v7e @ https://ntrs.nasa.gov/search.jsp?R=19720005536 2020-03-11T21:50:03+00:00Z

 3fAR

‘t%'{‘ £

? ;» Technical Report TR-168 ' September 1971
1l NGR-21-002-197 and
“I'F*  ~eL-21-002-008 |

by

Claude K. Jackson




Technical Report TR-168 Septembef 1971
NGR-21-002-197 and
NGL-21-002-008

. ‘Architectural Design Qf ‘an Algol Interpreter

by

Claude K. Jackson

This research was supported in part by Grants NGR-21-002-197
and §GL—21-002-008 from the National Aeronautics and Space Adminis-
tration to the Computer Science Center of the University of Maryland.



Abstract

This report describes the design of a syntax-directed
interpreter for a subset of Algol. It is a conceptual design
with sufficient details and completeness but as much indepen-
dence éf implementation as possible. The design includes a
detéiled description of a scanner, an analyzer described in the
Fioyd—Evans productions, a hash-coded symbol table, and an
executor. Interpretation of sample programs is also provided

to show how the interpreter functions.



Foreword

Programming an Algol interpreter is nothing new, but

describing architectural design of an interpreter is. This tutor-

ial paper presents the architectural design of an interpreter for

a subéet of Algol. 1In this report, attention is called to the follow-

ing goals and observations:

(1)

(2)

(3)

(4)

to describe thé detailed conceptual design of the interpreter,
not a listing with plenty of comments;

to show a specific way of presenting software design, particu-
larly the use of such diagrams as those in Figs. 3, 7, and 12;
to bring out an important point: the separation of the archi-
tectural design (the creative part) from the programming of
the design (the implementation part);

to imply a significant point: the conceptual design is also
implementable by hardware. Thus, the architecture of a design
is independent of hardware and software. |

This report not only presents the architectural design of

an interpreter but also hopefully stimulates the reader to recog-

nize the importance of architectural design of software that has been

long neglected.

Yachan Chu



Table of Contents

Foreward

Abstract

Introduction

Description of the ALGOL Subset

2.1 identifiers

2.2 unsigned number
2.3 variable

2.4 label

2.5 expressions

2.6 assignment statement
2.7

2.8

2.9

2.1

2.1

.

goto statement
input-output statements
declarations

0 conditional statement

.11 program, block, and statements

.

Overview of the Interpreter

scanner and syntax analysis
error indications

execution of the postfix string
implementation considerations

wWwww
SN

Scanner

remove blank

recognize identifier or reserved word

recognize constant . = s
recognize colon or assignment symbol

recognize single character symbols

procedure GC

procedure SEARCH

procedure STCK

procedures ER1, ER2, ER3

.

L R ST T SR SR L S

LoNonUT Wb

Syntax Analyzer

5.1 Floyd-Evans productions

5.2 the analyzer described in the Floyd-Evans Productions
5.3 symbol table

5.4 table routines



6. Executor

BEGIN and BEG routines
END and ENDE routines
3 I routine
C routine
READ and WRITE routines
+, *, /, +, and - routines
= and # routines
8 := routine
L. routine
0 NEG routine
1 IF routine
2 THEN routine
3 TLS routine
4 ELSE routine
5 GOTO routine -
6 HALT routine
7 FIND procedure
.18 HASH procedure

6.1
6.2
6.
6.4
6.5
6.6
6.7
6.
6.9
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1

7. Interpretations of'SamBle Programs

7.1 Program 1
7.2 Program 2

8. Acknowledgement

9, References

Appendix A, BNF Description of an Algol Subset




Architectural Design of an Alsol Interpreter

Claude K. Jackson

1. Introduction

Tﬁis report describes tlie design of an internreter for a sub-
set of Aigolvusing a syntax'directed technique. Floyd-Evans productions
are chosen to describe tne syntax. analyzer, since théy.give a formal des-
cription of the process with clarity but without dependence on a particu;
lar machine or language. The design is given in a generai_way as it'also
serves to illustrate the use of the techniqué}‘

Besides this introduction, there are six sections. The first
section describes the language to be interpreted. The nent is an overview
which indicates the four major eiements of the interpreter together with
discussions on their interrelationships and common terms. Then, one section
each is devoted to the scanner, analyzer' and execufor, giving the config-

“urations and the flowcharts of the design. The last section presents intex-

pretations of two sample programs, showing exactly how the interpreter works.



2. Description of the Subset of Algol

‘In order to demonstrate the déaién‘of'an intefpreter, a subset
of Algoll;é chosen. The syntéx'of this subset is.describgd in Backus Nor-
mal Form and shown in Appendix A. As described, the syntax permits inte-
gers and'declarations statements, arithmetic éxpressions and assignment
statements, operator precedence grammar, boolean expressions and éondition—
‘al statements, labels and GOTO statements, input and output statements,
compound'atét;ments and block structure. It does not include the FOR state-
ment,. arféyé, sﬁitches,»p:ocedures,_and variables o;hér than integers.
’The syntax and the sgmantics of the chosen subset follows closely to that

in the revised Algol report (6). Symbolic names for the non-terminals in
Appendix A are listed in Table 1.

2.1 Identifiers

<I>=:- Alo'la

z|<1>{A|...|2}|<1>{0]... |9}

An identifier is therefore any sequence of letters or digits which begins
with a letter., The interpreter as written will accept an identifier of
any length, bﬁt it only recognizes and uses the first 12 characters of the

identifier. An identifier may be used as either a label or a variable.
Examples:
A0  CONTINUE

BLACK1 T

2.2 Unsigned Number

+

<UN>3:= 0]...|9|<uN>{0|...|9}



Table 1 Symbolic names for the nbﬁ-términalS‘ :

Nonterminals ’ Symbolic Names
arithmetic expression AE
-assignment statement AS
basic statement BS
~ block B

boolean expression BE
compound statement CPS
compound tail CT
conditional statement Cs
declaration : D
factor F
goto statement ‘ GTS
identifier I
label L
primary P
program . PR
read statement RS
statement S
term T
type list . TL
unconditional statement us’
unsigned number UN
variable v

write statement .

bt 0




An integer is the only type of numbef aécepted By the ‘interpreter.
-Floating point numbers are not ailowed. An integer iS‘only’allowed to be
11 digits long. | | |
Examples:>

145 2378910
2.3 Variable
<V>:i=<I>

A-variable is. an identifier which tepfesents_a value. This value
may be changed during the execution of the program. The value is assumed to

be integer and the variable must be declared before its use in the program.

4Examples:
LET Vi

2.4 Label
<L>::=<I>

A label is not formally declared as a variable is, but is declared

by its use in the program preceding a colon.
Examples:

L1l HERE

2.5 Expressions

An expression is a rule for computing a value. That value may be
either a number in the case of arithmetic expressions, or TRUE or FALSE in

the case of boolean expressions.



2.5.1 Arithmetic expressions

<P>;:=<UN>[<V>I(<AE>)
<F>::=<P>|<F>4$<P>
<T>;;=<F>|<T>{*L/}<F>

..<IA'E>: 1=<T>| {+|+}<T>|<AE>{+|-}<T;

Ihé above rules give the possible forms of arithmetic-ekpressions.
They also describe ﬁhe order in which a value is to be computed since they
describe the precedence of operators. Note that expressions in»parentheses
are to be evaluated before they are combined. The précedence of the opera-

tors as determined by the above rules is:
first 4
second *,/
third +,-

Operators of the same precedemce are evaluated from left to right.-

Examples:
Primaries: 85 LOB (A+B/2) (~B)
Factors: LS TR+6 (A*B) +K
Terms: M MAL MAA | (-4)/cHK

Arith. exp.: N N4D- A+B-C (A/B-T)



2.5.2 Boolean‘Expressions

<BE>: :=<AE>{=|#}<AE>

The values of each of the arithmetic.expressions are computed and
then compared. If the comparison shows that the values are relatéd in the
same way aé the logical operator (= or #) in the expression:then the value
‘of the béoiean expression is tfue. If they ére not related in the same way

then the value.of. the boolean expression is false.

.EXAmpies{

2.6 Assignment Statement

<AS>::=<V>:=<AE>

The value of the arithmetic expression to the right of the assign-
.ment symbol is stored as the value of the variable on the left side of the

assignment symbol,

Examples:

2.7 GOTO Statement

<GTS>::= GOTO<L>

Statements of the program are normally executed in sequential order,

_ but when a GOTO statement is encountered the next statement to be executed



is the one that has the indicated label instead of the following statement.

Examples:
GOTO L1

GOTO CONTINUE

2.8 Input-Output Statements

<RS>::= READ(<V>) -
" <W8>::= WRITE(<V>)

A read statement causes a number to be read off a card and then stored
as the value of the variable enclosed in parenthesis. A write statement
causes the integer value of the variable enclosed in parentheses to be ob-

tained and then written out as the next line of output.
Examples:

READ(AB)

WRITE(CD)

2.9 Declarations

<TL>::=<V>|<V>,<TL>
<D>::= INTEGER<TL>

Any variablevused'in a block must be declared at the beginning of
the block. The declaration holds only fqr that block as in Algol and the
variable is not defined outside of the block. Variables may be redeclared

as in Algol. The redeclaration causes the variable to be in effect a dif-

. ferent variable from the variable of the same name declared in the outer block.



The variable of the same name declared in the outer block is not defined for
“ this block in which it has been redeclared. -At the end of the block when
the redec;afed variable becomes undefined, the 6ld'variable becomes defined
again witﬁ the value it had when the Slock was entered. A variable which is
declared in a block is given the value zero when that block is entered.

Examples:

‘INTEGER A

INTEGER  LET,NUM,C

2;10 Conditional Statemént .

<CS>::= IF<BE>THEN<US>{ |ELSE<US>}|<L>:<CS>

The boolean expression is evaluated. If its value is true then the
unconditional statement after the THEN is executed. The unconditional state-
ment after the ELSE, if it exists, is ignored in this caée. If the value of
the boolean expression is false then the unconditionél statement after the
THEN is executed. The unconditional statement after the ELSE, if it exists,
is ignored in this case. If the value of the boolean expression is false
then the unconditional statement after the THEN is not executed and the un-
conditional statement after the ELSE is executed. If there is no ELSE
statement when the boolean expression is false then the next statement in

the program is executed. A conditional statement may have a label.

Examples:

IF K1 = C THEN L:= T + 1 ELSE L:=1

IFK3#ClTHENK =K+ 1



2.11 Program, Block, and Statements

<Bs>;:=<As>|<GTs>|<Rs>|<wS>|<ﬁ$:<Bs>
<US>: :=<BS>| <CPS>| <B>
<§>::=<US>|<cS>

<CT>::=<S>| <CT>;<S>

<CPS>::= BEGIN<CT%END|<L>:<CPS>
<B>::= BEGIN<D>;<CT>END|<L>:<B>
<PR>::=<B>|<CPS>

An assignment statment, a GOTO statement, a READ statement, or a
WRITE statement may have any number of labels. An unconditional statement is
any of the.above statements, a block or a compound statement. A statement
is an unconditional statement or a conditional statement. A compound state-
ment is any number of statements surrounded by a BEGIN and END symbol. A
blo?k has fhe same forﬁ as a compound statement except it must.have a de-
claration before the list of statements. Blecks and compound statements may
have labels also.

As mentioned before a variable declared in a block is loeal to that
block. A block may have blocks nested within it and variables can be re-
decléred in a nested block. No matter whaﬁ value the redeclared variable
takes on in the nested block, when that block is left the value of the vari-
able returns to the value it had before being redeclared, the.so—called glo-

bal value. A label is declared by its use in a block and is local to the



10

innermost block it is in. It is not possible therefore to transfer from out-
. side a block tb a statement in that block.

A program consists of either a block or a compound statement.

Examples:
Basic statement: A:= B+C “GOTO L1 K:A:=1
.Compound statement: BEGIN A:=B*(C; WRITE(A) END

BLOCK: - BEGIN INTEGER A,B,C; B:=1; C:=1; A:=B*C; WRITE(A) END

&

Figs. 21 and 26 give some additional examples.



3. Overview of the Interpreter

As shown in Fig. 1, the iﬁterpeter coﬁsists of four major ele-
ments: the scanner, the syntax analyzer, the executor, and the symbol ta-
ble. The scanner converts the input program into a string of syﬁbols in
the internal code where the code is.Shbwh in Table 2. This input string of
symbols in the internal code is then processed by the syntax analyzer.

The analyzer outputs a postfix string now also in the internal code and
generates' a symbol table. The.poStfix string in conjunction with the sym-
bol table is executed by the executof to produce the desired results.

Fig. 2 shows the flow char& for the interpreter. It consists of
six blocks, each of which represents a process. These processes except

the initialization process are described below.

3.1 Scanning and Syntax Analysis

The syntax analyzexr is described by tﬁé Floyd-Evans productions.

- The actual set of Floyd-Evans productions which describes the analysis
will be described in detail later. These productions perform the syntax
analysis part of the interpretaﬁion. aThe scanner is merely a procedure
(or a subroutine) called by the analyzer whenever the next symbol of the
input stream is needed.

