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FOREWORD

This final report is submittlcl in accordance wvith the requirements of Appendix 3 -
Reports and Visual Aids Requirements, Statement of Work, Experilment Module
Concepts Stu.dy, Contract NAS8-25051, as amended by Amendment No. 2 dated
9 March 1970.

It comprises the following (locc-nents:

Vclumc I
Volume II
Volume ITI
Volume IV
Volume V

- Managemecnt Summary
- -Experiments & MIission Operations
- Mlodale & Subsystem Design.
- ]Rcsource PRequirclncnts
- Book i Appendix A

Book 2 Appendices B & C

The stldy was conductcd under the programl and technical direc:ticn of lIMax E. Nein
and Jeul JR. Olivicr; PD--Mltl-A, of the George C. MIarshall Sp-I;C' Flight Ccnter,
National Aeronmaltic's and Space Administration. Dr. RoPdey \'V,iJohnson, OiMS:F
(Code l\I'), as study sponsor furnished valuable guidance anld aysistance.

Other NASA centers and offices made sigrificant contribution,; of advice, consulta-
tion, 3rld documentation to the perfornlance of the lasks, the results of which are

reporled here. Personcl from OMISF, OCSA, OART, M.TSFC, 'lSC, GSFC, LeRC,
a:d Ames RtC took ;part in periodic rcvievs during the stuldy.

Convair Aerospace Division of General Dynamics was assisted by TRW Systems Group,
Redondo Beach, California, in the performance of this contract. Personnel of both
companies who contributed to this report are listed in Vol. I, Management Summary.

Comments or rcquests for additional information should be directeid to the following:

M. E. Nein, PI)-MP-A
J. I'. Olivicr, PD-MP--A
National Aeronautics and Space Administration
George C. Marshall Space Flightl Center
Alabama 35812
Telephone: (205) 453-3427

D. J. Powell
Convair Aerospace Division of General
Dynamics
P.O. Box 1128, Mail Zone 501-10
San Diego, California 92112
Telephone: (714) 277-8900, Ext. 1941
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OBJECTTIVES AND GROUND RULES

OBJECTIVES

Thle primary objectives of this study are:

- To define the minimum number of standardized module concepts that will
satisfy the NASA Candidate Experiment Program for Manned Space Stations
at least cost.

- To define the module interfaces with other elements of the manned space
program such as the space station, space shuttle, ground stations, and the
experiments thcemselves.

- To define the total experiment module program resource and test recpire-
ments including SRT-ART.

- To determine the effect on experiment program implemcntatioli :0f shuttle-
only operations.

' GROUND RULES ,

The ground rules listed here evolved during the course of the study fropn the set
provided at initiation of effort. They illustrate the reference framework within
which results were developed.

General

Primary consideration will be given to the development of the minimum number of
basic module concepts that through reasonable modification will be capable of ac-
commodating all of the candidate experiment groups at least cost.

Experiments

1. NIHB 7150.XX, "Candidate Experiment Program for Malmed Space Stations"
(Blue Book) will be used as an illustrative program of experiments to be integrated
into the space station core module or into separately launched experiment/laboratory
modules to assure that the system has the inherent capabilities to support those
specific experiments and other experiments not yet identified.

2. Where not otherwise stated, the Blue Book period of experiment implementation
will be two years.

3. All experiment equipment shall be assumed to have self-contained calibration
capability.

iv
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Mission and Operations

I. The modules shall be capable of operating in conjunction with a space station in
: rbit of 55 degrees inclination and 200-300 n.mi. altitude. The modules will not

I. .essarily operate in this altitude range and inclination.

2. For a limited number of experiment groups the preferred alternate missionof
sun synchronous (polar) orbit at an altitude of 200 n.mi. may be specified.

3. Experiment/laboratory modules may be operated in free-flying, docked, or
permanently attached modes and may or may not be manned during their operation.
However, all experiment modules operating in detached mode will be unmalined.

4. NASA will specifytlthe operating mode and servicing mode for each experiment
group. In some cases' concepts for particular experiment groups may be required
for more than one op4rating and/or servicing mode. e

5. Modules that operate in a free-flying mode and do not requirq the frequent
attention of man for operation should have the capability of comn1rind and control by a
station or logistics spacecraft.

6. Modules docked to the space station for servicing or operation should be assumed
to be docked to a zero gravity station or a non-rotating hub of an artificial gravity
station.

7. Unless a space tug is available, all modules designed for detached operation
shall have the inherent capability of returning to and docking with the space station.

8. Rendezvous operations bring the module within 3000 feet of the space station
with a maximum relative velocity of 5 ft/sec. Doclking operations continue from
there to contact. Automatic docking will be the preferred mode.

9. Attached modules shall have the capability of changing docked position on the
space station once during a two-year period.

10. All detached modules shall operate depressurized.

v
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Configurations

1. Where practical from a payload standpoint, the modules should be compatible with
manned logistics systems consisting of Saturn IB-Modificd CSM, Titan III - Big Gemini,
S-IC/S-IVB-Modified CSM, and S-IC/S-IVB Big Gemini. Consideration should also be
given to launching the modules in an unmanned mode on the above launch vehicles. The
possibility of transporting the modules in an advanced logistics system should also be
examined.

2. To the extent practical, experimcnt/laboratory modules will be designed to be
compatible for launch on both expendable and reusable launch vehicles.

3. Modules and equipment will be designed for the axial and lateral accelerations
associated with the launch vehicle specified.

4. Experiment equipment and module subsystems will be completely assembled/
installed on the ground and checked out prior to launch. Assembly in space will be
avoided. However, to permit flexibility in updating equipment (and meeting main-
tcnance requirements) designs shoulld provide the capability for equipment replace-
ment both on the ground and in orbit.

5. When docked to the space station, the modules will derive, for the most part, the
electrical powver, communications support, environmental control and life support,
data processing facilities, and crew sytems needs (food preparation, hygiene, sleep-
ing quarters) from the main space station. Careful attention should be given to the
definition of the support required from the station and/or manned logistics spacecraft
for each module and the module-station, module-logistics spacecraft, and module-
experiment interfaces.

6. The experiment/laboratory modules will be designed for efficient utilization of
the support services that the space station and the logistics systelts can provide.
The experiment/laboratory modules will supply services or supplement services
that are inadequate (e.g., the space station cannot accept rejected heat).

7. All fluid interfaces with the space station may be assumed to be umbilical at the
docking port.

8. A means will be provided to jettison modules from the space station as an emergency
measure in event of a major hazard (fire, overpressure, etc.).

9. Modules shall be designed for a nominal two-year mission, with refurbishment
in space at end of two years to extend life up to 10 years.

vi
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10. Servicing and maintenance of the modules and their experiments will be accom-
plished without EVA and in a shirtsleeve environment to the maximum practical extent.
Possible exception to this would be the inspection and maintenance of externally mounted
subsystems such as solar panels and RCS motors.

11. Means will be provided to accomplish inspection, servicing, repair and/or replace-
mcent of all equipment items not accessible from the module interior.

12. Modules will he designed for crew servicing, maintenance, and updating in a
docked or hangared mode or by on-site repair from a docked tug.

13. Appropriate safety features (such as high voltage protection, adequate ingress/
egress provisions, noq-toxic and non-flammable materials, protrusion protection,
etc.) will be incorporated into the design and maintenance aspects of each module
concept. A crew safety analysis will be conducted to identify potential safety problems
associated with the operation, servicing and maintenance of each module concept.

14. For the baseline module system no electronic data storage capability will be
provided aboard modules. Centralized facilities on the space station/ground will be
used. Over-the-horizon capability for detached modules will b¢;studied as a modular
add-on subsystem and costs.

15. Optical surfaces will be protected during the firing of RCS thrusters.

1G. Leakage from pressurized modules will be assumed as follows:

0.08 lb per day per linear foot of breakable seal

0.04 lb per day per linear foot of static seal

0.0001 lb per day per square foot of pressurized surface area.

Shuttle-Onlly Mlode

Ground rules peculiar to this task are given in Volume V, Appendix A.

vii
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SECTION 1

CANDIDATE EXPERIMENT PROGRAM

The experiment program provided by NASA for use during the experiment module
study as a basis for development of experiment module concepts is a portion of the
total NASA space experiment plans considered as representative of space experiments
associated with manned space station programs in the 1975 to 1985 time era.

The experiment program provided is defined as being for module and space station de-
sign purposes only, and neither the program nor the identified experiments are ap-
proved by NASA as planned projects.

The baseline experiment program is concerned with future space experiments and
covers the scientific disciplines shown in Table 1-1. Experiments within each of these
scientific disciplines are grouped into functional program elements (FPE). Two dom-
inant features deterrnine experiment grouping: (1) experiments that support a
particular area of research or investigation, and (2) experiments that impose similar
or related demand on?,pace station support systems. --

FPEs as currently assigned to each discipline are listed in Table 1-2. FPEs that are
candidates (as defined by study ground rules) for experiment module application are
noted, as are those FPEs that are integral to the space station':' The three biomedical
FPE's (5.13, 5.14 and 5.15) were not assigned to the experirqnent module program but
were to be investigated for compatibility with the module conce6ps derived for the as-
signed FPEs. All FPEs were included in the special case of shuttle-only operations
contained in Volume V.

1.1 SUMMARY OF MODULE CANDIDATE EXPERIMENT PROGRAM

Shown in Table 1-3 is a summary of the experiment program assigned by NASA/MSFC
as candidates for modular application for purposes of this study.

The program totals 17 FPEs covering roughly 120 experiment areas, plus the manned
centrifuge portion of FPE 5.13 Biomedical and Behavioral.

1.2 STATUS OF EXPERIMENT DEFINITION

The baseline experiment program provided by NASA at the start of the study is defined
by the NASA document, commonly called the Blue Book, of 15 May 1969 (Reference 1-1).
Augmentations and revisions of this document during the course of the study are shown
in Figure 1-1.

1-1
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BIOMEDICINE & EARTH MATERIALS SDVANCED
ASTRONOMY SPACE PHYSICS SPACE BIOLOGY BIOTECHNOLOGY APPLICATIOHS SCIENCE T'EHNOLOGY

GRAZING AIRLOCK SMALL 1 BIOMEDICAL & '- I :" MATERIALS CONHAMINATION
INCIDENCE EXPERIMENTS VERTEBRATES BEHAVIORAL EARTH SURVEYS SCIENCE & ME&UREMENTS
X'RAY TEL. (BIO D) RESEARCH PROCESSING

-1 rilTotilcrlr
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Table 1-2. NASA Candidate Experiment Program

Assignment
FPE Module Station

Discipline No. Title Candidate Integral

Astronomy 5.1 Grazing Incidence X-Ray Telescope X

5.2A Advanced Stellar Astronomy X

5.3A Advanced Solar Astronomy X

5.4 UV Stellar Survey X
5.5 High Energy Stellar Astronomy X

5.21 Infrared Stellar Astronomy X

Space 5.6 Space Physics Airlock Experiment X

Physics 5.7 Plasma Physics & Environment X

Perturbations

5. 8 Cosmic Ray Physics Laboratory X

5.12 Remote Maneuvering Subsatellite X

5.27 Physics & Chemistry Laboratory X

Space 5.9 Small Vertebrates (Bio D) X

Biology 5.10 Plant Specimens (Bio E) X

5.23 Primates (Bio A) X

5.25 Microbiology (Bio C) X

5.26 Invertebrates (Bio F) i X

Earth Applica- 5.11 Earth Surveys X

tion

Biomedicine 5.13 Biomedical & Behavioral Research * X

and 5.13C (Centrifuge) X

Biotechnology 5.14 Man/System Integration * X

5.15 Life Support & Protective Systems * X

Materials 5.16 Materials Science & Processing X

Science

Advanced 5.17 Contamination Measurements X

Technology 5.18 Exposure Experiments X

5.19 Extended Space Structure Develop-

ment

5.20 Fluid Physics X

5.22 Component Test & Sensor Calibration X

5.24 MSF Engineering & Operations X

*To be examined for compatibility with module design concepts.

