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ABSTRACT

This study considers the problem of on-line

digital computer control of the NERVA nuclear rocket

engine. NERVA operates in'the following manner. Liquid

hydrogen is removed-from a storage tank by a turbopump and

pumped into a nuclear reactor. The hydrogen is heated in

the reactor and exhausted from the engine nozzle to provide

thrust. Energy to drive the turbopump is also derived from

the reactor. Design objectives call for a thrust of 75,000

pounds. The physical complexity of the system is reflected

in the differential equations description of the engine

dynamics in that the describing equations are high order,

nonlinear, and tightly coupled. This study proposes the

method of State Dependent State Variable Feedback (SDSVF)

as a practical approach to the control of NERVA and other

complex nonlinear and/or time-varying systems. The diffi-

culties inherent in. other design methods are avoided by

defining the optimal closed loop system in terms of a

desired transfer function, rather than a performance index

to maximize or minimize.

Selection of a desired closed loop transfer function

in the nonlinear and/or time-varying case is made possible

by treating the system as a sequence of state and/or time

xi
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dependent linear constant coefficient systems. These

linear models are computed on-line by a digital computer.

Each linear model has its own set of constant state variable

feedback coefficients (also computed on-line) necessary to

realize the desired closed loop transfer function. Thus, a

sequence of state variable feedback coefficients is calcu-

lated to provide state dependent state variable control. A

linearization method is developed and a control design

method is chosen. It is shown that these procedures are

easily programmed on a digital computer and.that they are

suitable for on-line computation.

The method is first illustrated by a simple example

involving the control of a system described by Van der

Pol's Equation. Although only second order the example is

nontrivial since the plant to be controlled is inherently

unstable. The SDSVF method of control is then applied to

the problem of controlling NERVA. NERVA has not been

constructed at this time, so that on-line control experi-

ments were performed on the Common Analog Model (CAM) of

NERVA. The CAM is a 52nd order hybrid simulation of NERVA

and is not suitable for control analysis because of its

high order and complexity. Models of nuclear rocket

engines available from the literature do not adequately

represent NERVA, and hence the Simplified Nonlinear Model

(SNM) of NERVA is developed. This model is then used to

design an on-line digital computer control system for the
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Common Analog Model of NERVA. A s|eries of control experi-

ments show that SDSVF control provides adequate control of

the NERVA engine over a wide operating range for various

types of input demands.

The contributions of this study are the development

of the concept of State Dependent State Variable Feedback

control and the development of the Simplified Nonlinear

Model of NERVA. The SDSVF control method provides a

practical design method for the control of complex, high

order, nonlinear and/or time-varying systems. The SNM

provides a model of the NERVA engine A^hich is significantly

better for control system design and analysis than those

currently available.



CHAPTER 1

INTRODUCTION AND OUTLINE

This study is concerned with the problem of the

on-line digital computer control of the NERVA nuclear

rocket engine. The NERVA rocket engine system represents

the final step in the United States nuclear rocket program

to develop a man rated nuclear rocket engine. The program

has been in existence for more than fifteen years at a cost

in excess of one billion dollars. Until last year, all

attempts at the control of NERVA have been through analogue

methods. The State Dependent State Variable Feedback

approach presented in this dissertation represents one of

the earliest attempts at on-line digital control.

The primary advantage of nuclear rocket engines is

their inherent operating efficiency compared to chemical

rocket engines . The efficiency of a rocket engine is

defined as the thrust of the engine divided by the propel-

laiit flow rate and is called the specific impulse, I ,

where

Here F is thrust in pounds and W is propellant flow rate in

pounds -per-s econd . This expression can also be written as

1



T 1/2
I = C (̂ TT) (1-2)sp s Mw

where C is a nozzle constant, T is the temperature of the
S

exiting propellant, and M¥ is the molecular weight of the

propellant. The nuclear rocket engine gains its advantage

over the chemical rocket engine because of the substan-

tially lower molecular weight of its propellant. A nuclear

rocket engine utilizes hydrogen with a molecular weight of

two, whereas chemical rocket propellants have molecular

weights of approximately twenty. The best chemical rocket

engines provide a specific impulse of about four hundred

and fifty seconds, while the NERVA engine (the first of its

kind) is designed to have a specific impulse of eight

hundred and twenty-five seconds.

The basic operating principle of the nuclear rocket

engine is relatively simple. As is indicated in the

simplified schematic of Figure 1-1, liquid hydrogen is

removed from a storage tank by a turbopump and pumped into

the core of the reactor. Here it is heated to high tempera-

tures and exhausted from a nozzle similar to the type used

with chemical rockets . The exhausting high temperature gas

provides the thrust.

A program to develop the hardware necessary to

implement the schematic of Figure 1-1 was begun in 1955

(Sperice and Durham, 1965), when the Atomic Energy Commis-

sion (AEC) and the Air Force provided support for initial
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Engine
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studies at Los Alamos Scientific Laboratory (LASL) into the

development of high-temperature, high-power-density

reactors. This work resulted in reactor tests in July 1959

that demonstrated the feasibility of developing the

required reactor technology. In 1960 the joint AEC/NASA

Space Nuclear Propulsion. Office (SNPO) was established to

pursue development of nuclear-rocket-technology based on

concepts developed at LASL. An industrial-contractor team

consisting of Aerojet General Corporation and the Astro-

nuclear Laboratory of Westinghouse Electric Corporation was

selected in 19&1 . Additional reactor tests were conducted

in 1965 (NRX-A2 and NRX-A3) and the first tests of both

nuclear and non-nuclear systems were conducted in 1966

(XE-1 and XE-2). By the conclusion of the XE tests in

1967, it had been demonstrated that the engine system

could operate at power levels of one thousand megawatts

with temperatures of four thousand degrees Rankine

(Schroeder, 1968).

Although the actual NERVA engine has not been

assembled at this time, the extensive research and develop-

ment program mentioned above has produced a vast amount of

knowledge relative to the engine. Since this research is

concerned with the control of NERVA, of particular interest

is the description of the dynamic behavior of the NERVA

engine system in terms of differential equations. The

Aerojet Nuclear Systems Company and the VTestinghouse
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Astronuclear Laboratory have developed such a mathematical

model, called the Common Analog Model (CAM). The CAM has

been developed to perform detailed systems studies, and is

therefore, an extremely complex, high order and accurate

model. The model contains the fifty-two differential

equations, plus an even iLai-̂ .ear number of nonlinear

algebraic equations and numerous functions defined by

experimental data. This study assumes that the CAM is an

adequate representation of NERVA, and thus the goal of this

research is to control the CAM with an on-line digital

computer.

It is further assumed that an exact solution to any

control problem associated with the CAM model is out of the

question. Fifty-two coupled nonlinear differential equa-

tions simply cannot be handled analytically. Digital

simulation requires roughly 60 seconds of computation time

for each second of real-time solution, and hence becomes

prohibitively expensive for a typical 30 second real-time

run. However, the CAM has been implemented as a hybrid

computer simulation at the Aerojet facility in Sacramento,

California, and the hybrid simulation runs in real-time.

The simulation includes a SIGMA 5 Digita3. Computer, a

COMCOR 1500 Interface, two COMCOR 5000 Analog Computers,

and two EAI 231R Analog Computers having a total of eight

hundred analog amplifiers.
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The difficulties encountered in attempting to solve

the optimal control problem for complex, nonlinear systems

such as NERVA are circumscribed in this study by proposing

the method of State Dependent State Variable Feedback

(SDSVF). The method is simple in concept. It is based on

the realization of a desired transfer function using

state variable feedback. This method of design was

developed by Schultz and Melsa (1969) for the synthesis of

linear control systems. In order to adapt the design

method for use in controlling nonlinear systems, an on-line

digital computer is utilized. The computer defines a

sequence of linear constant coefficient models, each valid

over a small portion of state space. The computer then

calculates a set of feedback gains necessary to realize

the desired transfer function for each of the linear

models, and it computes control.

Chapter 2 contains a review of the most important

work by previous investigators into the problem of nuclear

rocket control. This review includes both design methods

and mathematical models. The review is followed by

development of the concept of State Dependent State

Variable Feedback and the application of the control

method to a system described by Van der Pol's Equation

(Minorski, 1963).

Following this demonstration of the concept,

State Dependent State Variable Feedback is used to control
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a simple model of a nuclear rocket} . This effort ±s

successful and the results of these experiments are dis-

cussed briefly in Chapter 2. The purpose of this work was

to develop familiarity with simple nuclear rocket engine

models and provide experience in using State Dependent

State Variable Feedback. This concludes the work performed

at The University of Arizona. In order that the CAM

Simulation be available, it was necessary that subsequent

work be performed at the Aerojet Nuclear Systems Company's

facility in Sacramento, California.

Initial attempts to apply SDSVF to control of the

CAM were stymied by the lack of an adequate mathematical

model on which to base control analysis. It was not

possible to apply SDSVF directly to the CAM model equations

because of the high order of the system (52nd order) • The

nuclear rocket models available from the literature are so

simple that they cannot adequately represent CAM. The

problem of inadequate nuclear rocket models is solved in

Chapter 3 by developing a model based on the Common Analog

Model of NERVA which, while simpler than CAM, does repre-

sent those characteristics of NERVA which are important in

control system design. The development of this Simplified

Nonlinear Model (SNM) required approximately six months of

effort and is considered to be one of the major contribu-

tions of this study.



8

Up to this point all of the control experiments

that had been conducted using SDSVF involved all digital

simulation. Chapter k describes the first experiments in

which an analog model is controlled in real-time by a

digital computer using SDSVF. The model controlled is the

SNM developed in Chapter 3« These experiments, in addition

to verifying that SDSVF can be used to control as complex

a system as the SNM, are used to investigate the possi-

bility of reducing the order of the control models. It was

important to reduce the order of the control model because

the computation time required rises quickly with the order

of the control model. WTieii CAM is controlled, the computer

is time-shared with the CAM Simulation which uses the

digital computer more than half the time. It is shown that

the control model can be reduced in order without affecting

the system response adversely. To improve the response of

the system to ramp inputs, the use of series compensation

is tested and shown to be of value.

The control scheme developed in Chapter k to

control the SNM is applied to the control of the CAM

simulation in Chapter 5- Control is in real-time and, as

mentioned previously, the digital computer is time-shared

with the CAM Simulation. It is shown that the control

scheme provides effective control of CAM over a wide

operating range for both ramp and step inputs. The control

system is shown to.be relatively insensitive to errors in
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the control model by varying the dominant system time

constants +_ 25 per cent and executing normal start-ups and

shut-downs•

In this study a Simplified Nonlinear Model of the

NERVA nuclear rocket engine is developed and the concept of

State Dependent State Variable Feedback'introduced« The

model and the concept are used to design an on-line

digital computer control system for the NERVA engine. The

resulting control system is tested on the CAM and shown to

provide effective control under a wide range of operating

conditions. The results of the control experiments

substantiate the validity of the Simplified Nonlinear

Model and the effectiveness of State Dependent State

Variable Feedback as a practical method of controlling

complex, high order, nonlinear systems.



CHAPTER 2

STATE DEPENDENT STATE VARIABLE FEEDBACK

2.1 Introduction and Outline of Chapter

The literature contains numerous articles dealing

with the design, testing, and control of nuclear rockets.

In this chapter articles which deal specifically with

simplified mathematical models of nuclear rocket engines

and with the design of control systems for nuclear rocket

engines are reviewed briefly. These models provide insight

into the structure of a nuclear rocket engine but are not

complex enough to represent the NERVA engine. In particu-

lar, the hydrogen flow is considered to be incompressible

when in fact NERVA has both compressible and incompressible

flow, and the description of the turbine/turbopump assembly

is grossly simplified. -Th« control design methods proposed

in the papers reviewed are also discussed. These design

methods are difficult to apply to the simplified models and

would be useless on the more complex models required to

represent NERVA accurately. To overcome this problem the

State Dependent State Variable Feedback (SDSVF) method of

control using an on-line digital computer is proposed as a

practical method of controlling complex, high order, non-

linear systems. The details involved in implementing the

10
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control method are developed and the method is demonstrated

by applying the method to the problem of controlling a

system described by Van der Pol's Equation. Following this

example SDSVF is applied to the control of the Smith-

Stenning model of a nuclear rocket engine and the results

of this effort are described briefly. The primary purpose

of this effort is to provide the author with insight into

the response of nuclear rocket engine models and additional

experience in applying the SDSVF control method.

2.2 Review of the Literature

The simplified flow schematic in Figure 1-1 con-

tains the basic components of a nuclear rocket engine. The

literature contains a number of mathematical models based

on this configuration (Smith and Stenning, 196l; Perry and

Mohler, 1961 ; Wheatley and Mohler, 1960). These models

contain four differential equations, two to describe the

nuclear properties of the reactor, one to describe the

properties of the reactor as a heat exchanger, and one for

the speed of the turbopump. The equation for the pump

speed is usually rewritten in terms of the propellant

pressure as it exits the reactor. A representative model

of this type is the Smith-Stenning Model (Smith and

Stenning, 196l), the equations of which are shown below.

g. «_=_& s + xc <,.,,
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f S - AC (2-2)

4£ = C VT + A ,S (2-3)
dt p 1

2

r = -dt

6 - ̂ (P,1?) + A48D = f2(P,T,6D) (2-5)

V7 - f (P,T) (2-6)

where S = nuclear power

C = concentration of delayed neutrons

T = propellant temperature at core exit

P - propellant pressure at core exit

W = propellant flow rate

6 = total reactivity

9.-, = control drum angle

6 = turbine valve angle

P = delayed neutron -yield fraction

Sti - mean generation time of neutrons

X = decay constant of the delayed neutrons

C = reactor-core heat transfer coefficient

A , A2 , A A^ = constants

It is significant to note that even this simple nuclear

rocket engine model contains nonlinear differential and



algebraic equations, is multiple input-multiple output, and

is tightly coupled.

Smith (1962) has shown that models of the Smith-

Stenning type are open loop stable for very wide ranges in

system parameters and has also investigated the closed loop

stability of thes e. jsriaapSr-e .,motiels when controlled using

classical controller's'(Smith, 1962). Mohler (1965) dis-

cusses the use of Pontryagin's Maximum Principle (Pontryagin

et al . , 1962) to determine the optimal control for a

nuclear rocket when minimum fuel consumption is the

performance index. He shows that minimum fuel consumption

requires a maximum effort process. This type of control is

not permissible for a nuclear rocket engine because of the

constraints 011 maximum rate of temperature and pressure

change necessary to prevent structural damage to the

reactor and stalling in the turbopump. In addition the

resulting control is time dependent rather than state

dependent. State dependent control is much preferred in

situations such as this one, where significant model errors

are possible. These problems led Mohler to the conclusion

that some type of sub-optimal control scheme should be

used. Weaver and Seeker (1965) investigate the problem of

noisy measurements and model inaccuracies in applying

optimal control to a nuclear rocket engine. The solution

proposed involves the use of a model following technique,



employing feedback to correct deviations from a desired

trajectory.

The papers described above investigate and propose

solutions to many of the problems encountered in the design

of a control system for a nuclear rocket engine. However,

the results of these studies are not directly applicable to

the problem of controlling NERVA for the following reasons:

First, the mathematical models used do not adequately

represent the NERVA engine. They assume incompressible

fluid flow when in fact NERVA has both compressible and

incompressible flow. The description of the turbopump/

turbine is grossly simplified, and the reactivity of the

reactor is not represented accurately. Secondly, the

analytic control design methods used are not practical

tools for attacking the more complicated models necessary

to represent NERVA.

Consideration of the problem of inadequate mathe-

matical models is deferred until a later chapter, but the

problem of inadequate control design methods is attacked

in the next section by proposing the State Dependent State

Variable Feedback method of control.

