
Technical Report TR-168
NGR-21-002-197 and
NGL-21-002-008

September 1971

Architectural Design of an Algol Interpreter

by

Claude K. Jackson

CAS FILE
OPY

UNIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTE
COLLEGE PARK, MARYLAND

https://ntrs.nasa.gov/search.jsp?R=19720005536 2020-03-11T21:50:03+00:00Z

Technical Report TR-168 September 1971
NGR-21-002-197 and
NGL-21-002-008

Architectural Design of an Algol Interpreter

by

Claude K. Jackson

This research was supported in part by Grants NGR-21-002-197
and NGL-21-002-008 from the National Aeronautics and Space Adminis^
tration to the Computer Science Center of the University of Maryland.

Abstract

This report describes the design of a syntax-directed

interpreter for a subset of Algol. It is a conceptual design

with sufficient details and completeness but as much indepen-

dence of implementation as possible. The design includes a

detailed description of a scanner, an analyzer described in the

Floyd-Evans productions, a hash-coded symbol table, and an

executor. Interpretation of sample programs is also provided

to show how the interpreter functions.

Foreword

Programming an Algol interpreter is nothing new, but

describing architectural design of an interpreter is. This tutor-

ial paper presents the architectural design of an interpreter for

a subset of Algol. In this report, attention is called to the follow-

ing goals and observations:

(1) to describe the detailed conceptual design of the interpreter,

not a listing with plenty of comments;

(2) to show a specific way of presenting software design, particu-

larly the use of such diagrams as those in Figs. 3, 7, and 12;

(3) to bring out an important point: the separation of the archi-

tectural design (the creative part) from the programming of

the design (the implementation part);

(4) to imply a significant point: the conceptual design is also

implementable by hardware. Thus, the architecture of a design

is independent of hardware and software.

This report not only presents the architectural design of

an interpreter but also hopefully stimulates the reader to recog-

nize the importance of architectural design of software that has been

long neglected.

Yaohan Chu

Table of Contents

F o reward . , • . . • • • • • .

Abstract

1. Introduction

2. Description of the ALGOL Subset .

2.1 identifiers
2.2 unsigned number
2.3 variable
2.4 .label
2.5 expressions
2.6 assignment statement
2.7 goto statement .
2.8 input-output statements .
2.9 declarations
2.10 conditional statement
2.11 program, block, and statements

3. Overview of the Interpreter

3.1 scanner and syntax analysis
3.2 error indications
3.3 execution of the postfix string
3.4 implementation considerations

4. Scanner

4.1 remove blank
4.2 recognize identifier or reserved word
4 . 3 recognize constant
4.4 recognize colon or assignment symbol
4.5 recognize single character symbols
4.6 procedure GC
4.7 procedure SEARCH
4.8 procedure STCK
4.9 procedures ER1, ER2, ER3

5. Syntax Analyzer

5.1 Floyd-Evans productions
5.2 the analyzer described in the Floyd-Evans Productions
5.3 symbol table
5.4 table routines

6. Executor

6.1 BEGIN and BEG routines
6.2 END and ENDE routines
6.31 routine
6.4 C routine
6.5 READ and WRITE routines
6.6 i, *, /, +, and - routines
6.7 = and ?* routines
6.8 := routine
6.9 L routine
6.10 NEC routine
6.11 IF routine
6.12 THEN routine
6.13 TLS routine
6.14 ELSE routine
6.15 GOTO routine
6.16 HALT routine
6.17 FIND procedure
6.18 HASH procedure

7. Interpretations of Sample Programs

7.1 Program 1
7.2 Program 2

8. Ackno wle dg emen t

9. References

Appendix A, BNF Description of an Algol Subset

Architectural Design of an. Algol Interpreter

Claude K. Jackson

1. Introduction

Tills report describes the design of an interpreter for a sub-

set of Algol using a syntax'directed technique. Floyd-Evans productions

are chosen to describe the syntax analyzer, since they give a formal des-

cription of the process with clarity but without dependence on a particu-

lar machine or language. The design is given in a general way as it also

serves to illustrate the use of the technique.

Besides this introduction, there are six sections. The first

section describes the language to be interpreted. The next is an overview

which indicates the four major elements of the interpreter together with

discussions on their interrelationships and common terms. Then, one section

each is devoted to the scanner, analyzer and executor, giving the config-

"urations and the flowcharts of the design. The last section presents inter-

pretations of two sample programs, showing exactly how the interpreter works

2. Description of the Subset of Algol

In order to demonstrate the design of an Interpreter, a subset

of Algol is chosen. The syntax of this subset is described in Backus Nor-

mal Form and shown in Appendix A. As described, the syntax permits inte-

gers and declarations statements, arithmetic expressions and assignment

statements, operator precedence grammar, boolean expressions and condition-

al statements, labels and GOTO statements, input and output statements,

compound statements and block structure. It does not include the FOR state-

ment,. arrays, switches, procedures, and variables other than integers.

The syntax and the semantics of the chosen subset follows closely to that

in the revised Algol report (6). Symbolic names for the non-terminals in

Appendix A are listed in Table 1.

2.1 Identifiers

An identifier is therefore any sequence. of letters or digits which begins

with a letter. The interpreter as written will accept an identifier of

any length, but it only recognizes and uses the first 12 characters of the

identifier. An identifier may be used as either a label or a variable.

Examples :

A10 CONTINUE

BLACK1 T

2.2 Unsigned Number

:- 0| ...

Table 1 Symbolic names for the non-terminals

Nonterminals Symbolic Names

arithmetic expression
assignment statement
basic statement
block
boolean expression
compound statement
compound tail
conditional statement
declaration
factor
goto statement
identifier
label
primary
program
read statement
statement
term
type list
unconditional statement
unsigned number
variable
write statement

AE
AS
BS
B
BE
CPS
CT
CS
D
F
GTS
I
L
P
PR
RS
S
T
TL
US
UN
V
ws

An integer is the only type of number accepted by the interpreter.

Floating point numbers are not allowed. An integer is only allowed to be

11 digits long.

Examples:

145 2378910 .

2.3 Variable ,

<V> ::=.<!>

; A variable is an identifier which represents a value. This value

may be changed during the execution of the program. The value is assumed to

be integer and the variable must be declared before its use in the program.

Examples:

LET VI

2.4 Label

A label is not formally declared as a variable is, but is declared

by its use in the program preceding a colon.

Examples:

LI HERE

2.5 Expressions

An expression is a rule for computing a value. That value may be

either a number in the case of arithmetic expressions, or TRUE or FALSE in

the case of boolean expressions.

2.5.1 Arithmetic expressions

: : =<P>

The above rules give the possible forms of arithmetic expressions.

They also describe the order in which a value is to be computed since they

describe the precedence of operators. Note that expressions in parentheses

are to be evaluated before they are combined. The precedence of the opera-

tors as determined by the above rules is:

first t

second *,/

third +,-

Operators of the same precedence are evaluated from left to right.

Examples :

Primaries: 85 LOB (A+B/2) (-B)

Factors: LS TRt6 (A*B)tK

Terms: M M*L MtA (-A)/C+K

Arith. exp.: N NtD- A+B-C (A/B-T)

2.5.2 Boolean Expressions

<BE> : :=<AE>{=

The values of each of the arithmetic expressions are computed and

then compared. If the comparison shows that the values are related in the

same way as the logical operator (= or ?*) in the expression then' the value

of the boolean expression is true. If they are not related in the same way

then the value : of the boolean expression is false.

Examples:

2.6 Assignment Statement

<AS>: :=<V>:=<AE>

The value of the arithmetic expression to the right of the as sign -

m ent symbol is stored as the value of the variable on the left side of the

assignment symbol.

Examples:

A:= C * D + C

C:= C + 1

2.7 GOTO Statement

<GTS>: := GOTO<L>

Statements of the program are normally executed in sequential order,

but when a GOTO statement is encountered the next statement to be executed

is the one that has the Indicated label instead of the following statement.

Examples:

GOTO LI

GOTO CONTINUE

2.8 Input-Output Statements

<RS>::= READ(<V>)

<WS>::= WRITE(<V>)

A read statement causes a number to be read off a card and then stored

as the value of the variable enclosed in parenthesis. A write statement

causes the integer value of the variable enclosed in parentheses to be ob-

tained and then written out as the next line of output.

Examples:

READ(AB)

WRITE(CD)

2.9 Declarations '

<TL>::=<V>|<V>,<TL>

<D>::= INTEGER<TL>

Any variable used in a block must be declared at the beginning of

the block. The declaration holds only for that block as in Algol and the

variable is not defined outside of the block. Variables may be redeclared

as in Algol. The redeclaration causes the variable to be in effect a dif-

ferent variable from the variable of the same name declared in the outer block.

The variable of the same name declared in the outer block is not defined for

this block in which it has been redeclared. At the end of the block when

the redeclared variable becomes undefined, the old variable becomes defined

again with the value it had when the block was entered. A variable which is

declared in a block is given the value zero when that block is entered.

Examples:

INTEGER A

INTEGER LET,NUM,C

2.10 Conditional Statement

<CS>::= IF<BE>THEN<US>{ JELSE<US>}|<L>:<CS>

The boolean expression is evaluated. If its value is true then the

unconditional statement after the THEN is executed. The unconditional state-

ment after the ELSE, if it exists, is ignored in this case. If the value of

the boolean expression is false then the unconditional statement after the

THEN is executed. The unconditional statement after the ELSE, if it exists,

is ignored in this case. If the value of the boolean expression is false

then the unconditional statement after the THEN is not executed and the un-

conditional statement after the ELSE is executed. If there is no ELSE

statement when the boolean expression is false then the next statement in

the program is executed. A conditional statement may have a label.

Examples: .

IF Kl = C THEN L:= T + 1 ELSE L:=l

IF K3 ^ Cl THEN K = K + 1

2.11 Program, Block, and Statements

<BS>::=<AS>|<GTS>|<RS>|<WS>|<L>:<BS>

<US>::=<BS>|<CPS>|

<S>::=<US>|<CS>

<CT>::=<S>|<CT>;<S>

<CPS>::= BEGIN<CT>END|<L>:<CPS>

::= BEGIN<D>;<CT>END|<L>:

<PR>::=|<CPS>

An assignment statment, a GOTO statement, a READ statement, or a

WRITE statement may have any number of labels. An unconditional statement is

any of the above statements, a block or a compound statement. A statement

is an unconditional statement or a conditional statement. A compound state-

ment is any number of statements surrounded by a BEGIN and END symbol. A

block has the same form as a compound statement except it must,have a de-

claration before the list of statements. Blocks and compound statements may

have labels also.

As mentioned before a variable declared in a block is local to that

block. A block may have blocks nested within it and variables can be re-

declared in a nested block. No matter what value the redeclared variable

takes on in the nested block, when that block is left the value of the vari-

able returns to the value it had before being redeclared, the so-called glo-

bal value. A label is declared by its use in a block and is local to the

10

innermost block it is in. It is not possible therefore to transfer from out-

side a block to a statement in that block.

A program consists of either a block or a compound statement.

Examples:

Basic statement: A:= B+C 'GOTO LI K:A:=1

Compound statement: BEGIN A:=B*C; WRITE(A) END

BLOCK: BEGIN INTEGER A,B,C; B:-l; C:-l; A:=B*C; WRITE(A) END

. f

Figs. 21 and 26 give some additional examples.

11

3. Overview of the Interpreter

As shown in Fig. 1, the interpeter consists of four major ele-

ments: the scanner, the syntax analyzer, the executor, and the symbol ta-

ble. The scanner converts the input program into a string of symbols in

the internal code where the code is shown in Table 2. This input string of

symbols in the internal code is then processed by the syntax analyzer.

The analyzer outputs a postfix string now also in the internal code and

generates a symbol table. The postfix string in conjunction with the sym-

bol table is executed by the executor to produce the desired results.

Fig. 2 shows the flow chart for the interpreter. It consists of

six blocks, each of which represents a process. These processes except

the initialization process are described below.

3.1 Scanning and Syntax Analysis

The syntax analyzer is described by the Floyd-Evans productions.

The actual set of Floyd-Evans productions which describes the analysis

will be described in detail later. These productions perform the syntax

analysis part of the interpretation. The scanner is merely a procedure

(or a subroutine) called by the analyzer whenever the next symbol of the

input stream is needed.

