texas azl unviestry

Kingsville，Texas

TECHNICAL REPORT \＃2

COMPUTER PROGRAMS
AND DOCUMENTATION

TEXAS A\&I UNIVERSITY

RESEAROH GRANT . 4 NGR 44-073-003

TECHNICAL REPORT \#2

COMPUTER PROGRAMS
AND DOCUMENTATION
F. M. Speed
S. L. Broadwater

DEPARTMENT OF
MATHEMATICS
June, 1971

TABLE OF CONTENTS

1. Introduction Page 1
2. Goodness of Fit Tests
A. Frequency Tests Page 2
B. The Max T Test Page 2
3. Tests for Independence
A. The Run Test Page 3
B. Gap Test Page 4
C. The Lagged Product Test Page 5
D. Matrix Fest Page 6
4. Subroutines Page 7

1. INTRODUCTION

This report contains a description of the various statistical tests that were used to check out random number generators. The tests contained in this report are by no means all the possible tests that can be run. A total of 12 different tests were considered. And from these, 6 were choosen to be used. Among those not included in this report are such tests as the poker test, the coupon test, the spectral test, and so on. The 6 tests that were choosen were done so because of the properties that they appeared to exhibit. Also, these are the most classical tests that are run. One test, which was not included, is the spectral test. The reason why It was not included was because of the need of a very large computer. If such a computer would have been available, we would have included this test because it is a very powerful test.

The tests included in this report are the frequency test, the $\max t$ test, the run test, the lag product test, the gap test, and the matrix test. This report is divided into three major sections. The first section concerns those tests of goodness of fit; and under this we have the frequency and the $\max t$ test. The next section consists of those tests of independence; and this includes the run, the lag product, the gap, and the matrix test. The final section gives documentation on the use of these various tegts as well as a listing of the programs.

The discussion in parts 2 and 3 makes the following assumptions. We have a sequence U_{1}, U_{2}, U_{3}, and so on that come from a pseudorandom number generator that is supposed to be generating random numbers from a uniform distribution and the numbers are supposed to be independently distributed. For the remainder of this report the terminology "random numbers" will be used to mean pseudorandom numbers.
2. GOODNESS OF FIT TESTS
A) Frequency Tests

The frequency test is one of the most popular tests used to check the uniformity of sequence of numbers. It consists in dividing the unit interval (0,1) into k equal subintervals. Then a sequence of N pseudorandom numbers are generated. The number that fall in each of the subintervals is calculated and a chi-square test is applied. The chi-square test consisting of the observed number in each subinterval minus the expected number. The expected number in each interval is simply N / K. The distribution of the sum of the observed minus the expected squared divided by expected is approximately a chi-square with k-l degrees of freedom. It should be noted however that the expected number in each subinterval should be greater than five.
B) The Max T Test

In order to use the max t test, the following sequence is obtained:

$$
S_{j}=\max \left(U_{j 1}, U_{j 2}, \ldots, U_{j t}\right)
$$

It will be shown that S_{j} has distribution function $F(s)=s^{t}$. Hence the Kolmogorov-Smirnov test can be used with $F(s)=s^{t}$. To see that $F(S)=s^{t}$, let us consider

$$
F(S)=P\left\{S_{j} \leq s\right\}=P\left\{\max \left(U_{j l}, \ldots, U_{j t}\right) \leq s\right\}
$$

since the maximum is less than or equal to S . Hence

$$
F(S)=P\left\{U_{j 1} \leqslant s, U_{j 2} \leqslant s, \ldots, U_{j t} \leqslant s\right\}
$$

$$
=\prod_{i=1}^{t} P\left\{U_{j 1} \leq s\right\} \text { since all } U_{j 1} \text { are independent. }
$$

But $P\left\{U_{j i} \leq s\right\}=s$, since $U_{j i} \sim U(0, l)$. Thus $F(S)=s^{t}$.

3. TESTS FOR INDEPENDENCE

A) The Run Test

A sequence of numbers may be tested for runs up or may be tested for runs down by examining the length of monotone subsequences of the original sequence. That is, we investigate segements which are either increasing or decreasing. As an example of a run test, let us consider the following sequence $5,4,1,2,9,6,3,4,5,2,1,5,4$ in this sequence, we have 4 runs of length 1,1 of length 2 , and 2 of length 3. Note that contrary to the way most run test have been conducted, the chi-square test should not be applied to this data since the adjacent runs are not independent. Instead we shall use this data to construct a chi-square test that can be applied.

