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SUMMARY

This final report on Project NASW-1863-Mod 1 contains

a description of the results obtained principally from a

series of 10 channel IR spectrophotometer observations of

the 1.5 µm window of Jupiter. These results show that the

NH3 and CH4 absorptions increase with increasing air mass
along N-S traces taken at the central meridian of Jupiter

and decrease with increasing air mass along E-W traces taken

along the Jovian belts and zones. These variations in the

absorp tions over the disk indicate that the NH3 and CH4 bands

are being formed in a scattering atmosphere rather than an

atmosphere with a simple reflecting cloud layer. The results

also show that the absorptions over the South Tropical Zone
are c oils iderab ly greater than for the rest of the features

at equivalent air mass while the absorptions over the Great

Red Spot are considerably less than for other features.

The data were also used to show that the Minnaer t

function can be used to describe the limb darkening of Jupiter,

at least at 1,5 µm, and that the scattering layer probably

behaves like a Lambertian surface.
O

Some preliminary observations of Titan in the 6000 A -

2.3 µm region and 10 channel da ta programs for Jupiter/Saturn

and point objects are briefly discussed.
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'	 CAPTIONS,

v° Figure 1.	 The spectrum of Jupiter between 1.35 and 1.65 µm
according to Cruikshank and Binder (1968, 1969).

The bars superimposed on the spectrum indicate the

equivalent: wavelength passbands of the first eight
cells of the 10 channel spectrophotometer. 	 Due to

^.^ strong CH4 absorptions, Jupiter is essentially black
for several tenths of a pm beyond 1.65 µm.	 As a

a^ result, the passbands for the ninth and tenth cells,
Pt; which are centered at 1.67 and 1.70 pm respectively,
x are not shown.

Figure 2.	 Schematic representation of Jupiter as it appeared

during'April-June, 1970.	 The circles superimposed

on the various features indicate the relative size

Ell and positions of the areas observed with the 10

channel spectrophotometer. 	 The observations of the

GRS and LWO' s (shown on the north edge and the south
r edge of the STB respectively)  were made at the

centers of these spots when they were at a variety

of distances from the CM.

Figure 3a. Percent absorption of NH3 as a function of Jowian

air mass for theP oints observed on a N-S trace

along the CM. The percent absorption was computed
t using the data obtained from the 1.47, 1,50 and

1.53 pm passband cells (see Table 1). The filled

circles represent the data for belts and polar
regions. The open circles represent the data for

the zones. The STrZ (at 2.05 AM) and the EZ (at
2.00 AM) lie above the curve defined by the dark
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features while the NTrZ (at 2.35 AM) may fall on the
dark feature curve.
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Figure 3b.
tr,

Percent absorption of NH3 as a function of Jovian

air mass for the points observed on a N-S trace

along the CM. The percent absorption was computed

using the data obtained from the 1.50 and 1.53 pm

passband cells only (see Table 1). Otherwise,

same as Figure 3a.

Figure 4. Percent absorption of NH 3 as a function of Jovian

air mass for points observed along individual belts,

zones, or following a spot across the disk. The

percent absorption was computed using the data

obtained from the 1.47, 1.50 and 1.53 µm passband

cells (see Table 1) .

Figure 5. Percent absorption of NH 3 as a function of Jovian

air mass for points observed along individual belts,

zones, or following a spot across the disk. The

percent absorption was computed using the data

obtained from the 1.47, 1.50 and 1.53 pm passband

cells (see Table 1).

Figure 6.	 1.5 pm NH3 absorption map for the period April -

June, 1970. The contours are in percent absorption

as computed using the data obtained from the 1.47,

1.50 and 1.53 µm passband cells (see Table 1).

Figure 7. Percent absorption of CH4 as a function of Jovian

air mass for points observed on a N-S trace along

the CM (see Table 1).

Figure 8.	 Percent absorption of CH4 as a function of Jovian

air mass for points observed along individual belts,

zones or following a spot across the disk (see

Table 1).
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Figure 9.	 Plot of log (B s cos e) versus log (cos i cos e) for
%= 1.57 Nm and a = 5°2. The data plotted are for

points observed on a N - S trace along the CM.