±Cancelled 5-15-70
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Table 1-3. Summary of Experiment Program - Module Candidates
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Task I of the Experiment Module Study updated the initial experiment program using
additional experiment definition provided by NASA, and supplemented from several
authorized sources. The resulting program was published as an updated version of
Reference 1-1, dated 15 September 1969.

Certain portions of the updated experiment program were authorized for further re-
vision by NASA under space station study efforts, and by responsible scientific offices
within NASA. Certain experiment requirements were also revised or deleted by
NTASA 4fter examination of the potentially difficult or costly implementation require-
ments uncovered through experiment module and space station study efforts.

All experiment program revisions were authorized by NASA/OMSF/MTX memos.
Table 1-4 summarizes the revisions incorporated into the Blue Book issue of June
1970. In addition to these authorized revisions, results of the experiment growth
analysis (see Section 1. 3) were considered during module conceptual design and
operations studies.

1.3 EXPERIMENT GR(CWTH ANALYSIS

Experiment modules are designed to accommodate experiments based on the require-
ments contained in NHB i7,150.XX, "Candidate Experiment Program for Manned Space
Stations, " dated June lt70 (Blue Book). ?

However, study ground rules require that the experiment modules not be constrained
to the specific experiment definitions in the Blue Book since the Blue Book experiment
program is defined as being only representative of the experiments that will be per-
formed. Experiment modules are therefore to consider accommodation of variations
and growth in the specified experiments.

Following the initial commonality analysis, an analysis was conducted to determine
what future variations and growth in the various FPEs might be expected to occur in
these experiments, the extent of these variations and growth that should be accom-
modated in experiment module design, and the resulting effect on module commonality.

The general approach to growth prediction was to consider experiment groups as
forming the basic requirements for general purpose laboratories associated with each
discipline, and projecting what additional experiments or research capability should
be provided for in order to further the general purpose aspect of each lab. For the
astronomy experiments, this general purpose capability is satisfied by considering
the telescopes as basic observatories and attempting to project what additional
sensors might be added to use the total capability.

1-6
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Table 1-4. Status of Candidate Experiment Definition for Manned Space Stations

TITLE

Grazing Incidence X-Ray Telescope
Stellar Astronomy

I Solar Astronomy
UV Stellar Survey
High Energy Stellar Astronomy
Space Physics Airlock Experiments
Plasma Physics and Environmental
Perturbations
Cosmic Ray Lab
Small Vertebrates (Bio D)
Plant Specimens (Bio E)
Earth Surveys
Remote Maneuvering Subsatellite
Biomedical and Behavioral Research
Manned Centrifuge
Man/System Integration
Life Support and Protective Systems
Materials Science and Processing
Contamination Measurements
Exposure Experiments
Extended Space Structure Development
Fluid Physics in Microgravity
Infrared Stellar Survey
Component Test and Sensor Calibration
Primates (Bio A)
Manned Space Flight Engineering & Ops.
Microbiology (Bio C)
Invertebrates (Bio F)
Physics and Chemistry Lab

MODULE
CANDIDATES

X

X
X

X

X

X
X
X
X
X

X

X
X
X

X

X
X

X

,I

ADDITIONS, REVISIONS OR DELETIONS
AUTHORIZED SINCE 15 SEPTEMBER 1969

None
Deleted figure sensor.
Added 3 Zirin Cameras effective 15 Dec. 69.

: None
None
None
Expanded to include (4) additional experiments
15 Oct. 69.
None
None
None
None
None
Revision and expansion issued 26 Nov. 69.
None
Revision and expansion issued 26 Nov. 69.
Revision and expansion issued 26 Nov. 69.
None
None
None
Revision and expansion issued 26 Nov. 69.
Requirement for 10- 2 g experiment deleted Jan. 70.
None
None
Added 15 Oct. 69. Requirements updated 6 Feb.70.
Revision and expansion issued 26 Nov. 69.

None
None
FPE 5.27 added 15 Oct. 69.

* To be examined for compatibility with common modules during Task IV.
** Was titled "Advanced Spacecraft System Tests. " This category of experiments deleted by 15 Sept. issue.
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The method used to project growth or variation in each experiment FPE included the
following steps:

a. Projection or extrapolations from past developments.

b. Review of various experiment program documents, scientific group projections,
and selected technical papers.

c. Consultation with local specialists.

Tablo 1-6 lItst tho ohietf doeurenrts that woro roviowoed to identify apeoifto growth or
variation that may occur in each of the FPEs.

Table 1-5. References Reviewed for Experiment Growth

1. NASA SP-213

2. NASA SP-196

3. NASA

4. ED-2002-795

5. MDC G0549

6. DAC 58141

7.

8. A/7285

9. 8900

10.

11.

A Long Range Program in Space Astronomy, Position
Paper of the Astronomy Missions Board, July 1969

NASA Science and Technology Advisory Committee for
Manned Space Flight, Proceedings of Winter Study on
Uses of Manned Space Flight (1975-2985), Volume II-
Appendix, Dec. 1968

Experiment Program for Extended Earth Orbital Missions,
September 1969 (Yellow Book)

Advanced Astronomy Mission Concepts, ATM Follow-on
Study by Martin Marietta Company, April 1969

Earth Orbital Experiment Program and:i'quirements
Study by McDonnell Douglas Astronautics Company,
April 1970 (Progress Report)

Orbital Astronomy Support Facility Study, by McDonnell
Douglas Corporation, June 1968

Useful Applications of Earth Oriented Satellites, by
National Academy of Sciences for NASA, 1969

Report of the Committee on the Peaceful Uses of Outer
Space, United Nations General Assembly, 1968

Optical Technology Apollo Extension System Phase A
Study (OTES) by Perkin Elmer, October 1967

Space Processing and Manufacturing Meeting, NASA/
MSFC, Huntsville, October 1967

Orbiting Research Lab Experiment Program, Volume B,
by IBM, February 1966

1-8
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Table 1-5. References Reviewed for Experiment Growth (Continued)

12. XM-TN-130 Technical Notes on FPE 5.5 High Energy Astronomy, by
J. Matteson, UCSD, for GD/Convair, January 1970

13. 70-9443-1 Study of a Large Telescope, ITEK, May 1970

14. "Physics of the Earth in Space", Woods Hole Summer
Study, 1968, Woods Hole, Massachusetts

15. ORL Experiment Program; IBM Federal Systems Division,
February, 1966

In addition to these efforts, recommendations for growth considerations and experi-
ment implementation requirements were received at times during the study from
various NASA sources.

The following sections summarize the results of this analysis of potential growth or
variation, together with the effect of growth on module subsystems, and interfaces, a
recommendation for the growth that should be provided for in module design, and the
effects on module commonality.

1.3.1 EXPERIMENT GROWTH PROJECTIONS BY DISCIPLINE. Following is briefly
summarized the potential growth or variation in each experiment :FE for the various
disciplines, together with the effects on module capabilities. These are recapped in
Table 1-6.

1.3.1.1 Astronomy. Growth projections for the astronomy FPEs are based on re-
view of NASA AMB Report SP-213 (Reference 1) and NASA SATAC Report SP-196
(Reference 2) in addition to other documents listed in Table 1-5. Information was also
informally received from NASA sources such as the potential need for polarity
measurements for FPE 5.2A Stellar, and the improvement in data correlation made
possible by a boresighted grouping of the FPE 5.3A Solar Telescopes.

The potential need for FPE 5.2A Stellar primary mirror operations at the 70°F manu-
facturing temperature resulted from a recent study of this telescope, as did the pro-
jected weight increase in this mirror (Reference 13). Mirror operation at 70°F may
require an additional 1 to 2 kW electrical power, which has been verified as feasible
to provide as an experiment peculiar set of solar arrays.

The magnetograph weight, data, and power values were estimated to make provisions
for the magnetograph specified but without these parameters in the Blue Book for
FPE 5.3A Solar.

1-9
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Table 1-6. Summary of Experilment Groswth Projections
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The three vidicon cameras for FPE 5.3A Solar are projected to replace the three
digital sensors.

1.3.1.2 Space Physics. Projections in growth and variations for space physics FPEs
resulted chiefly from combined efforts of local specialists and responsible NASA
personnel due to problems encountered in implementing the FPE 5.7 Plasma and
FPE 5.8 Cosmic Ray experiments.

The initial implementation of FPE 5.7 Plasma envisioned suitcase experiments carried
into the FPE 5.12 1RMIS IHangr, which in turn housed six RiMS used for a growth
version of radio occultation experiments, as well as for plasma physics. The re-
vised version for implementing these experiments is to provide a plasma physics lab
that provides measurement capability without the use of RMS, but provides space and
support to RMS operations when they become necessary in later stages of experiments,
for both FPE 5.7 Plasma Physics and the radio occultation experiment of FPE 5.12.

The FPE 5.8 Cosmic Ray laboratory definition resulted in many implementation
problems during initial module design phases. One problem was that the experiment
objectives and geometry require a 22 foot diameter cylinder, which:i'is not compatible
with the shuttle cargo bay. Another was that the interaction between the laboratory
magnet and the earth magnetic field produced a significant torque e4iect. As a result
of these and other problems, concerted effort was put forth by NAiA k'and other special-
ists to re-define the experiment for shuttle compatibility and simpi.ed implementa-
tion that would permit accommodation in a laboratory attached to the space station.
While these problems were not all resolved by the time of completion of the growth
analysis task, the principal revisions were predictable with reasonable confidence
(Ref. XM-TN-160 Vol. V, May 1970):

a. Limiting the near-term experiment to Astrophysics only which permits deletion
of the hydrogen target, acceptability of a 15 foot diameter geometry and increase
in allowable "window" thickness.

b. Use of a dual magnet to prevent the torque-creating interaction with earth fields.

c. Selection of cryogenic resupply in lieu of refrigeration (optional in Blue Book).

Continuing consultation with specialists assigned to support the experiment module
study resulted in the adoption of a proposed new geometry for this experiment, plus

1-11
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the addition of a total absorption detector to replace the ionization spectrograph
called out in the Blue Book:

Detectors Dual Magnet in LHe Dewar

View Areas 

;----- · Total Absorption Detector
13 ft. 2 in.

The feasibility of accommodating both the current Blue Book and the projected or re-
defined growth version of this FPE has been verified, and conceptual designs of both
versions are contained in Volume III. The higher weight requirements of the growth
version is used for determining launch operations requirements.