2.3 Development of State Dependent State Variable
Feedback Control Method

The solution to the optimal control problem for a

large class of linear or nonlinear systems is theoretically

available from the Maximum Principle of Pontryagin
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(Pontryagin et al. , 1962) or Bellman's Dynamic Programming

(Bellman, 1957)- Unfortunately the practical utilization

of both these methods suffers from a number of frequently

described disadvantages. In particular, the solution of

the optimal control problem for an ntb order system using

the maximum principle requires solving a two point boundary

problem of order 2n. Then, even if this difficult computa-

tional problem is solved, the solution is open loop; that

is, the optimal control u is normally found as a function

of time, u(t), rather than the desired closed loop

dependence on state, u(x). Solution of the optimal control

problem using dynamic programming produces a solution that

is a function of state, u(x). However, the computational

problem is still difficult. For a system of order greater

than two or three, with wide dynamic range in the state

variables, the computation time and storage requirements

make the method impractical.

This study proposes the method of State Dependent

.State Variable Feedback as a practical approach to the

control of complex nonlinear and/or time-varying systems

with large dynamic range in the state variables. The

difficulties inherent in the maximum principle and dynamic

programming are avoided by defining the optimal closed loop

system in terms of a desired closed loop transfer function,

rather than a performance index to be maximized or

minimized.
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Selection of a desired closed loop transfer

function in the nonlinear and/or time-varying case is made

possible by treating the system as a sequence of state

and/or time dependent linear constant coefficient systems.

These linear models are computed on-line by a digital

computer. Each linear constant coefficient model has its
\

own set of constant state variable feedback coefficients

(also computed on-line) necessary to realize the desired

closed loop transfer function. Thus, a sequence of state

variable feedback coefficients is calculated to provide

state and/or time dependent state variable feedback

control .

The procedure described requires periodic sampling

of the system state and repeated linearization about the

operating point to determine the state and/or time

dependent linear constant coefficient model. After each

new linear model is defined, a new set of feedback coeffi-

cients must be calculated to realize the desired closed

loop transfer function. This procedure must be repeated

often enough to insure that the sequence of linear models

is an adequate representation of the nonlinear and/or time-

varying system.

The state dependent control, u(x), is found as a

linear combination of the state variables defined by the

feedback coefficients. Since a digital computer is used

to calculate the control, the control can only be computed
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at discrete instants of time. The method of design used

assumes continuous control, thus control must be calculated

frequently enough to insure that errors generated by the

discrete nature of the control signal are small.

2«3& Linearization Method

The types of nonlinear and/or time-varying systems

of interest in this paper can be represented in state

variable notation as shown below

x = F(x.u.t)

Y = G(x.t)
K̂  /-w /N/ ̂

(2-7)

(2-8)

It is assumed the system equations can be written in the

following form:

Xn a (x.u t)nl ~'~' a (x,u,t)nn ~'~'

X

n

b .(x.u.t) ... b (x.u t). nl ~'~' nm ~'~' um _
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X"

•

ym

.

r* ( Y + ) r ( ->c + )Cll -'*' Cln -'*'

r f - x - f ' ) r ( > c t )C2lk5i r ' ' C2n ~'

• •

c ( x . t ) c ( x , t )ml ~1 mn ~'

"Xl"

X2

•

xn

or

x = A(x,u,t)x B(x.u.t)u
/̂ f r̂ f " <̂ * " /-*/

IX

where a. .. b. . c. . are bounded and continuous,
ij' i' ij

This latter set of equations is in the same form as

the usual linear set of equations, except that the elements

of A B. and C are functions of state, control, and time
r*t ? r*f } i~̂ f 1 *

rather than constants. If the elements of these matrices

are evaluated at some point in state space, (x ,u-,t ) and

then treated as constants, they define a linear model valid

for a short interval of time in some neighborhood of the

operating point, (x ,u ,t ). This procedure must be

repeated often enough so that the system state (x,u.t)

always remains in the vicinity of the current operating

point, (x ,u ,t ).

The problem is to define a design procedure which

can be implemented fast enough to insure that the above

conditions are satisfied. This problem is simplified by

the fact that for all systems analyzed using this method
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which have the same number of inputs and outputs, m, it has

been possible to linearize in such a manner as to result in

"m" single input-single output systems.

2.3t> Linear Design Method

The linear design technique used in this paper

involves the use of state variable feedback to realize a

desired closed loop transfer function. The method of

design was developed by Schultz and Melsa (196?) who show

that for the linear case selecting a desired transfer

function is equivalent to choosing an integral quadratic

performance index. The approach is only applicable to

single input-single output systems; however, this is not a

restriction because, as was stated previously, a system

with an equal number of inputs and outputs, m, can always

be linearized in such a manner as to result in "m" single

input-single output systems. In dealing with physical

systems it is often much easier to specify a desired

transfer function than to specify an adequate quadratic

performance index. The basic design method involves:

1. Representation of the linear model in the usual

state variable feedback form, i.e.,

x = Ax + bu
r̂ s t*+j/**s r̂ t

u = K[r - kTx]

T
y = c x
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where r is the input, K the adjustable forward

Tgain, and k the feedback gains.

2. Determination of the transfer function of the

closed loop system in terms of the forward gain

and the feedback gains.

3. Choice of a desired closed loop transfer function.

4. Solution of the equations, resulting from equating

the transfer functions from 2 and 3, f°r feedback

gains and forward gain.

For linear systems the steps above need only be

performed one time. However, when dealing with nonlinear

systems, steps 2 and 4 must be repeated each time an up-

dated linear model is calculated. The technique used in

this paper to perform steps 2 and 4 on-line is based on a

program developed by Melsa (1967) to aid in the design, of

linear control systems using state variable feedback. The

technique makes use of the fact that solving for the

feedback gains to realize a desired transfer function is

trivial if the system is represented in terms of phase

variables. Phase variable representation implies that the

state variables are chosen to be the output and its n-1

derivatives. The system equations are transformed into

phase variable form and the feedback gains for phase

variables are calculated. The result is then transformed
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back into the original state variables. The method is

described below:

Assume that the system under study has a transfer

function given by

GI(S) =
n
2
s nm5

m-1

d., + d^s + . . . d s + s1 2 n

(2-9)

and the desired transfer function is given by

G2(s) =
T, /K(.n., +

1
s + + n sm

n-1 ne s + sn

(2-10)

If the state variables chosen for this system are phase

variables, the state variable representation is given by

x = A/ x + b u (2-11)

T
X = (£P) £P (2-12)

AP =

" 0 1 0 ... 0

0 0 1 0 ... 0

• • * • • • •

. . . . . . .

;di -d2 -d
3 ••• -V

bP

0

0

.

0

1

P T

t£ 3 = C n x , n2, ..., nm, 0. ..., 0]



22

A comparison of the phase variably representation and the

transfer function representation reveals that the transfer

function can be determined by inspection from the phase

variable representation. If the closed loop expression for

the control is given by,

T
u(t) = K[r(t) - (kP) xP(tj]

then the phase variable representation becomes

(2-13)

x -

0 1 0 0

0 0 0 0

0

0

•(d +Kkn n

P
x +

0

0

•(t)

y(t) = K[n,, n0 ... n , 0 0 . . O] X
P(t)1 ' ^ m' ~

Thus, the closed loop transfer function is given by

T.. , m-1 m-2 N
K (n s +n T s + . . . n, )m m-1 1

n n-1/ , „.,s +s (d +Kk
n n

n-2 / , T,_(d , +Kk ,
n-1 n-1

(2-14)

From Equation (2-l4), it can be seen that the coefficients

of the closed loop transfer function can be determined from

the equation

e. = d. + Kk.
1 1 i
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and K is defined by the equation

K = i
"l

assuming zero steady-state error is desired. It is also

clear that state variable feedback affects only the gain

of the numerator, not the location of the zeros.

As shown above, it is trivial to solve for the gain

and feedback coefficients to achieve a desired transfer

function when the system under study is represented in

phase variables. However, most systems are not normally

described using this set of state variables. Kalman

(1963) has shown that it is possible to transform any

controllable plant to phase variables by means of a non-

singular linear transformation of variables of the form

x = Q xP (2-15)
f̂  r~i **->

or

xP - CT1 x (2-16)
r̂ f r̂ i r*s

One method of obtaining this matrix is by use of the

recursive relation shown below (Tuel, 1966)

Qn = b (2-1?)

= A Q- + d b (2-18)
~ ~ n-1+1 ~

Q = Q1^2/ ... /Qn (2-19)



where Q indicates the ili column of the Q matrix and the
^̂  I r̂ r

d. are the coefficients of the characteristic equation.

The coefficients of the characteristic equation can be

found by using the principal minor method (Korn and Korn,

1961). Using this method the coefficients of the

characteristic equation are given by

(n-l+l) order
d. = (-D

_, r / \ (n-l+l) order T
n E of the (n_i+1) principle minors (2-20)

L \ 1 / of A J

Once the feedback phase variable coefficients have been

determined, they must be transformed back in terms of the

actual system state variables. The defining equation for

this transformation is

k = [QT] kP (2-21)

Thus, the steps in solving for the requix~ed feed-

back coefficients are given by

1. Determine characteristic equation

2. Define matrix Q
r+s

T "I
3. Determine [Q ]

4. Calculate phase-variable feedbacks and gain

a. K = —
n.

e. - d., , P i ib. k. = r-
i k
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5. Determine state variable feedback and gain

k = [QT] kP
**̂  r$ J f̂ f

T
or kT = [kP] Q"1i**' u ~ J r£

These steps are easily programmed, and the most time

consuming calculation is the inversion of a matrix (Q)

which is the same order as the linear system model.

2«3c Digital Computer Program Flow Chart

The State Dependent State Variable Feedback method

of control is implemented by an on-line digital computer.

The computer is required to update both the system and the

control. The factors controlling the timing of these

updates are discussed and a flow chart of a program to

implement state dependent state variable control is

developed.

State Dependent State Variable Feedback control

involves essentially two types of computations, system

update and control update. Control update involves

measuring the system state, multiplying by the current set

of feedback coefficients and transmitting the value of

control to the system. The allowable interval between

control updates is based on the necessity of keeping small

the error generated because the control is discrete rather

than continuous.
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System update involves measurement of system

state, linearization about a dynamic operating point, and

computation of the required feedback gains and forward

gain. The interval between, system updates is controlled

by the requirement that" the linear model always be an

adequate representation of the nonlinear system. Thus, the

system update interval depends on the structure of the non-

linear system and the rate at which the system moves

through state space. Normally the control must be updated

much more frequently than the system.

Because of the different factors controlling the

system update and the control update, it is convenient to

divide the control program into two subprograms, one for

each type of update. Shown, in Figure 2-1 are flow charts

for each of the update subprograms.

The validity of State Dependent State Variable

Feedback is based on the ability of the digital computer

to update the system and the control frequently enough to

insure that the linear model is valid and that the assump-

tion of continuous control is valid. An examination of

the flow chart of the control update indicates that only

state measurement and multiplication by feedback gains are

involved. These tasks require almost no computer time.

The system update flow chart, on the other hand, indicates

that a matrix inversion must be performed for each update.

The matrix is of the same order as the system. This
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System Update

Measure State

Linearize About
Dynamic Operating

Point

Calculate Feedback
Gains and Forward Gain

Return

Control Update

Measure State

Calculate Control

Transmit Value
of Control to System

Return

Figure 2-1. Flow Charts of System and Control Update
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requirement is significant and must be considered before

applying SDSVF control to a system.

2 . ̂ i Examples of the Use of State Dependent State
Variable Feedback Control

State Dependent State Variable Feedback control is

illustrated by the use of two examples.' The first example

involves the control of a system described by Van der Pol's

Equation. Although Van der Pol's Equation is only second

order, the example is nontrivial since the plant to be

controlled is inherently unstable. The effect of different

choices of the closed loop transfer function and model

update interval are illustrated. In the second example,

the procedure required to apply SDSVF to the Smith-St enning

model is described and the results of control experiments

on the Smith-St enning model are discussed.

2.4a Example #1 Van der Pol's Equation

Van der Pol's Equation is shown below

CX(y2 - 1) f + y = 0 (2-22)

The system to be controlled is described by

2

^-f = a(y2 - 1) & + y = u(t) (2-23)
dt2 dt

This may be rewritten as state equations in phase variables

as



LX2J

n 0

-1 LX2-

0

u(t)
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(2-24)

Q

Now let Ot(x.. - 1) = a, and apply the step by step design

procedure outlined above. Note, since the initial state

variables chosen here are phase variables Q = I = Q. =1
* r̂  f*̂

Tand C - [l,0]. Because the system to be controlled is so

simple the control design process is carried out by hand.

Step 1 of the linear design procedure requires that

the system be put into the usual state variable feedback

form

x = [A - Kbk ]x + Kbr

or

T
y = c x

x = AT.x + Kbr

T
y = c x

For Van der Pol's Equation the corresponding

expressions are

(2-25)

(2-26)

(2-2?)

(2-28)

0

(-1 - (-a - Kk2)

V

X 2 _

+ K

"o"

1

r (2-29)



y = [1,0]

30

(2-30)

A block diagram of this set of equations is shown in

Figure 2-2.

Step 2 of the design procedure requires finding the

(s)transfer function of the closed loop system •"'-}—T-. Taking
JL \ S )

the Laplace Transform of Equations (2-2?) and (2-28) and

manipulating yields:

= K cT[sI - A-,]'1 b
~ L ~ ~J ~ (2-31)

Performing these same operations on Equations (2-29) and

(2-30) yields:

y(s)
r ( s )

K

s + s[a + Kk] + [l + Kk ]
(-* _L

(2-32)

Step 3 requires the choice of a desired closed loop

transfer function. The transfer function chosen here is

y(s)
r (s) (s + 1)(s + 2) s + 3s + 2

This transfer function yields an overdamped step response

with zero steady state error. Equating the two transfer

functions as required in Step 4 yields
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Figure 2-2. Linear Block Diagram of Van der Pol's Equation
in Normal State Variable Feedback Form
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K = 2

k2 = (3 - a)/K = (3 - a)/2

k^ = (2 - 1)/K = 1/2

The steps outlined above are those required for a normal

linear system. In this;- nonlinear problem an on-line

digital computer must perform this process periodically,

since "a" is dependent on the system state.

The system update and control update intervals must

now be chosen. The time constant of the desired transfer

function is greater than 1 second. A control update

interval of .02 second assures that errors resulting from

the discrete nature of the control signal are small. The

system update interval must be chosen so that the linear

model is accurate. The only nonlinear term in the model is

a = aCx-j^ 2 - 1)
o

Assume the system is known to operate near the origin of

state space and that the types of inputs expected are step

inputs of magnitude <_ 3« The time constant of the closed

loop system is greater than 1 second. Thus, as a worst

case the value of "a" might change from -a to 8a in 1

second. If oc - .25, this implies

< a < 2
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The maximum valSL-e.-".:-'s":f the rate of change of "a" would be

2.25/1' sec = 2.25/sec. Thus, an update interval of .2

second insures that "a" changes not more than .2 sec x

2.25/sec = .45.

The coefficient of the characteristic equation in

which "a1.! is •̂•;±

a + Kk2 - 3

Thus, a change in "a" of .45 between updates should not

adversely affect the system performance. On this basis

the system update interval is chosen to be .2 second.

Figure 2-3 shows the uncontrolled response of Van

der Pol's Equation where a = .25- Figure 2-4 compares the

response of the controlled system when the desired transfer
2

function is — - - to that of a linear system with the
sz + 3s + 2

same transfer function. The initial condition in each case

is (x1 = -1, x_ = 0) and the demand input is x = 3« The

two respojxŝ e.s ...axie: identical . Figure 2-5 shows the uncon-

trolled response of Van der Pol's Equation where a = 3.0.

Figure 2-6 again compares the response of the controlled

system to a linear system with the same transfer function.

