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I DVTRODUC TION 

The objective of this technical memorandum is to present the status of 

the analytical study on the SNAP-8 Restart System. 

description of the system studies, the aethod of simulation on the digital com- 

Specifically it contains a 

puter, the analytical techniques used, the computer results obtained, and the 

conclusions from the computer results. 

I1 SYSTEM DESCRIPTION 

A. GENERAL SYSTEM DESCRIPTION 

The system studied is shown schematically in Figure 1. The lu- 

brication and coolant (L/C) system has been omitted for purposes of clarity, 

however, the dynamic power requirement of the L/C system was not omitted from 

the consideration in the analysis of the system. 

The primary NaK loop fluid flows from the reactor through the 

boilers placed in series. In Figure 1 schematic, boiler #l is part of the 

parallel or redundant power conversion system (not shown) and acts to delay 

and danpen reactor outlet temperature trarkients. 

boiler with the PCS (power conversion system) shown. 

Boiler #2 is the active 

The flow is routed 

through a reverse flow start heat exchanger, which under startup transfers 

approximately 70 kw from the primary loop to the heat rejection loop. The 

primary loop pump supplies the pressure head required to circulate the flow 

on through the reactor. 

The mercury loop consists of the active boiler, TAA, shut-off 

valve, condenser, mercury pump, and flow control valve. Shown in Figure 1 
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is the MIS (mercury injection system) attached to the mercury loop at three 

locations; namely, MPMA suction and discharge, and boiler inlet. A more de- 

tailed description of the MIS is presented in paragraph 11, C, below. 

The heat rejection loop receives NaK flow from the start loop, 

mixes it with condenser flow and passes it, in turn, through the parasite load 

resistor, radiator and pump. For this analytical study a control valve, which 

simultaneously controls both condenser and start loop flow in inverse manner, 

was simulated. At this time it is anticipated that the start loop flow will 

be managed by a simple shut-off valve instead of being integrated with the 

condenser control valve. This expected change does not significantly affect 

the analytical results presented herein. 

B. CRITERIA 

The synthesis of the restartable SNAP-8 system was based upon 

the set of criteria shown in Table 1. Item 7 in Table 1 states that the system 

complies with the latest reactor constraints. The system's synthesis was pre- 

dicated upon reactor temperature coefficients which were estimated. Recent 

tests upon the S8DR reactor conducted at Atomics International reveal changes 

in these coefficients which produce a violation of constraints when operating' 

the system as synthesized. On the basis of the pretest coefficients, the 

system violated no constraints. 

C. MERCURY INJECTION SYSTEM 

The mercury injection system (MIS) selected for incorporation 

into the SNAP-8 is shown schematically in Figure 2. It consists of a mercury 
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reservoir, a piston actuator, and a four-way valve. The MIS functions to 

supply mercury to the MPMA at an acceptable pressure during startup and to 

provide a low pressure sink for receiving mercury during the shutdown re- 

charging process. 

The reservoir consists of a chamber, the volume of which is 

varied by a piston operated by an actuator. 

evacuated. The chamber is sealed by a bellows to permit the volume variation 

to take place. The reservoir is originally loaded with approximately 400 lbs 

of mercury. 

The back face of the piston is 

The actuator portion of the MIS consists of two bellows-sealed 

chambers filled with lube and coolant fluid and separated by a piston. The 

actuator piston area will be .495 of the reservoir piston area. During in- 

jection the differential pressure produces a force on the actuator piston 

which is transmitted to the reservoir piston producing the required mercury 

pressure at the MPMA suction at the full power condition. 

The four-way L/C valve supplying the MIS actuator is shown schema- 

tically in Figure 3. The valve is designed similar to a servo valve with a 

spool and has the capability of compensating for varying G forces in the range 

of 0-1.5 G. The four ports of the valves are connected to the suction and 

discharge of the L/C PMA and the normally high pressure and normally low 

pressure sides of' the MIS actuator. 

operating position under zero gravity. 

