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INTRODUCTION

This is the final report on the work carried oit in the Accelerator

P Laboratory at Texas Christian University under NASA Contract NAS 8-24658.

The primary purpose of the basic research carried out under this Contract

was to develop the necessary experimental techniques and to apply them to

the study of various interactions of electrons with matter. During the period

of the Contract, sophisticated experimental techniques have beer developed

and applied to the study of inner shell. :, , :iization by electrons, bremsstrahlung

production by electrons, and electron scattering from a wide variety of targets

in the energy range up to 140 keV. Since the research initiated under this

Contract is, like all basis: research, an ongoing thing; this report although

it represents the final report on the work completed under this Contract, is

more in the nature of an interim report of work in progress.

In what follows, Section I describes the present state of the experimental

equipment and the research capabilities we have developed. Section II describes

the experiments performed and presents the current state of the results of the

work performed under this Contract. Section III lists the dissertations and

publications resulting or expected from the work initiated or completed under

this Contract. Section IV lists the personnel involved in the work supported

by this Contract.

I. EXPERIMENTAL EQUIPMENT AND CAPABILITY.

A. Beam

The electron beam is provided by a ISO keV linear accelerator which was

converted from a Texas Nuclear ISO kV Cockcroft-Walton neutron generator. The
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electron source is a commercially available electron gun. Several guns have

been used including RCA 8520A, RCA 8714, and Griffith GE50 with essentially

equivalent success. The beam is very stable over extended periods of time

and is typically collimated to a 1/32 inch spot size at the target and operated

at about 10-8 amps. The beam is steered by a pair of Helmholtz zoils and the

only focussing used is that in the electron gun itself. The high voltage is

variable from 20 to 150 keV and could probably be run at lower voltage if

desired. The high voltage supply is filtered and the ripple is less than

0.01%. The beam tube, scattering chamber and Faraday Cup can be accurately

aligned using a He-Ne laser beam. The beam tube is magnetically shielded and

the targets and detectors are well shielded by lead from the radiation produc3d

in the collimators along the beam tube. The electron beam-scatter%-g chawber

system we have developed is certainly one of the best aad perhaps the bit,st

system available for the study of the various electron interactions in the keV

energy range.

B. Scattering Chamber

The scattering chamber is a 12 inch chamber with ports at 0, 15, 30,

45, 60, 90, 135 and 270 degrees. The ports can be plugged or a detector can

be positioned at any port and view the target through a 2.5 to 10 mil Mylar

window. The target holder has three positions which can be remotely controlled.

There is a moveable arm in the chamber to which Si(Li) electron detectors, or

electron spectrometers can be mounted and remotely rotated to any desired angle.

The chamber has two lids, one of which accepts a Ge(Li) photon detector which

was especially designed to fit into the chamber. The chamber-is mounted on a

rigid frame and connected to the accelerator beam tube through a bellows. At

1 

.a

y
... Y1



-3-

the entrance to the chamber is a tee which allows a 4 inch oil diffusion pump

to ►)e connected to the system. A Faraday Cup is usually placed at the exit of

the scattering chamber to measure the beam current.

C. Detectors

The laboratory has three major photon detectors: One Ge(Li) detector,

5 mm thick with a 10 mil Be window, which mounts in the scattering chamber lid;

one Ge(Li) detector of the horizontal dipstick variety, 5 mm thick with a 5 mil

Be window; and one Si(Li) X-ray detector, a horizontal dipstick model with a

1 mil Be window. The detectors complement each other and allow us to investi-

gate with good efficiency the full photon energy range from about 3 keV to

150 keV. The efficiencies of these detectors have been accurately measured

using calibrated radioactive sources. The energies and errors of the X-rays

and gamma rays useful for calibration in our energy range are listed in Table 1

along with the measured absolute intensities. The sources and their half lives

are listed in Table 2. The efficiency versus energy curves for the Si(Li)

and the Ge(Li) detectors are given in Tables 3 and 4 and shown in Figures 1

and 2 respectively. The points for the Si(Li) detector are relative, but can be

normalized to the absolute efficiency of (72 ± 3.5)o at 22.6 keV.

We have the electronics necessary to do single parameter pulse height

analysis and two channel coincidence experiments with timing resolution of the

order of 50 nsec. Of particular note is the magnetic tape readout system on

our pulse height analyzer which greatly facilitates data handling and computer

analysis.