Let A be a 6×1 vector such that $a_{i}=$ number of runs of length $1,1=1,2, \ldots, 5$ and $a_{6}=$ number of runs of length six or more. Let B be a 6×1 vector such that $E\left(a_{1}\right)=$
b_{1} and let C be $6 x 6$ matrix such that $V(A)=C$, 1.e. C is the covariance matrix of A. It has been shown in the "Annals of Mathematical Statistics" Vol. 15, p. 163-165, that A becomes normally distributed as the length of the original sequence tends to infinity. Thus $(A-B)^{T} C^{-1} A-B$ is approximately chi-square with 6 degrees of freedom. Expression for B and C are given in chapter 4.
B) Gap Test

This test is used to measure the lengths of n gaps.
In this test, random numbers are generated until n gaps occur. In this test we used a gap size of .1. (Note a gap size of .5 is equivalent to test of runs above or below the mean). Let A be a txl vector such that

$$
a_{1}=\text { number of gaps of length } 1,1=1, \ldots, t-1
$$

$\bar{a}_{t}=$ number of gaps of length t or greater.
Generate random numbers until $A_{i}=N G$, then B is a txl vector of expected values; i.e. $b_{j}=N G \cdot P_{j}$ where $P_{j}=q(1-q)^{j-1}$ $j=1, \ldots, t-1 ; P_{t}=(1-q)^{t}$ and where $q=.1$. Hence $x^{2}=\sum_{j=1}^{t}\left(a_{j}-b_{j}\right)^{2} / b_{j}$,
which is chi-square with $t-1$ degrees of freedom. Note we must choose $N G$ and t so that $b_{j} \geqslant 5$ for $j=1, \ldots, t$. The derivation of P_{j} is as follows:

The probability of a gap of length 1 means that a number must be followed by itself. The probability that it occurs is just q. The probability of a gap of length 2 means we must have a
number followed by a different number and then followed by itself. Hence the probability that this happens is $(1-q) q$ etc.
C) The Lagged Product Test

This test is used to determine if there is a correlation between U_{i} and U_{i+k}, where $k=1,2, \ldots$ In our test, $k=1, \ldots, 10$. The following statistic was computed:

$$
c_{k}=\frac{1}{N-k} \underset{i<1}{N} U_{i} \cdot U_{i+k}
$$

If N is large and if there is no correlation between U_{i} and U_{i+k}, then C_{k} is approximately normally distributed with $E\left(C_{k}\right)=.25$ and $V\left[C_{k}\right]=(13 N-9 k) / 144(N-k)^{2}$. This can be seen from the following:

$$
E\left[C_{k}\right]=\frac{1}{N-k}{\underset{i}{幺}=1}_{N}^{N-k}\left(U_{i} \cdot U_{i+k}\right) .
$$

But U_{i} and U_{i+k} are assumed $\underset{N}{\text { uncorrelated }}$ with means equal to .5 . Hence $E\left(C_{k}\right)=\frac{1}{N-k} \quad i=1 \quad(.5)(.5)=.25$

$$
\begin{aligned}
V\left(C_{k}\right) & =\frac{1}{(N-k)^{2}} V \sum_{i=1}^{N} \sum_{i=1}^{-k} U_{i} U_{i+k} \\
& -\frac{1}{(N-k)^{2}} \sum_{i=1}^{N} \sum_{i=1}^{N} V\left(U_{i} U_{i+k}\right)+2 \sum_{i}^{N} \operatorname{Cov}\left(U_{i} U_{i+k}, U_{j} U_{j+k}\right.
\end{aligned}
$$

But $V\left[U_{1} U_{1+k}\right] \cdot E\left[U_{1} U_{1+k}\right]^{2}-\left(E\left(U_{1} U_{1+k}\right)\right)^{2}$
$=E\left[U_{i}^{2}\right] E\left[U_{i+k}\right]^{2}-(1 / 4)^{2}$
$=4 / 12 \cdot 4 / 12-1 / 16$
$=16 / 144-9 / 144=7 / 144$
$\operatorname{Cov}\left(U_{1} U_{1+k}, U_{j} U_{j+k}\right)=E\left[U_{1} U_{1+k} U_{j} U_{j+k}\right]-E\left(U_{i} U_{i+k}\right) E\left(U_{j} U_{j+k}\right)$
If $j \neq 1+k$, then $\operatorname{Cov}\left(U_{i} U_{i+k}, U_{j} U_{j+k}\right)=0$. If $j=1+k$, then

$$
\begin{aligned}
\operatorname{Cov}\left(U_{i} U_{1+k}, U_{j} U_{j+k}\right) & =E\left(U_{i+k}\right)^{2} 1 / 4-1 / 16 \\
& =4 / 12 \cdot 1 / 4-1 / 16=1 / 12-1 / 16 \\
& =3 / 144
\end{aligned}
$$

They are $N-2 k$ times that $1+k=j$. Hence

$$
\begin{aligned}
v\left[C_{k}\right] & =\frac{1}{(N-k)^{2}}[(N-k) \quad 7 / 144+(N-2 k) 6 / 144] \\
& =\frac{1}{(N-k)^{2} \cdot 144}[7 N-71+6 N-12 k] \\
& =\frac{1}{(N-k)^{2} \cdot 144} \quad[13 N-19 k]
\end{aligned}
$$