70 psi is reduced to 26 psi by the throttling action of the spool. 

Figure 3 shows the spool in the normal 

The L/C PMA differential pressure of 

This 
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pressure d i f f e r e n t i a l  i s  applied across the  actuator pis ton t o  produce 13 p s i  

i n  the  reservoir  and, hence, a t  the MPMA suction. 

The spool posi t ion is determined by the  force balance upon it. 

The forces i n  the spool a re  the hydraulic forces,  the spring force, and the 

spool weight. 

on an area of approximately .Oh92 i n  

and spool weight forces.  

The pressure d i f f e r e n t i a l  across the actuator posi t ion ac ts  

2 on the spool i n  opposition t o  the spring 

With a 1.5 G gravi ty  force the  spool posi t ions i t s e l f  

t o  produce 34.8 p s i  i n  t he  reservoir  (shown i n  Figure 4). 

dicated upon the MIS being located a t  the MPMA elevation. 

This value i s  pre- 

The "g-force" com- 

pensation fea ture  i s  designed t o  render the  mercury loop operation insens i t ive  

t o  var ia t ion  i n  gravi ty  force.  By t h i s  means the  mercury loop w i l l  not vary. 

The four-way L/C valve described above may be replaced by a 

standard four-way valve of the SNAP-8 appl icat ion i s  one i n  which the  gravi- 

t a t i o n a l  force is  a constant a t  a l l  times and i n  the range of 0-1.56, 

I11 S DIULAT ION D ISCUS SION 

The system described above was programmed f o r  the IBM 360 d i g i t a l  

computer and i s  designated STRAP-3 (Star tup - - TRAnsient Program), The code con- 

s is ts  of fif ty-two subroutines and represents the e l e c t r i c a l  generating system 

dynamically. EGS s ta r tups  and shutdowns can be simulated w i t h  t h i s  code. The 

code contains provisions f o r  generating a tape which, when used with a CALCOMP 

p lo t t e r ,  can p lo t  any or a l l  of the  system parameters versus time. The code 

a l so  contains provisions f o r  re ta in ing  the  extreme values of a s e t  of c r i t i c a l  

parameters and comparing them w i t h  t h e i r  constraints .  
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IV ANALYTICAL TECHNIQUES 

The method of analysis has been iterative in nature. A method of con- 

trol is devised which, on the basis of hand calculations, appears feasible. The 

control components are represented mathematically and then programmed for incor- 

poration in the STRAP-3 code. The STRAP-3 code is run through the I B M  360 simu- 

lating startup and shutdown. The runs, in the early stages, show deficiencies 

and areas for improvements. The control concept is modified and the process 

reiterated until satisfactory performance is achieved. 

The computer runs discussed above were divided into two groups. The 

first group of runs (nominal runs) were made with nominal system conditions to 

find control component design characteristics which would permit the system to 

startup and shutdown satisfactorily. Successful results demonstrated feasibility 

of control concepts but not necessarily their practicality. The second group of 

runs (limit runs) were made with system conditions reasonably biased throughout 

to find those modifications to the control components specifications which would 

permit the system to startup and shutdown satisfactorily under the worst condi- 

tions likely to be encountered under system use. 

second groups of runs indicated not only feasibility of the control concepts 

Satisfactory results of this 

but practicality as well. 

The worst conditions are described as those which drive to their 

tremes those system parameters which are designated as the most critical. 

critical system parameters with their limiting values are as follows: 

ex- 

The 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Parameters Limiting Value 

Reactor NaK Inlet Temperature Rate 

of Change Over a 5 Second Period 

Reactor NaK Inlet Temperature Rate 

of Change Over a 30 Second Period 

Reactor NaK Outlet Temperature Rate 

of Change Over a 5 Second Period 

Reactor NaK Outlet Temperature Rate 

of Change Over a 30 Second Period 

9.17°F/sec 

5.0°F/sec 

9.17OF/s ec 

5. O°F/sec 

Reactor NaK Outlet Temperature 1375OF 

Reactor Power 675 DJ 

Condenser Pres sure 40 PSLA 

Radiator Inlet Temperature TOOOF 

MPMA Suction Specific Speed 14,700 

These critical system parameters were chosen on the basis of component 

limitations and susceptibility to excursions under transient operation. The 

list is not unalterable as future system tests and possible component malfunc- 

tions may necessitate additions of other parameters. 