D. Targets

We have developed the capability of making thin targets by vacuum evap-
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oration techniques and of accurately determining their thickness by direct

weighing on a Cahn electrobalance. Of particular interest is the capability

of making thin carbon targets (5 to 15 ugm/cm2) which can be used as backings

for the evaporation of thin metallic targets. We have made numerous self

supporting and carbon-backed targets of aluminum, copper, silver, and gold

with thicknesses exceeding about 30 ugm/cm 2 . In addition we have made thin

targets (<200 vgm/cm 2 ) of rare earth oxides (57< Z <70) on thin Vyns film

backing.

II. EXPERIMENTAL RESULTS.

A. K-Shell Ionization Cross Section Measurements.

Absolute total cross sections for K-shell ionization have been measured

for copper from 20 keV to 135 keV, for silver from 30 keV to 140 keV, and for

gold from 90 keV to 140 keV. The results are given in Table S. In addition to

the run dependent errors, there are listed additional systematic errors in

Table 6. A full discussion of the experiment and data analysis is contained in

the Ph.D. dissertation submitted to T.C.U. by Mr. Doyle V. Davis which, due to

its length, will not be included in this report.

The results are presented graphically in Figures 3, 4, and 5 where

comparison with the experiments of Motz and Placious 7 , Rester and Dunce 8,

Fischer and Hoffman 9 , and Hansen etal 10 and with the theoretical work of Arthurs

and Moiseivitch (AM) 1 , Gryzinski 2 and Kolbenstvedt 3 is made. The agreement

among experiments is generally within the systematic errors except for the data

of Hansen etal 10 , which seems to disagree with other work especially at higher

energies. Except very near the threshold, the theory of Kolbenstvedt is in good

agreement with our data. The agreement with AM appears good for silver, but
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this agreement may be fortuitous since the agreement with copper is not very

good. The theory of AM also does not agree very well with recent aluminum

data of Hink and Ziegler4 . The agreement with Gryzinski's classical theory is

certainly as good as that with the AM quantum mechanical calculation as far

as shape is concerned. Increasing the Gryzinski prediction by about 20 to 25%

would bring it into good agreement with the experiment 4 . This, we feel, is a

very interesting result and suggests that as good an estimate of the K ioniza-

tion cross section may be provided by Gryzinski's or Kolbenstvedt's calculation

as by that of AM. In no case, however, is the agreement between theory and

experiment completely satisfactory. More experimental work in this field is

certainly called for to resolve these difficulties. We hope to undertake a

more complete study in this energy range for a wide variety of atomic numbers.

B. L-Shell Ionization Cross Section Measurements.

Absolute total cross sections for the 
LIII- 

shell ionization of gold

have been measured from 30 keV to 140 keV. The results are presented in Table 7.

The additional systematic errors are shown in Table 8. The data are presented

graphically in Figure 6 where comparison can be made with the theory of Gryzinski

and Kolbenstvedt. Again, agreement is not bad although the theoretical curves

lie below the measurements in both cases.

The work on K-shell and L-shell ionization is being prepared for publi-

cation in Physical Review. While further analysis of the data is underway, it

is not expected to systematically alter the results given here. The analysis of

the errors will be refined and some multiple scattering corrections will be made

which affect the lower energies somewhat. The work adds considerably to our

.
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knowledge in this important field and clearly points out the need for further

precise experimental work for a wider range of atomic numbers as well as more

theoretical work, especially near threshold.

C. X•-Ray Intensity Ratios.

Ka/K0 X-ray intensity ratios have been measured for a variety of atomic

numbers. The results have been published in Nuclear Physics A164, 219 (1971)

and in Physics Letters 4 (to be published) acid are presented in Table 9 and

graphically in Figure 7. In the figure, comparison is made with other experi-

ments and with the calculations of Scofield5 and Rosner and Bhalla6 . The ratio

for copper has been measured with the Si(Li) detector and the error in this

point reflects the great improvement which results from the better resolution of

the Si(Li) detector. Clearly, a sensitive test of the calculations could be

made for atomic numbers in the 24<Z<32 region and we intend to undertake these

further measurements. Over the range measured, the theory is systematically

higher than the experiments. Agreement between experiments is generally good

except for low Z where our results disagree with the work of Ebert and Slivinskyll.