It is importan; to note the difference between a symbol and a
character of the input program. A characterlis the contents of a single
colum of a card of the iﬁéut program. It may bé a letter, digit, or any
other punctuation such as *. A symbol may however be made up of any number

of characters. The analyzer only works with symbols and it is the sole

function of the scanner to obtain the next symbol of the input program for

1t



12

Input, string of symbols

. Scanner

input string
in intermal
code

Syntax
Analyzer

e

Symbol Table |
f

Fig. 1. Configur_ation of the Interpreter



Table 2 Internal code for ﬁhe symbols

SYMBOL CODE
0 1
* 2
/ 3
-+ 4
- 5
= 6
# 7
= 8
) 9
H 10
: 11
C 12
) 13
:= 14
I 15
c 16
BEGIN 17
END 18.
INTEGER 19
READ 20
WRITE 21
GOTO 22
IF 23
THEN 24
ELSE 25
BEG 26
TLS 27
HALT 28
_NEG 29
ENDE 30
L 31

13



START

INITIALIZATION

'

e e

v D SYNTAX !
SCANNING _ . ANALYSIS OF }———pp»| SYMBOL TABLE |
' ' INPUT STRING GENERATION
P> : ———

r_”_~ﬂnm

v

EXECUTION OF
ERROR
POS?FIX STRING INDICATTON
‘,

'

STOP

Fig. 2 Flow chart for the Interpreter



the analyzer,

The scanner goes through the inpuﬁ'program character sy cﬂ;racter
until the next symbol has been found. As a result, the analyzgr_can be
designed tbvwork with fixed length symbols and does not ﬁave to worry about
the problems of blanks and lengths of variable names. A list of the symbols
for the interpreter is given in Table 2. Next to each symbbl ié thé internal
gode which is actually used in implementationi The symbois afe:retéiﬁed in
the descfipt;on of the Floyd-Evans productions for purposés 6f readability.
If the internal code were used they wéuld be muéh 1esé compfeheﬁsiﬁié; but
with the éywbols they giﬁe a very clear description. Ih éhorf; tﬁe‘oﬁly
fuﬁction of the scanner is to pass the next symbol whenever i{vié needed
and also to pass the identifier or constant that the symbol might'reprg—.

sent. Since the analyzer assumes thét the first symbol has already been
obtained when they start, the scanner is called once before syntax analysis
of the input string begins. The symbol table is also formed during syntax

analysis by those procedures called table routines.

3.2 Error indications

Error routines may be called in during Any part o; }hé program,
An error message is printed out and interpretation stops in most cases. In
a few cases, there is some change made to try to solve the‘errog and interpre-
tation continues, but for the most part the interpreter does not have any
error recovery capability.

As mentioned above the result of syﬁtax analysis is a postfix
string of symbols or, in actual implementation, a pdstfix string of iﬁter—
ﬁal code. There is a parallel stringlto the above string wﬁich will hold

semantics of the postfix string. It will hold the actual identifier which



16 .

an 1 symbol represents and the actual constant for a C symbol.

3.3 Execution of the Postfix String

When syntax analysis is done the entire postfix‘string will have
been produced. The execution part of the interpreter then begins to oper-
ate using the above two strings produced by the syntax analyzer and also
-the symbél'table that has been.produced. The execution part processes the
postfix string performing certain actions depending on what particularpsym—

bol in the postfix string is presently being processed. The details of

this process are left for the description of the execution part.

3.4 Implementation

Algol is assumed to be used as implementation language. Although
this study does not include the implementation, some remarks about the imple-
mentation are made below.

The interpreter uses procedures which function as Algol procedures.
Variable names and arrays used by the interpreter are assumed to be all glo-
bal and thus accessible to all parts of the program. By this means, one
part of the interpreter may store something in a global variable.for use by
another part of the igterpreter later. This is how the scanner passes inter-—
nal code to the synfax analyzer and how the syntax analyzer passes the postfix
string to the executioner. The Floyd-Evans productions and flowcharts are
written so that the interpreter could be implemented extremely simply without
complications in UNIVAC 1108 Algol. This implementation would not be particu-
larly efficient since efficiency has been sacrificed for siﬁplicity or ciarity
wherever possible;, In particular 1108 Algol allows string arrays which hold

12 chiaracters per array element. Since identifiers can have up to twelve



17

characters, the interpreter as designed uses striﬁg arrays with 12 characters
.per array element which is very inefficient but makes the‘aESCription of the
design simple. The design also allots a full array element for things such

as flags wﬁich'require only a single bit. By using a singlevarray element

for each’quantity stored the design is much clearer than if two wbrds or.

part of a word were used to store particular quantities. Since thg design

has beenvmade in the simplest form it would be easy to change it or ;q'gctually
implement the interpreter not only more efficiently but also in fmother lan-
guage or on another machine.

The idea here‘is that a type of layefed approach to a practical
interpreter has been taken. The initial idea was to produce an interpreter.
The first thing done was to decide a three part interpreter should be made.
The form of each part as mentioned earlier was decided upon next. Then a
detailed but flexible design of the interpreter has been made and described
herein. This design can be implemented easily and tested in Algol. The
final step or layer of the design is the '"practical" implementation of the
interpreter. This step requires working out certain details and making minor
changes so that all the. requirements of the particular implementation are
met. An example is that if the interpeter were finally implemented in UNIVAC
1108 Fortran it would be necessary to store 12 characters in two words so
some changes would have to be made in flowcharts and data structures but the&
would all be straightforward and require no major design changes. A major
advantage of this approach is that the problems should be met and solved
at the appropriate time during design. Debugging and design changes will
hopefully be less random and more control Qill be maintained at all stages

of design.



18

4, Scanner

The qqnfiguration of the scanner is‘éhdwu in the‘block diagram of
Fig. 3. Thexe'are five buffers and one stack. Input buffer INPUT with pointer
Cl can contain 72 characters. Buffer CH is a single character buffer.
Buffer N with fointer C can hold 12 characters, and buffer N1 also with pointer
C can hold ll‘decimal digits. Code buffer T stores the internal code of
é symbol. Stack FE with pointer C2 is the plaée where the symbol produced
by the scanner is put. ﬁ

- The séanner is.called into action by the syntax analyzer whenever

the analyzer needs the next symbol. When calléd, the scanner places the
next sjmbol at the top of stack FE. As men;ionéd before, the symbol placed
in the stack is not the original characters in the input string, but the
internal code shown in Table 2. '

The operation of the scanner is described in the flow chart of Fig.
4 and the terms in the flow chart are explained in Table 3. A procedure
‘called GC is employed by the scannervto obtain’thg next character ffom the
input string and place it in buffer CH.

Since the scanner always starts with the assumption that the next
character is already in buffer CH procedure GC is called once during initiali-
zation of the interpretation to place the lst character in CH. Thereafter,

the scanner will leave the next character in buffer CH.

4.1 Remove Blank

The first part of the scanner checks for a blank in buffer CH and
if found it calls procedure GC to put a new character in CH. This process

removes any blank characters before a symbol. Blanks may not be used in iden-



19

]

Joels

(20)aa

1333nq 9pod

I93Jng

38TP-11 | - (9)IN

st o |

!

193304

A3ajdeIepo-3Xau

Cr

A

HD

I9uueds 9yl Jo UoFIeandtiuo)

't

*814

*IN Ul pP2103§ ST 3JUR]SUOD
pue ‘N U] P2101S ST SWBU I1DTFFIUSPI :93ION

(T0)andug

x933nq Indur Ieyo-7/

XXX ~==—--XXX
fl\‘)‘\lllf\

8utrxys ndug



20

Table 3, Designation of the Terms used in the Scanner

Term Designation

CH buffer for the next character in the in-
put string

N buffer for storing a string of 12 char-
acters ’

INPUT buffer for 72 characters

c pointer for N and N1

Cl pointer for INPUT

c2 pointer for FE

FE stack for syntax analysis

SEARCH procedure to determine if a given identi-
fier is a reserved word

N1 buffer for storing a string of digits

GC procedure to botain the next character
in CH from the input string

STCK | procedure to stack the internal code of
the symbol in stack FE

T buffer for storing an internal code

ER1 procedure to indicate an illegal charac-
ter has been encountered

ER2 procedure to indicate that an end—of—pro{
gram marker is encountered and a complete
program has yet to be processed

ER3 procedure to indicate a constant having

more than 11 digits




21

Start .

Y)

T o 1e ' TIN@©= i e
AN i X Proc GC , A

Proc GC ’@=A cee 20 ... 92 )‘5,,,&?*.1 |

N Proc SEARCH |——®return
Proc ER2 oS
U T

f ¢

[ Proc GC
g~
N1=N1#*10+CH 14
[
N '
¥ Proc GC —*C_a{i“i:)—b T=14 Proc GC }P Proc S:'_I‘C%
N a
——————P T=11
Proc ER3 - return
¢ * %/ \ & _ ;,, any |other
t
FT=2 -J =3 T=10 T=13 =9 charpcter
F
Proc GC
Fig.4. Flowchart of Proc STCK I
the Scanner |
: Proc STCK

r 4



22

tifiers or constants so they mark the end of an identifier or constant. In

any other- -place blanks are ignored. The scanner then proceeds to check what

the first non-blank character is and enters the appropriate branch to finish

processing the symbol.

4.2 Recognize ILdentifier or Reserved Word

»IIf the first nonblank character is a letter then the symbol must
be an identifier or reserved word. The first twelve characters of the iden-

tifier or reserved word are stored in the buffer N and the counter C is used

'to count how many characters the identifier or reserved word has. The scanner

enters a loop to do this. Note that after fhe fifst character, the iden-
tifier may have any digit or letter and it termiﬁatés only when neither a
digit or letter is the next character. The next character is thus in buffer
CH when the symbol has been processed and the character is left there for

the next call of the scanner. Only the first 12 characters found are saved
in N. If the identifier is longer then the characters are merely ignored 7
and not stored in N. When the entire identifier has been obtained, then the
procedure SEARCH is called to check to see if the i&entifier is in fact a
reserved word. The appropriate symbol (internal code) is placed on the stack
FE of the analyzer. Either the symbol for the reserved word matched or the
symbol for identifier if thefe is no métch is placed on the stack. Stacking
on FE is always done in two steps. The intérnal code for the symbol is stored
in T and then just before the scanner is exited procedure STCK is called to

put the value in T onto stack FE.

4.3 Recognize Constant

If the first nomblank cha:acter is a digit, then the scanner pro-



23

ceeds into another loop which processes a éonstant of up.fo 11 digits. The
constant 1is stored in buifer N1 and is.terminated when thé first.non—digit
character is encountered. If the consfant is ovef 11 digits long éhen the
leftmost llldigits are used and an error message is printed out by procedure
ER2 before returning to the syntax analyzer. Again a charécter isvleft in
buffer CH for the next call of';he scanner. The internal code 16 is placed

on stack FE.

4.4 Recognize Colon or Assignment Symbol

If a : is the first non-~blank character then the symbol must be either
:= or just :. Therefore, the next character is obtainéd by procedure GC
and checked to see if it is =, If it {is ; then the-code 16 is piaced on stack
FE and the next character must be obtained by calling procedure GC so that the
next character will be in buffér CH for Ehe next call of the scanner. If
the next character was not = then the internal code 11 is placed on stack FE
and procedure GC is not calledrsince the next character is already in buffer

CH.

4.5 Recognize Single Character Symbols

The last section of the scanner checks for single character sym-
bols. When a symbol is matched, then the appropriate internal code 1s stacked
on stgck FE. The next character must be placed in buffér CH by calling pro-
cedure GC and then thé program returns to the syntax analyzer. If the single
character is ? (a character placed at the end of all input programs), then
the end of the input string has been reached without a complete program having
been processed. This is an error condition so.précedure ER3 is called to

print out an error message and end the interpretétion. If the single character



24

does not match any of the legal characters, then an error message is printed
out by procedure ER1l. The illegal charactei is then skipped by calling GC

to get the next character and then returning to the start of the scanner.

4.6 Procedure GC

Fig. 5(a) shows the flow chart for procedure GC. As mentioned
earlier, proéedure GC obtains the next character of the input string.

When the interpretation of a new program begins, the pointer Cl is initialized

to 53.M Wﬁeﬂever ﬁrbéeéure GC is calied';ﬁ&-thefpointer Ci is 73, then 72 char-
aétérg are.reéd in off #ﬁé.nex£vcé?d and piaced iﬁ‘£he striﬁg INPUT.«-Pointer
Cl is then initialized toil to point to-;he first character. ﬁote the 72
characters read in are printed out to form a listing of the program.

After reading in 72 new characters of immediately if pointer Cl is
less than 73, the charécter pointed to by pointer Cl is stored in buffer CH,

pointer Cl is incremented, and then the procedure ends.

4.7 Procedure Search

The flow chart for procedure SEARCH is shown in Fig. 6. Procedure
SEARCH tests an identifier to see if it is a reserved word. If it has more
than 7 chéracters then it cannot be a reserved word and we can immediately pro-
cess it as an identifier. This consists of plaping the internal code for
identifier, 15, into buffer T, stacking it on FE, and returning. The actual
identifier name is saﬁed in buffer N.

