NASA Grant NGR-47-005-001
Submitted by
Dr. Robert L. Ramey
Professor
Department of Electrical Engineering

Research Laboratories for the Engineering Sciences
University of Virginia
Charlottes ville
Report No. $\mathrm{EE}-4012-113-71 \mathrm{U}$

$$
\text { Juty } 1971
$$

APPLICATION OF THIN FILMS TO EXTREMELY HIGH FREQUENCIES
 Final Report on
 NASA Grant NGR-47-005-001
 Submitted by
 Dr. Robert L. Ramey
 Professor
 Department of Electrical Engineering

Department of Electrical Engineering RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES SCHOOL OF ENGINEERING AND APPLIED SCIENCE UNIVERSITY OF VIRGINIA CHARLOTTESVILLE, VIRGINIA

\qquad

TABLE OF CONTENTS

Page
LIST OF FIGURES. iii
ABSTRACT v
SECTION 1 INTRODUCTION 1
SECTION II THE ASYMMETRICAL IRIS. 7
SECTION III ANTENNA BEAM-SLEWING 14
SECTION IV CRYOGENIC STUDIES. 31
REFERENCES 32

LIST OF FIGURES

		Page
FIGURE I	(A) FILM AND WAVEGUIDE ORIENTATION FOR BOUNDARY VALUE. (B) IDENTIFICATION OF FIELD COMPONENTS AND MEDIA PARAMETERS.	2
FIGURE 2	THE POWER TRANSMISSION OF THIN FILM WINDOWS IN WAVEGUIDE AS A FUNCTION OF od..	5
FIGURE 3	THE MAGNITUDE OF THE VOLTAGE REFLECTION COEFFICIENT FOR THIN FILM WINDOWS IN WAVEGUIDE.	6
FIGURE 4	THE ASYMMETRICAL IRIS WITH d $=a / 2$.	8
FIGURE 5	THE THIN FILM ASYMMETRICAL IRIS IS CONNECTED ELECTRICALLY tO the left-hand wall of the waveguide. the top and BOTTOM OF THE FILM ARE EACH CONNECTED BY MEANS OF A MICROWAVE PIN DIODE TO THE UPPER AND LOWER WAVEGUIDE SURFACES.	
FIGURE 6	the normalized reactance of a nickel film and a stainless steel plate as a function of the bias current to both DIODES.	11
FIGURE 7	NORMALIZED RESISTANCE FOR THE IRIS CONFIGURATION DISCUSSED IN THE TEXT .	12
FIGURE 8	PHASE SHIFT AS A FUNCTION OF BIAS CURRENT 1	13
FIGURE 9	the Computation of the electric field from two point SOURCES .	15
FIGURE IOA	COMPUTER PROGRAM. 1	16
FIGURE IOB	COMPUTER PROGRAM (CONTINUED) 17	17
FIGURE 11	RESULT OF TEST OF PROGRAM FOR E = CONSTANT. 1	18
FIGURE 12	END-FIRE ANTENNA PATTERN.	19
FIGURE 13	A BROADSIDE ANTENNA PATTERN.. 2	20
FIGURE 14	THE IDEALIZED TWO-HORN PATTERN (SKETCHED IN LOBE) 2	21
FIGURE 15	TWO-HORN PATTERN 22	22
FIGURE 16	TWO-HORN PATTERN. 2	23
FIGURE 17	TWO-HORN PATTERN. 2	

FIGURE I8 TWO-HORN PATTERN 25
FIGURE 19 THE TWO-HORN ANTENNA LOBE (SKETCHED INDICATING A
A 3-DEGREE SLEW TO THE LEFT 26
FIGURE 20 THE 9.8 GHz EXPERIMENTAL ARRANGEMENT FOR STUDYING THE SLEWING OF A SIMPLE HORN ANTENNA ARRAY 28
FIGURE 21 SLEWING BY THIN FILM IRISES OF A TWO-HORN 9.I GHz ANTENNA. HORN SPACING WAS $1.44 \lambda_{0}$. 29
FIGURE 22 TESTS ON THE SLEWING BY THIN FILM IRISES OF A THREE-HORN ANTENNA ARRAY AT 9.8 GHz 30

ABSTRACT

This report covers the final year of the thin film microwave research project which began December 5, 1967. In the summer of 1967 Ramey and Lewis demonstrated that the finite transmission of EM energy through thin films was practical. This was a verification of the work of Kaplan and also Korolev and Gridnev, all of the USSR. The subsequent research was based upon this phenomenon. The results of this research have been published extensively and several patent applications applied for. This last year of research (1970) was devoted primarily to application investigatlons. In particular, the use of thin film irises to control the beam direction from an array of microwave horns was explored with encouraging results.

