```
    A FAST ALGORITHM FOR THE CALCULATION
OF JUNCTION CAPACITANCE AND ITS APPLICATION
FOR IMPURITY PROFILE DETERMINATION
```

Hugo J. J. De Man*
Department of Electrical Engineering -

University of California, Berkeley
Berkeley, California 94720

NASA Span. P\%o

Unclas
90016

```
Abstract.
A fast algorithm is described which calculates the space charge layer width and junction capacitance for an arbitrary impurity profile. and for plane, cylindrical and spherical junctions.
The algorithm is based on the abrupt space charge edge (ASCE) approximation.
A method to use the algorithm for the determination of impurity profiles for two-sided junctions is presented. An expression is derived for the built-in voltage to be used for capacitance calculations with the ASCE approximation. Experimental evidence is given that the algorithm permits very accurate capacitance calculations and also predicts the exact temperature dependence of the junction capacitance.
```

List of symbols

A: mesa-diode area $\left(\mathrm{cm}^{-2}\right)$
$\alpha \quad: \quad$ profile parameter satisfying: $N_{A}=N_{0} \operatorname{erfc}(X)$
C: Junction capacitance (F)
$C_{k}: k^{t h}$ calculated capacitance value (F)
Cmk $: k^{\text {th }}$ measured capacitance value (F)
D : diffusion coefficient of a dopant ($\mathrm{cm}^{2} / \mathrm{sec}$)
ε : permittivity of the semiconductor (F / cm)
$\varepsilon:$ electric field in the depletion layer ($V / c m$)
k : Boltzmann constart
L $\quad L=2 \sqrt{D t}$: characteristic diffusion length (cm)
$N(x)$: net impurity profile (cm^{-3})
$n_{i} \quad$: intrinsic dersity of the semiconductor $\left(\mathrm{cm}^{-3}\right)$
N_{A} : substrate doping (cm^{-3})
N_{0} : surface concentration of diffusion dopant (cm^{-3})
p : parameter vector in the profile function $N(x, p)$
q : electronic charge ($1.6 \quad 10^{-19} \mathrm{C}$)
t : diffusion time (sec)
\mathbf{V} : electrostatic potential in the semiconductor
V : voltage applied to the diode (reverse bias is positive) (Volt)
\mathbf{V}_{b} : built-in voltage used to calculate the depletion layer width. (Volt)
$\begin{aligned} \bar{\nabla}_{b t}\left(V_{a}\right)= & (k T / q) \ln \left(\left|N\left(x_{1}\left(V_{a}\right)\right) \cdot N\left(x_{r}\left(V_{a}\right)\right)\right| / n_{i}^{2}: \text { theoretical }\right. \\ & \text { builtin voltage at voltage } v_{a}\end{aligned}$
$\nabla_{\hat{g}} \quad:$:gradient voltage defined as the intercept of the
tangent to a $C^{-3}\left(V_{a}\right)$ curve for $v=0$
\rangle_{i} : intercept with the V_{a}-axis of the $c^{-3}\left(V_{a}\right)$ curve (Volt)
x : coordinate axis in the semiconductor
$X_{j}\left(r_{j}\right)$: junction depth from the surface of the semiconductor
x_{1} : left-hand edge of the space charge layer
x : right hand edge of the space charge layer
$\xi_{(\bar{p})}^{r}$
: performance index to calculate the profile parameters

I. Introduction.

Several authors have calculated the junction capacitance versus bias for some specific types of impurity pro$1,2,3,4$
files.
The results are usually represented by a
normalized graph. These graphs are useful if only a few. calculations are required ard if the impurity profile corresponds to the one used to construct the graph. In many cases the profile is different and the junction capacitance or depletion layer width has to be used as part of a computer program for calculations of device behavior. In these cases it is convemient to have an efficient algorithm that calculates the depletion layer characteristics for any voltage, impurity profile and semiconductor material. Examples are: detailed modeling of JFET's, design of varactors ${ }^{5}$, avalanche breakdown calcula6
tions , transistor modeling.

Such an algorithm based on the abrupt space charge edge (ASCE) approximation and an application of it to the determination of impurity profiles for two-sided junctions is described here.

It is recognized that more elaborate programs exist 8,9
that calculate the exact capacitance taking the mobile charge carriers into account. Eowever, it has been shown 9,10 that, for capacitance calculations, a simple correction to the
theoretical built-in voltage at zero bias, ($\left.V_{b t}(0)\right)$, can account for the mobile carriers. A more general expression for this correction is derived here. It is valid at any temperature and for any semiconductor. As a result the ASCE approximation can be used for capacitance calculations, thus saving a considerable amount of computer time. Noreover, even in the exact programs computation time is saved if the Gummel's Iteration method 8 is started from a first guess calculated from the ASCE approximation. This is another application for the algorithm presented here.
-II. The algorithm.

The algorithm consists of two parts: the starting algorithm and the Newton's iteration. The latter is described first. a. Newton's iteration.