Accofding to the number of characters of the identifier, it is
tested character by character for the possible reserved wor&s. After a num-
ber of'tests iﬁ will be known either that the idgntifier cannot be a reserved

rword in which case it can be processed as an identifier as described above,



25

}/——‘»—--—‘_ ) vin - . e A — i et
e i ' es ‘ read in 72 characters
[ C1>73? ! > into input buffer INTO
g b

print out those 72

no
e e characters to form
-§—— Cl=1 : the listing

e — T

Y
!
CH=INPUT (C1) j

e ‘
)
i C1=C1+1

mlﬂl

return

(a)Procedure GC
START

Y

( C2=C2+1

return
‘(b)Procedure STCK

Fig. 5. TFlowcharts for Procedures
GC and STCK



26

-Y——h T—lS " Proc STCK

- return

- pre
S j
no  pommTee ) 1
no JT"15
) J— e T
=5 - \yes { (1 5) BEM =17 r—_——" Proc STK —#»re
) S/ \ t_.__.~~_._~.~ S ‘
‘no 4
no P —
’ yes _ ! '
N(l S=WRLTE? T=21 > '
g Rl A
r..__ —- PR
L 1=15 ]l
[, .
SEm— T PIPYe—
C=47 YeE—{ N(1—4) GOTO? /jyes B2z L ‘Proc STCK re
* no L
no .\ T %
(N(1-4)=READ? S2— =20
~ ¥no o +
&1 ~4)=THEN? Yo —gmraps -
___Wmo . | 4
(N(1-4)=ELSE? r‘—’“" T=25
_..—-—%o ! T T
| = >
? [

e

{ c=3?
\\

yes ;
———{ N(1-3)=END?
N

—YE—VT=18 ;r————’{rproc STCK l Dn

S |

1

LE5__gpiT=73

i
] >

T=15

Proc STCK i_’i-_‘

l

Fig. 6 Flow chart for thebProcedure SEA.RCHV



or it is a reserved word. In the.latter case, it will have matched at all

tests for characters of a parficular feservéd word. Thg appfopriate internal
code will be placed on stack FE and the.procedure énds; After processing by
this procedﬁre reserved words have been changéd fo interﬁal code and are handled

in coded form hereafter. They are never entered in the symbdl table.

4.8 Procedure STCK

fig. 5(b) shows the flow cﬁart of procedure STCK. Procedure STCK
handles fhe stackiﬁg of the internal code.of a symbol which is always first
storea in buffer T. Thgre are two operaﬁions. First, the stack poinfer C2
must be inéremented since it ‘always points to the top element of stack FE, and .

second, the code is then placed on the top of stack FE.

4.9 Procedures ER1l, ER2, ER3

The three procedures ERl, ER2, and ER3 print-out error messages.
ER2 also caused an end of interpretation. The flow charts for these procedures

are not provided.



28

5. Syntax Analyzer

The_syﬁtax analyzer analyzes the input string, produces the postfix
-string,‘and'éonstructs the symbol table. The éonfigﬁratidn‘of the syntax
analyzgr is shown in Fig. 7. As shown, there are five buffers, one stéck,
and a symbol table. Buffers N, N1, and T and stack FE have been introduced
when the sqaqner was described. Buffers PS store the postfix string of
symbols, while buffer PS1 stores the postfix string of constant values and
idehtifier-naﬁes. Thus, symbols I and C in buffer PS repreéent identifiers
and constant respectively; while their ﬁamés and valués ére‘located in the

‘cortespondiﬁg positions in buffer PSi. Table SYM is ;he syﬁbol table of the
input program. The details of fhe précéss_of syﬁtax aﬁalysis are now described

below.

5.1 Floyd-Evans Productions

The syntax analysis is described:rather precisely ahd concisely
by the Floyd-Evans productions. The particular form of the productionms ddapted
in this report is_the same as the form used by Evans (3) but with the addition
of table routines for the purpose of constructing the symbol table. Since
the form of the productions varies with their use by each new author, one
must make sure that the particular‘form of the productions is understood.
.The key element here as in most types of syntactic analysis is the stack.
The stack starts with two occurrences of the special symbol I~» (1ﬁterna1
~ code 8) as its top element. The reason for doing so is given later.

The productions can be considered-as a programming language since
they can easily be interpreted themseives. Each production can be considered

an instruction to be executed. It is extremely simple and straightforward to



29

: P e v o i oo e |
N(C) |
postfix string f
PS1 (K1) ?f co?sFants and é
—P . identifier names i

N1(C)

T T T lpostfix
PS(K1) Istring of
%symbols
T
L] i
stack FE SYM symbol
’ table

Fig.7. Configuration of the syntax analyzer



30

implemenﬁ a syntax analyzer descriﬁed,using these productions and as - a result
no flow charts are given to describe the syﬁfax analysis but only the table

of Floyd—Evans productions is given. As will ﬁe seen these productions provide
a machine énd language independent description qf syntax énalysis.

Each production:has.six columns. The first columm may contain a
label which is used for branching as in any progrémming language. The second
cplumn cohfains symbols that are to be compared to the top symbols of the
stack. Ohcéjagain we remark that we will speék of symbols and use the symbols
shown in Table 2 but.in actual implementation the internal code will be used
instead. If there is a ﬁatch between the symbols in the second column and
the top symbols of the sfack then the actions indicated in the remaining
columnsraré'performed. If there is no match then the next production is
pepformed next.

If there has been a match and there is a = in the third colum
then the symbols that were matched in the stack are replaced b§ the sywmbols
to the right of the —p. If there.ié no =P in the third column then the stack
“4s left unchanged. A special symbol <SG> means that any symbol in thag bosi—
tion of the stack is matched.

A Since the.purpose of thé'syntax analysis 1s to produce a postfix
string the fourth column specifies symbq;s that are to be placed in the post-
fix string if theré was a match. If an I or C symbol is to be placed in the
postfix string then the corresponding identifieg (saved in N) or constant
(saved in N1) ié also ‘placed in the parallel postfix semantic string.

Sometimes in column four there occurs the word COMPILE or COMPILE
followed by a symbol. In these cases these symbols are not .outputted. In-
stead, in the first case the precedence of the top symbol of tHe stack is com-

pared to the precedence of the second symbol on the stack and if the précedence



31

of the second symbol is greater than or equal to the precedence of the top
symbol then the second symbol is removed from the stack and placed in the
postfix string. This process is repeated until thé‘precedence of the top
stack elenéht becomes greater than the precedence of the.second stack element.

If a symbol follows the word COMPILE, then instead of comparing the
top stack-element to the second stack element, the precedence of the symbol
after word COMPILE is compared with the precedence of the second stack ele-
ment. Thevword COMPILE is used in order to implement the technique of oper-
ator précedence in parts of the syntax analysis.

The fourth coiumn may contain a call to a table routine. These
routines are procedures‘which perform some part of the construction of the
symbol table depending on which symbol has just been matched on the stack.

If a BEGIN followea by an INTEGER, an END, an I or a C symbol is matched then the
appropriate table routine is called. A thorough description of the symbol

table and the table routines along with flowcharts are given later in this
section of the report.

If the last column has a * in it then the scanner is to be called
to obtain the next symbol of the input program and place it..on top of the
stack. The scanner takes care of recognizing identifiers and changing them
to the symbol I before placing them on the stack. Also in the last column
is the label of the next production to be executed or the instruction HALT

to stop execution of the productions.



32

5.2 The Analyzer Described by Floyd-Evans Productions

The.algorithm for the syntax analyzer is descfibed by the Floyd-
Evans produétions shown in Table 4, where the folloﬁing metacharacters are
adopted:
<RL> is =|#

and  <OP> is +|-|*[/[|+ .

The const?uétion of the table is based upon checking for various syntacti-
cal consfructs'as defined in Appendix A until a legal one is found in the
inﬁut ﬁrogram. The checking ié a so-calledbleft—to—right'bottom—up analysis.
'and continues until a complete program has been recognized. At each test-
ing of neighboring symbols; there is oniy'a finite number of syntactical
constructs to check. If the symbols on the stack do not match one of the
tests,_then the input\program is in error. In such a case, the last test

checks <SG> which means any symbol and causes an error routine to be executed.

M
o

If a match is found on the stack, the appropriate change in the stack is
made and the analyzer proceeds to check the next set of possible syntactical
constructs,

Two markers Are needed: the end-of-stack marker and the beginning-
of-statement marker. The former is to indicate that the stack is empty and
the latter is to mark where the'statement currently beingvanalyzed began. The

symbol > (internal code 8) is used for both markers.

5.2.1 Labels SO, L1, D1, DCl, DC2

»

In the production labeled SO a check for the outermost block which

must start with symbol BEGIN is made as shown in Table 4. There might be a




- 33 ;

Table 4, .Syntax Anaiyzer described in Floyd-Evans Productions

Stack After

- Output to Post-

Table

-~ﬁabeif Stack ﬁefore T Next X
L fix string PS Routine Prodyction ﬁ
S0 BEGIN >1-31-> EXECL D1
I - L EXEC5 *L1
<SG> ER1
Ll : > *S0
<SG>.. ER2
Di 1- INTEGER | ->BEGIN L-»INTEGER|  BEGIN EXEC2 #DC1
1-> <8G> SBEC -6 BEG ' s1
DC1 INTEGER I ~5INTEGER EXEC4 *DC2
<SG> ER3
DC2 s - *DC1
| INTEGER; *S1
<SG> | ER4
s1 IF *EX1
siB |1 = xs2
GOTO > *G1
READ -> *R1
WRITE -y *W1
BEGIN > *D1
EX1 I > I *EX3
C = c *EX3
¢ *EX4
+ =5 *EX4
- -DNEG - *EX4
<SG>. . ... .. ER5 i




34

Stack Before

Label Stack After Output to. Post-— ?éble Next
’ : fix Strings PS |Routines Production
El I-> IF THEN | —»THEN > IF | #s1B
SQ . ) ER6
E2 THEN 1-9 ELSE | % ELSE 1 THEN *S1B
5 | ' ER22
E3 _,THE& > END | > > END TLS - E3
ELSE =y END | > 13 END ELSE ' E3
BEGIN}-»END > > END EXEC3 E4
BEG +> END | = H ] ENDE E4
S L - ER7
E4 1-y 1= HAL'I‘ HALT
{s6) *E5
; E6
ELSE E2
<56> ER24
S2 -5 L EXEC6 *S1
= I *EX4
<SG> ER8
EX1 I 1> I *EX2
C | - C *EX2
( ¢ | R
+ > | *m
- INEG wExL
| <sc> ER9
EX2 | <oP> COMPILE - *EX1
<RL? COMPILE XEX4
) "COMPILE 'P1
ER10




35

A-Label

Stack Before Stack After . "Output to Post-| Table Next
| ~ fix'String PS | Routines | Production
EX3 P . COMPILE - *EX4
) COMPILE . P2
; COMPILE & E6
THEN COMPILE &1 El
ELSE COMPILE &=i E2
END . COMPILE €% E3
o> ER11
E6 THEN = ; -> 1= TLS *S1
ELSE =) ; - 15 ELSE *S1
= ; > *S1
<sG> ER12
P1 () > *EX2
£sG> ER13
P2 () - *EX3
<56> ER14
Gl I > 1 GOTO. *ES5
{SGy ER15-
R1 ( s *R3
<S> ER16
‘R2 1 > I *R3
<56 ER17
R3 ) - READ *E5
5O ER1S
Wl ¢ -y *W2
{56 ER19
W2 I -~y I *W3
sy ER20
W3- ) - WRITE. *E5
{56» - ER21




36

Table 5 Precedence Table

Precedence Symbols Remark
1 4 HIGHEST
2 *, /

3 +, -, NEG
4 )
5 = #
6 =
7 ELSE
8 i
9 IF
‘10 THEN
11 (
12 > LOWEST




- 37

label, so that possibility is also checked. If neither symbol BEGIN nor sym-
bol 1 is matched, then there is an error and error routine ER1 is executed
next. If symbol 1 is found, then the production labeled L1 is.£ﬁe next pro-
duction to.be executed. L1 will check to see if I is indeed a'lébel whicﬁ—
means I must be followed by a :. . If there is no : then there is an erfor.

If it is a label, an L symbol (code 31) is placed in the postfix string PS,
Table routine>EXEC6>ié called to put the laﬁel in the symbol table. The
productioﬁ iabeled SO is then executed ;gain to check for the outermost
block. When the BEGIN symbol of the outermost block is encountered the sym-

bols-L;yl—? are placed on top of the stack FE of the Floyd-Evans productions.

Table routine EXECl is called to initialize variables needed to form
‘block heads. Block heads are formed for each block and are described in the
section on the symbol table and table routines. The production labeled D1
is the next production and it processes the beginning of blocks by checking
for declarations. Two different types of BEGIN symbols are placed in the post-
fix string PS depending on.whefﬁer or not there is a declaration. If there is
no declaration then a coﬁpound.statement_is being encountered and the symbol
BEG is placed in the postfix stfing. If there is a declaration this is a block
and a BEGIN symbol is placed in the postfix string. Table routine EXEC2
is called to form a block head for this block. The production starting at DCL
and DC2 process the declaration. Note that a variable which is declared is not
plaqed in the postfix string but'table routine EXEC4 is called to place the -
variable in the symbol fable. The productions stgrting at DC2 checks for the
end of the declaration and no trace of the declaration is placed in the post-

fix string PS.