D. Bremsstrahlung Spectrum Measurements.

Extensive data has been and is being taken on the bremsstrahlun inter-

action. Incident electron energies of 50, 100, and 140 keV, photon emission

angles of 30, 45, 60, 90, and 135 degrees, and targets of carbon, aluminum,

copper, silver, and gold have been investigated. The analysis of the data is

still in process and these results should form a part of the Ph.D. dissertation

to be submitted to T.C.U. by Mr. David Heroy. Some typical bremsstrahlung

spectra, plotted by the IBM 1800 computer from some of our data tapes, showing
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both target in and target out runs are in Figures 8 through 16. It can be

seen that the end point of the spectrum is well resolved and that the background

is not excessive. The peak in the background, visible at 140 keV in the Ag and

Au data (Figures 13 and 16), has been removed by increasing shiesding as shown

in the Al data (Figure 10) taken subsequently. Analysis of these spectra is

underway, and involves folding in efficiency and calibration runs as well ris

normalization to total incident charge before precise cross sections can be

given. These results should provide new extensive experimental information for

critical comparison with the existing calculations and with other experiments.

E.	 Inelastic Electron Scattering.

The work done on inelastic electron scattering and the essential conclu-

0 sion that the amount of inelastic scattering we can measure in our energy range

is not significant has been summarized in the November 1970 quarterly progress

report, and will not be repeated here.	 We are still, however, interested in a

study of Moller, scattering and believe we should be able to obtain some signifi-

E	
6

cant results vn this process with our present apparatus.

F.	 Coincidence Experiments.

The results obtained on the measurement of the coincidence between the

inealstically scattered electron and bremsstrahlung are reproduced in Figure 18.

These results have been discussed in the February 1971 quarterly progress report.

They were made at 140 keV incident electron energy and photon angle 270° from a

165 Pgm/cm2 silver target.	 Rather than simply run for additional statistics on

these points, we felt that better electron energy and angular resolution were

k sv,11 needed.	 Hence, we have designed and built a new electrostatic electron

spectrometer.	 This spectrometer, while similar in design to the previous one,



is designed to bend the electrons through 120' in the horizontal plane, The

angular resolution is thus considerably improved and the energy resolution also

looks significantly better than that of the old spectrometer. As yet, however,

no additional coincidence data has been taken using this spectrometer. One further

remark concerns the timing resolution. We are able to get about 50 nsec

resolving time with our present electronics. The state of the art of timing

with solid state detectors has now improved to the extent that we could

perhaps gain a factor of S to 10 in resolving time by using a Canberra Extrapo-

lated Zero Strobe timing circuit on each coincidence channel. Such a gain would

improve the true coincidence to accidental rate by about this factor and certainly

make the coincidence count rate significantly easier to detect.

We have not been able with our system to detect coincidences between

electrons and K X-rays since the expected cross section appears to be well below

the present sensitivity of our apparatus.

While much work remains to be done with coincidence measurements, we

believe that we have made a significant advance in elucidating the experimental

difficulties involved in such measurements. We will continue work in this

important field and expect that significant results will be presented as a

Ph.D. dissertation by Mr. Jerry Faulk.

III. PUBLICATIONS.

The following publications,apart from the quarterly progress reports,

have resulted from the work supported by this contract:

1. Inelastic Electron - Atom Interactions from SO to 1SO keV, Proccedings

of the Second Ccnference on the Use of Small Accelerators for Teaching

and Research, USAEC - Conf 700322, p.379 (1970).
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2. Ka/KS X-ray Intensity Ratios from Electron Bombardment, Bull. Am. Phys.

Sec. 15, 1304 (1970); and

Nuclear Physics A164, 219 (1971).

3. Measurement of Inner Shell Ionization Cross Sections for Cu, Ag, and Au;

Bull. Am. Phys. Sec. 15, 1305 (1970).

4. Ka/KS X-ray Intensity Ratios for 57<Z<70 from Electron Bombardment. Bull.

Am. Phys. Sec. 16, 546 (1971); and

Physics Letters A (to be published).

S. Inner Shell Ionization of Copper, Silver, ana Gold from Electron Bombardment;

Ph.D. dissertation by D. V. Davis (1971), unpublished. Paper in preparation

for submission for publication in Physical Review A. In addition, further

publication can be expected from work in progress at this time wii h was

begun under this contract.

6. Bremsstrahlung Cross Section Measurements at 50, 100, 140 keV From Carbon,

Aluminum, Copper, Silver, and Gold; Ph.D. dissertation of D. Heroy expected

January 1972, and associated publications.

