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SOLAR ACTIVITY PREDICTION
FINAL REPORT on NASA order H-54409A

Ralph J. Slutz, Thomas B. Gray, Marie L. West,
Frank G. Stewart and Margo Leftin

PART I: SUNSPOT NUMBER PREDICTION

1. INTRODUCTION

This is the final report on a study of solar activity
prediction which was undertaken in response to NASA order
H-54409A. A good summary of the background of the study ﬁs
given in the order:

'"Accurate predictions of atmospheric density
several years in advance at operating altitudes of
orbiting vehicles are essential for optimum orbital
planning and spacecraft lifetime studies for sev-
eral high-priority MSFC programs, including the
Apollo Applications Program, the Saturn V Workshop,
and the proposed Logistics Vehicle. It would be
desirable to predict the atmospheric density direc-
tly, but this is not yet possible since density
measurements have been obtained for only about the
past ten years. Fortunately, variations in density
at high altitudes show a high correlation with var-
iations in solar activity; i.e., sunspot number
(Wolfe number) or measurements of the solar radio
flux at decimetric wavelengths (10.7 cm). Measure-
ments of the 10.7 cm solar radio flux have been
made only since 1947; however, the Zurich relative
sunspot numbers constitute a highly homogeneous
series extending back to 1849, while less reliable
data extend the series back to 1749. Since the
correlation is very high between sunspot numbers
and atmospheric density at satellite altitudes for
the period during which the latter have been ob-
served, conclusions reached from the study of sun-
spot data may be assumed to apply to high altitude
atmospheric density as well.

Sunspot prediction methods to date have pri-
marily been based on an analysis of past data as a
function of time, the prediction being an extrapo-
lation of the statistical analysis to some future



time. In 1949, Lincoln and McNish (then employees
of the Central Radio Propagation Laboratory) sug-
gested that using the mean of all past solar cycles
as an approximation for the next cycle could be im-
proved after the beginning of the cycle by adding
to the mean a correctional proportional to the de-
parture of the earlier values of the cycle from the
mean. This is the basis for the Lockheed modifica-
tion of the Lincoln-McNish prediction method, which
is currently used by MSFC for solar prediction.
More accurate forecasts of solar activity are needed
than have been available in the past. A modifica-
tion to present methods or development of new tech-
niques is required to provide more accurate solar
activity forecasts. A detailed theoretical inves-
tigation of the physical theory of sunspot forma-
tion is beyond the scope of this study; however,
physical reasons for the existance of sunspots and
any constraints associated with their prediction
should, whenever possible, be incorporated into

the development of a model to forecast solar acti-
vity."

This report is made in two parts because the work was
carried out by two separate research teams. Part I, authored
by Ralph J. Slutz, Thomas B. Gray, and Marie L. West, de-
scribes the studies undertaken to improve and extend the
statistical prediction of sunspot numbers. Part II, authored
by Frank G. Stewart and Margo Leftin, describes the studies
undertaken to relate measurements of solar radio flux to
sunspot numbers.

The NASA order called for studies in five areas:

1. Ilnvestigate, and identify where possible,
improved methods of predicting solar activity. This
should include consideration of more sophisticated
mathematical techniques, such as use of non-linear
predictors.

This is reported in Part I, and an improved formula
making use of nonlinear predictors is given in Part I, sec-

tion 6.



2. Investigate the feasibility of developing
techniques for preparing direct predictions of solar
parameters more directly related to atmospheric den-
sity, such as the solar radio flux.

This was examined, but the conclusion reached was that
the available data sample was too small to lead to meaningful
predictions other than through its correlation with sunspot
number. Thus the effort was concentrated on such correlations.

3. Investigate the relationship between sunspot
numbers and solar radio flux with a goal of improving
the mathematical relationship between these parameters.
This should include studying separately the relation-
ship during the decreasing portion of the cycle.

This is reported in Part II.

4., Develop a model {quantitative) to forecast
solar activity for at least one solar cycle (about
1] years) in advance and suggest possible areas in
which future improvements may be expected.

This is reported in sections 9 and 11 of Part I.

5. Compare statistically this model with the
Lockheed modification of the Lincoln~-McNish technique
as used by MSFC.

This is reported in section 10 of Part I.

From the time that solar activity was first recognized
as having cyclical variations, there have been many studies
of these variations and many attempts to predict them. When
they were found to have close correlation with ionization
density in the earth's upper atmosphere, the studies gained
impetus from their practical application to predicting radio
communications characteristics. Now the relationship to
atmospheric density gives a further practical impetus because
of its effect on satellite lifetimes.



There are two particularly complete surveys of these
studies, "Solar-Activity Forecasting"” by Vitinskii (1962),
and "Survey of Solar Cycle Prediction YModels™" by Scissum
(1967). Vitinskii covers in great detail the studies that
have been made on qualitative and statistically quantitative
relationships among the sunspot numbers themselves. Scissum
also includes some of thg early work searching for relation-
ships between sunspot numbers and planetary motions.

The work being reported here has emphasized statistical
relationships among the sunspot numbers themselves, particu-
lTarly extending the earlier studies into a search for multi-
ple predictors and noniinear predictors. A new formula is
presented (section 6) which appears to be an improvemsnt
over former prediction methods.

Solar activity variations have been found to be particu-
larly difficult to predict. The generally accepted series
of observations extends back for over 200 years, although
the first 80 years of that time were pieced together from
historical records of observations made before the "sunspot
number" was defined or the observations standardized in any
way. Even with so long a period, when the data are separated
into cycles there are only 19 of them, and they vary so much
that it almost seems as though each cycle is unique in some
way or other. For instance, cycle number 19, the latest one
completed, was the highest in history and its extreme height
was only very poorly predicted. Now the current cycle, num-
ber 20, has been decreasing from its maximum much more slowly
than any cycle in the well-observed set. The variability of
the cycles is so great, and the number of cycles is so small,
that many prediction methods have been proposed and then
found to fail shortly after being proposed.
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For this reason we have tried to be particdlar]y conser-
vative in the use of statistics in this study. Relationships
have been accepted as significant only if they show correla-
tions that fall in the significant range over a considerable
period of time. Relationships have been rejected if they
pass statistical significance tests for only a short portion
of a cycle. Still, only time will tell whether sufficient
conservatism has been used to make the relationships that
have been accepted continue to be useful in the future.



2. DATA BASE

Sunspot number data cover an unusually long period of
time. The Zurich series is continuous from the year 1749 to
the present, and much effort has gone into keeping the methods
of handling the observations and data as nearly uniform as
possible. It is indeed just this feature, the length and
uniformity of the series, that makes it particularly useful
as a forecasting tool, even if often an indirect one. Other
geophysical observations have much shorter histories. For
example, direct observations of atmospheric density in the
outer atmosphere and of solar radio-frequency noise flux
have been made for only something like one solar activity
cycle. Even ionospheric electron density observations cover
something less than four solar cycles. Thus these direct
observations cover so few cycles that it is nigh to impossible
to determine from them statistical relationships among suc-
cessive cycles. Instead, it has been noted that during
their short histories they exhibit a high correlation with
the sunspot number data. Accordingly, to get some basis for
long-term predictions of these shorter series, it is generally
assumed that the observed correlations will be equally good
over the long term. This permits using the longer series of
sunspot number data as a means of forecasting the other much

shorter series.
When Rudolph Wolf of the Zurich observatory introduced

his sunspot number formula in 1848, he applied it to records
of old observations as far back as 1749. But as one goes
further and further back in the series one finds that the
observations contain less and less of the detail necessary to
make an accurate ex post facto determination of the Wolf num-
ber. The observations also become increasingly sparce, as
can be seen clearly from an examination of Wolf's original
data tabulation which is preserved at the Zurich observatory.



McNish and Lincoln (1949) felt that before 1834 the histori-
cal uncertainties were great enough to question the uniform-
ity of the series before that time as compared with the
series after 1834. _

McNish and Lincoln considered the series in two parts:
(a) from 1755 to 1834 (cycles 1 through 7 of the Zurich tab-
ulation), and (b) from 1834 to 1944 (cycles 8 through 17 of
the Zurich tabulation). They fitted the two parts separately
with a Type VI Pearsonian distribution and calculated the
chi-square test of the hypotehsis that this distribution
was valid. They pointed out some uncertainties in determi-
ning the number of degrees of freedom that should be used in
the calculation, but arrived at the conclusion that the sec-
ond part of the data is consistent with a Type VI Pearsonian
distribution (probability value about 0.65) and that the
first part of the data is not consistent with a Type VI dis-
tribution (probability value less than 0.001). Essentially
the first seven cycles had a much broader distribution about
the mean than did the later 10 cycles.

Because of these statistical results, coupled with the
historical uncertainties of the early data, McNish and
Lincoln decided to exclude the data before 1834 from their
prediction analysis, and they carried out the analysis on
only the data from 1834 to 1944. However, since 1944 two
more full cycles of sunspot data have become available.

Both these cycles, numbers 18 and 19 in the Zurich tabula-
tion, had higher maxima than any of the cycles accepted by
McNish and Lincoln. The total duration of cycle 18 was as
short as any of those in the accepted group of cycles 8
through 17, but for neither 18 nor 19 was the risetime un-
usually short compared with 8 through 17. Thus, inclusion
of the two new cycles as "good" data markedly increased the
breadth of the distribution about the mean of the rest of



the "good" part of the series. This has raised the question
of whether the McNish-Lincoln rejection would still be justi-
fied if these two latest cycles were to be included in the
analysis. Indeed, preliminary consideration of this question
led the Central Radio Propagation Laboratory to reintroduce
in 1968 the earlier cycles into the analyses used for their
publication Ionospheric Predictions.

The question of whether or not to include the data before
1834 is far from trivial for this analysis. McNish and Lincoln
showed that the regression coefficients for forecasting the
sunspot number vary throughout the cycle. Thus one cannot
lump together all of the data taken during the cycle, but when
deriving the regression coefficients one gets essentially only
a single observation pair per cycle --- that taken at a time
which corresponds for each cycle. Thus if all of the data
from 1755 to date were to be used, one would have 19 observa-
tion pairs from which to calculate each regression coefficient.
On the other hand, rejecting data before 1834 leaves only 12
pairs. In the former case, one might consider that a portion
of the data could be set aside as a verification sample on
which to test relationships developed from the remaining data.
In the latter case it would not seem reasonable to reduce the
12 pairs any further by deleting a verification portion. As
a matter of fact, in this study several preliminary analyses
were carried out on the full set of data before it became
clear that only the reduced set should be used.