Again the two responses are very similar. Figures 2-7 and

2-8 compare the response of the controlled system to the

linear response when the system update time is changed to

.4 second and .8 second. It can be seen that as the update

time is increased, the response of the controlled nonlinear
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o

-i

Figure 2-3 • Uncontrolled Response of Van der Pol's Equa-
tion (cc = .25)
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Desired Response and
Controlled Response

Figure 2-k. Response of Controlled Plant Compared to
Desired Response (Update = .2 seconds)
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44-

Figure 2-5- Uncontrolled Response of Van der Pol's Equa-
tion (a = 3.0)
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2--

1 - -

0

-1

Desired Response

Controlled Response

Figure 2-6. Comparison of Controlled Response to Desired
Response (Update = .2, a = 3.0)
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3-

2--

0

-1

Desired Response

Controlled Response

2 3
H \

8

Figure 2-?. Comparison of Controlled Response to Desired
Response (Update = .k seconds, Oi = 3.0)
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— — — — Controlled Response

Desired Response

Figure 2-8. Comparison of Controlled Response to Desired
Response (Update = .8 seconds, oc = 3«0)
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system differs more and more from the desired linear

response. Figures 2-9 and 2-10 compare the response of the

controlled nonlinear system to that of linear systems with

2 2transfer functions of — and — . The
s^ + 1.5s +2 s^ + .5s + 2

system update time is .2 second in both cases.

These responses show that State Dependent State

Variable Feedback can be used to control an extremely

nonlinear system with reasonable update intervals. The

control method works best when the desired transfer func-

tion is overdampe-d but by decreasing the up.date interval

underdamped responses can be obtained. It is also apparent

that the system update interval affects the performance

significantly. In order for the control method to work

properly, sufficient on-line computation capacity must be

available to insure that the linear control model is

accurate.

2.4b Example of Use of SDSVF to Control
Smith-Stenning Model

The variable which must be controlled for any

rocket engine is the engine thrust. When controlling a

nuclear rocket engine there are additional considerations.

First, the thrust buildup must occur in such a manner as to

insure that the engine operates efficiently, i.e., high

I . In addition the rate of change of temperature andsp

pressure during thrust buildup must not be so large as to

cause damage to the reactor or other portions of the engine



— — — — Controlled Response

Desired Response

7 8

Figure 2-9. Comparison, of Controlled Response to Desired
Response (Update = .2 seconds, oc = 3«0)



Controlled Response

Desired Response

7 8

Figure 2-10. Comparison of Controlled Response to Desired
Response (Update = .2 seconds, a = 3.0)
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system. Because of these requirements^ a nuclear rocket

engine control system directly controls the temperature and

pressure of the propellant at the reactor exit. The two

control inputs available are control drum angle and turbine

valve angle. In applying SDSVF control to the Smith-

Stenning Model, the control drum angle is used to control

temperature and the turbine valve angle is used to control

pressure. Using this convention and applying the lineariza-

tion method to the Smith-Stenning Model yields the follow-

ing equations at the operating point (P , T ^ C ^ S , 6,, ,

f«C

(2-34)

= -C F3(P°, T)T + Aj^S (2-35)° °

A2

When the time constants of these linear equations are

evaluated , the nuclear power level (S) time constant is

much faster than the other system time constants. For this

reason this differential equation is approximated by an

algebraic equation as shown below



T° 8b
let = DKTO

j C

then assuming -rr- = 0 implies

C _
S - °DKTO (2-37)

substituting (2-3?) into ( 2 - 3 4 ) , (2 -35) , ' and (2-36)

d£
dt

dT
dt

dP
dt

. fa/lM -[_ H \^DKTO ) +f

^rn C - Cp f3 ( P° ' T°)TDKTO

A P
P + A

(2-39)

(2-40)

Examining the equation above it is seen that the

original set of nonlinear coupled equations has been

reduced to two single input-single output linear systems as

shown below

Temperature Loop

C

T

'(£ X 1) 00^i DKTO A ;

A Ti
1 A.
1
 c f (P° T°^

DKTO ~ p 3 '

C

T

"B o"
-1- A S
I 1

V4S°

A6D

(2-41)



Pressure Loop

P =
-A P°

(2-42)

It is no\v possible to apply the SDSVF design procedure in

exactly the same manner as in the Van der Pol example

except that now two desired transfer functions must be

specified , two sets of feedback coefficients must be

calculated1 and two control signals must be calculated at

the update times.

The details involved in the control experiments

conducted on the Smith-Stenning Model are not discussed

further in this study, other than to state that SDSVF did

prove to be effective in obtaining the desired system

response. A more detailed description of these experiments

is not included because the control of this system illus-

trates only two capabilities of SDSVF not included in the

Van der Pol example? the replacement of a differential

equation by an algebraic equation and decoupling the system

during the linearization process. Both of these capabili-

ties are better demonstrated by control experiments

described later in this study.

The two examples contained in this chapter demon-

strated the capabilities of SDSVF in the control of

reasonably complex nonlinear systems. The next chapter



considers the problems encountered in applying SDSVF to

control of the NERVA engine.



CHAPTER 3

DEVELOPMENT OF SIMPLIFIED NONLINEAR MODEL

3.1 Introduction and Outline of the Chapter

In Chapter 2 the concept of State Dependent State

Variable Feedback was introduced, the techniques required

to implement SDSVF developed, and the control method -

illustrated by controlling two nonlinear systems. One of

these was a simple model of a nuclear rocket engine. The

next logical step is to apply the control method to the

best available model of the NERVA engine, since the NERVA

engine itself has not been constructed.

The best existing model of NERVA is the Common

Analog Model (CAM) developed by Aerojet Nuclear Systems

Company and Westinghouse As.tron.uclear Laboratory. The CAM

was developed to be used for detailed systems studies and

is extremely complex. Appendix A contains those portions

of the CAM equations which are not classified. The model

contains 52 first order differential equations, an even

larger number of nonlinear algebraic equations and numerous

functions defined by experimental data. When run as a

digital computer simulation on an IBM 3&0/70 digital

computer, the computer time to problem time ratio is

greater than 60 to 1. Thus for a typical problem time run

4?



of 30 to 60 seconds, digital simulation becomes pro-

hibitively expensive. The CAM is, however, implemented as

a hybrid simulation at the Aerojet Nuclear Systems Company

facility in Sacramento, California. The simulation

utilizes a SIGMA 5 Digital Computer, a COMCOR 5000 Inter-

face, 2 COMCOR 1500 Analog. Computers, and 2 EAI 231R Analog

Computers. This hybrid simulation of CAM runs in real-

time. In order to have access to the hybrid simulation,

all further work presented in this study was conducted at

the Aerojet facility in Sacramento, California. Appendix B

contains a more complete description of the Aerojet Nuclear

Systems Company's hybrid computer facility.

It is not possible to apply SDSVF to the CAM equa-

tions directly because of the requirement to invert a

matrix, of the same order as the control model of CAM, each

time the system is updated. Inversion of a 52nd order

matrix during any reasonable update interval is impossible.

The only way to solve this problem is to use a lower order

control model. Examination of the frequency response data

from the CAM simulation, shown in Figures 3-1 and 3-2,

indicates that a much lower order control model may be

adequate. However, the only simplified models available

are of the Smith-Stenning type, and these do not adequately

represent NERVA. For this reason a Simplified Nonlinear

Model (SNM) is developed based on CAM. This model is to be
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used to design a control system for the CAM simulation

using SDSVF in a later chapter.

There is no completely algorithmic method of

developing a mathematical model of a system. The method

used to develop the SNM starts with the CAM equations and

reduces the order and complexity of the model while at the

same time maintaining the validity of the model from a

control systems design point of view. The objective is to

generate a system description, in the form of Equations 2-7

and 2-8, that represents the NERVA engine over the con-

trolled thrust buildup region of operation. This region

covers roughly the region of operation from (T = 1000° R,

P = 50 PSI) up to (T = 5OOO° R, P = 500 PSI).

This is accomplished in three steps. The first

step involves an initial selection of the CAM variables to

be included in the SNM. The selection of these variables

is based on the concept that a control system is a device

for power amplification and transmission. On this basis,

the only variables important to a control model are those

involved in the power transmission and amplification

between the system inputs and the system outputs. Follow-

ing this initial selection of variables, the number of

variables represented by differential equations is reduced

by linearizing the defining differential equation of each

variable and comparing the time constant of the variable to

the dominant system time constant. If the time constant of
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a variable is less than one-tenth the dominant system tine

constant, then the differential equation is replaced by an

algebraic equation. This procedure reduces the number of

differential equations to eight, with a corresponding

increase in the number of nonlinear algebraic equations.

The final step in the modeling procedure forces a reduction

of the number of nonlinear algebraic equations by curve

fitting static data from CAM with a reduced number of non-

linear algebraic equations.

There is no completely satisfactory, method of

determining the validity of the SNM. The model is tenta-

tively accepted as valid on the basis of comparison of

data from CAM with similar data from an analog simulation

of the SNM. The data include small signal frequency

responses at various operating points and static operating

maps. The conclusive test of the model's validity is the

design of a control system for the CAM Simulation in

Chapter 5-

3.2 Initial Selection of Variables Included in
Simplified Nonlinear Model

The NERVA engine system is composed of two sub-

systems, the nuclear reactor subsystem and the propellant

flow subsystem. To determine all of the variables to be

initially included in the SNM, the power flow must be

traced through both subsystems. In addition the power flow

between the two subsystems must be traced. To illustrate
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the procedure, the power flow is traced through the

propellant flow subsystem, between the turbine by-pass

control valve and the propellant exit pressure. Figure A-l

in Appendix A is a flow schematic of the NERVA engine.

Reference to this figure is recommended in order to

determine the portions of the flow structure being con-

sidered. Table A-l in Appendix A defines the variable

names used. NERVA contains dual turbines, turbopumps, and

valves for reliability purposes; however, only one of each

is considered in the following analysis.

The process of tracing the power flow begins by

putting the output variable, P-,,-, on the list of variables

to be included in the SNM. Then the defining equation for

P is examined

P15 = 502 T15 R15 (3-D

There are two variables in this equation that are undefined

thus far, T and R . One of the variables, T is a

variable from the nuclear reactor subsystem. The power

floAv is now being traced through the propellant flow sub-

system. Therefore, T is treated as a parameter to be

defined when the power flow is traced through the nuclear

reactor. It is not added to the list of variables for the

SNM at this time. The other undefined variable, R ^, is a

propellant flow subsystem variable. It is added to the



variable list for the SNM and its |defining equation

examined .

--J7-2- - .063 (W - W ) (3-2)dt c n

Both of the new variables introduced in this equation are
i

variables in the propellant flow subsystem. They are added

to the variable list for the SNM and their defining equa-

tions examined .

Wn = 13*3 P15/'/F15 (3'3)

Wc =

The new variables introduced by these equations are P r _

and R . c • They are added to the SNM variable list and

their defining equations examined.

Continuing this process yields the following set of

equations :

Pl^.5
 = 5'32 Tl4.5

 Rl4.5
 (3'5)

dt '^ cs

W

(3_6)

cs

- .186 R) - 214 R (3-8)

-^ = .10? (W ̂  - Wcg) (3-9)
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1

W14 = 26.1 VE13<P13 - P14) '

"13 = 5'32 T13 EX3

dR

dt = *13 ^¥scv + ^Bcv ~ Wl4

t
\f _ p o fi /R ( P _ p )
Wscv - '^ scv VK12^12 *13'

™T-> ~ * O Jb £^ b ,-, A/ xx vJr — J r _ _ J
Bcv Bcv 11 11 13

P = 5 -32 T R
J_ ^ _L <£j JL ^j

dR
-^ = 1 . 8 5 (WT - Wscv)

\

P
T.T _ -l (i CO. f ( \ / /T1WT _ ib.5» f± (p -'/V111

JL dt

PII = 5.32 TW R^

dRll

dt = \\ ~ WBcv ~ ¥T^

WI]L = 17.8 VR
10(P10 - P I ]L)

P - R T9 T 7^1 - 1 ft6 R 1 - 91 A. Rrio ~ 5 '32 ^o7^1 •10b io; 21^ Rio

dR

-£*• - «12 (W
Ps - W l l>

W
Ps ^ 36 ^R

9
(P9 - P10}

P - 5-32 T /(l - .186 R ) - 214 RQ
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(3-10)

(3-11)

(3-12)

(3-13)

(3-14)

(3-15)

(3-16)

(3-17)

(3-18)

(3-19)

(3-20)

(3-21)

(3-22)

(3-23)

(3-24)
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dR,
.. = .188 (WD + W + W , - V ) (3-25)dt R ss ssb ps

WR = 10 VR?(P7 - P1Q) (3-26)

p = f ( R ) (3-27)

dR7 f ,= .368 (W - w )
d t Nc R

dWMNc - — 'p - p - •"->-'••* w *) (3-29)• -^ rr •'T ID ft 1VT „ ' \ J *<7 >
_ _ _

d t • - 5 7 R N c

dP . 1810 + 1 .4 P

^2- = 3^.2 (P4 - P5) - 109 W5* (3-31)

dP. 1810 + 1 . 4 P..

dt = - 1^3 - - ( W P - W5 - WBSV ) (3'32)

d¥P 2
rp^- = 127-5 (P2 - P^) - .783 Wp" (3-33)

•> WP
P2 = pi + N fi (iT) (3

- 88.1 (MT - Mp) (3-35)

2 WPMp = N2 f2 (/) (3-36)

w
MT = 7/t3° W~ ET AEs (3-37)
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Examination of the variables in Equation (3~36) shows that

no new variables are added to the variable list since N is

defined by Equation (3~35) and ¥ is defined by Equation

(3-33). The same is true in Equation (3~37)« The only new

variables here are E^ and AE and these are variables fromI s

the nuclear reactor subsystem. When this situation occurs,

i.e., all variables are defined by some other equation, in

the set, the procedure is complete.

The equations are now examined to determine if any

parallel paths of power flow exist. Where parallel paths

do exist, a check is made to determine if any of the paths

can be neglected without significantly affecting the power

level.

The only parallel path in the portion of the system

just examined is the parallel propellant flows W W
S S S S D

and W.-. and none of these flows can be neglected. If anyK.

one could have been neglected it would have been removed

from the variable list.

This procedure is repeated for the power flow

through the nuclear reactor subsystem and the power flow

between subsystems. This determines all of the variables

initially included in the SNM.

3-3 Reducing the Number of
Differential Equations

The next step in the reduction procedure is reduc-

tion of the number of variables described by differential
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equations. The rationale for doing this is based on the

fact that in designing control systems only the low

frequency response of the system is of interest. The high

frequency performance of the system is of little importance

since the portion of the system with low frequency response

will attenuate any high frequency response. Therefore, it

is unnecessary to include dynamic variables in the model

which affect only the high frequency performance of a

system. If it is determined that a variable described by

a differential equation contributes only to the high fre-

quency performance of a system, the differential equation,

can. be replaced by an algebraic equation that defines the

steady-state value of the variable. This is equivalent to

assuming that the time constant of the variable is zero.

The necessary algebraic equation can often be obtained by

realizing that steady-state occurs when the variable's

derivative goes to zero. Thus the differential equation

can be set equal to zero and an expression for the variable

of interest determined. On other occasions, it may be

necessary to consider the physical laws governing the

situation in order to determine the required algebraic

equation.

The frequency responses in Figures 3~1 and J-2.

indicate that the dominant system time constants are

approximately one second. Therefore any variable having a
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time constant of less than one-tenth second is represented

by an algebraic equation.

The variables of this system form many interlocking

loops, making it difficult to isolate an individual vari-

able and determine its time constant. To aid in this

process the equations are linearized, a*block diagram is

drawn, and block diagram manipulation is used. Figure 3-3

shows a block diagram of the portion of the engine system

being considered.

