dIffraction of a plane wave by a three-dimensional corner

May 1971

This work was supported by NASA Grant No. NGL-33-016-119
"This document has been approved for public release and sale; its distribution is unlimited."

New York University
School of Engineering and Science
University Heights, New York, N.Y. 10453

Research Division
Department of Mathematics

DIFFRACTION OF A PLANE WAVE BY A THREE-DIMENSIONAL CORNER*

by
 Lu Ting ${ }^{\dagger}$ and Fanny Kung ${ }^{\dagger \dagger}$

ABSTRACT

By the superposition of the conical solution for the diffraction of a plane pulse by a three-dimensional corner, the solution for a general incident plane wave is constructed. A numerical program is presented for the computation of the pressure distribution on the surface due to an incident plane wave of any wave form and at any incident angle. Numerical examples are presented to show the pressure signature at several points on the surface due to incident wave with a front shock wave, two shock waves in succession or a compression wave with the same peak pressure. The examples show that when the distance of a point on the surface from the edges or the vertex is comparable to the distance for the front pressure raise to reach the maximum, the peak pressure at that point can be much less than that given by a regular reflection, because the diffracted wave front: arrives at that point prior to the arrival of the peak incident wave.
*This work was supported by NASA Grant No. NGL-33-016-119
${ }^{\dagger}$ Professor of Mathematics, New York University
$\dagger \dagger_{\text {Research Scientist, Aerospace Laboratory, New York University }}$

Oblique incidence of a plane pulse on a threedimensional corner

Section normal to the i-th axis
Pressure distribution on the face $\theta=0$ due to the incidence of a plane pulse with direction cosines $0.3,0.4,0.866$

Pressure distribution on the face $e 9=-3 \pi / 4$ due to the incidence of a plane pulse with direction cosines $0.3,0.4,0.866$

Pressure distribution on the face $\varphi=3 \pi / 4$ due to the incidence of a plane pulse with direction cosines $0.3,0.4,0.866$

Pressure signature received at points along the line $\theta=\pi / 2$, $\varphi=\pi$ for plane wave incident at equal angles with the edges and with wave form of type I

Pressure signature received at points along the line $\theta=\pi / 2, \varphi=\pi$ for plane wave incident at equal angles with the edges and with wave form of type II

Pressure signature received at points along the line $\theta=\pi / 2$, $f=\pi$ for plane wave incident at equal angles with the edges and with: wave form of type III

Pressure signature received at points along the line $\theta=\pi / 2, \varphi=\pi$ for plane wave incident at equal angles with the edges and with wave form of type IV

Pressure signature received at points along the line $\theta=\pi / 2$, $\varphi=\pi$ for plane wave incident: at equal angles with the edges and with wave form of type V

1. INTRODUCTION

Although the pressure wave created by a supersonic airplane is threedimensional in nature, the radius of curvature of the wave front is usually much larger than the length scale of a structure. Therefore, the incident waves can be approximated by progressing plane waves composed of compression, expansion and shock waves. By the decomposition of a plane wave to a succession of plane pulses, the basic problem is therefore the diffraction of a plane pulse by a three-dimensional corner.

After the incidence of a plane pulse on a three-dimensional corner at the instant $t=0$, the disturbed regions behind the incident plane wave are either a simple reflection from the surface of the corner, a two-dimensional diffraction by an edge or the three-dimensional diffraction by the vertex as shown in Fig. 1. The last region is confined by a sonic sphere $r=C t$, centered at the vertex. The solution for the diffraction by an edge is a two-dimensional conical solution obtained by Keller and Blank [1]. Once the appropriated two-dimensional solutions corresponding to the incident angles are constructed, the boundary data on the sonic sphere about the vertex are obtained, and the three-dimensional conical solution inside the sonic sphere is constructed by the determination of the eigenfunctions and their coefficients [2]. In the next section, the essential procedure and the equations required for the numerical program I are presented for the computation of the following items: i) the two-dimensional conical solution for each edge corresponding to the direction cosines of the incident wave, ii) the boundary data on the sonic sphere around the vertex and iii) the coefficients
in the eigenfunction expansions of the solution inside the sonic sphere.
In section 3 , the superposition of the solution of the diffraction of a plane pulse to that of a plane wave of a given wave form is described. The superposition is carried out by numerical program II with the coefficients of eigenfunctions expansions from program I and the incident wave form as input data. Numerical results are presented showing the pressure signatures received by several points on the surface of the corner corresponding to various types of incident wave forms.

Both the numerical program I and II are described and listed in the appendix.

2. INCIDENCE BY A PLANE PULSE

Fig. 1 shows a unit plane pulse incident on a corner of the cube. The three edges are chosen as the three coordinate axes x_{j} with $\mathrm{j}=2,3,4^{*}$. The direction cosines of the normal to the incident pulse are designated as n_{j} with $n_{2}^{2}+n_{3}^{2}+n_{4}^{2}=1$. The equation for the plane of the incident pulse is

$$
\begin{align*}
& \mathrm{H}_{0}=\mathrm{n}_{2} \overline{\mathrm{x}}_{2}+\mathrm{n}_{3} \overline{\mathrm{x}}_{3}+\mathrm{n}_{4} \bar{x}_{4}=1 \tag{1}\\
& \text { with } \bar{x}_{j}=\mathrm{x}_{\mathrm{j}} /(\mathrm{Ct})
\end{align*}
$$

where C is the speed of sound and t is the time after the passing of the plane pulse over the vertex.

If the plane pulse hit the j - th edge first before hitting the vertex, n_{j} will be negative. This happens when the incident pulse diffracted by the first corner of the cube is subsequently diffracted by the adjacent corners.

* They begin with 2 so that the index j-1 will never be zero which will not be accepted by the computing machine.

For the incidence of a plane wave with the first corner of a building, n_{j} 's are nonnegative, i.e.,

$$
\begin{equation*}
n_{j} \geq 0 \quad j=2,3,4 \tag{2}
\end{equation*}
$$

In order to avoid the complicated discussion for various cases when one, two, or all of the n_{j} 's are negative, the discussions in this report will be restricted to the case of Eq. (2).

The plane pulse is intercepted by the j-axis at $X_{j}=1 / n_{j}$, and intersects the $x_{j}-x_{j-1}$ plane along the line

$$
\begin{equation*}
n_{j-1} \bar{x}_{j-1}+n_{j} \bar{x}_{j}=1 \tag{3}
\end{equation*}
$$

For the convenience of programming, quantities with subscript 1 and 5 are identified with those with subscript 4 and 2 respectively.

The diffraction due to the $j-t h$ edge is confined inside the Mach cone G_{j} with vertex at X_{j} on the \bar{x}_{j} axis,

$$
\begin{equation*}
G_{j}:\left(1-n_{j} \bar{x}_{j}\right)>\left[\left(\bar{x}_{j-1}\right)^{2}+\left(\bar{x}_{j+1}\right)^{2}\right]^{\frac{1}{2}}\left(1-n_{j}^{2}\right)^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

The diffraction by the vertex is confined inside the sonic sphere

$$
\begin{equation*}
s: \quad \bar{x}_{2}^{2}+\bar{x}_{3}^{2}+\bar{x}_{4}^{2}<1 \tag{5}
\end{equation*}
$$

The plane pulse will be reflected by the face, $\bar{x}_{j}=0$, (the $\bar{x}_{j-1}-\bar{x}_{j+1}$ plane) since $n_{j}>0$ and the plane of the reflected wave is

$$
\begin{equation*}
P_{j}=n_{j-1} \bar{x}_{j-1}-n_{j} \bar{x}_{j}+n_{j+1} \bar{x}_{j}=1 \tag{6}
\end{equation*}
$$

Across the reflected wave i.e., from $P_{j}>1$ to $P_{j}<1$, the pressure rises
from unity to 2 .
Inside the cone G_{j} but outside and ahead of the sonic sphere S, the solution is a function of two conical coordinates. ξ_{j} and η_{j} with

$$
\begin{equation*}
g_{j}=\frac{\bar{x}_{j-1}\left(1-n_{j}^{2}\right)^{\frac{1}{2}}}{1-n_{j} \bar{x}_{j}} \quad \text { and } n_{j}=\frac{-x_{j+1}\left(1-n_{j}^{2}\right)^{\frac{1}{2}}}{1-n_{j} \bar{x}_{j}} \tag{7}
\end{equation*}
$$

The cone G_{j} becomes the domain inside a unit circle,

$$
\xi_{j}^{2}+\eta_{j}^{2}=1
$$

The reflected wave P_{j-1} in ξ, η variables becomes

$$
\begin{equation*}
-n_{j-1} \quad s_{j}-n_{j+1} n_{j}=\left(1-n_{j}^{2}\right)^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

and it is tangential to the unit circle at the point

$$
\begin{equation*}
\stackrel{A_{j}}{j}: \quad \bar{\xi}_{j}^{-}=-n_{j-1} /\left(1-n_{j}^{2}\right)^{\frac{1}{2}} \text { and } \eta_{j}^{-}=-n_{j+1} /\left(1-n_{j}^{2}\right)^{\frac{1}{2}} \tag{9}
\end{equation*}
$$

