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FOREWORD

An exploratory experimental and theoretical investigaticn of gaseous nuclear
rocket technology is being conducted by the United Aircraft Research Laboratories
under Contract SNPC=~70 with the joint AEC-NASA Space Nuclear Systems Office. The
Technical Supervisor of the Contract for NASA was Captain C. E. Franklin (US/¥) for
the first portion of the contract performence period and was Dr. Karlheinz Thom
for the last portion of the contract performance period. Results obtained during
the period September 16, 1970 and September 15, 1971 are described in the following
seven reports (includirg the present report) which comprise the required second
Interim Summary Technical Report under the Contract:

1, Roman, W, C., and J. F. Jaminet: Experimental Investigations to Simulate the
Thermal Environment and Fuel Region in Nuclear Light Bulb Reactors Using an
R-F Radiant Energy Source, United Aircraft Research Laboratories Feport
K-910900-7, September 1971.

2, Klein, J. F.: Experiments to Simulate Heating of the Propellant in a Nuclear
Light Bulb Engine Using Thermal Radiation from a D-C Arc Radiant Energy Scisce.
United Aircraft research Laboratories Report K-910900-8, September 1071,

. Bauer, H, E.: Initial Experiments to Investigate Condensation of Flowing
Metal-Vapor/Heated-Gas Mixtures in a Duct, United Aircraft Research Labora-
tories Report K-910900-9, September 1971.

L, Rodgers, R, J., 7. S. Latham and H. E, Bauer: Analytical Studies of Nuclear
Light Bulb Engine Radiant Heat Transfer and Performance Characteristics.
Uaited Aircraft Research Laboratories Report K-910900-10, September 1971.

&S 5. Latham, T, S. and H. E, Bauer: Analytical Design Studies of In-Reactor Tests
of a Nuclear Light Bulb Unit Cell. United Aircraft Research Laboratories
Report K-910900-1l1l, September 1971,

N6, Krascella, N. L.: Spectral Absorption Coefficients of Helium and Neon Buffer

Gases and Nitric Oxide-Oxygen Seed Gas Mixture. United Aircraft Research
Laboratories Report K-910904-2, September 1971.

7. Palma, G, E. and R, M. Gagosz: Effect of 1.5 Mev Electron Irradiation on the
Transinission of Optical Materials. United Aircraft Research Laboratories
Report K-990929-2, September 1971. (present report)
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Report K-990929-2

Effect of 1.5 Mev Electron Irradiation

on the Transmission of Optical Materials

SUMMARY

A program of experiments was conducted to measure the optical transmission
of several trunsparent materials before, during, and immediately after 1.5
Mev electron irradiation. These experiments were conducted a% the Space
Radiation Effects Leaboratory of the NASA Langley Research Cznter using a
Dynamitron electron accelerator as a source of 1.5 Mev electrons. A preliminary
experiment was also conducted to evaluate the feasibility of using the Langley
pulsed LINAC electron accelerator as a source of higher energy electrons
(3-10 Mev) in future experiments. The Dynamitron experiments included a
comparison of irradiation-induced optical absorption in three commercial grades
of high-purity fused silica. It was found that the behavior of Corning T9LO,
Amersil, and Spectrosil high-purity grades of fused silica were similar with
regard to the generation, annealing, and optical bleaching of the irradiation«
induced optical absorption in the wavelength interval 2000 to 3000 R, 1In
addition, measurements of the optical transmicsion of single crystal specimens
of aluminum oxide, magnesium fluoride, barium fluoride, lithium fluoride,
and beryllium oxide were made during 1.5 Mev electron irradiation in the wave~
length interval 2000 to 3000 R.
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RESULTS

1. Measurements of the optical transmission of Amersil and Spectrosil
fused silica before, during, and after 1.5 Mev electron irradiation indicate
that:

a. The spectral shape of the irradiation-induced absorption band
centered at a wavelength of 2150 R does not differ significantly
in either material from that measured in Corning 7940 fused
silica.

b. The growth of the induced absorption coefficient at a wavelength
of 2150 X during ambient-temperature irradiation is linear, with
an approximate slope of 0.03 cm‘l/Mrad, as compared with a
range of values of 0.039 to 0.073 em~1/Mrad for Corning T940
fused silica obtained previously (Ref. 10).

c. Reactor irradiation-induced optical ebsorption can be removed,
as in Corning 7940 fused silica, by radiation annealing with
1.5 Mev electrons.

d. The annealing time constant for isothermal annealing of a reactor-
irradiated Amersil specimen at 600°C is 170 sec which is in
general agreement with post-irradiation measurements on Corning
T9U0 fused silica (Ref. 6).

e. The value of the optical bleaching constant for a reactor irradiat-
ed Spectrosil specimen is approximately 0.09 watts~l ~ cm? ~ sec™l,

2. Measurement of the optical trensmission of a Corning 7940 Pused silica
specimen after ambient-temperature 7 Mev electron irradiation (LINAC electron
accelerator) indicates that the growth rate and spectral shape of the 2150 R
absorption band are not appreciably different from those resulting from 1.5
Mev electron irradiation.

