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ABSTRACT -

A characteristic analysis is presented fér the equations of elasticity
in Cartesian coordinates. The characteristic slope equations are derived,
and it is verified that two types of waves exist. The compatibility equa-
tions are developed in relation to the direction cosines of a spherical

coordinate system. A brief discussion of the method of analysis is included.



INTRODUCTION

The application of the theory of characteristics and subsequent numeri-
cal solution of the characteristic equations is increasing in popularity as a
technique for solving wave propagation problems. The sophisticated develop-
ment of modern digital computers is responsible for the increase in research
effort to develop and extend the technique to more complicated problems.
This report deals with the development of a characteristic analysis for the

three dimensional dynamic elasticity problem.

THE DYNAMIC ELASTICITY PROBLEM

The equations of motion for a linear, elastiec, isotropic and homogenecus

medium in Cartesian cocordinates are,

30 arxy 3T, 32V,
® sz P REL )
arxy acy aryz 32vy
P 3y ta T at? (2)
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where
X, ¥, and z = Cartesian coordinates
¢ s 0 ad o = the normal stresses in the yz, xz, and
Xy z
Xy planes, respectively
T s T s and 1t = the shear stresses in the xy, yz, and
Xy yz X2Z
Xz planes, respectively
p = density



VX, Vy’ and VZ velocities in the x-, y-, and z-directions, respectively

t = the time dimension.

The stress-displacement relations can be written as
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where
A=E/(1L + )
B=(1-w) /(1 -2 (10)
C=w/( - 2v)
and

wos uy, and w displacements in the x-, y-, and z-directions respectively.
In the theory of characteristics, it is convenient to treat first-order
partial differential equations; therefore, Eqs. 4 through 9 will be differen-

tiated with respect to time to yield
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and
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Equations 1 through 3 and 11 through 16 make up a set of nine linear
firgst-order partial differential equations which govern the three dimen-

sional dynamic elasticity problem.
ANALYSIS USING THE THEORY OF CHARACTERISTICS
The analysis used herein is similar to that used by Sauerwein (1)

and Madden (2) and will be briefly outlined. The nine governing equations

can be represented in a convenient form using the index notation as follows,

aBj
where Bj represents the dependent variables; ¥ represents the independent
variables and the a5 are constants. The characteristic (slope) equa-

tions for Eq. (17) can be developed by changing the independent variables
from % to some arbitrary coordinate system, say n;, n,, and ny. That is
- Efj-ﬁzﬁ = 0 m=1, 2, and 3 (18)
ai3k on K ’ s 4o '
Assuming that values of all dependent variables and their derivatives
with respect to n, and n, are specified on a surface n; = constant, these

transformed partial differential equations would be expected to yield the



derivatives with respect to nos if they exist. These derivatives are

3B . 9
aBJ an. BB] Ny

%3k B, 3, T %ijk an B (19)

where n = 2,3,

To determine the characteristic equations it is desirable to deter-
mine the conditions under which the derivatives normal to n, do not exist,
that is, the normal derivatives to the surface, n, = a constant, are digm
continuous. These discontinuity surfaces which have been menticned at
the beginning of this chapter are also called characteristic surfaces.

The requirement for discontinuity in the derivatives with respect to n,

is then the vanishing of the determinant of the cocefficients of the

derivatives with respect to n. in Egs. (19), or

1
Bnl

2ijk x
k

det =0 (20)

The nine governing equations (1) through (3) and (11) through (18),

after transformation, may be written in the form of Eq. (20) as follows,
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where the comma indicates partial differentiation with respect to the
variable following the comma. Also, for convenience the subscript 1

has been omitted for the variable n. Expanding Eq. (21) gives the

following
2 o _E _1-v 2 4 0.2 4 .2)7 2
{pnat S T (n,X n,y nsz)} {pnat
E 2 2 2y12 o 3 .
- s oy (M + M, 4 )} n, =0 (22)
2(l+ v ’x ’y >z >t
or
. E 1 -9 -
2 2 2 2y =
Pl ~ T+ v I =2v (n,x + n,y‘+ n,z) =0 (23)
‘ E , ,
(onsd = grra oy (o ¥ Mol # 203" = 0 (24)
n’i = Q0 (25)

Equations (23) and (24) show that this three-spatial dimensional
problem involves two kinds of waves, namely, a longitudinal and a
shear wave. Letting o and cg represent the longitudinal and shear
wave velocities, respectively, it follows that

2 _ E(l—\)) .
L@ F V) (T =2v) (26)
E;
Cé =2 F V) (@7

The extra factor n,t in Eq. (25) indicates the particle path which

is a characteristic surface with zero velocity. By expressing Egs. (23)

and (24) as
nst
s
=—-c-_é-_n’}2{-n’327—n’§ (28)
where

c=c Orce
=1



and introducing a new parameter Y, the characteristic slope equations

become

dx _ 3F _
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Eliminating the parameter y gives

dx Ny n,
a?=—cz——>i=.'g.'c , X (33)
n’t n’2 + n’Z + n’2
X % z
d . N _ N,
a%=—c-’— y=+c: Y (343
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y z
d n: - N,
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t n,2 +n,24+n,?
X v z
Equations (33), (34), and (35) can be reduced to a simple form by using
the direction cosines between the normal to the surface n = constant
and the x-, y-, and z-axes as
Cos (nsx) = 5 > 5
n’ + n’ + n’
X y z
Nay
Cos (n,y) = (36)
n,2 + 1,2 +1n,2
X y Z
n,
Cos (n,z) = Z
nZ24en?4en?