Existence of the dual magnet has been used in baseline module concepts, the chief
difference being the elimination of the gimbal mechanism between the attached
laboratory and the sensor bay. -

1.3.1.3 Biology. Growth projections made by local specialists include:

a. The biology laboratory module should contain the necessary provisions to accom-
modate two biology FPEs as potential growth items that are not currently in-
cluded in the module baseline experiments:

FPE 5.25, Microbiology (Bio C)

FPE 5.26, Invertebrates (Bio F)

b. The biology centrifuge, as currently defined in the Blue Book, has 20-foot diam-
eter counter-rotating heads, which cannot be housed in a module that is com-
patible with the 15-foot diameter shuttle cargo bay. The concept offered for shut-
tle compatibility is a 9.5 by 20-foot cylinder rotated about an axis normal to the
cylinder axis.

c. Provisions for manned access to the experiments during the elevated-g exposure
is included for improved experimental conditions, although the remotely actuated
equipment in the Blue Book could be substituted.

A potential problem exists for manned attendance in this particular concept with
the current dimensions and g loads which require 17 rpm for 1 g at 10 feet - a
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condition that may exceed man's tolerance. Alternative solutions lie in increasing
cylinder length or reducing experiment g requirements.

Blue Book As Implemented
- 20 f t. -- 20ft. --

9.5 ft. dia. :
T

10-ft. Radius Arm Manned Access
20-ft. dia. Cyl. Remote Access (RPM Problem)

1.3.1.4 Earth Applications. Earth applications include the experiments in FPE 5.11
Earth Surveys. The chief sources of information for projecting growth were investi-
gations by local technical and scientific personnel.

Principal growth projections in this FPE consist of the potential need for sensor
pointing capability of from 45° to 60° about the nadir to increase coverage and permit
oblique viewing. The capability to accommodate this growth is discussed in
Volume III.

1.3.1.5 Aerospace Medicine. The manned centrifuge contained in FPE 5.13, Bio-
medical, presents the same problem with shuttle compatibility as the biology lab
centrifuge, since the preferred housing would be a 20-foot-diameter cylinder. For
shuttle compatibility, the rotating cylinder concept is considered potential solution.

Blue Book As Implemented
Countet :~10 ft. r _L -2 f t.-r

9.5ft.
Core Access Test Cell T

1.3.1.6 Materials Science. This discipline contains only FPE 5.16 Materials
Science and Processing. The main sources of information in this area were various
technical papers presented at the Space Processing and Manufacturing Meeting
(Reference 10) and discussions with local technical personnel.
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Primary growth projected is the addition of laboratory equipment to permit greater
capabilities for on-board experiment evaluation and provisions for a furnace. The
lab equipment previously identified for FPE 5.27 Physics and Chemistry Lab, was
used as a basis for the equipment size, weight and power predictions.

1.3.1.7 Advanced Technology. The FPEs contained within Advanced Technology are:

a. FPE 5.17 - Contamination

b. FPE 5.18 - Exposure Experiments

c. FPE 5.20 - Fluid Physics in Microgravity

d. FPE 5.22 - Component Test and Sensor Calibration

The chief sources of growth information in these areas were local technical personnel.

No growth was predicted for these experiments. Each is considered sufficiently
typical of the experiments :to be conducted to not warrant any increase at this time,
in the requirements specified in the Blue Book.

1.3.2 EFFECT ON MODULE SIZING. The final experiment FPE provisions in each
of the common modules aie shown in Figures 1-2 through 1-4 for module launch
weight, pressurized volume, and average electrical power rating, respectively.

Using the projected growth in experiment weights, module launch weights shown are
compatible with the shuttle capability although several of the modules, .weighing over
25,000 pounds, will require self-circularization following shuttle insertion into a 100
n. mi. by 270 n. mi. elliptical orbit. Increased weight due to gro V;/41as no significant
effect on the module design.

The experiment volume provisions, Figure 1-3, show the Materials Science, FPE 5.16
5.16, and the Biology, FPE 5.9/5.10/5.23, experiments using the total volume avail-
able. For the other FPEs a growth potential or flexibility is suggested by excess
volume capacity.

The common module average electrical power ratings (Figure 1-4) are adequate to
accommodate additional experiment power requirements, after the increase in CM-1
power by 200 watts to provide growth for additional sensors.

1.3.3 EFFECT ON COMMON MODULE ASSIGNMENTS. The final common module
assignments for the experiment FPE were modified as a result of growth provisions.
The changes were:

a. FPE 5.3A Advanced Solar Astronomy accommodated in a single CM-1 free-flying
module (was two CM-1 modules)

1-14
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b. FPE 5.7 Plasma Physics Lab includes FPE 5.12 RMS and is assigned to a CM-3
attached module (was CM-4 module).

c. FPE 5.8 Cosmic Ray Lab assigned to a single CM-3 attached module (was two
CM-3 modules).

d. FPE 5.9/5.10/5.23 Biology reassigned to a CM-4 attached module (was CM-3
modules).

A total of 13 common modulee are needed; five CM-1, five CM-3, and three CM-4
modules, respectively.

1-18
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SECTION 2

EXPERIMENT REQUIREMENTS ON MODULES

The governing criteria for development of module concepts are the requirements
imposed by the experiments on module design and operations. These requirements
are grouped into four general categories.

a. Facility type support -- including electrical power, data transmission,
equipment weight and mounting structure.

b. Crew support -- experiment operations and servicing.

c. Environmental control -- including thermal, atmospheric, acceleration and
vibration isolation.

d. Orientation -- direction, accuracy and stability.

Determination of module design and operations requirements fall ito four areas of
analysis:

a. Experiment requirements on module subsystems.

b. Operating mode selection -- attached or free-flying. -

c. Experiment time profiles/duty cycles.

d. Role of man in the experiment program.

2.1 REQUIREMENTS ON MODULE SUBSYSTEMS

Basic module subsystem requirements were defined through examination of the Blue

Book (June 1970 revision) definitions of the experiment equipment and program

requirements. These requirements are summarized in Table 2-1. In some instances

growth analysis, projected experiment revision, or other requirements have been

used in lieu of Blue Book values; these instances are as summarized in Table 2-2;

and described in detail in section 1.3, Experiment Growth Analysis.

FPE 5.20 (Fluid Physics) has been divided into subgroups in Table 2-1 due to major

differences in experiment requirements.

-3 -4
a. 5.20-1 includes experiments with acceleration limits of 10 and 10 g.

b. 5.20-2 includes a group of non-cryogenic experiments at controlled acceleration

levels from 10 - 3 to 10- 6 g.

2-1
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Table 2-1. Experiments Requirements Summary

High Plasma Cosmic Verte- Earth Centrl- Material Contain- Exspo- Comp. Pri- Phy &

X-Ray Stellar Solar Encrgy Physics Ray brales Plant Surveys RMS fuge Science inatilon sure Fluid Physics Test mates Chem

5.1 5.2A 5.3A 5.5 5.7 5.8 5.9 5.10 5.11 5.12 5.13C 5.16 5.17 5.18 5.20 5.20 5.20 5.20 5.22 5.23 5.27

Parameter -1 -2 -3 -4

Orientation Stellar Stellar Solar Stellar - Zenith - - Earth - - - - Earth - - - Earth( l') - -

Pointing

Accuracy (: -se) 120 I10 2.5 15 - (9) - - 1080 - - - - - - - 30 - -

Stability (sec/exposure) 1.0 0.005 0.01 1.0 - - - - 108 ·:. - - - - - - 7.2 - -

Acceleration Constraints (g) - - - - - - 10-3 10-
5 - . 10 3 - - 10

- 4 (Susained accel. at 102 10 - 3 10o- 6

10
'3 , lo-l4 10-5. 10

- 6
)

Experiment Equipment (10)(10) (10)

Weight (pounds) 3300 8685 6875 7800 1800 34180 5747 25995 4600 200 1720 5580 ( 4 ) 850 400 7S5 5141 3460 5252 1650 4500 6220

Data (Also see Table 2-3)

Digital Rate (kbps) 8 8000 5000 10 80 10 10 10 26,400 - 25 1 63 8.4 1 5.28 6 6 20 200 1

Analog Bandwidth (klz) - - - - 10 - - - 3600 - .001 - 0.1 - - - - - - -

TV Channels 1 1 1 1 1 1 2 1 1 1 2 2 - 1 6 1I 2 1 1 1

3 @ (8)

1.3
MHz

Film Required - Yes Yes (Emul- Yes (Emul- Yes Yes Yes - Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

alons) sions)

Electrical Power - Average (kW) 0.19 0.74 0.50 0.51 1.28 3.1 1.0 0.35 1.04 - 0.25 2.0 0.4 0.143 0.4 1.0 1.4 0.17 1.0 2.6 1.6

-Peak (kW) 0.36 1.25 0.85 o.65 1.9 4.4 1.75 0.35 6.9 - 0.25 5.0 0.5 0.26 1.1 1.4 4.0 1.2 1.8 3,3 2.3
(10)

Operating Environment

Pressure (psia) 0 0 0 0 0 14.7 14.7 14.7 14.7 - 14.7 14.7 0 0 14.7 0- 0 0 0 14.7 14.7
14.7 14.7

Temperature (*F) (5)(6) (6) (6) (5)(6) - 70 70 70 70 70(7) Space Space 70 70 - (5) 70 70(7)

Temperature Tolerance /*F) - - - - - (5) 5 5 :a5 - 5 : - 5 -5 - *5 *5

Operating Metabolic Load (Btu/hr) - 700(2) 700(2) (3 ) - - - 700 -

Cryogenic Supply Required (LB/MO) 125 - - - - 250 - 2 0 10 - - - 250 980 - 133

Contamination Sensitive Yes Yes Yes Yes - - - '!.e ' Req'd Yes - - Yes - -

Radiation Sensitive (Below Yes - Yes Yes - Yes -

Personnel Level)

NOTES: (1) Two sensor experiments require view of earth for short periods (15 min).

(2) EC/LS system for specimens is provided with experiment. Value shown is for scientist crew EC/LS.

(3) EC/LS system on centrifuge.
(4) Estimated weight of lab equipment.
(5) Contains sensors which are cryogenically cooled.
(6) Contains temperature critical sensors.
(7) Temperature control varies with each experiment.
(8) Reduced bandwidth is acceptable.
(9) Attitude known within a2 deg.

(10) Growth projection incorporated.

W
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Table 2-2. Experiment Revisions & Growth Items Incor-

porated into Experiment Requirements

FPE Title Change

5.2A Stellar Provide for observation on sunlit side of orbit, and capa-

bility for polarity measurement. Mirror weight increased
from 1700 to 4000 lb.

5.3A Solar Boresight group of point-target instruments.

Photoheliograph weight increased from 3200 lb to 4000 lb.

Add 3 vidicon cameras, and provisions for 1 magnetograph.

5.7 Plasma Provide for centralized laboratory for experimentation,
Physics test conduction and data reduction.

5.8 Cosmic Ray, Provide growth version to include astrophysics experiments
only, with dual magnet (no torque), and total absorption
detector replacing ionization spectrograph.

5.9/10/ Biology Lab.' Include growth provisions for FPE 5.25 (Microbiology)

23 " and FPE 5.26 (Invertebrates) :'

Provide for shuttle compatible centrifuge.~ith manned
access.

5.13C Centrifuge Provide for shuttle compatible centrifuge.

5. 16 Materials Include growth provisions for analysis equipment and

Science furnace.

c. 5.20-3 includes a group of cryogenic experiments at controlled acceleration

levels from 10- 3 to 10-6 g.

d. 5. 20-4 includes one long term cryogenic storage experiment at controlled
acceleration levels from 10 - 3 to 10- 6 g.

Special requirements for each FPE as applicable are listed in Table 2-3. Section 4

of this volume contains the experiment logistics requirements, and experiment

equipment weights are contained in Appendix I of this volume.