3. Measurement of the optical transmission of a previously reactor-
irradiated aluminum oxide specimen during 1.5 Mev electron irradiation
indicates that the reactor-induced 2050 % absorption band, which anneals at a
temperature of 500 C in the absence of irradiation, can be removed by radiation
annealing with 1.5 Mev electrons at a temperature of 60 C.

4. Measurements of the optical transmission of single crystal specimens
of magnesium fluoride, barium fluoride, and lithium fluoride during 1.5 Mev
electron irradiation indicates that each of these materials develops broad
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optical absorption bands in the wavelength interval 2000-3000C R during electron
irradiation. The growth retes are at least an order of magnitude higher than
those measured in fused silica.

5. Preliminary measurements of the optical transmission of BeO during
1.5 Mev electron irradiation indicates a stesdy-state absorption coefficient at
2500 % of 0.8 ecm™! at en ionizing dose rate of 3.5 Mrad/sec and a specimen
temperature of 360°C.
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INTRODUCTION

The Research Laboratories of United Aircraft Corporation have been
conducting an extensive program to determine the effects of nuclear radiatior
on the optical transmission of transparent materials under NASA Contracts
NASw-T768, NASw-84T7, and SNPC-70, and under Corporate spcnsorship. The purpose
of this program has been to determine the level of irradiation-induced optical
absorption to be expected in the transparent wall of a full-scale nuclear
light bulb engine during normal operation. The material studied most extensively
throughout these programs has been Corning T940 fused silica. Fused silica
has good optical transmission, good thermal and structural properties, and is
relatively easy to fabricate, In addition, irradiation-induced absorption
bands at visible wavelengths, which are related to impurities, do not develop
appreriably in high-purity grades of tused silica such as Corning T940. The
irradiation-induced absorption bands that are observed after exposure to nuclear
radiationoare centered at the ultraviolet wavelengths of approximately 2150
and 1650 A, with additional structure sometimes observed near 2700 & (Ref. 1
through 5).

Previous experimental programs have consisted of four distinct sets of
experiments which included:

1. Post-irradiation optical transmission measurements in which the reactor
irradiation simulated the full-scale engine dose (Ref. 6);

2. In-situ optical transmission measurements in a pulsed reactor which
simulated the full-scale engine dose rats (Refs. 7 and 8}

3. In-situ optical transmission measurements in a steady-state reactor
which simulated the full-scale engine dose (Ref. 9); and

4, In-situ optical transmission measurements in an electron accelerator
which simulated the ionizing dose and dose rate of the full-scale
engine (Ref. 10).

These previous investigations have been restricted almost exclusively to
the study of Corning 7940 fused silics at wavelengths longer than 2000 R. It
was found that the most prominent absorption band (2150 A) was generated by
ionizing radiation and that the growth rate at a given ionizing dose rate was
independent of the type of radiation (i.e. gamma ray, reactor, or electron).
Thus, a radiation source with an ionizing dose rate comparable to the fullwscale
engine (v 5 Mred/sec) could provide a simulation of the radiation effects
expected in a transparent wall of high purity fused silica. These high ionizing
dose rates were obtained during the FY 1969 and FY 1970 programs with a 1,5
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Mev Dynamitron electron accelerator. In particular, accurate measurz2ments of
the optical transmission of fused silica were made at ambient and elevated
temperatures during 1.5 Mev electron irradiation in the FY 197N program (Ref.
10). Extensive measurements of the steady-state irradiation-induced absorpticn
coefficient at 2150 R were made over a wide range of ionizing dose rates

(.02-5 Mrad/sec) and specimen temperatires (100-500°C)., It was found that, at
constant ionizing dose rate, the induced absorption coefficient decreased with
increasing specimen temperature due to the corresponding increase in the thermal
annealing rate, However, at constant temperature, the absorption coefficient
increased with increasing ionizing dose rate up to a dose rate of 0.4 Mrad/sec.
Above an ionizing dose rate of 0.4 Mrad/sec the induced absorption coefficient
decreased with further increases in dose rate, This variation of the steady-
state induced absorption coefficient with dose rate could be interpreted if

it was assumed that the annealing rate increased rapidly with dose rate, a
phenomena that is referred to as radiation annealing., This interpretation was
verified by removing reactor irradiation-induced absorption with 1.5 Mev
electron irradiation at temperatures at which the thermal annealing rate is
known to be negligible. In addition, measuiements of the rate of removal of
induced absorption by bleaching with ultraviolet light were made at low light
intensities. Extrapolation of these results to the light intensity exvected

in the full-scale engine indicated that optical bleaching may reduce the level
of irrediation-induced absorption by an order of magnitude. Based on these
results, the expected additional heat load, due to radiationeinduced absorption
in the transparent wall, was found to be negligible for the case of high purity
Corning 7940 fused silica.

