

FACIUITY FORM 602

https://ntrs.nasa.gov/search.jsp?R=19710029196 2020-03-11T21:22:44+00:00Z

DMS-DR-1163 SEPTEMBER 1971

-SPACE SHUTTLE-

BASIC SUPERSONIC FORCE DATA FOR GRUMMAN DELTA WING ORBITER CONFIGURATION ROS-NB1

by

- R. Krepski, GAC
- F. Mahnke, GAC
- B. Johannesen, GAC

GRUMMAN FARMINGDALE 15-INCH SUPERSONIC TUNNEL

SADSAC SPACE SHUTTLE AEROTHERMODYNAMIC DATA MANAGEMENT SYSTEM

CONTRACT NAS8-4016 MARSHALL SPACE FLIGHT CENTER

NASA Series Number: S-0609

DMS-DR-1163 SEPTEMBER, 1971

SADSAC/SPACE SHUTTLE

WIND TUNNEL TEST DATA REPORT

CONFIGURATION: Grumman Configuration ROS-NB1; 1/200 Scale Model TEST FURPOSE: Determine Basic Supersonic Force Data For a Delta Wing

Orbiter Configuration

TEST FACILITY: <u>Grumm</u>	an Farmingdale 15" Supersonic Tunnel
TESTING AGENCY:Gr	umman Aerospace Corporation
TEST NO. & DATE:GF	ST-022 5/17/71 to 5/25/71
FACILITY COORDINATOR:	M. Quan - GAC
PROJECT ENGINEER(S):	R. Krepski - GAC
	F. Mahnke - GAC
	B. Johannesen - GAC

DATA MANAGEMENT SERVICES

John E. Vaughn DATA OPERATIONS: <u>B. J. Fricken</u> B. J. Fricken LIAISON:

RELEASE APPROVAL: N. J. Slym	
FOR W. D. Kemp, Supervisor	
Aero Thermo Data Group	

CONTRACT NAS 8-4016

AMENDMENT 153

DRL 184 - 58

This report has been prepared by Chrysler Corporation Space Division under a Data Management Contract to the NASA. Chrysler assumes no responsibility for the data presented herein other than its display characteristics.

FACILITY COORDINATOR:

Mr. M. Quan Grumman Aerospace Corporation Dept. 401, Plant No. 5 Bethpage, Long Island, New York 11714

Phone: (516) 575-7044

PROJECT ENGINEERS:

Mr. F. Mahnke Grumman Aerospace Corporation Dept. 401, Plant No. 5 Bethpage, Long Island, New York 11714

Phone: (516) 575-7044

Mr. R. Krepski Grumman Aerospaéë Corporation Dept. 401, Plant Ño. 5 Bethpage, Long Ísland, New York 11714

Phone: (516) 575-7044

Mr. B. Johannesen Grumman Aerospace Corporation Dept. 401, Plant No. 5 Bethpage, Long Island, New York 11714 Phone: (516) 575-7044

SADSAC LIAISON:

Mr. John E. Vaughn Chrysler Corp. Huntsville Division 102 Wynn Drive Department 4830 Huntsville, Alabama 35805

Phone: (205) 895-1560

SADSAC OPERATIONS:

Miss B. J. Fricken Chrysler Corp. Space Division P. O. Box 29200 Department 2780 New Orleans, Louisiana 70129

Phone: (504) 255-2304

ABSTRACT

Experimental aerodynamic wind tunnel tests were conducted during May, 1971 on a 1/200 scale model Grumman ROS-NBL space shuttle model in the GAC 15 inch Supersonic Wind Tunnel at Farmingdale, New York. The basic narrow body ROS-NBL configuration was tested over an angle of attack range from -3° to 22° at sideslip angles of 0° , 2.6° , 3.4° and 4.2° and over a sideslip angle range from -5° to 10° at set pitch angles of 0° , 5° , 10° and 15° . Test Mach numbers were 1.75, 2.02 and 2.48. Configuration variables included model buildup, symmetric and asymmetric elevon deflection, rudder deflections and an auxiliary ventral fin.

All testing was conducted without transition.