A chi-square statistical test was carried out to determine
whether the early data should be included in the analysis or
not. Moreprecisely, there was tested the null hypothesis
that the two distributions from which the early data and the
later data are respectively drawn are identical. The data
being studied were the "smoothed annual relative sunspot num-
bers," defined as

(45
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where-Ri’j is the observed monthly sunspot number derived and
published by the Zurich observatory for the j-th month of the
i-th cycle. To reduce the effect of the autocorrelation intro-
duced by the smoothing process, data were used centered on
months 1, 13, 25, ... 121 of each cycle. Not all of the 19
cycles last as long as 121 months; because of short cycles,
month 109 consists of data from only 18 cycles, and month 121
consists of data from only 16 cycles. Thus there are 205 data
in the sample covering the 19 cycles.

To put the data on a comparable basis, each month's set
was reduced to have a mean of zero and a standard deviation of
unity, i.e., the analysis was carried out on

where

0|
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and n=19 for all of those months that have full data sets.
Thus it was assumed that all months of a cycle have the same
shape of distribution, at least approximately so relative to
the difference being tested between early and late data.
Boundaries on the Vij were then established which separa-
ted the entire set into six cells, each having about the same
number of entries, and Cik was determined as the number of
observations from the i-th sunspot cycle that fell within the
k-th cell of this distribution function. For instance, CS,
is the number of observations from the fifth cycle that fal
in the lowest sixth of the overall distribution function.

1
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Then the contingency table of table 1 was prepared in which
the six segments of the frequency distribution are compared
for each of the sunspot cycle groups being tested and for the
overall group of cycles. That is,

7
nL,k = ;:‘Cik gives the entries from cycles 1 through 7,
: =
19
Ny o T Cik gives the entries from cycles 8 through 19,
’ i=8
19
Ny g T iZ%Cik gives the entries from all cycles, 1 through 19.

The basic method is described by Cramer (1946).

Table 1. Frequency Distribution of Smoothed Annual
Sunspot Numbers

Cell
1 2 3 4 5 6 Total
"k 24 6 10 6 15 13 (74)
N,k 10 28 24 28 19 32 (131)
L (34) (34) (34) (34) (34) (35) (205)
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From the row and column totals the expected (i.e., expected

if the null hypothesis is true) number of entries in each box
was calculated from

G )

Eo= k

ik oz U >
i k

and finally chi-square was calculated from

2 6 : .
x* = 2 X E :
i=1 k=1 i
giving
X% = 29.193.

With this we can examine the likelihood that a table such
as table 1 would arise from data where the two groupings NPk
and L come from the same overall population. The customary
calculation of the degrees of freedom of table 1 would be
(6 - 1)(2 - 1) = 5. Entering chi-square tables with this value
(Abramowitz and Stegun, 1964), we find that for two distribu-
tions drawn from the same overall population a x? of 29 or
greater would be expected to occur only 0.002% of the time ---
only 1 time out of 50,000. Thus we would reject the hypothesis
that the two groups of sunspot numbers belong to the same
population.

However, there are definite questions about whether the
above calculation of degrees of freedom is appropriate for
the sunspot numbers. Even at the spacing chosen for this anal-
ysis, the numbers are well known not to be independent. Dis-
tinct correlation exists for much wider spacing, as is shown
in section 5. At first, one would think that such a correlation
would be expected to reduce the number of degrees of freedom
in the calculation, and this would make it even less likely that

11




so large a value of x? would come from a single population. A
1ittle more thought, however, reveals that this correlation is
almost entirely within the individual groupings being tested,
and very small from one group to the other. That is, the
entries in "Lk have correlation among them, as do the entries
2.k but there is practically no correlation from "k to
LPYDE This might well be expected to increase the 1ikelihood
of finding large values for xZ2.

Consequently, several statistical experiments were carried
out to get a better indication of the meaning of the x2 calcu-
lated above. First a random selection of the sunspot cycies
to be included in each of the two groups was made. That is,
rather than putting the first seven cycles in the first group
and the last 12 cycles in the second group, seven cycles were
drawn at random from the entire set of 19, and these seven
were taken as the first group, with the remaining cycles as
the second group. From this grouping a value for x2 was cal-
culated. This whole process was then repeated 1000 times to
give 1000 values for x?. The resulting distribution tunction
of the x2 is plotted in figure 2.1, labeled "Random Groupings".
It was found that 5% of the observed x? were greater than
29.193, rather than 0.002% as is expected from the standard
analysis using 5 degrees of freedom.

A second statistical experiment was made in the same way,
but using only the last 12 sunspot cycles (which presumptively
are from essentially the same population). These 12 cycles
were broken into two groups of six each, with the members of
each group selected at random. This was repeated 100 times
to get 100 values for x2?. The resulting distribution function
is also plotted in figure 2.1, labeled "Last 12 Cycles Only".
This distribution function is similar to that for the "Random
Groupings" of the 19 cycles.

in n
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A third statistical experiment was to.select 19 x 11 ran-
dom (uniforml]y distributed) numbers to simulate the sij for
the 19 cycles of 11 months each. From these random "data"
the Cik were determined, and then 100 random groupings of the
cycles were taken to get 100 values for x2, as in the second
experiment. The resulting distribution function is plotted in
figure 2.1, labeled "Random SSN". It can be seen that this com-
pares well with the theoretical curve for 5 degrees of freedom,
rather than with the actual sunspot number curve.

A fourth statistical experiment was carried out the same
as the third, but without reducing the random "data" to zero
mean and unity standard deviation. The resu]tipg distribution
function was similar to that from the third experiment.

From these experiments we see that when random numbers
were substituted for the sunspot numbers the resulting dis-
tribution functions agreed well with the theory of the chi-
square test. However, both experiments that used actual sun-
spot numbers gave distributions with much higher proportions
of large values for x2. In fact, the 50% point from the first
experiment corresponds roughly with a chi-square distribution
with 10 degrees of freedom, and its upper 5% point corresponds
roughly to a chi-square distribution with 18 degrees of free-
dom, rather than 3 to 5 degrees of freedom as was expected
from approximate theory. This may well be exp]aihed because
the random sorting of the 19 observed cycles does not consti-
tute a simulation of the distribution of chi-square for con-
tingency tables, particularly since the sorting by cycles
leaves significant correlations within each of the two groups
but not from one group to the other. The random sorting of
the cycles provides a "randomization test" that is of consid-
erable interest, because we may well conclude that it is a
more appropriate distribution with which to compare the chi-
square observed for the true chronological order of cycles.

14




For the practical result, however, we conclude in either
case that the first seven cycles should be rejected from the
data base. If the calculated chi-square of 29.193 were inter-
preted on the basis of approximate theory with 3 to 5 degrees
of freedom, we would reject them with a confidence of 0.99998.
On the other hand, interpreting it on the basis of the random
grouping of the sunspot cycles, either all 19 or the last 12,
we still would reject them with a confidence of about 0.95.
Thus there is no alternative to excluding them.

As a matter of interest, this method of testing, which
differs from that used by McNish and Lincoln, was applied to
their data. Using exacf]y the data included in their report,
the value of chi-square was calculated at 20.89, which would
reject the first seven cycles with a confidence of only 0.87
if based on the random grouping distribution functions. It
was noted, though, that there are several discrepancies be-
tween the official Zurich sunspot numbers and those published
in the McNish-Lincoln paper. In their table, six of the 12
numbers for the first cycle seem to be displaced 1 year, and
four other discrepancies appear at other locations in the
table. When these are corrected, the value of chi-square
becomes 27 .81, which would reject the first seven cycles with
a confidence of at least 0.93. Finally, leaving out the 12th
year of each cycle because of its frequent overlap with the
next cycle, the calculation gives 27.13, which would rejeet
the first seven cyclies with a confidence of at least 0.92.
Thus all of these conclusions agree with that arrived at by
McNish and Lincoln in 1949: the first seven cycles should be
rejected. The addition of the two cycles subsequent to 1949
does not change the conclusion. However, our method of testing
has the advantage over McNish and Lincoln's that no assumption
is made concerning the shape of the hypothetical common distri-
bution.

15




3. STATISTICAL ANALYSIS

In analyzing the selected data base, we used the standard
statistical techniques of multiple linear regression (Crow et
al., 1960). Most of the calculations were performed by a mas-
ter computer program that was developed with enough flexibility
to handle all of the different analyses made. It contained
controls for conveniently using a single data base and deter-
mining the number of predictors to be considered, the lags of
each, and for calculating arbitrary functions of any predictor
or combination of predictors. These features were used exten-
sively in sections 5 and 6. Further, the program checked
whether the data were missing for the predictand or any of
the predictors and adjusted its calculations accordingly.

This made it possible near the end of a solar cycle to distin-
guish between the data for cycles that were still decaying and
~ the data for cycles that had passed their minimum and were
starting up again. This distinction was carried throughout
the analyses reported. in sections 4 through 6, but turned out
not to provide helpful information. For the prediction past
the cycle minimum, in section 9, all data were used, whether
or not the cycle minimum had occurred.

In addition to the regression equation fitting the data
that were analyzed, the program gave the estimated rms error
of the forecast and the multiple correlation coefficient. As
discussed in section 4, the former was used as a quality mea-
sure of the resulting formula, and competing formulas were
compared largely on its basis. The latter was used to test
the statistical significance of the resulting formula, as
also discussed in section 4. The program also contained con-
trols for separating the data base into developmental and veri-
fication samples, and these were used extensively in the analy-
ses reported in section 7. Finally, in accordance with Crow
et al. (1960), there was provision for calculating the confi-
dence interval of a specific prediction, as was used in sections
7, 8, and 9.

16




4. SINGLE PREDICTOR

It is not easy to make a graphical representation of
differing forecast formulas which will give a good visual
impression of the many different comparisons that need to be
made. Not only are there the differing forecast formulas,
but also for each one it is necessary to consider the accur-
acy achieved as a function of the time when the forecast is
made and as a function of the time that has elapsed since then.
The full representation would be multidimensional, and any
reduction to two dimensions will emphasize some aspects at
the expense of others. 1In this study we were particularly
concerned with the question of how far into the future a
given forecast will be valid. Thus a representation was
chosen that emphasizes that question. A forecast formula
was assumed to have been used at a given time within the
sunspot cycle to predict the sunspot number for as far into
the future as possible. Then the estimated error of that
prediction was plotted for comparison with that of other '
forecasts, either from other formulas or from the same for-
mula but prepared at a different time.

Also, this study has been carried out at a time when it
is known that the current sunspot cycle is in its declining
phase, and the declining phase will almost certainly continue
for at least 3 or 4 more years. Thus this phase is of greater
practical interest than the rising phase, and for the
declining phase it is possible to consider not only formulas
that apply at all times of the cycle, but, in addition, for-
mulas that may use specific information about the maximum of
the cycle --- its amplitude, its time, the risetime leading up
to it, and the like. Accordingly, a representation was also
chosen which emphasizes the declining phase of the cycle and
which facilitates comparisons between formulas that do and those
that do not include specific information about the maximum.