High purity fusedosilica has an intrinsic ultraviolet cutoff wavelength
of approximately 1600 A, beyond which it is highly opaque. A transparent
material with a lower uluraviolet cutoff could transmit a greater fraction of
the radiant energy emitted by the fuel region of the nuclear light bulb engine
and could result in a more efficient engine. In particular, a transparent
wall material with a significantly lower ultraviolet cutoff would be of
interest in a higher performance version of the nuclear light bulb engine whose
radiating temperature would be higher than the nominal value of 15,000°R,
Any such promising candidate material should also have thermal and structural
properties comparable to or exceeding those of fused silica and must also remain
relatively transparent during nuclear irradiation,

The present experimental progrem was conducted in order to determire if any
other availsble transparent materials could offer improved performance over
Corning 7940 fused silica as the transparent wall material in the nuclear light
bulb engine. The new materials studied included high purity Amersil and
Spectrogil fused silica, and single crystal specimens of aluminum oxide,
magnesium fluoride, barium fluoride, lithium fluoride, and beryllium oxide.

The optical transmission range, the melting point, and the thermal conductivity
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of these materials are presented in Table I, It can be seen that all of the
new materlals have a broader optical transmission range in the absence of
irradiation than fused silica. In addition, aluminum oxide and beryllium
oxide have higher melting points and higher thermal conductivity than fused
silica, and have better structural integrity than the fluoride materials.

The experiments described in this report consisted primarily of in-situ
measurements of the optical transmission of the above mentioned transparent
materials during 1.5 Mev electron irradiation in the wavelength interval
2000-~3000 R. The motivation, design, procedure, and results for each of the
experiments are described in the following secticns. Also included is a
description of the optical system modifications made during the present
program which will permit optical transmission measurements at wavelengths
shorter than 2000 R in future experiments.
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DESCRIPTION OF EQUIPMENT AND EXPERIMENTAL TECHNIQUE

The electron irradiation experiments were conducted at the Space Radiation
Effects Laboratory of the NASA Langley Research Center, Hampton, Virginia,
using the Dynamitron electron accelerator as a source of 1,5 Mev electrons.

The SREL pulsed LINAC electron accelerator was also used in a single T Mev
electron irradiation experiment. The system used to meke the in-situ measure-
ments of optical transmission during the electron irradiation is similar to
that used in the FY 1970 program and is described in Ref, 10, Certain modifi-
cations yere made to this system to permit measurements at wavelengths as short
as 1550 A, but, to date, this added capability has not been demonstrated

during electron irradiation tests.

Dynamitron Electron Accelerator

The Dynamitron electron accelerator is a linear beam device that provides
a continuous l-cm-diameter electron beam through a water coocled, thin (0.001-
in.) titanium window. In order to obtain an electron kinetic energy of 1.5
Mev at the output of the beam port, it is necessary to run at a beam energy of
1.6 Mev to correct for the 0.1 Mev energy loss due to the titanium window.
Upon passing through the titanium window, the electron beam iz also scattered
resulting in a loss of collimation., In order to compengate for this effect,
l-cm-diameter apertures were used at the output beam post of the accelerstor
and at the input of che specimen furnace assembly to provide the necessary
collimation. With this configuration, a maximum current density of 100 micro-
amps/cm2 in a well collimated l-cm-diameter beam could be obtained at the locatior
of the specimen, 1.5 in. from the beam port.

LINAC Electron Accelerator

The LINAC electron accelerstor is a repetitively pulsed device that has an
»iectron erergy range of 3 to 10 Mev. The maximum average current density is
200 microamps/cmz in a l-cm~-diameter beam at the accelerator exit port. The
pulse width and repetition rate are variable over the ranges 0.01 - 1 usec
and 1-300 pps respectively. The geometrical configuration i: almost identical
to that of the Dynamitron acceler=ztfor.
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Optical and Electronic System

Figure 1 is a combined cptical and electronic schematic that illustrates,
in functional form, the important experimental components wiBh their respective
locations: fo~ measurements at wavelengths longer than 2000 A, this system is
identical to that descrited in detail in Ref, 10. However, certain modifications
were reqiired tc extend the lower wavelength limit to 1550 R: the fused silica
window on the hydrogen lamp was replaced with a LiF window; the fused silica
prism in the monochromator was replaced with a reflecting grating; and
all the reflecting optics were re-aluminized and cvercoated with MgF, in order
to enhance reflectivity at the shorter wavelengths. The ASCOP 543-1014 photo-
multiplier is sensitive tc wavelengths as short as 1450 R and 1s considered
adequate for this application.

In addition to these optical component modifications, it is necessary
to reduce the concentration of oxygen and water vapor to an acceptable level in
order to eliminate the loss of signal due to the strong optical absorption of
these gases at wavelengths shorter than 1800 R. The standard technique is to
evacuate the entire optical system; vacuum ultraviolet spectroscopy is the
term usually used to describe measurements made in this spectral region. However,
evacuation of the present system would have required the replacement of many
of the existing components, including the furnace assembly, and would have been
extremely difficult to effect because of the size of the chamber and the required
interface with the electron accelerator. An alternate technique, chosen for
these experiments and shown in Fig. 1, is to purge the system with high purity
nitrogen or argon. The required purity can be calculated from absorption cross
section data for oxygen and water vepor as shown in Figs. 2 and 3 (Ref. 11).
At atmosphzric pressure, the oxygen and water vapor con*ent must be kept below
approximately 50 parts per million in order to obtain adequate transmission
over a path length of 1 meter, the approximate distance in the experimental
system. Of additional interest is the fact that if oxygen is present, the
ultraviolet radiation :'rom the hydrogen lamp will penerate a certain amount of
ozone. Wh%le ozone does not absorb appreciably in the wavelength interval
1550-2000 A, it does have a strong absorption band at 2500 A (shown in Pig. 4]
and thus, can be used to monitor the removal of oxygen by the purge gas., The
experimental system, as described above, was operated in a laboratory environ-
ment using both nitrogen and argon as purge gases, and adequate optical signal
strength was obtained in the wavelength interwval 1550«2000 R, However, when the
system was set up on site, and interfaced with the Dynamitron accelerator, it
was not possible to obtain adeguate signal strength below a wavelength of 2000 X.
The cause of this difficulty has not been fully resolved as yet, but it is felt
that the loss of signal was probably the result of either gas impurities,
degradation of the optical coatings, and/or chemical attack on the LiF window.
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Specimen Configuration and Ionizing Dose Rate