D) Matrix Test

In order to investigate the degree of randomness between successive numbers in a sequence the matrix test was employed. This test was proposed by M. L. Tuncosa and suggests one construct $a k$ by k matrix whose elements $x_{i j}$ represent the number of times a number in the $1^{\text {th }}$ interval is followed by a number in the $j^{\text {th }}$ interval. A sequence of M consecutive sets of N random numbers is generated, and equal values are expected for all the matrix elements. The chi-square statistic

$$
x^{2}=\sum_{1} \sum_{1} \sum_{j}^{k} \frac{\left(x_{1 j}-N / k^{2}\right)^{2}}{N / k^{2}}
$$

is computed and compared with expected chi-square distribution with $k^{2}-1$ degrees of freedom. A 90 per cent confidence interval was established as in the frequency test and is 948.1 and 1097.9. All generators with chi-square values in this range were considered acceptable.
4. SUBROUTINES

This section contains the subroutines used to carry out the tests. These were written in Fortran IV and run on the IBM $360 / 44$.
4.1 Goodness of Fit Tests
a) Frequency Test
b) Max T Test
4.2 Tests for Independence
a) Run Test
b) Gap Test
c) Lagged Product Test
d) Matrix Test

SUBROUTINE FREQ

SOURCE:
Naylor, T. H., Balintfy, J. L., Burdick, D. S., and Chi Kong. Computer Simulation Techniques. New York: John Wiley and Son, Inc., 1966.

PURPOSE:
To check the uniformity of the distribution of the N random numbers.

CALLING SEQUENCE:
Random numbers between 0 and 1 are already generated and divided into J groups before $F R E Q$ is called.

CALL FREQ (COUNT, J, N)
where:
N is the number of random numbers
J is the number of groups that the random numbers have been divided into.

COUNT is an array that contains the number of random numbers in each group.

METHOD:
The statistic x^{2} is computed by:

$$
\chi^{2}=\sum_{I=1}^{J}(\operatorname{counT}(I)-E)^{2} / E
$$

where E is the expected number of random numbers in each group. x^{2} has approximately a chi-square distribution with J - 1 degrees of freedom for a sequence of "truly" random numbers.

COMMENTS:
This subroutine calculates the upper and lower limits. Z and w are the chi-square values at 90% confidence interval with $J-1$ degeees of freedom. The percent of the confidence interval may be changed, by changing z and w in the subroutine.

SUBROUTINE FREQ (COUNT,J,N)
DIMENSION COUNT(I)
C INI AND IN2 ARE LOGICAL DEVICE NUMBERS. TEXAS A+I
C USES 1 TO READ AND 3 TO WRITE FOR THE IBM $360 / 44$ COMPUTER.
$[\mathrm{Nl}=1$
IN2 $=3$
$E=F L O A T(N) / F L O A T(J)$
$C S=0$.
$004 \mathrm{I}=1$, J
CHI=($(\operatorname{COUNT}(I)-E) * * 2) / E$
$4 \mathrm{CS}=\mathrm{CS}+\mathrm{CHI}$
WRITE(IN2.11) CS
11 FORMAT (1H,F15.6)
$W=-1.64$
$L=1.64$
$K=J-1$
$A=W * \operatorname{SQR} T(2 . * K)+K$
$B=Z$ \#SQRT(2.*K) +K
WRITE(IN2,10) K, A, B
10 FURMAT 1 IH, $10 X, 1901$ CONFIDENCE INTERVAL WITH K OEGREES OF FRFFOOM

IF (CS .GE. A .ANI). CS .LE. B) GO TO 22
WRITFIIN2.21)
GU TO 98
22 WRITEIIN2, 26)
21 FORMAT (IH, 'REJECT FRFQUENCY UISTRIHUTION")
26 FURMAT (IH. 'ACCEPT FREQUENCY DISTRIBUTION')
38 RETURN
END

001880
001890
001900
001910
001920
001930
001940
001950
001960
001970
001980
001990
002000
002010
002020
002030
002040
002050
002060
002070
002080
002090
002100
002110
002120
002130
002140
002150
002160

SOURCE:
Knuth, Donald E., The Art of Computer Programming. AddisonWesley Publishing Company, Inc. 1969.

PURPOSE:
To determine if the random numbers come from a specified distribution.

CALLING SEQUENCE:
CALL KLOSMR (V,N,F,KN,D)
where:
V is an array containing the N random variables.
N is the number of random variables.
F is a function defined as $F(x)=x^{t}$, where t is the
number of random numbers used to canpute each V_{i}.
$K N= \begin{cases}0 & \text { if } u=1, s=1 \\ 1 & \text { if } u-0, s \text { is calculated } \\ 2 & \text { if } u \text { and } s \text { are calculated }\end{cases}$
$D=\operatorname{MAX}\left|F(x)-S_{n}(x)\right|$ see method below

METHOD:
N observations of the random quantity, X are obtained.
The observations are rearranged so that they are sorted into ascending order, i.e., so that $X_{1} \leqslant X_{2} \leqslant \ldots \leqslant X_{n}$.

The following statistic is camputed:

$$
D=\operatorname{MAX}\left|F(x)-S_{n}(x)\right|
$$

where $F(x)$ - probability that $X \leq(x)$.

$$
S_{n}(x)=j / n, \quad X_{j} \leqslant x \leqslant X_{j+1}
$$

This value, D, is compared to a critical value in a table to determine if the data me from a specified distribution.