It is important to note the difference between a symbol and a

character of the input program. A character is the contents of a single

column of a card of the input program. It may be a letter, digit, or any

other punctuation such as *. A symbol may however be made up of any number

of characters. The analyzer only works with symbols and it is the sole

function of the scanner to obtain the next symbol of the input program for

12

Input string of symbols

Scanner

input string
in internal

code

postfix
string .

Syntax]
Analyzer j

Executor Symbol Table

computed
result

Fig. 1. Configuration of the Interpreter

13

Table 2 Internal code for the symbols

SYMBOL

t

*

/

- +
_

=

*
t->

)

5

•

(

)
• =

I

C

BEGIN

END

INTEGER

READ

WRITE

GOTO

IF

THEN

ELSE

BEG

TLS

HALT

NEC

ENDE

L

CODE

1

2

3

4

' - 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

• 22

23

24

25

26

27

28

29

30

31

14

START

SCANNING

i

INITIALIZATION

SYNTAX
ANALYSIS OF
INPUT STRING

EXECUTION OF
POSTFIX STRING

STOP

SYMBOL TABLE j
GENERATION

ERROR
INDICATION

T

Fig. 2 Flow chart for the Interpreter

15

the analyzer.

The scanner goes through the input program character by character

until the next symbol has been found. As a result, the analyzer can be

designed to work with fixed length symbols and does not have to worry about

the problems of blanks and lengths of variable names. A list of the symbols

for the interpreter is given in Table 2. Next to each symbol is the internal

code which is actually used in implementation. The symbols are retained in

the description of the Floyd-Evans productions for purposes of readability.

If the internal code were used they would be much less comprehensible, but

with the symbols they give a very clear description. In short, the only

function of the scanner is to pass the next symbol whenever it is needed

and also to pass the identifier or constant that the symbol might repre-.

sent. Since the analyzer assumes that the first symbol has already been

obtained when they start, the scanner is called once before syntax analysis

of the input string begins. The symbol table is also formed during syntax

analysis by those procedures called table routines. • -

3.2 Error indications

Error routines may be called in during any part of the program.

An error message is printed out and interpretation stops in most cases. In

a few cases, there is some change made to try to solve the error, and interpre-

tation continues, but for the most part the interpreter does not have any

error recovery capability.

As mentioned above the result of syntax analysis is a postfix

string of symbols or, in actual implementation, a postfix string of inter-

nal code. There is a parallel string to the above string which will hold

semantics of the postfix string. It will hold the actual identifier which

16

an I symbol represents and the actual constant for a C symbol.

3.3 Execution of the Postfix String

When syntax analysis is done the entire postfix string will have

been produced. The execution part of the interpreter then begins to oper-

ate using the above two strings produced by the syntax analyzer and also

the symbol table that has been produced. The execution part processes the

postfix string performing certain actions depending on what particular sym-

bol in the postfix string is presently being processed. The details of

this process are left for the description of the execution part.

3.4 Implementation

Algol is assumed to be used as implementation language. Although

this study does not include the implementation, some remarks about the imple-

mentation are made below.

The interpreter uses procedures which function as Algol procedures.

Variable names and arrays used by the interpreter are assumed to be all glo-

bal and thus accessible to all parts of the program. By this means, one

part of the interpreter may store something in a global variable for use by

another part of the interpreter later. This is how the scanner passes inter-

nal code to the syntax analyzer and how the syntax analyzer passes the postfix

string to the executioner. The Floyd-Evans productions and flowcharts are

written so that the interpreter could be implemented extremely simply without

complications in UNIVAC 1108 Algol. This implementation would not be particu-

larly efficient since efficiency has been sacrificed for simplicity or clarity

wherever possible. In particular 1108 Algol allows string arrays which hold

12 characters per array element. Since identifiers can have up to twelve

17

characters, the interpreter as designed uses string arrays with 12 characters

per array element which is very inefficient but makes the description of the

design simple. The design also allots a full array element for things such

as flags which require only a single bit. By using a single array element

for each quantity stored the design is much clearer than if two words or

part of a word were used to store particular quantities. Since the design

has been made in the simplest form it would be easy to change it or to actually

implement the interpreter not only more efficiently but also in another lan-

guage or on another machine.

The idea here is that a type of layered approach to a practical

interpreter has been taken. The initial idea was to produce an interpreter.

The first thing done was to decide a three part interpreter should be made.

The form of each part as mentioned earlier was decided upon next. Then a

detailed but flexible design of the interpreter has been made and described

herein. This design can be implemented easily and tested in Algol. The

final step or layer of the design is the "practical" implementation of the

interpreter. This step requires working out certain details and.making minor

changes so that all the requirements of the particular implementation are

met. An example is that if the interpeter were finally implemented in UNIVAC

1108 Fortran it would be necessary to store 12 characters in two words so

some changes would have to be made in flowcharts and data structures but they

would all be straightforward and require no major design changes. A major

advantage of this approach is that the problems should be met and solved

at the appropriate time during design. Debugging and design changes will

hopefully be less random and more control will be maintained at all stages

of design.

18

4. Scanner

The configuration of the scanner is shown in the block diagram of

Fig. 3. There are five buffers and one stack. Input buffer INPUT with pointer

Cl can contain 72 characters. Buffer CH is a single character buffer.

Buffer N with pointer C can hold 12 characters, and buffer Nl also with pointer

C can hold 11 decimal digits. Code buffer T stores the internal code of

a symbol. Stack FE with pointer C2 is the place where the symbol produced

by the scanner is put.

The scanner is called into action by the syntax analyzer whenever

the analyzer needs the next symbol. When called, the scanner places the

next symbol at the top of stack FE. As mentioned before, the symbol placed

in the stack is not the original characters in the input string, but the

internal code shown in Table 2.

The operation of the scanner is described in the flow chart of Fig.

4 and the terms in the flow chart are explained in Table 3. A procedure

called GC is employed by the scanner to obtain the next character from the

input string and place it in buffer CH.

Since the scanner always starts with the assumption that the next

character is already in buffer CH procedure GC is called once during initiali-

zation of the interpretation to place the 1st character in CH. Thereafter,

the scanner will leave the next character in buffer CH.

4.1 Remove Blank

The first part of the scanner checks for a blank in buffer CH and

if found it calls procedure GC to put a new character in CH. This process

removes any blank characters before a symbol. Blanks may not be used in iden-

M
<U

19

1

n
e
x

t-
c
h

a
ra

c
te

r

^_

M
<u
M
M

Q

1 ^

H
CO M
^ 0)
l3 14-1
1 <4-l

<N 3
•H ^1

s~\
CJ
*~s
z

•H I
00 (

•H >4
-d u

1
•-I ^
i-H

x^s
U
N^
rH
2!

H
0)

l-M

4J

O.

-S
ctf

•3i
CN)
r~

3
,0

O
O

Q)
4J
O

a
4-1
CO

0

1-1
0)Iu
ca
(U

g
•H

00
•H
14-1

oo

20

Table 3, Designation of the Terms used in the Scanner

Term

CH

N

INPUT

C

Cl

C2

FE

SEARCH

Nl

GC

STCK

\

T

ER1

ER2

ER3

Designation j

a buffer for the next character in the in- '
put string

a buffer for storing a string of 12 char-
acters

a buffer for 72 characters

a pointer for N and Nl

a pointer for INPUT

a pointer for FE

a stack for syntax analysis

a procedure to determine if a given identi-
fier is a reserved word

a buffer for storing a string of digits

a procedure to botain the next character
in CH from the input string

a procedure to stack the internal code of £
the symbol in stack FE

1
a buffer for storing an internal code 1

a procedure to indicate an illegal charac- I
ter has been encountered

a procedure to indicate that an end-of-pro-f
gram marker is encountered and a complete*
program has yet to be processed f

a procedure to indicate a constant having |
more than 11 digits I

5

21

Start

CH ' '? Proc GC

01 ^
Proc GC

j N(C)= CH f*~

CH=A ... Z 0 ... 9?

_Ii!Ii:

N
1C > 12 ?

N Proc SEARCH

C=C+1

-^-return

Proc ER2

t
J

Oil?

Pro cS TCK 1 - 1»-
j ret urn

(CH=0[. . . J 9 ? V~^

C=l
T=16
N1=CH

N

X
Proc GC J *\CH=0|...|9? OC+1

T
011? V

N

N1=N1*10+CH

CH=': ' ? Proc GC

N

C H = ' ? ' ? Proc ER3 return

N

JT=1
t t * v/

1=2

» any
char

Proc GC

other
icter

Proc GC

Fig.4. Flowchart of
the Scanner

Proc STCK

_ .^t

Proc STCK 1

Start

RETURN

22

tifiers or constants so they mark the end of an identifier or constant. In

any other place blanks are ignored. The scanner then proceeds to check what

the first non-blank character is and enters the appropriate branch to finish

processing the symbol.

4.2 Recognize Identifier or Reserved Word

If the first nonblank character is a letter then the symbol must

be an identifier or reserved word. The first twelve characters of the iden-
f

tifier or reserved word are stored in the buffer N and the counter C is used

to count how many characters the identifier or reserved word has. The scanner

enters a loop to do this. Note that after the first character, the iden-

tifier may have any digit or letter and it terminates only when neither a

digit or letter is the next character. The next character is thus in buffer

CH when the symbol has been processed and the character is left there for

the next call of the scanner. Only the first 12 characters found are saved

in N. If the identifier is longer then the characters are merely ignored

and not stored in N. When the entire identifier has been obtained, then the

procedure SEARCH is called to check to see if the identifier is in fact a

reserved word. The appropriate symbol (internal code) is placed on the stack

FE of the analyzer. Either the symbol for the reserved word matched or the

symbol for identifier if there is no match is placed on the stack. Stacking

on FE is always done in two steps. The internal code for the symbol is stored

in T and then just before the scanner is exited procedure STCK is called to

put the value in T onto stack FE.

4.3 Recognize Constant

If the first nonblank character is a digit, then the scanner pro-

23

ceeds into another loop which processes a constant of up to 11 digits. The

constant is stored in buffer Nl and is terminated when the first non-digit

character is encountered. If the constant is over 11 digits long then the

leftmost 11 digits are used and an error message is printed out by procedure

ER2 before returning to the syntax analyzer. Again a character is left in

buffer CH for the next call of the scanner. The Internal code 16 is placed

on stack FE.

4.4 Recognize Colon or Assignment Symbol

If a : is the first non-blank character then the symbol must be either

:= or just :. Therefore, the next character is obtained by procedure GC

and checked to see if it is =. If it is = then the code 16 is placed on stack

FE and the next character must be obtained by calling procedure GC so that the

next character will be in buffer CH for the next call of the scanner. If

the' next character was not = then the internal code 11 is placed on stack FE

and procedure GC is not called since the next character is already in buffer

CH.

4.5 Recognize Single Character Symbols

The last section of the scanner checks for single character sym-

bols. When a symbol is matched, then the appropriate internal code is stacked

on stack FE. The next character must be placed in buffer CH by calling pro-

cedure GC and then the program returns to the syntax analyzer. If the single

character is ? (a character placed at the end of all input programs), then

the end of the input string has been reached without a complete program having

been processed. This is an error condition so procedure E8.3 is called to

print out an error message and end the interpretation. If the single character

24

does not match any of the legal characters, then an error message is printed

out by procedure ER1. The illegal character is then skipped by calling GC

to get the next character and then returning to the start of the scanner.

4.6 Procedure GC

Fig. 5(a) shows the flow chart for procedure GC. As mentioned

earlier, procedure GC obtains the next character of the input string.

When the interpretation of a new program begins, the pointer Cl is initialized

to 73. Whenever procedure GC is called and the pointer Cl is 73, then 72 char-

acters are read in off the next card and placed in the string INPUT. Pointer

Cl is then initialized to 1 to point to the first character. Note the 72

characters read in are printed out to form a listing of the program.

After reading in 72 new characters or immediately if pointer Cl is

less than 73, the character pointed to by pointer Cl is stored in buffer CH,

pointer Cl is incremented, and then the procedure ends.

4.7 Procedure Search

The flow chart for procedure SEARCH is shown in Fig. 6. Procedure

SEARCH tests an identifier to see if it is a reserved word. If it has more
V

than 7 characters then it cannot be a reserved word and we can immediately pro-

cess it as an identifier. This consists of placing the internal code for

identifier, 15, into buffer T, stacking: it on FE, and returning. The actual

identifier name is saved in buffer N.