Similarly the reflected wave $\mathrm{P}_{\mathrm{j}+1}$ becomes

$$
n_{j-1} \xi_{j}+n_{j+1} \eta_{j}=\left(1-n_{j}^{2}\right)^{\frac{1}{2}}
$$

and the point of contact to the unit circle is

$$
\begin{equation*}
A_{j}^{+}: \xi_{j}^{+}=n_{j-1} /\left(1-n_{j}^{2}\right)^{\frac{1}{2}} \text { and } \eta_{j}^{+}=n_{j+1} /\left(1-n_{j}^{2}\right)^{\frac{1}{2}} \tag{10}
\end{equation*}
$$

as shown in Fig. 2. The boundary condition on the unit circle, $\rho_{j}=1$, for the disturbance pressure p is

$$
\begin{array}{ll}
\mathrm{p}=2 & \omega_{\mathrm{j}}^{+}>\theta_{\mathrm{j}}>0 \\
\mathrm{p}=1 & \omega_{\mathrm{j}}^{-}>\theta_{\mathrm{j}}>\omega_{j}^{+} \\
\mathrm{p}=2 & 3_{\pi} / 2>\theta_{\mathrm{j}}>\omega_{\mathrm{j}}^{-}
\end{array}
$$

where $\omega_{j}^{+}=\arcsin \eta_{j}^{+}$

$$
\overline{\omega_{j}}=\pi+\omega_{j}^{+}
$$

and ρ_{j}, θ_{j} are the polar coordinates in ρ_{j}, η_{j} plane.
The disturbance pressure which lies inside the sonic cone G_{j} but ahead of the sonic sphere, $\mathrm{x}_{\mathrm{j}+1}^{2}+\mathrm{x}_{\mathrm{j}}^{2}+\mathrm{x}_{\mathrm{j}-1}^{2}>1$ and $\mathrm{x}_{\mathrm{j}}>\mathrm{n}_{\mathrm{j}}$, is given by the twodimensional conical solution [1],

$$
\begin{equation*}
p=1+p_{j}\left(\rho_{j}, \theta_{j}\right) \text { for } 1 \geq \rho_{j} \geq 0 \text { and } 3 \pi / 2>\theta_{j}>0 \tag{11}
\end{equation*}
$$

with

$$
p_{j}=p_{j}^{-}\left(\rho_{j}, \theta_{j}, \omega_{j}^{-}\right)-p_{j}^{+}\left(\rho_{j}, \theta_{j}, w_{j}^{+}\right)+1
$$

and $p_{j}^{ \pm}\left(\rho_{j}, \theta_{j}, \omega_{j}\right)=\frac{1}{\pi} \arctan \frac{\left(1-\tilde{\sim}^{2}\right) \sin \left(2 \omega_{j} / 3\right)}{2 \widetilde{\rho} \cos \left(2 \theta_{j} / 3\right)-\left(1+\tilde{\sim}^{2}\right) \cos \left(2 \omega_{j} / 3\right)}$ where the arctangent lies in the first and second quadrants and $\tilde{\rho}=\left\{\rho_{j} /\left[1+\left(1-\rho_{j}^{2}\right)^{\frac{1}{2}}\right]\right\}^{2 / 3}$.

In the domain common to the cones G_{j} and G_{j+1} from two edges j and $j+1$ but outside the sonic sphere S, the disturbance pressure is

$$
\begin{equation*}
p=1+p_{j}\left(\rho_{j}, \theta_{j}\right)+p_{j+1}\left(\rho_{j+1}, \theta_{j+1}\right) \tag{12}
\end{equation*}
$$

In the domain ahead the two cones G_{j} and G_{j+1}, and behind the reflected shock P_{j-1}, the disturbance pressure is

$$
\begin{equation*}
p=2 \tag{13}
\end{equation*}
$$

In the remaining domain outside the sonic sphere and behind the incident shock, the distrubance pressure is

$$
\begin{equation*}
p=1 \tag{14}
\end{equation*}
$$

Ahead of the incident shock, the pressure is of course undisturbed,

$$
\begin{equation*}
p=0 \tag{15}
\end{equation*}
$$

Equations (11) to (15) define the disturbance pressure outside the sonic sphere S.

For the pressure distribution inside the sonic sphere S, the pressure distribution is represented by the eigenfunction expansions,

$$
\begin{equation*}
\mathrm{p}(\zeta, \mu, \varphi)=\sum_{\lambda} K_{\lambda} Z_{\lambda}(\zeta) G_{\lambda}(\mu, \varphi) \tag{16}
\end{equation*}
$$

where $\zeta=r /(C t)=\left(\bar{x}_{2}^{2}+\vec{x}_{3}^{2}+\bar{x}_{4}^{2}\right)^{\frac{1}{2}}$
and

$$
\begin{aligned}
& \bar{x}_{4}=-\zeta \mu \\
& \bar{x}_{2}=\zeta\left(1 \mu^{2}\right)^{\frac{1}{2}} \sin (\varphi-3 \pi / 2) \\
& \bar{x}_{3}=\zeta\left(1-\mu^{2}\right)^{\frac{1}{2}} \cos (\varphi-3 \pi / 2)
\end{aligned}
$$

The eigenvalues λ 's, the eigenfunctions $G(\mu, \varphi)$ and the associated function $Z_{\lambda}(\zeta)$ are defined and are determined by the first numerical program in Ref. 2. The constants $A_{m,}, B_{m \lambda}, C_{j \lambda}, D_{j \lambda}$ 'characterizing the function $G(\mu, \varphi)$, a 0λ and the eigenvalues λ 's are now introduced as the input data for the programs in this report.

For a given set of direction cosines (n_{j}) of the incident pulse, program I computes the following items: i) the pressure distributions in the various regions outside of the sonic sphere by the appropriate equation of Eqs. (11 to 15$)$, ii) the boundary data, $F(\mu, \varphi)$ on the sonic sphere and iii) the coefficients K_{λ} in Eq. (16) for the solution inside the sonic sphere. The coefficients K are related to the boundary data by the equation (see section 5 of [2])

$$
\begin{align*}
& K_{\lambda}=\frac{1}{2}\left\{\int_{0}^{1} \mathrm{~d} \mu \int_{-\pi}^{\pi} \mathrm{d} \varphi \mathrm{~F}(\mu, \varphi) \mathrm{G}(\mu, \varphi)\right. \\
& \tag{17}\\
& \left.\quad+\int_{-1}^{0} \mathrm{~d} \mu \int_{-3 \pi / 2}^{3 \pi / 2} \mathrm{~d} \varphi \mathrm{~F}(\mu, \varphi) \mathrm{G}(\mu, \varphi)\right\}
\end{align*}
$$

Program I in this report is a generalization and an extension of the second program in Ref. 2 to compute the coefficients K_{λ} for any incident angle and to compute the pressure distribution outside the sonic sphere. With the knowledge of K_{λ}, the pressure distribution inside the sphere is given by Eq. (16) and are computed by the third program in Ref. 2. Figures 3, 4, and 5 show the pressure distribution on the surface due to the incidence of a unit plane pulse with direction cosines, $0.3,0.4$ and 0.83333 . The discontinuities in the slope of the pressure distribution occur at the crossing of the sonic cones around an edge and that of the sonic sphere.

3. INCIDENCE OF A PLANE WAVE

The incident plane wave p_{i} can be represented in general as.

$$
p_{i}=\Psi(s)
$$

with $s=C t-\left(n_{2} x_{2}+n_{3} x_{3}+n_{4} x_{4}\right)$ where the wave form Ψ is a given function of its phase s and n_{j} 's are the direction cosines. with respect to the axes x_{j}.

When the wave form is a Heaviside function, the diffraction due to the three-dimensional corner is given by the conical solution described in the preceeding section. It will be designated as $p^{*}(r /(C t), \mu, C \rho)$. The solution
corresponding to a plane wave of wave form $\Psi(\eta)$ is given by the Stielt.jes integral

$$
\begin{align*}
p(r, \theta, \oplus, t) & =\int p^{*}\left(\frac{r}{C t-\eta}, \mu, \varphi\right) d \Psi(\eta) \\
& =\sum_{i} p^{*}\left[\frac{r}{C t-\eta_{j}}\right]\left[\left(\Psi\left(\eta_{j+1}\right)-\Psi\left(\eta_{j}\right)\right]\right. \tag{18}
\end{align*}
$$

The second form is employed in the numerical program II for the computation of the pressure signature for points in the surface of the corner.