SUBROUTINE KOLSMR(X,N,F,KN,D) 00217
OIMENSION X(N),G(2000),JJl(200)

00218
002191
00220
002211
$00222!$
002231
002241
002251
002261
00227
002281
002291
002300
002311
00232 C
002330
002346
002350°
00230 C
002370
00002380
00239 C
002400
002410
002420
002430
002440
002450
00002460
00002470
002480
002490
002500
002510
002520
002530
002540
00002550
002560
00002570
002580
002590
002600
00261 C
002620
002630
002640
002650
002600
00002670
00002680
0000269 C
00002700
FUNCTION F(X) 002711
COMMON IT 002721$F=X *$ ITRE TURN002731002741END002751

```
    SUBROUTINE ORSEG( }x,y,N,J
    DIMENSION X(1), Y(1)
    DIMENSION J\1)
    IF(N.LE.20) GUTO }2
    IF(N.LE.130) GOTO 25
    NS=.014*FLUAT(N)+7.68
    INT=1
    NS1=NS-1
    00 10 I=1,NS
    IP=I-1
10 CALL OROER2(X,N,NS,IP)
    M=0
    J(1)=1
    00 11 1=2,NS
11J(1)=(I-1)*(N/NS)+1
    kl=2
    13 OO 13 I=K1,NS
    M1=J(I)
    M2 = J (I-1)
    IF(XIM1).LT.X(M2)) GOTO 12
    13 CONTINUE
    GOTO 14
    12 100 15 K=1,NS
    M3=J(K)
    IF(X(M1).LT.X(M3)) Guro 16
    15 CONTINUE
    16 CONTINUE
        I 1=1-1
        j) 17 KJ=k,11
        N1=K+11-KJ
        M4=J(Jl)
        J(Jl)=J(Jl+1)
    17 J(Jl+1)=M4
    Kl=I+1
    IF(KI.GT.NSS GOTO 14
    Goro 18
    14 M=M+1
    CHK2 =NS
        NP=J(INT)
        Y(M)=X(NP)
        IF(MOEQ.NI KETURN
        J(INT)=NP+1
        {F(J(INT).LE.(NS-1)*(N/NS)+1) GOTO 21
        IF(J(INT).LE.NI GOTU 20
    22 INT=INT+I
        GOTO 20
    21 IF(MOD((J(INT)-1),N/NS).EQ.OI INT=[NT+1
    20 Jl=J(INT)
        13= INT+1
        IF(I3.GT.NSI GUTO 14
        OO 19 KQ=13,NS
        CHK3=NS
        J2=J(KQ)
        IF(X(J1).LT.X(J2)) GOTO 14
        J(KQ)=J(KQ-1)
        J(KQ-1)=J2
    19 CONTINUE
        Guro }1
    23 CALL ORDER2(X,N,I,O)
23 CALL ORDER2( \(x, N, 1,0)\)
```

000010
000020
000030
000040
000050
000060
000070
000080
C00090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280
000290
000300
000310
000320
000330
000340
000350
000360
000370
0 CO 380
000390
000400
000410
000420
000430
000440
000450
000460
000470
000480
000490
000500
000510
000520
000530
000540
000550
000560
000570
000580

15

	$0024 \mathrm{l}=1, \mathrm{~N}$	000600
24	Y(I) $=\mathrm{X}(\mathrm{I})$	000610
	RETURN	000620
25	CALL ORSEG3($\mathrm{X}, \mathrm{Y}, \mathrm{N}$)	000630
	RETURV	000640
	END	000650

```
    SUBROUTINE ORSEG3(X,Y,N)
    DIMENSION X(1), Y(1)
    N3=N/3
    DO 10 K=1,3
    IP=K-1
    10 CALL ORDER2(X,N,3,IP)
    M=0
    I=1
    J=N3+1
    K=2*(N/3)+1
    IF(X(I).LT.X(J)) GOTO 14
    NS=1
    I=J
    J=NS
    14 IF(X(J).LT.X(K)) GOTO 13
    LF(X(K).GT.X(I)) GUTO 15
    NS=1
        I=K
        K=NS
    15 NS=J
        J=K
        K=NS
    13 M=M+1
    Y(M)=X(I)
    IFIM.FQ.NI RETURN
    IF(I.EQ.NI GOTO 1O
    I=I+I
    IF(X(I).LT.X(I-1)) Goro 16
    IF(X(I).LT.X(J)) GOTO 13
    NS=I
    I=J
    J=NS
    IF(X(J).LT.X(K)) GUTO 13
    GOTO 15
    16 M=M+1
        Y(M)=X(J)
        IF(M.EQ.N) RETURN
        J=J+1
        IF(X(J).LT.X(J-I)) GOTO 18
        IF(X(J).LT.X(K)) GOTO 16
    17-M=M+1
    Y(M)=X(K)
    IF(M.EQ.N) RETURN
    K=K+1
    IF(X(K).LT.X(K-1)) Goro 20
    IF(X(K).LT.X(J)) GOTO 17
    GOTO 16
    K=J
    18 Ml=M+1
    OU 19 MS=M1,N
        Y(MS) = X(K)
    14 K=K+1
        RETURN
        END
```