The procedure is to use block diagram manipulations

to isolate a variable and determine its time constant. If

it has a time constant of less than one-tenth second, then

that portion of the block diagram is replaced by a gain

rather than a dynamic block. It is possible by this pro-

cedure to reduce the block diagram to that shown in Figure

3-^t. The corresponding set of describing equations is

dN
^ = -(A^ - aia2) N - (a2a3 + a4) A9Bcv (3-38)

P15 = (CX5 " a2°C6) A8Bcv + aia6 N (3-39)

Thus only one variable in this portion of the system must

be described by a diffei~ential equation. The procedure is

repeated for the other portions of the system and results

in a decision to include eight state variables in the SNM.
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3 .^ Reduction of Number of |Algebraic Variables

Although the procedure described in the previous

section reduced the number of dynamic variables included in

the SNM, it did not eliminate any of the algebraic vari-

ables. In fact it generated additional algebraic vari-

ables. To reduce the number of algebraic variables, it is

necessary to curve fit the nonlinear algebraic equations

with a reduced number of equations. The procedure used is

again illustrated using the propellant flow structure. The

problem is to choose a set of algebraic variables which,

along \vith the dynamic variables already chosen, are

adequate to describe the features of the propellant flow

structure. The selection of variables is made based on the

assumption that the major components of the engine must be

described in the SNM. The major system components in the

propellant flow structure and the variables chosen are:

1. Engine nozzle and reactor core

P-, c- propellant exit pressure

W propellant flow through nozzle

P-, o propellant pressure entering core

2. Turbine

P „ propellant pressure exiting turbine

W~ propellant flow through turbine

Wg propellant by-passing turbine

Pll propellant pressure entering turbine



3« Turbopump

N speed of turbopump

P propellant pressure at pump exit
£

4. Piping between turbopump and turbine

P propellant pressure at pump exit
£

W propellant fiew through pump

W propellant flow through support structure
s s

W propellant flow through engine nozzle

P propellant pressure at turbine entrance

The only dynamic variable included in this list is

N. The relationships between these variables are deter-

mined in various ways. Some of the relationships are

defined in the CAM equations. For example the relationship

between the turbopump pressure, PO, the turbopump speed, N,

and the flow through the turbopump, ¥ , is given by

Equation (3~3^t), i.e.,

o W
P2 = Pl + N fl (~̂ } (3-3^)

Other relationships are defined by using the known physical

laws governing the process and adjusting coefficients to

match static data from the CAM Simulation. For example,

the flow through the turbine by-pass value, W , is known

to be compressible, with an in-line valve. The general

form of an equation describing this type of situation is

W = k
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where k is a constant, 9 is the valve angle, p is the

density of the fluid, and AP the drop across the valve.

Curve fitting to CAM static data produced the following

equation

¥Bcv = -°182 8Bcv (P11 - P13
)

where T is the temperature of the propellant on entering

the by-pass valve.

A third method of defining the algebraic relations

between variables is to curve fit static data using the

variables involved, but ignoring the normal form of exact

physical equations. For example, consider the determina-

tion of the value of the pressure at the entrance to the

reactor core, P.. „ , as a function of the exit pressure, PIC-,

and the propellant flow rate, VL,. It is known that P, „ is

larger than P ^ thus

P = P + AP ( 3A13 15 *

It is also known that AP will be a function of the propel-

lant flow rate, thus

P = P + f ( W ) ( " }
13 15 V VJ>

From the Equation (3-3)

w = î 3- P1C (3-3)
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Thus

Curve fitting this expression using static data from the

CAM Simulation yields the following equation

P. = P._ (1 + - - - . ) . (3-45)
•*- .5 •*- I? /m

The remaining relationships in the propellant flow

structure and the remainder of the system are established

using a combination of these methods. The equations for

the resulting SNM of the NERVA engine are shown below:

Nuclear Reactor Equations:

dT
—±2- = .005[3.88 jwn| (T2 - T15) + 3300 s] (3-46)

2 = .005C3-94 |w | (T - T) + 6260 s] (3-47)n JL cL

— = .0039C-2.82 |w I T + 4260 S] (3-48)
d \f in . JL

dt

dT,

_j Q»

•~ = .O276CI + .235CI + 1.65CI - (l - DKT) 660 S
O t J_ <-* 5

(3-49)

DKT = .55A/W + .325 %, i2- + .0244^ ss T

- .77 x 10 3 (T - 500) + DKD (3-50)
C
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TC = .13 (3T1 + 2T2 + 3T ) | (3-51)

dCI
—~ = 181 S - .0276 C (3-52)

dCI
-~- = 369 S - .235 CJ^ (3-53)

•ij

dCI
^ = 110 S - 1.65 CI (3-5^)

T exit temperature of propellant (°R)

T temperature of propellant station 2 (°R)

T temperature of propellant station 1 (°R)

DKT total reactivity (dollars)

DKD reactivity of drums (dollars)

S nuclear power level (% full power)

CI precursor densities
1 ->^i J

Propellant Flow Equations:

P15 = *076 T15 Wn (3

Wn = WT + WBcv (3

WBcv = -°182 Vv (P11 - P13
)

P13 = P15[l + 33.3/VT̂ "] (3-58)

(3-59)
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W = ¥ + W (3-60)
11 no ss

"no - ̂ T (P2 -

/P9 + Pn
W = .0184 9 / pT

 13- (Pp - P^) (3-62)
ss ssv V . • 7

Pll = .35^ WT VT^" + .79 P13 (3-63)

P2 = 3.434 X10 N2 - .296? X10~3 ¥11 N + PI (3-64)

= 88.1 1.02 X104 - - 1 - ( ) . 2 5

- .96 X10~6N2 - .2385 X10~3 ¥11 N (3-65)

dT
-rr*- = -.Oil w_ _ (T_ -95) + 1-59 S (3-66)at 11 /

T1]L = 1.6 T? (3-67)

2
P15 = Exit pressure (#/in )

¥ = Hydrogen fT-ow through core (#/sec)

¥ _v = Flow through turbine by-pass valve (#/sec)

2
P13 = Pressure at turbine exit (#/in )

o
Pll = Pressure at turbine entrance (#/in )

¥ = Turbine flow (#/sec)

¥., = Flow through skirt (#/sec)

¥ = Flow through support structure (#/sec)
S S

T = Average temperature of hydrogen in skirt
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T = Temperature of hydrogen at turbine inlet

CIO
2

P19 = Pressure at support structure valve (#/in )
o

P2 = Pressure at pump outlet (#/in )

N = Speed of turbopump (RPM)

3.5 Tentative Check of Validity of SKM

The method used to provide an initial check of the

validity of the SNM is to compare its response statically

and dynamically to the CAM. In order to do this con-

veniently, it is necessary to implement the SNM on an

analog computer. Figures 3~5 and 3-6 show the analog

computer diagrams for the analog implementation of the SNM.

The dynamic performance of the SNM and the CAM are compared

using the small signal frequency responses of the two

models at two different operating points. Two frequency

responses are taken at each operating point, the response

between the control drum and the propellant exit tempera-

ture, T /0 and the response between the turbine by-pass

control valve and the propellant exit pressure, P _/9

Figures 3-7, 3-8, 3~9, and 3-10 compare the responses. In

each case the SNM agrees well with CAM in both phase and

gain. The static performances of the two models are

compared on the basis of static maps on which the output

variables (T _ ^>i^^ are plotted as functions of the input
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variables (9n, 6R ) over the entire operating range

of the systems- The comparisons are given in Figures 3~H

and 3-12. The SNM again agrees closely with CAM.

3.6 Summary of the Chapter

In this chapter the Simplified Nonlinear Model of
i

the NERVA engine system was developed. It was developed to

provide a reasonably low order control model for the design

of a SDSVF control system for the CAM Simulation. The SNM

was developed by starting from the CAM equations and

reducing the order and complexity of the model while

maintaining the validity of the model from a control system

design point of view. The validity of the model was

checked by comparing the static and dynamic responses of

the CAM and the SNM. On the basis of these comparisons,

the SNM is tentatively accepted as an adequate model of

NERVA.

In the following chapter SDSVF is used to develop

a control system for the SNM. The final test of the model

is postponed until Chapter 5 when a control system for the

CAM Simulation is developed using the SNM as the control

model.
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CHAPTER

CONTROL EXPERIMENTS ON THE SIMPLIFIED
NONLINEAR MODEL

4.1 Introduction and Outline of Chapter

All of the control experiments reported thus far

involve only digital simulation. That is, both the

mathematical model and the controller are simulated as

separate portions of a single digital computer program.

The feedback coefficients are calculated in one section of

the program and then used in the system simulation portion

of the program. Therefore the time involved in performing

the on-line control design, calculations is not critical

since the system simulation does not run while these

calculations are in progress. This chapter describes

experiments in which a mathematical model implemented on

an analog computer is controlled in real-time by a digital,

computer using SDSVF. The model controlled is the

Simplified Nonlinear Model of NERVA developed in Chapter 3-

The linearization technique developed in Chapter 2

is applied to the SNM and results in two single input-

single output linear systems. These linear models are

analyzed to provide a basis for choosing desired transfer

functions and to provide a better understanding of the

characteristics of the NERVA engine. A computer program to

80
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implement SDSVF control in real-time is developed and SDSVF

is used to control the SNM. This demonstration of the

control method is followed by experiments which show that

it is possible to reduce the order of the control model of

the temperature loop without degrading performance signifi-

cantly. This reduction of order of the control model is

important because computation time rises quickly with the

order of the control model, and when CAM is controlled the

digital computer is time-shared with the CAM Simulation.

The CAM Simulation itself uses the computer, more than half

the time. The chapter is concluded with experiments in

which the system response to ramp inputs is improved by the

use of series compensation and state variable feedback of

the new state so introduced.

4.2 Linearization of SNM and Analysis
of Linear Models

The final form of the SNM is given in Equations

(3-46) through (3-62). The next step required in order to

use SDSVF is to define the linear control model. Applica-

tion of the linearization technique described in Chapter 2

results in two single input-single output linear models.

Consider first the control model relating changes in

control drum angle, 9^ , to changes in propellent exit

temperature, T . The linearized equations are shown

below
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dT, ,.

dT2

= K1(T2 -

= K3 ( T3 - V + K4S

dT

dir = -VV + K6S

~ = .027601 + .235CI2 + 1.65CI - K S + K^

dCI
—^ = 181S - .027601 (4-5)

dCI
j-t--»r-/^T ( LL f\ \

dCI
-~i = 110S - 1.65CI (4-7)

where K = ( .005)(3 • 88) |w°I KQ = (.005)(3300)
J L O ^

K = ( .005) (3-94) |W°| K. = (.005)(6260)
J C 1

K = (.00387)(2.82)|W°| K, = (.005)(4260)p c o

K_ = (1 - DKT° + DKD°)660 KQ = (S°)660
7 o

ADKD = incremental reactivity of control drums

The time constant of Equation (4-4) is very fast.

Therefore? the differential equation for nuclear power' S,

can be replaced by an algebraic equation. Thus
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0 = .027603̂  + .235CI2 + 1.65GI - K S + KgADKD (4-8)

or

S = 'P.
2?6 CI + .435. CI + 1.65 CI + I* ADKD (4-9)

K? 1 K? 2 K? 3 K?

Substituting this expression for nuclear power (S) into the

remaining equation and putting the system equations into

matrix form yields

x = Ax + bu (4-10)
r̂ f r**r'**i /•*»/

where

A =

K2
-K, K^ 0.0 .0276^

1 1 i v

K4o.o -K K .0276^

0.0 0.0 -K_ .0276—
7

0.0 0.0 0.0 (-1 + jM^OX..
7

O r \ r \ r \ OH J^*s-\
• U U»U U*U tr A.-.

K7 X

0 /-V / ~ \ / - » /^> /-V -LJ-U,
• U U.U U.U T/- A i

7

T r K8
£ = K2 K4 K6 I8li^

0 0 C £.
* <-• JSTT

7

.234i
K7

.235^-
K7

181
Ti^ A r)

7

<• 1 * 369U

'-1 ^'^2

110
K7 2

Kg

1.65R2-
7

1.65^
7

K6
K7

181

36 9 x

110
K7

K«"l
no^8-

7 _

Figure 4-1 shows a block diagram of the temperature loop

control model. The model is sixth order; however ' because
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of the manner in which the nuclear power feeds forward and

the unusual feedback configuration involving the delayed

neutrons, the system has five zeroes. This causes the

system to behave somewhat like a first order system.

Reference to the frequency response from' the CAM Simulation

in Figure 3-1 verifies that NERVA does have a frequency

response similar to that of a first order system between

T and Gp.'

In order to illustrate how the system changes as a

function of state , shown below are the linear system equa-

tions and transfer functions with coefficients evaluated at

full power (T1C_ = 4:250 °R , P = 450 PSI) and at low power
'15
OT(T = 2000 R, P = 100 PSI).

Full Power

~T 1 5 ~

*2

*1
•

"2

."3_

"-1.84

0.0

0.0

0.0

0.0

0.0

1.89
-1.82

0.0

o.o

0.0

0.0

-.043

1.43

-1.02

0.0

0.0

0.0

.001

.001

.001

-.020

.016

.005

.006

.011

.008

.065

,102

,o4o

.042

.080

.054

.460

.930

-1.37

'15

CI

CI
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ADKD

'15

1670.0

3150.0

2140.0

18200.0

37100.0

11100.0

(16.70.0) (S+.02?) (S+. 235) (S + 1.65) (S+2.1) (S + 4. 3)
(S+1.84) (S + 1.82) (S+1.4) (S+1.0) (S+.01) (S- .002)

Low Power

"15

CI,

CI.

-•570 .590 .014

o.o -.570 .445

o.o o.o -.320

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

.001

.001

.001

-.020

.i6o

.005

.006

.110

.080

.065

-.103

.039

.042

.079

.054

.450

.930

-1.37

T
15

T2

Tl

CI1

CI2

_CI3.

ADKD

231.0

438.0

298.0

2530.0

5160.0

1538.0

ri5 = ( 2 3 l . o ) ( S + . 0 2 7 ) ( S + . 2 3 5 ) (S+1.65) (S+ . 78+.1.97) (S+.78-.1.97)
3D r s + . 5 7 ) ( S + . 5 7 ) C S + . 3 2 ) ( S + 1 . 3 ) ( S + . 1 6 ) ( S - . 0 7 )
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These transfer functions have six poles and five

zeroes as previously stated. It is apparent that both the

static gain of the system and the dynamics of the system

change significantly over the normal range of operation.

NOAV consider the linear model relating propellant

exit pressure? PTC, to turbine by-pass valve angle^ 9 :

P15 - H]LWn ' (4-iD

¥n = WT + WBcv (/t-12)

WBcv = H2(P2 - P13
) + H3A

P13 = H4P15

WT = Wn - WBcv (4-15)

Wll = (H5 + V (P2 - Pn} (4-l6)

Pll = <79P13 + H?WT (4-17)

P2 - HgN (4-18)

g = 88.1[H9WT - H1QN]
 l (4-19)

where E^ = .076 ̂T^ °

P /T
H - 11 ' 11
2 " ./p o(p o_p o) /T o

v 11 ^ 11 13 X 11

3
= .0182 yp^0^0 - p̂ /v



H. = 1.0 + 33.3A/T
15

H5 - 1.5 /(P2°

88

= .0268

Hg - 10 6 N° - .2967 x 10 W + P

.25
= 1.02 x 10^ TI;L

O/NO[I.O - (P13
0/P1i°) 1

Hio = [-96 x 10 6 N° + .238 x 10 3 WI;L
O;

These equations can be manipulated into the

following form:

dN
dt

15

where - (H +H6)Hg/[l .0+H (Hg+H +Hfi ) ]

f>0 =

(4-20)

(4-21)



89

P6 = CH9(p1+P2P4)-H10]

P7 = [
H
9(p2P5-P3

)]

A block diagram of the linearized model of the pressure

loop control model is shown in Figure 4-2. The structure

of this block diagram is/very unusual. It is first order;

however, the input feeds directly to the system output. If

the equation for p/- is examined , it is seen that the system

has a positive feedback term, H (p + pop/,), as well as a

negative feedback term, H . These two quantities are

approximately the same magnitude over the entire range of

operation. This causes the system pole to be near the

origin. Finally, the system output is not one of the

system state's.