17




Figure 4.1 shows the results obtained when a single pre-
dictor is used consisting of the latest available observation.
The formula used is

u»
It
o
+
o
wn
“

(F1)

where
§j is the forecast for the month j,

Sk is the smoothed annual SSN observed for month k,

by and b] are constants chosen for each combination
of j and k,
and the constants are to be derived from the data lined
up with cycle minima coinciding.
In the figure is plotted the estimated rms error of the fore-
cast, calculated as

RSS
ESTRMS =
%/Nobs - Nior - 1

where
RSS = residual sum of squares after fitting,
Nobs= the number of observations fitted,
N = the number of predictors,

tor
and the -1 is present because there is one more constant
to be determined than the number of predictors.

This is plotted vs. the number of months after cycle minimum,
and use was made of data from the 12 cycles (numbers 8 through

19), 1ined up with their minima coinciding as was done by McNish.
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The figure shows results for months 49 through 129 after the
minimum, and in this form it is applicable to any future cycle.
However, to clarify its application to the current cycle, the
abscissa has also been labeled with the corresponding dates
for this cycle, January 1969 through January 1975. The six
curves in the lower part of the figqure show the results for
forecasts made at 1-year intervals, using as a predictor the
smoothed annual SSN for months 49, 61, 73, etc. The curves
are labeled YO, Y1, Y2, etc., for a reason explained later.
Remember that the smoothed annual SSN for any particular
month is calculated from observations made in the future as
well as in the past. Six future monthly observations of the
SSN are used in the calculation, so it is logically impossible
to know the value of the smoothed annual SSN until at. least
the end of the sixth month later on. In practice, the time
for processing and distributing the data makes this more like
seven or eight months. Thus the smoothed annual SSN for
month 49 is not known until about month 56 or 57. Thus in
application, the forecast cannot be prepared until seven or
eight months after the start of each of the curves in the
figure.

The validity of a regression fit can be tested by using
the standard statistical test for the confidence that the
correlation coefficient calculated in the regression is nonzero.
For example, when fitting 12 observations with one predictor,
the total number of variables in the calculation is 2, and the
number of degrees of freedom is 12 - 2 = 10, since there are
two adjustable constants in the calculation. Thus, from Crow
et al. (1960), a calculated correlation coefficient greater
than r = 0.576 will give greater than 0.95 confidence that
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the true correlation coefficient is greater than zero; i.e.,
that the regression is meaningful. Thus in the previous
equation for ESTRMS, we can calculate the residual sum of
squares, RSS, from '

RSS = TSS (1 - r?)

where
TSS = the total sum of squares before fitting,
and we have for the standard deviation before fitting, STD,

TSS

STD = N 1

obs

Thus, putting these together gives

ESTRMS _ 77 , Nops = 1
STD N - N -1
obs tor

For the above case, r of 0.576 gives

ESTRMS

STD = 0.857

Both r and ESTRMS/STD change when No changes.

bs
In figure 4.1 there has been plotted both the standard devia-

tion of the data and the value of ESTRMS caiculated from the

above formula; the latter is labeled "0.95 confidence". Thus

wherever the curves plotted for the various forecasts lie

below this latter curve, there is greater than 0.95 confidence

that the regression is meaningful. Where the curve plotted

for the forecast crosses the "0.95 confidence" Tine is the

1imit for meaningfulness with this confidence. In figure 4.1

the forecast curves have been terminated at this point. In

actual application of a particular forecast formula, one would

probably continue to use the forecast beyond that point, but

should remember that there is less confidence that the forecast

result is meaningfully different from the mean of the raw data.
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While the average duration of a sunspot cycle is about
11 years, there is a great variation from cycle to cycle. 1In
the group from cycle 12 through 19, the'longest-was cycle 9
with 153 months, and the shortest was cycle 8 with 114 months.
(In the earlier cycles which were rejected from this analysis
there was an even greater spread, with cycle 4 at 170 months
and cycle 3 at 108 months.) To avoid mixing data from the
falling part of one cycle with those from the rising part of
the following cycle, in the analysis shown in figure 4.1 the
data were terminated at the time of minimum at the end of each
cycle. Thus all 12 cycles were present for only 113 months
after minimum, only 11 cycles had durations up to 121 months
after minimum, and so on. This results in a reduction in the
number of observations available for the analysis., and is shown
in the figure.

Some features of particular interest can be noted in
figure 4.1. The forecasts made from the data of month 49 (the
time of maximum of the current cycle), remain significant for
about 3 years, i.e., the curve of ESTRMS remains below the
curve of "0.95 confidence." Forecasts made from data 2 years
later (month 73) remain significant for only about a year and
a half. But data 2 years later still (month 97), give fore-
casts retaining their significance for about 2 years. Thus
there is a particularly difficult time to forecast, stretching
from about month 85 to about month 95 (for the current cycle,
from about 3 years after the maximum to about 3.5 years after
the maximum). .

It may also be noted that for foracasts prepared from data
at month 49, the estimated error of the forecast rises very
rapidly, reaching in 1 year a value almost as high as for any
future time. Thereafter the estimated error falls until at
2 years it is only half what it was at 1 year. In fact, at
about 2 years, about month 76 or 77, there appears to be a mini-
mum in the error estimates for those forecasts prepared earlier.
The standard deviation of the original data falls rapidly to
about this time and then remains nearly constant for 2 more years.
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It may also be noted that beyond month 76 the forecasts,
made from month 61 are as good as those made from month 73 ---
there is no advantage gained by making the forecasts from the
later data.

Because the primary practical interest of this analysis
deals with the falling part of the present cycle, considera-
tion was given to using some feature of that portion of the
cycle which would give additional information about the given
cycle being forecast. The smoothed annual value for the sun-
spot number contains observations made during the 6 months
following the month on which the number is centered, so there
is good opportunity to observe the falling monthly averages
that follow the maximum, and thus within a very few months
be assured that the maximum has been passed. Once it i:
passed, the value of the maximum and the rise time from the
preceding minimum become available and give information about
the shape of the cycle.

The most obvious way to make use of the information that
the maximum has been passed is to measure time within the
cycle from the maximum rather than from the minimum. That is,
when assembling the data from the preceding cycles for compari-
son with the present one, to 1ine them up with their maxima
coinciding rather than with their minima coinciding. This has
historical justification from Waldmeier's studies showing that
the shape of the whole cycle is strongly dependent on the
value of the maximum, with amplitudes at selected later times
dependent largely on that maiimum value (Vitinskii, 1962).
Also, when the cycles are lined up with their minima coin-
ciding, there is a time from 38 months to 63 months after the
start when some cycles are still increasing while others are
already decreasing after their maximum. Lined up with maxima
coinciding, all of the cycles are generally decreasing there-
after.
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This leads us to formula (F2), which is an equation that
Tooks the same as (F1), except that ité constants are to be
derived from data lined up with the cyc]e'maxima coinciding,
rather than with the minima coinciding, as was the case for
formula (F1).

The results from formula (F2) are shown in figure 4.2.

This figure has been prepared to facilitate direct comparison
with figure 4.1; the abscissas of the two figures are lined

up appropriately for the current cycle. Again to facilitate
comparisons among the different formulas, the curves are not
labeled with the month number k which has an awkward difference
of 49 between the minimum lineup formulas and the maximum
lineup formulas. Instead, the corresponding curves are labeled
YO, Y1, Y2, etc., which represent the number of years after

the maximum of the present cycle to the latest observational
data used for the forecasts represented by that curve. As
applied to figure 4.2 these designations are straightforward.
As applied to figure 4.1, however, it must be remembered that
the straightforward meaning of the designations applies only

to the present cycle. That is, in the present cycle (No. 20)
the maximum occurred at 49 months after the minimum. Thus

for minimum Tineup data the designation Y0 really means that
the latest data used were those for 49 months after the mini-
mum, and that interpretation needs to be kept in mind for the
general application of figure 4.1 to arbitrary future

cycles. For such a general application, the designations are
indeed awkward to use, but they greatly simplify the compari-
sons of greatest practical interest for the next several years,
those pertaining to the latter portion of the present cycle.

The most obvious comparison of figure 4.2 with figure 4.1
is that the estimated rms error for curve YO increases much less
rapidly, but without the dip about 2 years after its start.
That is, at 12 months after the maximum, the ESTRMS of figure
4.1 is 13.5 SSN units, while for figure 4.2 it is only 6.1 SSN
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units; however, at 28 months after the maximum it is only

6.8 SSN units for figure 4.1 but 11.8 units for figure 4.2.

It may also be noted for curve YO that the duration from the
start of the forecast until it crosses the "0.95 confidence"
line is almost a year longer than in figure 4.1, but (unfortu-
nately for the precision of the forecasts) throughout most of
the figure the standard deviation of figure 4.2 is higher than
that of figure 4.1. Consequently, the Y0 curves are about
equally high when that of figure 4.2 crosses the "0.95 confi-
dence" line. In other words, is it any better to have confi-
dence in a fbrecast, if its resulting estimated error is no
better than the mean of the data of figure 4.1?

These comparisons between the corresponding curves of
these two figures are so difficult that the pairs of curves
have been extracted and are shown in figures 4.3 through 4.8.
In figure 4.3 is shown the comparison of the YO curves, those
made from data at zero time after the maximum. It can be seen
that for the first 20 months the maximum lineup curve gives
distinctly less error than the minimum lineup curve. Thereafter,
however, the situation is reversed, with the minimum curve
giving the lesser error for the next 24 months. The limits of
0.95 confidence that these forecasts are significant are shown
by flags on the curves at the points where they cross the 0.95
confidence lines, and the longer duration for the maximum curve
is also evident.

For forecasts made from data 1 year after maximum, the
advantage of the maximum lineup has vanished. Figure 4.4
shows that while both methods start out about the same, by
8 months after the forecasts have been made, the error from
the minimum lineup is markedly lower than the other, and re-
mains so until the expiration of the 0.95 confidence regions.
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An examination of all of the figures 4.3 through 4.8 shows
a consistency that appears indicative of a possible improved
forecasting method, but it is not fully satisfying. For the
first 13 years after the maximum, forecasts prepared from the
maximum lineup are distinctly better than the others. From
14 to 3% years after the maximum, the contrary holds: forecasts
prepared from the minimum 1ineup are the better. Then from 3%
years to the end of the cycle the situation reverses again,
and the forecasts prepared from the maximum lineup are always
at lTeast as good as the others and frequently better.