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

	PAGE NUMBER
LIST OF FIGURES	2
SUMMARY	3
SUMMARY OF SADSAC NOMENCLATURE	4
CONFIGURATIONS INVESTIGATED	5
DATASET COLLATIONS	6
TEST FACILITY DESCRIPTION	8
TEST CONDITIONS	9
DATA REDUCTION	10
SUMMARY DATA PLOT INDEX	11
FIGURES	13
MODEL COMPONENT DESCRIPTION SHEETS	18
STANDARD NOMENCLATURE	24
TABULATED DATA LISTING	29
PLOTTED DATA	30

LIST OF FIGURES

FIGURE NUMBER	<u>TTTI.E</u>	PAGE NUMBER
1	Axis System	14
2	Configuration ROS-NB1 Three-View	15
3	Installation Photograph of GAC Configuration ROS-NBL	16
4	Ventral Fin, U _l	17

SUMMARY

A 1/200 scale model of the Grumman ROS-NBl space shuttle was tested in the GAC 15 inch Supersonic Wind Tunnel in Farmingdale, New York. Tests at Mach numbers of 1.75, 2.02 and 2.48 were conducted. Model angle of attack was varied from -3° to 22° at sideslip angles of 0° , 2.6°, 3.4° and 4.2°. Sideslip angle was varied from -5° to 10° at set pitch angles of attack of 0° , 5° , 10° and 15° . Data were taken during a sweep at approximately every 1.0° .

The basic narrow body ROS-NBL configuration was tested. Test configurations included a model build-up: body alone, body-wing, and body-wingtail. Symmetric and asymmetric elevon deflections were tested to determine longitudinal control effectiveness. The effect of the rudder and an auxiliary ventral fin was also determined.

All testing was conducted without transition.

Datasets RCSXX1 to RCSXX9 are composite datasets formed from data selected from various other datasets. They were created only to facilitate the plotting of the derivative plots and do not represent actual runs.

SUMMARY OF SADSAC NOMENCLATURE - AERODYNAMIC FORCE AND MOMENT COEFFICIENTS

		SAD	SAC NOMENCLATU	RE
COEFFICIENT	COEFFICIENT NAME	BODY AXIS	STABILITY AXIS	WIND AXIS
$\begin{array}{c} C_A\\ C_{AB}\\ C_{AF}\\ C_D\\ C_{DB}\\ C_{DF}\\ C_L\\ C_N\\ C_Y\\ C_\ell\\ C_m\\ C_n\\ L/D\\ L/D\\ L/D\\ N/A \end{array}$	Total Axial Force Base Axial Force Forebody Axial Force Total Drag Force Base Drag Force Forebody Drag Force Lift Force Normal Force Side Force Rolling Moment Pitching Moment Yawing Moment Lift-To-Drag Force Ratio Lift-To-Forebody Drag Force Ratio Normal-To-Axial Force Ratio	CA CAB CAF - - CN CN CY CBL CLM CYN - - - N/A	- CD CDB CDF CL - CY CSL CLM CLM CLN L/D L/DF	- CDTOTL CDBASE CDFORE CL - CC CWL CPM CLN CL/CD CL/CDF
N/A	Normal-To-Forebody Axial Force Ratio	' CN/CAF	- -	-

CONFIGURATIONS INVESTIGATED

The following 1/200 scale model components were tested:

- B_{l} basic ROS-NBL fuselage
- W1 basic delta wing for ROS-NBL
- V_1 single vertical tail
- U1 ventral fin

Pertinent dimensional information for each of these components is given in the Model Component Description Forms which follow the figures. The Dataset Collation Sheets which follow immediately contain a summary of the test run schedule and complete configurations tested.