V COMPUTER RESULTS 

The computer runs described in Section IV were performed and the more 

significant parameters were plotted. 

down runs and limit runs are discussed in the following paragraphs. 

The group of nominal startup and shut- 
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A. NOMINAL STARTUP 

A f igure  has been presented (Figure 5) t o  indicate  the general  

method of s t a r tup  of the PCS-G a f t e r  P'NL heatup. 

do flow t o  occur. 

the FCV i s  ramped t o  the 5q0 flow posi t ion i n  25 seconds. 

the FCV by approximately 25 seconds. 

s t a b i l i z e  the system. A t  the  plateau flow r a t e  the system i s  self-sustaining. 

Following a s t ab i l i za t ion  period of approximately 10 minutes, the FCV i s  ramped 

t o  f u l l  flow i n  approximately 500 seconds. 

c losely during the power ramp since the MPMA i s  up t o  f u l l  speed. 

The FCV i s  opened t o  permit 

Upon s igna l  t h a t  bo i l e r  i n l e t  mercury l i n e  has been f i l l e d  

The ac tua l  flow lags  

The plateau flow l e v e l  (-50%) i s  held t o  

The flow follows the FCV opening 

A nominal s t a r tup  run was performed with the second b o i l e r  i n  

the PNL being the ac t ive  bo i l e r .  The s igni f icant  r e s u l t s  a re  presented i n  

Figures 6 through 10. 

the point i n  time a f t e r  the bo i l e r  i n l e t  l i n e  has been f i l l e d . )  

(It i s  t o  be noted tha t  a l l  r e s u l t s  shown w i l l  be from 

I n  t h i s  run 

the  TAA picked up the PMA's a t  6600 rpm a t  approximately 20 seconds and pro- 

ceeded t o  f u l l  speed reaching it  a t  55 seconds (Figure 6). 

reached the switchover l e v e l  of 3.5 ps ia  a t  60 seconds when the combined con- 

denser and b o i l e r  mercury inventory was 50 pounds. The depressed reactor  tem- 

peratures with the new temperature coef f ic ien ts  of r e a c t i v i t y  caused the power 

Condenser pressure 

t o  surge t o  717 KW, thereby exceeding the 675 KW maximum allowable power 

(Figure 7). The reactor  ou t l e t  temperature surged t o  1392 I?, thereby exceeding 

the 1375OF maximum allowable. 

0 

It is evident from Figure 7 tha t  a t  f u l l  pump 
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speed the temperature at the inlet to second boiler lags that of the reactor 

outlet by almost 30 seconds. 

The stabilization of the system at the plateau flow level must 

be regarded from several standpoints. 

since they are dependent upon pump speeds (Figure 8). 

inventories settle out at plateau levels at about 200 seconds after the start 

of the speed ramp. 

about 275 seconds. 

increase the NaK flow to the condenser, otherwise temperature stabilization 

would have occurred sooner. Figure 9 shows the considerable thermal inertia 

of the radiator by the large time lag between the radiator inlet and outlet 

??ne flow rates are the first to stabilize 

The boiler and condenser 

The HRL temperatures reach a degree of stabilization at 

The condenser pressure control operates at 240 seconds to 

temperatures. 

350 seconds computer run time to achieve stabilization. The power and resulting 

temperatures in the PNL show an underdamped subsystem behavior. 