38

5.2.2 Labels S1, S2

Affer the beginning of a block or compound statement has been pro-
éessed there muéﬁ be a statement so production S1 ié_ﬁext. It éhecks for all
possible forms of a statement. No blank statement is allowedvso the pro-
ductions starting at S1 check all the possible staftiﬁg symbols for a state-
ment. If an Ivsymbol starts a statement it may be a label or the beginning
of an assignﬁeﬁt statement. The program goes to the productions starting
at S2 which_cheék for these possibilities. If thé I symbol is followed by
a : symbol thén this is ablabel so an L symbol is placed in the postfix
string PS. Table routine EXEC7 is called to place the label in the symbol
table and then the program returns to productioh S1 to check for a statement.

If.the I is followed by a := symbol then this statement must be
an assignment statement. The I symbol_ié placed in the postfix string immed-
iately. It is not left on the stack FE as operators are sometimes. Oper-
ators are only placed in the postfix string at the appropriate time to produce
proper postfix notation. The rest of the assignment statement must be an |
arithmetic exﬁression so the program will‘proceed'to productioﬁ EX4 which
processes arithmetic expressions.

If an IF symbol, GOTO symbol, READ symboi or WRITE symbol is en-
countered at the beginning of a statement then the program proceeds to appro-
priate productioné to check to sée if the statement has the correct form.

A statement may also be a block 6r compound statement so.it may start with a
‘BEGIN in which case the program proceeds to production Dl to process the

beginning of the block or compound statement.

5.2.3 Labels G1, R1l, Wl

The processing of the GOTO, READ, and WRITE symbols by the productions



39

starting at Gl1, Rl, and ﬁl respecfivély is very straightforward since there

is a standard form with no possible variation. Only one I symbol is permitted
in each of these statements. The I is outputted into the postfix string
immediateiy and if the whole statement is correct the apﬁropraite symbol
(GOTO, READ, or WRITE) is placed after the I. 1In all three cases the next

production to be executed is E5 which processes the end of statements.

5.2.4 Conditional Statements and Assignment Statements

A conditional statement requires substantial checking. Immediately
after\the IF symbol must come a boolean expression which is two arithmetic
expressions with a relational operator (= or #) between themf Upon recog-
nizing an IF the program proceeds to production EX1 which processes an arith-
metic expression using operator precedence using the precedences given in
Table 5. The program goes back and forth between the productions starting
at EX1 and EX2 processing operators and operands. Operands (I or C) are
placed in the postfix string immediately while operators aré piaced in the
postfix string only when operation COMPILE indicates that they should be.
Unary operators and parentheses are also processed. When unary minus is en-
countered it is changed to the symbol NEG (code 29) so that when it is even-
tually placed in the postfix string there will be no.ambiguity between umary
and binary minus.

When a ) symbol is encountered then the operation COMPILE is exe-
cuted. Next the program proceeds to production Pl to check if there is a
matching parenthesis. If there is a matcﬁing'parenthesis then all operators
up to thg matching ( will have been placed in the postfix string by the oper-
atiop COMPILE. If there is not a ( symbol then there is noAmatching paren-

thesis so there will be no match at production Pl1. The production after Pl



40

will match and the error routine ER13 will be executed. If there was a match
the program returns to production EX2 to cohtinue processing.
When the relational operaﬁor is found then theré must

be anothef'arithmetic expression so the program goes to ﬁroduction EX4
which as mentioned earlier processes arithmetic expressions. Thus assign-
ment statements :and conditional statement both use the productions at EX3
and EX4. As for the productions at EXl and EX2 the program goes back and forth
between EX3 and EX4 processing operands and operators. The progfam stops fhis
processing, not when it finds a relational operator as before, but Qhen it
encouﬁteré a ; symbol, é THEN symbol, an ELSE symbol, or an END symbol.
Afﬁer encountering one 6f these symbols the program perfgrms the COMPILE &1
operation which removes all operators from the stack. The pfogram then goes
to the appropriate productions depending on which symboi was encountered.
All of the above described productions have been constructed so that only
proper constructioﬁs of assignment and conditional statements are accebted.-

The ﬁroductions at EX1, EX2, EX3, and EX4 are constructed and pre- =
cedences given to symbolé so that illegal boolean expressions éré not accepted.
This is an important consideration since operaﬁor precedence is being used to
speed analysis and also since certain productions (EX3 and EX4) are used to
recognize two differept constructs. There are certain errors which it was
necessary to be careful not to accept. Boolean expressions without a relational
operator, arithmetic expressions with relation operators, and parentheses
which do not match or surround a relational operator were some of these errors.
The first of these errors is detected by checking specifically for a relation-
al operator at the proper_place in the expfession.’ If none.occurs then even-
tuaily a match 1s made which causes an error routine to be executed. The
second error is caught because a relational operator will not match>anything

in the productions at EX4 and will thus cause an error routine to be exe-



41

cuted.

The problems with parentheses were detected by making the prece-
ldences of all symbols such that only proper constructs‘would be unstacked
properly.“A ) symbol to the right of a relational 6perator without a match-
ing ( or with a ( on the other side of the relational operator causes every-
thing only up to the relational operator to be unstacked. Therefore there
is no match at P2 which indicates the error. A ( without a ) will never be
ﬁnstacked because of its low precedence so it will cause no match at some
point and résult in an error indication.

" If in the productions at EX3 a THEN symbol is encountered then the
program proceeds to production El. A THEN must have been proceeded by an IF
symbol so if a THEN follows an assignment statement there will be no métch.
Only a proper conditional statement will be accepted. At this point the
IF symbol is placed in the postfix string to maintain postfix notation. The
program next proceeds to production S1B to look for an unconditional state-
ment. Note that the program goes to production S1B and not production S1.
Therefore, if a conditional statement follows there will be no match and the
error will be detected.

If an ELSE symbol is encountered in the productions at EX3 after
an assignment statement or in the productions at E5 after any other legal
statement then the program proceeds to production E2 to check if the ELSE
is preceeded on the stack by the symbols THEN 1=», If it is, then the proper
form of a conditional statement has been followed so far. The THEN will only
be in the stack if earlier an IF was processed properly. The THEN symbol is
placed in the poétfix string and the program proceeds to S1B again to look for

an unconditional statement.



42

If in the productions af EX3 an END symbol or a ; symbol is encountered
then the program proceeds to production E3:or production E6 depending on the
symbol to check if a statement has just ended.properly. All operators are
unstacked.béfore going to productionsat E3 or E6 by using the operationl
COMPILE &=1. 1If an END or ; is encountered after a boolean expression the
IF symbol still on the Sfack will cause no matches to occur in the productions at
E3 or E6'#nd thus result in the error being detected.

Bgfare discussing the productions at E3 and E6 it is desirable to
mention the productions at E5 wﬁich is where the program goes after accept~-
ing a‘READ,_WRiTE, or GOTO statement. After accepting one of these state-
ments there must follow an ELSE, if a conditional statement is being pro-
cessed, a ; which means another statement fqllows, or an END which means the
end of a block or compound statement has been reached. .Thesé are the only

.possible symbols which can follow a statement.

If a ; symbol was encoﬁntered then it either ended a conditional
statement which means a TLS or ELSE must be placed in the postfix string
after the:statement just processed‘or the ; merely ended an unconditional
statement. All three cases are checked fof in the productions at E6.and in
each case there must be another statement after the semicolon so the next
production to be executed is at S1. /Note the ; is deleted immediately u@on
recognition and is never placed in the postfix string. Since only one un-
bconditional statement may follow a THEN or ELSE there is no ambiguity as to
whether or not the ; ends the conditional statement. Adcording to the grammar
the ; must end the conditional stétement. .

| In the productions at E3 an END following a stétement is processed.
The END may end a conditional statement by ending a block er compound state-

ment in which the conditional statement 1is the last statement. Thé THEN or

ELSE must be outputted into the postfix string and then the program proceeds



43

to productionsat E3 to process thé end of a block or compound statement.

Here and after the ; is encountered the syﬁbol TLS is outputted into the post-—
fix string instead of THEN so that during:exeéution it is known that no ELSE
statement'follows. The next possibility is that thé END-endé a block or com-
pound statement which is’appropriately proceSSed. ﬁlocks and compound state-
ments are unconditional statements and are thus reduced to a +» symbol in the
stack. The program proceeds'toproductionsat E4 which check for >k

on the top of the stack which means the end of the original block has been
processed and syntax analysis is done. If this is not the case then aﬁqther
symbol muét be obtainéd'from the scannéf énd the program proceeds to pro-
duétionéat E5 to see how this statement (the block or compound sfatement)

just processed has ended.

5.2.5 Error Routines

Whenever there is no match of the possible legal symbols then an
error routine is.called. Any label in the last.column starting with ER is
the label of an error routine. Thesg routines are not described because all
they do.is print out the label of the error routine as- the error message and

then interpretation is stopped.



44

5.3 Symbol Table

VThe éymbol table consists of two pattsf There is a hash table of
128 1ocatiphs to which an identifier can be hashed. There is also a chain of
block heads. Each block has a block head to which all identifiers declared ih.
that block are linked.

_Each location or bucket in the hash table is a pointer to a chain
of the i&engifiérs that haéhed to that bucket. Each entry of an identifier
consists'of seven items or fieihs of information as seen in Fié. 8(b). An
~entry of aﬁ identifiervis not in the hash table itself but 0nlyllinked to the
table tﬁrough the hash chain starting at the bucket the identifier hashed
to. Each item of information in an entry does not require the same amount
of space. In this design in order to maintain clarity and simplicity each
item of information.is stored in the same amount of space. In a practical
implementation the structure of an entry will be more complicated to make
efficient utilization of space. The hash function will be described in the
section on execution. It only hashes‘the identifier name so identifieré from
different blocks with the same name are stored by chaining them in decreasing
order of their block nuﬁbers.

Since the subset is like Algol it is necessary to keep track of glo-
bal and local variables. During execﬁtién the flag field (field 3) of an
identifier entry is used to keep track of whether the particular identifier
is presently defined. Therefore, whenever a block is entered all variables
and labels declared in that block must have their flag field set to 1.
Correspondingly whenever a block is exited the appropriate flag fields must
be set to 0. To facilitate the above processes all the variables and labels

of each block are linked together using field 2. Each block has a block head



Surrounding Block

Next Block Head

Block Chain Link

Block Number

(a) format of block head entry

® otitma 13 47 1

Identifier

Hash Chain Link

Block Chain Link

Flag

Block Number

Type

Value

(b) format of identifier entry

Hash Chain Link J

(c) format of the table bucket entry

Fig. 8 Formats of the symbol table

45



46

(see Fig. 8(a) for format) which has a link to the chain of identifier
symbol table entries for its block. The block head also contains the
address of the surrounding block, the block number, and the‘address of the

next block head of the chain of block heads.

Anqther case to take care of is. the redeclaring in a subblock
of an idenfifier already declared. As in Algol this identifier should be
a'neﬁ location and should be used until the block is exited at which time
the_old\deciafation and location should become active again. The natural
way to take éére of this is some type of a stack. All identical identi-
fiers are linked together in the hash chain in decreasing order of block
numbers. Since blocks are numbered in order of their occurrence in the
program this means that the most recent declaration of the identifier
will be found first as one goes through the hash chéin looking for the iden-
tifier. The value of an identifier willl be set to zero whenever a block

is entered.

5.4 Table Routines

The basic structure and concepts of the symbol table have jgst
been given. The construction of the symbol table is done by what is called table
routines. During syﬁtax analysis whenever certain symbols or constructs
are recognized, a table routine is called to update the symbol table accord-
ing to what was just recognized.

If a BEGIN is encountered followed by a declaration then a new block
head must be formed. If BEGIN END is on the stack of the analyzer tﬁen thg end

of a block has been found and the appropriate processing is done. Whenever a



variable or label is declared then it must be entered in the symbol table.

At the end of syntax analysis the entire symbol table has been
formed. buring execution all that need be done is to kéep the variables and
labels up»to date as execution proceeds. Whenever a block is entefed the
flag field for all variables and labels in that block can easily be set to
1 by going through the chain for that block. Upon exiting a block the flag
fields can be set to O. |

Before syntax analysis various thinés had to be initialized. AV
muét be‘initialized to 129 in order to reserve space for the hash table. AV
is the poiﬁter to the next available space in the available space array SP.
SP is a sﬁring array'which holds 12 characters per array element. This array
SP and the form of the symbol table are very simple and clear, and would have
to be changed for efficiency in practical implementation. Every bucket of
the hash table (the first 128 locations of SP) must be initialized to 0 since

no hash chains exist at the start of interpretation.

5.4.1 Routine EXEC1

The flow chart for table routine EXECl is shown in Fig. 9(a).

= a =
=

When the first BEGIN symbbl of an Algol program is encountered this table rou-
tine is called to initialize BLKNO which will be used to keep track of the

block numbers and also P2 which is a stack pointer.