Figure 10. Plot of log (B s cos e) versus log (cos i cos e) for
% = 1.57 ^A and a = 5°2. The data plotted are for

points observed along the STrZ.
Figure 11. Plot of log (B s cos e)	 %versus log (cos i cos e) for

X = 1.47 µm and a = 5 °2 . The data plotted are for
points observed on a N- S trace along the CM.

Figure 12. Plot of log (B s cos e) versus log (cos i cos e) for
X = 1.47 µm and a = 5°2. The data plotted are for

points observed along the STB.

Figure 13. Relative reflectivity	 of Titan (crosses) and the

center of the disk of Saturn (filled boxes) as a
function of wavelength. The Titan data were

normalized `.o the Saturn data at about 0.7 µm.



FINAL REPORT

CONTRACT NASW-1863-Mod 1

SPECTROSCOPIC OBSERVATIONS OF THE PLANETS

1.	 INTRODUCTION

During the period of performance on Contract NASW-1863-

Mod 1 (V6097) a very successful series of observational runs

were made on Jupiter, runs which have provided new data on

the Jovian photometric function and on the distribution of

the NH3 and CH4 over the disk of the planet. Additional

series of observational runs were attempted in order to

obtain colorimetric data on Jupiter, Saturn, Saturn's rings,

Uranus, Neptune and the brighter satellites of the Jovian

planets. However, exceptionally bad weather prevailed during

these runs, and as a result only a few preliminary sets of

data were obtained.

In addition to the observational and data interpre-

tation activities carried out on Contract NASW-1863-Mod 1

(V6097), 10 channel data reduction programs were developed

for Jupiter/Saturn and point objects (i.e., satellites,

Uranus, and Neptune).

A detailed discussion of the observational runs, the

results obtained from the observations, and data reduction

programs are given in the following sections.

IIT RESEARCH INSTITUTE
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2.	 OBSERVATIONAL RUNS

The observations made during this program were carried

out with the IITRI 10 channel IR spectrophotometer at the
Lunar and Planetary Laboratory's Catalina Observatory, the

McDonald Observatory, and the Kitt Peak National Observatory,

The Catalina observations were made with the 61"
reflector and were carried out on 6 out of 12 assigned nights
between April 3, and June 15, 1970 (6 nights were cloudy).

During this period, 86 sets of 2.3" resolution (-w 1/20 the
apparent diameter of Jupiter) measurements were made of the
1.5 µm window where the NH 3 absorptions have been shown to

show disk positional and perhaps time dependent variations

(Moroz and Cruikshank, 1969). The spectral resolution was

300 A/cell and the wavelength range observed was 1.40 - 1.70 µm

(see Figure 1). As is schematically shown in Figure 2, the

data were taken on the CM (Central Meridian) , near the evening
and morning limbs (or terminator) and halfway between the CM
and the morning and evening limbs for the NPR s (North Polar

Region, south edge), NTrZ (North Tropical Zone), NEB (North
Equatorial Belt), EZ (Equatorial Zone), STrZ (South Tropical
Zone) , STB (South Temperate Belt) , and the SPR, n (South Polar
Region, north edge). Measurements were also made of the GRS

(Great Red Spot) and the LWO' s (Long Enduring White Ovals) at
a variety of distances from the CM, the SEB (South Equatorial
Belt) on the CM and the NPR and SPR near the respective poles.

The McDonald runs were made with the 82" reflector and
covered the periods of November 7-12, 1970, and December 15-20,

1970. The puroose of these runs wa's to obtain colorimetric
O

E	 data W 6000 A - 2.3 µm, 4% 1000 A) on Saturn, Saturn's
rings, the brighter satellites of Saturn, and Uranus. Except-
ionally poor weather prevailed during both runs and only a few,

r
r

N

i
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FIGURE 1	 The spectrum of Jupiter between 1.35 and 1.65 µm
according to Cruikshank and Binder (1968, 1963).
The bars superimposed on the sprectrum indicate the
equivalent wavelength passbands of the first eight
cells of the 10 channel spectrophotometer. Due to
strong CH4 absorptions, Jupiter is essentially black
for several tenths of a µm beyond 1.65 µm. As a
result, the passbands for the ninth and tenth cells,
which are centered at 1.67 and 1.70 µm respectively,
are not shown.