Let $N(x)$ represent an impurity profile function such that:

$$
\begin{array}{lll}
N(x)>0 & \text { for } & x<0 \\
N(x)=0 & \text { for } & x>0 \tag{1~b}
\end{array}
$$

The function $N(x)$ need not to be continuous at $x=0$ which is the location of the metallurgical junction (fig. 1). The con-
ditions ($1 a, b$) are no limitations since any profile can satify (1a,b) by a charge in bias polarity and the sign of $N(x)$. x_{1} and x_{r} are the abrupt space charge edges. Let us assume, for the time being, that the builtin voltage V_{b} is known. It is easy to show that the double integration of Poisson's equation:

$$
\begin{equation*}
\frac{d^{2} v}{d x^{2}}=-\frac{q^{N(x)}}{\varepsilon} \tag{2}
\end{equation*}
$$

with boundary conditions:

$$
\begin{align*}
& \left.\frac{d V}{d x}\right|_{x=x_{1}}=0 \tag{3}\\
& \left.\therefore \frac{d V}{d x}\right|_{x=x_{r}}=0 \tag{4}
\end{align*}
$$

yields:

$$
\begin{align*}
& F\left(x_{r}, x_{1}\right) \triangleq \int_{x_{1}}^{x_{r}} N(x) d x=0 \tag{5}\\
& G\left(x_{r}, x_{1}\right) \triangleq \int_{x_{1}}^{x_{r}} x N(x) d x+\frac{\varepsilon}{q}\left(v_{a}+v_{b}\right)=0 \tag{6}
\end{align*}
$$

Note that V_{a} is considered to be positive for reverse bias and that (3) and (4) are approximations stating that the alectrice field vanishes at the space charge edges. It has been shown 10 that this approximation can also be corrected by using the appropriate V_{b}. Equations (5) and (6) are the basic set of equations for x_{1} and x_{r}. Equations (5) and (6)
can be solved numerically with Newton's iteration method. Once x and x_{1} are known the capacitance is given by:

$$
\begin{equation*}
c=\frac{\varepsilon A}{x_{I}-x_{1}} \tag{7}
\end{equation*}
$$

Let $\left(x_{r}^{(i)}, x_{1}^{(i)}\right.$) be the result of the $i^{t h}$ iteration
and let

$$
\begin{align*}
& x^{(i+1)}=x_{r}^{(i)}+\Delta x_{r}^{(i)} \tag{8}\\
& x_{1}^{(i+1)}=x_{1}^{(i)}+\Delta x_{1}^{(i)} \tag{9}
\end{align*}
$$

be a better approximation. Let further $F^{(i)}=F\left(x^{(i)}, x_{1}^{(i)}\right.$) and $G^{(i)}=G\left(X_{r}^{(i)}, X_{1}^{(i)}\right)$. Accordingly,

Carrying out the differentiations on (5) and (6) we have:

Equation (11) shows the advantage of applying Newton's method since the calculation of the partial derivatives $\partial F / \partial x_{r, 1}$ and
$\partial G / \partial x_{r, l}$ requires only two profile function calculations. Apparently the calculation of the right hand side of (id) requires two accurate numerical integrations for each iteralion. However, with $\left(X_{r}^{(1)}, x_{1}^{(1)}\right)$ representing the starting values for the iteration, $F^{(1)}$ can be written as:

$$
F^{(i)}=\int_{x_{1}}^{X_{r}^{(i)}} N(x) d x=\int_{x_{1}}^{x_{r}^{(1)}} N(x) d x+\sum_{k=1}^{1-1} \int_{x_{r}}^{x_{r}^{(k+1)}(k)} N(x) d x+\sum_{k=1}^{i-1} \int_{x_{1}^{(k+1)}}^{x^{(k)}}{ }^{N}(x) d x
$$

(12)

If ($x_{r}^{(4)}, x_{1}^{(1)}$) is close enough to the solution, then at each iteration the intervals $\left(x_{r}^{(k)}, x_{r}^{(k+1)}\right)$ and $\left(x_{1}^{(k+1)}, x_{1}^{(k)}\right)$ are small enough to use a three point simpson iteration such that th
at the it iteration we only calculate for example:

$$
\begin{equation*}
\left.\int_{x_{r}}^{x_{r}^{(i+1)}} N(x) d x \approx \frac{x_{r}^{(i)}}{3}\left[N\left(x_{r}^{(i)}\right)+4 N\left(\left(x_{r}^{(i)}+x_{r}^{(i+1)}\right) / 2\right)\right)+N\left(x_{r}^{(i+1)}\right)\right] \tag{13}
\end{equation*}
$$

Since $N\left(x_{r}^{(1)}\right.$) is known from the previous step it is easy to show that for each Newton iteration, except for the first, only four new function evaluations need to be done to update $F^{(i)}$ and $G^{(i)}$ and to calculate the next iteration point. Usually three iterations are sufficient for a relative accuracy of 10^{-5} for (x_{r}, x_{1}), such that about twelve function evaluatrons are needed in this part of the algorithm. The problem is now to find appropriate starting values $\left(x_{r}^{(1)}, x_{1}^{(1)}\right.$).

b. The starting algorithm.

A method for the calculation of $\left(x_{r}^{(1)}, x_{1}^{(1)}\right.$, that permits the calculation of $F^{(1)}$ and $G^{(1)}$ at almost no extra cost will be described.