Figure 6 shows that the reactor and PNL takes more than the 

This oscilla- 

tory characteristic is attributed to the small reactor temperature coefficients. 

The effects of the changes in the reactor temperature coefficients 

The old coefficients of reactivity shown in Table 2 are presented in Figure 10, 

produce power and reactor outlet temperature surges which are less than the 675 

KW and 1375 F maximum allowable values, whereas the new coefficients cause these 

limits to be exceeded. 

0 

In system operation the active boiler may be ahead of the inactive 

boiler when the alternate PCS is operated, When this occurs the inactive boiler 

acts as a thermal capacitance to reduce the power and reactor outlet temperature 
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surges which occur. 

temperature are 702 KN and 1385OF, which are below the corresponding values of 

717 KW and 1392OF when operating the other boiler. 

As shown in Figure 11 the maximum power and reactor outlet 

From the plateau level the power ramp to full power occurs over 

500 seconds with a linear increase in mercury flow rate. Figures 12 and 13 show 

the significant parameters during a nominal power ramp. The reactor power shows 

gentle undulations as a result of the drum movements with no surges such as those 

experienced during the initial startup. 

duking this period of the startup. The condenser NaK flow rate is increased by 

the HRL-FCV which operates to maintain condenser inlet pressure in the range of 

11-14 psis* 

in the radiator temperature. 

Turbine and pumps are at full speed 

The condenser NaK inlet temperature rises to reflect the increase 

B. NOMINAL SHUTDOWN 

Figure 14 shows the general method of shutting down the PCS-G. 

From full power a power ramp of 500 seconds down to the plateau level is made 

by operating the FCV in reverse of the manner of startup. 

is held for 600 seconds to allow for the system to stabilize. 

closed down to a small flow (3-776 of full flow) in approximately 133 seconds. 

The purpose of the small flow is to provide pressurization in the mercury loop 

during the recharging of the M I S .  

and M I S  valves are closed down sealing the mercury within the MIS. 

The plateau level 

The FCV is then 

After the M I S  recharging operation the F C V  

Figures 15-17 show the important parameters plotted versus time 

from a normal shutdown computer run. Figure 15 shows the reductions of mercury 
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flow starting at 10 seconds from the plateau flow down to the pressurization 

flow. 

longer self-sustaining and the TAA and PMA's drop in speed until at 72 seconds 

the switchover speed of 6600 rpm is reached and the PMA's are loaded onto the 

inverter. 

(Figure 15). 

prior to the recharging operation. 

begins with the opening of the MIS recharge valve. 

maintaining pressurization in the loop the condenser is emptied at 275 seconds. 

With the flow reduction, the system reaches the point where it is no 

The relatively unloaded TAA accelerates briefly and then decelerates 

Most of the boiler inventory is shifted over to the condenser 

At 200 seconds the recharging operation 

With the small flow (3-7%) 

The reactor power, shown in Figure 16, declines from the plateau 

power level in response to the boiler inlet temperature signals. 

let temperature exceeds the maximum allowable value of 1375 F due to the under- 

Reactor out- 
0 

damped characteristic demonstrated by the reactor with the new temperature 

coefficients. 

The primary loop flow follows the PPMA speed only while the 

other flows are influenced by both pump speed changes and actions of the 

mercury FCV and HRL-FCV (Figure 17). 

C. LIMIT TEST RUNS 

The limit runs were made to test the simulated system on its 

satisfactoriness under the worst reasonable conditions likely to be encountered 

and in their worst possible combinations. The intent was to alter the control 

settings and characteristics, if necessary, to stay under the critical limits 

of the system. Recent changes in the reactor temperature coefficients have 
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caused certain reactor limits to be exceeded. The results presented in the 

following paragraphs show the present status. 

1. Reactor Limit Test 

The reactor critical parameters listed in paragraph IV 

above were tested in a startup run and the results are shown in Figures 18-21. 