This may perhaps be a valid conclusion, but it is uncom-
fortably close to falling into the statistical trap of using
different analyses to get good fits to short portions of a
long data set. It is well known that if enough different
functions are fitted to a long set of data, one function may
fit the data well for a short time, another function for a
different short time, and so on. It could be argued that such
is not the case with this result because of the continuity
of the conclusions over a sizable portion of the cycle, and
because it comes not from a search among many different for-
mulas but rather from a single a priori hypothesis: that
behavior shortly after the maximum should be influenced more
by the time from maximum than the time from minimum some 4
years or so farther away.

It could even be argued that the sudden drop in the
standard deviation of the minimum l1ineup data that occurs 6%
years into the cycle might well be only a statistical fluc-
tuation resulting from the small number of cycles available
for analysis, thus leading to a possibly false preference
for the minimum lineup formulas at that time. However, we
prefer to stay away from that trap and these arguments. The
approach that has been used in this analysis is not to Took
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for a formula that will be effective for only a short time,
but instead to look for a formula that will be generally
better than the former method during all of the falling por-
tion of the cycle, and never be noticeably any worse. Thus the
results of figure 4.2 are interpreted as not showing an
acceptable improvement over the updated McNish-Lincoln method
shown in figure 4.1.

The most obvious single linear predictor to choose is
the latest observation of the SSN, and that is what was done
in figures 4.1 and 4.2. During the falling portion of the
cycle there are two other obvious possible predictors, the
value of the maximum and the risetime from the minimum to
the maximum. The former of these coincides with curve YO
of figure 4.2, and so has already been done. The latter is
shown in figure 4.9, where it is plotted together with the
YO curves from figure 4.3. It can be seen that the confidence
of this being a significant predictor Tasts longer than it
does for either of the other curves, but there are only a few
months where the resulting estimated error is any better than
for the other curves; most of the time it is much worse.
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5. MULTIPLE LINEAR PREDICTORS

In selecting a single predictor for a forecast formula,
the most obvious choice is to use the latest available obser-
vation of the phenomenon to be predicted. In selecting addi-
tional predictors; an appropriate choice is to use one or
more earlier independent observations. The smoothed annual
sunspot number, Sk, i1s a weighted average of observations
taken during 13 months. Thus, two Sk a year apart are nearly
independent and make a convenient choice to use. Using this
choice, the formuia used is

S. =b. +b. S + b. S (F3)

1 k=12 2 “k?

with the data lined up with cycle minima coinciding. The re-
sults from this formula are shown in figures 5.1 through 5.3.
In the figures, the estimated rms error of this formula is
shown superimposed on the curves from figure 4.3, to permit
direct comparison with the results from formulas (F1) and (F2).

In figure 5.1, it can be seen that (F3) has a slight advantage
after times corresponding to March 1972, but this is so small
as to be of doubtful significance. For all other times, there
is almost no difference visible from (FI).

Figure 5.2 shows results from the same formula appiied to
data a year later, and this time there is no visible advantage
at all from including the second predictor. The same is also
true in figure 5.3, which shows the results for data still
another year later.

When the same formula is applied to the data Tined up with
their maxima coinciding, the result is equally negative, as
shown in figure 5.4. The second predictor makes essentially
no change from the first predictor. Thus this formula is
considered unsuccessful.
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When the second predictor is chosen as the risetime of
the cycle, the results are much better. The formula heére is

S. =b, +b, R+ b, S (Fa)

where R is the risetime of the cycle in months. This formula
is inappropriate if applied to the early portion of data lined
up with their minima coinciding. The longest risetime in the
data base is 63 months, so prior to 63 months after the minimum
this formula would presume prescience of a value for the rise-
time that is not yet completed. After that time it would be
possible to use this formula for the minimum lineup data, but
its calculations did not show enough improvement to be worth
studying further.

When this formula is applied to the maximum lineup data,
however, it gives very good improvements, as can be seen from
figures 5.5 through 5.7. Here again the new results are
superimposed on the graphs from figures 4.3 through 4.5, so
direct comparison is possibie with the former formulas. In
figure 5.5 it can be seen that the new formula is at all
times as good as the better of the two previous formulas. For
the first 1% years it follows the maximum lineup curve, and
thereafter it follows the minimum lineup curve. In figure 5.6
the new formula is almost as good as the minimum lineup curve.
In figure 5.7, however, the new formula follows the poorer of
the two other curves, that from the maximum lineup. This 1is
not too surprising, since the influence of the risetime on
the prediction could be expected to become small when reaching
a time 3 or more years into the falling part of the cycle.

Averaged over all of the times shown in figures 5.5 through
5.7, this formula gives a decided advantage over either formula
(F1) or (F2) which were derived from a single observation. The
poorer performance in figure 5.7 is overweighed by the much
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better performance shown in figures 5.5 and 5.6. Whereas
formulas (F1) and (F2) had advantages one over the other at
different parts of the cycle, this néw_formu]a represents a
uniform forecasting method whose overall performance is
better than either of the others. Thus this formula does
satisfy the criteria that were established and can be con-
sidered to be an improvement over the previous formulas.
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6. NONLINEAR PREDICTORS

When nonlinear predictors are admitted to the forecast
formula, it makes possible a very large choice of predictors.
It must be remembered that the regression calculations being
used are based on a linear sum of the predictors, but the
form of the individual predictors is completely arbitrary.
They may be linear, nonlinear, or transcendental functions of
any number of the available variables. There is the computa-
tional limitation that none of them may be linearly dependent
on the others with respect to the set of observations used in
the calculation, but this is easily avoided and is checked in
the calculations. Other than that, the only limitation is one
of reasonableness of the complexity used.

The use of nonlinear combinations of the variables is
more than a mere blind search. For instance, it is not un-
reasonable a priori to suspect that regression relationships
which may be appropriate for high parts of the cycle differ
from those that would be appropriate for low parts of the
cycle. One way of testing this suspicion would be to separate
the data into groups having different average values, and then
to see if the regression relationships differ when developed
on the different groups. A more convenient process for com-
puter solution is to include in the regression equation not
only terms linear in the observations but also terms of
higher order, 1ike the square or the cube. If there is indeed
any significant difference in the regression relationship
depending on the amplitude of the observation, better results
can be expected from the equations including the higher powers
than from the equations not including them. If the relation-
ship is a strong one, a search can then be made for the power
that best represents it. On the other hand, if the dependence
on amplitude is a weak one it will make little difference
which power is included in the equation.
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Thus trials were made of equations that involved observa?
tions made at a single time, together with the square of these
observations. Then trials were made of equations involving
observations made at two different times, together with the
squares and cross products of these observations. Most of
these equations showed more or less advantage for a restricted
portion of the cycle, but they did not meet the criterion we
had established of giving general improvement throughout the
falling portion of the cycle, without ever being significantly
worse than the former equations. For instance, equations
tried included

S.=b.+b, S + b, S2 . (F5)

When this was applied to the data from minimum lineup of the
cycles, it gave no visible improvement over formula (F1),
which does not include the term in Sﬁ. Thus, the supposition
of dependence of .the regression relationship on amplitude was
not confirmed. On the other hand, when this formula was tried
on the data from the maximum lineup of the cycles, some im-
provement was evident shortly after cycle maximum and also
near the end of the cycle, but not as much as from formula (F4).
But this gave encouragement to the inclusion of the square
term in other formulas being tried. '

Turning to formulas that involve two observations at
different times, we tried

S, =by by S +by S 1,5 . (F6)

For the minimum lineup of the cycles, this gave no visible im=-
provement. For the maximum lineup, it gave some improvement
during the later phases of the cycle decay, but was distinctly
worse during the earlier phases.
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Other formulas that were tried without satisfactory im-

provement included

S, = bg * by Spqp * By S, * by S§ | (F7)
Sj = by * by Sp_yy t by S by S gy S (F8)
S, = by + by Sy St by S, * by Sg (F9)
S; = bg * by Sy, t by S F by Sp_y, ¥ by S§ (F10)
S, = by * by Sp_yp + by St by Sgy St by Sk - (F11)

Formulas (F7) through (F11) all involved only observations
that were not specifically related to the cycle shape, and thus

are equally well applicable to the data derived from the lineup

of cycle minimum or maximum. In addition, by restricting atten-

tion to the maximum lineup, predictors such as the risetime R
can be included, and were already found to be useful in (F4).

Thus we tried

Sj=bp t by R+b, S +byRS, (F12)
§j = by ¥ by R+ by S+ by Sy S (F13)
S, = by ¥ by R+ b, S + by Sy (F14)
§j = by + by R+ b, S + by SE+ b, RE. (F15)

The first two of these, (F12) and (F13), did not give satisfactory
improvement; however, (F14),which is the same as (F4) but with

the addition of a term in Sﬁ, was found to be an improvement

on (F4) and on all previous formulas tried. Formula (F15),
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which is the same as (F14) but with the addition of a term in
R2, gave slightly less improvement than (F14) did, showing
that the additional term in R2 contributed nothing but noise
to the forecast.

Thus formu]a (F14) was chosen as the final formula. Its
error comparisons are shown in figures 6.1 through 6.4, where
it is compared with the formulas using a single predictor both
from the maximum lineup and from the minimum Tineup of the
data. It can be seen that this formula (F14) gives an estimated
error of its forecast that is nearly as small as the smaller of
the other formulas, whichever that may be. For example, in
figure 6.1 the single-term formula from the maximum lineup is
much better than that from the minimum lineup for the first
year and half. The new formula agrees with this better esti-
mate. Then, after the first year and a half, the single-term
formulas switch places, that from the minimum lineup becoming
the better. But the new formula (F14) continues to follow the
better of the two, which now is a different one from that which
it was following previously. Thus we have a single formula
that gives as low an error estimate as would have been obtain-
able from the earlier formulas only by using each of them for
only a selected portion of the cycle. 1In figures 6.2 through
6.4 the pattern continues, with the new formula being essen-
tially as good as the better of the two former ones --- some-
times slightly better and sometimes slightly worse, but not
significantly so. Thus this formula satisfies the criterion
that was established in searching for an improved means of
preparing the forecasts. |

The coefficients for this equation are given in tables
6.1 through 6.6. In table 6.1, it can be seen by exémining
the size of the coefficients that the value of the observa-
tion Sk has a strong influence on the early forecasts; this
influence gradually decreases up to a j of 24 months after
the observation and then increases again. At the same time,
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the observed value of the risetime has a small influence on
early forecasts, with its influence increasing up to a j of 27
months and then gradually decreasing again. Thus, these two
predictors have differing importance at different times of
the cycle. It also may be noted that in this table b] is
always negative, which implies that the future forecast will
be depressed for cycles that take longer times to reach the
same maximum.