Let $X_{r m}$ and $X_{I m}$ be defined from:

$$
\begin{align*}
& G\left(x_{r m}, 0\right) \triangleq \int_{0}^{x_{r m}} x N(x) d x+\frac{\varepsilon}{q}\left(v_{a}+v_{b}\right) \equiv 0 \tag{14}\\
& G\left(0, x_{l_{m}}\right) \triangleq \int_{x_{1 m}}^{0} x N(x) d x+\frac{\varepsilon}{q}\left(v_{a}+v_{b}\right) \equiv 0 \tag{15}
\end{align*}
$$

Then from (lab) and (5) and (6) it follows that:

$$
x_{r m}=\sup \left(x_{r}\right) \quad \text { and } \quad x_{1 m}=\inf \left(x_{1}\right)
$$

Further $G\left(x_{r}, X_{1}\right)$ defines a curve $x_{1}=g\left(X_{r}\right)$ in the $\left(x_{r}, x_{1}\right)$ plane (fig. 2) going through $A\left(0, x_{1 m}\right)$ and $B\left(x_{r m}, 0\right)$ and having a derivative:

$$
\begin{equation*}
g^{\prime}\left(x_{r}\right)=\frac{d x_{1}}{d x_{r}}=-\frac{\partial G / \partial x_{r}}{\partial G / \partial x_{1}}=\frac{x_{r} N\left(x_{r}\right)}{x_{1} N\left(x_{1}\right)}>0 \tag{16}
\end{equation*}
$$

as can be found from conditions (lab). Further from (16):

$$
\begin{equation*}
g^{\prime}(0)=0 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{\prime}\left(x_{r_{\mathrm{m}}}\right)=+\infty \tag{18}
\end{equation*}
$$

From (16), (17) and (18) it follows that $x_{1}=g\left(x_{r}\right)$ is a curve of the form indicated in fig. 2 by curve (1).

The function $F\left(x_{r}, x_{1}\right)$ defines a curve $x_{1}=f\left(x_{r}\right)$ in the (x_{r}, x_{1}) plane, going through the origin $0(f i g .2)$ and having
a derivative:

$$
\begin{equation*}
f^{\prime}\left(x_{r}\right)=-\frac{\partial F / \partial x_{r}}{\partial F / \partial x_{1}}=\frac{N\left(x_{r}\right)}{N\left(x_{1}\right)}<0 \tag{19}
\end{equation*}
$$

by condition (la,b). It is a decreasing function represented by curve (2) on fig: 2 .

The intersection $C\left(x_{r}, x_{1}\right)$ is the solution to the problem. The point $D\left(x_{r}^{(1)}, x_{l}^{(1)}\right.$) is considered as the starting value for Newton's method. This point is obtained as follows:
a. For a given $N(x), v_{\text {a }}$ and V_{b} find $x_{r m}$ and $x_{1 m}$ (points A and B in fig. 2)
b. Find the intersection I of the line $A B$ and $x_{1}=f\left(X_{r}\right)$
c. Calculate the intersection, D, with the curve
$x_{1}=g\left(x_{r}\right)$ of the tangent line to $x_{1}=f\left(x_{r}\right)$
in point I.

Note that the equation for t is simply given by:

$$
\begin{equation*}
\left(x_{1}-x_{1 i}\right)=-\frac{N\left(x_{r i}\right)}{N\left(x_{1 i}\right)}\left(x_{r}-x_{r i}\right) \tag{20}
\end{equation*}
$$

In all practical cases, point D is within 10% of the required solution. Note also that since D is only a starting point, it does not need to be calculated with high precision. Details of the starting algorithm are given in Appendix A. Basically the method consists of a stepping along the x_{1} and x_{r} axis to find approximations for $x_{r m}$ ard $x_{1 m}$. During this operation a maximum of 50 but typically 40 function
values are calculated only once and stored in the memory. These values are then used in arithmetic operations only to find I and D. At the same time these stored values are used in simpson's rule to calculate $F^{(1)}$ and $G^{(1)}$. The total number of function evaluations to find (X_{r}, X_{1}) is typically 60-65 for three Newton iterations.

It should be noted that:

a. The above described algorithm can easily be adapted to calculate both cylindrical and spherical junctions as indicated in appendix B.
b. If ($\left.X_{r}, X_{I}\right)$ has to be calculated for many successive voltages V_{a}, the starting algorithm is used only once. The preceding values of $\left(x_{x}, x_{1}\right)$ are then used as starting values for the next voltage.
III. The built-in voltage V_{b}.

```
Depending on the use of the algorithm we consider three possibilities for \(V_{b}\).
```


a. A known V_{b} -

- This is the case, for example, if the algorithm is used to calculate impurity profiles from $C\left(V_{a}\right)$ measurements as described in section IVa. This case is trivial since the
basic algorithm can be used without modification.
b. The algorithm is used to calculate approximate field and potential distributions.

In this case V_{b} is given by:
$v_{b}=v_{b t}\left(v_{a}\right)=\frac{k T}{q} \ln \left|\frac{N\left(x_{r}\left(V_{a}\right)\right) N\left(x_{1}\left(V_{a}\right)\right)}{n_{i}^{2}}\right|=V_{b}\left(x_{r}, x_{1}\right)$
Strictly speaking, the method of section II becomes invalid since V_{b} is itself a function of the solution $\left(x_{r}, x_{1}\right)$. Due to the logarithmic dependence, $\nabla_{b}\left(X_{r}, X_{l}\right)$ is a slowly varying function and thus the following procedure can be used. The algorithm is started with $\mathrm{V}_{\mathrm{b}}^{(0)}=0.7$ Volt as a first guess. From the starting algorithm $\left(x_{r}^{(1)}, x_{1}^{(1)}\right.$) are found and $v_{b}^{(1)}=v_{b}\left(X_{r}^{(1)}, X_{1}^{(1)}\right.$) can be calculated and used in Newton's iteration. This gives a first approximation ($X_{r l}, X_{11}$) for the solution $\left(x_{r}, x_{1}\right), v_{b}^{(2)}=V_{b}\left(x_{r 1}, x_{11}\right)$ is then a better approximation for V_{b} and with $V_{b}^{(2)}$ and $\left(x_{r 1}, x_{11}\right)$ as new starting values Newton's iteration is used again. This is repeated until:

$$
\left|v_{b}^{(i+1)}-v_{b}^{(i)}\right| \leqslant 0.1 \mathrm{mv}
$$

which occurs after 2 ... 3 Newton iteration cycles. If necessary the field - and potential distributions
car be found from:

$$
\begin{align*}
& \ell(x)=-\frac{d v}{d x}=-\frac{q}{\varepsilon} \int_{x}^{x} N(\xi) d \xi \tag{22}\\
& \nabla(x)-v\left(x_{1}\right)=-\frac{q}{\varepsilon}\left[x \xi(x)+\int_{x_{1}}^{x} \xi N(\xi) d \xi\right] \tag{23}
\end{align*}
$$