0^



FIGURE 2 Schematic representation of Jupiter as it appeared
during April-June, 1910. fhe circles superimposed
on the various features indicate the relative size
and positions of the areas observed with the 10
channel spectrophotometer. The observations of the
GRS and LWO's (shown on the north edge and the south
edge of the STB respectively) were made at the
centers of these spots when they were at a variety
of distances from the CM.
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preliminary sets of data were obtained under very poor obser-

vational conditions. However, the data obtained on Titan

represent the first 1-2.5 pm observations of this object and

as such are of value despite their preliminary nature.

The final run was carried out on May 9-11, 1971 using

the 50" reflector at KPNO. The purpose of this run was to
O	 O

obtain c o lorime tric data W 6000 A - 2.3 µm, pa — 1000 A) on

Jupiter, the Galilean satellites, Ur. anu a and Neptune. Poor

seeing and clouds limited the observing time to about 1 hour

during which 16 sets of 2 11 .8 resolution measurements were made

of Jupiter.

3.	 THE 1.5 µm JUPTERD_ ATA

The data acquired on the 1.5 µm window of Jupiter has

provided more extensive data and much more complete coverage

(see Table 1 of Moroz and Cruikshank) at higher resolution (6

times the highest areal resolution obtained by Moroz and

Cruikshank) than hitherto available on the NH3 and CH4 distri-

bution over the disk of Jupiter as defined by the 1.5 µm bands.

They also have provided an empirical definition of the limb

darkening of Jupiter in the 1.5 pm region, and, as a result,

provided new information which will be of use in the theoreti-

cal analysis of the structure of the Jovian atmosphere and the

analysis of the thermal balance of the planet.

3.1.	 THE DISTRIBUTION OF NH 3 OVER THE DI SK OF JUPITER

The spec trophotometric measurements of the 1.5 pm

window provided measurements of the percent absorption of the

combination of the overlapping 1.51 and 1.53 µm r::*rcng bands of

NH3 . Because the 10 channel does not provide a continuous

spectrum, it is impossible to obtain the equivalent widths of

IIT RESEARCH INSTITUTE
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the absorption bands. As a result, the measurements are

discussed in terms of the percent absorption as indirectly

measured by those cells whose equivalent passbands lie within

the spectral region of the bands.

According to Jovian and laboratory spectra (Kuiper,

1964; Cruikshank and Binder, 1968, 1969) these 1.51 and 1.53 t;m

bands extend from about 1.45 pm to 1.56 dam. Thus the 1.47,,

1.50, and 1.53 M passband cells cover the region of interest

and provided the data needed to measure the total absorption of

the bands. However, the 1.44 M CH4 band overlaps the 1.45 µm

cell. As a result, computations of the NH 3 absorptions were

made using the data from the 1.50 and 1.53 pm cells only, and

then using the data from the 1.47, 1.50 and 1.53 pm cells in

order to evaluate the effects of the overlapping CH4 bands on

the results.

The continuum level, which is needed in order to com-

pute the percent of absorption, is difficult to define in this

spectral region because no part of the region is completely

free of NH3 or CH4 bands or their wings. However, the continuum

level cannot be far above the maximum of 1.58 pm (see Figure 1)

since a solar line has been identified at the peak (Cruikshank

and Binder, 1968, 1969). Because of its proximity to the peak

at 1.58 µm, the 1.57 µm cell was used to estimate the continuum

level even though the passband of this cell lies within the

relatively weak 1.57 µm NH 3 band and the wing of the 1.53 µm

NH3 band. While this procedure precludes the determination of

the absolute percent absorption, it does provide an accurate

relative measurement of the absorptions. Table 1 gives the

listing of the NH3 absorption measurements versus disk position

and Jovian air mass (AM) .

IIT RESEARCH INSTITUTE
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TABLE 1

PERCENT ABSORPTION OF THE 1.5 um AMMONIA AND

METHANE BANDS AT DIFFERENT POSITIONS ON THE DISK OF JUPITER

FEATURE  LATITUDE AIR MASS PERCENT ABSORPTION AND
(DEG.) AM ERROR ERROR (0) FOR

NH3b 0 NH3
c

A CH4d A

NPR,CM +56.2 3.91 0.28 77 13 73 15 91 12
CM +56.6 3.96 0.29 79 11 73 10 92 11

NPR ,CM +40.2 2.75 0.09 74 8 72 10 88 6
s CM +40.7 3.04 0.13 80e 6 74e 5 96e 5

CM +43.5 2.92 0.11 72 4 67 3 85 3
M +43.8 3.46 0.18 69 7 62 6 79e 7
E +44.1 3.28 0.17 70 16 64 16- 86 19
ML +42.6 4.41 0.37 64 5 56 4 85 7
EL +43.1 4.05 0.35 66 15 57 15 85 17