The specimen configuration used was the same as in the FY 1270 program in
which the specimen is mounted in the furnace assembly at an angle of 65 deg
with respect to the electron beam uxis and at an angle of 25 deg with respect
to the optical beam axis. In this way a large interaction region is provided
between the incident optical beam and the irradiated region (Ref. 10).

The ionizing dose rate generated in a material by a given electron current
density depends upon the incident electron energy E, and the atomic number Z
and atomic weight A of the target material. The variation of the energy loss
per unit length, or stopping power, with incident electron kinetic energy for
Z=5and Z = 25 is presented in Fig. 5. The curves have been normalized to
a factor proportional to Z/A, which is approximately constant for low Z mateirials.
Examination of Fig. 5 indicates that the stopping power does not vary appreciably
with atomic number or electron energy in the range 1<E <10 Mev. The ionizing
dose rate is approximately proportional to the product of the stopping power
and the current density:

JdE
D = 0.1 —gz (Mrad/sec) (1)
where:
J = current density (microamp/cm®)
%§-= stopping power (Mev/cm)
p = target material density (gm/cm3)

Since the stopping power is proportional to p, and does not vary appreciably
with Z, the ionizing dose rate at a given current density should be approximately
independent of the target material. 1In order to accurately calculate the
ionizing dose rate from the stopping power, it is necessary to include a
correction for the divergence of the electron beam as it passes through the
medium (Ref. 12). The results of the calculation of the ratio of the ionizing
dose rate D to the current density J at an electron energy of 1.5 Mev are
presented in Table II for the transparent materials of interest. As expected,
the ratio does not vary appreciably among these materials.
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EXPERIMENTAL RESULTS

The experimental results are expressed as induced absorption coefficients
which are calculated from the chart recorder data using the following equation:

I(2,7,D,t)
I (1)

1
alr) = g 1n 2

(2)

where:
a()A) = irradiation-induced absorption coefficient at the wavelength A
(em™1)
2 = optical path length through specimen (cm)
Io{A) = chart recorder amplitude prior to irradiation
I(Ax,T,B,t) = chart recorder amplitude at a time t after turn-on of electron

heam.
Fused Silica Studies

A total of seven high purity fused silica specimens (three Amersil grade,
three Spectrosil grade, and one Corning T940 UV grade) were investigated in
the present program. One each of the Amersil and Spectrosil specimens were
used to study the growth of induced absorption during 1.5 Mev electron irradia-
tion. The remaining two Amersil and Spectrosil specimens had been previously
reactor irradiated to a fast neutron dose of 1017/cm2 in the Union Carbide
Research Reactor, in Tuxedo, N.Y.; these were used to study the effect of
radiation annealing, thermal annealing and optical bleaching. The Corning T9LO
UV grade specimen was used for the preliminary experiments with 7 Mev electron
irradiation.

1.5 Mev Elcctron Irradiati. 1 Studies - Amersil and Spectrosil

Measurements of the growth of the induced absorption coefficient at 2150 K
during ambient temperature 1.5 Mev electron irradiation in the previously un=
irradiated Amersil (A-1) and Spectrosil (S-1) specimens are shown in Pigs. 6
and T, respectively. At an ionizing dose rate of 0,05 Mrad/sec, the induced
absorption increases linearly with ionizing dose in both irradiations with
slopes of 0.03 em~l/Mrad and 0.025 cm~1/Mrad respectively. These values are
slightly less than the range of values (0.039 to 0.073 cm“l/Mrad) that was
measured in similar experiments on Corning T940 fused silica during the FY 1970
program. This difference may be due to the lower ionizing dose rate (0.02
Mrad/sec) employed in the FY 1970 experiments.
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Radiation Annealing Studies - Amersil and Spectrosil