. 000890
000900
000910
000920 C00930
000940
000950
000960
000970
000980
000990
001000
001010
001020
001030
001040
001050
001060
001070
001080
001090
001100
001110
001120
001130
001140
001150
001160
001170
001180
001190
001200
001210
001220
001230
001240
001250
001260
001270
001280
-001290
001300
001310
001320
001330
001340
001350
001300
001370
001380
001390
001400
001410
001420

```
            SUBROUTINE ORDER2(X,N,LL,L2)
    DIMENSIUN X(1)
        N2=L2*(N/L1)+1
        NN=(L2+1)*(N/L1)
        IF(L2.EQ.LI-1) NN=N
        Kl=N2+1
    4 00 99 I=K1,NN
        IF(X(I).LT.X(I-1)) GOTO 76
99 CONTINUE
    RETURN
76 DO 82 K=N2,NN
    IF(X(I).LT.X(K)) GO TO 84
82 CONTINUE
84 L=X(I)
    I 1=1-1
    DO 86KJ=K,I1
    J=K+II-KJ
86 X(J+1)=X(J)
    x(K)=2
    Kl=I +1
        IFIKI.GT.NNI RETURN
        GOTO }
        END
99 CONTINUE
RETURN
76 DO \(82 \mathrm{~K}=\mathrm{N} 2\), NN
IF(X(I).LT.X(K)) GO TO 84
32 CONT INUE
\(84 \mathrm{Z}=\mathrm{XI}\) (I)
\(11=1-1\)
DO \(86 K J=K, I 1\)
\(J=K+I 1-K J\)
\(86 \times(J+1)=X(J)\)
\(x(K)=2\)
\(K 1=I+1\)
IFIKI.GT.NNI RETURN
GOTO 4
END
```

000660
000670
000680
000690
000700
000710
000720
000730

000740
000750
000760
000770
000780
000790
000800
000810
000820
000830
000840
000850
000860
000870
000880

MAX "T" TEST

N random variables are generated where each random variable, V_{1}, is defined as:

$$
v_{1}=\operatorname{MAX}\left(R_{11}, R_{21}, \ldots, R_{t 1}\right)
$$

Each $R_{j 1}$ is a random number, where $j=0,1,2, \ldots, t$, and t is the number of random numbers.

The Kolmogorov - Smirnov test is applied to the sequence $V_{0}, V_{1}, \ldots, V_{n}-1$, with the distribution function $F(x)=x^{t}, \quad(0 \leq x \leq 1)$.

SUBROUTINE RUN

SOURCE:
Knuth, Donald E., The Art of Computer Programming. AddisonWesley Publishing Company, Inc. 1969.

PURPOSE:
To determine if the length of runs come from "true" random numbers.

CALLING SEQUENCE:
N random numbers between 0 and 1 have been generated before RUN is called.

CALL $\operatorname{RUN}(N, R, A)$
where:
N is the number of random numbers.
R is an array containing the random numbers.
A is an array containing the coefficients used to compute the statistic V.

METHOD:

The length of runs are determined. The length of a run is the number of consecutive increasing numbers inclusively. Any run longer than $s i x(6)$ is counted as a run of 6 .

The statistic V is then computed by:
$V=\frac{1}{N} \sum_{I}^{6} \sum_{J=1}^{6}(\operatorname{COUNT}(I)-N * B(I)) *(\operatorname{CoUNT}(J)-N * B(J) * A(I, J))$
where the coefficients $A(I, J)$ and $B(J)$ are:

$\left[{ }^{a_{11}} \mathrm{a}_{12} \mathrm{a}_{13} \mathrm{a}_{14} \mathrm{a}_{15}{ }^{a_{16}}\right.$		[4529.4	9044.9	13568	18091	22615	27892
$a_{21} a_{22} a_{23} a_{24} a_{25}{ }^{a_{26}}$		9044.9	18097	27139	36187	45234	55789
$a_{31} a_{32} a_{33} a_{34} a_{35}{ }^{\text {a }} 36$		13568	27139	40721	54281	67852	83685
$a_{41} a_{42} a_{43} a_{44} a_{45} a_{4}$		18091	36187	54281	72414	90470	111580
$a_{51} a_{52} a_{53} a_{54} a_{55} a_{56}$		22615	45234	67852	90470	113262	139476
$a_{61} a_{62} \quad a_{63} \quad a_{64} a_{65} a_{66}$		27892	55789	83685	111580	139476	172860

$$
\left(b_{1} b_{2} b_{3} b_{4} b_{5} b_{6}\right)=\left(\frac{1}{6} \frac{5}{24} \frac{11}{120} \frac{19}{720} \frac{29}{5040} \frac{1}{840}\right)
$$

V should have the ch1-square distribution with six degrees of freedom.

COMMENT:
The upper and lower limits for a 90% confidence interval have been put into the subroutine. V is then checked to see if it falls between these limits. The percent of confidence interval may be changed by changing the limits in the subroutine.