TEST GFST 022 DATA SET COLLATION SHEET

BASIC SUPERSONIC FORCE DATA ON THE GRUMMAN ROS-NBI

SPACE SHUTTLE ORBITER CONFIGURATION

🗆 PRETEST

N POSTTEST

DATA SET	CONFICUENTION	SCI	ID	CONT	RÓL I)EFLE	CTION	NO.]	ACH	NUMBE	RS					
IDENTIFIER	CONTIDUNATION	, α	β	Ser,	See	SE		RUNS	175	2.02	248		L			• ₁				
RC5002	B, W, V,	0	B	0	0	0		3	43	2	31				1	1		1	1	
RCS003	B, W, V,	A	0	0	0	0		3	40	3	24							1		
RCS 004	B, W, -20, -20 V,	A	0	-20	-20	0		3	41	4	25				1		1	1	1	
PCSC05	$B_1 W_i^{-4s_i-4a} V_i$	A	Ο	-40	-40	0		3	42	5	26			1	1	- <u> </u>	*	1	+	
RCS007	B,W,V,"	A	0	0	0	10		2		7	28			-			1	1		
1,0008	B.W. 40,-20 V,	A	0	-40	-20	0		1		8					<u>†</u>				1	<u></u>
RCSD09	B,W.V.U,	0	B	0	0	0		1		7					1				1	
RC5010	BIVI -	0	B	0	0			3	44	10	33	····					1	+		
RCS012	$\mathcal{B}_{1} W_{1} V_{1}^{230}$	0	B	0	0	±30		3	45	12	32							1	1	<u> </u>
RCS014	B.W.V.	A	42	0	0	0		1		14		•			1		-	1	†	
RCS015	BilliVi	7	26	0	0	0		1		15		-						1	†	
RCSDIG	. Bi	Λ	0	—	-	-	·	1		16						_		1	1	
RCS017	B, Wi	10	B	0	0	-		1		17							1	1	1	
RCSOIB	B.W4V,	5	в	0	0	0		1		18					1	-	1	1	<u>†</u>	<u>}</u>
RC5019	B.W.V.	:0	в	0	0	0		1		19						-	1	1		<u></u>
RCS 020	B. W. Vitso	10	P	0	0	±30		1		20					.		1	1		
RC502/	B.W.Y.U.	10	в	0	0	0		1	t	21									1	· · ·
RCS022	B, W, V,	15	B	0	0	Û		1		22								1	<u> </u>	
RC5027	B.W. 130	A	C	-10	-47	750		1			27		~		1			1		
R\$034	B, W,	4	37	C	0	-		2	49		34				1		1	1		
1	7 13	19		ر ? '	ւ <u></u> հ	س	31		37	4	3	4	9	5	5	6	1	67	<u></u>	75 76
C,L	ICD ICY	101	14	10	NL.		CLI					1						1		
COEFFIC	LENTS.			<u> </u>												I	DPVAR	(1) IT	PVAR (2) NDV
a or β	<u> </u>	. 5		25					<u> </u>			<u> </u>				·		·		
SCHEDUL	$\frac{\beta B}{\beta B} = -$	5°	10	10	,						<u>-</u> .									
		-																		

TEST GFST 022 DATA SET COLLATION SHEET

D PRETEST

B POSTTEST

DATA SET	CONFICURATION	sci	ω	CONT	ROL D	EFLE	CTION	NO				MACH	I NUMBE	RS						l
IDENTIFIER	CONFIGERATION	a	3	5	λ er	อิล		RUNS	175	2.02	248					<u> </u>				
RCS 035	β, γγ, γ,	A	37	0	0	0		2	48		35									ĺ
RCS 036	B. W. V. Tao	A	34	0	0	±30		2	47		36									ĺ
RCS037	B,W, V, #30	A	Q	0	0	<u>±</u> 30		2	46		37									
RCS 038	B,Wi	A	0	0	0			5	50		38									
RCSXXI	B,W,	0	C	0	0	-		2	49		34									
RCSXX2	B,W,	5	2	0	0	_		2	49 53		34 38								*	
+ RCSXX3	B, W, -	10	C	0	0	-		2	49 50		34 38									
RCSXX4	B, W, V,	0	С	0	0	0		3	40/48	3/14/15	2435			ļ						
RCSXX5	B, W, V,	5	2	0	0	0		3	4048	3/4/15	24									
RCSXXL	B, W, V,	10	С	0	0	0		3	+248	1/14/15	24			1						
RCSKX7	$\mathcal{B}, \mathcal{W}, \mathcal{V}, \overset{\pm 30}{}$	0	٦ د	δ	0	:30		2	1647		37									l
RCSXX8	$B, W, V_{1}^{\pm 39}$	5	C	0	0	±30		2	16 47		36									
RCSXX9	B,W,V, ±30	10	C	0	0	±30		2	4-47		36 37									
														1		[
																				ĺ
														1						
														1	1					
	· · · · · · · · · · · · · · · · · · ·	1													1					
		 							 					1	-					ĺ
ـــــــــــــــــــــــــــــــــــــ		10	اا	·	5.		31	h	37		3	49	 5	J 5	61		67		75.76	ł
$\overline{\Gamma_1}$	1777 6°Y		11	 . (<u>,</u> S.t.		-1 M										¥			
COEFFIC	IENTS.	لىكى. رىسىي		<u></u>	4			·				·····	···)PVAR ((1) IDI	VAR(2) ND1	:
ιorβ	$\frac{\alpha R = -5^{\circ}}{\alpha R = -5^{\circ}}$	to 2	$\frac{2}{2}$						<u></u>									• -		
SCHEDUL	$ES \qquad AC = D^2 A$	<u>o /</u>	For		= 2 ^	7	80.1	SXYA	Prev	ve 0	275.00	- AC	- 0.2	6.44	z)					