The TAA acceleration was acceptable, with the PMA's switchover and full speed 

occurring at 18 and 60 seconds, respectively (Figure 18). 

ditions in the reactor occur with the active boiler ahead of the inactive 

boiler. Figure 19 shows the power and reactor outlet temperature surges to 

The worst case con- 

0 peaks of 730 KW and 1413 F, respectively, which exceed the limits set by 

Atomics International. 

been devised as yet. 

The method of circumventing this problem area has not 

Figure 20 shows the condenser and boiler inventories with 

injection from the MIS being completed at 70 seconds and flow from the conden- 

ser beginning. 

initial HRL-FCV valve setting, until 230 seconds at which time it opens further 

to depress the rising condenser pressures. 

Condenser NaK flow remains constant, as determined by the 

Figure 21 shows the condenser inlet temperature on the 

mercury side as well as the radiator inlet and outlet temperatures. 

radiator thermal inertia is evident in the long time lag of the outlet tem- ~ 

perature when compared with the inlet temperature. 

The large 

Figure 22 shows a comparison of reactor limit test runs 

using both old and new reactor temperature coefficients. The location of the 

-11- 



nominal power and reactor outlet maximums shown as points makes evident the 

need to include limit computer runs in the system analysis of the SNAP-8 PCS-G. 

It is apparent that any system change which would result in the nominal case 

maximums being within the maximum allowable limits would not necessarily result 

in a satisfactory system. 

2. TAA Limit Test 

The TAA limit test run was conducted to test if the turbine 
J 

would develop sufficient power to pickup the PMA load and rise to full speed. 

Figures 23-26 show the results of the computer test run. Figure 23 reveals 

the TAA speed versus time. €'MA pickup occurs at 30 seconds after start of 

boiler injection. Due to the conditions imposed upon the system for this test 

the turbine at 30 seconds develops insufficient power to sustain the pickup 

speed of ,6600 rpm and therefore experiences some deceleration down to 5000 rpm. 

At this point, which occurs at 65 seconds, the rising mercury vapor flow to 

the TAA increases, reaccelerating the turbine. A second deceleration is exper- 

ienced at 150 seconds when the condenser pressure rises, thereby, increasing 

the turbine back pressure. This also is overcome by the increasing vapor flow 

and the system continues bootstrapping to the full speed of 12000 rpm at 250 

seconds. 

The boiler representation in the STRAP-3 code was modified- 

for this limit run to simulate a boiler which would have an inventory of 60 

pounds at the f u l l  power condition. Figure 23 shows the delay in vapor flow 

to the TAA with respect to boiler flow which results from this modification. 
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Figure 24 shows how the gradual TAA acceleration and re- 

sulting slow flow rate increase produces a virtual elimination of the power 

and temperature surge in the reactor. 

Figure 25 shows the condenser and boiler inventories for 

the run as well as the flow rates throughout the system. The condenser inven- 

tory rises to a peak of 110 pounds at 160 seconds and then with the opening of 

the condenser isolation valve the condenser inventory drops and the boiler 

inventory rises. The flow rates shown in this figure follow the PMA speeds 

with the PNL taking 250 seconds to reach its full flow levels. The condenser 

NaK flow was restricted by the HRL-FCV initial setting. 

The condenser and radiator temperatures showed (Figure 26) 

a gradual climb which is attributed to sluggishness of the whole system under 

the conditions imposed. 

Figure 27 compares the TAA speed and liquid mercury flow 

rate of this TAA Limit Test with the nominal test run. 

3. Condenser and Radiator Limit Test 

The condenser and radiator limit test was conducted to test 

if the condenser pressure and radiator inlet temperature, under reasonably 

extreme and unfavorable conditions, would exceed allowable limits of 40 psia 

and 700°F respectively. 

of this test. 