7. Measurement of the Fundamental Bremsstrahlung Cross Section Differential in

Photon Energy and Photon Electron Angles; expected Ph.D. dissertation of

J. Faulk.

IV. PERSONNEL.

The work reported here was performed by the following people who have

received direct financial support from this contract: Dr. C.A. Quairles, Prin-

cipal Investigator; Dr. V.D. Mistry, postdoctoral fellow; Dr. D.V. Davis,

graduate student; Mr. D. Heroy, graduate student; and Mr. J. Faulk, graduate

student.



TABLE CAE IONS.

1. Energies and intensities of trays and X-rays useful in efficiency measurements

on solid state detectorp from 4.5 to 166 keV.

2. Half lives and calibration accuracy of sources used in efficiency measurements.

3. Relative efficiency of Si(Li) detector.

4. Absolute efficiency of Ge(Li) detector.

S. K-shell ionization cross sections of copper, silver, and gold from 2S to 140 keV.

6. Systematic errors in K-shell ionization cross sections.

7. LIII-shell ionization cross section of gold from 20 to 140 keV.

8. Systematic errors in L HI -shell ionization cross sections.

9. Ka/KSX-ray intensity ratios for 29<Z<79.
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TABLE I.	 ENERGIES AND INTENSITIES USED IN EFFICIENCY MEASUREMENT

Energy8Y Type ofYP Parent IntensityY
} (keV) Radiation Nucleus (Photons per 100

Disintegrations)

4.47 XL
137 Cs

1.25 ±.01

. 5.95
x 

5S Fe
25.7 +.l

6.46 XK
S7 Co

S4 +2

i
10.27 XL 203 Hg

5.63 +.08

11.887 +.004 X
241 Am

0.80 +.Oa-

13.9 +.1

L

XLa
241 Am

-

13.50 ±.54

ff 14.408 +.00S- y 57Co 9.5 +.2-

'. 17.8 ±.1 XL8
241

Am 18.40 ±.74
rx

20.8 +.1- X
Ly

241 Am
5.0	 +.2'-

22.581' XK
109 C

102 +4

26.3'r ±.01 y 241 Am
2.5 ±.2

31.635 XK
133 B

84.2 +9.0•

32.88'
x 

137 
CS 6.88 +.04

33.20 ±.01 y 241 Am
0.14 ±.04

34.169 XK 139 C
81.5 +8.2

43.42 ±.02 y 241 Am
0.073 +.007

53.18 ±.04 y 133 B
1.96 ±.22

SS.S4 +.02 y 241 Am
0.020 ±.002

S9.S36 +.001 y 241 Am
35.3 +.5

74.60' XK
203 Hg

12.8 +.2
a
L

81.1 ±.3 y 133 B
33.5 +4.3

87.7 ±.2 y 109 C
3.91 +.08

T
98.97 ±.03 y 241 Am

0.021 ±.002

U



03.0 +.1

03.48

22.07 +.03

36.43 +.05

60.66 ±.06

65.84 ±.03

Table I Cone.

241 Am

241 Am

S7 Co

S7 Co

133 B

139 
Cc

0.019 +.002

0.08 ±.02

85.6 +.2

10.6 +.2

0.626 ±.074

79.91 ±.07

Y

x 

Y

Y

Y

Y

t

1

n x 1

1

1

1,f e
n.

! 1

's

i
4

TABLE 2. HALF-LIVES OF SOURCES USED IN EFFICIENCY MEASUREMENT

Source Half-life Calibration
Uncertainty 

55 Fe
2.7 ±.1 y 3.8%

57 
Co 270 +2 d 2.2%

109 C
462.6 +.4 d 1.4%

133 B
10.66 ±.12 y 2.8%

137 Cs
30.0 ±.5 y 2.9%

139 Cc
137.50 +.30 d 2.3%

203 Hg
46.59 +.OS d 1.7%

241 Am
433 ±2 y 1.9%

a Represents one standard deviation.



Table 3. Relative Efficienc y Data for Si(Li).

En_ ergy (keV) Efficiency (^)

4.47 47.9 + 2.3
5.95 66.3 4.2
6.46 75.0 3.9
11.8 65.0 2.3
11.9 74.7 4.4
14.4 77.1 2.7
13.9 70.4 3.3
17.8 70.5 3.3
20.8 55.5 2.6
26.4 39.0 1.8
22.6 55.7 1.7
32.9 30.9 1.0
34.2 23.5 2.5
59.5 4.59 .12
74.6 2.29 .07
88.0 1.61 .03

Absolute Efficiency at 22.6 keV is 72+3.5

Table 4. Absolute Efficiency Data for Ge(Li).

