiction to Mills21
results which show a monotonic decrease with Ml. This appar-
ent anomaly is the result of using Sutherland's law. Initi-
ally, the decrease in slope of the velocity at the dividing
streamline as M1 rises is not quite compensated for by the
greater value of the coefficient of viscosity. Ultimately,

though, as indicated by Figure 5.3b, the drop in Tl as Ml

is increased leading to a higher growth rate for p , which

au
dy”

It is also important to note that the velocity profile

eventually dominates the effect of the diminishing

data, which is not shown here, indicates that in general the
locus of the points of maximum shear stress and the dividing
streamline only coincide when asymptotic conditions have
been attained.

The initially positive displacement of the dividing
streamline shown in Figure 5.2d occurs because of a decrease

in displacement thickness immediately after separation. The
Y
o)

(50**}{)

suprisingly large asymptotic values of 177 are con-
sistent with those reported by Mills2l,

The effect of compressibility on the heat transfer prop-
erties is illustrated in Figure 5.2e. The local Nusselt num-

ber at the dividing streamline is defined as

+g x k
Nu = o =—_.9.
o kl Tl T2 k

=



Thus, heat transfer is positive when passing from the quiescent
region to the main stream, in which case, Tl < T2 and Nuo < 0.
As might be expected, the greater temperatures, associated
with the higher Mach numbers, are responsible for increased
conduction rates leading to a more rapid attainment of
asymptotic conditions. Notwithstanding this fact, the final
level for the heat transfer coefficient steadily declines with
an increase in Mach number. This is a direct consequence of
viscous heating which reaches a maximum at the dividing stream-
line, bringing about a decrease in the effective temperature
difference between the outer stream and the dividing stream-
line. Viscous dissipation is also responsible for displacing
the locus of the points of maximum heat transfer considerably

below the dividing streamline.
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TABLE I

VARIATION OF THE POSITION OF THE
VIRTUAL ORIGIN WLTH MACH NUMBER

1 v
u, 6 ** 6o
PR l o —

14.85 5.57
13.37 5.75
9.98 5.96
7.01 6.02
4.90 6.00
3.44 5.93
1.13 5.46
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5.2.3 The Effect of Change in Free Stream Stagnation
Temperature

This is illustrated in Figs. 5.3a and b. The results
being quite predictable on the basis of the foregoing dis-

cussion.

5.2.4 The Effect of Change in the Total Enthalpy Ratio, A .

Since an increase in H2/H1 leads to higher temperatures,
at the dividing streamline, it is predictable that the rate
of diffusion will rise, implying a more rapid growth to asymp-
totic conditions, as H2/Hl becomes larger. Figs. 5.4 confirm
this prognostication. Once again the effects of viscous dis-
sipation are responsible for the rather eccentric results cor-
responding to values of Abelow one in Figures 5.4b and e.
The curves in these figures are a testament to the fact that
temperature profiles corresponding to a cold gquiescent region

have the following general shape.

LY

Y —




The peak in the temperature profile occurs because of
the viscous heating. In the early stages of development,
the locus of the points of maximum shear stress, where the
effects of viscous dissipation are greatest, lies at a
considerable distance above the dividing streamline, con-
sequently the peak in the temperature profile is also lo-
cated above Yor Hence, the initially negative Nusselt
numbers for A = 0.0 and 0.25 in Figure 5.4e are explained.
However, as the development progresses, the point of maxi-
mum shear stress moves toward the dividing streamline,
until the slope of the temperature profile becomes nega-
tive at Yo These results are at the very least in quali-
tative agreement with those of Millle.

It is also interesting to note that Fig. 5.4e seems to
imply that the asymptotic level of NuO (ulx/vl)l/2 tends to
a value of approximately - 0.135, independently of x» for
A > 0.75. In addition, it could be remarked that Figure

5.4e shows that an estimate of heat transfer across the

dividing streamline based on asymptotic conditions would

\)lX

2
* %
u160

probably be in serious error unless exceeded 1000,

Oor more.