5.4.2 Routine EXEC2

The flow chart for table routine EXEC2 is shown in Fig. 9(b). Ta-
ble routine EXEC2 is called when it is definite that a block and not a

compound stateﬁent is being recognized. It is definite when an INTEGER sym-



48

Table 6

Symbol Table Routines

Table routine

Function description

EXECL |
EXEC2
EXEC3
EXEC4

EXEC5

EXEC6

initialization of BLKNO and P2
constructs a b]}.;ck héad

pbp—up stacks éTZA and ST2N

enters variable in symbol tabie SYM

ehtersv label of outermost block in
symbol table SYM

enters label in symbol table




49

" Table 7 bescrigtion of Names Used in Table Routines
TERM DESCRIPTION }
AV a pointer to next available location in SP
SP an arfay of available space
CRB' .a péinter to first location in current block head
BLKNO a numbér of the latest block encountered
ST2N a stack for the block numbers
ST2A a stack for the addréssés of block heads
P2 a pointer for ST2N and ST2A
OB a pointer to first'lbcation in last block head
K1 a pointer for PS
.TT a buffer in which the address of successive items of
a hash chain are stored
N a buffer containing a string of 12 characters placed
there by the.scanner -
TR a buffer in which the address of the last item processed
in the hash chain is stored
ER9 a procedure to indicate an identifler declared twice in
one block . ]




50

stl;rt
BLKNO=0
P2=0

return . (a) table routine EXECL

*start

CRB=AV

Y

AV=AV+4
BLKNO=BLKNOQ+1

SP (CRB)=ST2A(P2)
AP (OB+1)=CRB

v—

SP(CRB+2)=0
P2=P2+1

"ST2N(P2)=BLKNO
{ ST2A(P2)=CRB
SP (CRB+3)=BLKNO

0OB=CRB
return (b) table routiné EXEC2
s;art
3 P2=P2-1
rettm (c) table routine EXEC3

Fig 9. Flowcharts"for table routines EXEC1l, EXEC2, and EXEC3



51

bol is found following a BEGIN symbol. This routine constructs a block head
for this block and puts the appropriate values in the various parts of the
block heéd. Fig. 8(a) éhould be referenced again at thﬁs point.

CRB will always ﬁoint to the first location of the current block
head so it is set to AV the next available location in the available space
array SP, Four is added to AV next to reserve four locations as needed for
a block head.

BLKNO is then incremented to obtain the number of this block. Re-
member BLKNO is.initially zero so that addition gives the correct number for
all blocks.including the first one. Note that BLKNO is never decremented
since it is only used to number the blocks in the order they are encountered
in a single pass through the program. During execution BLKNO will be used
and it will be decremented then since GOTO's cause blocks to be entered many
timeé . |

For all blocks except the first block the address of the surround-
ing block in STZA(PZ) is stored in SP(CRB), the surrounding block field. Also
‘to maintain the chain of block heads the addressvof the éresent block head in
CRB is stored im SP(OB+1) which is the block head chain 1ink field of the last
block head. Note that OB is used to save £he a&dress (shgségi;t) o} the la;t
block head. Since none of this need or can be done for tﬁe first block head
there must be a test for the first block head so that the above actions are
not performed for that block head.

The block number and locatioﬁ of this block head are stored in the
vparallel stacks ST2N and ST2A. The single pointer f2 is used for both stacks.
The reason for stacking this information is that when any subblocks are exited
any labels encountered must be placed in fhe block chain for the outer block.

Therefore, information on the outer block must be saved. BLKNO is also stored



52

in SP(CRB+3L the block number field.

‘Since no identifiers have been declared in ghis block yet, zero is
flaced in SP(CRB+2) which is the block chain iink.‘ Noté that CRB is saved
in OB so ;hét the pext block head can be linked to ﬁhis block head to maintain

the block head chain.

5.4.3 Routine EXEC3

‘ The flow chart for table routine EXEC3 is shown in Fig( 9(c).
When the three symbols BEGIN 1-9 END are found on the stack FE then the end of
the cﬁrreﬁt_block haS‘béen reached and all that need be done is pop the top
eléments of the stacks éTZA and ST2N by decrementing P2. This makes the block
number and starting location of the block head of the surrounding block

available again as is necessary.

5.4.4 Routine EXEC4

- The flow chart for table routine EXECA'is éhown in Fig.10(a).
Whenever a variable is declared EXEC4 is called to enter the variable in
the correct part of the symboi table. The identifier is hashed and the resultant
iocation in the hash table is placed in TT. SP(TT) points to the hash ;hain
for this location of the hash table. If TT becomes zero at any point then the
end of this hash chain has been reached withoﬁt findiné the variable since zero
marks the end of a hash chain. It should then be entered at the end of the
hash chain. If the identifier is encountered in the hash chain then it should
be linked into the chain just before its first occurrence. Note that each
declaration in a different block.requires ; different symbol table entry.
Whenever another déclaratipn of a variable occurs in a ﬁew block, that block

“has a higher block number than any previous declarations. Therefore, since



start

TT=HASH(N) -
ITR=TT

Y

TT=SP (TT)

TT=SP (TT+1)

A

TR=TT

TT=0?
N

SP(TT)=N?

53

Y

SP (AV)=N

SP (AV+4)=BLKNO

SP (AV+3)=0

SP (AV+5)=0

SP (AV+2)=SP (ST2A (P2)+2)
SP (ST2A(P2)+2)=AV

SP (AV4+1)=SP (TR+1)

SP (TR+1)=AV

B!

AV=AV+7

return

st;rt

T=HASH (N)

v

SP(AV)=N

SP (AV+4)=0
SP(AW+5)=1
SP(AV+3)=1
SP (AV+1)=0
SP (T+1)=AV

y

AV=AV+7

returm -

(a) table routine EXEC4

(b) table routine EXEC5

Fig. 10. Flowcharts for table routines EXEC4 and EXEC5



54

identifie;s are kept in decreasing order of block numbers the variable“can
be linked before the first occurrence as mentioned above.

‘When the variable is entered into the hash chéin in either of the
above cases'éeveral additional items qf informatioﬁ'must'bg entered. The
variable name is stored in SP(AV). The block number is BLKNO since the block
has just been entered and BLKNO has just been:updated; It is stored in SP(AV+4).
The type field, (SP(AV+5)), is set to zero meaning a vériable is stored in
this entry.  SP(AV+3), the flag, is set to zero since it stays zero during
execution except duting.execution of its particular block. The entr& must also
bg 1inked’into the block chain for the current block. The block chain link of
the current block, (SP(STZA(P2)+25) always has the address of the identifier
‘most reéently declared in the block. This address is stored in SP(AV+2).

The address of this entry is then stored in SP(ST2A(P2)+2) to finish linking
this entry into the block chain. The linking into the hash chain is done using
the variable TR which contains the address of the entry that is to be before

the current entry. Finally AV is updated to complete the routine.

5.4.5 Routine EXECS

The flow chart for table routine EXECS5 is shqwn in Fig.]jxs). It
is possible that the outermost block has a label which will be global.to tﬁe
entire program. It is entered in the hash table and is put in hypotheticgl
block 0. It will be left active at all times and has the lowest possible block

number,

5.4.6 Routine EXEC6

The flow chart for table routine EXE06 is shown in Fig. 1 Table

routine EXEC6 is called whenever a label is encountered during syntax analysis.

The entry of a label into the symbol table is similar to the.entry of a varia-



Proc ERTY ‘

Eroc PR

TT=SP (TT+1)

!

TR=TT

start ’ 3

TT=HASH (N)

Y

TR=TT

v

TI=SP(IT) |

. N. v

<

iN,

TR=TT

'

SP(TT)=N?
Y

~Y—GT2N(P2)=SP(TT+4)? )4——N——GI‘2N(P2?> SP(TT+4)? )—b

TT=SP (TT+1) "’QI‘T=0 ?

W aranar )
L 2

v
SP (AV)=N
SP (AV+4)=ST2N(P2)
SP (AV+5)=1
SP (AV43)=0 -
SP (AV46)=K1

SP (AV4+2)=SP (ST2A(P2)+2)
SP (ST2A(P2)+2)=AV .

SP (AV+1)=SP (TR+1)

SP (TR+1)=AV

v

Av=AV+7 |

re{um

Fig. 11. Flowchart for table routine EXEC6




56

ble. The labél is hash-coded and then the search through the appropriate hash
chain is performed. If the end of the hash chain is reached (TT=0) then the
labél is linked onto the end of the chain. 1f the label ié found as a label

or variable thén the current block number is compared to the block number of
the entry just found. Note that the current block number must bé obtained
from stack ST2N. This is necessary since labels may ﬁe found anywhere in a
block which means the given label may o;cur'after some subblocks and tﬁus BLKNO
no idnger contains the number of the current block. Since a label may occur
and thus be.dgclared anywhere in a block, its block nﬁmber may Be greater or
less than any of the previous entries with the same name. A series of tests
must be made té determine exactly where among the series of entries with iden-
tical names the iabel must be linked. A test is also made to make sure the
‘label has not already been declared in fhe same block and also that no‘variable
has been' declared with the same name in this block. This is done by merely
.checking that nb entry has the same name and same block number as the label

now being entered. If this occurs then error procedure ERLY is called into
action. It prints éut an error message and stops interpretation.

When the label is linked into the hash.chain the process is the same
as it was for variables except for the foliowing changes. The type field,
(SP(AV+5)), has one stored in it. The value field has the location of the
label in the postfix string, PS, placed in it. K1 still points to the label
so K1 is stored in the Qalue field. The block number is obtained from the

top of the stack ST2N and placed in SP(AV+4), the block number field.



57

6. Executor

‘The last part of the interpre;ér is ‘the exgcution of the postfix
string whigh.the syntax analyZe; producea. The éohfiguration of the Executor
is shown iﬁ the block diagram of Fig. 12. Remember that therevarg actually
two parallel postfix strings as shown in Fig. 12. ‘Buffer PS contains the sym-
bols (in;ernal code) outputted by the-analjzer'%nd buffer PS1 contains the
Semantics.of those symbols. 1In the.semantic string are the values of the con-
stants and the names of the identifiers. Buffer PS is an integer array.
Buffe; PSl is a string array; each of its elements holds 12 characters.

| Execution is performed with the aid of a stack for the oﬁérands.
A pointer, K1, is used to go through the postfix string, PS, one symbol at a
time. In general an operand is stacked Qhenever encounteréd while an operator
causes some operation on the top elements of the stack. The stack has two
fields for each entry. It has a value field and it has a kind field which
t ells whether the value is the iocation of an identifier or it is the actual
value of an operand. When an identifier is placed on the stack its location
and not its name is placed on the stack. Therefo:e, the value field can be
integer instead of string which is more efficient in general. The two fields
of the operand stack are implemented by using two parallel stacks. The value
field of an operand is stored in stack FE and thé kind field is stored in stack
FE1. Both étacks use the same pointer K.

After initialization of K1, BLKNO, CRB, and K a loop is entered as
seen in Fig. 13. This loop consists of going to a sectidn of the executor pro-
gram depending on what symbol in PS Kl poiqts to. That section performs the
appropriate execution for the symbol pointed at and then reﬁurns to'repeat

the loop. Kl is kept updated by the individual sections of the execution of



58

'Postfix Strings
of Symbols

————N PS(K1)

kind stack

FE1(K)

from' 4
syntax - value stack
analyzer
PS1(K1) —{ FE(K)
Postfix string of
constants and
TN identifier names
SYM Symbol Table
.input ' outpu
buffer CARD PRINT | p iffe

'Fig.12; Configuration of the Executor



59

P2=0
Kl=1 .
K=0 ‘

BLKNO=0
CRB=ST2A (P2+1)

—®{ G0 T0 P(PS(KD))

* ' ““| HALT
¢+ icocro
. GoTO }
+Routine e & o - %Routj_ne i
HALT

Fig.1l3 Flowchart of actual execution



60

the execution program. An error or the reaching of the éymbol HALT causes the

stopping of the executor and of the entire interpreter.

6.1 BEGIN and BEG Routines (Figs. 14 and 17)

Whenéver a block is entered it is necessary to set the flag fields

of all variables and labels declared in that block. When a BEGIN symbol is

encquntered a block is being entered. When a BEG symbol is encountered a
compéund stétément_is being entered and nothing need be done to the symbol
table. Thé:BEG:routiné mérely increments K1 by one and ends.

) As in the table routines BLKNO will keep track of block numbers so
that whenever a block is eﬁtered it is only neceséary to add one to BLKNO to
gét‘the number of the‘biock'being entered. Since there are GOTO's to be exe-
cuted it will be more difficult to keep BLKNO correét. In particular during
the execution of a GOTO symbol much work must be aone_to keep BLKNO correct.
CRB will point to ;he block head for the block being executed.

The routine for the BEGIN symbol starts by adding one to BLKNO to
obtain the correct block number and then going throﬁgh the block head chain
to find the block head for this block. It is only.necessary to go in the
one direction to find the block head becuase of the order in which the block
heads were formed and linked together. A subblock is always formed and linked
somewhere after the block it is contained in,

Next the routine proceeds to activate (set to one) the flag fields
of all labéls and variables of this block and also intializes all variables to
zero. This is done easily since they are all linked together with thé block
head. Finally the pointer Kl is incremented so that it points to the next

symbol and the routiné ends.