Numerical examples have been carried out for various wave forms with $\mathrm{n}_{\mathrm{j}} \equiv 1 / \sqrt{3 .}$. Fig. 6 shows the pressure signature received at points $\mathrm{r}=0$, $\frac{1}{2}$ and 1 along the line dividing the top surface of the corner $(\mu=0, \varphi=\pi)$. The incident wave is a simple N -wave in sonic boom problems with front shock strength ϵ. The length of the N-wave, which is 4 , is nearly the length of an airplane. The unit length scale in the numerical examples is therefore of the order of hundreds of feet. As shown in the figure, the pressure signature at the vertex is $8 / 7$ times the incident wave form in agreement with the theorem stated in [2]. At point $r=0.5$, the front part of the pressure signature is equal to twice the incident wave form, i.e. the same as a regular reflection and then decreases from the value of a regular reflection after the arrival of the diffracted waves from the edges and corner. Similar phenomenon is observed for the pressure signature at $r=1$ with a relative delay in the arrival of the diffracted waves.

Fig. 7 shows the pressure signature at $r=0.5,1.0$ and 2.0 along the same line $\mu=0, \varphi=\pi$, while the pressure raise in the incident wave in Fig. 6 is now spread over a thickness of 0.3 . The peak pressure received at $r=0.5$ and at $r=1.0$ is less than twice the total pressure raise, i.e., the
value of regular reflection while, at $r=2.0$ it is equal to the value of regular reflection. Fig. 8 shows the pressure signatures at the same set of points with the pressure raise in the incident wave spread over a: thickness of 0.5. The peak pressure at all these points are less than the value given by a regular reflection.

The differences in the value of the peak pressure at a point on the surface from that of a regular reflection is due to the arrival at the point of the diffracted wave front prior to that of the peak incidence wave front. This is the case for all the points in Fig. 8. In Fig. 7 the pressure raise is faster, so that at $r=2$, the peak incident wave arrives prior to the diffracted waves and the peak pressure at $r=2$ is the same as the value of a regular reflection. In Fig. 6, the shock thickness is zero, therefore, the peak value at any surface point is the same as in a regular reflection with the exception of points along the edges and at the vertex which always lies inside the diffracted region.

Fig. 9 shows the pressure signatures at $\mathrm{r}=0.5,1.0$, and 2.0 along the same line $\mu=0, \varphi=\pi$ when the front shock in Fig. 6 is split to two shock, waves joined by the expansion wave of thickness 0.3 . Although the peak pressure is the same as that in the single shock, the peak pressure received at points $r=0.5$ and 1.0 are nearly 25% less than that in the case of regular reflection. The peak pressure at point $r=2.0$ does reach the value of regular reflection i.e. 2ε. Fig. 10 shows the pressure signature at the same three points when the front shock is: split into two shocks separated by an expansion wave of thickness 0.6 . The peak pressure for all three points are now nearly 25% less than the value 2_{ϱ} in a regular reflection. Figs. 9 and 10 again demonstrate that when the diffracted wave front arrives prior to the arrival
of the peak incident wave, the local peak pressure can be much less than the value given by a regular reflection.

The time interval between the arrival at point r along the line $(\mu=0, \varphi=\pi)$ of the leading incident wave and that of the leading diffracted wave from the edge (both edges in the present example with $n_{2}=n_{3}=n_{4}=1 / \sqrt{3}$ is

$$
\begin{equation*}
\Delta \mathrm{T}_{1}=(\mathrm{d} / \mathrm{C})[\sqrt{2}-1] / \sqrt{56} \tag{19}
\end{equation*}
$$

The time interval between the former and the arrival of the diffracted wave from the vertex is

$$
\begin{equation*}
\Delta T_{2}=(r / C)[\sqrt{3}-\sqrt{2}] / \sqrt{3} \tag{20}
\end{equation*}
$$

When the distance between the two split front shock waves is d, the time interval between the arrival of the two shock waves at the point r is

$$
\begin{equation*}
\Delta \mathrm{T}^{*}=(\mathrm{d} / \mathrm{C}) \tag{21}
\end{equation*}
$$

The condition for the point r to receive a peak pressure less than that of a regular reflection is $\Delta \mathrm{T}_{1}<\Delta \mathrm{T}^{*}$, that is,

$$
\begin{equation*}
r / d<\sqrt{6} /(\sqrt{2-1})=5.92 \tag{22}
\end{equation*}
$$

In the problem of sonic boom, the length scale of the incident wave is about one quarter the length of an airplane. When the distance between two front shocks is 0.3 , the maximum radial distance r allowed by the criterion (22) is nearly 1.8 , therefore it is of the order of half an airplane length or hundreds of feet. In other words, when the front shock is split into two shock waves (Figs. 9, 10) or spread out to finite thickness, the area on the surface of the corner within a significant distance from the vertex (of hundreds of feet) will receive a peak pressure much less than the value given by a
regular reflection due to the relief from diffraction by edges and the vertex.

CONCLUSION

In this report, numerical programs are presented for the computation of pressure distribution on the surface of a three-dimensional corner due to an incident plane wave of any wave form at any incident angle. Numerical examples show that the area on the surface of the corner within a significant distance from the vertex which can be (of the order of hundreds of feet) will receive a peak pressure much less than that of a regular reflection when the front shock is split to two shock waves or when the total pressure raise is spread to a finite thickness.

REFERENCES

1. Keller, J.B. and Blank, A., "Diffraction and Reflection of Pulses by Wedges and Corners," Communication on Pure and Applied Mechanics, Vo1. 4, No. 1, pp. 75-94, June 1951.
2. Ting, L. and Kung, F., "Diffraction of a Pulse by a Three-Dimensional Corner," NASA CR-1728, March 1971.

APPENDIX

NUMERICAL PROGRAMS

Program I : determination of coefficients K of the eigenfunction from the given eigenvalues of λ^{\prime} s at ${ }^{\lambda}$ a given set of direction cosines (n_{j}) of the incident pulse

Input Definition

ETA(J) $\quad \mathrm{n}_{2}{ }^{\mathrm{n}_{3}}{ }^{n}{ }^{n}$, the direction cosines of the normal to the
incident ${ }^{\text {pulse }}$
II :control constant
$I I=1$; for the calculation of K_{λ}. for odd function
II equal to any integer other than one; for the calculation of K_{λ} for even function

LMAX: $\}$ number of terms in the eigenfunction
XLAM: $\quad \lambda$, eigenvalue
BMIN (J): associated constants for odd function
DMIN (L): associated constants for even function

INPUT FORMAT
$I I=2, \quad$ NMAX,\quad LMAX
$\operatorname{set}\left\{\begin{array}{l}\operatorname{XLAM} \\ \operatorname{BMIN}(\mathrm{J}) \\ \operatorname{DMIN}(\mathrm{L})\end{array}\right\}$
$\underset{2}{\operatorname{Set}}\}$
$2\}$
-
-
END FILE
$I I=1, \quad$ NMAX LMAX
$\}$
$\}$
END FILE

Note that the input data of XLAM, BMIN(J), DMIN(L) are determinated by the first program in Ref. [2], and the input data of NMAX, LMAX must be the same as that program. The calculation of K at $\lambda=0$ for the even function must be calculated first, and the end file cards are used to separate even function and odd function.

Output and Definition

```
XLAM : \lambda These are input data listing
BMIN(J) : coefficients {
DMIN(L) :
ETA(2), ETA(3) , ETA(4) : n n , n n , n4, a set of direction cosines
(nj)
K(LAMDA) : }\mp@subsup{K}{\chi}{}\mathrm{ , the coefficients of the eigenfunction
of incident pulse.
```

Program II: to determine the pressure distribution due to plane wave of a given wave form

Input Definition

DELTT:
NR:

NT:

NUMBOG:

NFMAX:

F(I):

```
\Deltat. time increment T = Ti -n\cdot\Deltat
number of points r between RSTART and RMAX
number of points T between TSTART and TMAX
total number of }\lambda\mathrm{ for even or odd function
tota1 numbers of F(I)
the increment of incident wave form function
\Psi between phases 'S }\mp@subsup{i}{i}{}\mathrm{ and S Si-1
```

INPUT FORMAT
$I I=2, \quad$ NMAX, LMAX

NUMBOE
$\operatorname{set}\left\{\begin{array}{l}\text { XLAM } \\ \operatorname{BMIN}(J) \\ \operatorname{DMIN}(\mathrm{L})\end{array}\right\}$
$\{(5 \mathrm{~F} 15.0)$

END FILE
$I I=1, \quad$ NMAX \quad LMAX
NUMBOE $\begin{gathered}\text { Set } \\ 1\end{gathered}\}$
$\operatorname{Set}\}$
\cdot
\cdot
END FILE

Output

The input data are printed in the first part of the output, and there are NR numbers of tables in the second part. Each table is for each value of r, and the pressure distributions are printed in the first column, and the second column are values of T from TSRART to TMAX.
OIMENSION F(70), FUP 170.701. FBT 170,701 . SFL 170.701
DIMENSION SUMJ(70),SUML(70), BMIN(70),DMIN(70)