Equations (22) and (23) follow from the integration of (2), using (3). The numerical integration of (22) and (23) can be done using the function values stored during the starting algorithm; such that $E(x)$ and $V(x)$ are found without too many extra calculations. This is useful for breakdown and avalanche multiplication calculations.
c. Capacitance calculations.

Almost all diffused junctions (and ever epitaxial
Junctions) behave almost as linear junctions at low reverse
and forward bias 4,6 i.e. $c^{-3}(V)$ is indistinguishible from a linear function intersecting the V axis at the intercept voltage V_{i}. Nuyts ard Van Overstraeten 9,10 have shown nunerically that almost correct junction capacitances can be calculated with the ASCE approximation if the built-in voltage \mathbf{V}_{b} is taken equal to the intercept voltage V given by:

$$
\begin{equation*}
\mathbf{v}_{\mathbf{i}}=\mathbf{v}_{\mathrm{bt}}(0)-\mathbf{v}_{\mathrm{bc}} \tag{24}
\end{equation*}
$$

They found $V_{b c} \approx 0.13$ Volt for silicon, at room temperature. Using the concept of "gradient" voltage, introduced by Chamla and Gummed ${ }^{4}$ it is possible to find a more general expression for $V_{b c}$. The gradient voltage V_{g} is the intercept voltage of a tangent to the $c^{-3}(V)$ curve for $v=0$ volt and is shown ${ }^{4}$ to be:

$$
\begin{equation*}
V_{g}=\frac{2}{3} \frac{k T}{q} \ln \frac{a^{2} \varepsilon k T}{8 q^{2} n_{i}^{3}} \tag{25}
\end{equation*}
$$

10
Nuts 10 has shown that the gradient voltage is $2 k T / 3 \mathrm{higher}$ than the intercept voltage V_{i} used. in (24). As a result:

$$
\begin{equation*}
v_{i}=v_{b t}(0)-v_{b c}=\frac{2}{3} \frac{k T}{q}\left[\ln \frac{a^{2} \varepsilon k T}{8 q^{2} n_{i}^{3}}-1\right] \tag{26}
\end{equation*}
$$

We also have:

$$
\begin{equation*}
V_{b t}(0)=\frac{k T}{q} \ln \frac{a^{2} w^{2}(0)}{n^{2}} \tag{27}
\end{equation*}
$$

and $w(0)=\left(\frac{12 \varepsilon V_{b t}(0)}{q a}\right)^{1 / 3}$
After elimination of $w(0)$ and a from (26), (27) and (28) ard solving for $V_{b c}$:

$$
\begin{equation*}
\nabla_{b c}=\frac{2}{3} \frac{k T}{q}\left[\ln \left(\frac{12 q V_{b t}(0)}{k T}\right)+1\right] \tag{29}
\end{equation*}
$$

Such that:

$$
\begin{equation*}
\mathbf{v}_{b}=v_{b t}(0)-\frac{2}{3} \frac{k T}{q}\left[\ln \left(\frac{12 q V_{b t}(0)}{k T}\right)+1\right] \tag{30}
\end{equation*}
$$

For silicon at room temperature and assuming $V_{b t}(0)=0.8079$ Volt for $a=10^{22} \mathrm{~cm}^{-4}$, (29) gives $\mathrm{V}_{\mathrm{bc}}=0.120$ Volt which is
 Van Overstraeten. The procedure for calculating $C(V)$ curves is now:

```
a. Set V }\mp@subsup{V}{a}{=0}\mathrm{ and calculate V ( (0) according to the
    method described in II b.
b. Calculate V from (30).
c. Since V is known now, calculate C(V () for all
    given va using the basic algorithm.
```

IV. Applications.
a. Impurity profile determination for two-sided junctions.

The determination of a profile on a two-sided junction
is only possible if the profile is exactly known on one side 11

This is not the case for most diffused devices. Very often however it is possible to formulate an analytical expression describing the profile around the metallurgical junction. This expression depends on a paraeter-vector \bar{p} and can thus be written as:

$$
\begin{equation*}
\mathbf{N}=N(x, \bar{p}) \tag{31}
\end{equation*}
$$

The vector \bar{p} has to be fourd such that (31) gives the measured $C\left(V_{a}\right)$ dependence. In order to keep mathematics simple we describe the case for measurements on mesa-diodes although the method can easily be adapted to planar junctions using
the expression for cylindrical and spherical junctions as given in Appendix B. The disadvantage is that for planar junctions the computer time is almost doubled by the addtional calculations.