Radiation anrealing of reactor-irradiation-induced absorption at 2150 2
in Amersil specimer AN-1l during 1.5 Mev electron irradiation is illustrated
in Fig. 8. The mnitial absorption coefficient of approximately 18 em™t
decreases to a value of 1.3 em™?! during irradiation at an ionizing dose rate of
0.75 Mrad/sec and a maximum specimen temperature of 220°C, At this specimen
temperature the thermal annealing rate in the absence of irradiation would
not cause this rapid a decrease in absorption. This data thus indicates that
radiation annealing is also effective in Amersil fused silica as well as in
Corning 7940 fused silica. After an elapsed time of 1150 sec the electron
beam was turned off and the absorption coefficient decreased rapidly from 1.3 cm=1
to 0.3 cm'l in approximately 20 sec. This increase in transmission may be the
result of a change in signal, not related to optical absorption. Several
characteristics of this anomalous change of signal support this conclusion.
First, the loss of signal recovers after the electron beam is turned off at a
rate that is too rapid to be due to thermal annealing. Second, the anomalous
loss of signal was observed at visible wavelengths at which the high purity
fused silica remains transparent after prolonged irradiation. Finally, the
level of anomalous absorption could be changed by altering the mounting configura-
tion of the specimen and in fact was significantly reduced by using a smaller
(L emby 1 cm by 1.5 mm) specimen. These factors, and the fact that it has
been possible to cause a loss of signal in the optical system by irradiating
the specimen with a CO2 laser beam which does not generate ¢ “cal absorption,
as described in Ref. 10, indicate that the loss of signal may be due to
refractive effects. In particular, if a temperature gradient exists across the
face of the specimen, this will result in a gradient in the index of refraction
which will give the specimen the characteristics of a lens. The exact shape
of the specimen temperature distribution will determine the focal length and
aberrations of this equivalent lens. Both the focusing and the aberrations can
alter the location and intensity of the focused spot on the entrance slit of the
monochromator and can thus cause a change in the intensity transmitted through
the slit. For example, an angular deflection of the light beam, as it passes
through the specimen, of 0.2 deg would cause a change in position of the focused
spot of approximately 2 mm which would move the light beam off the entrance
slit of the monochromator and cause a complete loss of signal. In addition,
estimates of the temperature gradient and the resulting index of refraction
variation across the face of the specimen due to a Gaussium electron beam
profile indicate that appreciable defocusing and spherical aberrations could
occur during high-dose rate electron irradiation.

After removal of the reactor-irradiation induced absorption by radiation
annealing, specimen AN-1 was then re-irradiated at an ionizing dose rate of
0.05 Mrad/sec and at ambient temperature. The subsequent growth of the
induced absorption at 2150 is shown in Fig. 9. The shape of the growth curve
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is not significantly different from that shown in Fig. 6 for the previously
unirradiated Amersil specimen A-1l, except for a small difference of about

0.5 em~Ll in the initial portion of the curve, indicating almost complete removal
of defects by the radiation annealing treatment.

The results of radiation annealing of reactor-irradiation-induced
absorption in Spectrosil specimen SN-1 are shown in Fig. 10. After rcmoving
a large frection of the initial absorption coefficient of 23 em=1l at an
ionizing dose rate of 0.75 Mrad/sec and a specimen temperature of 200°¢,
the ionizing dose rate was increased to 1.5 Mrad/sec and the specimen tempera-
ture raised to 350°C. The absorptiur coefficient then decreased to a final
value of 2 em~! which decreased rapidly to zero when the electron beam was shut
off. As in the previous radiation annealing experiment on Amersil specimen
AN-1, the rapid recovery of the transmission after the electron beam is turned
off indicates that this fraction of the transmission loss was not due to
optical absorption,

Th~ growth of the induced absorption coefficient during subsequent re=
irradiation of Spectrosil specimen SN-1 at ambient temperature is shown in
Fig. 11. The shape of the initial portion of the growth curve differs from
that of previously unirradiated Spectrosil specimen S~1 shown in Fig. 7 by
about 0.6 em~l indicating almost complete removal of the defects responsible

for the initial absorption coefficient of 23 em™2,

Thermal Annealing Studies - Amersil

The results of thermal annealing of reactor-irradiation induced absorption
in Amersil specimen AN-2 are shown in Fig. 12. The initial absorption coeffi-
cient of 21 cm'l begins to decay after the specimen temperature exceeds hSOOC.
The specimen temperature was raised to a final value of 600°C and the
absorption was completely removed at this temperature. Measurement of the decay
of the absorption coefficient during the constant temperature portion of the
anneal indicates a thermal annealing time constant of approximately 170 sec
at 600°C in this material. This is in essential agreement with the results of
post-irradiation measurements on Corning 7940 fused silica reported in Ref, 6.
The growth of the induced absorption coefficient during subsequent ambient
temperature electron irradiation shown in Fig. 13 is characterized by a rapid
initial growth, followed by a slower linear growth, indicating that complete
removal of defects was not achieved by annealing at 600°C.

Optical Bleaching Studies - Spectrosil

The results of ambient-temperature irradiation with 1.5 Mev electrons,
following optical bleaching of reactor-irradiation-induced absorption in
Spectrosil specimen SN-2, are shown in Fig. 14. The sample was bleached by
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exposure to ultraviolet light with an intensity of 2 mwatt/cm2 in the 2000 to
2200 X wavelength region from a BH-6 mercury lamp at ambient temperature for

45 min. During this period the initial ebsorption coefficient of 16 cm™1
decreased to 9 cm‘l. This corresponds to an optical bleaching rate constant of
0.09 watts™l - cm@ - sec'l, which is in good agreement with the value of 0,08
vatt™! - cm? - sec~l for Corning 7940 fused silica that was reported in Ref, 10.