Pointing and stability requirements are tabulated by instrument in Table 2-4 for

astronomy and other experiments with special pointing requirements. These re-

quirements are based upon data contained in the Blue Book, in most cases. How-

ever, where the Blue-Book-stated values did not yield a compatible set of require-

ments for a given instrument, or where the requirements were not stated, new

values were derived. These changes and additions are identified in the notes in

2-3
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Table 2-3. Special Experiment Requirements

FPE Title Requirements

5.1 X-Ray 360 degrees rotation of entire telescope and sensor
assembly for polarity measurements.

5. 3A Solar Coronagraphs pointed at center of solar disk, other instru-
ments trained on targets on solar disk.

5.5 High Energy Separate pointing for X-ray and gamma instruments.

5.9 Vertebrates Module atmosphere isolated from space station.

5.10 Plants Isolate all cyclic phenomena: light, acceleration, etc.

5.20 Fluid Extended periods of sustained low (10 -
3 to 10-6) g levels.

Physics

5.23 Primates Decontamination capability, atmosphere isolated from
space station.

Table 2-4 and are based on examination of experiment objectives and relationships
between field of view versus pointing accuracy, and angular resolution versus
stability. .

The astronomy data requirements shown in Table 2-5 were derived- from analysis of
the instrument characteristics and the observation program as described in the Blue
Book. The maximum data output rate column of this table shows the maximum data
output that must be handled simultaneously -- in most instances output data is
received sequentially from the instruments rather than in parallel.

FPE 5. 3A, Solar Astronomy Spectrograph, specifies electronic imaging as an
alternate mode to the photographic method. The data rates shown apply to this
alternate mode. Film has been selected as primary mode since the required data
rates exceed the projected state of the art in data transmission and recording.

2.2 EXPERIMENT OPERATING MODES

A key factor in module design is the selection of the operating mode that best meets
experiment objectives. Three basic operating modes are available: (1) attached to
the space station, (2) detached, free-flying, or (3) tethered. Modules designed to
operate in the attached mode receive necessary power, data handling and transmis-
sion, atmospheric supply, and other support from the space station. Detached
modules must be self-sustaining when in free-flight. They also must have orbital
maneuvering flight capability. The attached mode is, therefore, preferable except
where experiment environment or conditions dictate a free-flying mode.

2-4
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Table 2-4. Pointing and Stability Requirements
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Table 2-5. Astronomy FPE Data Requirements

SENSOIIRS

Polarimete r

Crystal Spectrometer

Imaging Spectrometer

Solid State Detector

T.V. (Pointing Verification)

Field Image Video Device

Field Image Plate Camera

Field Image Plate Camera

Spectrograph Video Device

Spectrograph Film Recorder

T. V. (Polanting Verification)

Spectrograph Range 1

Spectrograph Fange 2

Spectrograph Range 3

H- a Vidicon

White Light Vidicon

UV Vidicon

Magnetograph

T.V. (Pointing Verification)

Proportional Counters (X-ray)

X-Ray Spectrometer

X-Ray Imaging System

Spectrohellograph (XUV)

Coronagraph (1-6 Radii)

Coronagraph (5-30 Radii)

T.V. (Pointing Verification

X-Ray Imaging System

Bragg Spectrometer (X-Ray)

X-Ray Spectrograph

Gamma-Ray Spectrometer

Gamma-Ray Spark Chamber

T.V. (Pointing Verification

*Sensor Type: (1) Counter

(2) Scanner - Continuous
(3) Scanner - Intermittent
(4) Photographic Recorder

15o Continuous Scan - Intermittently Used

Notes: 1. TV is used for pointing verification only and does not operate
continuously. 500.2 MHz is considered adequate.

2. Assumes 5:1 data compression aboard module.

TPE
TYPE 

1

3

3
1
5

3

4

4

3

4

5

4

4

4-

2

2

2

1

5

1

1

2

4

4

4

3

I

3

1

1, 4

5

IMAGE SIZE

None

None

Unknown

None

70 x 70 mm

225 " 225 mm

50 x 50 mm

25 x 44 mm

25 x 44 mm

28 r 100 mm

25 x 100 mm,

9 x 142 mm

24 x 24 mm

24 x 24 mm

24 x 24 mm

None

None

None

35 x 35 mm

30 x 495 mm

18 x 24 mm

.18 x 24 mm

Unknown

None

Unknown

None

None

BITS
PE!1 FRAME

8. 1 x 106

6,0 - 107

1.6 x 107

D x 106

2.4 109

(Photo Plate)

(Photo Plate)

2.4 x 109

(Film Stripl

(3.91 x 108)

(3.4 x 108) *

(1.7 x 108),

(Analog)

(Analog)

(Analog)

1.2 x 108

1.2 x 105

2.4 x 105

4.8 x 106

(FUm Strip)

(Film)

(Film)

FRiA ME RATE
(FR/SFEC.)

1/2700

1/30.000

1/2700

1/900

1

1/1200

1/40,000

1/6000

1/1200

1/6000
I

1/10

1/10

1/10

1

1

1

1/120

1

1/600

1/600

1

1/60

5

5

DI rA rATE

3 103 III'S

2 103 lIPS

f 103 BPS

8 x 103 BIPS

2.9 x 106 Hz

8 106 lil'S

8 x 106 BPS

2.9 · 106 Hz

(1 x 1081 B* I'S

(Ix 108) ' BPS

(5 x 107) ' BPS

.13to 1.3x10 6 Hz

.13to 1.3x106 Hz

.13to1.3 x 106 Hz

I x 106 BPS

2.9 x 106 Hz

200 BPS

400 BPS

5 x 106 BPS (Note 2)

2.9 x 106 Hz

2.2 x 103 BPS

2.0 x 103 BPS

2 x 103 BPS

7.0 x 103 BPS

.7 x 103 BPS

2.9 x 106 llz

3La\XIMUM DATA OlTPUIT RATES

8 x 103 BPS Digital

0.2 106 Hlz Analog INote 1)

;8 106 BPS Digital

(Plus Film)

0.2 y 106 iz Analog (Note 1)

FUm

.39 to 3.9 106 Hz Analog

1 x 106 BPS Digital

0.2 x 106 Hz Analog (Note 1)

5 x 106 BPS (Note 2)

IPUmFilm

0.2 x 106 Hz Analog (Note 1)

(Plus Emulsions)

10 x 103 BPS

0.2 x 106 Hz Analog (Note 11

*Primary mode is photographic.
Data rates shown are for alternate
vidicon mode.

FPE
NO.

5.1

5.2A

5.3A

5.5

N

TITLE

X-Ray Astronomy

Stellar Astronomy

Advanced Solar

Astronomy

lb)

High Energy
Stellar Astronomy

i
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2.2.1 SELECTION OF OPERATING MODES. Experiment program implementation
must provide the environment necessary for successful experiment operations. In
most cases, the environment required can be provided with a module that remains
attached to the space station throughout the experiment program.

However, in the case of certain experiments, it is necessary to resort to a detached
free-flying mode of operation to isolate the experiment operation from environmental
conditions originated in the space station. In these cases, the module is returned to
the 8tation only for servicing of the experiment. Examples of environmental condi-
tions which can interfere with experiment operations and may therefore require
operation in a detached mode are:

a. Accelerations, crew or equipment induced, that prevent meeting the very low
g level or stability requirements of some experiments.

b. Atmospheric contamination and radiation originating at the space station which
may adversely affect astronomy instrument critical surfaces, sensors, or
viewing columns.

c. Elevated g levels where experiment tolerances prohibit the use of a centrifuge
to accelerate the experiment.

In addition to the attached and free-flying modules, some experiment equipment
consists of a number of "carry-on" type instruments which are t6be installed on or
in the space station and one or more modules. These experiments do not require a
separate module. They have been termed "suitcase" experiments and are imple-
mented by assignment to the space station and to either attached or detached modules
as appropriate.

Experiment environmental requirements that are not compatible with the space
station projected environment are:

a. Acceleration -- Ambient. Space station acceleration levels are projected to
be 10- 5 g nominal with increases to 10-3 g during certain crew or station
activities. This level is considered compatible with all experiments except
two:

1. Plant growth experiments in FPE 5.10 Plants (Bio E), which requires
_10- 5 g for 95% of the time and isolation from noise vibration and cyclic
phenomena. Special isolation mechanisms can be provided to accomplish
these experiments in the attached mode.

2. The containerless casting experiments in FPE 5.16 Materials Science and
Processing and the materials experiments in FPE 5.27 Physics and
Chemistry Lab. Magnetic and/or electrostatic forces used in these experi-
ments to restrain motion of the free floating molten masses may exceed
acceptable levels resulting from local g disturbances and module/station

2-7
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relative motion. These experiments may require a detached mode at a
later date to accommodate growth in the experiment specimen sizes and
weights.

The low "g" level requirements of other experiments can be accomplished by
proper scheduling of experiments to avoid induced acceleration peaks. Effects
of accelerations on astronomy experiment stability and pointing could probably
be accommodated by properly designed telescope mounts for all except the very
low stability levels required for two of the telescopes: FPE 5.2A Stellar
Astronomy ammeiate- eldo¢dioob, ant iE3; afar2 Solar AW61demny I. i~ffitslr
telescope. The requirements of 0.005 /exp and 0.01 '/exp, respectively,

probably require a free-flying mode to avoid effects of peak accelerations
from the station.

b. Acceleration -- Induced. Experiments that require accelerations above the
space station ambient level of about 10-6 g or less fall into two categories, the
first of which is compatible with the station ambient environment:

1. Experiments cohducted on a centrifuge attached to the space station.
These are FPE 5.9 Small Vertebrates -- 0.2 to 1 g experiments and
FPE 5.10 Plajts -- 0.2 to 1 g experiments. These will be conducted on
the biology centrifuge. FPE 5.13C Centrifuge is used for cconducting bio-
medical experiments with man as a subject.

2. Experiments whose conditions or tolerances prohibit thg useof a centri-
fuge due to coriolis and other accelerations that exist in a' attached
centrifuge. These are FPE 5.20 Fluid Physics experiinfits which require
accelerating of experiments at levels of 10 - 6, 10 - 5 , 10-4~iand 10 - 3 g for
specified periods of time. These experiments must be conducted in a
detached mode, which provides the acceleration required within the
specified experiment tolerances.

c. Stability. Space station projected pointing stability of 0.3 m'n/sec is acceptable
for all experiments except FPE 5. 2A Stellar Astronomy 3-meter telescope
and FPE 5.3A Solar Astronomy 1.5-meter telescope. As previously discussed
under a above, these two telescopes probably required detached mode of opera-
tion to avoid peak acceleration effects on stability.

d. Viewing. Space station orientation is currently projected as being either earth
or inertially oriented. All experiments could be accommodated in the attached
mode with either orientation. However, those experiments containing earth
oriented remote sensing instruments are penalized if an inertial orientation
is selected, and astronomy experiments are penalized by the complexity of
instrument mounts if attached to a station with either orientation.

FPE 5.11 Earth Surveys, FPE 5.8 Cosmic Ray Lab, and FPE 5.22 Component
Test Lab are selected for attached operation assuming either an earth-oriented
station or a gimballed attachment to an inertially oriented station.