Let $C_{m k}=C_{m k}\left(V_{a k}\right)$ be the measured capacitance values at the voltages $V_{\text {ak }}$ where $k=1,2 \ldots m$ and m is the total number of capacitance measurements from slight forward bias (-0.5V) up to breakdown voltage. First the built-in voltage V_{b} is calculated. This is done by fitting a straight line through the points $c_{m k}^{-3}\left(V_{a k}\right)$ for $-0.5 \leqslant V_{a k} \leqslant 0.1$ Volt. The intercept V_{i} of this line with the V_{a}-axis is the builtin voltage V_{b}. Once V_{b} known we can calculate, for a given $N(x, \bar{p}):$

$$
\begin{equation*}
c_{k}=c_{k}\left(V_{a k}, V_{b}, \bar{p}\right)=\frac{E A}{x_{r_{k}}(\bar{p})-x_{1 k}(\bar{p})} \tag{32}
\end{equation*}
$$

$x_{r k}(\bar{p})$ and $x_{l k}(\bar{p})$ are calculated from the basic algorithm for the given $N(x, \bar{p}), V_{a k}$ and V_{b}.

We now define a performance index:

$$
\begin{equation*}
\xi(\bar{p}) \triangleq \sum_{k=1}^{m}\left[\frac{c_{k}-c_{m k}}{c_{m k}}\right]^{2} \tag{33}
\end{equation*}
$$

If \bar{p}_{m} is found such that:

$$
\begin{equation*}
\xi\left(\overline{\mathrm{p}}_{\mathrm{m}}\right)=\operatorname{Min}_{\forall \overline{\mathrm{p}}} \xi(\overline{\mathrm{p}}) \tag{34}
\end{equation*}
$$

Then the impurity profile corresponding to the $C\left(V_{\mathbf{a}}\right)$ measrements is given by:

$$
\begin{equation*}
N(x)=N\left(x, \bar{\varphi}_{m}\right) \tag{35}
\end{equation*}
$$

Efficient algorithms to minimize $\xi(\bar{p})$ such as 12
Fletcher-Powell's method require the evaluation of the gradient $\bar{g}=\partial \zeta / \partial \bar{p}$. Perturbation methods to calculate \bar{g} are very inefficient in time and are too inaccurate. A more efficient way starts from the definition (33) of $\zeta(\bar{p})$:

$$
\begin{equation*}
g_{j}=\frac{\partial \xi(\bar{p})}{\partial p_{j}}=2 \sum_{k=1}^{m} \frac{\left(c_{k}-c_{m k}\right)}{c_{m k}^{2}} \frac{\partial c_{k}(\bar{p})}{\partial p_{j}} \tag{36}
\end{equation*}
$$

From (36) and (32):

$$
\begin{equation*}
g_{j}=-\frac{2}{\varepsilon \cdot A} \sum_{k=1}^{m} \frac{c_{k}^{2}}{c_{m k}^{2}}\left(c_{k}-c_{m k}\right)\left(\frac{\partial x_{r}}{\partial p_{j}}-\frac{\partial x_{1}}{\partial p_{j}}\right) \tag{37}
\end{equation*}
$$

The problem is reduced now to the calculation of $\partial x_{r} / \partial p_{j}$ and $\partial x_{1} / \partial p_{j}$. Therefore consider eq. (5) and (6) where $N(x)$ is substituted by $N(x, \bar{p})$ such that $F\left(x_{r}, x_{1}\right)$ and $G\left(x_{r}, x_{1}\right)$ become $F\left(x_{r}, x_{1}, \bar{p}\right)$ and $G\left(x_{r}, x_{1}, \bar{p}\right)$. Taking the total differential of F and G with respect to X_{r}, x_{1} and p_{j} yields:

A comparison of (38) with (11) indicates that the left-handside-matrix is already calculated during the last Newton iteration in the basic algorithm. Calculating a gradient component thus requires for each voltage only the calculation of the two integrals in the right-handside of (38). If surcesive increasing voltage steps are used, former calculated values can be used and a simple integration rule can be applied in the same way as described in Ila for the calculation \dot{o} $F^{(i)}$ and $G^{(i)}$ (eq. (12) and (13)).

As an example a phosphorus diffusion from a POCl_{3} source at $1075^{\circ} \mathrm{C}$ for 30 min . in a uniformly doped p substrate of $0.2 \Omega \mathrm{~cm}$ is considered. It is known 13,14 that the ioniazed impurity profile can be described as almost constant and equal to about $N_{0}=2.510^{20} \mathrm{~cm}^{-3}$ from the surface to sone depth x_{1} (fig. 2). From there up to the junction depth. x_{j} the profile behaves almost as a complementary errorfunction.

In order to be consistent with the definition ($1 a, b$) of $N(x)$ we take the origin at the junction. It is easy to show that the profile around the junction can be written as:

$$
\begin{equation*}
N(x)=-\frac{2 N}{\sqrt{\pi}} \int_{\alpha}^{\frac{x}{L}+\alpha} e^{-\xi^{2}} d \xi=N(x, L, \alpha) \tag{39}
\end{equation*}
$$

where $N_{0}=2.510^{20} \mathrm{~cm}^{-3}, L=2 \sqrt{D t}$ and α is such that the substrate doping N_{A} is given by:

$$
\begin{equation*}
N_{A}=N_{0} \operatorname{erfc}(\alpha) \tag{40}
\end{equation*}
$$