T Mev Electron Irradiation Studies -~ Corning 7940 UV Grade

A preliminary experiment utilizing the LINAC electron accelerator was
conducted in which a specimen of Corning T9UO fused silica was irradiated with
T Mev electrons at an average ionizing dose rate of 0.1 Mrad/sec at ambient
temperature to a total dose of 190 Mrad. The spectral absorption in the
wavelength interval 2000-~3000 R that was measured after this irradiation is
shown in Fig. 15. The location and shape of the absorption band is comparable
to that resulting from 1.5 Mev electron irradiastion or reactor irradiation.

The absorption coefficient of 6.2 em™! at 2150 R aue to the total ionizing dose
of 190 Mrad corresponds to a growth rate of approximately 0.033 em™1/Mrad.

This is comparable to the growth rate measured during 1.5 Mev electron irradia-
tion and suggests that the growth rate does not vary significantly with electron
kinetic energy.

Normalized spectral data of all the irradiation~induced absorption
measurements (those due to reactor irradiation, 1.5 Mev electron irradiation,
and 7 Mev electron irradiation) made during the present program are nlotted in
Fig. 16. The solid curve represents an average of the spectra for the Amersil,
Spectrosil and Corning specimens irradiated during the present program while
the dashed curve is a typical spectrum obtained from previous measurements on
Corning T9U0 fused silica (Ref. 10).

Aluminum Oxide Studies - Radiation Annealing

Measurements of the optical transmission of aluminum oxide during 1.5
Mev electron irradiation conducted during the FY 1970 program indicated that
1.5 Mev electrons are ineffective in generating asbsorption in this material
(Ref. 10). However, reactor irradiation of aluminum oxide results in a strong
absorption band centered at 2050 X which anneals at a temperature of 500 C in
the absence of irradiation. Figure 17 shows the results of an experiment in
which an aluminum oxide specimen that had been reactor irradiated to a dose of
1017 n/cm2 was re-irradiated with 1.5 Mev electrong, resulting in radiation
annealing of the absorption band centered at 2050 A. The initial absorption
coefficient was approximately 22.5 cm‘l, and this absorption coefficient
decreased to a steady-state value of 15.5 cm"l as a result of electron irradiation
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at 0.75 Mrad/sec and 60 deg C. When the dose rate was increased o 1.5 Mrad/sec,
and the temperature to 100 deg C, the steady-state absorption coefficient
decreased to T em~l, A further increase in dose rate and temperature to 3
Mrad/sec and 160 deg C, respectively, resulted in a steady-state absorption
coefficient of approximately 3 em ~. This removal of coloration during

electron irradiation, although not complete, can be interpreted as radiation
annealing since the removal of colora:ion by pure thermal annealing is ineffectiv
below specimen temperatures of 500 deg C in this material. (Similar results

were obtained in the FY 1970 program but were not considered conclusive since

the specimen shattered during the high-dose-rate irradiation due to thermal
shock. )

Fluoride Studies - Electron Irradiation

Electron icradiation and optical transmission measurements were made on
three different fluoride materials. The latter data was teken over the °
wavelength intervgl from 2000 to 3000 R, with primary attention paid to 2600 A
in MgF, and 2500 A in BaF, and LiF, the expected locations of the peaks of
strong irradiation-induced absorption bands in these materials (Ref. 13).

Magnesium Fluoride

The results of electron irradiation of a previously un~irradiated single
crystal MgF, specimen are shown in Fig. 18. After the electron beam was
turned on at 1 microamp/cmg, the induced absorption coefficient increased
rapidly and saturated at 20 em™l. (The initial rate of coloration at 2600 R
in MgF, is approximately 20 times greater than the corresponding rate of
coloration at 2150 R in fused silica.) The specimen temperature was then raised
from 40 deg C to 40O deg C, with the furnace, and the absorption coefficient
was observed to decrease above a temperature of 350 deg C, indicating an
annealing threshold at this temperature. A further increase in specimen
temperature revealed a second tnnealing process that becomes effective at 600
deg C. However, at 600 deg C and a current density of only 1 microamp/cmg,
the induced absorption coefficient at 2600 R was still approximately 3 em™1,

The induced absorption spectrum of MgF2 measured in the time interval o
1000-1120 sec during this irradiation over the wavelength interval 2030-3000 A
is shown in Fig. 19. The induced absorption band appears to be peaked near
2500 A and has a width at half-maximum of almost 1000 R,

Barium Fluoride

The results of electron irradiation of a previously un-irradiated single
crystal BaFo specimen are shown in Fig. 20. When the electron beam was turned
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on at 1 microamp/cme, the induced absorption coefficient increased rapidly to a
final value of 3.8 cm™l, (The initiel growth rate 1s approximately 20 times
greater than the corresponding rate in fused silica.,) Further increases in
current density to 3 and 5 microamp/cm2 resulted in steady-state absorption
coefficients of 4.1 em~! and 4.9 em~1, respectively. An attempt to raise the
specimen temperature with the furnace resulted in fracture of the specimen

due to thermal shock.