TEST FACILITY DESCRIPTION

GRUMMAN 15-INCH SUPERSONIC WIND TUNNEL

DESCRIPTION: This is an intermittent blowdown to atmosphere facility with a 15-inch by 15-inch test section. The tunnel makes use of fixed nozzle blocks covering a Mach number range of 1.5 to 4.0. An alumina type air dryer is used to dry the air to a dewpoint of 0-10 degrees Fahrenheit at 3000 psi.

PERFORMANCE PARAMETERS:

Mach Range:	1.5, 1.75, 2.0, 3.0, 3.5, 4.0
Reynolds Number (x 10 ⁶ /ft):	3.0 to 65
Stagnation Pressure (psia):	25 to 500
Dynamic Pressure (psf):	1550 to 6700
Stagnation Temperature (^O R):	460
Run Time (sec):	40 to 180

TESTING CAPABILITIES: This tunnel has a sector, which provides an angle of attack range of ±15 degrees, and a four and a six-component internal strain gage force balance for measuring static aerodynamic forces. A pogo stick type of support raises from the floor to restrain sting mounted models during starting and stopping transients. Schlieren and shadowgraph are utilized for flow visualization. This facility is equipped with a computer controlled data acquisition system.

TEST CONDITIONS TEST GFST - 022

MACH NUMBER	REYNOLDS NUMBER per unit length	DYNAMIC PRESSURE (pounds/sq. inch)	STAGNATION TEMPERATURE (degrees Fahrenheit)
1.75	12.7×10^{6}	16.07	30 ⁰
2.02	9.9 x 10 ⁶	12.29	- <u>30</u> °
2.48	12.4×10^6	13.36	30 ⁰
		•	
		/	
·			
		1	
		1	
		n	
]		

BALANCE UTILIZED: _____ASK .75 MK XLTTI "A"

CAPACITY:

NF SF

AF

PM

YM

RM

ACCURACY:

COEFFICIENT TOLERANCE:

200 lbs.	<u>+</u> .486	.0020
100 lbs.		.0032
<u>80 lbs.</u>	<u>±.075</u>	,0004
<u>300 in 1bs</u>	<u> </u>	.0005
<u>125 in1bs</u> .	<u>± 924</u>	,0007
80 in1bs.	- 207	,0002

COMMENTS:

DATA REDUCTION

The 0:75 inch TASK MK XLIII six component strain gage balance was used to measure orbiter forces and moments. All final data were presented along and about the stability axis passing through a nominal center of gravity located at F.S. 1485, W.L. 377, and B.L. O. Data were converted to standard NASA coefficients using the following constants:

Reference area: S_{ref} =20.689 sq. in.

Reference length: $l_{ref} = 9.648$ in.

Reference span: $b_{ref} = 5.838$ in.

No adjustment to the final data was made to account for the base and cavity pressure contributions.