NTrZ,CM +28.9 2.35 0.05 69 10 64 10 86 11
CM +27.9 2.33 0.05 70 9 63 8 86 10
CM +28.2 2.34 0.05 71 7 66 6 83 7
CM +28.7 2.36 0.11 70 4 63 2 85 3
CM +30.0 2.39 0.05 68 4 62 2 81 3
M +28.4 2.81 0.19 65 6 59 5 80 6
E +28.7 2.69 0.18 67 4 61 3 83 3
ML +27.8 4.53 0.84 57 5 48 4 78 5
EL +28.6 4.17 0.77 60 16 53 15 72 18

NEB,CM +14.7 2.10 0.02 60 6 m6 5 77 6
CM +14.1 2.09 0.02 59 9 53 8 76 10
CM +15.6 2.11 0.03 63 5 57 4 79 4
CM +16.6 2.13 0.03 64 27e 58 3 79 3
CM +16.6 2.13 0.06 61 3 55 18 76 2
CM +15.5 2.10 0.03 62 4 56 2 80 3
CM +16.3 2.13 0.03 61 5 54 4 76 5
M +16.3 2.54 0.07 56 5 50 5 73 5
E +16.7 2.42 0.06 58 4 52 3 73 4
ML +16.0 4.31 0.36 46 28e 41 28e 65 33e
EL +16.8 4.08 0.36 52 5 46 4 67 4

EZ,CM -0.7 2.00 0.01 60 7 54 6 75 6
CM -1.7 2.00 0.01 62 4 55 3 76 3
CM -1.4 2.00 0.01 61 5 56 5 76 5
CM +3.7 2.02 0.01 61 6 55 5 77 6

IIT RESEARCH INSTITUTE
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TABLE 1 contd.

FEATURR'a LATITUDE AIR MASS PERCENT ABSORPTION AND
(DEG.) AM ERROR ERROR (A) FOR

NH3b 0 NH3c 0 CH4d A

M -2.0 2.28 0.04 59 4 53 2 75 2
E -1.8 2.33 0.05 57 5 50 4 76 4
ML -1.5 3.51 0.20 53 4 45 4 73 4
EL -1.2 3.82 0.27 51 5 45 4 73 6

SEB,CM -4.3 2.01 0.01 61 5 55 4 77 5

STrZ, CM -15.3 2.04 0.02 72 9 66 8 89e 9
CM -14.7 2.04 0.02 68 5 62 4 79 4
CM -14.4 2.04 0.02 70 6 65 5 83 6
CM -14.1 2.04 0.02 69 5 64 4 81 5
CM -14.7 2.04 0.04 69 3 63 2 81 2
CM -14.6 2.04 0.04 '70 3 64 1 83 2
CM -14.4 2.04 0.04 69 4 63 3 81 3
CM -13.4 2.04 0.03 70 4 63 2 84 3
CM -14.7 2.04 0.02 70 4 63 2 84 2
CM -14.7 2.04 0.02 70 4 62 2 84 3
CM -14.4 2.05 0.02 69 4 63 3 83 3
CM -14.0 2.05 0.02 68 4 61 2 82 2
CM -13.6 2.04 0.02 70 7 63 7 83 7
M -14.4 2.40 0.05 67 11 61 11 83 12
E -14.2 2.29 0.05 66 5 61 4 79 4
ML -15.4 3.83 0.25 55 5 49 4 71 7
EL -15.1 3,42 0.20 57 6 50 5 74 6

STB,CM -27.2 2.20 0.04 67 6 61 6 83 6
CM -27.4 2.20 0.04 65 4 58 2 82 2
CM -27.4 2.20 0.04 66 4 59 3 82 4
M -27.7 2.5.5 0.07 64 4 57 3 83 3
E -27.5 2.48 0.07 62 7 55 6 80 6
ML -27.6 3.66 0.22 58 5 50 4 81 4
EL -27.3 3.76 0.22 53 3 46 2 76 2

STZ,CM -35.6 2.38 0.06 72 5 66 3 84 4

SPRn,CM -49.1 2.88 0.11 71 15 66 15 79e 16
CM -42.6 2.60 0.15 74 5 68 4 89 5
M -42.3 2.93 0.22 72 7 64 6 88 7
E -42.2 2.89 0.23 71 7 66 6 86 7
ML -42,5 3.81 0.49 70 4 64 3 86 3
EL -42.2 3.76 0.53 68 7 59 6 88 6
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Table 1 contd .