Since N_{0} is assumed to be known, the parameter vector \bar{p} is given by:

$$
\overline{\mathbf{p}}=(L, \alpha)
$$

A mesa diode of an area $A=10^{-3} \mathrm{~cm}^{-3}$ was made from the diffused wafer and the $C\left(V_{a}\right)$ curve was measured with a Boonton 75A bridge. The measured points are given in column I and II of table 1. Curve 4 on fig. 4 gives $c^{-3}\left(v_{a}\right)$ for forward bias. From this figure the intercept voltage V_{i} is read to be:

$$
v_{i}=v_{b}=0.680 \mathrm{v}
$$

Using this value for V_{b} and taking $\varepsilon=1.0410^{-12} \mathrm{~F} / \mathrm{cm}$ for silicon the above described curve fitting technique, with a Fletcher-Powell minimization routine, was performed for the 17 C(V) points. Starting values for \bar{p} are:
$d=2.3$
and

$$
\mathrm{L}=4.10^{-5} \mathrm{~cm}
$$

The $C\left(V_{a}\right)$ values calculated from these starting values are given in column III of table 1. The mean error is about 40\%. After 6 iterations, requiring 10 sec. CPU time on the CDC 6400 computer, convergence was obtained for the following parameters:

$$
\begin{aligned}
& \alpha=2.438 \\
& \mathbf{L}=5.74210^{-5} \mathrm{~cm} \\
& \mathbf{x}_{2}=1.40 \mu \mathrm{~m} \\
& \mathbf{N}_{\mathbf{A}}=1.41310^{17} \mathrm{~cm}^{-3}
\end{aligned}
$$

-The mean error for these final values is 0.3% which is within the experimental exror of the $C\left(V_{a}\right)$ measurements indicating that the erfc. is agood approximation to the profile. The capacitance calculated from the final profile parameter are given in column III of table 1. Note the very close agreement with the measured values. The diffusion depth was measured to be $x_{j}=2.27 \mu m$ such that the profile can be constructed as is done in fig. 3. The sheet-resistivity calculated from this profile using Irvin's ${ }^{15}$ method gives $\rho_{s}=2.92 \Omega / \square$. which is in good agreenent with the measured value of $2.8 \Omega(\square)$ Note also that the computed result $N_{A}=1.413 \cdot 10^{17} \mathrm{~cm}^{-3}$ is close to $N_{A}=1.5 \ldots 2.010^{17} \mathrm{~cm}^{-3}$ which is derived from the resis-

Abstract

tivity of the substrate. This example illustrates how the algorithn can be used to fit impurity profiles to $C(V)$ measurements.

b. Calculation of $C(V)$ curves.

Using the above-determined profile parameters, we can calculate $C(V)$ curves at different temperatures using the procedure described in section IIc. and compare the results with measurements. Fig. 4 is a set of measured $C^{-3}\left(V_{a}\right)$ curves at six different temperatures. The intercepts with the V-axis of the straight innes through the experimental points represent the measured built-in voltage at the different temperatures. The crosses are calculated points and the crosses on the V_{a} axis represent the V_{b} values calculated from (30).

Fig. 5 shows calculated $C(T)$ curves at different bias
 values. Note the large temperature sensitivity for forvard bias due to the important role of $V_{b}(T)$. It is obvious frow fig. 4 and 5. that the use of eq. (30) for V_{b} makes accurate capacitarce calculatiors possible with the ASCE approximation, even for moderate forward bias levels. Moreover eq. (30) also describes the temperature dependence of V_{b} accurately. This is illustrated ir fig. 6 where the built-in voltage calculated
from (30) is plotted and compared with measured values indicated by the dots. The agreement is quite well over the temperature range considered here. Note that $\Delta V_{b} / \Delta T \approx-2 m V /{ }^{\circ} C$ for the $\left(-55,125^{\circ} \mathrm{C}\right)$ temperature range. This value is fairly typical for most junctions in I.C. transistors.
V. Conclusion.

A fast algorithm has been described which calculates $+$ the junction capacitance for an arbitrary impurity profile and applied voltage V_{a}. It is shown that due to the form of the basic equations, Newton's method is especially efficient to use. The algorithm is based on the abrupt space charge edge (ASCE) approximation. It is found that, by an appropriate correction to the theoretical built-in voltage $\nabla_{b t}(0)$, almost exact $C\left(V_{a}\right)$ curves can be calculated even for forward bias and at different temperatures.

On the other hand, it is shown how the algorithm can be used to calculate the parameters of an analytical expression for an impurity profile from a measured $C\left(V_{a}\right)$ curve.

Table 1.

Column I: Applied voltage $V_{a k}$ (positive for reverse bias) (Volt)

Column II: Measured capacitance values ($\mathrm{p} F$)
Column III: Calculated capacitance from the final profile parameters

Column IV: Calculated capacitance fron the initial profile parameters

The author wishes to express his gratitude to the ESRO and NASA organizations for sponsoring this research, to the University of California, Berkeley I.C. laboratory and computer center for providing the facilities for this work and to Dr. M. Petrescu for many valuable discussions.

References

1. H. LAWRENCE and R.M. WARNER, Bell Syst. Techn. J. Vol 38, 389, (1960).
2. P.R. WILSON, Solid-St. Electron. Vol. I2, 1, (1969).
3. P.R. WILSON, Solid-St. Electron. Vol 12, 277 , (1969).
4. B.R. CFAWLA and H.K. GUMMEL, IEEE Trans on Electron Dev., Vol ED-18, 178, (1971).
5. H. YONEZU and A. IANAJI, IEEE Trans on Electron Dev., Vol ED-16, 923, (1969).
6. R.J. VAN OVERSTRAETEN and H. DE MAN, Solid-St. Electron. Vol 13, 583, (1970).
T. R.E. THOMAS and A.R. BOOTHROYD, Solid-St. Electron. Vol 11 , 365, (1968) 。
7. H.E. GUMMEL, IEEE Trans on Electron Dev., Vol ED-Il, 455, (1964).
8. W. NUYTS and R.J. VAN OVERSTRAETEN, Electronics Letters, Vol 5, 54, (1969).
9. W. NUYTS, Ph. D. dissertation, Dept. of Electrical Engineering of the University of Louvain, Belgium.
10. H.J.J. De Man, IEEE Trans on Electron Dev. Vol ED-17, 1087, (1970)
11. R. FLETCHER ard M.J.D. POVELL, Computer Journ. Vol 6, 163, (1963).
12. E. TANNENBAUM, Solid-St. Electron. Vol 2, 123, (1961).
13. R.A. MCDONALD, G.G. EHLENBERGER, T.R. HUPFMAN, VOI 9, 807, (1966).
14. J.C. IRVIN, Bell Syst. Techn. Journ., Vol 41, 387, (1962).