The induced absorption spectrum of BaFs measured in the time interval
T00-820 sec during tnis irradiation over the wavelength interval 2000~3000 A
is shown in Fig, 21, The spectral absorption does not appear to have a
simple band structure, and there is indication that the absorption is significant
at wavelengths beyond the range of the spectral scan,

Lithium Fluoride

The results of electron irradiation of a previously un-irradiated single
crystal LiF specimen are shown in Fig. 22. When the electron beam was turned
on at an ionizing dose rate of .05 Mrad/sec, the induced absorption coefficient
rose rapidly and saturated at a value of 21 em™1, Increasing the temperature
to 400°C had no effect on the level of absorption, indicating a very slow
annealing rate in this material.

The induced absorption spectrum of LiF meeasured in the time interval
800-920 sec during this irradiation over the wavelength interval 2000~3000 A
is shown in Fig. 23. The spectral absorption is relatively flat out to a
wavelength of 2800 A, beyond which the transmission begins to increase.

Beryllium Oxide Studies - Electron Irradiation

A single crystal specimen of beryllium oxide, 1/2 cm by 1/2 cm by 1 mm,
was obtained from North American Autonetics for study in the present program.
Since single crystals of good optical quality of this material have not been
available until recently, there is very little data available on the optical
propegties of BeO. Measurements of the growth of the optical absorption at
2000 A were made at ambient temperature and at a current density of 1 micro-
amp/cmg. The absorption coefficient was observed to increase to 2 em~l and
saturate at this value. After an elapsed time of 600 sec at 1 mlcroamn/cm ’
the absorption coefficients at 1900 X and 2500 X were 2 cm -1 and 1.4 cm l,
respectively, while the absorption at 2150 X and 2300 2 was negligible. In
order to make high-dose-rate measurements with a crystal of such small dimensions,
it was necessary to operate at a wavelength of 2500 X where adequate optical
signal was available., The temporal variation of the induced absorption
coefficient at 2500 & in BeO during 1.5 Mev electron irradiation at 20 and 30
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microamp/cm2 is shown in Fig. 24. The absorption coefficient rises rapidly
after turn-on of the electron beam and then decreases to a steady-state value
after the temperature has reached equilibrium. The corresponding steady-state
values were 0.5 cm™l at 20 microamp/cm® and 240 deg C, and 0.8 cm™1 at 30
microamp/cm® and 360 deg C.

These measurements should be taken as preliminary data since only one
crystal of very small dimensions was investigated. However, these results
are promising, in that the measured levels of absorption were not prohibitive
and the specimen did not fracture during irradirction due to thermal shock.

It should also be mentioned that the crystal was not visibly colored asz a
result of this irradiation history.
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DISCUSSION OF RESULTS

The results of measurements of the optical transmission of Amersil and
Spectrosil high purity fused silica during 1.5 Mev electron irradiation and
following reactor irradiation indicate that these grades of fused silica are
similar to Corning TOUO UV grade with regard to the irradiationwinduced optical
absorption in the wavelength intervel from 2000 to 3000 1. Furthermore, the
measured generation, thermal annealing, radiation annealing, and optical
bleaching rates of the 2150 ﬁ absorption band in these grades were in essential
agreement with those measured in previous programs on Corning TOUD UV grade,
Thus, with respect to their optical transmission characteristics, any one of
these three high-purity grades of fused silica would be suitable for use as
the transparent wall material for the full-scale nuclear light bulb engine.

Measurements of the effects of reactor and 1.5 Mev electron irradiation
on the optical transmission of aluminum oxide, although less extensive than
the measurements on fused silica, indicate that this material may be acceptsable
for use as a transparent wall material. It was found during this and the FY 1970
experimental program that 1.5 Mev electron irradiation does not generate
appreciable optical absorption in this material. However, reactor irradiation
does generate a strong optical absorption band in aluminum oxide that is
centered at 2050 X. This suggests that the color centers associated with this
absorption band are caused by the displacement of atoms by fast neutrons rather
than icnization of atoms, as in fused silica. This absorption band can be
annealed at a temperature of 500 C in the absence of irradiation. Further,
measurements made in the present program indicate that this absorption band can
be annealed at temperatures below 100 C during 1.5 Mev electron irradiation.
This radiation annealing of the 2050 it absorption band in aluminum oxide is
similar to the radiation annealing effects observed in fised silica. As
such, coupled with its thermal annealing properties, it may be possible to
reduce the level of optical absorption due to neutron damage to an acceptable
level in aluminum oxide. In addition, aluminum oxide has a higher melting
point and a slightly higher thermal conducti.ity than fused silica (See Table
I). However, its sensitivity to thermal shock, and the difficulty involved in
its fabrication may preclude its use in the nuclear light bulb engine.