In all of these tables, the portion enclosed in a box
of dashed lines is where the test of correlation coefficient
indicates a confidence of less than 0.95 that the regression
relationship is meaningful. The tables are continued into
this region because there may be some slight practical ad-
vantage to using the regression relationship there rather
than just the cycle mean, but the weak confidence must be
kept in mind.

Tables 6.1 through 6.6 were derived from a data set
where all 12 of the developmental cycles were included,
whether or not an individual cycle had passed its minimum.
This is the practical situation that would face the forecaster
near the end of a given cycle. However, note that the confi-
dence test cuts off the forecast either before the time of
minimum of the mean cycle or not significantly after it.
Even in table 6.6 the confidence disappears after 15 months
from the observation --- just at the time of the minimum of
the mean cycle. As will be seen in more detail later, there
is no visible hope for forecasting the subsequent rise of
the following cycle any better than by using the mean cycle
to represent it. The tables show how the various coefficients
all become irregular when the confidence 1imit is approached.

The coefficients in tables 6.1 through 6.6 also show that the
influence of the risetime becomes less and less as the cycle
progresses. This could well be expected, and in the later
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stages of a cycle it makes little différence whether this term
is or is not included in the regression. The term is essen-/
tial, however, for the success of this formula during the first
few years after the maximum, so it is here left in to keep the
forecasting formula uniform throughout its region of applica-
tion. '

Table 6.1. Coefficients for Formula
- . . 2
Sj b, + b1 rigetime + b2 Sk + bg S

0 k
e — S5
nonths For k = time of cycle maximum for mean
after max cycle
o I . . b (116)
3 6.2 -0.178 1.034 -0.00048 110
6 1.5 -0.048 0.922 -0.00005 105
9 -1.7 -0.007 0.891 0.00006 102
12 16.7 -0.077 0.548 0.00122 95
15 44.0 -0.177 0.240 0.00188 91
18 68.9 -0.570 0.163 0.00170 85
21 83.9 -0.831 0.091 0.00162 77
24 115.9  -1.437 0.064 0.00143 72
27 102.3 -1.475 0.226 0.00086 67
30 89.7 -1.382 0.321  0.00025 61
33 75.6 -1.302 0.471 -0.00056 56
36 48.8 -1.062 0.658 -0.00148 50
39 54.5 -1.142 0.628 -0.00175 44
42 54.0 -1.053 0.530 -0.00147 41
a5 _ _ __ _42.1 _-0.931 _0.578 _-0.00166 38
s 27.9 ~-0.812., 0.703 -0.002311 34
lg, 18.2 -0.674 0.701 -0.00229" 32
I54 10.2 -0.644 0.775 -0.00266! 28
|57 16.5 -0.599 0.575 -0.00196| 24
|60 40.6  -0.335 0.487 -0.00152, 21
163 27.9 -0.324  0.435 -0.00126 18

55



Table 6.2. Coefficients for Formula

— . : 2
Sj = b0 + bl risetime + b2 s, + b3 Sk
J in For k = 12 months after cycle maximum _ sj
months b b b Y b for mean
after max 0 1 2 3 cycle
15 25.7 -0.099 0.638 0.00097 91
18 60.8 -0.566 0.403 0.00135 85
21 77.6 -0.820 0.266 0.00152 77
24 107.8 -1.410 0.245 0.00121 72
27 89.3 -1.409 0.502 0.00011 67
30 67.2 -1.231 0.704 -0.00108 61
33 49.1 -1.106 0.910 -0.00231 56
36 24 .4 -0.851 1.071 -0.00331 50
39 31.8 -0.927 0.977 -0.00336 44
42 30.8 -0.838 0.863 -0.00295 41
45 21.2 -0.727 0.886 -0.00307 38
4§______ _g.g_ ___19.517 1.019 -0.00387 34
r—51 =1.1 -0.455 0.978 -0.00368 ! 32
| 54 -7.4 -0.421 1.019 -0.00396 28
| 57 -1.7 -0.388 0.802 -0.00306| 24
| 60 -11.5 -0.161 0.690 -0.00245l 21
L_§3 -13.0 -0.158 0.644 -0.00218, 18
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Table 6.3. Coeffietients for Formula
5 . . )
Sj = b, + b1 risetime + b2 Sk + bS Sk

0
J 1:T‘AA For kzzzzza;;nthﬁ—;;ter cycle maximum Sj
months — b B Y b for mean
after max 0 1 2 3 cycle
27 -22.3 -0.025 1.518 -0.00328 67
30 -41.4 0.034 1.910 -0.00642 61
33 -62.5 0.012 2.546 -0.01132 56
36 -84.8 0.202 2.789 -0.01332 50
39 -58.5 -0.076 2.444 -0.01216 44
42 -56.5 0.005 2.209 -0.01079 41
45 -54.4 0.022 2.069 -0.01011 38
48 -65.2 0.063 2.304 -0.01211 34
51 -73.6_ _ __0.193_ _ _2.279 _-0.01196 32
5% T65.2 0.102 2.128 -0.01133 1 28
| 57 -53.4 0.084 1.749 -0.00919 24
| 60 -63.7 0.330 1.589 -0.00804 21
| 63 -50.5 0.239 1.275 -0.00611 18
| 66 -34.8 0.163 0.896 -0.00395 15
69 -37.8 0.187 0.955 -0.00461 | 14
| 72 -36.5 0.182 0.931 -0.00477 12
{_75 -55.0 0.420 1.112 -0.00603 11
78 -87.4  0.811 1.436 -0.00778 12
(783 T-180.1 1.961 2.321 -0.01224 | 15

e e . — ——— — e ——— —— - ——— —— ——— e e T e /e
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Table 6.4. Coefficients for Formula
pad . . . 2
Sj + b1 risetime + b2 S, + b3 Sk
J in For k 36'montﬁs after cycle maxihum th?_
months B b - B‘y B for mean
after max 0 1 2 3 cycle
39 14.0 -0.167 0.660 0.00195 44
42 87.5 -0.125 0.787 -0.00032 41
45 11.56 -0.115 0.525 0.00207 38
48 -16.7 -0.014 0.870 -0.00234 34
51 _ _-9.5 __ _0.039 __ _ 1.087 _-0.00530 _ 32
[ 54 2.3 -0.061 0.653 -0.00130 | 28
| 57 0.1 -0.026 0.552 -0.00084 24
| 60 -14.5 0.215 0.524 -0.00044 | 21
[ 63 -1.9 0.154 -0.131 0.00670 | 18
66 1.2 0.]02 -0.195 0.00663 | 15
| 69 1.6 0.076 -0.083 0.00449 14
| 72 1.6 0.069 -0.044  0.00335 | 12
| -13. . -0. l
L 75 is0  0.247 0.293 -0.00089 | 1
Table 6.5. Coefficients for Formula
éj + bl risetime + b, Se * b3 Si
J in For k 48 months after cycle maximum Sj
months b b 5 Y b for mean
after max 0 1 2 3 cycle
51 -15.4 0.192 1.191 -0.00258 32
54 15.9 0.017 0.459 0.00712 28
57 -48.0 0.101 0.383 0.00758 28
60 -21.5 0.342 0.538 0.00502 21
63 -16.5 0.104 -0.102 0.01309 18
66 -19.2 0.081 -0.045 0.01064 15
69 3.4 0.031 -0.151 0.01023 14
72 7.5 -0.012 -0.207 0.00909 12
75 _ -4.3___ 0.176 __ __0.050 _ 0.00379 11
78 -13.9 0.346 0.315 -0.00759] 12
| 81 -29.0 0.604 0.731 -0.00932 | 13
|84  -43.6  0.953 0.980  -0.01539 | 17
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after max

63
66
69

Table 6.6.

bO + bl risetime + b2 Sk + b3 Sk

Coefficients for Formula

2

S.
= v ma x i J
Eo 60 months afterbcyc1e max;mum for mean

1] 1 2 3 cycle
e -0.135 0.583  0.00763 18
.2 -0.117 0.537 0.00615 15
6 -0.158 0.223 0.00921 14
4 -0.171 0.058 0.00897 12
5 _ _12.4 _ _ -0.066 _ _-0.157 __ _0.00954 11
4 -0.072 -0.641 0.01497 | 12
3 0.004 -1.014 0.01748 | 13
7 0.215 -1.487 0.02093 | 17
.7 0.433 -1.987 0.02512 20
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7. COMPARISON WITH FORMER CYCLES

As was discussed in section 2, with only 12 cycles in the
data base we felt it best to use all 12 of them in the develop-
mental sample. This leaves no independent sample on which the
results can be verified. Instead, in this study dependence
was placed on using the statistically determined estimated
error of the forecast as a criterion of goodness of fit. Still,
it gives a certain intellectual satisfaction to see how well
the resulting formula fits some of the historical data. Accord-
ingly, some comparisons were made between the historical data
and forecasts made from the final formula.

Initially these comparisons were made for cycle 19 for
two reasons. One reason was that cycle 19 is the most recent
of the historical ones. Thus, if the formula development here
undertaken had been done some 11 years earlier, it could not
have included data from cycle 19. The formula would have been
selected on the basis of data extending up through cycle 18,
and then would be applied in real time to cycle 19 as it
occurred. The second reason was that cycle 19 was an out-
standing one, having a much higher maximum than any previous
one --- even higher than any of the first seven that were
rejected by the analysis of section 2. Thus it is of particu-
lar interest to see how well the new formula would have worked
on this outstanding cycle.

First, the forecasts for cycle 19 were made using the
coefficients from table 6.1. The results are plotted in figure
7.1, which shows the forecast, its 90% prediction interval,
and the actual observations for that cycle. The results are
unexpectedly good --~ in fact they seem to be too good for
such an unusual cycie. But it must be remembered that not
only was the formula itself selected from tests that included
cycle 19 as one of the total of 12 cycles analyzed, but the
coefficients entering into it were also derived from data
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including cycle 19. Neither of these two features should be
included in a statistically valid verification. At least the
second can be eliminated by recomputing the coefficients using
only cycles 8 through 18, and not using cycle 19. This was
done, with the rather startling results shown in figure 7.2.
About the only thing good that can be said about this figure
is that the observations do indeed lie within the 90% predic-
tion interval, but that appears to have occurred only because
the 90% prediction interval has expanded so violently.

A careful analysis was made of why the comparison is so
poor in figure 7.2 when it was so good in figure 7.1. The
reason seems to lie in the uniqueness of cycle 19. Its maxi-
mum is more than a third higher than any of the other cycles
used in the data base. Cycle 19 had a maximum of 201, while
the next highest cycle was number 18, with a maximum of 148.
Thus when data from only cycles 8 through 18 are used in
developing the regression relationships, forecasting for
cycle 19 represents a considerable extrapolation beyond the
range of data used for development.