Appendix •A: The starting algorithm.
a. The search for $x_{r m}$ and $x_{1 m}$ -

The search for $x_{r m}$ will be. described since the $x_{1 m}$
search is analoguous. A first rough guess for x in made by calculating n such that:
α is chooser as $10^{-5} \mathrm{~cm}$. A three-point Gaussian integration
is used for calculating the integrals. The summation stops when
(A1) is satisfied. From (Al) and (14) it follows:

$$
\begin{equation*}
\alpha \cdot 3^{n-1} \leqslant x_{r m} \leqslant \alpha \cdot 3^{n} \tag{Az}
\end{equation*}
$$

We now assume a stepsize Δ_{r} along the x_{r}-axis given by:

$$
\begin{equation*}
\Delta_{r}=0.1 \alpha 3^{n-1} \tag{AB}
\end{equation*}
$$

This is used in a trapezoidal integration to find a point $n_{r} \Delta_{r}$ such that:

$$
\begin{equation*}
\int_{0}^{\boldsymbol{D}_{r} \Lambda_{r}} x N(x) d x+\frac{\varepsilon}{q}\left(v_{a}+v_{b}\right) \leqslant 0 \tag{AS}
\end{equation*}
$$

The symbol \int_{T} indicates trapezoidal integration. Note that the search for n_{r} is done by a simple stepping along the x_{r} axis until (A4) is satisfied...In the same way a step Δ_{1} is calcu-
lated on the x_{1}-axis and a point $-n_{1} \Delta_{1}$ is searched such that:

$$
\begin{equation*}
\int_{-n_{1} \Delta_{1}}^{0} x N(x) d x+\frac{\varepsilon_{1}}{q}\left(v_{a}+v_{b}\right) \leqslant 0 \tag{AD}
\end{equation*}
$$

From (A4), (A5), (14) and (15) it follows that:

$$
\begin{align*}
& x_{r m} \approx n_{r} \Delta_{r} \tag{AG}\\
& x_{1 m} \approx-n_{1} \Delta_{1} \tag{AT}
\end{align*}
$$

Note: 1. The exact values of $x_{r m}$ and $x_{1 m}$ are not important, so (A6) and (A7) are considered correct.
2. During operations (A4) and (A5) all the function Values $\varphi(\pm k)$ and partial integration results $s_{x}(\pm k)$ defined as:
$\varphi(k)=N\left(k \Delta_{r}\right)$ and $S_{x}(k)=\int_{0}^{k A_{r}} x N(x) d x$ $\dot{\varphi}(-k)=N\left(-k \Delta_{r}\right)$ and $s_{x}(-k)=\int_{-k \Delta_{1}}^{0} x N(x) d x$
are stored. From (A2) and (A3) it follows that $n_{r, 1} \leqslant 30$.
b. Search for $I\left(x_{1 i}\right.$ x $_{r i}$) (fig. 2)

The equation of line $A B$ (fig. 2) is:

$$
x_{1}\left(x_{r}\right)=x_{1 m}\left(1-\frac{x_{r}}{x_{r m}}\right)
$$

Thus x_{i} is the solution of:

$$
\begin{equation*}
\left.\int_{x_{1}}^{x_{r i}} x_{r i}\right) d x=0 \tag{A12}
\end{equation*}
$$

This equation is solved with the trapezoidal integration by stepping along the x_{r}-axis with steps Δ_{r}. The trapezoidal integration makes use of the values $\varphi(\pm k)$ already stored so that no additional function values are calculated. A linear interpolation is used whenever the coordinates do not coincide with the grid defined by the steps Δ_{r} and Δ_{I} (this can be the case for $x_{1}\left(x_{r_{i}}\right)$). Note that from (A le) it follows:

$$
\begin{equation*}
\int_{x_{1 i}}^{x_{i}} N(x) d x=0 \tag{A13}
\end{equation*}
$$

c. Search for $\left.\left(x_{r}\right) x_{1}\right)$

The equation of the tangent line $t(f i g .2)$ is:

$$
\begin{equation*}
x_{1}\left(x_{r}\right)=x_{1 i}-\frac{N\left(x_{r i}\right)}{N\left(x_{1 i}\right)}\left(x_{r}-x_{r_{i}}\right) \tag{Al}
\end{equation*}
$$

$x_{r}^{(1)}$ is the solution of:
(1)

$$
\begin{equation*}
\int_{x_{(x}(1)}^{x} x N(x) d x+\frac{\varepsilon}{q}\left(V_{a}+V_{b}\right)=0 \tag{A15}
\end{equation*}
$$

This equation is solved in the same way as in step'b. \therefore Use is made of the stored results $S_{x}(\pm k)$ and linear interpolations. Here too no new function calculations are required. Note that now, according to (A15):

$$
\begin{equation*}
G^{(1)}=G\left(x_{1}^{(1)}, x_{r}^{(1)}\right)=0 \tag{A16}
\end{equation*}
$$

so that $G^{(1)}$ is obtained at no extra cost. We only need to calculate:

$$
F^{(1)}=F\left(x_{1}^{(1)}, x_{r}^{(1)}\right)
$$

which, according to $A(13)$, is done by:

$$
\begin{equation*}
F^{(1)}=\int_{x_{1}(1)}^{x_{1 i}} N(x) d x+\int_{x_{r i}}^{x_{r}^{(1)}} N(x) d x \tag{A17}
\end{equation*}
$$

making use of $\varphi(\pm k)$ values and linear interpolation. Note that function values are calculated only during the first step and then always used back again.