In order to put the system in standard form, two

things are done. First a series compensator is added to

the model so that the input does not feed directly to the

output. This changes the system equations to

A0n = -2.5A6n + 2.5U (4-22)Bcv Bcv p

N = 88.i[pAe + PN] (4-23)

P15 = P4N + p5A9 (4-24)

Then in order to have the system output, PTC,

one of the states of the control model, a linear
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15

Figure 4-2. Linear Block Diagram of Flow Subsystem
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transformation of variables is performed. This transforma-

tion yields the following system description

A6Bcv

15

-2.5 0

p6

'A()Bcv"

*

" 2.5

u

(4-25)

The linear pressure control model and transfer function

with coefficients evaluated at full power and low power are

shown below

Full Power

U

f" "1

13 c v

/15 _

=

" -2.5 0"

-14.5 0

A9nBcv

*
"2.5

3.76

U

Low Power

3.7(S - 7.1)
S(S + 2.5)

•

Bcv

/15 .

=

"-2.5 o"

-7-15 0

~A9RBcv

+
'2.5

2.72

U

15 _ 2.7(5 - 4.1
U ~ S(S + 2.5)
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On examination of the transfer functions for the

pressure loop control model, it is apparent that the

dynamics and gain of the system change significantly with

system state. The change is not as significant as for the

temperature control loop, even though the describing equa-

tions are much more nonlinear. ->

4.3. Selection of Desired Transfer Function
and Update Intervals

Based on these linear models and the decision to

carry out the initial control experiments in the high power

region of operations, the desired transfer functions chosen

are:

T (S+.0276)(S+. 235)(S + 1.65)(S + 2.1)(S + 4.3)(K̂ )

T = (S+.0276)(S+.235)(S + 1.65)(S + l.2)(S + 1.5)(S + l. 57

P15 (S-7.1)(K2)

P = (S+1.0)(S+1.5)

The constants K and K are chosen so that1 &

T P
rr^ = 1 and — - 1 .
15D| !5Dils=o . 's=o

Each of these transfer functions is chosen to

provide an over-damped response with a time constant

similar to that of the uncontrolled system and zero steady

state error to step inputs.
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The selection of system and control update inter-

vals is made, as in the previous examples, on the require-

ments that the linear models be accurate and that errors

generated by making the control signals discrete rather

than continuous are small. The system update interval is

chosen based on having no coefficient of the control model

vary more than ten per cent between updates. It is known

that the rate-of-change of temperature demand does not

exceed 150 R/second and that the rate-of-change of

pressure demand does not exceed 50 PSI/second. These are

physical constraints. Calculation, of the approximate

rate-of-change of the coefficients of the temperature and

pressure loop control models based on these maximum rate-

of-change demands, indicates that a system update interval

of approximately .5 second is adequate. The desired

transfer functions chosen for the temperature and pressure

control loops have dominant time constants of approximately

1.0 second. A control update interval of .02 second

insures that errors generated by the discrete nature of

the control signal are small.

'±. 4 Computer Program to Cont.rol SNM

The basic flow chart for a program to implement

SDSVF is developed in Chapter 2, shown in Figure 2-1. The

timing of the system update and control update is initially

controlled in the following manner. A clock is available



94

which generates a positive pulse every AT seconds. Each

time a positive pulse occurs, the control is updated and a

counter incremented. The counter is checked against a

reference, and if the reference is exceeded, a system

update is initiated. Figure 4-3 shows a timing diagram

and a flow chart of this logic sequence, where the system

update reference is five control updates. This causes a

system update every 5AT seconds for a control update

interval of AT seconds.

The task of writing the control program involves

writing a program to implement the flow chart shown in

Figure 4-3• The computer language used is a modified

version of FORTRAN which contains statements which permit

input from and output to the COMCOR 1500 Interface, which

in turn communicates with the COMCOR 5000 Analog Computers <>

The flow charts for the system update and control update

portions of the program are shown in Figure 2-1. System

update involves measuring the system state, defining the

linear models, and calculating feedback coefficients. The

only programming required to measure the system state is to

request input from the appropriate channels of the inter-

face. The equations to define the linear models are given

in Equations (4-10) and (4-25)• The programming required

to calculate the feedback coefficients and forward gain is

given in Section. 2«3b of Chapter 2. Control update

involves measuring system state, calculating control, and
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Clock

Control
Update

System
Update -\ 1-

n n

o . n r, p p-

Figure ^~ Timing Diagram of Control and System Updates
and Block Diagram of Program to Implement
Timing
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transmitting control to the system. The programming

required is completely straightforward. The state is

measured using available FORTRAN commands to communicate

with the analog computer through the interface. Trans-

mitting the values of control to the analog computer is

accomplished in the same manner. Calculating control

requires only implementing the equation

u = K[r - kTx] (4-26)u ~ ~J

for each control loop where

r is the desired output, K the forward gain,

Tk the feedback coefficient vector and
/+**

x the state vector.

Once the subroutines are written for the system and

control updates, it is discovered that a system update

requires approximately .07 second. Thus if the program is

written as shown in the flow chart of Figure 4-3 , whenever

a system update is initiated, no control update will occur

for .0? second. This is significantly longer than the

desired control update interval of .02 second. To avoid

this long delay, a slight modification to the program is

made. A control update is called for approximately halfway

through the system update. This implies a control update

interval longer than .02 second, but not enough longer to

affect system performance.
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4.5 Control Experiments on the Simplified
Nonlinear Model

Figure 4-4 is a schematic diagram showing the

hardware involved in the SNM control experiments and the

information exchanged. The purpose of these experiments is

to demonstrate that SDSVF can be used to control a complex

analog model (SNM) in real-time using a digital computer

and to gain experience to aid in controlling CAM. The

desired transfer functions in Section 4-3 are specified as

T (S+.02?6) (S+.235)(S+1.65)(S+2.l)(S+4.3) (K̂ )

T = (S+.02?6) (S+.235)(S+1.65)(S+.12)(S+1.5)(S+1.8)

P

(s+i.o) (5+1.5)

The control update interval is .02 second. Figures 4-5,

4-6, 4-7, and 4-8 show the system response to step demands

of 25 PSI and 250° R with model update intervals of .25,

.50, I'O, and 2.0 seconds. The operating point is T =

4250° R and P = 300 PSI. The actual response of a linear

system having the desired transfer function is indicated

in each case. The two responses are very similar for short

update intervals but, as anticipated^ when the update

interval is increased, the actual response deviates more

and more from the desired response. It is apparent from

the responses that there is coupling between the loops. A
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step change in the pressure causes, transient errors in the

temperature loops and vice versa.

Experiments conducted to determine the effect of

varying the control update interval indicate no significant

change when the interval is increased by a factor of

three. It is possible to decrease the coupling between the

two control loops by increasing the bandwidth of the

desired transfer functions. However^ the bandwidth cannot

be increased significantly because the large feedback gains

required made the system very sensitive to measurement

errors .

4.6 Control Experiments with Reduced
Order Mode3,s

The control experiments in Section 4-5 show that it

is possible to control the SNM using SDSVF based on the

control models defined in Section 4-2. The temperature

loop control model defined in Section 4-2 is sixth order.

However, the frequency responses of the SNM in Figure 3-10

indicate that a lower order model may be adequate. This is

an attractive possibility since a reduction in the order of

the control model results in a significant decrease in the

system update computation time.

It has been common engineering practice

(Meghreblian and Holmes 1960) when designing control

systems for nuclear reactors to approximate the three

delayed neutron groups with a single equivalent group.
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Referring to Section 4-2? the equations for the precursor

groups are

dCI
„ ~=- = 181S - .0276 CI1 (4-5)

dCI
-~- = 369S - .235 CI_ (4-6)d "t £*

dCI
. dt

j = HOS - 1.65 Cl (4-7)

The single equivalent precursor group has the form

dCI = -XCI + pS (4-27)dt

where X = P^ = .O8l P = E P± = 660
i

Using this approximation reduces the temperature loop

control model to fourth order. The only modifications to

the control scheme are that the control model equations are

changed and the desired transfer function is changed to

T (s+.o8i) (s+2.1) (3+4.3) (KI)
T~~ = (S+.081) (S + 1.2)

Since the equivalent precursor is not a state of the SNM 1

it must be estimated. This is accomplished by measuring

nuclear power (S) and using that to drive an analog circuit

which implements Equation (4-27).
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Figures 4-9 and 4-10 show the response of the

system to step inputs of 250° R and 25 PSI when the fourth

order temperature control model is used. The model update

times are .50 and 1.0 seconds respectively and the operat-

ing point is T = 4250° R, P = 300 PSI. There is no

significant deterioration of the system response when

compared to Figures 4-6 and 4-7'«

The temperature control model is now fourth order;

however, the frequency response data indicate that an even

further simplification of the control model. is possible.

From Figure 4-1, it is seen that the portion of the model

that describes the heating of the propellant contains two

feed forward paths. This produces two zeroes in the

transfer function. This portion of the block diagram has

three poles for a pole zero excess of one. This suggests

that it may be possible to approximate the three tempera-

ture differential equations by a single differential

equation. The three temperature differential equations

from the SNM are

dT
2- = .005[3.88|Wn|(T2 - T ) + 3300S] (3-46)

—^ = .o05C3.9^|wn|(T1 - T2) + 6260S] (3-4?)

dT
- -,0039[2.82|wn|T1 + 4260S] (3-48)
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The form chosen for the single approximate differential

equation is

dTi ̂
~dF = -kl lWnl T15

 + k2S (/t-28)

The coefficients k and k are determined by minimizing the

mean squared error between ->t-he response of T ^ resulting

from a step change in nuclear power S , as predicted by

Equations (3-46), (3-^7), and (3-48),' and that predicted by

Equation (4-28) with W held constant. The resulting

equation is

dT
—±2- = -.0075 |Wn| T15 + 29.4S (4-29)

This simplification results in a temperature loop control

model that is second order. Figures 4-11 and 4-12 show the

response of the system to step inputs of 250° R and 25 PSI.

The model update intervals are .50 and l.O seconds. The

operating point is T = 4250° R, P15 = 300 PSI. The

desired transfer function is

T (S + .081)(K1)

T (S + .081)(S + 1.7)
•'D

Comparing these responses to those shown in Figures 4-6 and

4-7 indicates again that system performance has not been

degraded.
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The previous control experiments show that the

control system provides adequate control for step changes

in temperature and pressure demand. However, the types of

inputs to which the NERVA control system is expected to

respond are ramp demands. It is common practice in linear

control system design to improve the response of a system

to ramp inputs by adding a series compensator with a pole

and a zero to the system (Truxal 1955)- If "the zero is

chosen so that the sum of the reciprocals of the pole and

zero locations is zero , then the system error to ramp

inputs will be zero. This method of compensation is used

in both the pressure and temperature control loops . The

desired transfer functions for the temperature and pressure

control loops are

T (S + .081)(S + 1
~

T~~ (S + .081) (S + 1.4) (S + 3.0)

P]5 (S - 7-1) (S + 1.65) (K2)

+ 1 . 2 ) ( S + 1 . 7 ) ( S + 2.6)

Figures 4t-13 and 4-l4 show the block diagrams of the

simplified and compensated temperature and pressure control

models. Figures 4-15 and 4-l6 show the responses of the

system to ramp demands in pressure of 25 and 50 PSI while

the temperature demand is held constant. The system update

time is .25 second. These responses indicate that it is
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possible to use series compensation to obtain good response

to ramp input demands.

4.7 Summary of Chapter

The experiments conducted in this chapter show that

SDSVF. is capable of providing on-line digital control

of a complex, high order, nonlinear system. It is further

demonstrated that a simplified control model can be used

without degrading system performance and that normal linear

design techniques can be used to provide good system

response to ramp inputs.

In the next chapter the control scheme tested on

the Simplified Nonlinear Model is applied to the Common

Analog Model.



CHAPTER 5

ON-LINE DIGITAL COMPUTER CONTROL OF THE COMMON ANALOG
MODEL USING STATE DEPENDENT STATE

VARIABLE FEEDBACK

5.1 Introduction and Outline of the Chapter

In .Chapter 4 the concept of SDSVF is used to

develop an on-line digital computer control system for the

SNM. The final control system design is based on two

third order single input-single output linear control

models , one for the temperature control loop and one for

the pressure control loop. The models both include added

compensators to improve the system response to ramp demand

inputs. The use of SDSVF to control the Common Analog

Model of the NERVA Engine System is investigated in this

chapter.

The SNM is developed in Chapter 3 in order to

provide a control model on which to base the design of a

control system for the CAM. Therefore the control analysis

performed in Chapter 4 on the SNM is exactly that required

to design, a control system for CAM. This means that the

control system developed for the SNM can and in fact must

be used to control CAM. The success of this approach is

dependent on two assumptions:

117
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1. The linear control models based on the SNM are

reasonable representations of CAM.

2. The SDSVF method of control is reasonably insensi-

tive to model errors.

The initial portion of Chapter 5 describes the

changes required in ord'et't-.o "adapt the SNM control program

to control CAM. These changes are not fundamental in

nature but are necessary because the digital computer must

be time-shared with the CAM Simulation. Also, the CAM is

to be controlled over a larger region of operation than was

the SNM. The description of the changes in the control

program is followed by a series of experiments which demon-

strate that the control system does provide adequate

control of the CAM Simulation over a wide operating range

to both ramp and step input demands. Following these

experiments , the sensitivity of the SDSVF method of control

to errors in the control model is checked. The control

method is shown to be insensitive to control model errors

by varying the dominant time constants of the CAM by +_ 25

per cent and executing normal start-up and shut-down

maneuvers.

5•2 Modifications to the Control Program

The CAM and the SNM are both models of the NERVA

Nuclear Rocket Engine. The SNM has been developed by

starting with the CAM equations and eliminating those
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portions of the model t.hich are not important from a

control system design point of view. Therefore, concep-

tually there is no difference in controlling CAM and

controlling the SNM. The only change required in the

control system is that rather than measure the state of

the SNM, the state~^o£ .«CL4M ..is .measured and the control that

is calculated is appli-e-d to the CAM control inputs rather

than the SNM inputs.

Practically, however, two slight modifications to

the control program are required. In the control experi-

ments described in Chapter 4, the digital computer is

involved only in the calculations required to implement

the SDSVF method of control. When the CAM Simulation is

controlled, the digital computer is an integral part of the

CAM Simulation and is available only on a time-shared

basis for computations required to implement SDSVF control.

The computations required of the SIGMA 5 Digital Computer

as part of the CAM Simulation require slightly more than

one-half of the total -'^computing time. This places a

definite lower limit on the system update interval. The

computation time required for system update in the time-

sharing mode is determined by running the system update

portion of the control program while the CAM Simulation is

operating and measuring the elapsed time from the beginning

of the system update until the end of the update. The

required system update computation time measured in this
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fashion is approximately .15 second. This is more than

twice as long as the computation time required in the case

where the digital computer is not time-shared, which is

.07 second. The computation time is, however, less than

the system update interval of .35 second, selected for the

CAM control experiments based on the experiments in Chapter

4. The control update interval-for the CAM control experi-

ments is the same as for the SNM, .02 second. The method

of timing the control update and system update is shown in

Figure 5-1.