The new formula, having as it does four adjustable param-
eters, has greater sensitivity to variations from one cycle to
another than did earlier formulas with only two adjustable
parameters. Thus fluctuations can be expected to be especially
large when the formula is used in an extrapolation process
rather than in the interpolation process for which it is de-
signed. The mean data for cycles 8 through 18 show a slightly
depressed region near 21 months after the maximum, and a slightly
elevated region near 33 months after the maximum. When the
formula is extrapolated for cycle 19, these become the large
fluctuations seen in figure 7.2.
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The same analysis shows why the forecast of figure 7.1
fits so well the observations of cycle 19. With cycle 19 so
far away from all of the other cycles in the data base, it
requires only a small adjustment of the parameters to fit it
very closely. Thus the very good fit shown in figure 7.1
should not be taken as evidence of success of the formula ---
to an unusually large extent it was fitted to that curve.

As another comparison, the forecast was made for cycle
15, with the regression relationships derived from cycles 8
through 14 and 16 through 19, so they did not include the
cycle being forecast. Cycle 15 was chosen because it is near
the middle of the distribution function of cycle maxima, and
also because its maximum was the closest of any in the data
base to the current cyé]e 20. The results of this comparison
are shown in figure 7.3 and are much more what one would ex-
pect for such a comparison.

It must be remembered that the comparisons shown in this
section are for forecasts made with the latest available data
being that of the maximum of the cycle. Thus the forecasts
shown cover a period up to more than 5 years after the latest

data.
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8. PREDICTION OF THE CURRENT CYCLE

Figure 8.1 shows the forecast that would have been made
for the present cycle (number 20) using the new formula and
data at the time of cycle maximum (November 1968). Shown in
the figure are the forecast, the 90% limits on the forecast
estimated from the regression calculations, and the values for
the mean of the cycles 8 through 19. Note that the forecast
would indicate this cycle to be very near to the mean cycle. Also
shown on this figure are the values for the smoothed SSN that
have been observed since November 1968. It can be seen that
the sunspot number has decreased much more slowly than would
have been predicted for this cycle.

Examination of the cycles in the data base shows that
once more the sunspot cycles are making their statistical
study difficult by producing extreme values at the end of the
series. Not only was the cycle 18 higher than any cycle pre-
ceding it in the data base, but cycle 19 was in its turn
higher still, and so gained the same distinction in its turn.
Now we are having in cycle 20 the one that is falling the
slowest from its maximum. When the smoothed sunspot number
at 19 months after maximum is expressed as a percentage of the
maximum value, the numbers for previous cycles run from 62% to
86%. But for the present cycle it is 95%, well abcve all of
the previous cycles.

Figure 8.2 shows the same forecast made using a McNish-
Lincoln type of forecast from a single predictor. It misses
the recent observations almost as much, but its confidence
‘limits were so much wider that they covered the miss.

) Figures 8.3 and 8.4 repeat these last two figures, but
this time using the latest data available, the smoothed sunspot
number for August 1970. It can be seen that now that the
sunspot number has stayed high for so long, both prediction
methods now forecast that it will remain well above the mean
cycle for the rest of this cycle.
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9. PREDICTION PAST THE CYCLE MINIMUM

It has long been known that the correlation of sunspot
numbers is very poor when the numbers lie Bn opposite sides
of the minimum separating two cycles. The cycles have many
characteristics of independent eruptions, wfth’]itt1e rela-
tionship from one to another. Because of the magnetic char-
acteristics of sunspot groups, a 22-year cycle has been
proposed (Vitinskii, 1962) in which cycles having even num-
bers in the Zurich classification can be used to predict some
of the characteristics of the following odd-numbered cycle.
These relationships were examined for the data base used in
this study, and some correlations were found which exceeded
the 0.95 confidence 1imit. However, these lasted for a period
of only some 3 years, and when allowance was made for the
relatively high year-to-year autocorrelation of the sunspot
numbers is was felt that there was insufficient duration in
this relationship to be sure that it was not a chance occur-
rence.

The analyses reported in the preceding sections were
carried out for durations no greater than the shortest cycle
in the data base. Beyond that time, a straightforward appli-
cation of the regression calculations would combine data from
long cycles that are still decreasing with data past the
end of shorter cycles, where the next following cycle is
already increasing. Instead of this, more precise estimates
could be made for the rising portion of the following cycle
if it were possible to get a good estimate of the duration
of the current cycle. Then beyond that time the dependent
data set could once more be lined up with cycle minima coin-
ciding and so give a more uniform data set for the regression
analysis.

A];hough the cycle risetime is well known to be related
to the cycle maximum, this is of no practical advantage at
this time in the current cycle. Regressions were calculated
for the cycle falltime and for the total time of the cycle

71



as functions of the maximum and the risetime. Unfortunately,
these turned out to have correlation coefficients far below
.significance, and so this method of predicting tannot be used.
Instead, it was necessary to use the straightforward method
of continuing the data base on into the future whether or not
it combines data from long and short cycles.

Doing this for the latest forecast gives the result shown
in figure 9.1. Once the estimated rms error approaches the
standard deviation of the raw data, at about 50 months after
the cycle maximum, it then remains close except for a short
time near 80 months after the cycle maximum. The flags in
the figure show the boundaries were 0.95 confidence of signi-
ficance to the regression are passed, and it can be seen that
after 48 months there is just a short period near 80 months:
where the 0.95 confidence is exceeded.

This is more clearly shown in figure 9.2, where the
correlation coefficient from the regression is plotted and the
limit of 0.95 confidence is shown. Since the peak near 80
months is so narrow and isolated, we once more reject its
significance. This is confirmed in figure 9.3, which shows
the correlation coefficient for a forecast prepared 34 years
later, 5 years after cycle maximum. The apparent significance
near 80 months in figure 9.2 is no longer there. Even for a
forecast so close to that time as that shown in figure 9.3,
the apparent significance has vanished. Thus the new formula
does not give any significant regression past the cycle mini-
mum, and all that can be done with it for that time is to use
the mean and standard deviation of the data base as an estimate
of conditions then.

The question comes up whether the former McNish-Lincoln
type of formula gives any better results past the cycle mini-
mum. Figures 9.4 through 9.6, which parallel figures 9.1
through 9.3, show that this is not the case. In figure 9.4
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there is a small reduction in the estimated rms error from the
standard deviation of the data, but figure 9.5 shows that this
does not have significance at the 0.95 level. As a matter of
fact, for forecasts prepared a little later on, the correlation
rises briefly above the 0.95 confidence level, but so briefly
that it is felt its significance should be rejected. Figure
9.6 shows that even this small effect has vanished for fore-
casts prepared from data much closer to the end of the cycle.
Both the new formula and the McNish-Lincoln one lose their
confidence at very nearly the same time --- 4 months later in
one case and 3 months earlier in another, but neither extend-
ing beyond the cycle minimum.

When we reach the time of the cycle minimum, some 4 to
4% years from now, it will become possible to prepare meaning-
ful forecasts thereafter, but no method has been found in
these studies for doing it from present data. A1l that has
been found to be meaningful so far in the future is to use
the characteristiqs of the mean cycle. Thus the final long-
term forecast from present data is that shown in figure 9.7,
where the new formula was used out to its 0.95 confidence
limit, the characteristics of the mean cycle were used there-
after, and a brief subjective transition region was used
between the two.
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10. COMPARISON WITH NASA-MARSHALL FORMULA

The prediction program that was provided from NASA-Marshall
differed in only one respect from the formula plotted in figure
4.1. It was the same in using the cycles lined up with their
minima coinciding, in using the latest observation as the
single predictor, and in using this single predictor to fore-
cast all future time. It differed only in using all 19 cycles
as its data base rather than just cycles 8 thfough 19.

When the estimated rms error of the forecasts is calculated
as in figure 4.1 but based on all 19 cycles, it differs little
from what is shown in the figure. At 61 months after sunspot
minimum it is about 1.5 sunspot numbers lower than the curve
of figure 4.1; at 77 months it is about two sunspot numbers
higher.

Since the differences in estimated rms error are so small
between the two sets of forecasts, a comparison between the
new forecast and the NASA-Marshall formula can be based on
figures 6.1 through 6.4. The comparison is between the curves
labeled "New Forecast" and those labeled "Y0 from Min." The
small differences between using all 19 cycles and only cycles
8-19, which were noted above, produce minor differences in
interpretation in the period 29 to 39 months after maximum,
but these differences favor the new formula.

The conclusions reached in comparing the NASA-Marshall
formula with the new formula are that there is an obvious
advantage of the new formula during the first couple of years
after cycle maximum. Unfortunately, this result will pfovide
no practical advantage until the time of maximum of the next
cycle many years from now. Less obvious, but still signifi-
cant, is the advantage that for the formulas shown in figures
6.1 through 6.3 there is a significantly longer time during
which confidence is greater than 0.95 that the regression
equation is meaningful.
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It is felt that another, more subtle, advantage of the
present analysis and forecast is clearer recognition of the
time beyond which use of the regression relationship is not
justified. We recommend that beydnd that time the character-
istics of the mean cycle should be used for the forecast,
rather than placing too much .dependence on a formula that has
not been shown to have significance.
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11. CONCLUSIONS AND RECOMMENDATIONS

Although the Zurich listing of sunspot data extends back
in.time for over 19 solar cycles, the first seven of these
cycles were derived from historical data examined only in
retrospect after the sunspot number was defined. The analy-
sis reported in section 2 showed that there is significant
difference between the statistics of these seven cycles and
that of the remaining cycles. Thus it was concluded that
only the remaining 12 cycles should be included in the data
base to be analyzed for prediction purposes.

Because we are now in the falling part of the twentieth
cycle, and will. be for several more years, emphasis was placed
on prediction methods that would be particularly applicable to
that part of the cycle. By using information about the rise-
time of the cycle, together with nonlinear predictors, we
found the new formula (F14) of section 6 to give better error
estimates than former formulas derived from the work of
McNish and Lincoln.

Neither the former formulas nor the new one was found
to give any significant correlation past the minimum of one
cycle and on into the rising portion of the next cycle. Thus,
for predictions extending that far, nothing better has been
found than to use the characteristics of the mean cycle.