2-8
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The stellar astronomy FPEs, 5.1 X-ray, 5.2A Stellar, and 5.5 High Energy
Stellar, require relatively complex mountings to achieve efficient observation
programs in the attached mode. FPE 5.3A Solar Astronomy viewing require-
ments impose special mounting problems, although not as complex as for stellar.
These considerations suggest a detached mode of operation for these astronomy
instruments to provide an efficient flexible observation program.

e. Contamination. The atmosphere immediately surrounding the space station
will contain effluents that could potentially interfere with astronomy and other
remote sensing observations. This interference could be temporary as in the
case of condensation on lenses, or it could be long duration as in the case of
ice crystals forming from continuous station atmosphere leakage. The potential
for permanent damage to critical surfaces may also exist through chemical
action of condensates, or erosion by engine exhausts.

These effects of contamination cannot be accurately predicted at this time.
Therefore, it appears prudent to select a detached mode of operation for those
astronomy instruments that are likely to be adversely affected by the predicted
contaminant levels! and composition. These are currently considered to be all of
the astronomy instruments except the gamma-ray detectors in- FPE 5.5 High
Energy Astronomy.

f. Radiation. Radiation will be of two types -- natural and induo d. Experiments
that are sensitive to radiation will experience the same levelq of natural radia-
tion in either an attached or detached mode of operation, unless they are

operated at a significantly different altitude than the space station. The need

for operation of any of the experiments at different altitudes for reduced radia-

tion levels has not been established. Therefore, natural radiation is currently
not a driving requirement for operation in a free-flying mode, ,However, the

possible use of a nuclear source of electrical energy aboard the space station
suggests a detached mode of operation to isolate sensitive experiments from
this source of radiation. These experiments are FPE 5.1 X-ray, FPE 5.5

High Energy, and the X-ray experiment in FPE 5.3A.

Operating mode selections for all FPEs are summarized in Table 2-6 along with the
basis for mode selection. The four astronomy FPEs and the Fluid Physics sustained
acceleration experiments are assigned to detached modules. Attached modules are
selected for the remaining FPEs. The selection of the detached mode for the astron-

omy experiments is based more on a combination of factors than on any single
experiment requirement.

2.3 EXPERIMENT TIME PROFILES

The experiment missions were analyzed to determine experiment operating time

profiles, and servicing frequencies, and docking frequencies. A summary of these

mission operations for each FPE is shown in Table 2-7.
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Table 2-6. Selection of Operating Mode

Environmental Requirements

Accel. Accel. Stability Conlami- Rasis for Selected Mode
FPE Title Experiment Ambient Induced s/sec. Viewing nation Radiation C- Selected Mode of Operation

5.1 X-Ray -- -- --- 1.0 Sphere Sensitive Sensitive Contamination & Radiation, viewing Detached

5.2A 3-M Stellar - .0.005 Sphere Sensitive --- Stability & Control. viewing. -ontam. Detached

5.3A Solar 1.5-M UV-Vis. _- 0.01 Solar Sensitive --- Stability & Control. contaminzmion Detached
.5-M X-Ray --- --- 0.5 Sensitive --- Contamination Detached
Spectro. Corona. - . 0.1 Sensitive Sensitive Contamination & Radiation, vlewing Detached

5.5 High Enqrgy X-Ray --- --- 1.0 Sphere Sensitive Sensitive Contamination & Radiation, viwing Detached
Gamma --- --- 3 mmi/exp. --- Sensitive Radiation Detached

5.7 Plasma --- --- --- --- --- --- --- Experiment Operation Attached
5.8 Cosmic Ray Control -- --- -- --- --- --- Station Compatible Attached

Sensors --- --- --- Zenith --- Sensitive Station Compatible Attached
5.9 Vertebrates (Bio D) "0" g < 10-3 --- --- --- --- Sensitive Station Compatible (1) Attached

Variable g --- .2 to 1 g --- --- --- Sensitive Station Compatible (I) Attached - Ccntrifuge
5.10 Plants (Bio E) "0" g lO0-Sg --- --- --- Sensitive Station Compatible (1) Attached - Isolated g

Variable g --- .2 to I g --- --- --- Sensitive Station Compatible (1) Attached - Centrifuge
5.11 Earth Surveys --- -- -- 108. Earth Sensitive --- Protect from Cuntamination Attached
5.12 RMS --- --- --- --- --- --- Experiment Operation (2) Attached/Detached
5. 13C Centrifuge --- --- 0 to 7 g --- --- --- --- Station Compatible Attached - Centrifuge
5.16 Materials Processing --- s 10- 3 g --- --- --- --- --- Station Compatible Attached
5.17 Contamination --- --- Required --- Contamination Required Attached -
5. 18 Exposure --- -- Sensitive Sensitive Contamination & Radiation Detached -
5.20 Fluid Physics 0" g 6 104g --- --- --- Station Compatible Attached

Fluid Physics 10
-

3 to 10 g --- 10
-

3 to 10-6g -- - . Acceleration Required Detached - Propelled
5.22 Component Test _--- - 7.2 Earth Sensitive --- Protect From Contamination Attached
5.23 Primates (Bio A) _ --- --- -- Station Campatible Attached
5.27 Physics & Chemistry --- 510 4g --....- Station Coinpatibldb Attached

Space Station 10- 3 to 18 se. Earth or Source of Power
Ambient 10- 5 g Inertial Potential Generator

Oriented Gases &
Solids

'Suitcase experiments
(1) Assumed located at adequate distance from power generator.
(2) Housed In attached mode.

0(D



Table 2-7. Experiment Mission Times

Mission Times Exp. Duty Cycle
FPE Title Calibrate/Set-Up Operate/Observe Repeti- M %i

Duration Frequency Duration Frequency tions/yr Orb- f~~~~~~~~~'r

X-Ray

(1) Target view time

(2) Deactivation durJ
period (or level

(3) Simultaneous sen

2-3 days Once (initial)

2-3 days 6/yr.

reduced by slew and sensor ro

ng South Atlantic Anomaly - Ty
ff 600 protons Km -sec.

sor operation: one sensor + po

Continuous

:ation into telescope focus.

Aical - 10 min. during 4 su

.nting verification TV.

Stellar 2 weeks Once (initial) . .

-- __ Continuous

2-3 days 6/yr. -- --

3: (1) Simultaneous sensor operation: one sensor + p inting verification TV.

(2) Sunlet side viewing possible; will increase duty cycle to -maxipmum of
four 20 minute exposures per orbit.

Set up

View Tgt(1)

Service

;cessive orbits each 24 hr.

Set up

Stellar Mea

Service

90

45(2)

90

90

20(2),

90

. _________ __________ Il_ _ _ _ _ _ _ I I .

100

50

100

100

40(2)

100

0
CD

=II

C

o

!I

5.1

5.2A

Not

I



Table 2-7. Experiment Mission Times (Continued)

Mission Times Exp. Duty Cycle
FPE Title Calibrate/Set-Up Operate/Observe Repeti- Mi

Duration Frequency, Duration Frequency rtions 

Solar

Note: Simultaneous s
plus-pointing v(

Hi Energy

Nuclear

Spark Chamber

Spark Chamber

X-ray Detectory

All Sensors

Notes: (1) Deactiv~
orbits e

2 weeks

2-3 days

3nsor operation
rtification TV.

1 week

Once (initial)

12/yr.

worst case al sensors operate together,

Once (initial)

2-3 days 12/yr.

tion during South Atlantic Aide
ach 24 hr. period for level of 6

100 hrs. (2)

10 hrs. (2)

Varies (2)

Continuous

1/Tgt.

1/Tgt.

When not
viewing
specific tgt.

12/yr.

ay.-r;,ypical - 10 minutes
0 protons/Cm2 -sec.

(2) Long viewing sequences may be interrupted.

(3) Simultai
spectroi
Detecto:

Set up

Solar meas.

Service

Set up

View Tgt.

View Tgt.

Scan
celestial
sphere.

View x-ray
sources.

Service

luring 4 succe 5ssive

leous sensor operation: TV plus all sensors may be operated together except
neter or x-ray imaging which a#e mechanically exchanged at telescope ocus.
~s may not all point at same tar et simultaneously.

90

45

90

90

45(1)

45(1)

45(1)

45(1)

90

. I I . Il_ l

100

50

100

100

50

50

50

50

100

0

CD(4

O

i

00

o
!
o

5.3A

5.5

I



Table 2-7. Experiment Mission Times (Continued)

Title

Plasma Physics

-1 Plasma Wake

-2 Harmonic Wave

-3 Wave Particle

-4 Accelerator

-5 Plasma Jet

-6 Barium Cloud

Note: Experiments c

Cosmic Ray

Facility

Detectors

Detectors

Magnet

(1) Reorient axis po:

(2) Simultaneous det
For either case

Mission Times
Calibrate/Set-Up

Duration

3 weeks

8 hr.

4 hr.

4 hr.

4 hr.

3 days

4 hr.

Frequency

Once (initial)

5/yr.

5/yr.

5/yr.

5/yr.

Once

5/yr.

)nducted one at a time.

15 days

2-3 days

3-5

Once (initial)

4/yr.

1/yr.

nting towards zenith - 1/month

.ctors operating: worst case el
aagnet operates simultaneously

Operate/Observe
Duration Frequency

16 hr.

.5 hr'.- "

1.0 hr.

1.0 hr.

30 days

1.0 hr.

5/yr.

5 5 /yr ,

5/yr.

5.yr.

Once

5/yr.

Continuous

.. I'. --

reduces view time.

ther detectors on longitudi

Operation

Set up

Wake meas.

Wave meas.

Part. meas.

Auroral exl.

Jet meas.

Cloud meas.

Checkout

Cosmic
ray sensing

Service &
reconfigure.

Dewar
service.

E xp.
1 Repeti-

tions/yr

lal or radial -xis.

Duty Cycle
Mir

Orb

90

45

90

90

90

90

90

90

90 (1)

90

90

100

50

100

100

100

100

100

100

100

100

100

FPE

5,7/12

5.8

I
r-

co

ciCD

I

0

0
t

I I 

A

-1



Table 2-7. Experiment Mission Times (Continued)

Mission Times Exp. Duty Cycle
FPE Title Calibrate/Set-Up Operate/Observe Operation Repetitions/ Mi

. Duration Frequency Duration Frequency yr rbYr~~~~~~~~~~~~~~~~~~~~~~

Vertebrates

Facility

Facility

Experiment

Experiment

(1)

Experiment

Experiment (

Notes. (1) Total f(

(2) Centrif

(3) Simulta

4, 5, '

4-5 day

4-5 day

8 Hrs

16 Hrs (2)

160 Hrs

224 Hrs (2)

8 Hrs

8 Hrs

14 Hrs

14 Hrs

1/yr

1/yr

1/yr

1/yr

1/yr

1/yr

2/90 days

2/90 dayf

1/90 days

1/90 days

,r 15 subexperiments in series

ige set up assumed longer than

neous experiments are: 1, 2 (~

90 days

90 days

365 days

365 days

30 days

30 days

4-1/2 days

4-1/2 days

1/yr

1/yr

1/yr

1/yr

2/90 day

2/90 day

1/90 day

1/90 day

parallel

0 g setup when additional

artial), 3, 5; 2 (partial),

g

4

Checkout
0 G

Checkout
Centrifuge

0 G

Art G

0 G

Art B

0 G

Art G

0 G

Art G

ages involved

8; 2 (partal

1

1

1

1

1

1

1

1

3

3

), 6, 8; 2 (pal

90

90

90

90

90

tial),

100

100

100

100

100

O
Ut
!