89



TABLE IT

VARIATION OF THE POSITION OF THE
VIRTUAL ORIGIN WITH TOTAL ENTHALPY RATIO

Ml = 3.0
A v 12 Ez";*“
u 60** o
0.0 -18.00 -9.04
0.25 6.45 4.64
0.50 18.48 6.96
0.75 14.65 6.89
1.00 7.01 6.02
1.30 -1.50 4,21
1.50 -6.73 3.12
2.0 -13.65 0.95
5.0 ~8.14 0.64

The position coordinates for the virtual origin recorded
in Table II display a strong dependency on A . The negative
values of X, corresponding tox = 0.0 and A > 1.3 are con-
vincing evidence of the general invalidity of the type of

virtual origin approximation discussed in Section 1.3.
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5.2.5. The Effect of a Discontinuity in the Total Enthalpy
Ratio at the Origin

This is illustrated in Figures 5.5. The results are
gquite predictable, although the magnitude of the effect is

perhaps rather surprising.

5.2.6. The Influence of the Initial Velocity Profile

The growth of the dividing streamline velocity profiles
corresponding to three different values of the Falkner-Skan59
parameter, B, is shown in Fig. 5.6. The data was taken from

60, the profiles being assumed in-

the calculations of Evans
variant with Mach number when cast in (&, n) coordinates.
The influence of the initial velocity profile is not
very pronounced at Ml = 3.0. However, the effect may be
expected to be intensified at lower Mach numbers.
The results obtained can be explained by observing

that initially the driving shear force is greater for larger

B. Alternatively, it may be said that the rate of transfer

of vorticity - v C g is higher the larger B8 is. However,
the results in Fié? 5.6 also show that the B = -0.18 case
reaches asymptotic conditions slightly earlier than the

B = 1.0 case. Possibly this is because the rate of con-

vection of angular momentum is greater for initial profiles

near separation.
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5.3 Discussion of Results for the Turbulent Case

Owing the tentative nature of the hypotheses advanced
in Chapter 3, concerning the eddy viscosity model, a detailed
study of the turbulent case was not undertaken at this time.

The theoretical prediction of the growth of the velo-
city along the dividing streamline, for two initial velo-
city profiles with M, = 3.0 and Pr ® 0.5, is shown in
Fig. 5.7. One of these profiles was reported by Reda and
Page6l; it was determined from data taken after the initial
expansion at the trailing edge of a rearward-facing step,
consequently, it should be typical of the initial conditions
required for a free shear layer developing behind a rearward
facing step or base. The other is a parabolic profile,
which is not of much practical interest, but does represent
the sole power-law profile that can be treated exactly, when

using only three velocity-profile parameters, viz. a a

o’ "1’

and a2.

The virtual origin for the Reda-Page profile was deter-

mined to be at

%4 = 39.75
0
Y
v
-go—*-* = 7.37

Although the development of a free shear layer is highly
dependent on the choice of constant and functional form

for the eddy viscosity, it can be seen that the transforma-
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tion

£ —_ -
x = 0.016 [ A*(x) dx
0

reduces eqns. (2.4.7 and 8) to a form independent of con-
stant and A*(X). Therefore, the inference is made that the
asymptotic value of GO is unaffected by the choice of con-
stant and functional form for A*(xX). In particular, it
follows that the incompressible value of Eo(w) for the
turbulent case is identical with its laminar counterpart.
Fig. 5.7, which was taken in part from Jacques and Gaillyzz,

shows a comparison of the prediction of ﬁb(w) following

various theories, including the one presented here.

TABLE III
THE ASYMPTOTIC VALUE OF ﬁ‘o AS A
FUNCTION OF M,
Pr = 0.5
uo(m) M,
0.587 0
0.598 1
0.624 2
0.646 3
0.662 4
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6.