Energy (keV) Efficiency C%2

5.95 61.4 + 4.8
6.46 63.4	 3.6
10.27 60.6	 2.7
14.4 69.6	 2.8
13.9 70.2	 4.5
17.8 74.2	 4.1
20.8 '75.0	 3.9
22.6 76.9	 3.1
26.4 84.0	 7.3
32.9 95.5	 3.7
34.2 93.3	 9.8
43.4 87.4	 9.3
59.5 95.0	 3.1
74.6 90.7	 3.2
87.7 74.9	 1.8

122.1 45.7	 1.5	 -
136.4 36.6	 1.6
165.8 23.0	 .8



Error Source Cu AS Au (^)

Solid angle 2.5 2.5 2.5
Detector efficiency 5.0 5.0 5.0
Fluorescence yield 2.9 2.3 3.0
Target angle 2.0 2.0 2.0
Faraday cup efficiency 5.0 5.0 5.0
Target thickness 20.0 5.0 5.0

Total 22.0% 9.5% 9.7%

y

.K

Energy (keV)

Table S.

Cu

K-shell

(barns)

Ionization Cross

Ag (barns)

Sections.

Au (barns)

25 450 + 7

30 477 + 6 26.0 + 0.6
40 445 + 4 50.4 + 0.9
50

_
63.9 + 1.0

60 428 +13 68.7 +	 1.1
80 391 + 3 68.6 + 0.7
90 2.5 + 0.3
100 325 + 4 69.6 + 0.6 4.5 + 0.1
120 68.4 + 0.7 6.0 + 0.1
135 299 + 2
140 66.1 + 1.0 6.6 ± 0.1

Table 6. Percent Systematic Errors in K-shell Ionization Cross Sections.



A

Table 7. Gold LIII-sh-=ll Ionization Cross Sections.

Energy keV)AuL	 barnsIII

	

20	 702 + 84

	

2S	 690 + 3S

	

30	 706 + 7

	

40	 69S + 8

	

60	 643 + 7

	

80	 5S2 + 12

	

100	 509 + 16

	

120	 460 + 6

	

140	 4S0 + 7

Table 8.	 Percent Systematic Errors in LIII
Ionization Cross Sections.

V

Error Source	 Au (^)

Solid angle 2.5
Detector efficiency 5.0
Fluorescence yield 9.4
Target angle 2.0
Faraday cup efficiency 5.0
Target thickness 5.0

Total 13.0%

Table 9.	 K^/K^	 X-rM Intensity Ratios.

Z K f K

29 7.88 +	 .11
30 7.52 +	 .45
47 4.72 +	 .09
50 4.68 +	 .09
57 4.26 +	 .08
58 4.02 +	 .08
59 4.04 +	 .08
60 4.14 + .10
64 3.88 +	 .09
66 3.79 +	 .08
67 3.92 +	 .08
68 3.94 + .10
70 3.70 +	 .08

L 79 3.63 + .25



FIGURE CAPTIONS.

1. Relative efficiency of Si(Li) detector.

2. Absolute efficiency of Ge(Li) detector,

3. Copper K-shell ionization cross section versus incident electron energy.

4. Silver K-shell ionization cross section versus incident electron energy.

S. Gold K-shell ionization cross section versus incident electron energy.

6. Gold L 
III- shell ionization cross section versus incident electron energy.

7. Ka/KS X-ray intensity ratios versus atomic number.

8. Bremsstrahlung spectrum at 60° for 50 keV electrons on aluminum.

9. Bremsstrahlung

10. Bremsstrahlung

11. Bremsstrahlung

12. Bremsstrahlung

13. Bremsstrahlung

14. Bremsstrahlung

15. Bremsstrahlung

16. Bremsstrahlung

spectrum at

spectrum at

spectrum at

spectrum at

spectrum at

spectrum at

spectrum at

spectrum at

60° for 100 keV electrons on aluminum.

60° for 140 keV electrons on aluminum.

60° for 50 keV electrons on gold.

60° for 100 keV electrons on gold.

60° for 140 keV electrons on gold.

45° for 50 keV electrons on silver.

45° for 100 keV electrons on silver.

45 0 for 140 keV electrons on silver.