o

o
o

5.9

!I
P-

0

0



Table 2-7. Experiment Mission Times (Continued)

Title

Vertibrates

Experiment

Experiment

Experiment

Experiment

0

0
0

Facility

Notes: (1) Total f

(2) Centrif

(3) Simulta

I I Mission Times
Calibrate/Set-Up Operate/Observe

Duration Frequency Duration Frequency

4-1/2 Hrs (Aug) 1/90 days 90 days 1/180 days

9 Hrs (Aug) 1/90 days 90 days 1/180 days

8 Hrs 1/365 days 56 days 1/365 days

16 Hrs (2) 1/365 days 56 days 1/365 days

8 Hrs 1/365 days 90 days 1/365 days

1 Hr 1/365 days 180 days 1/365 days

1 Hr 1/365 days 180 days 1/365 days

1 Hr 1/10 days -- --

r 15 subexperiments in series parallel

ige set up assumed longer than 0 g setup when additional

neous experiments are:. : 1 2;'.2(partial) a'3, 5]

[2 (partial), 4, 8]
[2 (partial), 6, 8]
[ 2 (partial), 4, 5, 7]

Exp. Duty Cycle
Operation Repetitions/ M %

-yOr b

0 G

Art G

0 G

Art G

0 G

0 G

Art G

Centrifuge
Maint.

ages involved

2

2

1

1

1

1

1

36

_ _-- I _ ._ _ _ _ _ _ _ __ _ I I___I_ l ____ __ I I_

90

90

90

90

90

100

100

100

100

100

0
0

0

0
0CcJ

I

I

I

I

I
I



Table 2-7. Experiment Mission Times (Continued)

Plants

Facility

Facility

Experiment 0

Experiment

Experiment

Experiment

®

0

Experiment

Experiment

Notes:

(1)

4-5 days

4-5 days

8 Hrs

16 Hrs (1)

8 Hrs

16 Hrs (1)

4 Hrs

8 Hrs (1)

8 Hrs

16 Hrs (1)

8 Hrs

16 Hrs (1)

8 Hrs

8 Hrs

1/yr

1/yr

1/90 days

1/90 days

1/90 days

1/90 days

1/90 days

1/90 days

1/yr

1/yr

1/90 days

1/90 days

1/90 days

1/90 days

G experiment setup assumed

21 days

21 days

14 days

14 days

21 days

21 days

| 270 days

270 days

21 days

21days

21 'days

21 days

1/90 day

1/90 day

1/90 clay

1/90 day

1/90 days

1/90 days

1/yr

1/yr

1/90 days

1/90 days

1/90 days

1/90 days

0 "G" setup

1

1

3

3

3

3

3

3

1

1

3

3

3

CD

o

0



Table 2-7. Experiment Mission Times (Continued)

Mission Times Exp. Duty C cle
FPE Title Calibrate/Set-Up Operate/ObserveOperation Repetio My %

Duration Frequency I Duration Freque ncytions/yr. rb'Duration~~ Irqec

5.10 Plants

Experiment 0
Facility

8 Hrs

1 Hr

lj/90 days

1/10 days

28 days 1/90 days 0 G

Centrifugre
Maint.

3

36

90

90

100

100

o

c

0
o

(D

C>



Table 2-7. Experiment Mission Times ('ontinued)

Mission Times Exp. Duty Cycle
FPE Title Calibrate/Set-Up Operate/Observe Operation Repeti- Mi %

Duration Frequency Duration Frequency tions/yr / rb

Earth Surveys

Facility

Sensors

Sensors

1/yr

4/day

All sensor, operate simultaneously.

15 min (1) 1/90 min

Lab
Checkout

Earth
Sensing

Calibrate
Mic rowave
Sensor

1

5575

1440

90

15

10

. I I I _.

100

17

11

C)

o

(D

I

o
!
o
c,1

5.11

4-6 days

10 min

ooOD
,"' 

Notes.

I



Table 2-7. Experiment Mission Times (Continued)

Mission Times Exp. Duty Cycle
FPE Title Calibrate/Set-Up I Operate/Observe Repetitions/ Ali 

Duration Frequency Duration Frequency j 180 days Orb

Materials Science

Facility

Experiment

Experiment

Experiment

Experiment (

Experiment

Experiment

2-4 days

2-4 days (3)

14 Hrs (3)

10 Hrs (3)

12 Hrs (3)

12 Hrs (3)

18 Hrs (3)

(1) Worst :ase period shown

Once
Initial

5/month'

3/month

4/month

8/month

4/month \

6/month

. Experiiiieni

30 test;/month for 180 days as shown.

(2) Simults

4 times

(3) Include

neous experiment operation as

/month, with 1 day separation

3 set up and termination time.

2Hr

6 Hr

2 Hr

50 Hr

4 Hr

' '5/month

3/month

4/month

8/month

4/month

1 Hr 6/month

program ranges from 12

Checkout

Prep.
Specimens

Prep.
Specimens

Prep.
Specimens

Prep.
Specimens

Prep.
Specimens

Prep.
Specimens

tests per month

(1)

once

6

6

6

6

6

6

90

90.

90

90

90

90

90

for 180 days to

ollows: 1 experiment per day except 3C & 4C simultaneously

iinimum, power required only during operation period.
I

100

100

100

100

100

100

100

0o

t=1

a
U

0o

o
o

htj
C0

0

5.16

0

I
1c

®

0

Notes:

7
.1
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Table 2-7. Experiment Mission Times (Continued)

Title

Fluid Physics.

Laboratory
Attached

Free Flying

Experiment (
Experiment (

Experiment )
Experiment )
Experiment )
Experiment Q

Experiment )
Experiment )
Experiment 9

Experiment (

Experiment

Experiment

Equipment

Mission Times
Calibrate/Set-Up

Duration Frequency

Reference Tables 3-
and 3-24 of Section $
for times and conditi

\-

Operate/Observe
Duration Frequency

23

ons

Operation

J RpExp.

Repetitions
Duty Cycle 

%rZ

O
U

0o
Uo
O

C>
14

FPE

5.20

tO

C

I

I
I

I
I
I

I



Table 2-7. Experiment Mission Times (Continued)

Mission Times _ Duty Cycle
Title Calibrate/Set-Up Operate/Observe Exp. Mi/

Duration Frequency Duration Frequency Operations Orb %
Duration Frequency I Duration Frequency Repetitions OrbI~~~~/r

Component Test

Lab

Experiment 1

Experiment

Experiment

Experiment

Experiment

Experiment

Experiment

Experiment

Experiment

Experiment

Notes:
(1) Ri

(2) Si

of

1,

1-1
1-2

2

3

4

5

6

7

8

9

10

equire

imulta

perate

,2&

Primates
Experiment 1
Experiment 2

4 Hrs
4 Hrs

7 Hrs

1 Hr

4 Hrs

8 Hrs

0.8 Hrs

3 Hrs

2 Hrs

5 Hrs

1 Hr

once
once

1/9 days

1/day

1/5 day

1/6 day

3/day

2/day

2/day

1/day

1/day

3 Hrs
3000 Hrs

1 Hr

5 Hrs

1.5 Hrs

4 Hrs

0.8 Hrs

0.4 Hrs

4 Hrs

3 Hrs

1 Hr

s earth pointing and truth site(s)

aeous experiments as follows: jxperiments

3 concurrently with Exp. 2 thru 7, and Exp.

12 mos.
2 mos.2 mos.

2/day
once

1/day

1/day

6/day

2/day

10/day

20/day

2/day

3/day

1/day(1)

Test
Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

30
once

150

50

50

20

75

50

6

6

96

90

90
90

90

90

90

90

90

90

90

90

15(1)

100

100
100

100

100

100

100

100

100

100

100

17

are conducted singly excepj for Exp. 1-2Iwhich

10 which operates concurrently with Exps. 1,2, &3.

.I

once Test 1 90 i 100
once Test 1 90 i100one T e s I

(D

C)

-,
o

0

I
o
o

5.

5.23

b:
I
!

[_a



Table 2-7. Experiment Mission Times (Continued)

Title
Mission Times

Calibrate/Set-Up
Duration Frequencv

Operate/Observe
Duration Frequencv

Operation
t-I t 4 - .1 i l 

Physics &

Chemistry

Laboratory

Experiment

Experiment

Experiment

Experiment

Experiment

0
0

0

0®
®

Experiment 0

Notes:

(1) Include

(2) Exper

availal

(1)

2-4 days

14 Hrs

14 Hrs

7 Hrs

4 Hrs

5 Hrs

18 Hrs

once

2/yr

2/yr

2/yr

2/yr

2/yr

2/yr

s reconfiguration time.

ments are independent. One or

le crew, facility, or evaluation

90 Hr

90 Hr

54 Hrs

24 Hr

4

4

2/yr

2/3yr

2/yr

2/yr

2/yr

2/yr

. .'i ' .',,.

more may be run at a time

equipment.

Checkout

Prep

Specimens

Test

Test

Test

Test @
Sustained

"G"

Test @
Sustained

"G"

Exp.

Ro Reetiti ons

depending or the

Duty Cycle
Mi

_Orb

90

90

90

90

90

Ia I_____ I I I I

100

100

100

100

100

FPE

5.27

1<10=

0
0

0

tj1

0C0

!

QO!
o

!t'1to

I
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These time lines are used to develop requirements for time-dependent functions
such as data rates and power profiles.

Based on analysis of experiment servicing and logistics requirements, and the
need for sustained "g" module return for refueling, module docking frequency was
established as shown in Table 2-8.

2,4 ROLE OF MAN

The experiment module concepts and operations techniques capitalize on man's
appropriate participation in research, experiment operation, data management,
assembly, deployment, checkout, maintenance, repair, alignment, calibration,
retrofit, and replacement. Table 2-9 summarizes the crew requirements and
specific duties related to each experiment FPE.

Table 2-10 describes typical service cycle tasks for free-flying astronomy modules.
Only the service crew such as module technicians or scientist/astronauts are shown.
Flight control crewmen would also be required to perform functions related to
module maneuvering to and from the stationkeeping location. About 20 hours is the
minimum experiment lost time which would be possible if the typical module were
serviced on a three-shift basis. A routine, single shift, service cycle is depicted
in Figure 2-1 for Tasks;6 through 12. Prior or subsequent tasks are performed
by flight controllers and do not require the module crewmen. The service crew
works singly or together to accomplish service functions in less thn.two working
days. Each service crewman is assumed to be available for experiment work 8-10
hours per day, six days per week. The total experiment down tin{!r the routine
cycle is about 30 to 35 hours. Tasks are listed in Table 2-10.

Astronomy modules are serviced at 30 or 60 day intervals. Using a maximum of
four astronomy modules operating concurrently, with two serviced every 30 days
and two every 60 days, gives a total equivalent module service frequency of three
per month. Allowing additional time for repairs, contingencies, and logistics
preparations, two skilled crewmen would be adequate to accomplish the worst case
astronomy module servicing load.

Attached modules are available for service at any time. Different skills are re-
quired for experiment servicing in attached modules, however, due to module com-
monality, servicing could probably be accomplished with the same basic skills as
used for detached modules. Flight control/dynamics skills will be required for the
operation of FPE 5.12 Remote Maneuvering Subsatellites operating from an attached
module.

Skill requirements for each FPE are summarized in Table 2-11. Since several
modules may be operating at any one time, cross training should be accomplished
whenever possible to reduce the total crew resource requirements.