FEATURE 	 LATITODE AIR MASS PERCENT ABSORPTION AND
(DEC.)* AM ERROR ERROR (6) FOR

NH3b A NH3c A CH4d 0

SPR,CM	 -59.2 3.59 0 21 78	 5 72 4 90 5

ORS -21.2 2.11 0.05 57	 6 50 6 75 6
-20.3 2.12 0.08 54	 9 48 9 70 9
-22.2 2.44 0.23 51	 4 48 2 66 4
-22.1 2.12 0.05 51	 4 46 3 66 3
-21.9 2.1' 0.10 51	 4 45 3 68 3
-21.9 3.31 0.59 42	 8 34 8 69 8
-20.5 2.44 0.24 50	 3 43 2 70 2
-19.9 2.11 0.06 53	 7 46 3 70 7
-19.1 2.57 0.34 51	 8 46 8 65 9
-20.6 2.1.2 0.09 53	 3 46 2 72 2

LWO's -31.5 2.29 0.12 70	 7 64 6 82 6
-31.4 2.39 0.18 72	 5 66 4 84 4
-31.3 3.05 0.53 67	 5 60 4 83 4
-31.9 2.55 0.23 70	 4 63 2 86 3
-31.4- 2.31 0.11 69	 4 62 2 82 2
-31.2 2.59 0.24 68	 4 62 2 83 2

a. The letters CM,	 .M, L, ML, or EL following the abbreviations for
the features indicate that the measurement was made at the
central meridian,	 1/2 between the CM and the morning limb,
1/2 between the CM and the evening limb, at the morning
limb or at the evening limb respectively.

b. NH absorption as determined from the data derived from
thi 1.47,	 1, 50,	 and 1.53 µm pass band cells.

c. NH3 absorption as determined from the data derived from
the 1.50 and 1,53 um pass band cells.

d. CH4 absorption as determined from the data derived from
the 1.43 and 1.47 um pass band cells.

e. questionable value

IIT RESEARCH INSTITUTE
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Figures 3a and 3b give the percent absorption of NH3

(as determined by the two different sets of computation) as a

function of AM for those prints lying along the CM, i.e., along

a N- S trace. It is apparent from Figures 3a and 3b that a) the

only difference between the two sets of data is that the percent

absorption as determined from all 3 cells is about 1.1 times as

great as that determined by only 2 cells. Thus, the overlapping

CH4 band at 1.47 µm has no important differential effect on the

data, and so only the percent absorption as determined from all

3 cells will be discussed henceforth; b) at least for the dark

features (NEB, STB, NPR and SPR) the percent absorption in-

creases with increasing air mass (AM) by a factor of 1.35

between 2 AM and 4 AM and the curve does not follow an (AM)

curve as would be the case for these strong bands if a simple

"reflecting layer at a constant altitude" model were correct;

c) the absorption over the STrZ, which was the brightest zone

on the planet, is at least 1.20 times greater than for the belts

at comparable AM; d) the EZ, which that season was visually

quite dusky and therefore intermediate between the STrz and the

belts in visual a lbedo , may have had a slightly greater (few

percent) absorption than the belts and e) the NTrZ which was

nearly as bright as the STrZ showed only a slight, if any,

increase in NH3 absorption as compared to the belts. These

results are compatible with the observations of the absorption

of the weak band of NH3 over the belts and zones as made by

Munch and Younkin (1964) and with the differences in strong

band absorptions between the equator and the polar regions as

observed by Moroz and Cruikshank.