COMMON ETA,WF1,WF2,RWF1,BWF2, XXI
$D I=3.1415926$
$\times \times I=1$.
READ (5.7000) (ETA(1) 1 I=2.4)
7000 FORMAT (3F15.8)
$E T A(1)=E T A(4)$
ETA: $\because=$ ETA (2)
DO $402 \mathrm{~J}=2,4$
SIGNEP $=\operatorname{SIGN}(1 ., \operatorname{ETA}(J+1))$
SIGNEM=SIGN(1.,ETA(J-1))
$A B S E M=A B S(E T A(J-1))$
$A B S E P=A B S(E T A(\jmath+1))$
FJPJM $=$ FTA $(J-1) * * 2+E T A(J+1) * * 2$
IF (SORT (EJPJM)-(1.E-08) 444.444 .445
$444 \omega O=0 I / 4$.
$B W O=(5 . * D I) / 4$.
COTO 446
445 WO =ASIN(ABSEM/SORT(EJPJM))
BWO =ASIN(ABSEP/SQRT(EJPJM))
446 CONTINUE
WFITJ = (PI/2•-WO*SIGNEM)*(2.13.)
WF2(J)=2.*PI-WFI(J)
BWFITJ) $=(\overline{P I}+$ BWO*SI GNEP) $*(2.13)$.
BWF2(J)=2•*PI-BWF1(J)
40 CONTINUE
LLMAX=50
IDIM=70
MAXU1 $=60$
MAXTOP=60
$M 4 \times \cup 2=60$
MAXBOT=60
$1000 \operatorname{READ}(5,1001)$ II,NMAX,LMAX
1001 FOPMAT(3I5)
IFIENDFILE 51 9999.1002
1002 CONTINUE
IFIII.EQ. 1) 101, 103

$-\quad \bar{c}$
$-\quad$

ODD FUNCTION

101 IIMAX = LMAX + NMAX
WRITE(6,1003)
1003 FORMAT(IHI* ODD FUNCIION*)
NCALL = NMAX
LCALL = LMAX
GO TO 104
103 EVEN FUNCTION
WRITE 6,1004$)$
1004 FORMAT(IH1,* EVEN FUNCTION*)
NCALL $=$ NMAX +1
LCALL $=$ LMAX +1
104 CONTINUE
WRITE(6,7532) ETA(2), ETA(3), ETA(4)
7532 FORIMAT(* ETA(2) $=*, E 12.5,3 \mathrm{X}, * \mathrm{ETA}(3)=*, E 12.5,3 \mathrm{X}, * \mathrm{ETA}(4)=*, \mathrm{E} 12.5)$
PI $=3.1415926$
ALPHA $=P 1 / 2$.
$X M U=0$.
PPHI $=2 . *$ (PT-ALPHA 72.)
XNUI = PI/PPHI
HALPHI =PPRH172.
EPS $=0.000001$
WRITE 6,502) NMAX.LMAX, ITMAX
502 FORMAT (\quad NMAX $=*, 15,5 X, * \operatorname{LMAX}=*, 15,5 X, * I I M A X=*, 151$
400 READT5.1001×LAM
IF (ENDFILE 5) 1000,1111
-1111 CONTINUE
100 FORMAT (5F15.0)
READT5,100) (BMINTI, $1=1, N(A L L)$
READ (5.100) (DMIN(L),L=1,LCALL)
UO=O.
MAXPUS = MAXTOP +1
INDEX=1
WRITE (6,32) XLAM
32 FORMATT * ${ }^{*}$ XLAM $=*, E 15.8$)
WRITE $(6,503)$
503 FORMATT7/* COEFICIENTS OF EIGENFUNCTION*)
WRITE $(6,304)$ (BMIN(I), $I=1, N C A L L)$
WRITE 6,304) (DMIN(L),L $=1, L C A L L)$
304 FORMAT (5E20.8/(5x,5E20.8))
DELUI $=(1 .-U 0-2$ *FPS $1 /$ MAXUI
MAXUST=MAXUI +1
UK $=U O+E P S$
DO $5 \quad I=1$, MAXUST
TOTARG=0.

```
        EALL FFFHUKYINOEXTMA*FOO.F.II.PPHH.IOIMG
            DO 4 J=1,MAXPUS
            F!\rho+I.J四(J)
    4 CONTINUE
        I ROW=I
        On 13 J=1, NCALL
        IF(II .EQ. 1) 111,113
    C
    C ODD FUNCTION
    l]l CONT INUE
        xVAL=J
        CALL SININT(FUP,XVAL,IROW,MAXTOP,PI,O,IDIM,TRIINTI
        GO TO 114
    C
    C EVEN FUNCTION
    113 CONTINUE
        XVAL=J-1
        CALL COSINT(FUP,XVAL,IROW,MAXTOP,PI,O,IDIM,TRIINT)
    114 CONTINUE
    SS=XVAL
    CALL PPDO(SS,XLAM,(IK,LLMAX,PP,DP)
    TOTARG=TOTARG+BMIN(J)*PP*TRIINT
    13 CONTINUE
    STMJ(I)= TCTARG
    UK=UK+DFLUI
    5 CONTINUE
    TOTEMI=SUMJ(1)
    DO 19 I =2,MAXUI
    COFF=3.+(-1.)**I
    TOTEM1=TOTEM1+COEF*SIJMJ(I)
    19 CONTINUE
    TOTEM1=(TOTEM1+SUMJ(MAXUST))*DELUI/3.
    MAXPUS=MAXBOT + 1
    INDEX=2
    DELU2=(1.+UO-2.*EPS 1/MAXU2
    MAXUSM=MAXU2+1
    UK=-1.+EPS
    DO 9 I=1,MAXUSM
    TOTARG=0.
    CALL FFF(UK,INDEX,MAXBOT,F,II,PPHI,IDIM)
    DO }8\textrm{J}=1,MAXPU
    FBT(I,J)=F(J)
    8 CONT INUE
    IROW=I
    DO 23 L=1,LCALL
    IF(II •EQ. 1) 121,123
```

C ODD FUNCTION
121 CONTINUE
XVAL $=(2 * L-1) *$ XNU 1
CALL SININT(FBT, XVAL,IROW,MAXBOT,HALPHI,O,IDIM, TRIINT)
GO TO 124
c EVEN FUNCTION
123 CONTINUE
XVAL $=2 *(L-1) * X N U 1$
CALL COSINT(FBT, XVAL,IROW, MAXBOT, HALPHI,O,IDIM, TRIINT)
124 CONTINUE
$S S=X V A L$
UF $=-U K$
CALL PPDO(SS, XLAM,UF,LLMAX,PP,DP)
TOTARG $=$ TOTARG+DMIN(L)*PP*TRIINT
23 CONT INUE
SUML (I) = TOTARG
$U K=U K+D E L U 2$
9 CONTINUE
TOTEM2 $=$ SUML (1)
DO 29 I $=2$ MAXUZ
COEF $=3 \cdot+(-1) * *$.
TOTEM2=TOTEM2+COEF*SUML (I)
29 CONTINUE
TOTEM2 = (TOTEM2+SUML (MAXUSM)) *DELUZ13.
EEEM $=$ TOTEM1 + TOTEM2
WRITE(6,11)EEEM
11 FORMAT (20 X , *K(LAMDA) $=*$, E15.8)
WRITE 6,401)
401 FORMAT(////)
GO 10400
9999 STOP
END

C FILON'S METHOD FOR THE NUMERICAL EVALUATION OF TRIGONAMETRICAL INTEGRALS--IINTEGRAND=FP(P)*SIN $(X * P))$

DIMENSION FP(IDIM, IDIM)
$H H=(U P L I M-B O T L I M) / M A X S T$
S2S $=0.5 * F P(I R O W, 1) * S I N(X V A L * B O T L I M)$
DO $14 \mathrm{~J}=3, \mathrm{MAXST}, 2$
$P=$ ROTLIM $+(J-I) * H H$
$S 2 S=S 2 S+F P(I R O W, J) * S I N(X V A L * P)$
14 CONTINUE
$J=M A X S T+1$
S2S = S 2S + 0.5*FP(IROW,MAXST+1)*SIN(XVAL*UPLIM)
$S 2 S M=0$.
DO $16 \mathrm{~J}=2$, MAXST, 2
$\mathrm{P}=\mathrm{BOTLIM}+(J-1) * H H$
S2SM=S2SM+FP(IROW,J)*SIN(XVAL*P)
16 CONT INUE
THE =XVAL*HH
IF (THE-0.2) 25,21,21
21 ALPHA = (THE**2+THE*SIN(THE)*COS(THE)-2.*SIN(THE)**2)/THE**3
BETA $=2$ 。* $(\operatorname{THE} *(1 \bullet+\operatorname{COS}(T H E) * * 2)-2 \bullet * S I N(T H E) * \operatorname{COS}(T H E)) / T H E * * 3$
GARM $=4 * *($ SIN (THE)-THE*COS (THE))/THE**3
GO TO 31
25 ALPHA $=2 . * T H E * * 3 / 45 \bullet-2 . * T H E * * 5 / 315 .+2 . * T H E * * 7 / 4725$.
BE TA $=2.13 \bullet+2 . * T H E * * 2 / 15 \bullet-4 \bullet * T H E * * 4 / 105 \bullet+2$ 。*THE**6/567.
GARM=4•/3•-2.*THE**2/15•+THE**4/210•-THE**6/11340.
$31 F A=F P(I R O W, 1)$
$F B=F P(1 R O W, M A X S T+1)$
TRIINT $=H H *(-A L P H A *(F B * C O S(X V A L * U P L I M)-F A * C O S(X V A L * B O T L I M))+B E T A *$ TS2S+GARM*S2SMI RETURN
END