Since the current study included so wide a variety of
multiple predictors and nonlinear predictors, it is felt that
there is little more to be gained from further statistical
analyses of the present data series. Extending the data
series significantly will require many more years of observa-
tions. Thus we recommend that any further work in this
area should now be based on a study of the physics of the
phenomena rather than just the statistics of the sunspot
cycles.
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SOLAR ACTIVITY PREDICTION

PART II

Relationship Between Ottawa 10, 7 cm Solar Radio
Noise Flux and Zurich Sunspot Number

Frank Stewart and Margo Leftin

A statistical analysis is conducted to described the rela-
tionship between moving average 10.7 cm solar flux and
moving average Zurich sunspot numbers. Attention is given
to the autocorrelation of the observations and confidence
intervals for the derived relationships are presented. The
accuracy of a predicted value of 10.7 cm solar flux from a
predicted sunspot number is discussed.

I. INTRODUCTION

The solution of many practical scientific problems requires an
estimate of the sun's activity. Although there are several indices of
solar activity available, most of them do not have a long enough series
of observations for prediction purposes. The Zurich sunspot numbers
have been the most important index of solar activity., The 10.7 em
solar radio noise flux, since it is measured objectively, would be prefer-
able to sunspot numbers for predicting solar activity. However, this
time series is too short for present prediction techniques. Therefore,
since it is well known that the two indices are highly correlated, it was
decided to derive a relationship between 10.7 cm solar radio flux and
Zurich sunspot numbers.,

Zurich sunspot numbers (relative sunspof numbers) were intro-
duced in 1848 by Rudolf Wolf and expressed as

R =k (10 g + f)
where { is the total number of spots, g is the number of sunspot groups,

and k is the factor assigned to a particular observer (Waldmeier 1961).
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Wolf, in his determination of. the sunspot numbers, used a factor
of k=1, The method for estimating sunspot numbers was changed in 1882,
and to preserve homogeneity with Wolf's original observations, a new
factor of k=, 60 was established for Zurich and has remained constant
since then.

Because of the subjectivity involved in the determination of g
and f, it is difficult to assess the accuracy of the Zurich sunspot numbers
as an index of solar activity., The earlier observations are probably less
reliable due to fewer observatories and the limitations of the observing
instruments, Since, at present, sunspot numbers from many observatories
with a considerable range of K factors areused to compute the final Zurich
relative sunspot number, there are still some reservations as to the
objectivity of this index,

Observations of the intensities of solar radio emissions at 10,7
cm (2800 MHz) are made at the Algonquin Radio Observatory of the
National Research Council near Ottawa, Canada. The equipment used is
a four-foot-diameter parabolic reflector and an associated radiometer of
the Dicke comparison type. The solar flux in watts per square meter per
Hz bandwidth is measured daily in addition to a continuous monitor to
detect any enhanced radiation or burst activity, The relative errors over

a long period of time are estimated to be about #2% (Covington, 1969).

2. ASSUMP TIONS

Sunspot number data have been accumulated for almost three
centuries and provide the longest time series of solar observations, On
the other hand, observations of 10,7 cm solar flux did not begin until 1947;
therefore, this study is restricted to the data for the period November

1947 to November 1968,

86



Little consideration was given to the relationship between 10. 7
cm solar radio flux and Zurich sunspot numbers for periods less than
one half a solar cycle (1 cycle ~ 11 years). As seen in figures 1 and
2, many variations with oscillations of less than oné-half cycle can be
observed in the monthly observations. To filter out these short-term
variations it was decided to smooth the data over 13 months. This

average is defined as follows:
3
R = Rig T Rive * 2 i=75 Biai
13,5 24

where Ri is the observed monthly sunspot number for month i, and R12,j
is the 12-month smoothed mean Zurich sunspot number for month j.

The 12-month smoothed mean Ottawa 10.7 cm solar radio flux (,3,;)

is calculated in a similar manner. The plots of Rle,j and ¢,5, ; may be
seen in figures 1 and 2, respectively.

In multiple normal regression theory it is assumed that y, the
dependent variable, is normally distributed about an expected value n
with variance 02 and that all the observations are independent. It is
also necessary that n be a simple linear function of the independent
variables X,, X3, ..., Xn. However, there is no requirement that
Xy X5 ..., X, be independent in the statistical sense.

The assumptions that o,, is normally distributed about some
expected value 1 and that n is a linear function of the independent variable
R,, were made a priori. The assumption of independent observations,
however, cannot be postulated in this application. According to our
definitions of R,; and ®,,, there is certainly time dependence in both
sets of observations due to the averaging over a 13-month period, i.e.

R,, and «,;, are autocorrelated for at least 12 months.
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An autocorrelation analysis was performed and the autocorrela-
tion cocfficients for lags up to 36 months arc listed in table 1., Both
indices have a high positive correlation for lags up to 12 months and
are substantially correlated for time lags greater than 12 months. The
amount of autocorrelation remaining in lags greater than 13 months
cannot be attributed to the smoothing process. In a rigorous statistical
analysis of the data, the autocorrelation should be taken into account.

However, for this analysis, the additional effort required to
properly account for all of the autocorrelation was not feasible. Methods
of approximation are available which were considered more practical in
this instance.

The effective number of observations must be reduced by at
least a factor of 13 to account for the autocorrelation introduced by the
averaging process. One might argue that the number of degrees of
freedom should be reduced by a factor of 31, but this would result in a
conclusion that is overly pessimistic, Since it was difficult to deter-
mine the added effect of autocorrelation for lags greater than 12 and
further, since the effect of a reduction of 13 is already overwhelming, it
was decided that further reduction in the number of degrees of freedom
could not be justified. This could be accomplished also by using only
every thirteenth value in the analysis; however, the data excluded may
contain valid information. Therefore, all the available data were used
in the analysis and the significance of the relationships and their para-
meters were tested using the total number of observations divided by 13
as the effective sample size.

From a visual e.xamination of a plot of R, versus 0,5, as shown
in figure 3, a linear fit to the data would appear to satisfy the relation-
ship adequately; certainly no equation greater than a cubic would be
necessary. Thus the investigation was restricted to a relationship of

the following type:
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Table 1. Autocorrelation Coefficients ®,,

Coefficient

0.995
0.987
0.977
'0.964
0.949
0.932
0.912
0. 891
0. 868
0. 841
0.814
0.783
0.751
0.717
0.683
0. 647
0. 609
0.571

Lag

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Coefficient

0.530
0. 489
0. 447
0. 405
0.362
0. 319
0. 276
0. 233
0.190
0.147
0.104
0.062
0.020
-0.020
-0.060
-0.100
-0.137
-0.174

Autocorrelation Coefficients for R4

Coefficient

0.997
0.990
0.980
0.967
0.952
0.934
0.914
0. 892
0. 868
0. 842
0. 814
0.784
0.753
0.720
0. 687
0.651
0.615
0.577
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Lag

19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36

Coefficient

. 537
. 496
. 455
.412
. 369
. 327
. 284
. 241
.198
. 155
.112
. 070
.028
-0.013
-0.053
-0.093
-0.132
-0.170

[=M=NelNeNelNoNeNe e BolNoN o]

[=)



Y = B, + 8,X 4 B,X? +8,X®

The individual rising and declining phases of the solar cycle
were analyzed to determine whether there was a consistent relationship

among them. The divisions of the data are shown in table 2.

Table 2
Phases of the Solar Cycle

Sample A = Nov 1947 to April 1954 (declining part of cycle 18)
Sample B = May 1954 to March 1958 (rising part of cycle 19)
Sample C = April 1958 to Oct 1964 (declining part of cycle 19)
Sample D = Nov 1964 to Nov 1968 (rising part of cycle 20)

3. ANALYSIS AND STATISTICAL DISCUSSION

The numerical results of the analysis outlined in the previous
section are displayed in tables 3 through 6, respectively. The "number
of observations'' is the actual number of observations in the sample.
The "effective sample size' is the number of "independent" observations
after correcting for autocorrelation as indicated previously. In the
matrix of simple correlation coefficients, the correlation is presented
between the first-column symbols and the first-row symbols. Under
the heading of ''Statistics of the fit,' the bi are the estimates of the B;
coefficients and sbi are the estimated standard error of the partial
regression coefficient bj. The residual variance for each equation is
tabulated under its respective heading and gives an indication of the
relative significance of the three equations. To test the significance
of the last coefficient in each equation a student t test was used where

bj

t: = =
1 s
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Table 3
Sample A (November 1947 to April 1954)
Number of Observations = 78 Effective Sample Size = 6 .

Matrix of Simple Correlation Coefficients

Ry Rl_aa Rlea. Tia
R,, 1.0 0.975 0.939 0.998
R..® 1.0 0.991 0.984

Ry? 1.0 0.953

Statistics of the Fit

Equation First Degree Second Degree Third Degree-
Term b, b by *b; bi ‘ by
Constant 6.01207x10? {--) 6.43838x10 . (~--) 6.51713x10% (--)
R, 8.47499x107? (6.46%1073) 6.64028x10~! (2.00x10°2) 5.97388x10" (5.41x10%)
R,,Z2 ' 1.17764x10°3 (1.25x10-%) 2.31749x10-2 (8.70X107%) 1
R,;? -5.06868x10°% (3. 83x1072)
Residual
7.96 3,70 3. 67

Variance
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Table 4
Sample B tMay 1954 to March 1958)
Number of Observations = 47

Matrix of Simple Correlation Coefficients

Rla‘ R,% ) Ry® ©y2
Ry, 1,0 0.976 0.937 0.999
R,* 1.0 0.990 0.985
R,,3 1.0 0.952
Statistics of the Fit
Equation First Degree Second Degree
T b, s s
erm i b; 5 b;

Constant 6, 24378x10? (--) 6.68630x10? (--)

R, 8.81635x10r  (6.48x1073) 6.97585x10°2  (9.78x10-3)

R g2 9.00918x107¢  (4.67x1075)

3

RIS

Residual :

Fesaua 10.9 1,17

Variance

Effective Sample Size = 4

Third Degree

s
bi b;

6.67558X10? (--)

7.06194x10°! (2.53x10-2)
7.93299x10°% (2.94x107%)
3.43814x10°7 (9. 28x10°7)

1.20



Equation

Term

Constant
Ry,

2
R12

3
Rla

Residual

Variance

Table 5
Sample C (April 1958 to October 1964)

Number of Observations 79 Effective Sample Size = 6

Matrix of Sin'_l'ple Correlation Coefficients

R12 Rlaa R133 ©2
R, 1.0 0.977 0.938 0.999
R122 1.0 9.989 0.981
R123 1.0 0.943

Statistics of the Fit

First Degree Second Degree Third Degree
. S S S
b1 - b; bi b bi bi
5.61003x10* (--) 5. 89609x10? (--) 6.52597x10* (--)
9.45009x10°? (4. 72%x10"3) 8.45517x10"? (1.90x10"3_) 4,90703x10-! (2.35x10-2)
5.05898x1074 (9. 46x107°) 4,97246%x10°°% (2.77x107%)
-1.50232x10™° (9.20x1077)

6.58 4, 84 1.08



Table 6
Sample D (November 1964 to November 1968)
Number of Observations = 49 Effective Sample Size = 4

Matrix of Simple Correlation Coefficients

Riz Rp2 R1:a2 Y12

R, 1.0 0.983 0.951 0.996

R,2 1.0 0.991 0.974

R,,°® : 1.0 0.935

Statistics of the Fit
Equation First Degree Second Degree Third Degree
. s ] s

Term b b; b by b, by
Constant 6.40477x10? (--) 6.15553x101 (--) 7.10189x10? (--)
R, 8.24179x10°Y  (1,03x10°2) 9.60207x10"Y  "(5.31x107%)  1,42629x10"* (1.11x107*)
R,,? -1.14068x1073  (4.38x107%)  1.50889x107  (2.11x1073)
R,° -8.92102x10™° (1.15x107%)
Residual 7.11 6. 33 2.76

Variance
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Table 7 displays the t values and their number of degrees of freedom v.
In samples B and D the effective sample size is too small even to
consider the third degree acquation while samples A and C have t values

of 1.3 and 16. 3 respectively.