Appendix B: The cylindrical and spherical junction:

The cylindrical and spherical coordinates are defined in fig. 7. We assume that the profile function is given as:

$$
\begin{equation*}
N\left(x_{c, s}\right)=N\left(r-r_{j}\right) \tag{BI}
\end{equation*}
$$

where the subscript c or s stands for cylindrical or spherical junctions respectively.

Poisson's equation can now be written as:

$$
\begin{equation*}
\sum_{r^{n}} \frac{d}{d r}\left(r^{n} \frac{d V}{d r}\right)=-\frac{q N\left(r-r_{j}\right)}{\varepsilon} \tag{B2}
\end{equation*}
$$

with $n=1$ for cylindrical and $n=2$ for spherical junctions. It is easy to show that a double integration of (B2) and a change of coordinates to x_{c} or x_{s} leads to:

1. for cylindrical junctions:
$F_{c}\left(x_{r c}, x_{1 c}\right)=\int_{x_{1 c}}^{x_{r c}}\left(1+\frac{x_{c}}{r_{j}}\right) N\left(x_{c}\right) d x_{c}=0$
$G_{c}\left(x_{r c}, x_{I c}\right)=r_{j} \int_{x_{I c}}^{x_{r c}}\left(1+\frac{x_{c}}{r_{j}}\right) \ln \left(1+\frac{x_{c}}{r_{j}}\right) N\left(x_{c}\right) d x_{c}+\frac{\varepsilon^{\prime}}{q}\left(V_{a}+V_{b}\right)=0$
2. for spherical junctions:
$F_{s}\left(x_{r s}, x_{1 s}\right)=\int_{x_{1 s}}^{x_{r s}}\left(x_{s}+r_{j}\right)^{2}\left(x_{s}\right) d x_{s}=0$
(B4)
$G_{s}\left(x_{r s}, x_{1 s}\right)=\int_{x_{1 s}}^{x_{r s}}\left(x_{s}+r_{j}\right) N\left(x_{s}\right) d x+\frac{\mathcal{E}}{q}\left(V_{a}+V_{b}\right)=0$

The equations (B3) or (B4) can be solved with Newton's method in exactly the same way as given in IIa. The partial derivatives in eq (lo) are also easily calculated from only two function values and each iteration again requires only four function calculations. The starting values for (B3) are the solution $\left(X_{r}, x_{1}\right)$ for the plane junction and for ($B 4$) the solution $\left(x_{r c} x_{l c}\right)$ for the cylindrical junction. These are usually close enough to the solution if r_{j} is not too small. Koreover this is usually the sequence in which the results are needed (e.g. calculation for a rectangular planar diffusion such as collector-base or gate-drain junctions). The capacitance for one fourth of a cylindrical wall with length is then given as:

$$
\begin{equation*}
c_{c}=\frac{\pi \varepsilon^{1}}{2 \ln \left(\frac{r_{j}-x_{1 c}}{r_{j}+x_{r}}\right)} \tag{B5}
\end{equation*}
$$

The capacitance for $1 / 8$ sphere is given by:

$$
C_{s}=\frac{\pi \varepsilon r_{j}\left(r_{j}-x_{1 s}\right)\left(r_{j}+x_{r s}\right)}{4\left(x_{r s}-x_{1 s}\right)}
$$

(B6)
a.

Captions to the figures.

Fig. 1 : Impurity profile definitions.
Fig. 2 : Representation of eq. (5) and (6) in the (x_{r}, x_{i}) plane. Curve (1) represents eq. (6) and curve (2)represents eq. (5). The intersection D of the tangent in point 1 to curve 2 is the starting point for the Newton iteration.

Fig. 3 : The impurity. profile model for a phosphorus diffusion at $T>1000^{\circ} \mathrm{C}$ in a uniformly doped substrate with concentration N_{A}. The figure is drawn for the profile in the example i.e. $x_{1}=0.37 \mu m ; x_{2}=1.40 \mu_{m} ; x_{j}=2.27 \mu \mathrm{~m}$, $N_{A}=1.413 .17 \mathrm{~cm}^{-3}$ and $N_{0}=2.510^{20} \mathrm{~cm}^{-3}$.
Fig. 4 : Measured (θ) ard calculated (+) $C^{-3}\left(V_{a}\right)$ curves for forward bias and for six different temperatures. The intercepts V_{i} of the experimental curves at the different temperatures are given in the insert.

Fig. 5 : Calculated C(T) curves at different applied voltages V_{a} using V_{L} given by eq. (30). The dots represent measured points.

Fig. 6 : A comparison of $V_{b}(T)$ given by eq. (30) and experimental values (0) for V_{b}.

Fig. 7 : Coordinate definitions for cylindrical ard spherical junctions.