SUMMARY DATA PLOT INDEX

	PLOTIED COEFFICIENTS	CONDITIONS	
TITLE	SCHEDULE	VARYING	PAGES
Figure 1 Characteristics in Pitch	(A)	Mach	1-3
Figure 2 Elevon Effectiveness	(A)	Elevon Deflection	4-12
Figure 3 Aileron Effectiveness	(B)	Elevon Deflection	13-15
Figure 4 Rudder Effectiveness	(в)	Rudder Deflection	16-21
Figure 5 Component Buildup	(A)	Configuration	22-24
Figure 6 Effect of Flared Rudder in Pitch, Delta Elevon = 0	(A)	Rudder	25-30
Figure 7 Effect of Flared Rudder in Pitch, Delta Elevon = -40	(A)	Rudder	31-33
Figure 8 Characteristics in Sideslip - Component Buildup, Alpha = 0	(C)	Configuration	34-42
Figure 9 Characteristics in Sideslip - Component Buildup, Alpha Approx. 10	(C)	Configuration	43-45
Figure 10 Characteristics in Sideslip - Variation with Alpha	(C)	Alpha	46-48
Figure 11 Characteristics in Sideslip - Variation with Alpha	(B)	Beta	49-51
Figure 12 Characteristics in Sideslip - Component Buildup	(B)	Bete	52-57
Figure 13 Effect of Flared Rudder in Sideslip Alpha = 0	- (C)	Rudder	58-66

SUMMARY DATA PLOT INDEX (CONTINUED)

TITLE		PLOTTED COEFFICIENTS - SCHEDULE	-CONDITIONS VARYING	PAGES
Figure 14	Effect of Flared Rudder in Sideslip - Alpha Approx. 10	'('C')	Rudder	67-69
Figure 15	Effect of Flared Rudder in Sideslip - Variation with Alpha	(B)	Rudder	70-75
Figure 16	Derived Parameters - Basic Configuration in Pitch	(D)		76- 78
Figure 17	Lateral-Directional Derivatives, Alpha = 0	, (E)	Configuration	79-81
Figure 18	Lateral-Directional Derivatives, Alpha Approx. 5	, (E)	Configuration	82-84
Figure 19	Lateral-Directional Derivatives, Alpha Approx. 10	, (E)	Configuration	85-87

PLOTTED COEFFICIENTS SCHEDULE:

- (A) CL vs. a, CL vs. CIM, CL vs. CD
- (B) CLN, CSL, CY vs. a
- (C) CLN, CSL, CY vs. β
- (D) DCL/DALPHA, DCLM/DCL, CD(MIN) vs. Mach
- (E) DCLNDB, DCSLDB, CYBETA vs. Mach

FIGURES

Notes:

- Positive directions of force coefficients moment coefficients, and angles are indicated by arrows.
- 2. For clarity, origins of wind and stability axes have been displaced from the center of gravity.

Figure 1. Axis systems, showing direction and sense of force and moment coefficients, angle of attack, and sideslip angle

FIGURE 2. CONFIGURATION ROS-NBI, THREE-VIEW

Star antes

MODEL COMPONENT DESCRIPTION SHEETS

MODEL COMPONENT: BODY - B		
GENERAL DESCRIPTION: <u>BASIC ROS-NB1</u>	BODY	
DRAWING NUMBER:		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length		
Max. Width	28.0	_1.680
Max. Depth	28.7	_1.722
Fineness Ratio	5.61	
Area		
Max. Cross-Sectional		
Planform		14,364
Wetted	12,610	45.396
Base	590'	2.124

MODEL	COMPONENT:	WING -
		and a second second second second

ING - W.