The other change in the control program is neces-

sary because the CAM Simulation is to be controlled over a

wider range of operation than was the SNM. This wider

range of operation results in significant changes in the

dynamics of the CAM. To attempt to assign a single

desired transfer function over the entire range of opera-

tion results in large feedback gains and therefore increased

sensitivity to measurement errors and noise. To avoid this

problem, the desired transfer functions are made a function

of the system state. First the open loop transfer func-

tions of the system are examined at various operating

points. Then, closed loop desired transfer functions are

chosen that do not require large feedback gains. On this

basis it is apparent that only the dominant pole of each

of the desired transfer functions must be a function of

state. The relationships chosen are to make the dominant
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Feedback Coefficients

Control Update

R = R + 1

Calculate Pressure
Control Model

Control Update

R = R + 1

Calculate Pressure
Feedback Coefficients

Control Update
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Figure 5-1 • Flow Chart of CAM Control Program
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pole in the temperature loop proportional to W and the

dominant pole in the pressure loop proportional to P-,i--

The equations to determine the locations of the two poles

are shown below:

aT = -[.025 Wn - .15] (5-1)

ap = -[.003 P15 - -15] (5-2)

With these modifications to the SNM control program,

it is possible to perform experiments on the CAM Simula-

tion.

5•3 Control Experiments on the Common
Analog Model

The design objective for the CAM control system

is to provide adequate control of CAM to step and ramp

input demands over a wide operating range. Adequate in

this case implies no excessive overshoots to sudden changes

in input demand? small errors during a transient, small

steady-state errors and minimization of effects of changes

in one control loop on the other. The extent to which the

SDSVF control system satisfies these objectives is deter-

mined by performing control experiments on the CAM Simula-

tion .

The control system is first tested to determine its

response to step input demands. The significant charac-

teristics of the control system are the desired transfer
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functions 1 the system update interval and the control

update interval which are given below:

1. Desired transfer function

T (S + .08l)(S + 1
~~

(S + .081) (S + 1.4) (S + 3.0)

P (s - 7.1) (s + i.65)(K2)
P = (S + 1.2) (S + 1.7) (S + 2.6)

2. System update interval

temperature loop = .35 second

pressure loop = .35 second

3« Control update interval

temperature loop = .02 second

pressure loop = .02 second

Figure 5-2 shows the system response to step input demands

of 125° R and 25 PSI, at the operating point T = 4250° R

and P = 300 PSI. At this operating point both the

temperature and pressure loop controllers work well. There

is less than. 10 per cent overshoot to a step change in

input, the response does not oscillate excessively, and

the coupling between loops is not significant . Figures

5~3 and 5~'i show the system response to step inputs at the

operating points T = 4250° R, P15 = 450 PSI and T =

2000° R, P = 200 PSI. These responses are similar to

those in Figure 4-2. The response in Figure 5~3 indicates
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increased coupling i'bet.>Ta?:?Yi the two control loops, particu-

larly the effect on the temperature of a sudden change

in pressure. These responses show that the control system

provides a quick smooth response to step inputs over a wide

range of operating conditions . The decoupling of the two

control loops is exc-esLleaat̂  f or the lower power operating

points, although a step,, change of 25 PSI in the pressure

loop results in an error of approximately 75 R i-n the

temperature control loop at the high power operating point.

This error is quickly eliminated by the action of the

temperature loop control system.

The control system for the NERVA engine will

receive its most stringent test when the NERVA engine is

either required to start-up or shut-down and at the same

time maintain high efficiency. During a normal high

efficiency start-up, the temperature demand is ramped at

150 R per second up to 4250 R then held constant, while

the pressure demand is ••.r-ampi&d at 5 PSI per second up to

approximately 300 PSI and then ramped at 50 PSI per second

up to 450 PSI. Figures 5-5 and 5-6 show the response of

the CAM Simulation with SDSVF control to this type of

input demand. The system response is very similar to the

input demands. The errors between the demanded temperature

and the actual temperature and the demanded pressure and

the actual pressure are also shown in Figures 5-5 and 5~6.
\

The temperature error is less than 50 R for the majority
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Figure 5~5» Response of Pressure Loop During Normal Start-
up and Shut-down.
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of the ramped portion of the response but overshoots the

desired final temperature by approximately 175 R« The

pressure error is negligible during the 5 PSI per second

portion of the response but increases to approximately

40 PSI during the 50 PSI per second portion of the response

Figures 5-7 and 5-8 show the system response to two other

start-up demands. Figure 5-7 shows the response for a

half speed start-up. Figure 5-8 shows the response when

the normal temperature demand is input but the pressure is

held constant and then ramped at 50 PSI per second to full

power. The errors for the half speed start-up are less

than those for a full speed start-up and the errors from

the start-up shown in Figure 5-8 are approximately the

same. These responses demonstrate that SDSVF control does

provide adequate start-up and shut-down responses.

5.4 Sensitivity Experiments on the
Common Analog Model

The experiments in Section 5«3 show that the SDSVF

control system does provide adequate control over a wide

range of operating conditions. The ability of SDSVF to

perform well for the actual NERVA engine also depends on

the sensitivity of the control method to errors in the

control models ? since the CAM cannot possibly be an exact

representation of NERVA. The fact that the linear control

models used to design the control system for CAM are based

on the SNM? which is only an approximate model of CAM ̂
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indicates that SDSVF is not extremely sensitive to control

model errors. The sensitivity of the control method is

further tested by varying the dominant time constants of

the CAM Simulation and executing normal start-up and shut-

down maneuvers with the same control system used previously,

The first change made in the CAM is to vary the

time constants of the heat transfer portion of the nuclear

reactor. Figures 5~9 and 5-10 show start-up and shut-down

with the heat transfer time constant varied by plus 50 per

cent. In Figures 5~H and 5-12, the time constant is

varied by minus 50 per cent. The errors between demanded

and actual outputs are also shown in Figures 5-9, 5-10,

5-11, and 5-12. Comparison of Figures 5~9, 5-10, 5~H , and

5-12 to Figures 5~5 and 5-6 indicates that the responses

are very similar. Comparison of the errors shows as

expected an increase in both the pressure and temperature

control loop errors. The maximum temperature error in

Figure 5-9 is approximately 2?0 R and the maximum pressure

error in. Figure 5-10 is approximately 50 PSI; this compares

to 175° R and 40 PSI from Figures 5-5 and 5-6. The

temperature and pressure errors in Figures 5~H and 5-12

are approximately 280 R and .50 PSI.

To test the sensitivity of the control system to

errors in the pressure loop control model , the time

constant of the turbine/turbopump assembly is varied first

by plus 25 per cent and then by minus 25 per cent.
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Figures 5-13, 5~l4, 5~15, and 5~l6 show the start-up and

shut-down responses for these conditions. The control loop

errors are also shown in these figures. The maximum

temperature and pressure errors in Figures 5-13 and 5-l4

are approximately 175 R and 60 PSI , respectively. The

maximum errors in Figur-es 5.-15 and 5~l6 are approximately

200 R and 50 PSI, respectively. These are not signifi-

cantly larger than the errors in Figures 5-5 and 5-6 of

175° R and 40 PSI.

The responses shown in Figures 5~9 through 5~l6

indicate that the SDSVF control system provides adequate

performance with significant errors in the control model.

As expected^ the errors increase as the model errors

become larger but the control system does provide adequate

performance with th,ese control model errors.

5 • 5 Summary of the Chapter

The control system .designed in Chapter 4 for the

SNM is used? with only minor changes, to control the CAM

Simulation. The control system provides adequate response

to both step and ramp input demands over a wide region of

operation. The control system is shown to be relatively

insensitive to control model errors by varying dominant

system time constants of both major control loops by at

least plus and minus 25 per cent with no significant

deterioration in the system response.
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These experiments indicate that the SDSVF method

of control can be used to design an on-line digital

computer control system for the NERVA engine.



CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Summary

This study is concerned with the design of an on-

line digital computer control system for the NERVA nuclear

rocket engine. The actual NERVA engine has not yet been

constructed; however, there is available an accurate and

detailed mathematical model of the NERVA engine. This

model is called the Common Analog Model and a hybrid

simulation of the model is available. Examination of this

model r'eveals that the NERVA engine is a high-order non-

linear, and tightly coupled multiple input-multiple output

system.
" " t

Theoretically, the solution to the optimal control

problem for a large class of nonlinear systems is available

from Pontryagiii's Maximum Principle or Bellman's Dynamic

Programming. Practically, however, both of these methods

have serious drawbacks which severely limit their useful-

ness when dealing with high-order nonlinear systems such

as NERVA. This study uses the method of State Dependent

State Variable Feedback control as a practical method for

controlling complex, high-order nonlinear systems. SDSVF

avoids the problems inherent in the Maximum Principle and



145

Dynamic Programming by specifying the optimal closed loop

system in terms of a desired transfer function rather than

in terms of a performance index to be maximized or mini-

mized. The use of the concept of a desired transfer

function is made possible in the nonlinear case by using

an on-line digital computer to define state dependent

linear control models ? each valid in some small region of

state space. The on-line computer also computes feedback

gains required to realize the desired closed loop

transfer function. Thus the control method requires

periodic sampling of the system state, calculation of

linear models, and computation of feedback coefficients.

A linearization technique is developed and a method

of computing the required feedback coefficients based on

the work of Schultz and Melsa (1969) is chosen. It is

shown that the procedures involved in both the lineariza-

tion and feedback gain calculation are easily programmed.

The most time consuming computation is the inversion of a

matrix of the same order as the control model. This

computation is required in calculating the feedback gains.

The control method is then demonstrated and the effect of

the interval between model and feedback gain update is

illustrated.

SDSVF is then applied to the problem of controlling

the CAM. The control method cannot be applied to the CAM

equations directly because of the extremely high order of
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the system. Therefore the Simplified Nonlinear Model of

NERVA is developed to be used in control system design.

Following the development of the SNM, a SDSVF control

systern is developed and tested on the SNM. The control

system provides adequate control of the SNM and is then

used to control the CAM Simulation. The control and

sensitivity experiments performed on the CAM Simulation,

using a SDSVF control system, indicate that it is possible

to design an on-line digital computer control system for

the NERVA engine.

The contributions of this study are the development

of the SNM of the NERVA engine and the introduction of the

concept of SDSVF control. The validity of the model and

the usefulness of the control concept are demonstrated by

designing an on-line digital computer control system for

the CAM Simulation using SDSVF control with the SNM used

as the control model.

6.2 Conclusions

The State Dependent State Variable Feedback method

of control utilizes concepts from both modern control

theory and classical control theory to provide an alternate

method of control system design and analysis for nonlinear

and/or time-varying systems. The many approximations in-

volved in applying SDSVF to a specific problem make it

difficult to draw general conclusions about the usefulness



of the method. The results of this study do, however,

provide a basis for some general statements. If the model

of the system is accurate, if it is possible to perform the

system update calculations frequently enough to insure

accuracy of the linear control models, and the states of

the system can be accur-a-t,el.y -measured, then it is possible

to obtain a desired response as specified by a desired

transfer function to any degree of accuracy. When these

conditions cannot be satisfied the actual response of the

system differs from the desired response. The only way to

determine the effect of not satisfying one of these condi-

tions is by simulation. Based on the experiments performed

in this study, the effect of using an update interval that

is too long is to make the system response sluggish. No

stability problems were encountered until the update inter-

val was increased by a factor of four. The control method

appears to be reasonably insensitive to errors in the

dynamics of the contro'lr-model , but errors in the static

gain result in steady-state errors in the output. The

problem of inaccurate measurement of the system state was

not examined in this study.

The major advantage of SDSVF appears to be that it

permits the use of the powerful analysis and design tools

of linear control theory to solve nonlinear and/or time-

varying control problems. This is a significant advantage

in view of the lack of practical design methods for
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nonlinear and/or time-varying control systems. The major

disadvantages of the method are the requirements for

1. An on-line digital computer.

2. An accurate mathematical model.

3. Measurement or estimation of the system state.

^. A desired response defined in terms of a linear

transfer function.

The requirement for use of a digital computer restricts the

control method to problems that justify the expense. How-

ever, the current trend in the computer field toward lower

cost and higher performance will reduce or eliminate this

problem. The second and third disadvantages listed are

common to any control method using state variable feedback.

The requirement that desired system performance be speci-

fied in terms of a linear transfer function limits the

method somewhat, but there exist many problems for which

this is in fact the preferred method.

It appears that SDSVF does not inherently involve

any serious disadvantages A\rhen compared to other control

methods. The decision to use the method revolves primarily

around the question of whether or not the performance that

can be obtained using SDSVF justifies the expense and effort

involved in modeling the system, making the required

measurements, and using a digital computer.



6.3 Recommendations

The SDSVF method of control is developed in this

study and applied to a complex high-order nonlinear control

problem. The results of this study indicate the method has

significant potential. Additional studies in which the

method is applied to the problem of controlling complex

high-order nonlinear and/or time varying systems are needed

in order to determine if unexpected problems arise and to

determine the sensitivity of the method to control model

and state measurement errors.

Methods of reducing the method's dependence on

accurate static gain in the control model warrant further

study. One possible method that should be investigated is

the use of SDSVF to condition the plant, then use of series

compensation to achieve zero steady-state error.



APPENDIX A

DESCRIBING EQUATIONS OF THE COMMON
ANALOG MODEL

A.I .- I-n t <r D .d u c t i o n

The equations describing the Common Analog Model

of the NERVA Nuclear Rocket Engine are contained in this

appendix. Portions of the model equations are classified

and have been deleted. The nomenclature and units used in

the CAM equations are given. Figure A.I is a simplified

flow schematic of the NERVA engine.

A.2 Nomenclature of Common Analog
Model Equations

Variables

CI .
J

Co

Dk

E

ET

f

FQ DKFD
W '

H

K

M,TRQ

M XMRE
r ">

Definition Units

Precursor concentration in jib group

Isentropic spouting velocity ft/sec

Reactivity $

Fluid enthalpy BTU/lb

Turbine efficiency

Function

Reflector reactivity factor

Enthalpy of solid material BTU/lb

Flow resistance

Torque Ib-ft

Reflector density factor

150
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£0 *H> X k>

Figure A-l . Flow Schematic of NERVA Engine
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Variables

N ,RPM

R

s

S

SOPY

SN

SNQ

t

T

u

W

e,TH

cp,PH

AEg,DLES

Definition

Speed

Pressure

Decay heat power in jy> group

Density

Laplace operator

Thermal power in fueled sections

Turbine inlet enthropy

Nuclear power

Thermal power in unfueled sections

Time

Fluid temperature

Mean peripheral blade speed

Mass flowrate

Angular position

Material temperature

Isentropic enthalpy drop

Subscripts Indicating Location on Flow Diagram

1

2

4

5

7

9

10

= Pump inlet

= Pump discharge

= Junction of pump discharge lines

= Nozzle inlet

= Reflector inlet plenum

= Reflector exit plenum

= Peripheral shield exit plenum

Units

rpm

psia

%

lb/ft3

s ec

°R

ft/s ec

Ib/s ec

deg

°R

BTU/lb
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11 ' = Bypass and turbine inlet

12 = Turbine exit

13 = Bypass and series valve exit

1^ = Shield entrance plenum

1^5 • = Core inlet plenum

15 = Nozzle chamber

19 = Junction of pump discharge lines

195 - Support structure control valve discharge

20 = Stem inlet

22 = Support system discharge

23 - Support bypass discharge

Qualifying Subscripts

A,B = Parallel components

BCV = Bypass control valve

C = Reactor core, average

c = Corrosion

C. = Reactor core, i'J? section

ch = Core hydrogen

cs - Central shield

ct = Core thermal (reactivity)

d = Drum

D = Demand

e = Exit

E = Error

f = Feedback



i = Radial inside

J = Jacket

M = Measured

N = Nozzle

NC = Nozzle coolant

0 = Radial outside

P = Pyrographite

P = Pump

ps = Peripheral shield

R = Reflector

SCV = Series control valve

SG = Structural graphite

SK = Skirt

SKC = Skirt coolant

SS = Support system

SSB = Support system bypass

ssd = Support system downcomer

SSj = Support system5 jib section

ssu = Support system upcomer

ssv = Support system control valve

t = Total

T = Turbine

T2 = Stem

T3 = Liner
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A.3 Common Analog Model Equations

Pump Equations

1 P = TO T = 4o-1-* 1A B JU> IB U

P - P + N2P2A,B - P1A,B + WA B

3' T4B = T1B + '015 <P2B - P1B>

*• "PA'.B - HA,B f2 <^>

dN

Pump Discharge Line Equations

dW.r.. „

1810 +
(W + W - W - W - Wdt 1.23 PA PB 5 SSVA SSVB)

19 4.B

P19

Support System Connection to Nozzle Torus Equations

dW
1. 2. = 3^.2 (P - P) - .1091 W|W
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i8io + 1.4P,.