According to the number of characters of the identifier, it is

tested character by character for the possible reserved words. After a num-

ber of tests it will be known either that the identifier cannot be a reserved

word in which case it can be processed as an identifier as described above,

25

start

read in 72 characters
into input buffer INTO

return

(a)Procedure GC

STARTTAR1

C2=C2+1

FE(C2)=T

I
return

i
print out those 72
characters to form

the listing

(b)Procedure STCK

Fig. 5. Flowcharts for Procedures
GC And STCK

26
Start

C 7? •>1 T=15

t
^ Proc STCK -fc* return

C=7? N(l-7)=INTEGER? • T=19

no

_J.
Proc STCK

no

^T=15

0=5
yes

no
Ino
T

ino

>4?
.yes

N(l-4) =
T=22

no

(N(1-4)=READ? X^£S *iT=20

no

N(l-4)=

fN(l-4)=ELSE? T=25

t
>3? -i N(1-3)=END? yftf? T=18

no
n° T=15

C=2?
yes

I no

IF? V
J

T=23

j

STCK — fc*

Proc STCK

Proc

t

Proc STCK

T
Fig. 6 Flow chart for the Procedure SEARCH

or it is a reserved word. In the latter case, it will have matched at all

tests for .characters of a particular reserved word. The appropriate internal

code will be placed on stack FE and the procedure ends. After processing by

this procedure reserved words have been changed to internal code and are handled

in coded form hereafter. They are never entered in the symbol table.

4.8 Procedure STCK

Fig. 5(b) shows the flow chart of procedure STCK. Procedure STCK

handles the stacking of the internal code of a symbol which is always first

stored in buffer T. There are two operations. First, the stack pointer C2

must be incremented since it always points to the top element of stack FE, and

second, the code is then placed on the top of stack FE.

4.9 Procedures ER1, ER2, ER3

The three procedures ER1, ER2, and ER3 print-out error messages.

ER2 also caused an end of interpretation. The flow charts for these procedures

are not provided.

28

5. Syntax Analyzer

The syntax analyzer analyzes the input string, produces the postfix

string, and constructs the symbol table. The configuration of the syntax

analyzer is shown in Fig. 7. As shown, there are five buffers, one stack,

and a symbol table. Buffers N, Nl, and T and stack FE have been introduced

when the scanner was described. Buffers PS store the postfix string of

symbols, while buffer PS1 stores the postfix string of constant values and

identifier names. Thus, symbols I and C in buffer PS represent identifiers

and constant respectively, while their names and values are located in the

corresponding positions in buffer PS1. Table SYM is the symbol table of the

input program. The details of the process of syntax analysis are now described

below.

5.1 Floyd-Evans Productions

The syntax analysis is describedrrather precisely and concisely

by the Floyd-Evans productions. The particular form of the productions adapted

in this report is the same as the form used by Evans (3) but with the addition

of table routines for the purpose of constructing the symbol table. Since

the form of the productions varies with their use by each new author, one

must make sure that the particular form of the productions is understood.

The key element here as in most types of syntactic analysis is the stack.

The stack starts with two occurrences of the special symbol lr^ (Internal

code 8) as its top element. The reason for doing so is given later.

The productions can be considered as a programming language since

they can easily be interpreted themselves. Each production can be considered

an instruction to be executed. It is extremely simple and straightforward to

29

N(C)

N1(C)

stack FE

PSl(Kl)

postfix string
of constants and
identifier names

PS(K1)
postfix
string of
symbols

SYM
symbol
table

Fig.7. Configuration of the syntax analyzer

30

implement a syntax analyzer described using these productions and as a result

no flow charts are given to describe the syntax analysis but only the table

of Floyd-Evans productions is given. As will be seen these productions provide

a machine and language independent description of syntax analysis.

Each production has six columns. The first column may contain a

label which is used for branching as in any programming language. The second

column contains symbols that are to be compared to the top symbols of the

stack. Once again we remark that we will speak of symbols and use the symbols

shown in Table 2 but in actual implementation the internal code will be used

instead. If there is a match between the symbols in the second column and

the top symbols of the stack then the actions indicated in the remaining

columnsrare performed. If there is no match then the next production is

performed next.

If there has been a match and there is a -^ in the third column

then the symbols that were matched in the stack are replaced by the symbols

to the right of the ->•. If there is no -> in the third column then the stack

Is left unchanged. A special symbol <SG> means that any symbol in that posi-

tion of the stack is matched.

Since the purpose of the syntax analysis is to produce a postfix

string the fourth column specifies symbols that are to be placed in the post-
•f'

fix string if there was a match. If an I or C symbol is to be placed in the

postfix string then the corresponding identifier (saved in N) or constant

(saved in Nl) is also placed in the parallel postfix semantic string.

Sometimes in column four there occurs the word COMPILE or COMPILE

followed by a symbol. In these cases these symbols are not outputted. In-

stead, in the first case the precedence of the top symbol of the stack is com-

pared to the precedence of the second symbol on the stack and if the precedence

31

of the second symbol is greater than or equal to the precedence of the top

symbol then the second symbol is removed from the stack and placed in the

postfix string. This process is repeated until the precedence of the top

stack element becomes greater than the precedence of the second stack element.

If a symbol follows the word COMPILE, then instead of comparing the

top stack element to the second stack element, the precedence of the symbol

after word COMPILE is compared with the precedence of the second stack ele-

ment. The word COMPILE is used in order to implement the technique of oper-

ator precedence in parts of the syntax analysis.

The fourth column may contain a call to a table routine. These

routines are procedures which perform some part of the construction of the

symbol table depending on which symbol has just been matched on the stack.

If a BEGIN followed by an INTEGER, an END, an I or a C symbol is matched then the

appropriate table routine is called. A thorough description of the symbol

table and the table routines along with flowcharts are given later in this

section of the report.

If the last column has a * in it then the scanner is to be called

to obtain the next symbol of the input program and place it.,on top of the

stack. The scanner takes care of recognizing identifiers and changing them

to the symbol I before placing them on the stack. Also in the last column

is ;..he label of the next production to be executed or the instruction HALT

to stop execution of the productions.

32

5.2 The Analyzer Described by Floyd-Evans Productions

The algorithm for the syntax analyzer is described by the Floyd-

Evans productions shown in Table 4, where the following metacharacters are

adopted:

<RL> is = \j

and <OP> is +|-|*|/|+ .

The construction of the table is based upon checking for various syntacti-
i

cal constructs as defined in Appendix A until a legal one is found in the

input program. The checking is a so-called left-to-right bottom-up analysis

and continues until a complete program has been recognized. At each test-

ing of neighboring symbols, there is only a finite number of syntactical

constructs to check. If the symbols on the stack do not match one of the

tests, then the input program is in error. In such a case, the last test

checks <SG> which means any symbol and causes an error routine to be executed.

If a match is found on the stack, the appropriate change in the stack is

made and the analyzer proceeds to check the next set of possible syntactical

constructs.

Two markers are needed: the end-of-stack marker and the beginning-

of-statement marker. The former is to indicate that the stack is empty and

the latter is to mark where the statement currently being analyzed began. The

symbol t-^ (internal code 8) is used for both markers.

5.2.1 Labels SO. LI. Dl, DC1, DC2

In the production labeled SO a check for the outermost block which

must start with symbol BEGIN is made as shown in Table 4. There might be a

33

Table 4. Syntax Analyzer described in Floyd-Evans Productions

Label

SO

LI

Dl

DC1

DC2

SI

SIB

EX1

Stack Before

BEGIN

I

<SG>

:

<SG>_

lr> INTEGER

l-> <8G>

INTEGER I

<SG>

,

INTEGER;

<SG>

IF

I

GOTO

READ

WRITE

BEGIN

I

C

(

+

-

<SG>

Stack After

-*-*!->

-*

^

-̂ BEGIN t̂ INTEGER

-̂ BEG3r-̂ <SG>

-̂ INTEGER

-,

-»

^

^
->

-̂

-̂
->

-̂

^
-̂ NEG

Output to Post-
fix string PS

L

BEGIN

BEG

I

C

i - -

Table Next
Routine Production ;i

i

EXEC1

EXECS

EXEC2

EXEC4

*D1

*L1

ER1

*SO

ER2

*DC1

SI

*DC2

ER3

*DC1

*S1

ERA

*EX1
.

*S2

*G1

*R1

*W1

*D1

*EX3

*EX3

*EXA

*EXA

*EXA

ER5

34

Label

El

E2

E3

E4

E5

S2

EX1

EX2

!

"

Stack Before

t-^ IF THEN

<SG>

THEN t-» ELSE

<SG>

THEN 1r*f END

ELSE 3—> END

BEGINt^END

BEG t-> END

<SG>

!-»!->

<SG>

END

»

ELSE

<SG>

:

: =

<SG>

I

C

\

+

-

<SG7-

<OP>

<RL7

)

HO

Stack After

-.THEN.!-*

-J> ELSE t-^

-> t-^ END

-} 3r-> END

-» i-^ . "

^

->

-¥'

^(

-^

-^NEG

Output to Post-
fix Strings PS

IF

THEN
•*.'•

TLS

ELSE

END

ENDE

* *• . . .'.'.: ,

HALT

L

I

I •

C.

COMPILE

COMPILE

'COMPILE

Table
Routines

EXEC3.,

, ,

*

EXEC 6

•

Next
Production

*S1B

ER6

*S1B

ER22

E3

E3

E4

E4

ER7

HALT

*E5

E3

E6

E2

ER24

*S1

*EX4

ER8

*EX2

*EX2

*EX1

*EX1

*EX1

ER9

*EX1

*EX4

PI

ER10

35

Label

EX3

E6

PI

P2

Gl

Rl

R2

R3

Wl

W2

W3

Stack Before

<W

)
!

THEN

ELSE

END

<fsG>

THEN t-> ;

ELSE]-̂ ;

*-»;

<SG>

()

<SG>

()

<SG>

I

<SG>

(

<SG>

I

<SG>

)

<SG>

(

<SG>

I

<SG>

)

<SG>

Stack After

-»!->

-)i-*

^

+

->

^

^

^

-̂

-̂

^

-̂

.Output to Post-
' fix 'String PS

COMPILE

COMPILE

COMPILE <-i

COMPILE ̂ -i

COMPILE ̂ -1

COMPILE «-i

TLS

ELSE

.

I GOTO

I

READ

I

WRITE

Table
Routines

- •

Next
Production

*EX4

P2

E6

El

E2

E3

ER11

*S1

*S1

*S1

ER12

*EX2

ER13

*EX3

ER14

*E5

ER15

*R3

ER16

*R3

ER17

*E5

ER18

*W2

ER19

*W3

ER20

*E5

ER21

36

Table 5 Precedence Table

Precedence

1

2

3

4

5

6

7

8

9

10

11

12

Symbols

i

*, /

+, -, NEC

)

= , t

: =

ELSE

* — 1

IF

THEN

(

1-V

Remark

HIGHEST

'

LOWEST

37

label, so that possibility is also checked. If neither symbol BEGIN nor sym-

bol I is matched, then there is an error and error routine ER1 is executed

next. If symbol I is found, then the production labeled LI is the next pro-

duction to be executed. LI will check to see if I is indeed a label which

means I must be followed by a :. , If there is no : then there is an error.

If it is a label, an L symbol (code 31) is placed in the postfix string PS.

Table routine EXEC6 is called to put the label in the symbol table. The

production labeled SO is then executed again to check for the outermost

block. When the BEGIN symbol of the outermost block is encountered the sym-

bols 1— ̂ t-^ are placed on top of the stack FE of the Floyd-Evans productions.

Table routine EXEC1 is called to initialize variables needed to form

block heads. Block heads are formed for each block and are described in the

section on the symbol table and table routines. The production labeled Dl

is the next production and it processes the beginning of blocks by checking

for declarations. Two different types of BEGIN symbols are placed in the post-

fix string PS depending on whether or not there is a declaration. If there is

no declaration then a compound. statement . is being encountered and the symbol

BEG is placed in the postfix string. If there is a declaration this is a block

and a BEGIN symbol is placed in the postfix string. Table routine EXEC2

is called to form a block head for this block. The production starting at DC1

and DC2 process the declaration. Note that a variable which is declared is not

placed in the postfix string but table routine EXEC4 is called to place the

variable in the symbol table. The productions starting at DC2 checks for the

end of the declaration and no trace of the declaration is placed in the post-

fix string PS.