The results of measurements nf the optical transmission of the fluorides
(magnesium, barium and lithium) during 1.5 Mev electron irradiation indicate
that the level of irradiation-induced optical absorption in these materials is
excessive at radiation levels considerably lower than those expected in the
full-scale nuclear light bulb engine. The resulting heat load on the transparent
wall due to this irradiation-induced optical absorption and the questionable
structural integrity of each of these materials indicates that they would not
be suitable transparent wall materials.
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A single crystal specimen of beryllium oxide was investigated during the
present program. This material is of considerable interest as a transparent
wall material due to its excellent optical transmission and thermal properties
(see Table I). In single crystal form this material lias ean ultraviolet
transmission cutoff near 1200 X, and an extremely high melting point of 2800 C.
In addition, the thermal conductivity of beryllium oxide is approximately 2
watts/cm-deg; extremely high for a dielectric material and shout two orders of
magnitude higher tnan that of fused silica. Data on the uptical propmerties of
beryllium oxide, and in particular the effects of nuclear radistion on the
optical transmission, is very limited at present. This is due primarily to the
lack of single crystals of good optical quality. The measurements made during
the present program are most encouraging in that the results indicated a low
level of irradiation-induced optical sbsorption. In particular, the steady=-
state irradiation-induc=d absorption coefficient at 2500 X was 0,8 cm‘l at
an ionizing dose rate of 3.5 Mrad/sec and a temperature of 360 C. Thus,
further measurements of the optical transmission of single crystal beryllium
oxide, involving a larger number of specimens, are recommended since it
exhibits considerable promise as a transparent wall material for the nuclear
light bulb engine.
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O

Io(})

I(A,T,D,t)

LIST OF SYMBOLS

Atomic weight, dimensionless

Ionizing dose, Mrad

Ionizing dose rate , Mrad/sec

Electron kinetic energy, Mev

Chart recorder amplitude prior to irradiastion, dimensionless
Chart recorder amplitude during irradiation, dimensionlcss
Current density, microamp/cm?

Optical path length, cm

Elapsed time, sec

Specimen temperature, deg C

Atomic number, dimensionless

Induced absorption coefficient at a wavelength A, em=d
Normalized absorption coefficient, dimensionless
wavelength, R

Infrared cutoff wavelength, X

Ultraviolet cutoff wavelength, X

Density, gm/cm3

Thermal annealing time constant, sec
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TABLE I

IMPORTANT PROPERTIES OF CANDIDATE TRANSPARENT WALL MATERIALS

Thermal
Transmission Window Melting Point Conductivity
Material ‘1R - Ayy (Microns) Deg C ‘ Watts /cmwCO
Si0o L -0.16 1450 0.016
Al,04 6 -0.1k 2050 - 0.026
BaF»o 12 - 0.13 1320 0.11
MgF-, 7.5 - 0.12 1310 0.12
LiF 6.2 - 0.11 870 0.11
BeO b - 0.12% 2800 2.0

+ Private Communication with S. B. Austerman of
North American Autonetics Corp.
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TABLE II

RELATION BETWEEN IONIZING DOSE RATE AND CURRENT DENSITY
FOR SEVERAL MATERIALS AT AN ELECTRON ENERGY OF 1.5 Mev.

Density Average Atomic Average Atomic ﬁ/J
Material (Gm(cm3) Number % Weight A (Mrad/microamp-sec)

S5i0p 2.2 10 20 0.125
Al,04 4.0 10 20.4 0.1k
BaF»o L.82 2.7 58 0.13
MgFo 3.18 10 20.7 0.11
LiF 2.6L4 6 13 0.12
BeO 3.0 6 12.5 0.11
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ELECTRICAL AND OPTICAL SCHEMATIC FOR ELECTRON
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ABSORPTION SPECTRA OF CORNING 7940 FUSED SILICA AFTER 7 Mev
ELECTRON IRRADIATION TO A DOSE OF 190 MRAD
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NORMALIZED IRRADIATION - INDUCED ABSORPTION SPECTRA OF FUSED SILICA

SYMBOL | SPECIMEN MEASUREMENT CONDITIONS
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ABSORPTION SPECTRA OF MAGNESIUM FLUORIDE DURING 1.5 Mev
ELECTRON IRRADIATION

°
D 0.1 MRAD/SEC
T 40DEGC

20

INDUCED ABSORPTION COEFFICIENT, a - cm-!
)

0 | | | | | | | | |
3000 2900 2800 2700 2600 2500 2400 2306 2200 2100 2000

WAVELENGTH, A - ANGSTROMS




F1G. 20

33§ — + ‘3WIL @3sdV3

K990929-2

N3KIJ3dS Cded 40 AMOLSIH NOILvIQvYY)

008 COL 009 00S cor 00¢ 00 00t 0
T T T T T T T | L T T T T T 0
H L
ml4
—£
TYAYILNI IWIL 44 NI
— NNY¥ NYDIS vy, .d§ 0
a A
] \
T —1s
— T 1 1 T T _ m T T T T T _ T 0
L —108
— oot
T T T T u | — _ T 0
— 7o
mia
—19°0
- 3°0
Y 009 v

Wo -
l—-
~ LN312144302 NOILJ¥0S8Y GIINANI

-
=
._..d
m
o
m >
o2
0z
m
®
Yy
P2
= m
>
S 5
S
mom
O

N3aWID3dS

9NIZINOI

43



K990929-2

INDUCED ABSORPTION COEFFICIENT, o-CM -!

ABSORPTION SPECTRA OF BARIUM FLOURIDE DURING 1.5 Mev
ELECTRON IRRADIATION
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K990929-2 FIG. 22
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K990929-2 FIG. 23

ABSORPTION SPECTRA OF LITHIUM FLUORIDE DURING 15 Mev
"ELECTRON IRRADIATION
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K990929-2

IRRADIATION HISTORY OF BeO SPECIMEN
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