Table 7. t Values for Testing the Significance of the Last Coefficient

Equation

Sample Ftirst degl\'}ee Sectond degrei)e Thtird degreve
A 131.2 (4) 9.4 (3) 1.3 (2)
B 136.0 (2 19.3 (1) --- (0)
C 200. 2 (4) 5.3 (3) 16.3 (2)
D 80.0 (2) 2.6 (1) --- (0)

With the exception of sample C, the null hypothesis that 8, = 0
in the third degree equation, is satisfied at the 5% level of significance.
The same hypothesis applied to the last coefficient of the éecond degree
equation is rejected in all cases except D. Although there is still
substantial autocorfelation remaining after reducing the sample size by
a factor of 13, it was decided that the second degree equation adequately
represented the data in samples A, B, C, and D.

A further test was necessary to determine whether a single
second degree equation could be applied to all'the samples. The
hypothesis that all the second degree equations are from the same
population was tested by the formula,

<b1]'. - b"-i) .
t, = e - (Bennett, Franklin, 1954)

b,; bsj
which approximates the t-distribution with vdegrees of freedom where

v is given by



< =

2 .2 2
1 ( Sbi ) .t ( %"bai )
4 4 2 2 2 !
V1 b1 Shai Va.  \5%h1i T Sy

and v, = (n;-3), vu=(ny-3) for a second degree equation.
Table 8 displays the t value for each b, and b, coefficient for
the four second degree equations. The number of degrees of freedom

associated with each t value is tabulated in parentheses.

Table 8. t Values for the b, and b, Coefficients of the Second
Degree Equation

b

—1
A B C
D 5.0(1) 4.9(1) 2.0(1y
(O 6.6(6) 5. 3(6)
B 1.5(4)
by
A B C
D 5.0(1) 4.6(1) 3.7(1)
C 4. 3(6) 3.7(4)
B 2.1(4)

Comparing the t values in table 8 with a set of standard t values,
at the 5% significance level we conclude that the b, and b, coefficients
for samples A, B, and D are from the same population. Both coeffi-
cients for sample C appear to be significantly different and therefore,
it is not conclusive that they are from the same population. The
statistics would seem to indicate that there is no systematic relation-
ship between the four half-cycles. In fact, a different equation would

be necessary to represent Sample C.
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For practical considerations this is not very useful since the
relationship cannot be determined until after the observations are made.
To obtain a useful relationship for pbredicting solar flux, it was decided
to combine all the available data and form one large sample. This was
justified by the small number of effective independent observations in
the samples A, B, C, and D and the fact that there is significant auto-
correlation still remaining. Regression equations, up to the third
degree, were fitted to the new sample. The results of these analyses
are shown in table 9. The effective sample size in this case was 23.
For the third degree equation there were 19 degrees of freedom and
the t value at the 5% significance level was 2,093, From table 9 the
calculated t value for by was 2. 86 and thus the pooled data is not consis-
tent with the null hypothesis that B;=0. However, the second order
equation with t=13, 53, is considerably more significant than the third
order equation. Furthermore, the reduction in the residual variation
due to the third degree is so small that it was concluded that the second
order equation sufficiently represented the independent variations in the
data. To illustrate this, the 95% confidence intervals (based on the
effective sample size) for the ordinate to the true regression line were
constructed and plotted for samples A, B, C, D and the pooled sample.
The plots of the data, the regression lines, and the 95% confidence
bands are presented in figures 4 through 8. The confidence limits in
figure 7 seem rather extreme at first glance; the explanation for this is
that the effective number of independent observations is only 4 and the
large variance due to the restricted range of that particular sample.
The confidence limits in figure 8 are narrower than figures 4 through 7
and can be explained by the larger effective number of independent

observations. The confidence intervals plotted in figures 4 through 8

~are limits for the true mean nand not for an individual predicted Y.
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Table 9
Pooled Sample (November 1947 to November 1968)

Number of Observations = 253

Matrix of Simple Correlation Coefficients

Ria R,;® Rue3 P12
R,, 1.0 0.964 0.902 0.997
Rla2 . 1.0 0.983 0.975
Rlea 1.0 0.920
Statistics of the Fit
Equation First Degree Second Degree
s s
Term ,bi b; bi b;
Constant 5.90588x10? (--) 6.37451x10! ( --)
R, 8.95393x107? (4. 46x107) 7.28015%x107* (1.28x%x107%)
RIQ’ B.90443x10°* (6.58x10°%)
R123
Residual 17.13 9.93

Variance

Effective Sample Size = 23

Third Degree

S
b, b;
6.51066x102 (--)
6.41014x10°" (3, 28x.0°2)
2.00138x10™® (3.,92x10°%)
-3,72201x107® (1,30x10°%)

9.65
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Using the second degree relationship derived from the pooled sample
as the best approximation to the true relationship between ¢,; and R,

we have the following equation:
0z = 63.7451 + 0.728015 R, + 0.000890443 (R,,)? ' (1)

This second degree equation was compared with an expression described
in a NASA report (T. J. Richards, 1965) which consists of the following

three straight line segments

68.0 +0.60 R,,, 0 <R,, <30
60.0 + 0.825 R,,, 30 < Ry; < 70 (2)

P12

012
®a = 50.0 +0.967 Ry,, 70 < Ry,

200 ...

A

The curves in figure 9 show that there-is little difference between values

of ¢,, derived from (1) and (2) for any given values of R,; from 0 to 200.

4. PREDICTION RELIABILITY

The discussion up to this point has been concerned with establish-
ing a relationship between ¢,;, and R,;. The validity of using this relation-
ship for predicting ¢, from a predicted value of R,, must be considered.

For a predicted value Y, derived from a predicted value X, we have the

following.:

Var[Y] = E[(Y )?] = E[Var(Y|X)] + Var [E(Y|X)], (3)

where My is the mean value of Y. This relationship is derived in

Parzen (1962), page 55, equation (2. 25). For a second degree polynomial

relationship such as (1), we have for the second part of (3)

Var[|_1Y lXJ = Var[o, + 0, X 4 azX?] = @, Var[X] + 1,2 Var[X?| + 20,0, Cov{X, X2].
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1f normality of X is a.ss.umed, we have
Var[uY\XJ = Walo,® + 052 (2uy + 4u°) + 4o 05l (4)
where
u= E[X] and Wp = Var [X].
For the first part of (3) we have
Elvar(Y|X)] = Var [Y|X = x| ,

where

4

1
Var [Y|X = x] = 0% 1 + 5

Y |X

M M M
(X5 2 (x5 - £9)2 -2(X 3)(X® %2) ; (- %) (%X 2) + (X2 -22)2; (x,-%)?

1=1

M M 2
(x, B D (% -F2) - 321 (35 -7) (35 -Ea)z
1:

i=1 i=1

M

(5) (Hald 1952)

and M is the number of independent observations used to establish the
relationship between Y and X.
To illustrate the magnitude of the variance of a predicted value

of ¥, the following approximations were made:

E[(X] = E[R,5] =~ predicted sunspot number (f(lz)

Var {X] = Var[f{w} ~ estimated variance of the predicted
value of R,

ng \X = estimated variance about regression equation (1)

Sample variance of ©,, = 2.75 x 10°

Sample variance of R, = 3.41 x 10°
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The predicted f{m for April 1970 based on observed R,; for October
1969 was 97.5 and the approximate variance of the predicted number
was 37.6. The above values were based on the McNish-Lincoln method
using cycles 8 through 19 (Stewarﬁ and Ostrow, 1970). Substituting

these values into (4) we obtained the following:.

Var{u, \x] = 37.6 [(72.8015x1072)2 + (89, 0443 x10°5)2 (2 x 37. 6 + 4 x97. 52)

+4(72.8015x1072)(89.0443 x107°)(97.5)] a 30.6

With X = 97.5, M = 23 and ©® = 9,93, we find that

YIX

Var [Y|X = x] = 9.93[1.1193] = 11.11 .

Therefore, the variance of o,; is 41.7. Thus we see that the variance
of the predicted sunspot number in this example is 0.9% of the total
variance of R,; while the predicted 10.7 cm solar flux in the example
has a variance which is 1, 5% of the total variance of ©,5.. As one
would expect using this sort of scheme, the predicted value of ¢,,

has more relative uncertainty associated with it than the predicted
value of R,;,. This also demonstrates that the error bounds associated
with a predicted value f{m cannot be used to describe the reliability of
a value of QB,‘E predicted from that particular f{m. It is 6£ considerable
interest that most of the variance in predicting &’12 arises from the
uncertainty in the predicted sunspot number rather than from the

variability of y,, for a known sunspot number.
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5. CONCLUSIONS

Using observed data from November 1947 to November 1968 it
was determined that a second degree equation best described the rela-
tionship between @,; and R,,. This relai:ionship was selected in prefer-
ence to the others investigated on the basis of the statistical evidence
and the highly positive correlation of the observations. No systematic
relationship for the rising .;:Lnd declining phases of the solar cycle coula
be determined due to the limited sample size and the small number of
effective independent observations. Further research should be con-
ducted to eliminate all of the autocorrelation. It is conceivable that
the additional statistics would add further support to these conclusions
and might present evidence that only a linear relationship is justified.

This second degree relationéhip can be used to predict ¢,; from
a predicted value of R,,. Since most of the variance associated with
the predicted value of o,, results from the prediction of R,; , the variance
of the predicted value of ¢,, is only slightly greater than the variance of
the predicted R,;. In addition, it should be noted that the variance of the

predicted ¢,, must be greater than that of the predicted value of R, .
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