- WSSB>

3'

Reflector Inlet Plenum Equations

R? = .368 (Wnc - wr)

2. T = j- (w - W T_
dt 7 R nc nc r 7

P7 = T7fl (R7} - f2 (R
7
}

4. . T min = 52. + .043 P? P? < 210 psia

Reflector Exit Plenum Equations

dR
1. -r-2- = .188 (W + W + W . - W )dt r ss ssb ps

5.32 R T
2' P9 = (1. - .186 Rn -

 214« R
9

dT
T + W T00 + W ,T00 - W T.)dt R r re ss 22 ssb 23 ps 9

Turbine/Simulator and Bypass Equations

l. WX1 = 17-79 vfc10(P10-Pi:L>

dR
(W11 - WBCVA - WBCVB - WTA ' WTB}
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WT A , B
11

12A,B,

6. EI]L = 3.i45T i ;L - 95-9 T £ 221

= 3.831T1]L - 2 ^ 7 - 5 221

SOPY =

AESA,B - f ( S O P Y 'P12A,B )

C OA,B - 224

10.
0 'OA,B

ETA , B

12 • MT A , B
*A E

A ,
SA,B

13-

14.

E

dR

= E - ET * AE
12A,B *!! A,B A ^SA,B

= 1 . 8 5



?12A,B - -3l8E12A,B + 30.5 < 600
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- •26lE12A,B E12A,B > 600

16 ' P12A,B - 502R12A,BT12A,B

WBCVA,B = -0210

dt
129• J-^7 r 1 7 T 4. W T
R L SCVA 12A SCVB 12B

(WBCVA + WBCVB)T11

dR
- =-
dt

(W + W + W + W - WV SCVA SCVB BCVA BCVB

21.

22. = 21.6

Peripheral Shield Exit Plenum Equations

!' ft R10 -

ft T10 - W11T10)



10 - (1.0 - .186R10)

1 159
j

- 214. R_2

Central Shield Entrance Plenum Equations

*• ft R14 = -107 (W14 - "cs' !

— T - - (W T - W
dt Xl4 ~ R IU14113

5-32 R .T .
-1- J -L ̂

(l. - .186 R

Central Shield and Core Support Plate
Exit Plenum Equations

dR .
1. ^p- = .173 (W - W )dt cs c

2. ^f- = p'
173 (W T - W Tdt R1/]t cs cse c

3. P = 5.32

Thrust Chamber Equations

- WN)

2. P = 502
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WN = 13.33
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w °13M N ,
dt 2.85 v 15

Support System Inlet and Bypass Equations

1.

2.

ssva,b = independent variable

Kssva,b = f(6ssva,b'

3. w = 16.5ssva,b

P -P
19 19-5

Kssva,b+62.7 P -P
19 19-5

4. ¥ .899 ,ss " \ ss
.5 9

5. %-r Pn . _ = 580. (W + W _ w )dt 19'5 ssva ssvb ss

6. W , = .201 |P.-Pj *ssb 5 9 VP9

Support System Equations

1 .
dRss2e i n n

dl 10°
( P _ _ o -P0)

W i n n /i? P P -. —.^ "'-'*- ^"X .UUV-1*- ^ ^ J. « T^ T>g g s s ss2e ) I P . L I



2.
5 '32Rssle

ssle-

ssle (1 - 0.186R . )
ssle

f (RN)

- h (RN) • h (TN)

-1.7R
- 35

ssle

5-32R , T • • • - •
s s l e s s l e

(1 - 0 . 1 8 6 R " Fssle
_ f (-av

F°r T ssle
ssle.

(Rssle )

5

6

h ( RN} -

h (TM) = h (T . )
N ssle

ss2

5.32 * R „ *
SS2 aag, _ f (R )

1. - .186 * R" 1 I KN ;

ss2

( RN ) = f ( Rss2 )

161

dR
ss2
dt

= 100
ss

|P _-Pns s 2 ' s s 2 9 P -Pss2 9

10.
ss2e

5-32R 0 T. 0s s 2 e s s 2 e
(1 - 0.186R ~T

ss2e

11. f (RM) = f (R 0 )
N ss2e
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12.
dRssle

dt = 100 W -0.958VRvss
-P,

(p 1 -PQ)ssle 9
ss "' ssle * 9 IP _ -P_ssle 9

13 T = T +
20 19

f 0.7^3 I _§.
|_ .00296 |w| + .0̂ 3 J w

s s o

Tssl T20
0.0696

i + o.4-i6 [w 1I- ' ss '

15- T = 2. T - Tssle ssl 20

16. ' = p
ss3 ss2e

W \ 2ss
Rss2e

17 R ss3
ss3 5.32T

ss3

Kinetics Equations

dSN
1. —rr = (0.0276 Cl + 0.235 Cl + 1.65 Cl )

Q "C JL £.j j

- 660.38 (1. - DKT)SN

2. ~ Cl = 180.99 SN - 0.0276 Cl

dt

d

ci = 369.08 SM - 0.235 c:
^ J.\

Cl- = 110.31 S,T - 1.65 Cl.

dY Q-L = 0.000117 SN - 0.00322 QI
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6. ~ Q2 - 0.000757 SN - 0.05525

7* It" S = °-0°3734 SN - 0.270?

8. SNQ = 6.672 (Q1+Q2+Q3) + 0.6301

9. S =

Reactivity Equations

1. Dk = O.26M [1.-.0623M ] + .00762 [ $ -524. ]

(1.0-.0466M )] - 4.43F

2. FQ = ,00501Mr (l.-.312Mr) + .000134 (§ -524.)

[1.0+.398M (1.-.0543M )]

3. Dk = 15.0

Dkssd

5. Dk = -.77 x 10~ ($ - 540)

6. M = - [R_ + Rr 2.0 L 7 re

7. Dk = 1.16 R _ssu ss3

8. Dkd = 4.50 Sin
2 (9DM/2.) - l.i

9. Dk = Dk + Dk , + Dk . + Dk + Dk .
f r ch ct ssu ssd
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APPENDIX B

DESCRIPTION OF THE AEROJET NUCLEAR
SYSTEMS COMPANY'S HYBRID

COMPUTER FACILITY

B.1 Introduction

This appendix describes briefly the equipment

available in the Aerojet Nuclear Systems Company's hybrid

computer facility. The Common Analog Model was implemented

on this equipment. All hybrid control experiments

described in this study were performed using the Aerojet

hybrid computer facility.

B . 2 Laboratory Facilities

The ANSC hybrid computer laboratory provides large

scale analog and hybrid simulation capability. The equip-

ment consists of six analog computers, a digital computer,

a hybrid interface, and associated peripheral equipment.

Five large analog computers provide for large scale

analog or hybrid simulation. Three of these are solid-

state COMCOR CI-5000's, and two are EAI 231R-V computers.

The five consoles are capable of being slaved together in

groups of from 2 to 5 consoles or run separately, with or

without the digital computer. The three COMCOR computers

., communicate with the digital computer through the hybrid

165
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interface Awhile the two EAI computers communicate, directly

through the COMCOR computers. There is a total of 198

integrators, 33^ summers, 222 multipliers, and 5^ variable

diode function generators available on the five consoles.

Of the 880 coefficient potentiometers, 480 can be auto-

matically set from the digital computer and an additional

280 can be automatically set with the EAI Automatic Digital

Input/Output System (ADIOS). All above mentioned components

can be automatically read out using either the digital

computer or the ADIOS. Each of the five consoles provides

extensive general purpose logic capability. Both analog

and logic trunking are set up between, all consoles. All

consoles feature high speed repetitive operation.

For smaller problems a COMCOR CI-150 solid state

analog computer, with 75 amplifiers, is available.

Extensive analog recording and display capability

is available. A recorder track provides for centralized

patching to and remote control of up to twelve 8-channel

Brush recorders. Two X-Y recorders are also available.

Three Weston-Boonshaft and Fuchs DA-4lO Frequency Response

Analyzers and an ESIAC Root Locus Plotter, Model 10, are

available for controls analysis. The ESIAC enables rapid

plotting of Bode and root locus plots from transfer

functions as well as curve fitting transfer functions to

experimental frequency response data. The DA4:10 is used

for obtaining frequency response data from the computer
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model. A Sangamo Model 7̂00 FM magnetic tape system

provides for record and playback of up to 14 channels of

analog information.

The XDS Sigma 5 digital computer provides for

hybrid simulation. This computer is a third generation

machine with a core of 32,768 - 32 bit words and a cycle

time of 850 nanoseconds. Its peripheral equipment includes

a 750,000 word rapid access magnetic disk, a seven channel

- 556 bit per inch magnetic tape unit, a 400 card per

minute card reader, a 300 line per minute printer and an

electric typewriter with paper tape input/output capability.

Digital computer programs have been developed to

aid in rapid setup and checkout of hybrid or analog problems

in the ANSC lab. The steady state checkout program checks

all model equations at any desired operating point and

indicates the location of any steady state errors that may

be present. This program is run at least once each day and

takes less than 10 minutes to check a large scale four

console hybrid program.



APPENDIX C

CONTROL PROGRAMS FOR THE SIMPLIFIED NONLINEAR MODEL
AND THE COMMON ANALOG MODEL

The two programs shown in this appendix are typical

of those used in the control experiments described in this

study. The first program was used in initial experiments

in controlling the SNM. Control is based on a sixth order

temperature loop control model and a second order pressure

loop control model. The second program was used in the

final control experiments on the CAM. Control in this

case is based on third order control models for both con-

trol loops .
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Main Program for SNM Control

DIMENSION Q(6)
DIMENSION A(6,6),B(6),P(6,6),PIN(6,6),D(?),YT(6),

YP(2)
DIMENSION PT(5) ,R(6) ,PG(10),PP(10) ,PPP(2,2) ,PPPIN

(2,2)
DIMENSION DEST(ll) ,DESTP(ll) ,C(6) ,E(?) ,BP(5) ,AP(5,5) ,

DP (4)
COMMON CONT.CONP ,CONTO,CNOPO
COMMON PD,TD,SP,ST
COMMON GT(10),GP(5),T,J,1COUNT
LOGICAL ISL1,ISL2,ISL3,ISL4
READ 500,NT,NP
PRINT 550,NT

C
C CALCULATE DESIRED TRANSFER FUNCTION

CALL RADCR(2?,THBC,.01,0)
THBCO-THBC
CALL EQN(NT,DEST)
CALL EQN(NP,DESTP)

C
C SET UP COMMUNICATION TO CONSOLE Z

CALLCON( 'Z ' )
CALL M O D E ( ' C ' )

C INITIALIZE PARAMETERS
CONT^O.
GT(1)=0 .
G T ( 2 ) = 0 .
G T ( 3 ) = 0 .
G T ( 4 ) = 0 .
G T ( 5 ) = 0 .
G T ( 6 ) = 0 .
G T ( ? ) = 0 .
G T ( 8 ) = 0 .
BTI9R=0[
GT(10)=0.
.GP(3) = 0 . 0
G P ( 4 ) = 0.0
G P ( 5 ) = 0 . 0
C ( l ) = . 9 4 5
C ( 2 ) = . 0 4 ?
C(3)=- .001
c ( 4 ) = o .
C ( 5 ) = 0 .
c ( 6 ) = o .

•1COUNT=0
T=0.
1=0.
J = l
DT=.005
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A(5,5)=86.72*Zl-.235
A(5,6)=6o8.85*zi • ___ !
A O, 2) =0.0 |
A (4,1) =0.0
A(4,2)=O.O
A(4,3)=0.0
A(5,l)=0.0
A(5,2)=0.0
A(5,3)=0.0
A(6 ,1)=O.O
A(6 ,2)=0.0
A (6, 3) =0.0

3333 MM=I ';
M = -l

1 CALLRSL(ISL1,26)
IF(ISLI) GO TO 100
GO TO 1

100 CONTINUE
IF(M.GT.O)GO TO 102
CALL RADCR(37,T11,-.002,22,P15, .002 , 35 ,SN , - .01 , 3k ;,

DKTT , 1 - , 0 )
CALL RADCR(33,PC3 , . 0002 , 32 ,PC2 , .0002,31 ,PCl , .0002,0)
Tl5=.945*PC3+.047*PC2H-(-.001*PCl)
WN=13.33*P15/SQRT(T15)
PT(l)=3 .98*WN
PT(2)=3 .9/t*WN
PT(3)=2.21*WN
DKTU=DKTT

30 PI(4)=(1.-DKTO)*660.
PT(5)=660.*SN

550 FORMAT (10X, 13)
C
C CALCULATE A

A(l,l)=-.005*PT(l)
A(1,2)=.00515*PT(1)
A (1,3) =-.0001175 *PT(1)

A(1,4)=.4572*Z1
A(i,5)=3.892*zi
A(i,6)=2?.33*zi
A(2,2)=-.005*PT(2)
A(2,3)=.00392*PT(2)
A(2,4) = .-8635*Z1
A(2,5)=7.35*Zl
A(2,6)=51.62*Z1_

A(3,4)=.5886*zi
A(3,5)=5-Ol*zi
A(3,6)=35-19*Z1
A(4,4)=5.0*Z1-.0276
A (4, 5) =42. 535* zi
A(/i,6)=298.65*Zi
A(5,4)=l0.l8*zi



171

A(2,1)=0.0
A(3,1)=0.0
A(6,4) =3 ,o'3~6*zi
A(6,5)=25-85*zi
A(6,6)=l8i.5*zi-i.65

C
C CALCULATE B

B(l)=l6 .55*PT(5)*Z1
B(2)=31.3*PT(5)*Z1
B(3)=21.3*PT(5)*Z1
B(4)=l8l.*PT(5)*Zl
B(5)=369.*PT(5)*zi
B(6)=110.*PT(5)*Z1

C
C CALCULATE CHAREQ EQN

AA1 = - ( A ( 4 , 4 ) +A ( 5 , 5 ) +A ( 6 , 6 ) )
AA2=A(4,4)*A(5,5)+A(6,6)*(A(4,4)+A(5,5) )
1-A(6,5)*A(5,6)-A(5,4)*A(4,5)-A(6,4)*A(4,

= * * * *

, , ,
BB3=-A(1,1)*A(2,2)*A(3,3)

D(6)=AA1+BB1
D( 5) =AA2+AA1*BB1+BB2
D( 4) =AA3+AA2*BB1+AA1*BB2+BB3
D(3)=BB1*AA3+AA2*BB2+AA1*BB3
D(2)=AA3*BB2+AA2*BB3
D(l)-AA3*BB3

C CALCULATE P
DO 20 11=1, NT

20 P(II,NT)=B(II)
DO 22 JJ=2,NT
J1=NT-JJ+1
K=J1+1
DO 22 11=1, NT
P(II,J1)=D(K)*B(II)
DO 22 L=1,NT
P(II,J1)=P(II,J1)+A(II,L)*P(L,K)

22 CONTINUE
C
C CALCULATE P INVERSE
C

CALL SIMEQ(P,C,NT,PIN,Q)
C
C CALCULATE K

CC1=0.
DO 23 JJ=1,NT

23 CC1=P( JJ,1)*C(JJ)+CC1
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GGT=1./GAINT
C
C CALCULATE PHASE VARIABLE FEEDBACKS

DO 2k 11=1, NT
2k R(II)=(DEST(II)-D(II))*GGT
C
C CALCULATE PHYSICAL VARIABLE FEEDBACKS

DO 25 11=1, NT
GT(II)=0.
DO .25 JJ=l-yBET

25 GT ( 1 1 ) = GT ( IT) +PTN ( ' J' J ', II ) * R ( J J )
PRINT 601,GAINT
PRINT 601,GT
IF(MM.EQ.O)GO TO 101
MM=0

102 CONTINUE
CALL RADCR(33 ,PC3, .0002 , 32 ,PC2 , .0002,31,PCl , .0002,
135,SN,-.01,25,T7,-.002,26,¥T, .01 ,27 ,THBC, .01,24,RPM,

-.00002,
23 ?, Til, -.00 2, 22, PI 5, .002,0)
W11=WN
THSS=11.
Tl5=.945*PC3+.047*PC2+(-.001*PCl)
P13=P15* (l. + 33O/SQRT(Ti5) )

P2= .000003434*RPM*RPM- .000296*W11*RPM+30 .
X1=SQRT(T15)
X2=P11/T?
X2=SQRT(X2)
X3=P11-P13
X3=SQRT(X3)
X4t=(P2+Pll)/(2.*T7)

X5=P2-P11

X6=SQRT(T11)
X?=Pl3/Pll
X7=SQRT(X?)
X7=SQRT(X7)

C
C CALCULATE AP & BP
31 PG(l)=.076*Xl

CALL RADCR(27,THBBB, .01,0)
PG( 2) = .Ol82*THBBB*X2/X3
PG(3)=.Ol82*X2*X3
PG(4)=(i.+33.3/Xl)
PG(5)=2.*X4/X5
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PG(6)=.013^*THSS*PG(5) |
PG(7)=.354*X6 !