GENERAL DESCRIPTION: BASIC ROS-NB 1 WING

	<u></u>		
DRAWING NUMBER:	518 MOD 902		
DIMENSIONS:		FULL-SCALE	MODEL SCALE
TOTAL DATA		(FT. OR FT. ²)	
Area Planform Wetted Span (equivale Aspect Ratio Rate of Taper Taper Ratio Diehedral Angl Incidence Angl Aerodynamic Tw Toe-In Angle Cant Angle Sweep Back Ang Leading Edg Trailing Ed 0.25 Elemen Chords: Root (Wing Tip, (equiv MAC Fus. Sta. o W.P. of .25 B.L. of .25 Airfoil Sectio Root Tip EXPOSED DATA	nt) e, degrees e, degrees ist, degrees e ' ge t Line Sta. 0.0) alent) of .25 MAC MAC MAC	$ \frac{5747}{7780} \\ \frac{97.3}{1.65} \\ \frac{1.65}{1.87} \\ \frac{129}{5^{\circ}} \\ \frac{104.6}{13.5} \\ \frac{13.5}{59.0} \\ \frac{104.6}{13.5} \\ \frac{13.5}{59.0} \\ \frac{104.6}{13.5} \\ \frac{13.5}{59.0} \\ \frac{1580}{302.6} \\ \frac{302.6}{290} \\ \frac{18\% \text{ max.camber}}{3\% \text{ max.camber}} $	20.7 in. ² 28 in. ² 5.84 in. 1.65 1.87 .129 50 -30 @ tip 60° -8.40 42.90 6.276 in. 0.81 in. 3.54 in. 1580 302.6 290 r 10% thickness 10% thickness
Area Span, (equival Aspect Ratio Taper Ratio Chords Root Tip MAC Fus. Sta. C W.P. of .25	ent) of .25 MAC	$ \begin{array}{r} 3217 \\ \overline{69.3} \\ 1.5 \\ \underline{.172} \\ 78.25 \\ 13.5 \\ 46.4 \\ \hline \end{array} $	11.58 in. 4.16 in. 1.5 .172 4.7 in. 0.81 in. 2.78 in.

MODEL	COMPONENT:	Elevon	(For	the	W.,	Wing)
	•••••					

GENERAL DESCRIPTION: _____Moveable Control Surface Associated With the W, Wing

5

÷

•

DRAWING NUMBER:

518 MOD 902

DIMENSIONS:	FULL-SCALE	1/200 MODEL SCALE
Area	<u>364</u>	(11. or 11.") <u>1.310</u>
Span (equivalent)	35.5	2.130
Root chord	12.75	.765
Outb'd equivalent chord	7.75	.465
Ratio Elevator chord/horizontal tail chord		
At Inb'd equiv. chord		
At Outb'd equiv. chord	, 	
Sweep Back Angles, degrees		
Leading Edge	O [*] ,	0°
Tailing Edge	<u>8.4</u> °	8.4°
Hingeline		·····
Area Moment (Normal to hinge line)		

MODEL C	OMPONENT :	: E	VERTICAL	TAIL		v	,
---------	------------	-----	----------	------	--	---	---

GENERAL DESCRIPTION: BASIC ROS-NB 1 VERTICAL TAIL

DRAWING NUMBER:

÷

518 MOD 902

DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area ,	<u>805</u>	<u>2.898</u>
Span (equivalent)	333	1.998
Inb'd equivalent chord	34.6	2.076
Outb'd equivalent chord	13.75	
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord		
At Outb'd equiv. chord		<u>3</u>
Sweep Back Angles, degrees		
Leading Edge	45°	450
Tailing Edge	19.7°	19.7°
Hingeline	28.7 ⁰	28,7°
Area Moment (Normal to hinge line)	945	204
AIRFOIL SECTION	64A010	644010

MODEL COMPONENT: Rudder (for the V	vertical tail)	
GENERAL DESCRIPTION: Moveable Control	1 Surface Associated	With the V
Vertical Tail	······	
	· · · · · · · · · · · · · · · · · · ·	

DRAWING NUMBER: 518 MOD 902		
DIMENSIONS:	FULL-SCALE (ft. or ft)	$\frac{1/200}{\text{MODEL SCALE}}$
Area	240	.864
Span (equivalent) ROOT	33_3	1,998
Inbid equivatent chord	10.4	.624
Outb'd equivalent chord	4.02	.241
Ratio Elevator chord/horizontal tail chord		
At Inb'd equiv. chord	3	<u> </u>
At Outb'd equiv. chord	3	3
Sweep Back Angles, degrees		
Leading Edge	<u>29.5</u> °	29.5°
Tailing Edge	<u>19.7°_</u>	<u> 19.7</u> °
Hingeline		
Area Moment (Normal to hinge line)		J