SUBROUTINE RUN (N,T,A)
INTEGER COUNT(20)
OIMENSION T(1),B(6),A(6,6)
C INI AND IN2 ARE LOGICAL DEVICE NUMBERS. TEXAS atI
C. USES 1 TO READ ANO 3 TO WRITE FOR THE IBM $360 / 44$ COMPUTER.

INI=1
IN $2=3$
I $\Delta=6$
OU $2[=1, I A$
2 COUNT(I)=0
$T(N)=0.0$
$\mathrm{R}=1$
$10018 \mathrm{~J}=1, \mathrm{~N}$
IF(T(J) .GT. T(J+1)) GOTO 22
$R=R+1$
18 CUNTINUE
22 [F (R.GE. IA) GO TO 24
$23 \operatorname{CUUNT}(R)=\operatorname{COUNT}(R)+1$
GO TO 25
74 COUNTIIA) $=\operatorname{COUNT}(I A)+1$
$25 R=1$
IF(J •LT• (N-1) G GU TO l8
WRITEIIN2,16) (COUNT(II,I=1,6)
16 FORMAT(1H,5X, 'RUN',618)
$W=1.64$
$z=12.6$
$B(1)=(1.16 .1$
$B(2)=(5.124$.
$\mathrm{H}(3)=(11 . / 120$.
$B(4)=(19.1720 .1$
$B(5)=(29.1504()$.
$3(6)=(1.1840 .1$
$v=0$.
DO $44 \quad \mathrm{I}=1$, IA
DU $44 \mathrm{~J}=1,1 \mathrm{IA}$
$44 V=V+(\operatorname{COUNT}(I)-N * B(I)) *(C O U N T(J)-N * B(J)!* A(I, J)$
$V=V / N$
IFIV .LE. Z .AND. V .GE. WI GO TC 55
WRITE(IN2.65) V
65 FURMAT(1H,.5X, 'V =, E17.7. 5X,'REJECT RUN' I
GO TO 77
55 WRITE(IN2,66) V
OS FJRMAT(1H, 5X.'V =', ELT.7,5X,'ACCFPT RUN')
17 RETURN
END

001140
001150
001160
001170
001180
001190
001200
001210
001220
001230
001240
001250
001260
001270 001280 001290 001300 001310 001320 001330 001340
001350
C.O1360

001370
001380
001390
(i) 1400

001410
CO1420
001430
001440
001450 001460 001470 001480 001490 001500 001510 001520 001530 001540 001550 001560 001570 001580

SUBROUTINE GAPT

SOURCE:

Knuth, Donald E., The Art of Computer Programming. AddisonWesley Publishing Company, Inc. 1969.

PURPOSE:

To check if the length of $N G$ gaps are distributed as expected in "true" random numbers.

CALLING SEQUENCE:
Random numbers between 0 and 1 are generated before GAPT is called.

CALL GAPT ($\mathrm{N}, \mathrm{JG}, \mathrm{R}, \mathrm{NG}$)
where:
N is the number of random numbers generated.
$J G$ is the length of the longest gap being counted.
R is the array containing the random numbers.
NG is the number of gaps that are counted.

METHOD:
The first random number is compared with the following random numbers until it is found to be equal to one of the following random numbers. A gap is of length L, where L is the number of random numbers between those two equal random numbers. The next random number is used to compare with the following random numbers. The process is continued until NG gaps have been found.

$$
\begin{aligned}
& E P(0)=P(N G), \quad E P(I)=\sum_{I=1}^{J G}-1 \\
& E P(I-P)^{I}, \\
& E P(J)=N G(P)(1-P)^{J G} . \\
& E P(I) \text { is the expected number of gaps for a gap length } \\
& \text { of } I .
\end{aligned}
$$

The x^{2} statistic is then computed by:

$$
x^{2}=\sum_{I=1}^{J G}[\operatorname{GAP}(I)-\operatorname{EP}(I)]^{2} / E P(I) .
$$

x^{2} has approximately a chi-square distribution with JG degrees of freedom for "truly" random numbers.

COMMENTS:

The upper and lower limits for a 90% confidence interval have been put into the subroutine. x^{2} is then checked to see if it falls between these limits. The percent of confidence interval may be changed by changing the limits in the subroutine.

SUBROUTINE GAPT (N,JG,R,NG)