2-23
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Table'2-8. Module Docking Frequency - Free-Flying Modules
0

0
_
-4
-4

*Includes docking for module propellant resupply
**Samples for FPE 5.18 Exposure experiments - nominal 1/60 days.

.I~~~~~~~~~~~~~~1

C

0Io

Experiment-Related Docked Operations

Change/
Baseline Docking Cryog Replenish Adjust Deploy/

Frequency Exp. Replace Test Exp. Retrieve
FPE NO. Title (docks/day) Maint. Film Fluid Equip. Exp. Samples

5.1 X-ray Astronomy 1/60 clays X X**

5.2A Stellar Astronomy 1/60 dlays -- X**

5.3A Solar Astronomy 1/30 clays X X**

5.5 High-energy Stellar 1/30 days X X X**

5.20-2 Fluid Physics 40/95 days* X X X

5.20-3 Fluid Physics 25/45 days* X

5.20-4 Fluid Physics 10/290 days* X

!
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Table 2-9. Summary of Crew Requirements - Experiment Modules

TITLE

X-Ray Astronomy

3-Meter Telescope

Solar Astronomy

Hi-Energy Astronom

?lasma Physics

Cosmic Ray

Space Biology

Earth Surveys

MS Hangar (see 5.7)

Centrifuge

Matls.Process Lab

Contamination

Exposure

Fluid Physics

Comp. Test/Sensor

Primates (Bio A)

Physics & Chem.

( Type of Experiment

bMan Man
onducted Serviced

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

i MAX. NO. OF
CREW MEMBERS

AT ANY ONE TIME

2

2

2

2

2

2

2

2

2

2

2

1 + 1

1+1

NORMAL
OPERATING MODE

Attached Detached

X

X

X

X

X

X

X

Suitcase
X

X

X

X

X

X

X

X

X

X

XX

LNOMINAL DURATDN & FREQUENCY
OF MANNING

2-3 Days - every G0 days.

2-3 Days - every 60 days.

2-3 Days - every 60 days.

2-3 Days - every 30 days.

5-10 Days per experimentx 5 times/yr.

1 Man continuous 8 hrs/day; 2 man
setup 4 hrs/90 days.

2 Men continuous for 8 hrs/day.

2 Men continuous for 8 hrs/day.

(Same operation as in 5.7)

2 Men

2 Men continuous for 8 hrs/day.

2 Men (1 + 1 EVA) for 4 days every
60 days..

',2Men'(1 + 1 EVA) " "

2 Men continuous for 8 hrs/day.

1 to 2 Men continuous 8 hrs/day.

(Same as 5. 9 and 5.10)

2 Men continuous for 8 hrs/day.

RETARiS /Dt'lIE:S

Routine equip. maint.. refuel, resupply cryogenics, updateh sensors

iI/year).

Refuel, update sensors (I/year).

Replace film, refuel, :pdlate sensors, change gratings (1/yearw.

Routine malnt., refuel, resupply cryogenics, update sensors,
replace emulsions.

Operate RNIS and sensars, monitor data, calibrate and service
instrumentation.

Monitor data 8 hrs/day. Revise experiment. Service dewar,
change emulsions (l/3 days).

Attend specimens, comduct & monitor experiment, and load/
unload blocentrifuge.

Operate sensors, monitor data, callb. & service instr.

(Same man) Dcploy/retrieve, service RMS. waste disposal.

Operate centrifuge, monitor subject, act as subject.

Prepare, conduct, mnuitor experiment, analyze specimens and
attend to free-flying ,zodules.

Measure samples, replace, monitor automated instr.

Measure samples, replace, monitor automated instr.

Prepare & conduct experiment, attend to free-flying module,
film replacement.

Set up and conduct experiment, maintain test equipment.

Attend speoimens, conduct experiments.

et up and conduct eqeriments, attend to free-flying module
(5.20) when used for 527 experiments.

FPE
NO.

5.1

5.2A

5.3A

5.5

5.7

5.8

5.9
5.10

5.11

5.12

5.13C

5.16

5.17

5.18

5.20

5.22

5.23

5.27

I 4

I

I

I

I

I

r-

I

I

I

I

I

I

II

I
I

I

I

I

I
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Table 2-10. Astronomy Module Servicing Cycle (Typical)

No. of
Task Service Control Time Allocated Elapsed Time
No. Task Description Crew Mode** (hr)* (hr)*

.

Secure Experiment Equipment

Ready Module Subsystems for Return

Orient Module and Apply Transfer A V Impulse

Transfer Space Station Vicinity and Apply Re-circulation
AV Impulse

Rendezvous With Space Station and Dock

Pressurize Service Tunnel and Module and Leak Test

Open Hatch and Inspect Module

Service Experiments*

Service Module Subsystems*

Inspect Module

Close Hatch and Depressurize Module & Service Tunnel

Checkout Experiments and Module Subsystemips

Ready Module Subsystems for Launch

Launch Module and Clear Space Station Buffer Zone

Orient Module and Apply Transfer AV Impulse

Transfer to Stationkeeping Position and Apply Re-
circularization AV

0

0

0

0

0

1

2

2

2

2

2

1

0

0

0

0

R

R

R

R

R

R

M

M

M

M

M

"R

R

R

R

R

0.25

0.25

0.25

1.6

0.4

2.0

0.5

6.0

2.0

0.5

2.0

1.0

0.5

0.15

0.25

1.6

0.25

0.50

0.75

2.35

2.75

4.75

5.25

11.25

13.25

13.75

15.75

16.75

17.25

17.42

17.67

19.27

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

O

0CD

0

aI
oot

I I

!)I
ND
M,



Table 2-10. Astronomy Module Servicing Cycle (Typical) (Continued)

No. of
Task Service Control Time Allocated Elapsed Time

No. Task Description C rew Mode** (hr)* (hr)*

17. Acquire Pointing Reference 0 R 0.25 19.50

18. Orient Module 0 R 0.25 19.75

19. Ready Module Subsystems for Experiments 0 R 0.25 20. 00

20. Ready Experiment Equipment 0 R 0.5 20. 50

21. Resume Observation Program 0 R 0.5 21.00

*Servicing times will vary with individual modules; typical values are shown for replenishment of expendables,
adjustments and calibration, and do not include repair time.

i~,3 ++Pump-down to -1.0 psia.

**Control Modes: R = Orbital remote, M = Manual
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Figure 2-1. Astronomy Module Single Shift Service Timeline (Typical) 0



TITLE

X-Ray

Stellar

Solar

High Energy

Plasma Physics

Cosmic Ray

Vertebrates

Plants

Earth Resources

Centrifuge

Materials Science

Contamination

Exposure

Fluid Physics

Component Test

Primates

Physics & Chemistry

Table 2-11. Experiment Crew Skills Summary C
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+ Ground Control
+ Not including flight control/dynamics crewmen for module control.
* Crew required for service and operation backup except for'high resolution solar astronomy.

FPE

5.1

5.2A

5.3A

5. 5

5.7/12

5.8

5.9

5.10

5.11

5.13C

5.16

5.17

5.18

5.20

5.22

5.23

5.27
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SECTION 3

MISSION OPERATIONS

The experiment program is defined as being conducted in conjunction with a space
station in low earth orbit. The nominal orbit of the space station has been ground
ruled at 270 n.mi. altitude and 55 degrees inclination.

Module operating requirements are based on the experiment modules being a part of
the total space station system (see Figure 3-1) and, as such, deriving significant
support from the other elements and being constrained to be compatible with these
support elements. Modules are delivered to orbit by the earth-to-orbit shuttle or,
expendable launch vehicles. Attached modules dock to the space station and remain
docked for their normal mission life.

Free-flying modules dock to the station for initial activation/calibration, free-fly for
experiment operations, [and periodically return to the station for servicing. During
the free-flying mode, experiment and module operations are controlled by the space
station, and experiment data and module subsystem status are transmitted back to
the station for processing, action, and retransmittal to ground.

Modules are also to be capable of being serviced while in the free-fylig mode by the
shuttle or other manned service vehicles.

Experiment modules designed to implement the experiment program must therefore
be compatible with two major mission operations related to the space station:

a. Launch and rendezvous with the space station, using either the space shuttle or
expendable launch vehicles.

b. Operating co-orbitally with the space station in either an attached or free flying
mode.

Performance and operational aspects of these requirements are presented in the
following paragraphs. Interface requirements with launch vehicles and space station
are presented in Section 4.

3.1. LAUNCH AND DISPOSAL OPERATIONS

Launch vehicle capabilities and requirements were examined in three phases:

a. Initial constraints for formulation of module design in the form of weights,
envelope time, and circularization, rendezvous and docking requirements.

3-1
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b. Examination of the sensitivity of module design to launch vehicle capabilities and
recovery and disposal functions.

c. Selection of a delivery mode and launch vehicle set for study and planning pur-
poses following completion of module designs.

3. 1.1 CONSTRAINTS AND REQUIREMENTS. Study ground rules require that modules
be compatible with launch by both space shuttle and expendable vehicles. This ground
rule provides flexibility since module development is decoupled from any particular
program. Whenever possible, fundamental module characteristics, such as basic
structure or operations, should be insensitive to the type of launch vehicle finally
selected.

As a design goal module subsystems power-up requirements during launch should be
kept to a minimum. Functions requiring stored power during the pre-launch, ascent
and docking period are shown in Table 3-1.

Table 3-1. Module Functions Requiring Stored Power -
Prelaunch through Docking

' ' 

3-3

Allocation

Shuttle I Expendable
Module Function Launch Launch

Internal Power Checks X X

Status Monitoring X X

Status Transmission to Ground X

Status Transmission to Shuttle X

Guidance Update X X

Separate X

Deploy X

Transmit to Station/Receive Commands X X

Orient X X

Apply Circularize AV (as Reqd) X X

Apply Rend. & Dock AV X X

Dock X X
l~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_____________________________________________________

Volume II
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Some experiment unique functions may also be required during the initial delivery
phases. Life support power and monitoring for specimens included in module cages,
thermal control for telescopes, and cryogenic vent control are examples of typical
experiment functions. For study purposes, functions of this type were assumed to
be experiment supplied.

a. Space Shuttle. Shuttle launch vehicle payload capability is ground ruled at
25, 000 pounds delivered close to the space station. Delivery is assumed to
be to a stand-off position in circular orbit at the space station altitude of
270 n.mi. altitude for the baseline case. The effect of introducing hard docking
capability is discussed in Section 3.2.6. Rendezvous and docking of attached and
detached experiment modules to the space station is then accomplished with pro-
pulsion integral to the module. The AV budget for this operation is estimated at
85 fps, including a contingency docking allowance.

The other basic shuttle delivery mode for modules exceeding 25, 000 pounds is
to a 100 x 270 n. mi. elliptical orbit at 55 degrees. The module undocks from
the shuttle, uses its RCS to circularize the orbit and then free-flies to the space
station and docks. The additional AV required for circularization is approxi-
mately 300 fps. The shuttle payload capability for elliptical orbit delivery is
estimated at 32, 000' pounds.

A typical mission profile for the shuttle delivery mode shown in Figure 3-2
indicates that up to 24 hours may be required for the shuttle tQ properly phase
its orbit and for the experiment module to dock with the space Stition. Module
or experiment functions are therefore required while in the carg6 bay, attached
to the shuttle or in transit to the space station for maximum periods of approxi-
mately 24 hours after liftoff. An additional time period of 24 hours is allocated
for pre-launch pad checkout of shuttle and payload.

b. Expendable Launch Vehicles. Expendable launch vehicle constraints and require-
ments on module design are dependent on the launch vehicle envelope, perform-
ance capabilities, and the circularization, rendezvous and docking technique.
Delivery time for expendable launch vehicles should not exceed shuttle delivery
time.