SUBROUTINF COSINT (FP, XVAL,IROW,MAXST,UPLIM,BOTLIM,IDIM,TRIINT)
C FILON'S METHOD FOR THE NUMERICAL EVALUATION OF TRIGONAMETRICAL
C INTEGRALS-- (INTEGRAND $=F P(P) * \operatorname{COS}(X * P))$
DIMENSION FP(IDIM,IDIM)
$H H=(U P L I M-B O T L I M) / M A X S T$
S2S $=0.5 * F P(I R O W, 1) * C O S(X V A L * B O T L I M)$
DO $14 \mathrm{~J}=3 \mathrm{MAXST}, 2$
$\mathrm{P}=\mathrm{BOTLIM}+(J-1) * H H$
$S 2 S=S 2 S+F P(I R O W, J) * C O S(X V A L * P)$
14 CONTINUE
$J=M A X S T+1$
S2S=S2S+0.5*FP(IROW,MAXST+1)*COS(XVAL*UPLIM)
S2SM=0.
DO 16 J=2.MAXST, 2
$\mathrm{P}=$ BOTLIM $+(\mathrm{J}-1)$ *HH
S2SM=S2SM+FP(IROW,J)*COS(XVAL*P)
16 CONTINUE
THE $=X V A L * H H$
IF (THE-0.2) 25,21,21
21 ALPHA=(THE**2+THE*SIN(THE)*COS(THE)-2**SIN(THE)**2)/THE**3
BETA $=2 * *(T H E *(1 \bullet+\operatorname{Cos}(T H E) * * 2)-2 * * \operatorname{SIN}(T H E) * \operatorname{COS}(T H E)) / T H E * * 3$
GARM $=4 * *(S I N(T H E)-T H E * C O S(T H E)) / T H E * * 3$
GO TO 31
25 ALPHA $=2$ •*THE**3/45•-2•*THE**5/315•+2•*THE**7/4725.
BETA $=2 \cdot 13 \bullet+2 \bullet * T H E * * 2 / 15 \cdot-4 * * T H E * * 4 / 105 \bullet+2$ **THE**6/567.
GARM $=4.13 \cdot-2 . *$ THE**2/15.+THE**4/210.-THE**6/11340.
$31 F A=F P(I R O W, 1)$
$F B=F P$ (IROW,MAXST +1)
TRIINT=HH* (ALPHA*(FB*SIN(XVAL*UPLIM)-FA*SIN(XVAL*BOTLIM))+BETA* IS2S+GARM*S2SM)

RETURN

END

DIMENSION F(IDIMI
PI $=3.1415926$
IF (INDEX © EQ. 1) 4,6
4 DELPSI=PI/FLOAT(MAX)
GO TO 7
6 DELPSI =PPHI/FLOAT (2*MAX)
7 CONTINUE
$P S I=0$ 。
MAXPUS $=M A X+1$
DO $19 \mathrm{~N}=1$, MAXPUS
BPSI=PSI-PPHI/2.
CALL FSF (BPSI,UU,FS ,PPHI)
$F A=F S$
BPSI=2**PI-PSI-PPHY/2e
CALL FSF (BPSI,UU,FS ,PPHI)
$F B=F S$
IF(II •EQ. 1) 14,16
$14 \mathrm{~F}(\mathrm{~N})=(\mathrm{FA}-F B) / 2$.
GO TO 17
$16 F(N)=(F A+F B) / 2$.
17 CONTINUE
PSI =PSI + DELPSI
19 CONTINUE
RETURN
END

SUBROUT INE CON2DIRHOR IAURWI eW2 SSOPCI
$P I=3.1415926$
EDSIL $=0.000001$
CON1=1.-RHO**2
IF(CON1+EPSIL) $10,10,14$
10 WRITE 6,11$)$
11. FORMAI (* 1-RHO**2+FPSIL \& 2 . ZERO. CHECK THE PROGRAM *)

STOP
14 IF(SON1 $115,15,17$
$15 \mathrm{GG}=1$ 。
GO TO 21
17 GG = (RHO/(1.+SQRT(CON1)))**SS
21 BTAU=SS*TAU
DD $=(1 .-G G * * 2) * S I N(0.5 *(W 2-W 1))$
$C C=(1 .+G G * * 2) * \operatorname{COS}(0.5 *(W 2-W 1))-2 . * G G * \operatorname{COS}(B T A U-(W 2+W 1) * 0.5)$
SQCD $=$ SORT(CC**2+DO**2)
IF(SQCD-EPSIL) $23,25,25$
$23 P C=0.5$
GO TO 30
25 IF(CC) $28,26,26$
$26 \mathrm{PC}=\mathrm{ASIN}(D D / S Q C D) / P I$
GO TO 30
$28 \mathrm{PC}=\mathrm{ASIN}\left(\mathrm{DD} / \mathrm{SQCD}^{2} / \mathrm{PI}(-1 \cdot)+1\right.$.
30 CONTINUE
RETURN
END

SUOROUFINE FFFHOPSTVUHFSTPPHI+
DIMENSION ETA(10), X(10), F(10),WF1(10),WF2(10), BWF1(10),BWF2(10)
COMMON ETA,WFI,WFZ,BWF1,BWF $2, X X I$
EPS=1.E-06
$P I=3.1415926$
CONS23=2•13.
EFPS $=1 _E-05$
199 CONTINUE
$X(>)=X X I * S Q R T(1,-U U * * 2) * S T N(B P S I)$
$x(3)=X X I * S Q R T(1--U U * * 2) * \operatorname{COS}(B P S I)$
$x(4)=-x \times 1$ * 14
TESTX2=ABS $(x(2))$
TESTX3=ABS $(X(3))$
TESTX4=ABS $(\times(4))$
IF (TESTX2 LE. EPS) 191.192
$191 \times(2)=0$ 。
192 IF(TESTX3.LE.EPS) 193,194
$193 \times(3)=0$ 。
194 CONTINUE
198 CONTINUE
$X(1)=X(4)$
$x(5)=x(2)$
IF (XXI-1.) 201,203,203
201 WRITE(6,202)
202 FORMAT(* ERROR XXI •LT. 1---CASE A*)
STOP

204 THALPI $=A B S 1 B P S I-1.570796321$
IF(THALPI-EEPS) 208,208,209
208 BPSI $=B P S I+E E P S$
GO TO 199
209 WRITE(6.205)
205 FORMAT(* ERROR $X(2), X(3)$, AND $X(4) \cdot G T$. $1 E-06--$ CASE B*) STOP
206 SUMXN=0.
DO $207 \mathrm{~J}=2,4$
207 SUMXN = SUMXN+ETA(J)*X(J)
IF (SUMXN-1.) 215,213,211
211 FS=0.
GO TO 300
213 FS $=0.5$
GO TO 300
215 DO $258 \quad J=2,4$
IF(X(J)-ETA(J)) 221.223.223
$221 F(J)=100$.
GO TO 259
$223 \mathrm{VAL}=\operatorname{SQRT}(E T A(J-1) * * 2+E T A(J+1) * * 2)$
VAL2=1.-ETA(J)*X(J)
$Y=(X(J-1) * V A L 1) / V A L ?$
$Z=(-X(J+1) * V A L 1) / V A L 2$
RHO=SORT (Y**2+2**2)
IF(RHO-1.1 225,225,251
225 CONTINUE
IF (RHO-EPS) 226,226,228
226 TAll=PI/2.
GO TO 240
228 CONTINUE
TAUO $=$ ASIN(ABS (Z/RHOI)
IF(Z) 235,231.231
231 IF(Y) $233,232,232$
232 TAU=TAUO
GO TO 240
233 TAU=PI TAUO
GO TO 240
235 IF(Y) 236,236,237
236 TAU=PI+TAUO
GO TO 240
237 IF(X) J) 1237.1237.1238
1237 F(J)=100.
GO TO 259
1238 CONTINUE238 FORMAT(* ERROR FOR Y .GT. AND 2 .LT. O---CASE C*/4E20.8)
WRITE(6,253) J,VAL1,VAL2,RHO,X(2),X(3).X(4),XXI,BPSI ,UU
STOP
240 CONT INUE
Wl=WF1(J)
W2 $=W F 2(J)$
BW1=BWF1(J)
$B W 2=B W F 2(J)$
CALL CON2D(RHO,TAU,WI,W2,CONS23,FIF)
CALL CON2DIRHO,TAU,BW1,BW2,CONS23,FIIF)
SIGNEP=SIGN(1.,ETA(J+1))
SIGNEM=SIGN(1., ETA(J-1))
$243 F(J)=(11 \cdot-F I F) * S I G N E P+F I I F * S I G N E M)$
GO TO 259
251 F(J)=100.
259 CONTINUE
258 CONTINUE
253 FORMAT(I3.9E13.5)
SUMF $=0$.
DO $261 \mathrm{~J}=2: 4$

```
        SUMF=SUMF+FF!な
    261 CONTINUE
        IF(SUMF-EPS) 260.260-262
    260 FS=SUMF+1.
    GO TO 300
    262 CONTINUE
    IF(SUMF-90.) 263,263,265
    C
    C----INSIDE ALL THREE CONES
    263 WRITE(6,264) (F(J),J=1,4),FIF,FIIF
    264 FORMATI* ERROR SUMF .LE. 90---CASE D*/6E20.8)
            WRITE(8,200) VAL1,VAL2,Y,Z,RHO,TAUO,W1,W2,FIF,BW1,BW2,FIIF
            STOP
    265 IF(SUMF-190.) 267,267,269
    C
    C------INSIDE TWO CONES AND OUTSIDE THE THIRD CONE
        267 FS=SUMF-100.
            GO TO 300
    269 IF(SUMF-290.)271,271,272
    C
    C-----INSIDE ONE CONE ONLY
        271 FS=SUMF-199.
            GO TO 300
            272 CONTINUE
    C
    C----OUTSIDE ALL THREE CONES
    273 DO 279 J=2,4
            TEST=ETA(J-1)*X(J-1)-ETA(J)*X(J)+ETA(J+1)*X(J+1)
            DJ=ETA(J+1)
            DM=ETA(J-1)
            IF(X(J) .LE. O. .AND. TEST .LT. I.) 275,279
    275 IF(X.(J+1) •GE. DJ .OR•X(J-1) •GE. DM)281.279
    279 CONTINUE
            FS=1.
            GO TO 300
    281 FS=2.
    300 CONTINUE
    301 FORMAT(* SUB FSF(NEW)* 5X, 5E20.8)
    200 FORMAT(6E20.8)
        RETURN
        END
```