PG(8)=.000003^36*RPM-.0002967*WN+30./RPM
PG(9)=10200.*T11/RPM
PG(9)=PG(9)*(1.-X7)
PG(10)=.00000096*RPM+.0002385*WN
PP(10)=1./(1.+PG(7)*(PG(2)+PG(5)+PG(6)))
PP(1)=(PG(5)+PG(6))*PG(8)*PP(10)
PP(2)=(-.79*(PG(5)+PG(6))+.21*PG(2))*PP(10)*PG(4)
PP(3)=PG(3)*PP(10)
PP(10)=1./(1.+.21*PG(1)*PG(2)*PG(4)-PP(2)*PG(1)
1*(1.+PG(2)*PG(7)))
PP(4-)=PG(l)* (l .+PG(2)*PG(7) )*PP(1) *PP(10)
PP(5)=(PG(1)*(PG(3)-PP(3))*(1.+PG(7)*PG(2)))*PP(10)
PP(7)=PG(9)*(PP(2)*PP(5)-PP(3))
PP(6)=88.l*PP(6)
PP(7)=88.l*PP(7)
AP(l,l)=-2.25
AP(l,2)=0.
AP(2,1)=-2.25*PP(5)+PP(4)* PP(7)-PP(5)* PP(6)
AP(2,2)=PP(6)
BP(l)=2.25
BP(2)=2.25*PP(5)

C
C CALCULATE CHAREQ EQN

DP(3)=1.
DP(2)=2.25-PP(6)
DP(l)=2.25*PP(6)

C
C CALCULARE P & P INVERSE

PPP(l,2)=BP(l)
PPP(2,2)=BP(2)
PPP(1,1)=AP(1,1)*PPP(1,2)+AP(1,2)*PPP(2,2)+DP(2)* BP(1)
PPP(2,1)=AP(2,1)*PPP(1,2)+AP(2,2)* PPP(2,2)+DP(2)* BP(2)
DD=PPP(1,1)* PPP(2,2)-PPP(2,1)* PPP(1,2)
PPPIN(1,1)=PPP(2,2)/DD
PPPIN(1,2)=-PPP(1,2)/DD
PPPIN(2,1)--PPP(2,1)/DD
PPPIN(2,2)=PPP(l,l)/DD

C
C CALCULARE GAIN & FEEDBACKS

GAINP=DESTP(1)/PPP(2,1)
ZZ=1./GAINP
GP111=(DESTP(1)-DP(1))*ZZ
GP222=(DESTP(2)-DP(2))*ZZ
GP(1)=GP111*PPPIN(1,1)+GP222*PPPIN(2,1)
GP(2)=GP111*PPPIN(1,2)+GP222*PPPIN(2,2)
PRINT 601,GAINP
PRINT 601,GP
IF(ICOUNT.GT.O)GO TO 101
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CALL M O D E ( ' C ' )
101 I F ( I . G T . O ) G O TO 3
3 CONTINUE

CALL RSL(ISL2,2?)
IF(ISL2)GO TO 4
STOP

4 CALL RSL(ISL3,28)
IF(ISL3)GO TO 3
CALL RADCR(33,PC3,.0002,32,PC2,.0002,31,PCl,.0002,

21,C13,
1 .0001 ,20,CI2, .OOOG.0.4., 30., CII, .000001 , 36 ,TD , .0002,0)
CALL RADCR(22,P15, .Ot>'2 , 2? ,THBC , .01,23,PD, .002,0)
CONP=GAINP*(PD -GP(l)*(THBC-THBBB)-GP(2)*P15)
CONP=CONP+TIiBBB-THBCO
CONT=GAINT*(TD -GT(l)*PC3-GT(2)*PC2-GT(3)*PC1-

GT(4)*CI1-
1GT(5)*CI2-GT(6)*CI3)
Ti5=.945*PC3+.o47*PC2+(-.OOl*PCi)
CONT=CONT/10.
CONP=-CONP
CALL WDACR(05,CONP,.01,21,CONT,1.,0)
ICOUNT =ICOUNT +1
IF(ICOUNT,LT.100)GO TO 222
CALL MODE('H1)
ICOUNT=0
GO TO 3333

222 GO TO 3
500 FORMAT(2I2)
501 FORMAT(4F10.0)
600 FORMAT(1H1)
601 FORMAT(5X,6F15.5)
602 FORMAT(///)

END
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Main Program for CAM Control

LOGICAL ISL1 ,ISL2,ISL3,ISL4
DIMENSION C(10) ,CP(lO) ,A(llO,10) ,B(lO) ,DEST(ll) ,

DESTP(ll)
DIMENSION P(10,10) ,PIN(lO,10) ,Q(lO) ,GT(lO) ,PG(lO)

DIMENSION GP(10) ,PP(10) ,D(11)
DIMENSION AP(10,10) ,BP(lO) ,DP(ll) ,PPP(lO,10) ,PPPIN

(10,10)
COMMONGAINT , GAINP ,THBBB ,THBCO , GT , GP
COMMON KN
COMMON XI 10
COMMON X10,00
COMMON OTO,Y10

C
C INITIALIZE PARAMETERS
C

DO 75 1=1 ,10
GO(I)=0.

75 GT(I)=0.
KK=0
READ 500,NT,NP
PRINT 550,NT,NP

500 FORMAT (21 2)
550 FORMAT (5X, 21 4)

CALL RADCR(27,TBC, .01 , 31 ,X110 , - .01 , 34,DKTT, .05,0)
DKTTO=DKTT
THBCO=THBC
C(l)=l .0
C(2)=0.
C(3)=0.
CP(1)=0.
CP(2)=1.
CP(3)=0.

C
C SET UP ANALOG COMPUTER
C

CALL CON( 'Z ' )
CALL MODE( 'C ')

C
C CALCULATE DESIRED TRANSFER FUNCTION TEMPERATURE
C LOOP AND STATIC INPUTS
C

100 CONTINUE
CALL RADCR(33,WN, . 008 , 3^ ,DKTT , . 05 , 35 ,SN , - .005 , 24 ,

DKDO,-.05,0)
KM=KM+1
IF(KM.LT.l4)GO TO 47

DDT=.025*WN-.15
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DEST(4)=1.
DEST(3)=3.081+DDT
DEST(2)=.243+DDT*3.08l
DEST(1)=.243*DDT
DKDDO=.85*DKDO
UTO=DKDO/(l.+B(3)/2.5)
Y10=+B(3)/2.5*UTO

C
C CALCULATE TEMPERATURE CONTROL MODEL
C

4? CONTINUE
DKTT = DKTT-DKTTO + DK DDO
PT1=2.21*WN
PT4=(1.-DKTT)*660.
PT5=660.*SN
A(l ,l)=-.003239*PTl
A(l,2)=31.3*.081/PT4
A(2,l)=0.
A(2,2)=53.46/PT4-.o8i
B(i)=3i.3*PT5/PT4
B(2)=660.*PT5/PT4
A(l,3)=B(l)
A(2,3)=B(2)
A(3,l)=0.
A(3,2)=0.
A(3,3>=-2.5
B(3)=-1.25
D(3)=l.
D(2)=-A(1,1)-A(2,2)
D(l)=A(l,l)*A(2,2)
D(4)=D(3)
D(3)=2.5*D(3)+D(2)
D(2)=2.5*D(2)+D(1)
D(1)=2.5*D(1)

C
C UPDATE CONTROL
C
CALL ROLL

C
C UPDATE FEEDBACK GAINS
C
CALL PMAT(A,B,D,P,NT)
CALL SIMEQ(P,C,NT,PIN,Q)
CALL GAIN(P,C,DEST,D,PIN,NT,GAINT,GT)

C
C UPDATE CONTROL
C
CALL ROLL

C
C CALCULATE DESIRED TRANSFER FUNCTION PRESSURE LOOP
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C
CALL RADCR(32,T15,.0002,25,T?,-.001667,26,WT,-.005,

27,THBC,.O1
l,l4,RPM,-.000025,10,Til, .001667,22,PIT,-.001,21,

wn, .005,0)
P15=PIT
IF(MK.LT.5)GO TO 789
MK=0
DDD=.0025
DDP=DDD*P15-.-15

DESTP(l)=4b.'i2*DDP
C
C BEGIN CALCULATION OF PRESSURE CONTROL MODEL
C

789 MK=MK+1
THSS=11.
P13=P15*(l.+33-3/SQRT(Tl5) )

P2= .000003zi3z):*RPM*RPM-. OO0296* W11*RPM+30.
X20=X10

X30-(X20-X10)/X20
T15=(1 .+X30)*T15
X1=SQRT(T15)
X2=P11/T7

X3=P11-P13
X3=S¥RT(X3)
X4=(P2+P11) / (2 .*T7)

X5-P 2-JU1

X7=P13/P11

X7=SWRT(X7)
PG(1)=.076*X1
CALL RADCR(27 ,THOOO, .01,0)
TH003=TH002
TH002=TH001
THOOl^THOOO
THOOO=(TH003+TH002+THOOl) * .333
THBBB=THOOO

C
C UPDATE CONTROL
C

CALL ROLL
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c
C CONTINUE MODEL UPDATE
C
PG(2)=.04OO*THOOO*X2/X3
PG(3)=.0400*X2*X3
PG(4)=(l.+33-3/Xl)
PG(5)=2.*X4/X5
PG(6)=.0134*THSS*PG(5)
PG(7)=.354*x6
PG( 8) = .OOO00343*RPM- . 0002967*WN+30 ./RPM
PG(9)=10200.*T11/RPM
PG(9)=PG(9)*(1.-X7)
PG(10)=.00000096*RPM+.0002385*WN
PP(10)=1./(1.+PG(7)*(PG(2)+PG(5)+PG(6))
PP(1)=(PG(5)+PG(6))*PG(8)*PP(10)
PP(2)=(-.79*(PG(5)+PG(6))+.21*PG(2))*PP
PP(3)=PG(3)*PP(10)
PP(10)=1./(1.+.21*PG(1)*PG(2)*PG(4)-PP(2)*PG(1)
1*(1.+PG(2)*PG(7)))
PP(4)=PG(1)*(1.+PG(2)*PG(7))*PP(1)*PP(10)
PP(5)=(PG(1)*(PG(3)-PP(3))*(1.+PG(7)*PG(2)))*PP(10)
PP(6)=PP(1)+PP(2)* PP( k)
PP(6)=PG(9)*PP(6)
pp(6)=PP(6)-PG(io)
PP(6)=88.l*PP(6)
PP(6)=0.
PP(7)=PG(9)*(PP(2)*PP(5)-PP(3))
PP(7)=88.l*PP(7)
AP(I ,i)=-2.25
AP(l ,2)=0.
AP(2,1)=-2.25*PP(5)+PP(4)*PP(7)-PP(5)*PP(6)
AP(2,2)=PP(6)
BP(1)=2.25
BP(2)=2.25*PP(5)
AP(1,3)=BP(1)
AP(2,3)=BP(2)
AP(3,3)=-2.5
AP(3,1)=0.
•AP(3,2)=0.
BP(3)=-1.65
DP(3)=1.
DP(2)=2.25-PP(6)
DP(l)=-2.25*PP(6)
DP(4)=DP(3)
DP ( 3 ) = 2 . 5 * DP ( 3 ) + DP ( 2)
DP ( 2) = 2 . 5 * DP ( 2) + DP (1)
DP(1)=2.5*DP(1)

C
C UPDATE CONTROL
C
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CALL ROLL
C
C UPDATE FEEDBACK GAINS
C
CALL PM T(AP,BP,DP,PPP,NP)
CALL SIMEQ(PPP,CP,NP,PPPIN,Q)
CALL GAIN ( PPP , CP , DESTP , DP , PPPIN , NP , GAINP , GP )

C
C UPDATE CONTROL AND STATIC INPUT
C
THRRR=THBBB-THBCO !
UU=2.958*THRRR
X10=-1.959*THRRR+X110
CALL ROLL

C
C MAKE DECISION TO CONTINUE OR TERMINATE
C
CALL RSL(ISL2,2?)
IF(ISL2)GO TO k
STOP
IF(KK.EQ.l)GO TO 100

GO TO 100
END
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Subroutine to Calculate .Control Update

SUBROUTINE ROLL
DIMENSION GT(10),GP(lO)
COMMONGAINT,GAINP,THBBB,THBCO,GT,GP
COMMON KN
COMMON X110
COMMON X10,00
COMMON JTO,Y10
CALL RADCR(32,T15,.0002,30,CI1, .000001 ,36,TD, .0002,22,
1P15,-.001,2?,THBC, .01 ,23,PD, .001,20,Y1,.05,31,X1,-.01 ,

O)
CONT=GAINT*(TD-GT(1)*T15-GT(2)*CI1-GT(3)*Y1-Y10)) * .1
1+UTO*.1
CONT=1.5*CONT
CONP=GAINP*(PD-GP(1)*(THBC-THBBB)-GP(2)*P15-GP(3)*

(X1-X10))+00
KN=KN+1

600 FORMAT(10X,5F15.4)
BMP=-CONP
CALL WDACR(05,CONP,.01,21,CONT,1.0,O)
CONTINUE
CONTINUE
RETURN
END

Subroutine to Calculate Feedback Gains

SUBROUTINE GAIN(P,C,DEST,D,PIN,NT,GAINT,GT)
DIMENSION P(10,10) ,C(lO) ,DEST(ll) ,R(lO) ,D(ll) ,GT(lO) ,

PIN(10,10)
CCl=0.
DO 23 JJ=1,NT

23 CC1=P(JJ,l)*C(JJ)+CC1
GAINT=DEST(1)/CC1
GGT=1./GAINT
DO 2k 11=1,NT

2k R(II)=(DEST(II)-D(II))*GGT
DO 25 11=1.NT
GT(II)=0.
DO 25 JJ=1,NT

25 GT(II)=GT(II=+PIN(JJ,II)*R(JJ)
RETURN
END
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Subroutine to Calculate Transformation. Matrix

SUBROUTINE PMAT(A,B,D,P,NT)
DIMENSION P(10,10) ,B(10) ,D(11) ,A(10,10)
DO 20 11=1,NT

20 P(II,NT)=B(II)
DO 22 JJ=2,NT
J1=NT-JJ+1
K=J1+1
DO 22 11=1,NT '
P(II,J1)=D(K)*B(II) \
DO 22 L=1,NT
P(II,J1)=P(II,J1)+A(I1,L)*P(L,K)

22 CONTINUE
RETURN
END
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