NOMENCLATURE

(General)

SYMBOL	SADSAC SYMBOL	DEFINITION
a	Alpha	angle of attack, angle between the projection of the wind X_w -axis on the body \hat{X} , \hat{Z} -plane and the body X-axis; degrees
β	BETA	sideslip angle, angle between the wind X_w -axis and the projection of this axis on the body X-Z-plane; degrees
ψ	PSI	yaw angle, angle of rotation about the body Z-axis, positive when the positive X-axis is rotated toward the positive Y-axis; degrees
φ	PHI	roll angle, angle of rotation about the body X-axis, positive when the positive Y-axis is rotated toward the positive Z-axis; degrees
ρ		air density; Kg/m ³ , slugs/ft ³
a		speed of sound; m/sec, ft/sec
v		speed of vehicle relative to surrounding atmosphere; m/sec, ft/sec
đ	Q(PSI) Q(PSF)	dynamic pressure; 1/2PV, psi, psř
М	масн	Mach number; V/a
RN/L	rn/l	Reynolds number per unit length; million/ft
q		static pressure; psi
Р		total pressure; psi
c _p	CP	pressure coefficient; $(p-p_{\infty})/q$

NOMENCLATURE (Continued)

Reference & C. G. Definitions

JIMBOL	SADSAC SYMBOL	DEFINITION
S		wing area; m^2 , ft ² .
S	SREF	reference area; m ² , ft ²
5		wing mean aerodynamic chord or reference chord; m, ft, in (see l_{ref} or LREF)
$l_{ m ref}$	LREF	reference length; m, ft, in.; (see č)
bref	BREF	wing span or reference span; m, ft, in
Ab		base area; m ² , ft ² , in ²
с. g.		center of gravity
MRP	MRP	abbreviation for moment reference point
	XMRP	abbreviation for moment reference point on X-axis
	YMRP	abbreviation for moment reference point on Y-axis
	ZMRP	abbreviation for moment reference point on Z-axis

NOMENCLATURE (Continued)

Axis System General

SYMBOL	DEFINITION
F	force; F, lbs
М	moment; M, in-lb

Su	bscript	Definition
	N	normal force
	A	axial force
	L	lift force
	D	drag force
	Y	force or moment about the Y axis
	Z	moment about the Z axis
	x	moment about the X axis
	S	stability axis system
	w	wind axis system
	ref	reference conditions
	×	free stream conditions
	t	total conditions
	b	base

NOMENCLATURE (Continued) Body & Stability Axis System

SYMBOL	SADSAC SYMBOL	DEFINITION					
Body Axis System							
$c_{\rm N}$	CN	normal force coefficient; F_N/qS					
C _A	CA	axial force coefficient; F_A/qS					
C _{Ab}	CAB	base axial force coefficient; $\begin{bmatrix} -1 \\ [(p_b - p_{\infty})/q] \\ (A_b/S) \end{bmatrix}$					
$c_{A_{f}}$	CAF	forebody axial force coefficient; $C_A - C_{A_b}$					
Cn	CYN	yawing moment coefficient; M_Z/qS b _{ref}					
°ℓ	CBL	rolling moment coefficient; M_X/qS b _{ref}					
Common to Both Axis Systems							
c _m	CIM	pitching moment coefficient; My/qS ℓ_{ref}					
C _y	СҮ	side force coefficient; $F_{\underline{Y}}/qS$					
Stability Axis System							
C _L	CL	lift force coefficient; F_{L}/qS					
c _D	CD	drag force coefficient; F_D/qS					
c _{Db}	CDB	base drag coefficient					
$c_{D_{f}}$	CDF	forebody drag coefficient; $C_D - C_{D_D}$					
с _и	CIN	yewing moment coefficient; $M_{Z,s}/qS p_{ref}$					
°l	CSL	rolling moment coefficient; $M_{X,s}/qS b_{ref}$					
l/D	l/D	lift-to-drag ratio; $C_{\rm L}/C_{\rm D}$					
l/D _f	l/df	lift to forebody drag ratio; $C_{I}/C_{D_{f}}$					

NOMENCLATURE (Continued)