INTRODUCTION

The possibility that electromagnetic radiation can pass through a conducting sheet is a plausible concept when we think of a skin depth

$$
\begin{equation*}
\delta=\sqrt{2 / \omega \mu \sigma} \tag{i}
\end{equation*}
$$

meters. For silver, at 10 GHz , the skin depth is 6.42×10^{-7} meters or 6420 angstrom units. Thin films of both metals and semiconductors can be produced as thin as several hundred angstroms before severe dislocation densities and occlusions begin to become a problem. Therefore it appears technically feasible to produce films through which detectable transmissions should be obtained. Equation (1) does not predict the transmission, thus a proper solution is required.

Kaplan, in the USSR, derived the expressions for the power transmission coefficient, T; the power reflection coefficient, R; and the power absorption coefficient, A; for the case of a plane TEM wave incident upon a thin metal film. Limited verification of Kaplan's theory was obtained by Korlev and Gridnev ${ }^{2}$ also of the USSR, in 1965. In the summer of 1967 Ramey and Lewis ${ }^{3}$ at the University of Virginia made successful measurements of the three power coefficients for a TE wave at 9.8 GHz for conducting films mounted in the transverse plane of rectangular waveguide, (see Fig. 1). They showed that the power transmission coefficient is given by
$T=\left|\frac{E_{3}}{E_{0}}\right|^{2}=\left|\frac{4 e^{\gamma d}}{\left(1-\mu \gamma_{2} / \mu_{2} \gamma\right)\left(1-\mu_{2} \gamma / \mu \gamma_{2}\right) \exp \left(-\gamma_{2} d\right)+\left(1+\mu \gamma_{2} / \mu_{2} \gamma\right)\left(1+\mu_{2} \gamma / \mu \gamma_{2}\right) \exp \left(\gamma_{2} d\right)}\right|^{2}$
and the power-reflection coefficient is:
$R=\left|\frac{E_{1}}{E_{0}}\right|^{2}=\left|\frac{\left(1-\mu \gamma_{2} / \mu_{2} \gamma\right)\left(1+\mu_{2} \gamma / \mu \gamma_{2}\right)+\left(1+\mu \gamma_{2} / \mu_{2} \gamma\right)\left(1-\mu_{2} \gamma / \mu \gamma_{2}\right) \exp \left(-2 \gamma_{2} d\right)}{\left(1+\mu \gamma_{2} / \mu_{2} \gamma\right)\left(1+\mu_{2} \gamma / \mu \gamma_{2}\right)+\left(1-\mu \gamma_{2} / \mu_{2} \gamma\right)\left(1-\mu_{2} \gamma / \mu \gamma_{2}\right) \exp \left(-2 \gamma_{2} d\right)}\right|^{2}$

(A)

(B)

FIGURE 1. (A) FILM AND WAVEGUIDE ORIENTATION FOR BOUNDARY VALUE. (B) IDENTIFICATION OF FIELD COMPONENTS AND MEDIA PARAMETERS.

The power absorption coefficient is obtained from the fundamental expression:

$$
\begin{equation*}
A+R+T=1 \tag{4}
\end{equation*}
$$

In these expressions γ is the propagation factor and μ is the permeability of the film. The corresponding coefficients, γ_{0} and μ_{0}, apply to the free space of the waveguide. The propagation coefficient for the film is

$$
\begin{equation*}
\gamma=\left[(\pi / a)^{2}-\omega^{2} \mu \varepsilon+j \omega \mu \sigma\right]^{1 / 2} \tag{5}
\end{equation*}
$$

where σ is the conductivity of the film and is a function of the film thickness. The permittivity of the film is ε, while ε_{0} applies to free space. The waveguide width is a and ω is the angular frequency.