17. Bremsstrahlung cross section differential in photon energy, photon angle and

electron angle versus photon energy at O Y of 270 0 for 140 keV electrons on

silver.



O

ENERGY	 KsV)

F1 Cv. I



../Iol	
i .-

t^

4

°/. EFFIGIENC Y



Goo

ji

If

3(

^^ (BARNS)

900

COPPE R, K-SNCLL IONS ZATI ON

L13ENST VED'r
Zoo I
	

AM- 	 J ;-1UR5 a m I SE! wiTSG H

G — CYRY71NSKI

20	 3o	 10 So	 60	 to	 8o	 90 /vo 110 129 '30 1^0

CN"E RGY ( keV}

Fl Cv.  3



,y

Sys	

6BARNS)
	

SILVCh N — SHELL 10NI ZAT10U
$U

.3 K 9
7(4,

ao - i^
AM

•

•
•

O / "'H 15 F X P.

o F15CI4c-K ^ HoFi: mvj
D R FSTEK { DAIUG E

• HgN61 N at 41.

KOLW-NSTVEDT (REVISED)
I< — KO L3EM5TV FDT

AM - ARTHVP S ^ M015C1 WIT5CH

G - GRYZ I NSJ^l

f _
s0	 90 /00 1/0 /20 130 /4t0 /SO

:NE'R6Y ( KeV)

FI Cy.  4

.	 .



/0

-a

6

a

U^ (Lj 4 R AI)	

It A	 }^	 1 #	 r 1 1 .I I 1	 .	 .	 .. /^ ^^ . Ak. i	 t

o TNt5 EXP.

a M OTZ ^ PIAC OV5

U RESTER 1 DANCE

I<R- KOLBENSTVEDT (REVisr-D)

90	 IDO	 Aeo	 /#o	 /b o	 i000 	Zoo

ENERGY (KeV)

Fi G. S

.^s

3

.r

2



goo

700

boo

,x"00

400

300

(aAROS)	 GOLD L ill - SHELL IONIZATION

0

E< — I^OLBENS r v^Dr
G — GY RYZ! NSJ<i

go 30 40 So 60 10 90 90 /00 i10 /ZO IJO /*0

ENERGY (<<ev)

F1 G► . (o



^j

7-

9

a

07
p

XA6

Y

5

4

3

Y

4t

i^'

Z



i

0	 32	 64	 35	 12A	 1fi0	 192	 224

CHANNEL NUkER
Fl ^.

>

e

i.

iOCn

5
5
4

3

2

i00

F^

J
4
3

11

^ 4
^ 3

2

i^

6
5
4

3 1

i	 -

1

1

fI
i

i	 ^,



N

N^

I ft

r

a^=	 iaoo^

AL

100 ke v
bpo

x^
IkSk

K
x

XN)

lrdlv
.x

i
.	 i

I



1 uLILJL

cJ.

J`

r^

2

WOOL

{{:!!7
a

I

n;.?

,{ co

..:D
lJ
U 3

2

1U'•1
'rcJ

I

r

I

7

i 41t ^ -^+^-^-^--^1--^--^--^i^--^-^.^I^1^--^-1 	 i0-w--t-^-•lt+^-i1^Jl

A	 32	 64	 128	 iEo	 im	 224	 256

CHANNEL NUMBER..
FlC.lu



soo

z 6^ 5
^ 4

U 3

2

6
5
4
3

	

4	 i^AN

'	 S
4

3

2

6
5
4

3

	"I'	 2

M ^ 	 SPECTRUM 1210770

Au

N
K

K

SO KeV

M

M	 AIM
K
M

x

+
++

+	 x

+

+

x
♦♦+ ♦

+
+	 +F + i+	 +	 x

4#+ 
+ +^' +++ + ♦+♦ 	 +	 x

+	 +	 +	 +	 +	 K	 K
+	 ++	 +	 x+ x

++ +	 +	 +	 + + + +	 + ^► s
+	 + + ++ ++	 + M• x xx+agc 4+K

++	 + + +	 +	 4"^.
+	 +	 + ++ +	 +	 +fK

+	 + ++ +4Kx

+	 +	 ++x	 x

2

1 4--
0
	

32	 64	 96	 1m	 1S0	 192	 M'4	 256

CHANNEL NUMBER

^I



1000OL

C

^i

2

2

1000

7

J
4

3

. 2

100^

z 65
cD
U 43

2

10

6
5
4

3

r

SPECTRUM 1211850
K

All	 Au

Iuo Kev

(o D•

.	 "li it` w
%A.
NK

K

K

+ ++
+ +

+	 t i+
+	 +	 +
+++ + +.	 K

t+ ++ +
t	 +++ +	 K

+	 +	 +
	+ ++ 	 +	 414	 W+ K	 +

+	 + +	 + K	 l0i +	 + K
+	 + + KKK + K+	 id.