SUBROUTINE PPDD(SS,XLAM,XMU,LLMAX,PP,DP)
C SUBROUTINE PPDD--WITHOUT.DP
$X N U=S S$
$E P S=1 . E-06$
$D O=1$.
TEM1 $=1$ 。
$2 X=(1-x M 1) / 2$
IF(ABS(ZX) •LE. EPS.AND. ABS(XNU) •LE. EPS) 35,31
31 CONTINUE
DO 40 L=2, LLMAX
ZL=L-1
$D D=D D *(Z L-X L A M \quad-1) *.(Z L+X L A M \quad) /(Z L * * 2+Z L * X N U)$
TEM1 $=$ TEM1 $+D D * 2 X * *(L-1)$
40 CONTINUE
ARTFL=((1.-XMU)/(1.+XMU))**(XNU/2.)
PP =ARTFL*TEMI
GO TO 41
$35 \mathrm{PP}=1$.
41 CONTINUE
DP=0.
RETURN
END

```
        PROGRAM II
    1)IMENSION FDIM(20),RMIN(20),DMIN120)
    DIMENSION ETA(10),WF1(10),WF2(10), BWF1(10), DWF2(10)
    DIMFNSION ELAM(40),ZZ2(40.20),PD(400), E(400),55(40)
    COMNON/BLOCK1/ETA,WF1,WF2,BWF1, BWF2,XXI
    READ(5,7000) (FTA(I),I=2,4)
    RFAD(5,1C) RMAX,TMAX,DELTT ,TSTART,RSTART
    7\capOO FORMAT(3F15.R)
    READ(5,7001) NFMAX,NT,NR
    7\capCl FORMAT(315)
    W/FITF(5,7002)
    7OOZ FORMAT(1H1)
    FTA(1)=FTA(4)
    ETA(5)=ETA(2)
    RFAD(5,IO) (F(I),I=1,NFMAX)
    10 FORMAT(5F10.0)
    RFAD(5,10)THE,PSI
    |N=COS(THF)
    LLM\DeltaX=50
            PI = 3.1415926
            ALOHA=PI/2.
            PPHI=2.*(PI-ALPHA/2.)
            XNUI=PI/PDHI
            3DSI=PSI-PPHI/2.
            DFLR=RNAX/NR
            DELT = TMAX/NT
            WRITE(6,1) (ETA(I),I=1,3),RMAX,TMAX,DELTT,DELR,DELT
            1 FORMAT(* ETA(1)=*,E12.5,5X,*ETA(2)=*,E12.5,5x,*FTA(3)=*,512.5/
            I* RMAX=*,E12.5,5X,*TMAX=*,E12.5,5X,*DELTT=*,E12.5,5X,*DFLR=*,
            2F12.5,5x,*DELT=*,E12.51
            WRITE(6,7005) UU,P.51
    7OO5 FORMAT(2X,*UU=*,E15.8,5x,*PSI=*,E15.8)
            \ारITE(6,7003)
    7003 FORMAT(//3X,*F(1)*)
            WRITE(6,440) (F(I),I=1,NFMAX)
            FORMAT(5F20.5)
            \mathrm{ ति 442 J=2,4}
            SIGNEP=SIGN(1\bullet,ETA(J+1))
S_STGNEM=SIGN(I.ETA(J-1))
            ABSEM=ABS(ETA(J-1))
            ABSEP=ABS(ETA(J+1))
            FJPJM=ETA(J-1)**2+ETA(J+1)**2
            IF(SQRT(EJPJM)-(1.F-08)) 444,444,445
    444 WO=P1/4.
            RाNO=15.*P1T/4.
                (%) TO 446
```

 445 WO=ASIN(ABSEM/SORT(EJPJN))
 3WO=ASIN(ABSEP/SQRT(EJPJN))
 446 CONTINUE
 WF1}(J)=(PI/2.-WO*SIGNEN)*(2./3.
 WF2(J)=2•*PI-WF1(J)
 RWFI(J)=(PI+BWO*SIIGNEP)*(2./3.)
 RWF?(J)=2.*PI-RWF1(J)
 4 4 2 ~ C O N T ~ I N U E ~
 NMMB=0.
 10OU READ(5,1001) II,NMAX,LMAX
 1001 FORMAT(3I5)
 IF(FNDFILF 5) 0909,1002
 IOO2 CONTINUE
 I=(II -EQ. 1) 101,103
 : ODD FUNCTION
 Ol IIMAX = LMAX + VMAX
 READ(5,1001) NUMBCF
 NBBG=0
 MRITE (6,2)
 2 FПRMAT(1H1./1* ODO FUNCTION*)
 NCALL = NMAX
 LCALL = LMAX
 GO TO }10
 C EVFN FUNCTION
 103 I IVAX=LMAX+NMAX+2
 READ(5,1001) NUMSOE
 NBRR=0
 WRITE (6,3)
 3 FORMAT(1H1,/1* EVEN FUNCTION *)
 NCALL = NMAX +1
 LCALL= LMAX+I
 IO4 CONTINUE
 WTRITE[6,502) NNAX,LMAX,IIMAX,ALPHA,PPHI,XINUI
 502 FORMAT1 * NMAX =*, 15,5x,*LMAX=*,I5,5X,*IIMAX=*,I5/5X,
 1ALPHA =*,E12.5,5X,*PPHI=*,E12.5,5X,*XNUI=*,E12.51
 110 READ(5,100) XLAM,EEEM
 100 FORNAT(5E15.8)
 IF(ENDFILE 5) 1000,1111
 1111 CONTINUE
 2000 NUMS = NUMB +1
 EOLD=EFEM
 NBGE=NBBR +1
 EEEM=(NUMBOE-(NBBE-1))*EEEM/NUMBOF
 READ(5,100) (BMIN(I),I=1,NCALL)
    ```
        READ(5,100) (DMIN(L),L=1,LCALL)
        CALL T102(XLAM,1.,FDIM,GRBPE3)
        \triangleAA\triangleAA=BRRRRR
        WRITE (6,32) XLAM,AAAAAA,EOLD
        32 FORMAT( * XLAM=*,F14.9,5X,*AAO=*,F14.9.5X,*K(LAMDA)=*,F14.9)
        WRITE(6.503)
    5 0 3 ~ F O R N A T ( / / ~ * ~ C O E F F I C I E N T S ~ O F ~ E I G E N - F U N C T I O N S * ) ~
        WRITE(6,304) (BMIN(I),I=1,NCALL)
        WRITE(6,304) (DMIN(L),L=1,LCALL)
        3\cap4 FORMAT(5E20.8/(5x,5E20.8))
        WRITE(6,401)
    401 FORMAT(////)
        F.LAM(NUMB) = EEFN
        CALL T102(XLAM,AAAAAA,EDIM,BBZBBE)
        DO 2001 I=1,10
    2001 722(NUMR,I)=ECIM(I)
        IF(U|) 2100,2002,200?
    2On2 CONT INUE
        IF(II .FQ. 1) 200,203
<
    ODD FUNCTION
    300 XMU=1JU
        DHI=PSI
        PPUS=0.
        O% 201 J=1,NCALL
        SS=J
        CALL PPDD(SS,XLAM,XMU,LLMAX,PP,DP)
        SINFU=SIN(J*PHI)
        PPUS=PPUS+BMIN(J)*PP*SINFU
    201 CONTINUE
        GG(NUMB) =PPUS
        GO TO 110
T
C EVEN FUNCTION
    203 CONTIN!JE
        XMU=UU
        PHI=PSI
        PPUS=0.
        DO 206 J=1,NCALL
        55= J-1
4-.--CALL PPDD(SS,XLAM,XMU,LLMAX,PF,DP)
        COSFU=COS(SS*PHI)
        OPUS=POUS +BMINIJI*DP*COSFU
        206 CONTINUE
        GG(NIJMB) =PPUS
        GO TO 110
                                30
```