Table 8 Names Used in Execution ROutine‘

Description

C3

|

a counter

AName
'BLKNO the number of the next block to be entered ;
' minus one
: FE value operand stack
FE1 kind operand stack
PS postfix string of symbols
PS1 postfix string of identifier names and con-
stants
K pointer for FE and FEl
K1l pointgr for PS and PS1
CRB address of block head of current block
T temporary variable
FIND integer procedure which finds address of
identifier in symbol table
HASH integer procedure which hashes identifier

61



62 :
start

I=FIND (PS1(K1))

+

K=K+1

Y

FE1(K)=1
FE(K)=L

SUEDEE———

K1=K1+1

-

return

start —®| K=K+1  — FFEIEI)(;Z(S)I(KD ‘ K1=K1+1 —® e turn

BEGIN - | - St;rt

BLKNO=BLKNO+1

v

(SP(CRB+3)=BLKNO-? }—ﬁ—n CRB=SP (CRB+1)

I —
T=SP (CRB+2) ‘leP (T45)=17 % | sp(T+6)=0_
T
(o — sp(ren=1 |

iY

K1=K1+1

v

star

[‘I‘=SP(CRB+2) F

t N
C T=0? }——-b SP(T+3)=0
iY

CRB=SP (CRB)
Fig. 14 EFlowcharts of S *
I, C,BEGIN, and
END routines. 1 K1=K1+1

v

return




6.2 END and ENDE Routines (Figs. 14 and 17)

‘When an ENDE symbol is encounterea the end of a compound statement
is reached and nothing need be done to the symbol table. The ENDE routine in-
crements Ki by one and ends. The END routine must update the symbol table
since a biock is being exited. First all variables and labels deélared in
the block_being exited are deactivaped by setting their flag fields to zero.
Then the>éddfess of the surrounding block is obtained from SP(CRB), the sur-
rounding biock field of the block being left, and stored in CRB so that CRB
will coﬁtaiﬁ the address of the block head of the biock which is once again
thé cgrrent\block. Poipter K1 is incremented by one so that it points to

the next symbol and then the routine ends.

6.3 I Routine (Fig. 14)

When the symbol for an identifier is encountered a simple routine
_proceeds to place its address.(Subscript in SP) in the operand stack. The
first action is the calling of the integer procedure FIND which obtains the
a ddress (subscript in SP) of the identifier stored in PSl(Kl).. That address.
is stored in L. It is then stacked on the operand stack FE-which is the value
field. A one is also stored in the parallel operand stack FEl which is the
kind field. A one in.FEl means there is the address of an operand in FE
vnile a zero means that the actual value of the operand is in FE. Pointer K1

is then incremented by one and the routine ends.

6.4 C Routine: (Fig. 14)

When the C symbol is encountered in PS(Kl) then its value stored in
PSl(Kl) is stacked on the operand stack FE. A zero is stored in FEl to signify
that the actual value of an operand is in FE. K1 is incremented by one and the

routine ends.



64

6.5 READ and WRITE Routines (Fig. 15)

ThevREAD-routine reads a number off a card and then stores that
number in the symbol table value field of the variable whose address (sub-
script) is dnktop of the operand stack. The WRITE routine on‘the other hand
obtains the value of the variable whose address is on top of the opefand stack
and writes out that value. At the end of both routines the top element on
the~operand:s;$§k is removed by decremengiﬁg by one K. K1 is incremented by one

and the routine ends.

6.6 4; *, [/, +, and - Routines (Figs. 16 and 17)

4, *, /, +, and - are all .binary operators and the routines that
are called when they are encountered are alﬁost identical. . in all five rou-
tines the first action is to check the top two operands of the operand stack
to see what is the kind of their wvalues. If the kind field of either is
one, meaning the value is the address of é variable, then the value of the
variable is obtained and the address is replaced with the actual value of
kthg variable. The two operénds are then combined as the particular qperator
in question requires and the result is placed in the location below the top of
. the stack (second stack location). The kind of this location of the stack is
set to zero since an actual value has just been stored. The stack pointer K is
décremented by éne so that the result is on top of the stack and then finally

‘K1 is incremented by one.

6.7 = and # Routines (Fig. 16)

= and # can be considered binary operators. As for the other binary
operators the first action is to make sure that the top two operands on the
operand stack are actual values. These two values are then compared. If

they are the same then the result is one (true) if it is the = routine and



)

READ start read a B SP(FE(K)+6)=T = | kek-1

— umber off a , | K1=K1+1
‘lcard into T ' : ’ !
N , o return

WRITE start 9 T=SP(FE)t6) | print valte | P R1=K1+1

] ‘
e return

FIND - start
' T=HASH(PS1(K1)) T
T=SP(T)

i
Y
(=07 HProc ERL11
. .

N ' i
T=SP (T+1) ‘——‘C : SP(T)=PS(K1)? ) Proc Eims Il
FIND=T 1———( SP(T+4) 17 —H{sp(m)=ps k1

9 .

S~

,Jk

| -
l T=SP (T+1) —————{ T=0?

return

\.

Fig. 15. Flowcharts of READ and WRITE routines and of procedure FIND



66

v 3 ‘ N SN
start FE1(K)=1? ~1y=2
o sea #@; . FEL(R-1)=?
FE (K) =SP (FE (K)+6) | | l FE (K-1)=SP (FE (K~1)+6) —
{ FE (K-1)=0 ' N
' (_ - _ 'QE(_K—l)=(FE(@<——
‘ ' ‘Y
K=K~-1 :
return d————— g1=K1+1 g - FE (K-1)=1

N
start FE1(K)=1? FE1(K-1)=1?
,¢ (K-1)
FE(K)=SP(FE(K)+6' — FE(K-1)=SP(FE (K-1)+6 |—
_ | . |
FE(K-1)=1 (@ _ —(FEE-D=FEQ)? e
Y '
“K-1 < - FE (K-1)=0

return «——— K1=K1+1

: N
start *——’@1(10;1? \j , ! SP(FE(K-1)+6)=FE (K)
¥ Y

FE (K)=SP (FE(K)+6) K=K-2
- K1=K1+1 [————®ret

FE1(K~1)=1? \_E_._
< e/
vy

FE(K~1)=SP (FE (K=1)+6

 atart FEL(K)=1?

| FE@=se FEGRI*6

return <@— : R=K-1 FE(R~1)=FE(K~1)# FE(K).
| - [Ki=K1+1 FE1(R-1)=0
start FE1(K)=1? N N
sta _
Y . Y

FE.(K)=SP (FE (K) +6 FE(K-1)=SP (FE (K-1)+6 |—

Uty L

return <— K=K-1 : FE (K-1)=FE (K~1) *FE (K)
K1=K1+1 | o [ FE1R-1)=0

Fig. 16 Flowcharts of =, #, :=, ¢, and * routine



start

HALT

NEG

BEG

ENDE.

ELSE

FEL(K)=1? -

JURBU

ST

. ' '\\ y
- FE1(K-1)=1?7 ———
e S

FE (K)=SP (FE (K)+6)

return - e

K=K-1 : FE(K-1)=FE(K-1) /FE(K)

Kl=k1+1 | FE1(K-1)=0

-

[t - ..4;§_~_,_ e

q\gm (K-1)=1? ;————-—w

T
|
)
i

TE (K-1)=SP (FE (K"]:) +6) . s.._}. !

FE(K) =SP (FE (K)46)

retum «f—m

FE1(K)=1?

FE(K)=SP(FE(K)+6)

return®@—

start ———® end of interpretation

start

FE(K-1)=SP(FE (K-1)+6) W™
o [ micDo
FEl(K—1)=1?\ N
FE(K—1)=SP(FE(K-;)+6) —>
N
————»-retum -
FE(K)= -FE (K

.FE(K)=SP (FE(K)+6)

start

K1=K1+1 % retum

start

K1=Kl+1 = p———-P» return

start

K1=K1+1 — > return

start ———®{K1=K1+l [~ retum

v

K1=K1+1 F————%» re turn

Figure 17
Flowcharts of. /,+,-,
HALT, L, NEG, BEG,ENDE
ELSE, and TLS routines



68

zero (false) if it is the # routine. If the two values are different then the
result is zero if it is the = routine and one if it is the # routine. The
result is then placed in the second location of the stack. K is decremented

by one and K1 is incremented by one.

6.8 := Routine (Fig. 16)

U;ﬁ means‘that the value of the‘top.operandrof the stack should be
stored in.thé.symbol table value field .of the variable whose address is in
the seqoﬁd-location of the operand stack. The first action is thus to make
sure tﬁeré is an actual Qalue on top of the operand stack. That value is
fheﬁ stored in the approﬁriate vélue field. Two is tﬁen subtracted from K

since neither operand 1s needed any longer. K1l is decremented by one as usual.

6.9 L Routine (Fig. 17)

When an L symbol is encountered a label is being encountered and
nothing need be done. The : has been eliminated so all that need be donevis

increment K1 by one and then the routine ends.

6.10 NEG Routine (Fig. 17)

NEG is a unary operator. The top operand is made an actual value
and then the negative of that value is stored in its place on top of the

stack. K1 is incremented by'one.

6.11 IF Routine (Fig. 18)

The important thing to remember with conditional statements is that
the syntax analyzer has already checked for all errors and therefore this exe-

cution part can assume the correct symbols will be where expected. In particu-



69

IF
start oot K=K-1 }——————gp Teturn
K1=K1+1
| K=k-1
K1=K1+1
C3=1

! K1=K1+l feap——

PS(K1)=BEGIN?

BLKNO=BLKNO+1

K1=K1+1

SO

K1=K1+1

v

PS(K1)=THEN | TLS?

Y
PS(K1)=END?)
N

g
‘ Y
K1=K1+1

i

| C3=C3+1 >

- BLKNO=BLKNO+1 ;

return ) |

!

PS (K1)=BEG?

¢
{

K1=K1+2

return

Fig. 18, Flowchart of the IF routrinme



70

lar the THEN and ELSE for a éivenAconditional statement will be in their pro-
per positions.

When én'IF symbol is encountered the top operand on the stack is a
value, one or'zéro. If it is a one then the boolean expressioﬁ was true and
the THEN statement is to be executed. If it is zero then the ELSE stétemenf
is to be executed. In either case after it is decided which statement is to
be executed ﬁhe:dperand is -removed from the top §f the stack by decrementing
Kby 1. 1If it.wés'true then the statement immediately following the IF symbol
in PS is the.THEN statement so all that need be done is increment K1 by one
and eﬁd thé routine. When ;ﬁe THEN symbol is encountered then the THEN
statement is over and at that point the skipping of the ELSE statement will
be taken care of.

If the boolean‘expression>is false then the THEN statement must be
skipped so that the ELSE statement is the next statement executed. It is not
possible to just go through PS until a THEN symbol is encountered. Since
a THEN statement may be a block or compound statement which may itself have
conditional statements, blocks or compoﬁnd statements 1t necessary to keep
track of how many BEGIN, BEG, END, and ENDE symbois are skipped. The block
or compound étatement may also have labels so the‘checking for a block (a
BEGIN symbol) or compound statement (a BEG symbol) must continue if there are
labels (L symbols) uniil the first symbol which is not an L symbol is reached.
Then if there is not a BEGIN or BEG symboi all that need be done is to keep
skipping symbols until a THEN or TLE symbol is reached. K1 is incremenfed by
one and the~r6utine ends.

If there is a BEGIN or BEG symb&l thén it is necessary to continue
skipping symbols until the end of the block or compound statement is reached.
To do this it is necessary as mentioned above to keep count of the BEGIN,

END, BEG, and ENDE symbols encountered. ‘Only when the matching END for the BEGIN



71

or matching ENDE for the BEG is eﬁcountered has the whole block or compound
statement been skipped. Only the BEGIN, BEC, END, and ENDE symbols must be
checked’ for. This is done by counting the BEGIN and BEG symbols in the counter
C3. When éh END or ENDE is encountered one is Subtracted from C3. Therefore,
when C3 reaches zero the entire block oi compound statement has been skipped.
The syntax analysis has made sure that all BEGIN symbols are matched by END
symbols and all BEG symbols have matching ENDE symbols. It is no longer
neceséary toldeal with such problems here. K1l is then incremented By two
so that the statement after the THEN symbol is executed next. Note that it is
assumed that a THEN symbbl follows the block or compound statement since it was
the job of the syntax aﬁalyzer to produce only proper postfix code.

One other action is performed when skipping blocks. BLKNO must be
incremented by one for every block skipped so that it.hés the proper value the

next time it is needed.

6 .12 THEN Routine (Fig. 19)

When a-THEN.symbol is encountered then the end of- a THEN statement
has been reached and it is necessary to skip an ELSE statement. This process
is identical to the process just described for skipping a THEN statement ex-
cept an ELSE symbol instead of a THEN symbol marks the end of the statement
being skipped.

It should be noted here that a GOTO branch into a conditional state;
ment ig handled properly as it is in standard Algol. A transfer to the THEN
statement is legal and at the end of the execution of the statement the ELSE
statement is skipped because a THEN symbol.is encountered which results in the

skipping of the ELSE statement as mentioned above.



72 '
START

K1=K1+1
RIRIL PS(K1)=BEGIN? - €3=1
- N BLKNO=BLKNO+1
J T
PS(K1)=BEG? C3=1
Y-
PS (Kiy=L? K1=K1+1.
‘N.
o . 3 PS (K1)=END?
K1=K1+1 — C3=C3-1 |t
PS(K1)=ELSE?
K1=K1+1
‘ : C3=C3+1 — !
return X ' BLKNO=BLKNO+1
PS(K1)=BEG?
C3=C3+1 t——

retum

Fig. 19 Flowchart of the THEN routine



73

6.13 TLS Routine (Fig. 17)

The TLS symbol is encountered at the end of the execution of the
THEN statemen;‘of a conditional statement which has no ELSE.statement. All
that need be done is increment K1 by one so that the first symbol of the next

statement is pointed to and then the routine ends.

6.14 ELSE Routine (Fig. 17)

The ELSE symbol is encountered at the end of the execution of an
ELSE statement and all that need be done is increment K1 by one so that first

symbol of the next statement is poéinted to.