Figures 4-5 show the variations of the NH 3 absorption

along E-W traces, i.e., along belts, zones or following a spot

across the disk. These graphs clearly show that the NH3 ab-

sorption decreases as the limb (or terminator) is approached and

IIT RESEARCH INSTITUTE

10



8

f	

a +

Li	 !A	 !A	 i -9	 i.0	 ^0	 U
XVM AM #AM

FIGURE 3a Percent absorption of NH3 as a function of Jovian
air mass for the points observed on a N-S trace
along the CM. The percent absorption was computed
using the data obtained from the 1.47, 1.50 and
1.53 µm passband cells (see Table 1). The filled
circles represent the data for belts and polar
regions. The open circles represent the data for
the zones. The STrZ (at 2.05 AM) and the EZ (at
2.00 AM) lie above the curve defined by the dark
features while the NTrZ (at 2.35 AM) may fall on the
dark feature curve.
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cell (see Table 1).

13



t

3

it
r	 -

:k
so

A	 •

I "`	 NP'ik	 y

	

Z'	 10

Lw^ ,►0O

`,^	 sTo

so	 al

40
1,0	 1.6	 $A	 3.0	 0.0	 Ai	 •p

Jov" Am MAGI

FIGURE 5 Percent absorption of NH as a function of Joviar
air mass for points observed along is Ai- idual be' Ats,
zones, or following e. spot across the disk. They

	

`	 percent absorption was computed using the date

	

:. r	 obtained from the 1.47 0 1.50 and 1.53 µm assba- id
cells (see Table 1).	

p

xt

eE

yt	 y

• k	 A

t	 & '$

	

'.,	 14



that the decrease in absorption varies linearly, or nearly so,

with air mass. Evaluation of all the E-W traces shows that

within the errors of the measurements, the E-W absorption

coefficient is independent of latitude ariel that a value of

-6°/,/air mass gives a satisfactory fit to the data.

These E-W trace data show that the bands are being formed

in a scattering atmosphere (or perhaps in an atmosphere with

cumulous clouds as proposed by Squires, 1957) and thus indicate
that the increase in absorption of the NH3 with AM along the N-S

trace is due to a decrease in the altitude of the scattering

layer with increasing latitude or a decrease in the number of

scatterers per unit colurnrn with increasing latitude.

Figure 4 also shows that the absorption over the GRS is

about 0.87 times that found over the majority of the other

features. This result is consistent with the finding by other

investigators that the CRS lies at a higher altitude than the

rest of the features. Thus at 1.5 µm and at a spatial resolution

of 2".3 the only surface features which showed definite deviation

from the general NH 3 absorption pattern over the disk were the

STrZ and the CRS i.e., the two most prominent features on the

disk.

Two ef'rc. .s reported by Moroz and Cruikshank, i.e., large

differences in the NH3 absorptions over the morning versus the

evening limb and short time scale variations (day to day variations)

of the NvH3 absorptions over particular features were not

found and are presumed to be erroneous and attributable to the

inherent difficulties in obtaining photometrically accurate,

disk positional dependent data with a scanning spectrometer.

Since no time dependent variations were observed, the

NH3 absorption data were combined to produce an NH 3 absorption

map of the planet for the months of May and June, 1970, see
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Figure 6. This map clearly shows the center to limb and center

to pole variation and the deep STrZ absorption. Additional belt

to zone variations are strongly suggested by the contours.

3.2	 THE DISTRIBUTION OF CH4 OVER THE DISK OF JUPITER

The 1.43 and 1.47 µm cell data were used to define the

percent absorption of the 1.44 and 1.47 µm CH 4 bands over the

disk in the same way that the percent absorption of the NH3

bands was determined. Because of the aforementioned overlap of

the NH3 and CH4 bands at 1.47 µm and the near saturation of

these CH4 bands, the potential sensitivity of the measurements

to detect changes in the absorption of CH 4 alone is less than

for the NH3 measurements.

Figures 7 and 8 show the percent CH4 absorption for the

N- S trace and for representative E-W traces respectively.