As a result of extensive experimental studies it was realized that the important parameter in these expressions is the product of the film conductivity, σ, times the film thickness, d. Ramey et al. ${ }^{4}$ showed under the conditions rod <1 and $\gamma \mathrm{d}<1$, the exponentials in Eq. (2) can be replaced by the first two terms of their MacLaurin series expansions. The transmission coefficient becomes:

$$
\begin{equation*}
T=\left|\frac{4\left(1+\gamma_{0} d\right)}{\left[2-\left(\mu_{0} \gamma / \mu \gamma_{0}\right)-\left(\mu \gamma_{0} / \mu_{0} \gamma\right)\right](1-\gamma d)+\left[2+\left(\mu_{0} \gamma / \mu \gamma_{0}\right)+\left(\mu_{\gamma_{0}} / \mu_{0} \gamma\right)\right](1+\gamma d)}\right|^{2} \tag{6}
\end{equation*}
$$

As $\gamma_{0} \ll \gamma$ and $\gamma_{0} d \ll 1$, Eq. (6) may be reduced to

$$
\begin{equation*}
T=\left|2 /\left(2+\mu_{0} \gamma^{2} d / \mu \gamma_{0}\right)\right|^{2} . \tag{7}
\end{equation*}
$$

If the operating frequency is near the waveguide cutoff frequency, given by

$$
\begin{equation*}
f_{c}=\frac{1}{2 a \sqrt{\mu_{0} \varepsilon_{0}}} \tag{8}
\end{equation*}
$$

then ${ }^{5,6}$ the power transmission coefficient is given by

$$
\begin{equation*}
T=\left|\frac{E_{4}}{E_{0}}\right|^{2}=\left.\left|2+\frac{2}{\mu_{0} \gamma^{2} d}\right|^{\mu_{0}}\right|^{2}=\left|2+\frac{2}{\left(\mu_{0} / \varepsilon_{0}\right)^{1 / 2} \sigma d}\right|^{2} \tag{9}
\end{equation*}
$$

and the power reflection coefficient is given by

$$
\begin{equation*}
R_{0}=\left|\frac{E_{1}}{E_{0}}\right|^{2}=\left|\frac{2 \sqrt{\mu_{0} / \varepsilon_{0} \sigma d}}{1+\frac{\sqrt{\mu_{0} / \varepsilon_{0} \sigma d}}{2 \sqrt{1-\left(f_{c} / f\right)^{2}}}}\right|^{2}\left|\Gamma_{0}\right|^{2} \tag{10}
\end{equation*}
$$

Note that Eq. (10) is for the power reflected in the free space by the presence of the film. It does not apply to the internal reflections within the film. These reflections are taken into account in the derivation of these equations. Plots of Eqs. (9) and (10) are shown in Figs. 2 and 3. Experimental data points are also shown in Fig. 2. These data points all fall on or very close to the theoretical curve shown.

It should be emphasized that we are referring to the measured or actual conductivity of each film and not the technical bulk value. That is, in the manufacture of thin films it is difficult if not impossible to dupiicate the electrical properties found in a normal bulk sample. Because of abnormal grain boundaries, dislocation, and other growth imperfections, the electron scattering mechanisms are greatly enhanced with resultant film conductivities running typically between $\frac{1}{4}$ and $\frac{1}{10}$ of the normal values found in the tables for bulk material.

FIGURE 2. THE POWER. TRANSMISSION OF THIN FILM WINDOWS IN WAVEGUIDE AS A FUNCTION OF od.

Figure 3. the magnitude of the voltage reflection coefficient FOR THIN FILM WINDOWS IN WAVEGUIDE.

SECTION 11

THE ASYMMETRICAL IRIS

Although the thin film with od $<10^{-3}$ is capable of transmitting over 95% of the incident power, it is somewhat more practical to use thicker metallic films with od $>5 \times 10^{-3}$ and increase the transmitted power by placing an iris in the film. The use of symmetrical circular and elliptical irises has been covered in detail ${ }^{5,6}$ by this NASA project. Asymmetrical rectangular irises or diaphragms are easily fabricated and lend themselves to electric control somewhat more readily than do the circular or elliptical irises. For this reason the rectangular iris has been used extensively in our research on horn antenna lobe slewing systems.

With reference to Fig. 4, the normalized susceptance presented by this asymmetrical iris is given approximately by ${ }^{7}$

$$
\begin{equation*}
B / Y_{0}=-\left(\frac{\lambda g}{a}\right) \cot ^{2}\left[\frac{\pi d}{2 a}\left(1+\csc ^{2} \frac{\pi d}{2 a}\right)\right] \tag{II}
\end{equation*}
$$

When $d=a / 2$, then Eq. (II) reduces to

$$
\begin{equation*}
B / Y_{0}=-\lambda_{g} / a \tag{12}
\end{equation*}
$$

where the guide wavelength is given by

$$
\begin{equation*}
\lambda_{g}=\frac{\lambda_{0}}{\frac{\sqrt{\varepsilon \mu}}{\varepsilon_{0} \mu_{0}}-\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}} \tag{13}
\end{equation*}
$$