```
    2100 IF(II .EQ. 1) 301,400
    ODN FUNCTION
    301 XMU=1JU
            DHI=PSI
            PMIN=0.
            DO 302 L=1,LCALL
            SS=(2*L-1)*XNU1
            CALL PPDD(SS,XLAM,-XMU,LLMAX,PP,DP)
            SINFU=SIN(SS*PHI)
            DMIN=PMIN+DMIN(L)*PP*SINFU
    <O2 CONT INUE
            GG(N!UMB)=PMIN
            GO TO 110
    F
        EVFN FUNCTION
    400 XMU=UU
            OHI=PS I
            PMIN=0.
            DO.402 L=1,LCALL
            CS=2*(L-1)*\timesN!!1
            CALL PPDD(SS,XLAM,-XMU,LLMAX,FP,DP)
            COSFU=COS(SS*PHI)
            PMIN=PMIN+DMIN(I_)*DP*COSFU
        4O? CONT INUE
            G(NUMB)=PMIN
            GO TO 110
    9999 MAXNIIM =NIJMB
            DO 2006 I=1,10
    2006 CONT INUE
            R=-DELR +PSTART
    2200 R=R+DELR
            TF(R-RMAX) 2202,22n2.2201
    2201 STOP
    7002 CONTINUE
            WRITE(6.7004) R
7004 FORMAT(//5X,*R=*,E12.5.11X,*P*,17X,*T*)
                T= = DELT+TSTART
2575 T=T+DELT
            IF(T-TMAX) 2602,26n?,2200
'-2GO? CONTINUE
            O) 2400 N=1,NFMAX
            ST=T-N*DELTT +0.0001
            IF(ST) 2203,2203,2205
    2203 RIGD=0.
            60 TO 2400
```

```
    2205 X W!=R/ST
    IF(XXI-1.) 2300,2207,2207
    2?07 CONTINUE
    CALL FSF(BPSI,UU,FS,PDHI)
    SICP=FS
    60 TO 2400
    2300 P100=0.
    DO 2309 I =1,MAXNUM
    CALL INTER(XXI,I,Z.7Z,ZXXI)
    马IGD=BIGP+ELAM(I)*7XXI*GG(I)
?2\capO CONTINIJE
    ?4\capO DP(N)=RIGP
        SाMFP=0.
        n\cap 2405 M=1,NFMAX
?\angleO5 SUMFP=SUMFP+ PP(M)*F(M)
            WRITE(6,2407) SUMFP,T
-7407 FORMAT(19X,2F20.8)
    G!) TO 2525
-2п1 STOP
    FND
```

SURROUTINE INTER(XXI,ICOL,ZZZ,ZXXI)
DIMFNSION ZZZ $(40,20)$
$x=0$ 。
$10 \quad N=N+1$
$x=x+0 \cdot 1$
IF $(x-x \times I) 10,20,30$
$20 \quad 2 \times \times I=Z Z Z(I C O L, N)$
GO TO 50
30 IFIN •GT. 10) GO TO 40
IF (N LLE. 1160 TO 60
$Z \times X I=Z 7 Z(I C O L, N-1)+(Z Z Z(I C O L, N)-Z Z Z(I C O L, N-1)) *(X X I-X+0.1) / 0.1$
GO TO 50
40 WPITE 6.41$) \mathrm{XXI}$
41 FORMAT(//* ERROR IN SUB. INTER --FOR XXI=*,E12.5,* IS OUT CF RA
1NGE*)
STOP
50 CONTINUE
WRITE $(6,51) \times X I, Z X X I, Z Z Z(I C O L, N-1), Z Z Z(I C O L, N)$
51 FORMAT (* SUB INTER*, 5F20.8)
GO TO 65
50 IFIICOL •GT. 11 GO TO 61
$72 Z Z 7 Z=1$.
60 TO 64
$61 \quad 27272 Z=0$ 。
64 CONTINIJE
$Z X X I=(Z Z Z(I C O L, 1)-Z Z Z Z Z Z) * X X I+Z Z Z Z Z Z$
65 CONTINUE
RETURN
END
SURROUTINE FSF (BPSI, UU,FS,PPHI)
CUNVUN/BLOCK1/ETA,WF1,WF2,BWF1,BWF2,XXI
$F O S=1.5-06$
$\mathrm{PI}=3.1415926$
CONS23 $=2 \cdot 13$.
EEPS $=1-E-05$
199 CONTINUE
X(2) $=\mathrm{XXI}$ *SORT(1•-U1**?)*SIM(RDSI)
$x(3)=x \times I * S Q R T(1 .-(U * * 2) * \operatorname{COS}(E P S I)$
$x(4)=-x \times I * \cup U$
$T=S T \times 2=A R S(\times(2))$
$T=6 \times$? $=A B S(\times(3))$
TESTX4=ARS(X(4))
IF(TESTX2•LE•EFS) 191,192
$191 \times(2)=0$.
1वरे IF(TFSTX3 •LE•EPS) 193,104
19 $9^{2} \times(3)=0$.
104 CONT INUE
10~ GONTINUE
$x(1)=x(4)$
$x(5)=x(2)$
$\overline{1} F(x \bar{I}-1) 201,203,$.

20, FORMAT(* ERROR XXI .LT• 1--(CASE A* 6E14.5)
GTOD

204 THALPI =ABS(BPSI-1. 570796321
- IF (THALPI-EEPS) $208,208,209$
208 RPSI = BPSI + FEPS
तथ TO 1.99
209 WRITE(6,205)

- 05 FORMAT * ERROR $X(?), X(3), ~ A N D \times(4)$-GT. 1E-O6---CASE S*)
STOP
206 SUMXN=0.
DO $207 \quad J=2,4$
207 SUMXN=SUMXN+ETA(J)*X(J)
IF (SUMXN-1.) 215,213,211
5——TI FS=0.
60 TO 300
$4-2 T 3-25=0.5$
$\because \because 10300$

IF(X(J)-ETA(J)) 221,223,223
21-TJ=100.
© TO 259
34

```
    223 VALI=SORT(ETA(J-1)**?+ETA(J+1)**2.)
    VAL2=1•-FTA(J)*X(J)
    Y=(X(J-1)*VALI)/VAL2
    ?=(-X(J+1)*VAL 1)/VAL2
    PHON=SORT(Y**2+Z**2)
    IF(RHO-1.) 225,225.251
    275 CONT INUE
    IF(RHO-EPS)226,226,228
    26 TAU=PI/2.
    O% TO 240
    %% CONTINUE
            T2!IN=ASIN(ABS(7/RHO))
    IF(`) 235,231,231
    221 IF(Y) 233,222,732
    AII=TA|JO
    mo TO 240
    53 TAUJ=PT-TAlIO
    GO TO 240
    ; 35 TF(Y) 236,236,237
    226 TAU=PI + TAUO
    OO TO 240
    #1F(x(J)) 1237,1237,1238
    ?7 F(J)=100.
    (0) TO 259
-I;z% OONTINUE
    WRITE(6.2.2) TAUO,TAU,Y,?
    238 FORMAT(* ERROR FOR Y .GT. AND Z .LT. C----CASE C*/4E20.8)
    WR[TE(6,253) J,VAL],VAL2,RHO,X(2),X(3),X(4),XXI,NPSI ,运
    STOP
    740 CONT INUE
        W] =WF1.(J)
        W2=WF2(J)
        RWT=BWF1(J)
        BW2=RWF 2(J)
    CALL CON2D(RHO,TAU,W1,W2,CONS23,FIF)
    CALL CON2D(RHO,TAU,RWI,RW2,CONS23,FIIF)
    SIGNEP=SIGN(1.,ETA.(J+1))
    SIGNEM=SIGN(1.,ETA(J-1))
    43F(J)=((1.-FIF)*SIGNEP+FIIF*SIGNEM)
        GO TO 259
    351 F(J)=100.
    75Q CONT INUE
    258 CONT INIJE
    253 FORMAT(I3.9E13.5)
        C!MF=0.
        n\cap 261 J=2,4
                            35
```