Equations (36) can be written in terms of spherical coordinates

® and ¢ according to Figure 1 as

Cos (n,x) = Sin 6 Cos ¢
Cos (n,y) = Sin ® Sin ¢
Cos (n,z) = Cos 8

Substituting into Egs. (33), (34), and (35) yields

%%-= ¥ ¢ Sin 6 Cos ¢
-g%zicsinesm«b
g%—z t ¢ Cos 6

(37)

(38)

In Egs. (38) only the positive sign need be considered since the negative

sign may be obtained by changing the reference for 6 and ¢. Therefore,

the final form of characteristic slope equations is

%% = ¢ Sin & Cos ¢
¥ - ¢ sin @ Sin ¢
%%-= c Cos ©

In Egs. (39), a given value for 6 and ¢ (0+2r) defines one of the
characteristic directions at a point. These characteristics are termed
"Bicharacteristics". Considering the entire range of 6 and ¢ (0~27),
Eqs. (39) describe a general sphere in space, namely, a "characteristic
sphere". The family of bicharacteristics are the generators of the
Sphere.

The compatibility equation corresponding to the bicharacteristics
given by Egs. (39) is cbtained by combining the transformed equations
in a manner such that the indeterminable derivatives with respect to

n do not appear. Multiplying the transformed equations by weighting

(39)



factors Al, AZ, o o o5 and Ag respectively and summing will yield
such a relation. Relations between the A's are found by equating
to zero the coefficients with respect to n in .the transformed equa-

tions. The derivatives can be written in the form:

an

Xiaijk = -0 (40)
k
or,
ﬁ.ln,x + Ayns = 0
xzn,y + ASn,t =0
A3n,z ¥ Xen,t =0
Aln,y + kzn,x + A7n,t =0
Aln,z + Agn,x + Aan,t =0 (41)

An, + Am, + A = 0

n

- Alon,t —,A“ABn,X - ASACn,X - AGACn,X - x7A/2n,y - AgA/zn,Z = 0
- xzpn,t - AwACn,y - ')\SABn,y - AeACn,y - A7A/2n,x - >\9A/2n,Z = 0
- Aaon,t - AqACn,Z - kSACn,Z - AgABn,z - ASA/Zn,X - AgA/Zn,y = 0

Only eight of these homogeneous equations are required to find the
following relations

A, = tan ¢ Al

2

Ay = Pay

Ay = + Sin 2 Cos ¢ .

rg = ¢ S8 S d”tan"’xl (42)
A = % p Cgs 8 Ay

A, = % Siz Y (Sin ¢ + Cos ¢ tan ¢)i;

e =t Cos p + P Sin ¢ Cos ¢ AL

c



and
+ Cos 0 tan ¢ + P Sin 6 Sin ¢

A= 2 A

9 (o] 1
where

c? - ci Sin® & - C: Cos? B
P = (c? - ¢2) Sin 8 Cos & Cos ¢
L s

Thus the compatibility equations can be obtained from the sum of the

weighted equations (1) through (3) and (11) through (16) as follows

c(o + T + T - pV )
XoX XY,y XZ .2 X,t
+ ¢ tan ¢ (r + g + - oV )
XY X VY yz,z  ° Vst
+ P (¢ + + 0o - oV )
XZ 4K VZ,y Z o2 Z.t
+ Qs 2 _ 2 _ 2 +
+ Sin 8 Cos ¢{0x,t chvx,x 2pv(cL S) (Vy,y Vz,z)}
+ a2 . _ .2 _ 2_ 2
Z Sin 8 Sin ¢ tan ¢ {Gy,t pCLVy,y 2pv(cL cs) (Vx,x + Vz,z)} (433
tPCos 8 {og =-pc?V -2u(c®-c?) (V +V )}
z,t Lz,z L s X,X VY
t Sin 8 (Sin ¢ + Cos ¢ tan ¢) {t - pc?(V +V )}
Xy,t S XWy MY
* (Cos 8 + P Sin 6 Cos ¢) {7 - pc2(V. -V )}
Xzt S X,z Z.X

I+

- pc2(V +V_ )} =0

(Cos 6 tan ¢ + P Sin 6 Sin ¢) {Tyz,t sy 2 2,5

These are the general compatibility equations for a three-spatial
dimensional dynamic elasticity problem. Specific equations can be
obtained by choosing values of 6 and ¢, and specifying ¢ to be CL or

c
s

CONCLUSIONS
The characteristic slope equations and corresponding compatibility
equations have been developed in Cartesian coordinates for the three

dimensional dynamic elasticity problem. It is verified that two types

of waves are present, namely, longitudinal and shear waves.
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Figure 1. The Direction Cosines in a Spherical Coordinate System