For a $T E_{10}$-mode, the cut-off wavelength, $\lambda_{c}=2$ a and $\varepsilon \approx \varepsilon_{0}, \mu \approx \mu_{0}$ for and air-filled guide. Thus

$$
\begin{align*}
B / Y_{O} & =-\frac{\lambda_{0}}{a} \frac{1}{\sqrt{1-\left(\lambda_{c} / 2 a\right)^{2}}} \tag{14}\\
& =-1.71 \text { (inductive) }
\end{align*}
$$

FIGURE 4. THE ASYMMETRICAL IRIS WITH $d=a / 2$.

FIGURE 5. THE THIN FILM ASYMMETRICAL IRIS IS CONNECTED ELECTRICALLY TO THE LEFT-HAND WALL OF THE WAVEGUIDE. THE TOP AND BOTTOM OF THE FILM ARE EACH CONNECTED BY MEANS OF A MICROWAVE PIN DIODE TO THE UPPER AND LOWER WAVEGUIDE SURFACES.
or

$$
\begin{equation*}
X / Z_{0}=\left(B / Y_{0}\right)^{-1}=0.585 \tag{15}
\end{equation*}
$$

With reference to Fig. 6, the thin nickel film shows a much greater variation of normalized reactance with respect to the total diode bias current (both diodes) than does a similar plate of stainless steel (bulk conductivity comparable to the nickel film). Although this iris is of the type that usually provides inductive reactance (Eq. (15), the presence of the diodes yields an overall capacitive reactance. As an example, for 0.5 ma bias current the net reactance of the thin film iris is -0.285 of which -0.255 is because of the thin film and $-0.030-0.585=$ -0.618 arises from the diodes. The associated normalized resistance of both of these irises is shown as a function of bias current in Fig. 7. The restricted electron transport mechanism in thin films results in the increased resistance of this type of iris as compared to the more conventional one. Phase shift as a function of bias current is shown in Fig. 8.

FIGURE 6. THE NORMALIZED REACTANCE OF A NICKEL FILM AND A STAINLESS STEEL PLATE AS A FUNCTION OF THE BIAS CURRENT TO BOTH DIODES.

FIGURE 7. NORMALIZED RESISTANCE FOR THE IRIS CONFIGURATION DISCUSSED IN THE TEXT.

FIGURE 8. PHASE SHIFT AS A FUNCTION OF BIAS CURRENT.

SECTION III

ANTENNA BEAM-SLEWING

In the experimental work two and three horn antenna arrays at 9.8 GHz have been employed. An exact analysis of such an antenna system is difficult; however, point sources may be used in place of the horns and reasonable first order computations made. With reference to Fig. . the magnitude of the far field at a point P is easily shown to be ${ }^{8}$

$$
\begin{equation*}
E=\left[(1-I \cos Z)^{2}+I^{2} \sin ^{2} Z\right]^{1 / 2} \tag{16}
\end{equation*}
$$

where the intensity of source number 2 is I times the intensity of source number 1. The angle Z is given by

$$
Z=2 \pi * K * \cos A+D
$$

where the spacing between source 1 and source 2 is $2 \pi K$ freespace wavelengths. The relative phase angle between the signal from each source is D. The polar angle about this antenna array is A.

Equations 16 and 17 are easily programmed in the BASIC computer language as shown in Figs. $10 A$ and $10 B$. This program produces a teletype printer plot of 50 data points. The program was tested by (1) setting $\mathrm{E}=$ constant which should result in a circular plot. . This is shown in Fig. I! where we note the 2 to l elongation of the circle due to the line spacing being almost twice the character spacing on a line. (2) For half-wavelength spacing and a relative phase shift of 180 degrees the classical end-fire array shown in Fig. 12 is obtained. (3) For haifwavelength spacing and 0 degree relative phase shift the broadside pattern of Fig. 13 is obtained.