C THIS IS THE GAP TEST.
C A GAP OF LENGTH K IS DBTAINED WHEN THERE ARE K DIGITS BETWEEN TWO
C DIGITS WHICH ARE IDENTICAL.
C N IS THE NUMBEF OF RANOOM NUMBERS GENERATEO FOR THIS TEST.
C JG IS THE LENGTH OF THE LUNGEST GAP BEING RUN.
C ANY GAP LONGER THAN JG IS BEING COUNTED AS A GAP OF LENGTH JG.
C VG IS THE NUMBER OF GAPS.
DIMENSIUN R(1),GAP(100), EP (100)
C INI AND IN2 ARE LOGICAL DEVICE NUMBERS. TEXAS A+I
C USES 1 TO READ AND 3 TO WRITE FOR THE IBM $360 / 44$ COMPUTER.
IN1=1
IN2=3
I $S=0$
GAPU=0
DO $5 \mathrm{I}=1, \mathrm{JG}$
$5 G A P(I)=0$
$K=R(1) * 10+1$
$L=0$
$J=$?
$19 \mathrm{~L}=0$
DU $6 \quad I=J, N$
$M=R(I) * 10+1$
1F(M.FQ.K) GUTO11
$L=L+1$
IF(L.EO.JG) GOTOII
GU TO 6
$11 \mathrm{~J}=\mathrm{I}+2$
$K=R(I+1) * 10+1$
IF (L.GE.JG) GO TO 17
IFIL -NE. O) GO TD 12
$G A P C=G A P O+1$
GO TU 18
$12 G A P(L)=G A P(L)+1$
GO TO 18
17 GAP $(J G)=G A P(J G)+1$
$1 甘 \quad I S=I S+1$
IF(IS •EQ. NG) GO TU 22
GO TC 19
000450
000460
000470
000480
000490
000500
000510
000520
000530
000540
000550
000560
000570
000580
C00590
000600
000610
000620
000630
000640
000650
000660
000670
000680
000690
000700
000710
000720
000730
000740
000750
000760
000770
000780
000790
000800
000810
000820

- GONTI NUE

000830
WRITE(IN2,13) IS
000840
000850
13 FORMAT (1H, 'NOT ENOUGH KANDUM NUMBERS', $10 X$, IS $=$. 151
000860 .
GO TO 88
000870
$22 \mathrm{P}=.1$
WRITE(IN2,211) GAPO
211 FORMAT(1H, GAPO $=$ ', F4.1)
WRITE(IN2,213) (GAP(I),I=1,19)
213 FORMAT(1H, 'GAP $=0.10 \mathrm{FB} .1)$
$E P O=P * N G$
$K=J G-1$
OO $27 L=1, K$
27 FP(L)=NG*P*((1-P)**L)
$E P(J G)=N G *((1-P) * * J G)$
$C S=(G A P O-E P O) * * 2 / E P O$
Dก 77 I = 1, JG
$77 C S=C S+(G A P(I)-E P(I)) * * 2 / E P(I)$
$K=J G$
$A=18.3$
$B=3.94$
000880
000890
000900
000910
000920
000930
000940
000950
000960
000970
000980
000990
001000
001010
001020
001030
IFICS.GE.B.AND. CS.LE.AI GO TO 26001040WRITE(IN2,51) K,A,B,CSGO TU 88
26 WRITE(IN2.52) K,A,B,CS001050
51 FORMAT (1H.'901 CONF. INT. WITHK DEG. OF FREEDUIA., 5X. ${ }^{\circ} \mathrm{K}={ }^{\circ}, 13.5 \mathrm{X}$.001060$1^{\prime} A=1, F 7.2 .5 X,{ }^{\prime} B=1, F 7.2 .5 X,{ }^{\circ} \mathrm{C} S=1, F 10.2 .5 X,{ }^{\prime}$, REJECT GAP TEST'।
52. FGRMATIIH, '90(CONF. INT. WITH K DEG. OF FREEDOM',5X, ${ }^{\circ} \mathrm{K}={ }^{\circ}$, I 3 , 5 X ,$2^{\circ} A={ }^{\prime}, F 7.2,5 X,{ }^{\prime} B={ }^{\prime}, F 7.2,5 X,{ }^{\prime} C S={ }^{\circ}, F 10.2,5 X,{ }^{\prime} A C C E P T$ GAP TEST'I88 RETURNEND001070COLO 0001090

SUBROUTINE LPTEST

SOURCE:
Naylor, T. H., Balintfy, J. L., Burdick, D. S., and Chu Kong. Computer Simulation Techniques. New York: John Wiley and Son, Inc., 1966.

PURPOSE:
To check if there is a correlation between r_{1} and $r_{i}+k$ random numbers.

CALLING SEQUENCE:
Random numbers between 0 and 1 are generated before LPTEST is called.

CALL LATEST (NoR)
where:
N is the number of random numbers.
R is the array of random numbers.

METHOD:
The lagged product coefficient, C_{k}, is computed for each K. where K is the length of the lag.

$$
c_{k}=\frac{1}{N-K} \quad \sum_{i}^{N-1} r_{1}^{-K} r_{i}+k
$$

If there is no correlation between r_{i} and $r_{1}+k$, the value of C_{k} will be approximately normally distributed with expected value of 0.25 .

Lower and upper limits are computed for 90% confidence interval and each C_{k} is checked to see if it falls between these limits. Standard deviation is equal to $\sqrt{13 \mathrm{~N}-19 \mathrm{~K} / 12}(\mathrm{~N}-\mathrm{K})$.