Comparisons of these Figures with Figures 3 and 4 show that the

disk position dependent variations of the CH4 absorptions are

similar to those of NH 3 . The only differences being that due to

the near saturation oL the CH4 bands, the percent absorption of

the CH4 is much greater than for the NH 3 and therefore that the

total variation icross the disk is correspondingly less. The

results indicate that, for CH4 , a) the poles show only 1.20

times as much absorption as the equator, b) the STrZ absorption

is 1.10 times that of the belts at equivalent AM, c) the GRS

absorption is 0.90 times that of the belts, and d) the CM to

limb absorption coefficient is -3%/AM, otherwise, the conclu-

sions derived from the CH4 absorption data are the same as

those derived from the NH3 data. Likewise, when mapped, the

CH4 absorption variations over the disk show about the same

pattern as depicted in Figure 6 for NH3.
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FIGURE 6 1.5 µm NH absorption map for the period April -
June, 1978. The contours are in percent absorption
as computed using the data obtained from the 1.47,
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3.3	 THE JOVIAN PHOTOMETRIC FUNCTION

One of the major objectives of the project was to

define the photometric function of Jupiter and while, as

discussed in section 2, poor weather prevented the 
0 
acquisition

of data over the desired wavelength range of 6000 A to 2.3 µm,

the 1.5 pm window data provided the necessary information needed

to define the limb darkening in that region and thereby identify

the empirical relationship which most probably can be used to

define the photometric function over the full wavelength range

when the data become available.

Because of the experience gained using the Minnaert

function to define the Martian photometric function (as

discussed in the final report on Contract NASW-2005, Binder, 1971)

and because the computer subroutines were available as a result

of the Mars program it was decided to attempt to use this

empirical function to describe the Jovian limb darkening. The

function has the form:

Bs = Bo cosk i Cos k-1 e

where B S is the brightness of a surface element, B o the bright-

ness of a surface element at cos i cos e = 0,1 the angle of

incidence, a the angle of emission, and k a constant which

describes the limb darkening. Both Bo and k are functions of

the wavelength (X) and the phase angle (a) . However, the macs

program has shown that k (X, a) does not vary rapidly with a,

and since the 1.5 pm data were taken over a small wavelength

interval, little change in k (X) would be expected. Thus, the

dependence of k on X was studied for only 2 representative

wavelengths. The first wavelength (1.51 µm) was chosen because

it lies nearly at the peak of the 1.5 pm window, and as a result

the photometric behavior of i:he scattering particles or reflect-

ing elouds could be defined os well' as possible. The second
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Another factor to be considered in the limb darkening

study is the fact that the features of Jupiter are axially

symmetric, and not spherically symmetric, thus, the N-S trace

data were analysed separately from the E-W trace data.

Figures 9-12 show representative plots of log (B s cos e)
versus log (cos i cos e) for N-S and E-W traces at the two chosen

wavelengths. As can be seen, the data fall on sensibly straight

lines as would be the case if the Minnaert function could

satisfactorily describe the limb darkening of the planet.

Analysis of all the data indicates that 1) within the

uncertainties of the available data, k does not show a con-

vincing phase angle dependence; 2) the N-S trace shows that k

defined within the bands is greater than the k defined near the

continuum; and 3) the E-W traces show that k defined within the

bands is smaller than the k defined near the continuum. Table 2

gives the values of k derived from the data.

If, as Young has suggested (private communications), an
atmosphere with a thick scattering layer behaves like a

Lambertian surface, i.e., Bs = Bo cos i which is a degenerate
form of the Minnaert function with k - 1, then the observed

values of k can be explained by the observed variations of NH3

and CH4 over the disk as follows. At 1.57 µm, the effects of
the scattering particles (or clouds) dominate the E-W traces
since the amount of NH 3 absorbing in this passband is small and
since, according to the NH3 distribution data, the amount of NH3
absorbing above the effective scattering level is constant at
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FIGURE 9 blot of log (Bs cos e) versus log (cos i cos e) for
%•1.57 µm and a = 512. The data plotted are for
points observed on a N-S trace along the CM.
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FIGURE 10 Plot of log (B cos e) versus log (cos i cos e) for
X = 1.57 µm ana a w 5°2. The data plotted are for
points observed along the STrZ.
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FIGURE 12 Plot of log (B cos e) versus log (cos i cos e) for
% ! 1.47 µm ana a • 512. The data plotted are for
points observed along the STB.
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TABLE 2
r

LIMB DARKENING COEFFICIENTS W FOR JUPITER

WAVELENGTH DIRECTION k FOR PHASE	 ANGLES OF
1°1 5°2	 9°1

1.53 µm N-S 1.27 + 0.08 1.22 + 0.06	 1.5 + .2
(near continuum) E-W 1.0 ± 0.1 0.97 ± 0.06