38

5.2.2 Labels SI. S2

After the beginning of a block or compound statement has been pro-

cessed there must be a statement so production SI is next. It checks for all

possible forms of a statement. No blank statement is allowed so the pro-

ductions starting at SI check all the possible starting symbols for a state-

ment. If an I symbol starts a statement it may be a label or the beginning

of an assignment statement. The program goes to the productions starting

at S2 which check for these possibilities. If the I symbol is followed by

a : symbol then this is a label so an L symbol is placed in the postfix

string PS. Table routine EXEC7 is called to place the label in the symbol

table and then the program returns to production SI to check for a statement.

If the I is followed by a := symbol then this statement must be

an assignment statement. The I symbol is placed in the postfix string immed-

iately. It is not left on the stack FE as operators are sometimes. Oper-

ators are only placed in the postfix string at the appropriate time to produce

proper postfix notation. The rest of the assignment statement must be an

arithmetic expression so the program will proceed to production EX4 which

processes arithmetic expressions.

If an IF symbol, GOTO symbol, BEAD symbol or WRITE symbol is en-

countered at the beginning of a statement then the program proceeds to appro-

priate productions to check to see if the statement has the correct form.

A statement may also be a block or compound statement so it may start with a

BEGIN in which case the program proceeds to production Dl to process the

beginning of the block or compound statement.

5.2.3 Labels Gl, Rl. Wl

The processing of the GOTO, READ, and WRITE symbols by the productions

39

starting at Gl, Rl, and Wl respectively is very straightforward since there

is a standard form with no possible variation. Only one I symbol is permitted

in each of these statements. The I is outputted into the postfix string

immediately and if the whole statement is correct the appropraite symbol

(GOTO, READ, or WRITE) is placed after the I. In all three cases the next

production to be executed is E5 which processes the end of statements.

5.2.4 Conditional Statements and Assignment Statements

A conditional statement requires substantial checking. Immediately

after the IF symbol must come a boolean expression which is two arithmetic

expressions with a relational operator (= or ̂) between them. Upon recog-

nizing an IF the program proceeds to production EX1 which processes an arith-

metic expression using operator precedence using the precedences given in

Table 5. The program goes back and forth between the productions starting

at EX1 and EX2 processing operators and operands. Operands (I or C) are

placed in the postfix string immediately while operators are placed in the

postfix string only when operation COMPILE indicates that they should be.

Unary operators and parentheses are also processed. When unary minus is en-

countered it is changed to the symbol NEC (code 29) so that when it is even-

tually placed in the postfix string there will be no ambiguity between unary

and binary minus.

When a) symbol is encountered then the operation COMPILE is exe-

cuted. Next the program proceeds to production PI to check if there is a

matching parenthesis. If there is a matching parenthesis then all operators

up to the matching (will have been placed in the postfix string by the oper-

ation COMPILE. If there is not a (symbol then there is no matching paren-

thesis so there will be no match at production PI. The production after PI

40

will match and the error routine ER13 will be executed. If there was a match

the program returns to production EX2 to continue processing.

When the relational operator is found then there must

be another arithmetic expression so the program goes to production EX4

which as mentioned earlier processes arithmetic expressions. Thus assign-

ment statements 'and conditional statement both use the productions at EX3

and EX4. As for the productions at EXL and EX2 the program goes back and forth

between EX3 and EX4 processing operands and operators. The program stops this

processing, not when it finds a relational operator as before, but when it

encounters a ; symbol, a THEN symbol, an ELSE symbol, or an END symbol.

After encountering one of these symbols the program performs the COMPILE 4-1

operation which removes all operators from the stack. The program then goes

to the appropriate productions depending on which symbol was encountered.

All of the above described productions have been constructed so that only

proper constructions of assignment and conditional statements are accepted.

The productions at EX1, EX2, EX3, and EX4 are constructed and pre-

cedences given to symbols so that illegal boolean expressions are not accepted.

This is an important consideration since operator precedence is being used to

speed analysis and also since certain productions (EX3 and EX4) are used to

recognize two different constructs. There are certain errors which it was

necessary to be careful not to accept. Boolean expressions without a relational

operator, arithmetic expressions with relation operators, and parentheses

which do not match or surround a relational operator were some of these errors.

The first of these errors is detected by checking specifically for a relation-

al operator at the proper place in the expression. If none occurs then even-

tually a match is made which causes an error routine to be executed. The

second error is caught because a relational operator will not match anything

in the productions at EX4 and will thus cause an error routine to be exe-

41

cuted.

The problems with parentheses were detected by making the prece-

dences of all symbols such that only proper constructs would be unstacked

properly. A) symbol to the right of a relational operator without a match-

ing (or with a (on the other side of the relational operator causes every-

thing only up to the relational operator to be unstacked. Therefore there

is no match at P2 which indicates the error. A (without a) will never be

unstacked because of its low precedence so it will cause no match at some

point and result in an error indication.

If in the productions at EX3 a THEN symbol is encountered then the

program proceeds to production El. A THEN must have been proceeded by an IF

symbol so if a THEN follows an assignment statement there will be no match.

Only a proper conditional statement will be accepted. At this point the

IF symbol is placed in the postfix string to maintain postfix notation. The

program next proceeds to production SIB to look for an unconditional state-

ment. Note that the program goes to production SIB and not production SI.

Therefore, if a conditional statement follows there will be no match and the

error will be detected.

If an ELSE symbol is encountered in the productions at EX3 after

an assignment statement or in the productions at E5 after any other legal

statement then the program proceeds to production E2 to check if the ELSE

is preceeded on the stack by the symbols THEN 1-̂ . If it is, then the proper

form of a conditional statement has been followed so far. The THEN will only

be in the stack if earlier an IF was processed properly. The THEN symbol is

placed in the postfix string and the program proceeds to SUB again to look for

an unconditional statement.

42

If in the productions at EX3 an END symbol or a ; symbol is encountered

then the program proceeds to production E3 or production E6 depending on the

symbol to check if a statement has just ended properly. All operators are

unstacked before going to productions at E3 or E6 by using the operation

COMPILE <-€• If an END or ; is encountered after a boolean expression the

IF symbol still on the stack will cause no matches to occur in the productions at

E3 or E6 and thus result in the error being detected.

Before discussing the productions at E3 and E6 it is desirable to

mention the productions at E5 which is where the program goes after accept-

ing a READ, WRITE, or GOTO statement. After accepting one of these state-

ments there must follow an ELSE, if a conditional statement is being pro-

cessed, a ; which means another statement follows, or an END which means the

end of a block or compound statement has been reached. These are the only

possible symbols which can follow a statement.

If a ; symbol was encountered then it either ended a conditional

statement which means a TLS or ELSE must be placed in the postfix string

after the statement just processed or the ; merely ended an unconditional

statement. All three cases are checked for in the productions at E6 and in

each case there must be another statement after the semicolon so the next
?

production to be executed is at SI. Note the ; is deleted immediately upon

recognition and is never placed in the postfix string. Since only one un-

conditional statement may follow a THEN or ELSE there is no ambiguity as to

whether or not the ; ends the conditional statement. According to the grammar

the ; must end the conditional statement.

In the productions at E3 an END following a statement is processed.

The END may end a conditional statement by ending a block or compound state-

ment in which the conditional statement is the last statement. The THEN or

ELSE must be outputted into the postfix string and then the program proceeds

43

to productionsat E3 to process the end of a block or compound statement.

Here and after the ; is encountered the symbol TLS is outputted into the post-"

fix string instead of THEN so that during execution it is known that no ELSE

statement follows. The next possibility is that the END ends a block or com-

pound statement which is appropriately processed. Blocks and compound state-

ments are unconditional statements and are thus reduced to a 1-? symbol in the

stack. The program proceeds to productions at E4 which check for 1 >1 >»

on the top of the stack which means the end of the original block has been

processed and syntax analysis is done. If this is not the case then another

symbol must be obtained from the scanner and the program proceeds to pro-

ductions at E5 to see how this statement (the block or compound statement)

just processed has ended.

5.2.5 Error Routines

Whenever there is no match of the possible legal symbols then an

error routine is called. Any label in the last column starting with ER is

the label of an error routine. These routines are not described because all

they do is print out the label of the error routine as= the error message and

then interpretation is stopped.

44

5.3 Symbol Table

The symbol table consists of two parts. There is a hash table of

128 locations to which an identifier can be hashed. There is also a chain of

block heads. Each block has a block head to which all identifiers declared in

that block are linked.

Each location or bucket in the hash table is a pointer to a chain

of the identifiers that hashed to that bucket. Each entry of an identifier

consists of seven items or fields of information as seen in Fig. 8(b). An

entry ,of an identifier is not in the hash table itself but only linked to the

table through the hash chain starting at the bucket the identifier hashed

to. Each item of information in an entry does not require the same amount

of space. In this design in order to maintain clarity and simplicity each

item of information is stored in the same amount of space. In a practical

implementation the structure of an entry will be more complicated to make

efficient utilization of space. The hash function will be described in the

section on execution. It only hashes the identifier name so identifiers from

different blocks with the same name are stored by chaining them in decreasing

order of their block numbers.

Since the subset is like Algol it is necessary to keep track of glo-

bal and local variables. During execution the flag field (field 3) of an

identifier entry is used to keep track of whether the particular identifier

is presently defined. Therefore, whenever a block is entered all variables

and labels declared in that block must have their flag field set to 1.

Correspondingly whenever a block is exited the appropriate flag fields must

be set to 0. To facilitate the above processes all the variables and labels

of each block are linked together using field 2. Each block has a block head

45

0

1

2

3

Surrounding Block

Next Block Head

Block Chain Link

Block Number

(a) format of block head entry

0

1

2

3

4

5

6

Identifier

Hash Chain Link

Block Chain Link

Flag

Block Number

Type

Value

(b) format of identifier entry

Hash Chain Link

(c) format of the 'table bucket entry

Fig. 8 Formats of the symbol table

46

(see Fig. 8(a) for format) which has a link to the chain of identifier

symbol table entries for its block. The block head also contains the

address of the surrounding block, the block number, and the address of the

next block head of the chain of block heads.

Another case to take care of is, the redeclaring in a subblock

of an identifier already declared. As in Algol this identifier should be

a new location and should be used until the block is exited at which time

the old declaration and location should become active again. The natural

way to take care of this is some type of a stack. All identical identi-

fiers are linked together in the hash chain in decreasing order of block

numbers. Since blocks are numbered in order of their occurrence in the

program this means that the most recent declaration of the identifier

will be found first as one goes through the hash chain looking for the iden-

tifier. The value of an identifier willl be set to zero whenever a block

is entered.

5.4 Table Routines

The basic structure and concepts of the symbol table have just

been given. The construction of the symbol table is done by what is called table

routines. During syntax analysis whenever certain symbols or constructs

are recognized, a table routine is called to update the symbol table accord-

ing to what was just recognized.

If a BEGIN is encountered followed by a declaration then a new block

head must be formed. If BEGIN END is on the stack of the analyzer then the end

of a block has been found and the appropriate processing is done. Whenever a

47

variable or label is declared then it must be entered in the symbol table.

At the end of syntax analysis the entire symbol table has been

formed. During execution all that need be done is to keep the variables and

labels up to date as execution proceeds. Whenever a block is entered the

flag field for all variables and labels in that block can easily be set to

1 by going through the chain for that block. Upon exiting a block the flag

fields can be set to 0.

Before syntax analysis various things had to be initialized. AV

must be initialized to 129 in order to reserve space for the hash table. AV

is the pointer to the next available space in the available space array SP.

SP is a string array which holds 12 characters per array element. This array

SP and the form of the symbol table are very simple and clear, and would have

to be changed for efficiency in practical implementation. Every bucket of

the hash table (the first 128 locations of SP) must be initialized to 0 since

no hash chains exist at the start of interpretation.

5.4.1 Routine EXEC1

The flow chart for table routine EXEC1 is shown in Fig. 9(a).

When the first BEGIN symbol of an Algol program is encountered this table rou-

tine is called to initialize BLKNO which will be used to keep track of the

block numbers and also P2 which is a stack pointer.