COMMENTS:
The 90% confidence interval can be changed, by changing the value of z in the subroutine. z and $-z$ are the values for 90% confidence interval of normal distribution. The value of K cannot be larger than N.

```
    SUBROUTINE LPTEST (N,R)
    DIMENSION R(1)
    -C INI AND IN2 ARE LOGICAL DEVICE NUMBERS. TEXAS A+I
    C USES 1 TO PFAD AND 3 TO WRITE FOR THF IBM 360/44 COMPUTER.
            |N1=1
            IN2=3
            DO 99 K=1.15
            C=0.
            M=N-K
            DO 2 I = 1,M
        2C=C+R(I)*R(I+K)
            CK=C/M
            WRITEIIN2,100) K,CK
        100 FORMAT (1H,'K=',12,10X,'CK =',F10.51
        L=1.64
        SD=SQRT(13.*N-19.*K)/(12.*M)
        B=0.25+2*SO
        A=0.25-2*SD
        WRITEIIN2.103) A,B
        IF ICK.GE. A .AND. CK .LE. BI GO TO 40
        WRITE(IN2,102)
        GU TO Y9
        40 WRITE(IN2.101)
    IO1 FORMAT (IH 'ACCEPT THE LAGGED PRODUCT TEST'I
    LC2 FORMAT (1H, 'REJECT THE LAGGED PROOUCT TEST')
        103 FORMAT(1H, 'A =', F10.5.10X,'B=',F10.51
        99 CONTINUE
        98 RETURN
        END
```

 001590
 001600
 001610
 001620
 001630
 001640
 001650
 001660
 001670
 001680
 001690
 001700
 001710
 001720
00173 C
001740
001750
001760
001770
001780
001790
001800
001810
001820
001830
001840
001850

SUBROUTINE MATRIX

SOURCE:
Naylor, T. H., Balintfy, J. L., Burdick, D. S., and Chu Kong. Computer Simulation Techniques. New York: John Wiley and Son, Inc., 1966.

PURPOSE:

To determine if successive numbers are "truly" random.

CALLING SEQUENCE:
N random numbers between 0 and 1 are generated before MATRIX is called.

CALL Matrix (N,R,L)
where:
N is the number of random numbers
R is the array containing the random numbers
L indicates that the size of the matrix is LxL.

METHOD:

The interval of 0 to 1 is divided into L subintervals. Successive random numbers are paired off and placed into an LxL matrix according to the random numbers of that pair. The x^{2} statistic is then computed as follows:

$$
x^{2}=\sum_{1} \sum_{1}^{L} \sum_{j=1}^{L}\left(f_{1 j}-E\right)^{2} / E
$$

where $f_{i j}$ is the number of pairs of random numbers in each element of the matrix and E is the expected number of pairs of random numbers in each element of the matrix. x^{2} has approximately a chi-square distribution with L L -1 degrees of freedom for "truly" random numbers.

COMMENT:
This subroutine calculates the upper and lower limits for the numbers to be accepted as "truly" random. Z and W are the chi-square values at 90% confidence interval with L L - 1 degrees of freedom. The percent of confidence interval may be changed, by changing Z and W in the subroutine.

```
        SUBROUTINE MATRIX(N,R,L)
        OIMENSION MTRX(32,32), R(1)
C INI ANO IN2 ARE LOGICAL DEVICE NUMBERS. TEXAS A +I
C USES 1 TO READ AND 3 TO WRITE FOR THE IBM 360/44 COMPUTER.
INl=1
        IN2=3
    C THE MATRIX IS SET TO zERO.
        DO 22 I=1,L
DO 22 J=1,L
        22 MTRX(I,J)=0
    C RANDOM NUMBERS ARE PAIRED UFF AND A COUNTER IS INCREMENTED
C ACCORDING TO WHERE THE RANDOM PAIR FIT IN THE MATRIX.
            DO 11 I= l,N,2
        KM=L*R(I) +1
        LM=L*R(I + I) +l
        11 MTRX(KM,LM)=MTRX(KM,LM)+1
    C E IS THE EXPECTED NUMBER OF PAIR JF RANDOM NUMBERS TO BE
    C FOUND IN EAC.H ELEMENT OF THF MATRIX.
        I=FLCAT (N)/2.
        E=U/(FLOAT(L)*FLOAT(L))
    C THE CS STATISTIC HAS A CHI-SQUARE DISTRIHUTIUN WITH
    C L*L-1 DFGREES OF FREEDOM.
        CS=0.
        DO 12 I= 1.L
            10 12 J=1,L
        12CS=CS+(MTRX(I,J)-E)**2/E
            Z=1.64
            w}=-
            K=L*L-1
            AK=K
    C A IS THF LOWER AND S IS THE UPPER LIMIT FOR THIS TEST TU BE ACCEPTED.
        A=W*SURT(2.*AK) +AK
        B=2*S QRT(2.*AK) + AK
        WRITE(IN2,44) K,A,B,CS
        IF(CS.GE.A .AND.CS .LE. ©) GO TO 28
        WRITE(IN2,38)
        GU TO 88
        28 WRITEIIN2.391
        4 4 \text { FUKMATIIH, IOX, 'qO\ CONFIDENCE INTERVAL WITH K DEGREES IFF FREEDOM'}
```



```
        38 FORMAT(1H , 20X,'REJECT MATRIXTEST')
    39 FURMAT(1H ,5X, 'ACCEPT MATRIX TEST')
    BB RETURN
        END
            000010
        000020
000030
000040
000050
        000380
        00390
```



```
000400
000410
00420
000440
```