Surface Definitions

SYMBOL	SADSAC SYMBOL	DEFINITION				
1 _t	HORIZT	horizontal tail incidence; positive when trailing edge down; degrees				
δ		symmetrical surface deflection angle; degrees; positive deflections are:				
	AILRON	aileron - total aileron deflection; (left aileron - right aileron)/2				
	CANARD	canard - trailing edge down				
	ELEVON	elevon - trailing edge down				
	ELEVIR	elevator - trailing edge down				
	FLAP	flap - trailing edge down				
	RUDDER	rudder - trailing edge to the left				
	SPOILR	spoiler - trailing edge down				
	TAB	tab - trailing edge down with respect				
٤		to control surface				
U	antisymmetrical surface deflection angle, de					
	ATT	positive trailing edge down; left oileron - troiling edge down				
	ATTD	right alleron - trailing edge down				
	ET.VN-T.	left elevon - trailing edge down				
	ELVN-R	right elevon - trailing edge down				
	SPLR-L	left spoiler - trailing edge down				
	SPLR-R	right spoiler - trailing edge down				

SURFACE SUBSCRIPTS	DEFINITION		
a	aileron		
Ъ	base		
c	canard		
e	elevator or elevon		
f	flap		
r	rudder or ruddervator		
8	spoiler		
t	tail		

TABULATED DATA LISTING

A tobulated data listing, consisting of all aero data sets, both original and those created in arriving at the plotted material to be presented subsequently, is available as an addendum to this report. The tabular listing is made up in two sections:

- (a) a brief summary list of all data sets containing the identifier, the descriptor, and the resident dependent variables.
- (b) a full list of all data sets containing all resident or selected aerodynamic coefficients of the data sets as well as the above mentioned information.

The listing is currently sent on limited distribution to the following organizations:

NASA	AMES	Mr.	V.	Stevens
NASA	MSC	Mr.	Ray	7 Nelson
GAC		Mr.	Μ.	Quan

If copies of this listing are desired, please contact the above or the cognizant SADSAC personnel who, for this data, is:

> Miss Betty J. Fricken Department 2780 Chrysler Corporation Space Division New Orleans, La. 70129

(504) 255-2304

PLOTTED DATA

(BCS003) II SEB 21 BVCE 2

CEST 022 CONF. ROS-NB1 BIWIVI

ŝ. BEFERENCE FILE

FIGURE 2 ELEVON EFFECTIVENESS

MACH 2 480

PAGE 9

PAGE 11

2 D20

PAGE 23

わこ

۲

HACH 2.020

FIGURE 8 CHARACTERISTICS IN SIDESLIP- COMPONENT BUILDUP, ALPHA= 0

PAGE 37

~

MACH 2 020

насн 2 020

¹⁷⁰E 4

FIGURE 11 CHARACTERISTICS IN SIDESLIP- VARIATION WITH ALPHA

- ----

FIGURE 12 CHARACTERISTICS IN SIDESLIP- COMPONENT BUILDUP

FIGURE 12 CHARACTERISTICS IN SIDESLIP- COMPONENT BUILDUP

_ - - --

FIGURE 12 CHARACTERISTICS IN SIDESLIP- COMPONENT BUILDUP

FIGURE 13 EFFECT OF FLARED RUDDER IN SIDESLIP- ALPHA = 0

FAGE

HACH 2 020

.

•

MACH Z 480

71

FIGURE 15 EFFECT OF FLARED RUDDER IN SIDESLIP- VARIATION WITH ALPHA

PAGE 73

FIGURE 15 EFFECT OF FLARED RUDDER IN SIDESLIP- VARIATION WITH ALPHA

2.480 MACH

FIGURE 16 DERIVED PARAMETERS- BASIC CONFIGURATION IN PITCH

FIGURE 17 LATERAL-DIRECTIONAL DERIVATIVES, ALPHA = 0

PAGE 79

SCALE

FIGURE 17 LATERAL-DIRECTIONAL DERIVATIVES. ALPHA = 0

.

FIGURE 18 LATERAL-DIRECTIONAL DERIVATIVES. ALPHA APPROX. 5

₽8 PAGE

7 2 (\mathcal{P})