With these checks on the computer program, the horn spacing of 1.44 wavelengths, used in the laboratory, was fed into the program and the relative phase angle shifted from 5 to 30 degrees as this covers the range of phase shifts indicated in Fig. 8 for the thin film iris. The sequence of plots is shown in Figs. 14 through 19. The pattern consists

FIGURE 9. THE COMPUTATION OF THE ELECTRIC FIELD FROM TWO POINT SOURCES.

```
10 PRINT "POLAR PLOT OF E-FIELD FROM TWO POINT SOURCES"
20 PRINT "WHOSE RELATIVE PHASE ANGLE,D, IS THE VARIABLE"
3\emptyset PRINT "THE SOURCE SPACING IS 2*PI*K FREESPACE WAVELENGTHS*
35 DIM B[50]
40 DIM C[50]
50 DIM G[50]
60 DIM H[50]
6 5 ~ R E A D ~ K , N , I ~
66 PRINT "SOURCE NUMBER TWO I TIMES THE INTENSITY OF SOURCE ONE"
7% LET A2=6.2832N
80 LET D2=(3.1416/180)*5
90 FOR D1=1 TO 6
100 LET F4=1
110 FOR A1=1 TO N
120 LET A=A1*A2
130 LET D=D1*D2
139 LET Z=6. 2832*K*COS(A)+D
14Ø LET E=((1+I*COS(Z)) & 2+I*I*(SIN(Z))!2)t.5
141 LET E=E/C
150 LET B[F4]=INT(25*E*COS(A))+25
160 LET C[F4]=INT(25*E*SIN(A))+25
170 LET F4=F4+1
180 NEXT A1
190 LET F4=F4-1
2\emptyset\emptyset REM SORT C[F4] IN DECENDING ORDER AND B[F4] IN ASCENDING ORDER
320 MAT G=(1)*C
325 MAT H=(1)*B
330 FOR IL=1 TO F4
340 FOR I2=1 TO F4-1
350 IF C[I2]>C[I2+1] THEN 400
351 IF C[I2]<C[I2+1] THEN 360
352 IF B[I2] <= B[I2+1] THEN 400
360 LET G[I2]=C[I2+1]
365 LET H[12]=B[I2+1]
370 LET G[I2+1]=C[12]
375 LET H[I2+1]=B[I2]
380 LET C[I2]=G[I2]
385 LET B[I2]=H[12]
390 LET C[I2+1]=G[I2+1]
395 LET B[12+1]=H[12+1]
40\emptyset NEXT IR
410 NEXT II
42Ø REM BEGIN POLAR PLOT
430 FOR I 4=1 TO 51
440 LET M=1
450 LET Y=51-I 4
460 IF I4=26 THEN 620
4 7 0 ~ F O R ~ I ~ 3 = 1 ~ T O ~ N
480 IF Y <> C[I3] THEN 580
490 IF B[I3] >= 26 THEN 520
500 PRINT TAB(B[I3])"*'';
510 GOTO 580
520 LET M=M+1
530 IF B[I3]=26 THEN 500
540 IF M>2 THEN 570
550 PRINT TAB(25)"!";TAB(B[I3])***";
560 GOTO 580
```

720 DATA 1.44.50.1
730 END

POLAR PLOT OF E-FIELD FROM TWO POINT SOURCES WHOSE RELATIVE PHASE ANGLE, D, IS THE VARIABLE THE SOURCE SPACING IS $2 * P I * K$ FREESPACE WAVELENGTHS

RELATIVE PHASE ANGLE= 8.72667E-D2

FIGURE 11. RESULT OF TEST OF PROGRAM FOR E = CONSTANT.

POLAR PLOT OF E-FIELD FROM TWO POINT SOURCES
WHOSE RELATIVE PHASE ANGLE, D, IS THE VARIABLE THE SOURCE SPACING IS 2*PI*K FREESPACE WAUELENGTHS

RELATIVE PHASE ANGLE $=3.1416$

FIGURE 12. END-FIRE ANTENNA PATTERN.

POLAR PLOT OF E-FIELD FROM TWO POINT SOURCES WHOSE RELATIVE PHASE ANGLE, D, IS THE VARIABLE THE SOURCE SPACING IS $2 * P I * K$ FREESPACE WAVELENGTHS

$$
!
$$

RELATIVE PHASE ANGLE= \varnothing

FIGURE 13. A BROADSIDE ANTENNA PATTERN.

POLAR PLOT OF E-FIELD FROM TWO POINT SOURCES WHOSE RELATIVE PHASE ANGLE, D, IS THE VARIABLE THE SOURCE SPACING IS $2 * P I * K$ FREESPACE WAVELENGTHS SOURCE NUMBER TWO I TIMES THE INTENSITY OF SOURCE ONE

RELATIVE PHASE ANGLE $=8.72667 E-02$
FIGURE 14. THE IDEALIZED TWO-HORN PATTERN (SKETCHED IN LOBE).