6.15 GOTO Routine (Fig. 20)

This routine is the most complicated execution routine because a
jump across Or'Out of blocks requirés updating the symbol table and several
block variables. Nothing need be done for compound statements so BEG and
ENDE symbols are ignored.

The first action is to check if the top operand.on the operand stack
is in fact a label. If it is not then there is an error and procedure ERL 40
is called to print out an error message #nd.end interpretation. Otherwise
the value of the label is obtained and stofed in T. Note that an undefined
label will result in an error even before the GOTO routine is reached. .The
address in the symbol table of the label is fetched and placed on the operand
stack by the I routine before the GOTO symbol is encountered. If the label is
undefined in this block then proéedure FIND of the I routine will not find the
label in the symbol table.and will cause error termination of the interpretation.

The value of the label is the location in PS of the label. A test is then made



/4

- GOTO

-

start u_ﬁd__“’@(m(x)ﬁ)ﬂ?

T=SP (FE(K)+6) ﬂfbm? /

;N

Proc ERL4O

T=SP (CRB+2)

- T=07?

v

CRB=SP (CRB)

y

1=K1+1

PS(K1)=END?

PS(K1)=BEGIN?

BLKNO=BLKNO+1;
C3=1

SP (T+3)=0

Kl—Kl+l

return

1=K1+1 ﬂf

BLKNO=BLKNO+1 B
C3=C3+1

-

V

8> K1=K1-1

Y
V.

S (K1)=BEGIN?) N

| T=SP (CRB+2)

N
e L

A K

N

C3=1

]

SP(T+3) 0 |

—

BLKNO=BLKN
CRB=SP (CRB

-

0-1
)

1

Y

Kisk1+1 |

return

C3=C3-1

{ C3=0? \ N

BLKNO=BLKNO-1 | g
C3=C3+1

Fig. 20, Flowchart of the GOTO routine




75

to see whether this GOTO branch is a forward or backward branch. The branch
_ is then processed in one of two ways depending on the result of the test.

va T is greater than K1 then it is a forward Branch since K1 points
to the presént position in PS. The routine then prbceeds to go through PS
symbol by symbol until it reaches the Tth symbol. Whenevef an END symbol is
encounte;ed then a block is being exited and it is necessary to deactivate
all the'variables and labels declared in the block being exited. This is done
éasily as usual since all entries for that block are linked together, CRB
is loaded with the address of the surrounding block which is now becoming the
innermost block. The address of the surrounding block is in SP(CRB), the
surrounding block field of the block head of the block being exited.

If a BEGIN symbol is encountered then the routine continues toward
position T of PS, but it keep tracks of the blocks being passed by. These
blocks are not active since they were not global or local at the start of the
execution of the GOTO. The label cannot therefore lie in these blocks. If
it had been in one of these blocks there would already have been error
termination since the label was not active. Nothing need be done to the

variables and labels in these blocks since they will not be active at the

end of this routine. Theréforé;‘éhése blocks are passed through without
doing anything except incrementing BLKNO by one each time a block is passed
through (each time a BEGIN symbdl is encountered). When Kl becomes equal to
T the label has been reached so K1 is incremented by one and the routine ends.
If T is less than K1 then the branch is backward an& a slightly

different process is followed. Again the routine proceeds through PS this time
decrementing K1 and processing the symbols encountered.

' ‘ This time if a BEGIN symbol is encountered a block is being exited
and the iabels and variables declared therein ﬁustAbe deactivated. The routine

.goes through the chain for that block deactivating the entries. CRB is loaded



76

with the address of the block head of the surrounding block which is now becoming
the innermost block. This address is obtained from SP(CRB). BLKNO must be
decremented by one to keep it updated. If one remembers how block numbers

are aSsigned tﬁen it is clear that BLKNO must be decreﬁented by one here.

If ‘an END symbol is encountered then a situation similar to that in
the forward branch occurs. The END means the end of a block which is not active
is being encountered. This block and any of its subblocks are to be skipped
since the branch cannot be into any of these blocks. Also no changes are to
be made to-anyvvariables and labels declared in these blocks. BLKNO must be
kept»updatédvagain by being decremented by one for every block passed through
(for évery END symbol encountered). When the matching BEGIN for the END
that started this block is encountered then .the rqutine continues going through
PS until T equals K1. Any END or BEGIN symbols cause the above procedures to
be féllowed. Again when K1 reaches T, K1 is incremented by one and the routine

ends.

6.16 HALT Routine (Fig. 17)

The last symbol in PS should be the HALT symbol. It causes the
execution of the program to terminate and the end of the whole interpretation

of this program also.

6.17 FIND Procedure (Fig. 15)

FIND is an intéger procedure which takes the identifier stored in
PS1 (K1) and produces aé its result the address (subscript) of the symbol
table entry of that identifier. The first action is to apply the integer pro-
cedure HASH to the identifier which produces a subscript (bucket) in the hash
téble. The procedure ﬁheh proceeds through the hash chain starting at this

subscript (or bucket) until the identifier in question is found. If the iden-



tifier_;f not declared anywhere in the program then it will not be found in
_éhe chain and error procedure ERL11 is called to prdnt out an error message
énd end interpretation. |

If the.identifier is found the procedure éontinues through the chain
to find the first entry of the identifier that is active. The subscript of
this entry is returned as the result of procedure FIND. If none of the entries
of this identifier are active then the error procedure ERL15 is called to

print out an error message and end interpretation.

6.18 HASH Procedure

The procedure HASH is an integer procedure which takes an identifier
name and converts it to an integer between 1 and 128. Each identifier is
considered to be twelve characters ldng. If the identifier is less than
twelve characters long then blanks are filled in at the end of the identifier.
The characters are then converted to binary using the Univac 1108 character
code (8). This produces a 72 bit result. The EXCLUSIVE OR operation is per-
formed on the first and last 36 bits producing 3.56 bit result, The first
five seven-bit sections of the 36-bit result then have the EXCLUSIVE OR oper-
ation performed on them in succession to produce a seven bit result. One is
added to this result to produce a nuﬁber between 1 and 128 and this number is
the result of the procedure HASH. This number is the subscript (or bucket) of
the given identifiér in the hash table. The hash table is the first 128 lo-

cations in the available space array SP.



78

7. Interpretations of Sample Programs

In order to illustrate how the interpreter functions, interpretation

of two programs are described below.

7.1 Program 1

Figs. 1 and 2 should be consulted to aid in the following of the inter-
pretation of program 1 shown in Fig. 21. Program 1 computes the factorial of

the number read into NUM and prints out the result.

7.1.1 Initialization, Scanner, and Syntax Analysis

The space for the hash table is reserved first and the buckets are
all set to zero. Cl and C2 are initialized and then procedure GC»is called to
load the first character into buffer CH. The analyzer then starts and calls
the scanner to place the first symbol on stack FE.

The scanner does the converting of the input program into the sym-
bols shown in Table 2, but it does not do this all at once. It obtains the
next symbol only when a request to do this is made by the syntax analyzer. In
Fig. 22 are the symbols that are passed to the syntax analyzer by the scanner.
The symbolé are in the order they are passed, but not in the actual form they
are passed in. As has been done throughout this report the symbols are given,
in place éf the internal code which is actually used in an interpreter. For
I and C symbols the actual identifier or constant is passed also and is given
below the symbol in Fig. 22. |

The syntax analyzer also controls the building of the symbol table
by calling table routines at appropriate times. Siqce program 1 in Fig. 21 has

only one block only a single block head is formed. The variables NUM, I,



| BEGIN INTEGER NUM, I, TEMP, NFACI}‘;‘
READ(NUM) ;
TEMP:=1
I:=1;
CONTINUE I:=I+l;
TEMP : =TEMP *1;
IF I=NUM THEN NFACT:=TEMP ELSE GOTO CONTINUE;

WRITE (NFACT)
END

Fig. 21 Sample Program 1 (Calculation of N factorial)

.~ BEGIN INTEGER NUM,I;

I=1;

BEGIN INTEGER TEMP,NUM;
TEMP=1;
NUM=2; |
BEGIN INTEGER NFACT,NUM;
| NFACT=TEMP ;

NUM=NFACT

END
END
END

Fig. 26 Sample Program 2

79



80

T wex8oxg 103 i19zLTeue xejuks oy3 O3 IdUUBOS a3 £q

pessed a1 £9y3 xepio °9Yyj UT SIUBISUOD 10 'sI9T3FIuspT SBurpuodssirod pue sSToquig 2Z "%1g

IOVAN
ang ( I ) FLIUM £
A NTLNOO . JREL IOVIN HON
1 0109 45T 1 =t I NHEHL 1
I 1 dWAL
= 1 a1 H I ¥ I =1
JRAL 1 I 1
I ; 9 + 1 =: 1 :
HANTINOO } T I T
I m H ) =: 1 ¢ 9 =:
AL w WAN 4 IOVAN
I § H ( I ) avay H 1
i
B T D B T -
; dwar | 1 ,“ 3
s | 1 ¢ T s T T " A
| | 1 T . N T
R SRS S DR OSSR S |

s s e b A

'
s



81

TEMP, and NFACT are placed in the>hash table and linked together in a chain
from the single block head. The block head.is formed when the BEGIN symbol is
encountered. . The variabels are placed in the éymbol table when they are en-
_countered in the declaration. CONTINUE is entered in thé symbol table as a
label when it is encountered. It is linked in the block chain also.

The contents of the symbol table at the end of syntax analysis is
given in Fig. 23. It should be compared with Fig. 8 to see what has been
entered iﬁ the fields of the various entries. Note that the hash table which
is locations 1 through 128 contains zeroes except where the identifiers have
been linkédvto buckets. IOnly 6ne variable or label has been linked to each
buéket so all the hash chains consists of only one entry. Since all the var-
iables and labels ére declared in thg'same block they are all linked together
through the third location (field two) of each entry. fhe location of the
iabel CONTINUE in the postfix ;tring PS is stored in the Qalue field of CONTINUE
in the symbol table. .

| At the end of syntax analysis the entiré input program has been
processed and converted to the postfix strings PS and PS1. The postfix
strings produced for program 1 are shown in Fié. 24, Again_the symbols and.
not the internal code are shown in the Fig. 24. The variable names and con-

stants saved in the parallel string PS1 are also shown.
7.1.2 Execution

The postfix string PS and the parallel string PS1 are executed by
the interpreter next. As mentioned in the description of the éxecution part of
the interpreter the two parallel stacks FE and FE1l are used to perform exe-
cution of the postfix strings PS and PS1l. The first thing done during exe-

cution is the initialization of the pointers K and Kl. For keeping track of



82

Location Hash table Location

Number Locations 1-128 "~ _Number
154 NFACT
23 - [_140 ] Lo | 3
156 147
64 [ 147 | 1o =
158 1
72 L_161 1 155 5
83 [ 154 ] 160
106 [ 133 | %1 TR
o 162 A 0
(All other locations of 163 154
hash table contain 0) 164 0
S 165 1
166 ]
167 10
. Block head 1 T
129
130
131 161
132 1
133 NUM
134 0
135 0
136 0
137 1
138 )
139
140 i
141 0
142 133
143 0
144 T
145 0
146
147 TEVD
148 4]
149 Y%0
150 0
151 1
152 0
153

Fig. 23 The contents of the symbol table at the end of syntax
analysis for Program 1



b3

T wea8oxg 103y paonpoad Tgd pue g4 sSurils xXryisod w7 814

ITVH . QNZ  ALTEM
53 e 33
IOVAN . T ENNTINGD AL  IOVAN
1 ASTH 0L09 1 NEHL = 1 1
23 ¢ 3 %7 87 iz 92 57
WaN T _ i JWAL
41 = I I = * 1 1
vz €7 A 1z 0T 61 8T LT
IWAL o 1 1 ‘I EONIINOD
I == + 5 1 1 7 =
91 cT 71 €1 7T 11 ot 6
- - : i
0 I =t 2 1 avad 1 N1o@Eg | sa
) I o 7 T r T




84

the block structure BLKNO and CRB are'initialized; The loop which pefforms

the.executioq is now entered using the symbol pointed to by K1 to decide
which execution routine is to be entered. |

The.éépropriate routine is branched to by the use of a GOTO and a
switch (the equivalent of a computed GOTO in FORTRAN) with PS(Kl) as the argu-
ment,

The first symbol is a BEGIN symbol so the BEGIN routine is entered.
At this point the operénd stacks FE and FEl are empty. BLKNO is incremented
by one and the first and dnly block head is found. By proceeding through the
block chain fhe flags of thé entries NUM, I, TEMP, CONTINUE, and NFACT are
set to one. The value parté (field 6) of the variables are also set to zero
while the value part of the label CONTINUE is left unchanged. At the end of
the routine the stacks FE and FEl are still empty. In Fig; 25(1) the states
of FE, FE1, and K1 after executing the BEGIN routine are given. Note that
only the first three locations of the stacks. FE and FE1l are shﬁwn since no more
~ than three elements are ever on these stacks during the execution of program
1. Since PS and PS1 are never altered during exeuction only the pointer
K1 is given and Fig. 24 should be consulted to see what symbol K1 is pointing
to.

The next symbol is I and the I routine causes the address of the
identifier NUM stored in PS1 to be placed on stack FE and 1 to be placed on
stack FEl. Fig. 25(2) shows the state of the stacks and pointer'Kl after the
I routine has been executed.