5.4.2 Routine EXEC2

The flow chart for table routine EXEC2 is shown in Pig. 9(b). Ta-

ble routine EXEC2 is called when it is definite that a block and not a

compound statement is being recognized. It is definite when an INTEGER sym-

48

Table 6 Symbol Table Routines

Table routine Function description

EXEC1

EXEC2

EXEC3

EXEC4

EXECS

EXEC6

initialization of BLKNO and P2

constructs a block head

pop-up stacks ST2A and ST2N

enters variable in symbol table SYM

enters label of outermost block in
symbol table SYM

enters label in symbol table

'< Table 7 Description of Names Used in Table Routines

TERM DESCRIPTION

AV

SP

CRB

BLKNO

ST2N

ST2A

P2

OB

Kl

TT

N

TR

ER9

a pointer to next available location in SP

an. array of available space

a pointer to first location in current block head

a number of the latest block encountered

a stack for the block numbers

a stack for the addresses of block heads

a pointer for ST2N and ST2A

a pointer to first location in last block head

a pointer for PS

a buffer in which the address of successive items of
a hash chain are stored

a buffer containing a string of 12 characters placed
there by the-scanner ' • *

a buffer in which the address of the last item processed
in the hash chain is stored

a procedure to indicate an identifier declared twice in
one block

50 start

BLKNO=0
P2=0

(a) table routine EXEC1

AV=AV+4
BLKNO=BLKNO+1

BLKNO=1?

'1
SP(CRB)=ST2A(P2)
AP(OB+1)=CRB

SP(CRB+2)=0
P2=P24-1

ST2N(P2)=BLKNO
ST2A(P2)=CRB
SP(CKB+3)=BLKNO
OB=CBB

return

start

P2=P2-1

return

(b) table routine EXEC2

(c) table routine EXEC3

Fig 9. Flowcharts for table routines EXEC1, EXEC2, and EXEC3

51

bol is found following a BEGIN symbol. This routine constructs a block head

for this block and puts the appropriate values in the various parts of the

block head. Fig. 8(a) should be referenced again at this point.

CRB will always point to the first location of the current block

head so it is set to AV the next available location in the available space

array SP. Four is added to AV next to reserve four locations as needed for

a block head.

BLKNO is then incremented to obtain the number of this block. Re-

member BLKNO is initially zero so that addition gives the correct number for

all blocks including the first one. Note that BLKNO is never decremented

since it is only used to number the blocks in the order they are encountered

in a single pass through the program. During execution BLKNO will be used

and it will be decremented then since GOTO's cause blocks to be entered many

times.

For all blocks except the first block the address of the surround-

ing block in ST2A(P2) is stored in SP(CKB), the surrounding block field. Also

to maintain the chain of block heads the address of the present block head in

CRB is stored in SP(OB+1) which is the block head chain link field of the last

block head. Note that OB is used to save the address (subscript) of the last

block head. Since none of this need or can be done for the first block head

there must be a test for the first block head so that the above actions are

not performed for that block head.

The block number and location of this block head are stored in the

parallel stacks ST2N and ST2A. The single pointer P2 is used for both stacks.

The reason for stacking this information is that when any subblocks are exited

any labels encountered must be placed in the block chain for the outer block.

Therefore, information on the outer block must be saved. BLKNO is also stored

52

in SP(CRB+3), the block number field.

Since no identifiers have been declared in this block yet, zero is

placed in SP(CRB+2) which is the block chain link. Note that CRB is saved

in OB so that the next block head can be linked to this block head to maintain

the block head chain.

5.4.3 Routine EXEC3

The flow chart for table routine EXEC3 is shown in Fig. 9(c).

When the three symbols BEGIN 1—> END are found on the stack FE then the end of

the current block has been reached and all that need be done is pop the top

elements of the stacks ST2A and ST2N by decrementing P2. This makes the block

number and starting location of the block head of the surrounding block

available again as is necessary.

5.4.4 Routine EXEC4

. The flow chart for table routine EXEC4 is shown in Fig.io(a).

Whenever a variable is declared EXEC4 is called to enter the variable in

the correct part of the symbol table. The identifier is hashed and the resultant

location in the hash table is placed in TT. SP(TT) points to the hash chain

for this location of the hash table. If TT becomes zero at any point then the

end of this hash chain has been reached without finding the variable since zero

marks the end of a hash chain. It should then be entered at the end of the

hash chain. If the identifier is encountered in the hash chain then it should

be linked into the chain just before its first occurrence. Note that each

declaration in a different block requires a different symbol table entry.

Whenever another declaration of a variable occurs in a new block, that block

has a higher block number.than any previous declarations. Therefore, since

TT=SP (TT+1),

F
TR=TT

start 53

TT=HASH(N)

TR=TT

TT=SP(TT)

c i
TT=0?

N f
N

SP(TT)=N?

SP(AV)=N
SP(AV+4)=BLKNO
SP(AV+3)=0
SP(AV+5)=0
SP(AV+2)=SP(ST2A(P2)+2)
SP(ST2A(P2)+2)=AV
SP(AV+1)=SP(TR+1)
SP(TR+1)=AV

i
AV=AV+7

return
start

(a) table routine EXEC4

T=HASH (N)I
SP(AV)=N
SP(AV+4)=0
SP(AV+5)=1
SP(AV+3)=1
SP(AV+1)=0
SP(T+1)=AV

1
AV=AV+7

return (b) table routine EXECS

Fig. 10. Flowcharts for table routines EXEC4 and EXECS

54

identifiers are kept in decreasing order of block numbers the variable'can

be linked before the first occurrence as mentioned above.

When the variable is entered into the hash chain in either of the

above cases several additional items of information must be entered. The

variable name is stored in SP(AV). The block number is BLKNO since the block

has just been entered and BLKNO has just been updated. It is stored in SP(AV+4)

The type field, (SP(AV+5)), is set to zero meaning a variable is stored in

this entry. SP(AV+3), the flag, is set to zero since it stays zero during

execution except during execution of its particular block. The entry must also

be linked into the block chain for the current block. The block chain link of

the current block, (SP(ST2A(P2)+2)) always has the address of the identifier

most recently declared in the block. This address is stored in SP(AV+2).

The address of this entry is then stored in SP(ST2A(P2)+2) to finish linking

this entry into the block chain. The linking into the hash chain is done using

the variable TR which contains the address of the entry that is to be before

the current entry. Finally AV is updated to complete the routine.

5.4.5 Routine EXECS

The flow chart for table routine EXECS is shown in Fig. 10(b). It

is possible that the outermost block has a label which will be global to the

entire program. It is entered in the hash table and is put in hypothetical

block 0. It will be left active at all times and has the lowest possible block

number.

5.4.6 Routine EXEC6

The flow chart for table routine EXEC6 is shown in Fig. i. Table

routine EXEC6 is called whenever a label is encountered during syntax analysis.

The entry of a label into the symbol table is similar to the entry of a varia-

Proc ERT9
TT=SP(TT+1)

ZEI
TR=TT

TR=TT

TT=SP(TT+1)

ST2N(P2)=SP(TT+4>?

N

N

KTT=0?

start

TT=HASH(N)

TR=TT

I
TT=SP(TT)

T1>=0?

, N /
SP(TT)=N?)

ST2NCP2)> SP(TT+4)?

r^
SP(AV)=N
SP(AV-f4)=ST2N(P2)
SP(AV-f5)=?l
SP(AV+3)=0
SP(AV+6)=K1
SP(AV+2)=SP(ST2A(P2)+2)
SP(ST2ACP2)+2)=AV
SP(AV+1)=SP(TR+1)
SP (TR+1)<±AV

AV=AV+7

ireturn

Fig. 11. Flowchart for table routine EXEC6

56

ble. The label is hash-coded and then the search through the appropriate hash

chain is performed. If the end of the hash chain is reached (TT=0) then the

label is linked onto the end of the chain. If the label is found as a label

or variable then the current block number is compared to the block number of

the entry just found. Note that the current block number must be obtained

from stack ST2N. This is necessary since labels may be found anywhere in a

block which means the given label may occur'after some subblocks and thus BLKNO

no longer contains the number of the current block. Since a label may occur

and thus be declared anywhere in a block, its block number may be greater or

less than any of the previous entries with the same name. A series of tests

must be made to determine exactly where among the series of entries with iden-

tical names the label must be linked. A test is also made to make sure the

label has not already been declared in the same block and also that no variable

has been declared with the same name in this block. This is done by merely

checking that no entry has the same name and same block number as the label

now being entered. If this occurs then error procedure ERL9 is called into

action. It prints out an error message and stops interpretation.

When the label is linked into the hash chain the process is the same

as it was for variables except for the following changes. The type field,

(SP(AV+5)), has one stored in it. The value field has the location of the

label in the postfix string, PS, placed in it. Kl still points to the label

so Kl is stored in the value field. The block number is obtained from the

top of the stack ST2N and placed in SP(AV+4), the block number field.

57

6. Executor

The last part of the interpreter is the execution of the postfix

string which the syntax analyzer produced. The configuration of the Executor

is shown in the block diagram of Fig. 12. Remember that there are actually

two parallel postfix strings as shown in Fig. 12. Buffer PS contains the sym-

bols (internal code) outputted by the analyzer and buffer PS1 contains the

semantics of those symbols. In the semantic string are the values of the con-

stants and the names of the identifiers. Buffer PS is an integer array.

Buffer PS1 is a string array; each of its elements holds 12 characters.

Execution is performed with the aid of a stack for the operands.

A pointer, Kl, is used to go through the postfix string, PS, one symbol at a

time. In general an operand is stacked whenever encountered while an operator

causes some operation on the top elements of the stack. The stack has two

fields for each entry. It has a value field and it has a kind field which

t ells whether the value is the location of an identifier or it is the actual

value of an operand. When an identifier is placed on the stack its location

and not its name is placed on the stack. Therefore, the value field can be

integer instead of string which is more efficient in general. The two fields

of the operand stack are implemented by using two parallel stacks. The value

field of an operand is stored in stack FE and the kind field is stored in stack

FE1. Both stacks use the same pointer K.

After initialization of Kl, BLKNO, CRB, and K a loop is entered as

seen in Fig. 13. This loop consists of going to a section of the executor pro-

gram depending on what symbol in PS Kl points to. That section performs the

appropriate execution for the symbol pointed at and then returns to repeat

the loop. Kl is kept updated by the individual sections of the execution of

58

from
syntax

analyzer

kind stack

Postfix Strings
of Symbols

PS(K1)

PSl(Kl)

Postfix string of
constants and

identifier names

input
buffer

Symbol Table

PRINT outpu
buffe

Fig.12. Configuration of the Executor

59

start

,r -
1

i
*Routine i

i

i

!

'

, 1
+Routine

i

»
P

P2=0
Kl-1
K=0
BLKNO=0
CRB=ST2A(P2+1)

i '

'

,

GO TO P(PS(K1))

" i

• * •

1'GOTO

| GOTO i
i Routine i

i
' i

,

i._ j

'

1

HALT

'
HALT

Fig.13 Flowchart of actual execution

60

the execution program. An error or the reaching of the symbol HALT causes the

stopping of the executor and of the entire interpreter.

6.1 BEGIN and BEG Routines (Figs. 14 and 17)

Whenever a block is entered it is necessary to set the flag fields

of all variables and labels declared in that block. When a BEGIN symbol is

encountered a block is being entered. When a BEG symbol is encountered a

compound statement is being entered and nothing need be done to the symbol

table. The BEG routine merely increments Kl by one and ends.

As in the table routines BLKNO will keep track of block numbers so

that whenever a block is entered it is only necessary to add one to BLKNO to

get the number of the block being entered. Since there are GOTO's to be exe-

cuted it will be more difficult to keep BLKNO correct. In particular during

the execution of a GOTO symbol much work must be done to keep BLKNO correct.

CRB will point to the block head for the block being executed.

The routine for the BEGIN symbol starts by adding one to BLKNO to

obtain the correct block number and then going through the block head chain

to find the block head for this block. It is only necessary to go in the

one direction to find the block head becuase of the order in which the block

heads were formed and linked together. A subblock is always formed and linked

somewhere after the block it is contained in.

Next the routine proceeds to activate (set to one) the flag fields

of all labels and variables of this block and also intializes all variables to

zero. This is done easily since they are all linked together with the block

head. Finally the pointer Kl is incremented so that it points to the next

symbol and the routine ends.