1.47 µm N-S 2.1 ± 0.3 2.0 ± 0.3	 2
t (deep in NH	 and3 E-W 0.8 + 0.2 0.7 ± 0.2

k CH4 bands)
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any particular latitude. Thus k, which would be 1 for pure

sc :! . ~ering, is only slightly less than 1 since the limbs appear

only slightly brighter than the center (i.e. , when compared with

pure Lambertian limb darkening) due to th:e slight decrease of the

NH3 absorption at the limbs. However, on the N-S trace, the NH3

above the effective scattering level has been shown above to

increase, so the N and S limbs are much darker than the center

(again with respect to a Lambertian surface) and thus k will be

greater than 1. At 1.47 µm, where NH 3 and CH4 bands are very

strong, the effects of the gas absorptions on the limb darkening

are increased with respect to those of the scatterers or clouds.

Thus, k for an E-W trace is well below 1 and k for the N- S trace

is vex y much greater than 1.

4. THE TITAN OBSERVATIONS

As discussed in section 2, preliminary observation of the

IR spectral reflectivity data for Titan were obtained under non-

photometric and very poor seeing conditions. As such, the data

are of low weight, but since they represent the first observation

in the 10 channel spectral region, they are of interest. Figure

13 shows the relative spectral reflectivity of Titan compared to

that of the center of Saturn's disk. As can be seen, the spectral

reflectivity of Titan is similar to that of Saturn which most

probably indicates that like Saturn the stro p absorptionsP	 Y	 >	 >	 S P
caused by the CH4 atmosphere of Titan dominate the reflectivity

curve in this region.

5. SPECTROPHOTOMETRIC DATA REDUCTION PROGRAMS

Z

	

	 An additional result of the work done on this contract

modification was that of developing data reduction programs for

,	 Jupiter/Saturn and for point or small objects such as satellites
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and Uranus and Neptune. The Jupiter/Saturn program (which could

be easily modified to include Uranus if disk dependent data were

obtained for this 4" diameter obJect) is similar to the Mars

data reduction program desc riled on the Final Report Contract

NASW-2005 (Binder, 1971). However, the relatively large obla te-

nesses of Jupiter and Saturn precluded the use of many of the

Mars program subroutines in the Jupiter/Saturn program, sub-

routines which compute planetocentric parameters. Thus, new

subroutines were developed to compute the planetocentric

latitudes, longitudes, cos i and cos e. In addition, sub-

routines were developed to compute the planetocentric air mass

(not needed for Mars) and to determine the percent of absorption

for any absorption band. As a result of this work, we now have

10 channel data reduction programs for all of the outer planets

and their satellites, programs which yield normal spectral

albedo data, photometric function data, atmospheri,: absorption

data, and a number of planetocentric, astronomical, and geo-

metric parameters which are useful in the evaluation of new

types of data.

6.	 FUTURE WORK

Since the results of this program have demonstrated the

applicability of the Minnaert function in describing the Jovian

photometric function, there is a clear need for additional

observational data taken over the maximum range of wavelengths

and phase angles in order to define the function, as completely

as possible, for both Jupiter and Saturn. Secondly, since the

Minnaert coefficients are a function of the intrinsic photo-

metric properties of the scattering particles (or clouds) in the

atmosphere of Jupiter (and presumably Saturn) as well as the

amount of absorbing gas above the effective scattering layer, an
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effort should be made to determine if the k's vary as the bands

and zones change in intensity and morphology. In this way, one

may be able to detect time dependent changes in the scattering

layer of the Jovian atmosphere.

Similarly, repetitive observations of the NH 3 and CH4

absorptions over the disk at 1.5 pm would provide information on

long term (and perhaps short term) time variations in the NH3

and CH4 distribution. Since NH 3 is a volatile in the Jovian

atmosphere and, thus to a degree, it may play the same role in

the Jovian atmosphere as does H2O in the terrestrial atmosphere,

NH3 distribution maps like the one given in Figure 6, most

probably will be very important in understanding Jovian

me teoro logy.

Finally, since the attempts  to obtain data on Titan,

Uranus, Neptune, etc. were thwarted by observing conditions, new

efforts should be made to observe these objects in order to

secure the information outlined in the original proposal.
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