CONCLUSIONS

l‘

The method of numerical integration presented in
Chapter 2 could easily be modified for application
to more involved problems, e.g. the case of u, # 0,
confined mixing etc. It would be particularly advan-
tageous where treatment of discontinuities, such as
embedded shock waves, is required.
The calculated results indicate that both compres-
sibility and stagnation enthalpy ratio have a great
influence on the development of free shear layers.
The development is also strongly affected by a tem-
perature discontinuity at the origin.
The level of free stream total temperature only has
a slight effect on the free shear layer properties.
The influence of the initial velocity profile is only
of importance during the initial stages of develop-
ment.
The position of the virtual origin was found to be
downstream of the real one, for some values of H2/H1.
Therefore, it is inferred that this type of an ap-
proximation is not generally valid.
Calculations for the heat transfer across the dividing
streamline, based on asymptotic conditions, are un-
v.X

likely to be accurate unless — exceeds 1000

u, 8, **
170
Oor more.
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FIG, 5,22 VARIATION OF DIVIDING STREAMLINE VELOCITY DEVELOPMENT WITH MACH NUMBER
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FIG, 5.2b VARIATION OF DIVIDING STREAMLINE TEMPERATURE DEVELOPMENT WITH MACH NUMBER
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FIG. 5.2c VARIATION OF SHEAR STRESS COEFFICIENT DEVELOPMENT WITH MACH NUMBER
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FIG, 5.2d VARIATION OF THE DEVELOPMENT OF DIVIDING STREAMLINE LOCATION WITH MACH NUMBER
( Larger scale corresponds to case of M1 = 10 )
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FIG. 5.,2¢ VARIATION OF LOCAL NUSSELT NUMBER DEVELOPMENT WITH MACH NUMBER
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FIG. 5.3
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FIG. 5.3b VARIATION OF SHEAR STRESS COEFFICIENT DEVELOPMENT WITH FREE STREAM STAGNATION
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FIG. 5.42 VARIATION OF DIVIDING STREAMLINE VELOCITY DEVELOPMENT WITH TOTAL ENTHALPY RATIO
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FIG. 5.4b VARIATION OF DIVIDING STREAMLINE TEMPERATURE DEVELOPMENT WITH TOTAL ENTHALPY RATIO
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FIG. 5.4c VARIATION OF SHEAR STRESS COEFFICIENT DEVELOPMENT WITH TOTAL ENTHALPY RATIO
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FIG, 5.4d VARIATION OF THE DEVELOPMENT OF DIVIDING STREAMLINE LOCATION WITH TOTAL ENTHALPY RATIO
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FIG, 5.4e VARIATION OF LOCAL NUSSELT NUMBER DEVELOPMENT ALONG THE DIVIDING STREAMLINE WITH
TOTAL ENTHALPY RATIO
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EFFECT OF A DISCONTINUITY IN TOTAL ENTHALPY RATIO AT ORIGIN ON THE DEVELOPMENT OF
DIVIDING STREAMLINE VELOCITY
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FIG, 5.5b EFFECT OF A DISCONTINUITY IN TOTAL ENTHALPY RATIO AT THE ORIGIN ON THE DEVELOPMENT
OF DIVIDING STREAMLINE TEMPERATURE
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FIG, 5.5c EFFECT OF A DISCONTINUITY IN TOTAL ENTHALPY RATIO AT THE ORIGIN ON THE DEVELOPMENT OF
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FIG, 5.5d EFFECT OF A DISCONTINUITY IN TOTAL ENTHALPY RATIO AT ORIGIN ON THE DEVELOPMENT OF
DIVIDING STREAMLINE L.OCATION
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FIG, 5,5¢ EFFECT OF A DISCONTINUITY IN TOTAL ENTHALPY RATIO AT ORIGIN ON THE DEVELOPMENT OF
LOCAL NUSSELT NUMBER
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FIG. 5.6 THE INFLUENCE OF THE ILITIAL VELOCITY PROFILE ON THE DEVELOPMENT OF DIVIDING

STREAMLINE VELOCITY :
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FIG, 5.7

DEVELOPMENT OF THE DIVIDING STREAMLINE VELOCITY FOR THE TURBULENT CASE
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