RELATIVE PHASE ANGLE $=.174533$

FIGURE 15. TWO-HORN PATTERN.

RELATIVE PHASE ANGLE $=.2618$

FIGURE 16. TWO-HORN PATTERN.

RELATIUE PHASE ANGLE $=.349067$

FIGURE 17. TWO-HORN PATTERN.

RELATIVE PHASE ANGLE $=.436333$

FIGURE 18. TWO-HORN PATTERN.

RELATIVE PHASE ANGLE= . 5236

FIGURE 19. THE TWO-HORN ANTENNA LOBE (SKETCHED INDICATING A 3-DEGREE SLEW TO THE LEFT.
of six principal lobes and for zero relative phase shitt the pattern is symmetrical about the x-axis. (Note that there appears to be an offset of one unit to the left of each pattern. This is simply roundoff error plus the quantizing effect of the teletype printer.)

The single lobe along the ty-axis represents the principal lobe from the actual two-horn antenna array employed in the slewing tests in the laboratory. If Fig. 14 is compared very carefully with Fig. I9, a 3-degree slew to the left is indicated. The fact that all of the lobes are being slewed to the left is easily noted.

Experimental verification of these theoretical computations was obtained using the laboratory arrangement shown in Fig. 20. The attenuators were adjusted so that the power from each horn was the same and the intensity pattern shown in Fig. 21 was recorded. The plot (Right) was obtained by applying bias to the film mounted in the feed line to the right-hand horn so that about 30° relative phase shift existed between the two horns. A recelving horn travelling on an arc of about 11.7 feet was used to detect the signal. The film in the left hand horn was at zero bias during this run. The situation was then reversed with bias applied to the thin film iris in the feed line to the left-hand horn and zero bias on the right-hand film. The plot marked (Left) was then obtained.

The difference between the peaks is 5.2 degrees for a full slew or 2.6 degrees for a slew to one side of center. This compares very favorably with the slew of about 3 degrees indicated by Fig. 19 from the computer plot. A three horn antenna was also tested in a similar manner. The center horn was direct feed (no iris). The results are shown in Fig. 22 with a total slew of about 3.8 degrees.

Thus, the thin film iris is capable of providing the necessary phase shift for practical antenna array slewing.

Abstract

A part of this research effort was directed at studies of the reactance of the thin film iris under superconducting conditions. This effort has been plagued by repeated problems from the reduced research budget (50%) to equipment abnormalities. A Sulfrian brand cryostat with a. 20 GHz tail piece was purchased and all associated equipment, including a helium return line to our physics department (where our He is obtained) installed. Testing began in the fall of 1970. The present status is that there appears to be a leak in the cryostat which appears when the liquid helium is inserted but which cannot be detected with a helium leak detector under normal conditions. We have worked on this problem for four months since the expiration of the contract support. Further unsupported effort on the cryostat problem is not feasible at this time.

REFERENCES

1. Kaplan, A. E., Radiotekhnika i Elektronika, 9, 1781 (1964)
2. Korolev, F. A., and Gridnev, V. I., Radiotekhnika i Elektronika, 10, 1718 (1965).
3. Ramey, R. L., and Lewis, T. S., J. of App1. Phys., 39, 1747-1752 (1968).
4. Ramey, R. L., Kitchen, W. J., Loyd, J.M., and Landes, H. S., 3. of Appl. Phys., 39, 3883-3884 (1968).
5. Ramey, R. L., Landes, H. S., and Manus, E. A., NASA CR-1364, June 1969.
6. Ramey, R. L., Landes, H. S., and Manus, E. A., IEEE Trans, on Microwave Theory and Technique, MTT-18, No. 4, 196-204, April, 1970.
7. Montgomery, C. G., Dicke, R. H., and Purcell, E. M., Principles of Microwave Circuits, MIT RAdiation Lab. Series, pg. |应, McGraw-Hil| Book Co., New York (1948).
8. Krans, J. D., Antennas, pg. 65, McGraw-Hill Book Co., New York (1950).

Copy No.

1-5	National Aeronautics and Space Administration Office of Scientific and Technical Information (Code US) Washington, D. C. 20546
$6-7$	National Aeronautics and Space Administration Flight Instrumentation Division Langley Research Center Hampton, Virginia 23365
8	C. B. Thomas
11-10	R. L. Ramey $12-13$
L. T. Rader R. H. Austin Science/Technology Information Center	
RLES Files	