Figures 28-32 inclusive show the pertinent results 

Figure 28 shows that the TAA picks up the PMA's at about 

20 seconds and reaches full speed at 80 seconds. The conditioned boiler re- 
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sults in the mercury vapor flow and liquid flow to be only slightly out of 

phase, unlike the TAA limit test. 

to the initial higher HRL temperatures, the 40 pounds of mercury in the con- 

denser, and the rapid speed rise of the rotating components. 

The condenser pressure rises rapidly due 

Figure 29 shows the reactor power and temperature curves 

which exceed the maximum allowable values, however, not to the degree which 

occurs when the reactor limit test in conducted. 

Figure 30 shows the dynamics of condenser and boiler inven- 

tories. The run is started with an excessive amount of mercury in the conden- 

ser (40 pounds) as a condition of the limit test. 

from the preset opening position when the condenser pressure rises above the 

14 psia level at 210 seconds. When at 460 seconds into the run the condenser 

pressure rose 2% above the upper deadbank limit of 14 psia the MIS is opened 

and works in conjunction with the HRL-FCV to suppress the pressure back into 

The HRL-FCV starts to open 

the control range. The MIS acts to draw mercury out of the loop and, thereby, 

serves as a safety backup to condenser overpressurization. In the event future 

system testing reveals that such a backup procedure is unnecessary it can be 

removed from the programmer. The MIS action to assist the HRL-FCV in conden- 

ser  pressure suppression is evidenced by the decrease in the condenser inven- 

tory and the spiked condenser outlet flow rate curve. 

Figure 31 shows the rapidly rising condenser and radiator 

temperatures. The lack of smoothness in the condenser temperatures curve is 

due to the intermittent operation of the MIS which draws greater flow from 



the condenser. 

perature in relation to the maximum allowable values of 40 psia and 70O0F re- 

spectively. 

the limits have not been exceeded. 

VI SUMMARY AND CONCLUSIONS 

Figure 32 shows the condenser pressure and radiator inlet tem- 

It is apparent that under the extreme conditions of this test that 

The STRAP-3 code contains subroutines which compute and retain the 

extr-eme values of the most critical variables reached in every run. These 

extreme values are normalized by subtracting them from the maximum allowable 

values and the results divided by the maximum allowable values. The normal- 

ized quantities are'referred to as the margins of safety and for a system to 

be acceptable these must never be negative under any forseeable conditions 

or combinations of conditions. By normalizing the values it permits compari- 

son between them. 

The margins of safety for both the nominal and the limit computer 

test runs are presented in Tables 3 and 4. Table 3 shows positive margins 

of safety for all the critical variables with the exception of the reactor 

outlet temperature and power which show the negative values -.009 and -.06, 

respectively under nominal speed ramps and a negative value of -.OO5 for 

reactor outlet temperature on shutdown. Results of nominal runs are regarded 

as of academic interest only since acceptance of a system design will be pre- 

dicated largely upon the results of the limit test. Table 4 also shows posi- 

tive margins of safety for all critical variables with the exception of the 

reactor outlet temperature and power which show values of -.02 and -.12 
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respectively, which are significantly worse than those for the nominal run. 

The TAA Limit Test and the Condenser and Radiator Limit Test show 

successful results. For the TAA Limit Test no specific variable was being 

tested against some maximum allowable value, but rather the objective was to 

see if satisfactory startup could be achieved and this was demonstrated. For 

the Condenser and Radiator Limit Test the critical variables under observation 

were condenser pressure and radiator inlet temperature and these variables 

showed margins of safety values of +0.55 and +.04 respectively. 
The conclusions regarding the status of the PCS-G system analysis 

is as follows: 

1. 

2. 

Mathematical model of SNAP-8 EGS was prepared. 

Computer code and methodology for SNAP-8 systems analysis 

was developed. 

3. Concurrence of MIS design by all concerned was achieved. 

4. Method of startup and shutdown was synthesized which meets 

critical system constraints with pretest reactor temperature coefficients. 

5. Results with post-test reactor coefficients show analysis 

must be redone and may require modification to reactor control system. 
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