Table 8 Names Used in Execution Routine

61

Name Description

BLKNO

FE

FE1

PS

PS1

K

Kl

CRB

T

FIND

HASH

C3

the number of the next block to be entered !
minus one]

value operand stack

kind operand stack

postfix string of symbols

postfix string of identifier names and con-
stants

pointer for FE and FE1

pointer for PS and PS1

address of block head of current block

temporary variable

integer procedure which finds address of
identifier ±n symbol table

integer procedure which hashes identifier

a counter

62
start

t
1>FIND

K=K+1

FE1(K)=1
FE(K)=L

1
K1=K1+1

return

start
C

BEGIN

Fig. 14 Flowcharts of
I, C,BEGIN , and
END routines.

J FE(K)=PS1(K1)
[FE1(K)=0

start

BLKNOBLKNOKL

SP(CRB+3)=BLKNO?

T=SP(CRB+2) ^ *

C

K1=K1+1

N
CRB=SP(CEB+1)

SP (T+6) =0

T=0? SP(T-I-3)

K1=K1+1

i-ar ^KJJ-IV;

. * -sr T=O?
^

N ^ SP(T+3)=0

CRB=SP(CRB)

K1=K1+1

T
return

6.2 END and ENDE Routines (Figs. 14 and 17)

V

When an ENDE symbol is encountered the end of a compound statement

is reached and nothing need be done to the symbol table. The ENDE routine in-

crements Kl by one and ends. The END routine must update the symbol table

since a block is being exited. First all variables and labels declared in

the block being exited are deactivated by setting their flag fields to zero.

Then the address of the surrounding block is obtained from SP(CRB), the sur-

rounding block field of the block being left, and stored in CRB so that CKB

will contain the address of the block head of the block which is once again

the current block. Pointer Kl is Incremented by one so that it points to

the next symbol and then the routine ends.

6.3 I Routine (Fig. 14)

When the symbol for an identifier is encountered a simple routine

proceeds to place its address (subscript in SP) in the operand stack. The

first action is the calling of the integer procedure FIND which obtains the

address (subscript in SP) of the identifier stored in PSl(Kl). That address

is stored in L. It is then stacked on the operand stack FE-which is the value

field. A one is also stored in the parallel operand stack FE1 which is the

kind field. A one in FBI means there is the address of an operand in FE

v?uile a zero means that the actual value of the operand is in FE. Pointer Kl

is then incremented by one and the routine ends.

6.4 C Routine; (Fig. 14)

When the C symbol is encountered in PS(K1) then its value stored in

PSl(Kl) is stacked on the operand stack FE. A zero is stored in FE1 to signify

that the actual value of an operand is in FE. Kl is incremented by one and the

routine ends.

6.5 READ and WRITE Routines (Fig. 15)

The READ routine reads a number off a card and then stores that

number in the symbol table value field of the variable whose address (sub-

script) is on top of the operand stack. The WRITE routine on the other hand

obtains the value of the variable whose address is on top of the operand stack

and writes out that value. At the end of both routines the top element on

the operand stack is removed by decrementing by one K. Kl is incremented by one

and the routine ends.

6.6 tj *> /, +, and - Routines (Figs. 16 and 17)

+, *, /, +, and - are all binary operators and the routines that

are called when they are encountered are almost identical. In all five rou-

tines the first action is to check the top two operands of the operand stack

to see what is the kind of their values. If the kind field of either is

one, meaning the value is the address of a variable, then the value of the

variable is obtained and the address is replaced with the actual value of

the variable. The two operands are then combined as the particular operator

in question requires and the result is placed in the location below the top of

the stack (second stack location). The kind of this location of the stack is

set to zero since an actual value has just been stored. The stack pointer K is

decremented by one so that the result is on top of the stack and then finally

Kl is incremented by one.

6.7 = and ^ Routines (Fifi. 16 ">

= and ̂ can be considered binary operators. As for the other binary

operators the first action is to make sure that the top two operands on the

operand stack are actual values. These two values are then compared. If

they are the same then the result is one (true) if it is the = routine and

READ start read a
lumber off a
card into T

WRITE start T=SP(FE(K)+6) print value
in T

K1=K1+1

return

K=K-1
K1=KH-1

I

FIND

T=SP(T+1)

I FIND=T

Treturn

start

T=HASH(PS1(K1))

I
T=SP(T)

c T=0?

SP(T)=PS(K1)?

Proc ERL11

Proc ERL15

>-i ^S-p (T)=PS (Kl) ? I

T=0?
Y

Fig. 15. Flowcharts of READ and WRITE routines and of procedure FIND

66

start N N
FE1(K-1)=?

i
FE (K-1)=SP (FE (K- 1)4-6)

return
K=K-1
K1=K1+1

3FE(K-l) = (FEi

1
FE(K-1) =]

start

*

r =1?

1
FE(K)=SP(FE(K)+6

FE(K-1)=1

return ^-
K=K-1
K1-K1+1

FE1(K-1)=1?

I
FE(K-l)=SP(FE(K-l)+6 -

N C T7C1 / V _. 1 N — TT17 f V \ 7
J?ri ^K.—1^ —J?£j V.^-/ •

C-l)=0

start

start
t

return

start
*

^ N*\FE1(K) = 1? J

FE(K) =

-<
FE(K)=SP(PE:(K)+6

K=K-1
K1=K1+1

=1?

=SP(FECK)46

V^V T

K1=K1+1

ret

FE (K.-15 =SP (FE(Kl-l)4-6

-l)=FE(K.-l)t FE.CK.),
FElCK-l)=0

-l) = SPCFE(K-l)+6

Ll=FE(K-!
FE1CK-1)=0 ^

Fig. 16 Flowcharts of =, 4•> :=> * » and * routine

start N

*

7

-̂ FE1(K-1)=1?

rE(R-l)=SP(FE(K-l)+6)

return
K=K-1
K1=K1+1

FE(K-1)=FECK-1)/FE(K)
FE1(K-1)=0

start N

FE(R)=SP(FE(K)+6)

return K=K-1
K1=K1+1

:-i)=i? "•• N
'•

FE(K-l)=SP(FE(K-l)+6)

FE(K-1)=FE (R-1)+FE(K)
FE1(K-1)=0

iH

start FE1(K)=1?

return1 -̂
K=K-1
K1=K1+1

FE1(K-1)=1?

FE(K-l)=FE(K-l)-FE(K)
FE1(K-1)=0

HALT start -^ end of interpretation

^.return

NEC statt /rri r r V
V1 1' • J

iY

FF (T^'is'iP (VFfK^+d}

I i
FFTK^— — VF ^K"l

1
V"\—V~\-l--\ —

BEG

ENDE

ELSE

start

start

start

start

K1=K1+1 |-

K1=K1+1

return

return

K1=K1+1 -^- return

K1=K1+1 return

Figure 17
Flowcharts of /,+ ,-,

HALT, L, NEG, BEG,ENDE
ELSE, and TLS routines

68

zero (false) if it is the ̂ routine. If the two values are different then the

result is zero if it is the = routine and one if it is the 4 routine. The

result is then placed in the second location of the stack. K is decremented

by one and Kl is incremented by one.

6.8 ;= Routine (Fig. 16)

:= means that the value of the top operand of the stack should be

stored in the symbol table value field of the variable whose address is in

the second location of the operand stack. The first action is thus to make

sure there is an actual value on top of the operand stack. That value is

then stored in the appropriate value field. Two is then subtracted from K

since neither operand is needed any longer. Kl is decremented by one as usual.

6.9 L Routine (Fig. 17)

When an L symbol is encountered a label is being encountered and

nothing need be done. The : has been eliminated so all that need be done is

increment Kl by one and then the routine ends.

6.10 NEC Routine (Fig. 17)

NEC is a unary operator. The top operand is made an actual value

and then the negative of that value is stored in its place on top of the

stack. Kl is incremented by one.

6.11 IF Routine (Fig. 18)

The important thing to remember with conditional statements is that

the syntax analyzer has already checked for all errors and therefore this exe-

cution part can assume the correct symbols will be where expected. In particu-

69

^. return

return

Fig. 18, Flowchart of the IF

70

lar the THEN and ELSE for a given conditional statement will be in their pro-

per positions.

When an IF symbol is encountered the top operand on the stack is a

value, one or zero. If it is a one then the boolean expression was true and

the THEN statement is to be executed. If it is zero then the ELSE statement

is to be executed. In either case after it is decided which statement is to

be executed the operand is removed from the top of the stack by decrementing

K by 1. If it was true then the statement immediately following the IF symbol

in PS is the THEN statement so all that need be done is increment Kl by one

and end the routine. When the THEN symbol is encountered then the THEN

statement is over and at that point the skipping of the ELSE statement will

be taken care of.

If the boolean expression is false then the THEN statement must be

skipped so that the ELSE statement is the next statement executed. It is not

possible to just go through PS until a THEN symbol is encountered. Since

a THEN statement may be a block or compound statement which may itself have

conditional statements, blocks or compound statements it necessary to keep

track of how many BEGIN, BEG, END, and ENDE symbols are skipped. The block

or compound statement may also have labels so the checking for a block (a

BEGIN symbol) or compound statement (a BEG symbol) must continue if there are

labels (L symbols) until the first symbol which is not an L synfcol is reached.

Then if there is not a BEGIN or BEG symbol all that need be done is to keep

skipping symbols until a THEN or TLE symbol is reached. Kl is incremented by

one and the routine ends.

If there is a BEGIN or BEG symbol then it is necessary to continue

skipping symbols until the end of the block or compound statement is reached.

To do this it is necessary as mentioned above to keep count of the BEGIN,

END, BEG, and ENDE symbols encountered. Only when the matching END for the BEGIN

71

or matching ENDE for the BEG is encountered has the whole block or compound

statement been skipped. Only the BEGIN, BEG, END, and ENDE symbols must be

checked'for. cThis is done by counting the BEGIN and BEG symbols in the counter

C3. When an END or ENDE is encountered one is subtracted from C3. Therefore,

when C3 reaches zero the entire block or compound statement has been skipped.

The syntax analysis has made sure that all BEGIN symbols are matched by END

symbols and all BEG symbols have matching ENDE symbols. It is no longer

necessary to deal with such problems here. Kl is then incremented by two

so that the statement after the THEN symbol is executed next. Note that it is

assumed that a THEN symbol follows the block or compound statement since it was

the job of the syntax analyzer to produce only proper postfix code.

One other action is performed when skipping blocks. BLKNO must be

incremented by one for every block skipped so that it has the proper value the

next time it is needed.

6 .12 THEN Routine (Fig. 19)

When a THEN symbol is encountered then the end of- a THEN statement

has been reached and it is necessary to skip an ELSE statement. This process

is identical to the process just described for skipping a THEN statement ex-

cept an ELSE symbol instead of a THEN symbol marks the end of the statement

being skipped.

It should be noted here that a GOTO branch into a conditional state-

ment is handled properly as it is in standard Algol. A transfer to the THEN

statement is legal and at the end of the execution of the statement the ELSE

statement is skipped because a THEN symbol is encountered which results in the

skipping of the ELSE statement as mentioned above.

72
ST^

THEN . |

r— 1

.

K1=K1+1

|
1" „ •" 1 fcr/^K.1— K-irl ^ 1 Pi>(K.l) =

A v

/ •pc/v"i _

Y

r ^^- , ' j
.i' r—

~\JL— — — ̂ ^ C3=l
BEGIN?; BLKNO=BLKNO+1
N -,„ ,, ,r r,

[

BEG?] ^ C3=l j— ^

v
K1=K1+1 ^ —

f
1 T ' ^^ C3=C3-1 ^ 1 1 *• ̂ «.j.; i-.i.i^.. j

|
/^ "\ M

^TTK1=K1+1

return

1

(^ C3=0?

f
i^ L_/PS(K1)=ENDE?"S\

m
N /^ "X

. f P°. <"K1 1— P.FPTM0 1

I"

BLKNO=BLKNO+1

S" ~\ N

r-
'

AN
J

^Y
Kl=Kl+2 II
return

Fig. 19 Flowchart of the THEN routine

73

6.13 TLS Routine (Fig. 17)

The TLS symbol is encountered at the end of the execution of the

THEN statement of a conditional statement which has no ELSE statement. All

that need be done is increment Kl by one so that the first symbol of the next

statement is pointed to and then the routine ends.