```
    SUMF =SUMF +F(J)
    261 CONT INUE
    IF(SUMF-EPS) 260,260,262
    2H0 FS = SUMFF+1.
    OO TO 300
    262 COMT INUF
    IF(GUMF-90.) 263,263,265
C
C---INSIDE ALL THREE CONES
    263 WRITE(6,264) (F(J),J=1,4),FIF,FIIF
    264 FORMAT(* ERROR SUMF .LE. 90---CASE D*/6E20.8)
    WRITE(6,200) VAL1,VAL2,Y,Z,RHO,TAUO,W1,W2,FIF,BW1,RW2,FIIF
    STतP
    265 IF(SUMF-190.) 267.267.269
    C-----INSIDF TWO CONES AND OUTSIDE THE THIRD CONE
    267 FS =SUMF-100.
        GO TO 300
    -769 IF(SUMF-290.)271.271.272
    C
    C----INSTDE ONE CONF ONLY
    271 FS=SUMF-199.
    60 TO 3n0
    272 CONTINUE
    C----OUITSIDE ALL THREE CONES
\ 273 DO 279 J=2,4
    TEST=FTA(J-1)**(J-1)-ETA(J)*x(J)+ETA(J+1)*x(J+1)
    DJ=ETA(J+1)
    DM=ETA(J-1)
    IF(X(J) &LE. O. .AND. TEST •LT. 1.) 275,279
    275 IF(X(J+1).GE.DJ.OR. X(J-1).GE.DM)281,279
            FNTINTIF
            FS=1.
            GO TO 300
    281 FS=2.
    300 CONTINUE
    301 FORMAT(* SUB FSF(NEW)* 5x, 5E20.8)
    200 FORMATT6E20.81
        RFTURN
        END
3
```

\qquad

```
2

SUQROUTINE CON2D(RHO, TAU,WI,W2,SS,PCI EPSIL \(=0.000001\)
CON1=1.-RHO**2
IF(CON \(1+E P S I L) 10.10 .14\)
10 WRITE \((6,11)\)
11 FORMAT(* 1-RHO**2+EPSIL •LE. ZERO. CHECK THE PROGRAM *)
14 IF(CON1 115,15,17
15 GG=1.
GO TO 21
17. GG = (RHO/(1•+SQRT(CON1)))**SS

21 BTAU=SS*TAU
\(D D=(1-G G * * 2) * S I N(0.5 *(W 2-W 1))\)
\(C C=(1 .+G G * * 2) * \operatorname{COS}(0.5 *(W 2-W 1))-2 . * G G * \operatorname{COS}(B T A U-(W 2+W 1) * 0.5)\)
SQCD=SQRT (CC**2+DD**2)
IF(SQCD-EPSIL) \(23,25,25\)
\(23 \mathrm{PC}=0.5\)
GO TO 30
25 IF(CC) \(28,26,26\)
\(26 P C=A S I N(D D / S Q C D) / P I\)
60 TO 30
\(28 \mathrm{PC}=\mathrm{ASIN}(D 0 /\) SQCD \() / \mathrm{PI} *(-1 \cdot)+1\).
30 CONT INUE
RETURN
END

SUBROUTINE T 102 （XLAM，AAAAAA，EDIM，BBBBBB）
DIMENSTON EDIMI2ता
COMMON \(X X X X L\)
\(X X X X L=X L A M M\)
XMAX \(=0.9989\)
\(x 0=0.001\)
\(X O X L=F 3(X L A M, X 0)\)
\(X O X L P=F 3(\times L A M+1.9 X त)\)
\(X O X L M=F 3(X L A M-1, X \cap)\)
\(\times 0 \times L M 2=3 T \times L A M+2 \ldots X I\)
\(10 \mathrm{FO}=(X 0 \times L+X L A M *(X L A M+1 \cdot) * X O X L M 2 /(4 . * X L A M+6 \cdot)) * A A A A A A\)
\(G O=(X L A M * X O X L M+(X L A M+1 \cdot) *(X L A M+2 \cdot 1 * X L A M * X O X L P /(4 \cdot * X L A M+6 \cdot 1)\)＊AAAAAA
\(D E L X=0.001\)
\(X=X 0\)
\(F=F 0\)
\(G=70\)
\(1=1\)
XTESF \(=0.0999\)
\(20 \times K 1=F 1(X, F, G) * D E L X\)
\(X L 1=F 21 X\)－F，OI＊\(\quad\) DEL
\(X K 2=F 11 X+D E L X / 2 \cdot F+X K 1 / 2 . G+X L 1 / 2 \cdot 1 * D E L X\)

\(X K 3=F 1(X+D E L X / 2 \cdot F+X K 2 / 2 ., G+X L 2 / 2 \cdot) * D E L X\)
\(X L 3=F 21 X+D E L X / 2 \cdot F+x K 2+2 \ldots G+x L 2 / 2 \cdot 1 * D E L X\)
\(X K 4=F 1(X+D E L X, F+X K 3, G+X L 3) * D E L X\)
\(X L 4=F 2(X+D E L X, F+X K 3, G+X L 3) * D F L X\)
\(D E L F=1.16 * *(X K 1+2 * * K K 2+2\) ．\(* \times K 3+X K 4)\)
DELG＝1．
\(X=X+D E L X\)
\(F=F+D E L F\)
\(G=G+D E L G\)
IF \(X\)－GE \(X T E S T H\) 201． 203
201 EDIM（I）\(=F\)
＊干ES干 \(=\) X干ES干 + － 1
\(\mathrm{I}=\mathrm{I}+1\)
－203 CONTINUE
IF \((x-0.0099999) \quad 20.31 .31\)
31 IF \(1 x-0.98999132,33,33\)
32 DELX \(=0.01\)
GO－70－20
33 IF \((X-0.9989) 34,40,40\)
\(34-\) DEL \(X=0.001\)
GO TO 20
\(40-\) ZEFA \(=1 .-x\)
\(C 1=-X L A M *(X L A M+1) /\),2 ．
\(G E N D=1 F+Z E T A * G 1 / 1++C 1 * Z E T A T\)

41 BRABBB=1./GEND
FDIMCH=GEND
RETURN
END

FUNCTION FIIA,B,CI COMMON XLAM \(E]=C\) RETURN

FUNCTION F2 (A,B,C)
CDMMON XLAM
-2 \(=(-2 \cdot * A *(A * * 2-1 \cdot) *(-X L A M *(X L A M+1 \cdot) * B) /(A * * 2 *(A * * 2-1 \cdot))\)
RETURN
END


FUNCTION F3(D,E)
\(F^{2}=F \times P(D * A L O G(E))\)
RFTURN
END

SUBROUTINE PPDD（SS，XLAM，XMU，LLMAX，PP，DP）
SUEROUTINE PPDD－WITHOUT DP
\(X N U=S S\)
\(E P S=1 . E-06\)
\(D D=1\) 。
TEMI＝ 1 。
\(Z X=(1 .-X M U) / 2\) ．
\(I F(A B S(Z X) \cdot L E \cdot E P S \cdot A N D \cdot A B S(X N U) \cdot L E \cdot E P S) 35,31\)
31 CONT INIUE
DO 40 L \(=2\) ．LLMAX
\(Z L=L-1\)
\(D D=D D *(Z L-X L A M \quad-1 \cdot) *(Z L+X L A M \quad) /(Z L * * 2+Z L * X N U)\)
TEMI \(=\) TEMI + DD＊\(Z X^{*} *(L-1)\)
40 CONT INUE
ARTFL＝（ \(1 .-X M U) /(1 \bullet+X M U))^{* *}(X N U / 2 \bullet)\)
\(P P=A R T F L * T E M I\)
GO TO 41
\(=5 \mathrm{PP}=1\) 。
44 CONT INUE
\(D P=0\) ．
RETURN
FND


Fig. 1 Oblique incidence of a plane pulse or a three-dimensional corner


Fig. 2 Section normal to the i-th axis


Fig. 3 Preasure distribution on the face \(\theta=0\) due to the incidence of a plane pulse with direction cosines 0.3 . 0.4 . 0.866


Fig. 4 Pressure distribution on the face \(=-3 \pi / 4\) due to the incidence of a plane pulse with direction cosines \(0.3,0.4,0.866\)


Fig. 5 Pressure distribution on the face \(=3 \pi / 4\) due to the incidence of a plane pulse with direction cosines 0.3, \(0.4,0.866\)


Fig. 6 Pressure signature réceived at poirts along the line \(\theta=\pi / 2, \varphi=\pi\) for plare wave incitent at equal angles
\(\qquad\) with the edges and with wave form of type \(I\)



Fig. B Preagure signature received at points along the line \(\theta=\pi / 2, \phi=\pi\) for plane wave incident at equal angles with the edges and
with veve form of type III


Fig. 9 Pressure aignature received at points along the line \(\theta=\pi / 2, \omega=\pi\) for plane wave incident at equal angles with the edges and with
wave form of type 10
wave form of type IV


Fig. \(10 \begin{gathered}\text { Preasure aignature received at poincs along line } \theta=\pi / 2, ~\end{gathered}=\pi\) for plane wave incident. at equal angles with the edges and
vith mave form at type \(V\)```