‘Next a READ symbol is encountered and its routine causes a number
to be read off a data card. It is assumed that the number four is on the data
card. The number is stored in the value field qf the symbol table entry of
the variable NUM. The stacks FE and FE1 are then emptied (Fig. 25(3)). The fi-~

gure specified here and those specified throughout the rest of this section



L5

‘T weaxloxg
JO0J UOTINDAX Jo so98eis snoiaea

Je TY 193utod ay3 jo pue ‘yag
pue FJ s¥oels 3yl Jo I33eisS IYj

fe =11

T8l

1]

£e=T1

T ]

ce=1

T34

8¢=11

144

LT=TX

T34

97=11

THL

=11

—t

jctd

6T 314

(€€)
(2€)
(1€)
(o)
(62)
(82)

L)

TT=T4

134

0€=TX

LYl ek

o+
I3
B,

cel

ot dad

0¢=T1

T Ta4]

~ g

71 a4

6T=TA1

o7T ! L%T

LYT aq

8T=T1

AR

LYT 14

e S
S Tt

{0

-1z

(92)
(D)
(0%
(€D
(z2)
(12)

(02)

(6T)

(8T)

LT)

(91)

(9]

(1)

0v1

o71 a4d

T TO7T
T o7

eT=T4

YT

. O%T L

ZI=T

o -

I1=TX%

133

0T=T}1

8=TA

T 134

S

(VAN q1

L=TA

it

9=TA

(I ! 33

S=TA

L91 | 34

9=T1

THd

£=TA

a4

|

=11

Lad ™M

(eT)
€49)
an

(o1)

va.
)
(9)
(%)
(%)
(€)
()

(1)



86

give the states of the stacks and of pointer K1 at the end of the routine .
described.

In Figs. 25(4) and 25(5) it can be seen that the address of thé vari-
able TEMP and the value of the constant one have been stored on the operand
stack by the appropriate routines. Each figure shows the ?esults of the exe-
cution of a routine.

Negt a := symbol is encountered and the routine causes the constant
one to be stéred in the value field of the symbol table entry of the variable
TEMP. The stack is then emptied (Fig. 25(6)).

_The same process is performed next on the variable I. The constant
oﬁe is stored finally in the vaiue field of the symbol table entry of I.
Figs. 25(7), 25(8), and 25(9) show:the result of the three routines executed.
| An L symbol is encountered so éll that is done by the L routine is
to increment Kl so that the next symbol is processed (Fig. 25(10)).

In Figs. 25(11), 25(12), and 25(13), it can be seen that the ad-
dresses of the variables I and I are stored on the operand stack and the value
of the constant one is stored on the operand stack since the appropriate sym-
bols are encountered.

The symbol + is encountered next. The top operand stack element is
value (FE1(K)=0) so it is not changed, but the second stack element is an
address (FE1(K-1)=1) so the value of the variable is obtained and replaces the
address. The top two stack elements are then added producing the result of 2.
This value then replaces the second stack element énd the kind field in FEl
is set to zero. The pointer K is decremented so that the result is now on top
of the stack (Fig. 25(14)).

A := symbol is encountered and since the top stack element is value
that value is stored in the value field of the symbol table entry of the
variable I whose‘addreés is the second stack element. The stack is again emptied

(Fig. 25(15)).



&/

In Figs. 25(16), 25(17), and 25(18) the addresses of the variables
TEMP, TEM?, and I are stacked since the symbol I is encountered three times
-in succession. Then the syﬁbol * is encountefed{ The &alues of the two top
operands are obtained easily since their addresses in the symbol table are on
the stack. The two values are multiplied together and the result, 2, replaces
the second stack element. The kind field is set to zero. K is decremented:
by one so that the result is on top of the stack (Fig. 25(19)).
| " A := symbol is encountered so the value 2 which is the top operand
stack elemgﬂt is stored in the value field of the symbol table entry of the
variable TEMP whose address is the second stack element. FE and FEl are
again emptiéd (Fig. 25(20)).

' Two consecutive I symbols cause the ad&resses of the variables I
and NUM to be placed on the operand stack (Figs. 25(21) and 25(22)).

The symbol = causes the values of the top two operands to replace
their addresses, The two values are then compared. Since the value are differ-
ent a zero replaces the second stack element which is promptly made the-top -
stack element by decrementing K by one (Fig; 25(23)). The values of 1 and
NUM have just been compared. The value of I 18 2 and of NUM is 4, NUM con-
tain; the number the factdrial of whic£ progr;m 1 is computing. When I and
NUM have the same value then TEMP will containi the desired result. .A con-
ditional statement is being processed and the top value of thg operand stack
now indicates which part of the conditional statement is to be executed.

The next symbol is an. IF symbol.‘ Since the top stack elemept is
a zero, the THEN statement ¢f this conditional statemen; musp be skipped.

The stacks FE and FE1 are emptied. The IF routine then proceeds to go through
PS symbol by symbol looking for the ELSE stateﬁent. Since the THEN statement
is not a block or compound statement the routine continues incrementing K1

until a THEN or TLS symbol is encountered. When K1 becomes 28 a THEN symbol



88

is encounteredf K1 is incremented by one and the routine ends (Fig. 25(24)).

An I symbol is encountered next so the address of the identifier
CONTINUE is plaged on the operand stack FE (Fig. 25(25)). .Next a GOTO symbol
is gncountered} The GOTO routine. obtains the locationvin PS of label CONTINUE
. whose address in the symbol -table is the top operand stack element. . Since
the label is earlier in PS than Kl presently points the routine proceeds to
back up by decrementing K1 until K1 reaches the label which is in PS(10).
The'routine’checks for either a BEGIN or END -symbol each time before it de-
crements Kl by.one, but no such symbols are encountered. Eventually Kl be-
comes 10 .so K1 is incremented and the routine ends with Kl equal to 11 and the
stack empty (Fig. 25(26)).

Execution continues but it is processing the same symbols again
with new values for some of the variables. Eventually the conditional
statement is reached again and since I is three this time it will still not
be equal to NUM so the GOTO will be. reached and the loop will be repeated
again. TEMP will have value 6 after the second pass through the loop. The
third time the con&itional statement is reached I will have value 4 so it will
be equal to NUM and a differént part of the IF routine is entered. All this
part does is empty the operand stack which had a 1 (true) on it and increment
Kl by one so that the THEN statement is executed instead of skipped. (Fig.
25(27)).

Two consecutive I symbols are encountered so the address of the vari-
ables, NFACT and TEMP, are placed on the operand stack (Figs. 25(28) and 24(29)).
A := symbol is encountered so the value of the top operand is obtained and re-
places the address on top .of the 'stack. This value is the value of TEMP which
is 24 after the last time through the loop. It is the desireq'reSult i.e.,
NUM!. The value is then stored in the value field of the symbol table entry
. of NFACT whose address is the .second stack element. The stack is emptied and

Kl is incremented by one to 29 (Fig. 25(30)).



89

A THEN symbol is encountered which means an ELSE statement is next
and must be skipped. This is’done by incrementing K1 until the ELSE symbol
is reached. The THEN rdutine must check for a'blpck or éomp0und statement
but since none is found all that need be done is incfement K1 until the ELSE
symbol is reached. Kl is incremented bﬁ one so that the first symbol after
the ELSE symbol will be the next to be executed (Fig. 25(31)).

An 1 symbol is encountered so the address of the variable NFACT is
stacked (Fig. 25(32)). A WRITE symbol is encountered next sb the value, 24,
of the variable NFACT is written out. The stack is emptied one last time
(Fig. 25(33)). |

An END symbol is next so the END routine proceeds to deactivate the
variables and labels declared in this block. Finally the HALT symbol is

reached. The execution and the interpretation of the program are ended.

7.2 Program 2

Fig. 26 shows program 2. The program does not compute anything of
inferest, but it is given as a simple example of a program with a more compli~
cated symbol table than the last example. Fig. 27 shows the symbols in the
;order they are passed by the scanner to the syntax analyzer. It also shows
the identifiers and constants which are passed along with the symbols I and C.
In Fig. 28 the output of the syntax analysis is -shown. The execution of this
program is even simpler than that for the last program except that there are
more BEGIN and END symbols in order to activate or deactivate identifier
at the proper times. The execution of program 2 is not described, but Fig. 29
should be consulted since the symbol table for program 2 is given there.

For program 2 there are three block heéds. Each block head has a
‘chain of the identifiers declared in that block. This chain is utilized

during the execution to activate all the identifiers for that block when it is



90

¢ wealoxd ao3z

I9zZATeUR XB3ULS 9U] 0] 19UURDS 9yl £q passed aie £ayj I9pio dY3 uy sToquds /7 ‘811
o . IOVIN HON
aNd aNd - QONd I = 1 ¢
WAL LOVAN WON IOVAN
1 = I H I ¢ I YADALNIT
. 4 RON T
NISdg ¢ ) = I ¢ 0 =
AL HAN JNEL
I H 1 ¢ I YADAINI NI53g H
T I I WN
0 I : I ¢ I YAOALNI NI9ad




91

7 uweax8oxg aoy poonpoad Tsq pue gq s8urils xr3isod 8¢ °8Td
IOVAN WAN
and ang ang = I 1 =|
12 0¢ 61 8T LT 91 ST
dWHL LOVAN 4 WIN
1 1 NIDdd = ) I =
A €T (A3 TT 0T 6 8
T INAL T i TSd
4] 1 NIOdd = 2 T N193dd Sd
i 9 S v T € z T



92

Location

Number

23
64
83

106

Hash table

(A1l other locations of hash

129
130
131
132

133
134
135
136
137
138
139

140
141
142
143
144
145
146

147
148
149
150

151
152
153
154
155
156
157

-Location.

Locations 1~128 Numb e
| 140 I 158
159
151 | 160
- 161
169 | 162
163
[ 176 | 164
table contain 0) 165
166
Block head 1 167
168
147
140
L 169
170
171
NUM 172
0 173
0 174
0 175
1
0
176
177
178
1 179
0 180
133 181
0 182
1
0
Block head 2
129
165
158
2
TEMP
0
0
0
2
0

Block head 3 -

147

176

3

NFACT

(o] T} {eo] (o] [}

NUM

158

169

Fig. 29 State of the symbol table at the end of syntax analysis

for Program 2



53

entered and to deactivate them when it is left.

The bucket in the hash table at location 106 has a chain with more

than one entry. These entries happen to be the same identifier which has

been redeclared several times in different blocks and there is an entry for

each declaration. Note that these entries are kept in order according to

block numbers in decreasing order. The linking together of block heads can

be seen in Fig. 29.

8..

Acknowledgment

The author wishes to express his thanks to Professor Yaohan Chu

for his guidance in the architectural design and his assistance in prepar-

ing the manuscript, to Leonard S. Haynes for his assistance in syntax analy-

sis,

vg.

and to Nancy Nowell for her typing.
References

P. Baumann, et al., "Introduction to Algol", Prentice-Hall, Inc.,.1964.

H. Bloom, '"Design and Simulation of an Algol Computer", Tech. Report 70~
118, Computer Science Center, University of Maryland, June, 1970.

A. Evans, "An Algol 60 Compiler", Annual Review in Automatic Programming
4, Pergamon Press, 1964, pp. 87-124.

D. Gries, "Compiler Construction for Digital Computers', John Wiley &
Sons, Inc., 1971.

J. Icchbiah and S. P, Morse, "A Technique for Generating Almost Optimal
Floyd-Evans Productions for Precedence Grammars'", Comm. of the ACM,
August, 1970.

P. Naur, Editor, "Revised Report on the Algorithmic Language Algol 60",
Comm. of the ACM January 196 3.

T. Signiski, "De81gn of an Algol Machine", Tech. Report 70-131, Computer
Science Center, University of Maryland, September, 1970.

Processor and STorage Programmers Reference Manual for Univac 1108, Docu-
ment No. UP-4053, Rev. 1, Sperry Rand Corporation, 1966, 1970.



94

‘10.
11.
12.
13.
14.
15.
16.
17.

18.

20.
21.
22.

23.

Appendix A, BNF Description of an Algol Subset

<1>::=Al...|z|<1>{A]...|2}]<1>{0]... |9}
<UN>::=0]|...|9]|<uN>{0]...]|9}
<U>:e=<I>

<L>::=<I>

."<P>::=<UN>|<V>|(<AE>)

<F>:;=gp>[<F>+<P>

_<T>L:=<F>|<T>{Xl/}<F>‘

<AE>::=<T$‘{+|—}<T>|<AE>{+I-}<T>
<BE>::=<AE>{=|#}<AE>‘

<AS>: :=<V>:=<AE>

<GTS>::=goto<L>

<RS>::=read(<V>)

<WS>: :=vrite(<V>)
<TL>::=<V>|<V>,<TL>
<D>::=integer<Tk>

<CS>: :=if<BE>then<US>{A|else<US>}|<L>:<CS>
<BS>: :=<AS>| <GTS>|<RS>|<WS>|<L>:<BS>
<US>::=<BS>| <CPS>|<B> . '
<§>::=<US>|<CS>

<CT>::=<S>|<CT>;<S>_

<CPS>::=begin<CT>end|<L>:<CPS>

<B>::=begin<D>;<CT>end|<L>:<B>

<PR>: :=<B>| <CPS>