6.14 ELSE Boutine (Fig. 17)

The ELSE symbol is encountered at the end of the execution of an

ELSE statement and all that need be done is increment Kl by one so that first

symbol of the next statement is pointed to.

6.15 GOTO Routine (Fig. 20)

This routine is the most complicated execution routine because a

jump across or out of blocks requires updating the symbol table and several

block variables. Nothing need be done for compound statements so BEG and

ENDE symbols are ignored.

The first action is to check if the top operand,on the operand stack

is in fact a label. If it is not then there is an error and procedure ERL 40

is called to print out an error message and end interpretation. Otherwise

the value of the label is obtained and stored in T. Note that an undefined

label will result in an error even before the GOTO routine is reached. The

address in the symbol table of the label is fetched and placed on the operand

stack by the I routine before the GOTO symbol is encountered. If the label is

undefined in this block then procedure FIND of the I routine will not find the

label in the symbol table and will cause error termination of the interpretation.

The value of the label is the location in PS of the label. A test is then made

GOTO

start -*cSP (FE (K)+5)=l? T=SP(FE(K)+6)
--, N

V

EProc ERL40 r ±
K1=K1+1

N

I
V

N i
1=01 N

BLKNO=BLKNO+1
C3=l

SP(T+3) =

CRB=SP(CRB)

I
BLKNO=BLKNO+1
C3=C3fl *1

T
T=K17

T=SP(CRB+2)

T=0?

BLKNO=BLKNO-1
C3=l

K1=K1+1

return

BLKNO=BLKNO-1
CRB=SP(CRB)

S(TQ)=BEGIN?

C3=C3-1 |

N

I
BLKNO=BLKNO-1
C3=C3+1

Fig. 20, Flowchart of the GOTO routine

75

to see whether this GOTO branch is a forward or backward branch. The branch

is then processed in one of two ways depending on the result of the test.

If T is greater than Kl then it is a forward branch since Kl points

to the present position in PS. The routine then proceeds to go through PS

symbol by symbol until it reaches the Tth symbol. Whenever an END symbol is

encountered then a block is being exited and it is necessary to deactivate

all the variables and labels declared in the block being exited. This is done

easily as usual since all entries for that block are linked together. CRB

is loaded with the address of the surrounding block which is now becoming the

innermost block. The address of the surrounding block is in SP(CKB), the

surrounding block field of the block head of the block being exited.

If a BEGIN symbol is encountered then the routine continues toward

position T of PS, but it keep tracks of the blocks being passed by. These

blocks are not active since they were not global or local at the start of the

execution of the GOTO. The label cannot therefore lie in these blocks. If

it had been in one of these blocks there would already have been error

termination since the label was not active. Nothing need be done to the

variables and labels in these blocks since they will not be active at the

end of this routine. Therefore, these blocks are passed through without

doing anything except incrementing BLKNO by one each time a block is passed

through (each time a BEGIN symbol is encountered). When Kl becomes equal to

T the label has been reached so Kl is incremented by one and the routine ends.

If T is less than Kl then the branch is backward and a slightly

different process is followed. Again the routine proceeds through PS this time

decrementing Kl and processing the symbols encountered.

This time if a BEGIN symbol is encountered a block is being exited

and the labels and variables declared therein must be deactivated. The routine

goes through the chain for that block deactivating the entries. CRB is loaded

76

with the address of the block head of the surrounding block which is now becoming

the innermost block. This address is obtained from SP(CRB). BLKNO must be

decremented by one to keep it updated. If one remembers how block numbers

are a$signed then it is clear that BLKNO must be decremented by one here.

If an END symbol is encountered then a situation similar to that in

the forward branch occurs. The END means the end of a block which is not active

is being encountered. This block and any of its subblocks are to be skipped

since the branch cannot be into any of these blocks. Also no changes are to

be made to any variables and labels declared in these blocks. BLKNO must be

kept updated again by being decremented by one for every block passed through

(for every END symbol encountered). When the matching BEGIN for the END

that started this block is encountered then the routine continues going through

PS until T equals Kl. Any END or BEGIN symbols cause the above procedures to

be followed. Again when Kl reaches T, Kl is incremented by one and the routine

ends.

6.16 HALT Routine (Fig. 17)

The last symbol in PS should be the HALT symbol. It causes the

execution of the program to terminate and the end of the whole interpretation

of this program also.

6.17 FIND Procedure (Fig. 15)

FIND is an integer procedure which takes the identifier stored in

PSl(Kl) and produces as its result the address (subscript) of the symbol

table entry of that identifier. The first action is to apply the integer pro-

cedure HASH to the identifier which produces a subscript (bucket) in the hash

table. The procedure then proceeds through the hash chain starting at this

subscript (or bucket) until the identifier in question is found. If the iden-

77

tifier is not declared anywhere in the program then it will not be found in
<tf

the chain and error procedure ERL11 is called to print out an error message

and end interpretation.

If the identifier is found the procedure continues through the chain

to find the first entry of the identifier that is active. The subscript of

this entry is returned as the result of procedure FIND. If none of the entries

of this identifier are active then the error procedure ERL15 is called to

print out an error message and end interpretation.

6.18 HASH Procedure

The procedure HASH is an integer procedure which takes an identifier

name and converts it to an integer between 1 and 128. Each identifier is

considered to be twelve characters long. If the identifier is less than

twelve characters long then blanks are filled in at the end of the identifier.

The characters are then converted to binary using the Univac 1108 character

code (8). This produces a 72 bit result. The EXCLUSIVE OR operation is per-

formed on the first and last 36 bits producing a 36 bit result. The first

five seven-bit sections of the 36-bit result then have the EXCLUSIVE OR oper-

ation performed on them in succession to .produce a seven bit result. One is

added to this result to produce a number between 1 and 128 and this number is

the result of the procedure HASH. This number is the subscript (or bucket) of

the given identifier in the hash table. The hash table is the first 128 lo-

cations in the available space array SP.

78

7. Interpretations of Sample Programs

In order to illustrate how the interpreter functions, interpretation

of two programs are described below.

7.1 Program 1

Figs. 1 and 2 should be consulted to aid in the following of the inter-

pretation of program 1 shown in Fig. 21. Program 1 computes the factorial of

the number read into NUM and prints out the result.

7.1.1 Initialization, Scanner, and Syntax Analysis

The space for the hash table is reserved first and the buckets are

all set to zero. Cl and C2 are initialized and then procedure GC is called to

load the first character into buffer CH. The analyzer then starts and calls

the scanner to place the first symbol on stack FE.

The scanner does the converting of the input program into the sym-

bols shown in Table 2, but it does not do this all at once. It obtains the

next symbol only when a request to do this is made by the syntax analyzer. In

Fig. 22 are the symbols that are passed to the syntax analyzer by the scanner.

The symbols are in the order they are passed, but not in the actual form they

are passed in. As has been done throughout this report the symbols are given,

in place of the internal code which is actually used in an interpreter. For

I and C symbols the actual identifier or constant is passed also and is given

below the symbol in Fig. 22.

The syntax analyzer also controls the building of the symbol table

by calling table routines at appropriate times. Since program 1 in Fig. 21 has

only one block only a single block head is formed. The variables NUM, I,

79

BEGIN INTEGER NUM, I, TEMP, NFACT;

RE AD (NUM) ;

TEMP:=1;

l:=l;

CONTINUE I:=!+!;

TEMP:=TEMP*I;

IF I=NUM THEN NFACT:=TEMP ELSE GOTO CONTINUE;

WRITE(NFACT)

END

Fig. 21 Sample Program 1 (Calculation of N factorial)

BEGIN INTEGER NUM,I;

1=1;

BEGIN INTEGER TEMP,NUM;

TEMP=1;

NUM=2;

BEGIN INTEGER NFACT,NUM;

NFACT=TEMP;

NUM=NFACT

END

END

END

Fig. 26 Sample Program 2

80

•~r

UA'JLJ.

J—

w
H

a

H
U

25

M

25
M
H
2!
8

O

M H

H H

M M

2!
S

O

CO
•J

H

i
2i

B'
H 2!

H
H
tf

'U
0)
CO

0)
rC
4J

H
Q)

"2H
Q fl

JS Mw s
C CM

•H
H

to o
4J M-l

S ^

0) N
C >i
U fl)

o
CO CO
>H JJ
0) £

•H £,
>H CD
•H
4-1 (1)
C ,£
0) U

00
C M

•H Q)
'^ 0

o c3
d O
03 CO
0)
M <u
H rf3
O 4->
O

CO
rH
O

81

TEMP, and NFACT are placed in the hash table and linked together in a chain

from the single block head. The block head is formed when the BEGIN symbol is

encountered. The variabels are placed in the symbol table when they are en-

countered in the declaration. CONTINUE is entered in the symbol table as a

label when it is encountered. It is linked in the block chain also.

The contents of the symbol table at the end of syntax analysis is

given in Fig. 23. It should be compared with Fig. 8 to see what has been

entered in the fields of the various entries. Note that the hash table which

is locations 1 through 128 contains zeroes except where the identifiers have

been linked to buckets. Only one variable or label has been linked to each

bucket so all the hash chains consists of only one entry. Since all the var-

\
iables and labels are declared in the same block they are all linked together

through the third location (field two) of each entry. The location of the

label CONTINUE in the postfix string PS is stored in the value field of CONTINUE

in the symbol table.

At the end of syntax analysis the entire input program has been

processed and converted to the postfix strings PS and PS1. The postfix

strings produced for program 1 are shown in Fig. 24. Again.the symbols and =

not the internal code are shown in the Fig. 24. The variable names and con-

stants saved in the parallel string PS1 are also shown.

7.1.2 Execution

The postfix string PS and the parallel string PS1 are executed by

the interpreter next. As mentioned in the description of the execution part of

the interpreter the two parallel stacks FE and FE1 are used to perform exe-

cution of the postfix strings PS arid PS1. The first thing done during exe-

cution is the initialization of the pointers K and Kl. For keeping track of

82

Location
Number

Hash table
Locations 1-128

Location
Number

23

64

72

83

106

140

147

161

154

133

(All other locations of
hash table contain 0)

129
130
131
132

Block head 1

154
155
156
157
158
159
160

.1.61
162
163
164
165
166
167

NFACT
0
147

CONTINUE

154

10

161

133
134
135
136
137
138
139

NUM

140
141
142
143
144
145
146

133

147
148
149
150
151
152
153

TEMP

140

Fig. 23 The contents of the symbol table at the end of syntax
analysis for Program 1

b3

oo

Wf
sriM HS

m

I

egn la

VJ
PH

vO

IT)

r^

o\

J

1

•

U M

„
CM

eg

,— |

i

M H

1

M H

o
eg

t-H

j

B
25
H
H

11̂

OO
rH

i

M

II

gj
MS|

i
»i
ii
1i
f

!

*

M M

B
eg
CO H a

w

CO

Ox
eg,

oo

vO
eg

eg

O

M H

H
U

CO

CO
CO

2

60
O
1-1

PM

1-1
O

<4H

•a

s
a.

CO

13

C/3
PM

(0
00
a

•rl
M
4-1
to

O
PH

eg

00
•H

84

the block structure BLKNO and CRB are Initialized. The loop which performs

the execution is now entered using the symbol pointed to by Kl to decide

which execution routine is to be entered.

The appropriate routine is branched to by the use of a GOTO and a

switch (the equivalent of a computed GOTO in FORTRAN) with PS(K1) as the argu-

ment.

The first symbol is a BEGIN symbol so the BEGIN routine is entered.

At this point the operand stacks FE and FE1 are empty. BLKNO is incremented

by one and the first and only block head is found. By proceeding through the

block chain the flags of the entries NUM, I, TEMP, CONTINUE, and NFACT are

set to one. The value parts (field 6) of the variables are also set to zero

while the value part of the label CONTINUE is left unchanged. At the end of

the routine the stacks FE and FE1 are still empty. In Fig. 25(1) the states

of FE, FE1, and Kl after executing the BEGIN routine are given. Note that

only the first three locations of the stacks FE and FE1 are shown since no more

than three elements are ever on these stacks during the execution of program

1. Since PS and PS1 are never altered during exeuction only the pointer

Kl is given and Fig. 24 should be consulted to see what symbol Kl is pointing

to.

The next symbol is I and the I routine causes the address of the

identifier NUM stored in PS1 to be placed on stack FE and 1 to be placed on

stack FE1. Fig. 25(2) shows the state of the stacks and pointer Kl after the

I routine has been executed.