	+ 	 ++ ++ +K K	 Kit K	 M K+ k

+	 +► kk+ + OW N"++lt.. +	 )4

+	 +	 +	 K +	 * W . K tt+

2

i
0	 32	 64	 9G	 1m	 ]W	 1S!	 M1	 C'56

CHANNEL NUMBER
Fl&. ^z



	

i0000^	 .

SPECTRUM 121288n
4 %x
3. ^u
2K	 140keV

009

	

WOO	 x

All

	

s	 wN

	

J	 x^^+	 ^t

	

3	 +

+

++	 ++ +'+++	 %^+Kx
Aw

	

I 

l-1 7

	 +*

^4..	 x

U 3

++

4+ +
1	 ++

+++ +	 +	 x
+	 +	 x

^'	 ♦ + 	 +	 ♦+ + 	 x

	

5	 +	 + ++ x x+	 + + +

	

4	 M++ +r+ N4+xx x + xx Nt	 +

31	 L	 1 v i iii	 A.WWW

2

i



sxn	 SPECTRUM 31208505	 x
4	 '	 K

3	
♦ 	 K	 A Cs

~	 "	 5o kc

09

Ic

♦

s
5
4	 •

3	 "

C	 +

	

1QL^	 ^

U-1
^^ 6

5	 +
C::3 4	 "

K

2 + ^ 	+ + ♦ ♦ + 	 +	 +x ♦ ++♦ a ♦+
	x 	 ♦  ++	 + + ♦ + ++ f♦ 4- ♦ ++ 	 + ♦ 	 •	 kw +^+ +

♦ 	 ` ♦+ 	 ♦ 	 +♦ ..+ 	 ♦ 	 ..

	

1	 +	 +	 +	 ♦ 	 x	 +

6	 `	 ♦
5	 +
4
3

L)

1
0	 32	 64	 96	 1m	 160	 192	 224	 256

CHANNEL NUMBER
FI&I 14



10000,

6
S
A

3

2

^i
J
A

3

f

k

2

10^

^ 7f

=

E

4

3

2

i
s
S
4
3

UM 3121880

A&
ioo uW

w	 x

^*4
	 SPECTR

M

WNW

r

x	 x

•

•'^	 •	 •+ +.+ +	 +^'	 + •	 + + •'i. x++x x

.+ x	 . + + +	 +	 • + •	 u+
++	 +	 M

•	 + +	 +	 + w w«
+	 +	 ac

+

x

I

I

I

i

2
i

1

A

	 0	 32	 64	 36	 128	 160	 me	 224	 256
1

CHANNEL NUMBER
FIG• Is



i

6
5
4
3

a

s
5
4
3

2

C

r,'
4

3

2

10IJ
F
5
4

3

2

1
0	 32	 64	 96	 12D	 9F0	 1m	 224	 256

CHANNEL NUMBER
FI (r , llo



20 10 60 

Fig. 17 

1; = I~O l(eV 

9 = 270· r 

I 
80 100 12.0 

E
t 

(#(eV) 


	GeneralDisclaimer.pdf
	0012A01.pdf
	0012A02.pdf
	0012A03.pdf
	0012A04.pdf
	0012A05.pdf
	0012A06.pdf
	0012A07.pdf
	0012A08.pdf
	0012A09.pdf
	0012A10.pdf
	0012A11.pdf
	0012B01.pdf
	0012B02.pdf
	0012B03.pdf
	0012B04.pdf
	0012B05.pdf
	0012B06.pdf
	0012B07.pdf
	0012B08.pdf
	0012B09.pdf
	0012B10.pdf
	0012B11.pdf
	0012B12.pdf
	0012C01.pdf
	0012C02.pdf
	0012C03.pdf
	0012C04.pdf
	0012C05.pdf
	0012C06.pdf
	0012C07.pdf
	0012C08.pdf
	0012C09.pdf
	0012C10.pdf
	0012C11.pdf
	0012C12.pdf