Next a READ symbol is encountered and its routine causes a number

to be read off a data card. It is assumed that the number four is on the data

card. The number is stored in the value field of the symbol table entry of

the variable NUM. The stacks FE and FE1 are then emptied (Fig. 25(3)). The fi-

gure specified here and those specified throughout the rest of this section

M
O

15

B

* 4

m !
CN ;

:W Wm
CM

oo
CM

r^

-*m
rH

„....

B

rH

rH

rH
w
u

CM
II

3
rH

E

00
C*sJ
||

*

CTi O
CM CO

-*

W
ti

rH
H

CO

ro
CO

CM
CO

g

i
i
i

,_,!

f

CO
CO

co
.Xt)
«B
-P -H
co o

•H

g

0)

0) O
A 0)
j-> ,c en

W a)
*H . 00
0 «*H CO

O 4J
01 M

5 g
O Vl

« -rl 60
<D rH H O

m
CM

oo
•H
Pn

CM O

I

O <-H

rHJ

s Kl

iQ.u

<*

4B

i

d
JH

•̂

rH

i-H
a
ij

oo

rH

oo

CS

rH

B,

C

-

M

O
CM

rH
±4

^^ X-N

CTi O
rH CM

CM

§
rH

B

i-H

H

B

CM
CM

fl

(V

^

O•a

1

-

rH

i
M

in w
-H
a
n

CM

rH
B

rH

B

CM
CM
CM

CO in VO
CM

CO!
co;
rHi

CM

rH

co

!r4

B
r-f

b
in
u

' i

B
oo

U Oi

BS ±4
d

s

a
XI

f
i

rH

rH

iHr-

CO
rH
II

00

H

CO oo CM CO

86

give the states of the stacks and of pointer Kl at the end of the routine

described.

In Figs. 25(4) and 25(5) it can be seen that the address of the vari-

able TEMP and the value of the constant one have been stored on the operand

stack by the appropriate routines. Each figure shows the results of the exe-

cution of a routine.

Next a := symbol is encountered and the routine causes the constant

one to be stored in the value field of the symbol table entry of the variable

TEMP. The stack is then emptied (Fig. 25(6)).

The same process is performed next on the variable I. The constant

one is stored finally in the value field of the symbol table entry of I.

Figs. 25(7), 25(8), and 25(9) shovnthe result of the three routines executed.

An L symbol is encountered so all that is done by the L routine is

to increment Kl so that the next symbol is processed (Fig. 25(10)).

In Figs. 25(11), 25(12), and 25(13), it can be seen that the ad-

dresses of the variables I and I are stored on the operand stack and the value

of the constant one is stored on the operand stack since the appropriate sym-

bols are encountered.

The symbol + is encountered next. The top operand stack element is

value (FE1(K)=0) so it is not changed, but the second stack element is an

address (FE1(K-1)=1) so the value of the variable is obtained and replaces the

address. The top two stack elements are then added producing the result of 2.

This value then replaces the second stack element and the kind field in FE1

is set to zero. The pointer K is decremented so that the result is now on top

of the stack (Fig. 25(14)).

A := symbol is encountered and since the top stack element is value

that value is stored in the value field of the symbol table entry of the

variable I whose address is the second stack element. The stack is again emptied

(Fig. 25(15)).

s;

In Figs. 25(16), 25(17), and 25(18) the addresses of the variables

TEMP, TEMP, and I are stacked since the symbol I is encountered three times

in succession. Then the symbol * is encountered. The values of the two top

operands are obtained easily since their addresses in the symbol table are on

the stack. The two values are multiplied together and the result, 2, replaces

the second stack element. The kind field is set to zero. K is decremented

by one so that the result is on top of the stack (Fig. 25(19)).

A := symbol is encountered so the value 2 which is the top operand

stack element is stored in the value field of the symbol table entry of the

variable TEMP whose address is the second stack element. FE and FE1 are

again emptied (Fig. 25(20)).

Two consecutive I symbols cause the addresses of the variables I

and NUM to be placed on the operand stack (Figs. 25(21) and 25(22)).

The symbol = causes the values of the top two operands to replace

their addresses. The two values are then compared. Since the value are differ-

ent a zero replaces the second stack element which is promptly made the top

stack element by decrementing K by one (Fig. 25(23)). The values of I and

NUM have just been compared. The value of I is 2 and of NUM is 4. NUM con-

tains the number the factorial of which program 1 is computing. When I and

NUM have the same value then TEMP will containi'the desired result. A con-

ditional statement is being processed and the top value of the operand stack

now indicates which part of the conditional statement is to be executed.

The next symbol is an IF symbol. Since the top stack element is

a zero, the THEN statement of this conditional statement must be skipped.

The stacks FE and FE1 are emptied. The IF routine then proceeds to go through

PS symbol by symbol looking for the ELSE statement. Since the THEN statement

is not a block or compound statement the routine continues incrementing Kl

until a THEN or TLS symbol is encountered. When Kl becomes 28 a THEN symbol

88

is encountered. Kl is incremented by one and the routine ends (Fig. 25(24)).

An I symbol is encountered next so the address of the identifier

CONTINUE is placed on the operand, stack FE (Fig. 25(25)). Next a GOTO symbol

is encountered. The GOTO routine* obtains the location in PS of label CONTINUE

whose address in the symbol table is the top operand stack element. Since

the label is earlier in PS than Kl presently points the routine proceeds to

back up by decrementing Kl until Kl reaches the label which is in PS(10).

The routine checks for either a BEGIN or END -symbol each time before it de-

crements Kl by one, but no such symbols are encountered. Eventually Kl be-

comes 10 so Kl is incremented and the routine ends with Kl equal to 11 and the

stack empty (Fig. 25(26)).

Execution continues but it is processing the same symbols again

with new values for some of the variables. Eventually the conditional

statement is reached again and since I is three this time it will still not

be equal to NUM so the GOTO will be.reached and the loop will be repeated

again. TEMP will have value 6 .after the second pass through the loop. The

third time the conditional statement is reached I will have value 4 so it will

be equal to NUM and a different part of the IF routine is entered. All this

part does is empty the operand stack which had a 1 (true) on it and increment

Kl by one so that the THEN statement is executed instead of skipped. (Fig.

25(27)).

Two consecutive I symbols are encountered so the address of the vari-

ables, NFACT and TEMP, are placed on the operand stack (Figs. 25(28) and 24(29))

A := symbol is encountered so the value of the top operand is obtained and re-

places the address on top of the stack. This value is the value of TEMP which

is 24 after the last time through the loop. It is the desired result i.e.,

NUM!. The value is then stored in the.value field of the symbol table entry

of NFACT whose address is the second stack element. The stack is emptied and

Kl is incremented by one to 29 (Fig. 25(30)).

89

A THEN symbol is encountered which means an ELSE statement is next

and must be skipped. This is done by incrementing Kl until the ELSE symbol

is reached. The THEN routine must check for a block or compound statement

but since none is found all that need be done is increment Kl until the ELSE

symbol is reached. Kl is incremented by one so that the first symbol after

the ELSE symbol will be the next to be executed (Fig. 25(31)).

An I symbol is encountered so the address of the variable NFACT is

stacked (Fig. 25(32)). A WRITE symbol is encountered next so the value, 24,

of the variable NFACT is written out. The stack is emptied one last time

(Fig. 25(33)).

An END symbol is next so the END routine proceeds to deactivate the

variables and labels declared in this block. Finally the HALT symbol is

reached. The execution and the interpretation of the program are ended.

7.2 Program 2

Fig. 26 shows program 2. The program does not compute anything of

interest, but it is given as a simple example of a program with a more compli-

cated symbol table than the last example. Fig. 27 shows the _symbols in the

order they are passed by the scanner to the syntax analyzer. It also shows

the identifiers and constants which are passed along with the symbols I and C.

In Fig. 28 the output of the syntax analysis is shown. The execution of this

program is even simpler than that for the last program except that there are

more BEGIN and END symbols in order to activate or deactivate identifier

at the proper times. The execution of program 2 is not described, but Fig. 29

should be consulted since the symbol table for program 2 is given there.

For program 2 there are three block heads. Each block head has a

chain of the identifiers declared in that block. This chain is utilized

during the execution to activate all the identifiers for that block when it is

90

M M

M M

8w
H
S3

IS
M
O

M

W

S3

o
w

Ow

O

H
U

3
13a

w

H S5

(1)
N

a
4-J

CO

0)

O
4J

0)

I
O
(0

0)

Cvl

(U M
co bO

a s
a a,
<u M

H
<U

0)

CO
I-l
o

CO

r^
(M

00
•H
Fn

CS

rl
00

s
PM

CO O
CM

13
O
Vi

O
W

CS
W
pa

CO
PM
T3

s

CO

H
U

CO
PL,

CO
00

4J
co

O H CM
§

PM

H H H 2

oo
CM

Bo
fd
PQ oo m

91

CO CO

92

Location
Number

Hash table
Locations 1-128

Location
Number

23

64

83

106

[140

151

169

176

(All other locations of hash
table contain 0)

129
130
131
132

133
134
135
136
137
138
139

140
141
142
143
144
145
146

Block head 1

147
140

NUM

0

133

158
159
160
161
162
163
164

165
166
167
168

169
170
171
172
173
174
175

176
177
178
179
180
181
182

NUM
133
151

Block head 3
147

176

NFACT
0
0

NUM
158
169
0

147
148
149
150

Block head 2
129
165
158

151
152
153
154
155
156
157

TEMP
0

Fig. 29 State of the symbol table at the end of syntax analysis
for Program 2

93

entered and to .deactivate them when it is left.

The bucket in the hash table at location 106 has a chain with more

than one entry. These entries happen to be the same identifier which has

been redeclared several times in different blocks and there is an entry for

each declaration. Note that these entries are kept in order according to

block numbers in decreasing order. The linking together of block heads can

be seen in Fig. 29.

8. Acknowledgment

The author wishes to express his thanks to Professor Yaohan Chu

for his guidance in the architectural design and his assistance in prepar-

ing the manuscript, to Leonard S. Haynes for his assistance in syntax analy-

sis, and to Nancy Nowell for her typing.

9. References

1. P. Baumann, et al., "Introduction to Algol", Prentice-Hall, Inc., 1964.

2. H. Bloom, "Design and Simulation of an Algol Computer", Tech. Report 70-
118, Computer Science Center, University of Maryland, June, 1970.

~ . - * - - , _ - - « * - * • -

3. A. Evans, "An Algol 60 Compiler", Annual Review in Automatic Programming
4, Pergamon Press, 1964, pp. 87-124.

4. D. Cries, "Compiler Construction for Digital Computers", John Wiley &
Sons, Inc. ,1971.

5. J. Icchbiah and S. P. Morse, "A Technique for Generating Almost Optimal
Floyd-Evans Productions for Precedence Grammars", Comm. of the ACM,
August, 1970.

6. P. Naur, Editor, "Revised Report on the Algorithmic Language Algol 60",
Comm. of the ACM, January 1963.

7. T. Signiski, "Design of an Algol Machine", Tech. Report 70-131, Computer
Science Center, "University of Maryland, September, 1970.

8- Processor and STorage Programmers Reference Manual for Uhivac 1108, Docu-
ment No. UP-4053, Rev. 1, Sperry Rand Corporation, 1966, 1970.

94

Appendix A, BNF Description of an Algol Subset

2.

3. <V>::=<!>

4. <L>::=<!>

5. <P>::=<UN

6. <F> ::=.<?> <F>4<P>

7.

8. <AE>: :

9. <BE>::

10. <AS>: :=<V>:=<AE>

11. <GTS>;:=goto<L>

12. <RS>::=read(<V>)

13. <WS>; ;=write(<V>)

14. <TL>::=<V>|<V>,<TL>

15. <D>; ;=integer<TL>

16. <CS>;;=if<BE>then<US>{A[else<US>}[<L>t<CS>

17. <BS>::=<AS>|<GTS>|<RS>|<WS>|<L>:<BS>

18. <US>::=<BS>|<CPS>|

... . <S>: :=<US>|<CS>

20. <CT>::=<S>|<CT>;<S>

21. <CPS>; ;=begin<CT>end|<L>;<CPS>

22. ; :=begin<D>;<CT>end<L>;

23. <PR>: :=|<CPS>