Insertion of the module into circular orbit for rendezvous with the space station
can be either direct insertion or by use of a transfer ellipse. The transfer
ellipse provides a greater payload capability and is selected when module weight
estimates indicate the greater payload is needed.

Circularization of the module at apogee of the insertion ellipse can be accom-
plished by either the module or launch vehicle upper stage (Transtage on Titan
vehicles). However, since all modules are required to have free-flying

3-4
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Figure 3-2. Typical Shuttle Delivery Mission Profile
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capabilities for the rendezvous and docking phase following orbit circulariza-
tion for the expendable launch vehicle case, it is more economical to increase
the propellant tankage to provide circularization capability, using module RCS
with performance requirement estimated at 300 fps for this circularization.

Expendable launch vehicle capabilities for total payload to elliptical and circular
orbits, 550 inclination, less allowances for jettisonable fairings and payload
ssspeot are estimated in TAWle a32.

Table 3-2. Expendable Launch Vehicle Payload Capability

These estimates are based on:

a. The Titan IUC and the Titan IIIF (both without transtage) payload is that weight
above Stage II less 800 pounds of payload structure, which remains on Stage II;

b. On both the Titan IIIC and the Titan IIIF, the nosecone/payload shroud equal to
10, 000 pounds is jettisoned during boost;

c. The Saturn IB (unmanned payload weight is that weight above the Instrumentation
Unit (IU) less 800 pounds of additional payload support structure. The nose cone/
payload shroud, jettisoned during boost, is equal to 10, 000 pounds.

d. No range safety constraints were assumed for allowable launch azimuth headings
for the expendable vehicles.

3-6

Approximate Payload Capability (lb)

Launch 100 x 270 x 550 100 x 550 270 x 55

°

Reference

Vehicle Elliptical Circular Circular

T-mC -20, 000 24,000 12,000 3-1.1

T-mF 28,000 33,000 18,000 - 3-1.1

SIB 34,000 37,000 24, 00&W 3-1.1
3-1.2

Volume II
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The limits on payload diameter and length for a launch probability of 95% are:

L/V D = 13 ft D = 15 ft D = 18 ft

TIIIC L = 76 ft L = 53 ft L = 28 ft

TIIIF L = 69 ft L = 46 ft L = 23 ft

3.1. 2 ,EXIPRIMENT MOD1ULE ASSIONMENT, Asignmoent of ;FIpE to xporitmont
modules is discussed in some detail in Volume III of this report. The subject is
introduced at this point to provide the necessary background for the discussions of
experiment module operations.

The number of common module types for minimum program cost is three. These
three types of common modules are:

a. CM-1 - this is the only free-flying common module type; all astronomy FPEs
and the Fluid Physics sustained g experiments (FPE 5.20) are housed in this
module.

b. CM-3 - is an attached module; it houses FPEs assigned to thee attached mode that
can be housed in a single pressurizable compartment.

c. CM-4 - is an attached module which houses FPEs assigned tq the attached mode
that require more space than is available in the CM-3 module."

Thirteen common modules are necessary to implement the total experiment module
program as shown in Figure 3-3. Five CM-1, five CM-3, and three CM-4 modules
are required. Experiments and experiment peculiar equipment and structure are
shaded in this figure.

In addition to the common modules there are five major experiment-peculiar hard-
ware items necessary to complete the experiment program: two centrifuges, two
fluid physics (FPE 5.20) experiment tanks, and a propulsion slice. These hardware
items are shown in Figure 3-4.

Both the biomedical (FPE 5.13C) and the biological (FPEs 5.9/10/23) centrifuges
require a 10-foot-radius arm. To meet space shuttle cargo bay restrictions these
centrifuges are encased in small-diameter cylinders with the whole assembly
rotatable on external bearings. They are attached to the end of a common module
or to the space station while on-orbit. Longitudinal mounting of the centrifuge
within the shuttle cargo bay allows for simultaneous launch with the related common
module. Retraction mechanisms position the centrifuges after they are on-orbit.

3-7



CMr 1 -1 CM-3 |t CM-4

5.7/12 PLASMA 5.8 COSMIC RAY 5.3/10/23
PHYSICS SPACE BIOLOGY

5.1 X1EAY 5.2A STELLAR

_I -

5.16 MATERIALS 5.201 FLUID 5.11 EARTH
5.5 HIGH ENERGY SCIENCES PHYSICS SURVEYS

5 .;:; 1:i::5.-7 PHYSICS 512 COMPONENT 
& CHEMISTRY TEST

5.202,3,4 FLUID PHYSICS

Figure 3-3. Experiment Module Assignments 0



BIOVMEDICAL CE[MRIFUGE
CONCEPT

BIOLOGICAL CENTRIFUGE
CONCEPT

IDFLUID PHYSICS TAKS (2)
& PROPULSION

14 ft. dia. by 6 ft. long
Propulsion Slice lt. = 4,600 lb. dry

9.5 ft dip. by 20 ft long

wt. = 6,800 lb.

9.5 ft. dia. by 20 ft. long

wt = 7,000 Ib. 
14 ft. dia. by 25 ft. long

wt. = 9,600 lb.max.

Figure 3-4. Major Experiment Peculiar Hardware
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The propulsion slice is attached to the experiment bulkhead of the FPE 5.20 (Fluid
Physics) free-flying CM-1 module to provide thrust for the sustained low-g accelera-
tion tests.

Experiment tanks are attached to the opposite (from the propulsion slice) end of the
fluid physics free-flying CM-1 module. These units only contain the fluid tanks,
enclosing structure and docking ports. Each tank remains attached to the CM-1
moduls through a series of tests where experiments are replaced and the propulsion
slice refueled while on-orbit.

Grouping and module assignment of experiment module program FPEs are sum-
marized in Table 3-3. Two of the FPEs, FPE 5.17 (Contamination) and FPE 5.18
(Exposure), do not fall into the categories discussed in the preceding paragraphs.
They are small experiments, called "suitcase experiments, " which can be easily
carried onboard a module or the space station. The requirements for these experi-
ments are such that they can be carried piggy-back on experiment modules assigned
to other FPEs, or they can be attached to the space station. Dedicated experiment
modules are, therefore' not assigned to these FPEs.

3.1.3 MODULE DESIGN SENSITIVITY TO LAUNCH VEHICLES. :Shuttle and expend-
able launch vehicle delivery capabilities are compared to payload weight and length
characteristics in Figures 3-5 and 3-6. Modules are designed foV.~:o'mpatibility with
launch on both shuttles and expendable vehicles and assume shuttl~e{ajnd-off delivery
(see Section 3.2.6 for effect of hard-dock capability). Weights include additional
structure necessary for higher expendable launch vehicle accelerations (approxi-
mately 600 pounds of structure required for 6 g vs. 3 g for shuttle) and shuttle cargo
bay interface fittings. Experiment modules are contained within jettisonable payload
shrouds when launched on expendable vehicles. Therefore both expendable launch
vehicles and shuttle launches provide protected payload environments. Payload
penalties for shrouds and interstage structure were estimated and deducted from
expendable launch vehicle performance capability.

The shuttle payload is 25, 000 pounds to 270 n.mi. circular orbit at 55 degrees. It
is estimated that the payload capability is approximately 32, 000 pounds to 100 x 270
n. mi. elliptical orbit at 55 degrees. Review of Figure 3-5 shows that elliptical
delivery is needed for five or six modules. Module payload weights shown in
Figure 3-5 include 2560 pounds of propellant. About 1500 pounds of propellant can
be off-loaded prior to launch when circular delivery is selected.

Payload compatibility with shuttle length constraints is also shown. The shuttle cargo
bay length is ground ruled at 60 feet. All modules will fit inside the shuttle cargo bay
although payload deployment devices or operations might cause interference with
the FPE 5.2A Stellar and FPE 5.9/10/23 Space Biology modules.

3-10

Volume II



GDC-DAA70-004

Table 3-3. FPE Module Assignment

Assignment
FPE TITLE

CM-1 CM-3 CM-4 Experiment Peculiar
i i . im

X-Ray

Stellar

Solar

High Energy

Plasma Physics

Cosmic lay

Space Biology

Earth irveys

Centrifduge

Materials Sci.

Contamination

Exposure

Fluid Physics

Fluid Physics

Component Test

Phy. & Chem. Lab

X

X

X

X

X

x

X

X

X

X

x

X

X

X

Biological Centrifuge

Biomedical Centrifuge

Suitcase Experiment

Suitcase Experiment

One Propulsion Slice, two
Experiment Tanks

3-11

5.1

5. 2A

5. 3A

5.5

5.7/12

5.8

5.9/10/23

5.11

5. 13C

5.16

5.17

5.18

5. 20-1

5.20-2,
-3, -4

5.22

5.27

Volume II
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Figure 3-5. Shuttle Payload Sensitivity
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Review of Figure 3-6 shows that all experiment module payloads can be carried by
either Titan IIIF or Saturn IB expendable launch vehicles. Several payloads are also
candidates for lighter payload T-IIIC launch vehicles, again with some of the modules
requiring elliptical orbit delivery to allow use of the smaller launch vehicle. Circular
orbit capability to 270 n.mi. is approximately 11, 000 pounds for T-IIIC, 18, 000
pounds for Titan IIIF and 23, 000 pounds for Saturn IB, respectively, based on the
same references. The Intermediate-20 launch vehicle was also considered, but
has a payload capacity far in excess of module predicted weights.

The cylindrical length for bulbous payloads on Titan III vehicles is quite sensitive to
payload diameter as shown in Figures 3-7 (Reference 3-1.1). Assuming a 15-foot
diameter payload shroud, cylindrical lengths of all T-IIIF launched modules permit
at least a 95% launch probability ability with the exception of FPE 5. 3A Solar
Astronomy. Reduction in payload shroud diameter from 15 feet to 14 feet permits
launch of FPE 5.3A at 95% probability. Increase of the payload launch shroud to
16 feet would reduce launch probability for FPE 5.1 X-Ray and FPE 5.11A Earth
Surveys to less than 90%. The payload minimum allowable cylinder length for
bulbous payloads on T-III requires that the length to diameter ratio (L/D) exceed
1:1. All experiment ir.odules meet this criteria.

Experiment module lengths are compatible with launch on a Saturn. lB vehicle. Ref-
erence 3-1.2 indicates that payload cylindrical lengths of 60 feet can be accommodated.

3.1.4 PAYLOAD DELIVERY REQUIREMENTS. Table 3-4 summarizes the require-
ments for payload delivery in terms of length and weight of experli"ent modules and
experiment unique payloads. Both shuttle and expendable launch A' icles deliver
the payloads to the required 270 n. mi., 55 degree orbit using selected circular or
elliptical delivery modes summarized in Table 3-4 and described in the following
paragraphs.

Circularized and transfer ellipse delivery orbits are selected for the module and
experiment unique payload weights derived during the study and documented in
Volume III and Table 3-4. Module weights include 2560 pounds of propellant. The
propellant can be offloaded approximately 1500 pounds for modules delivered to
circular orbit. In the case of Fluid Physics FPE 5.20-2 an additional 6800 pounds
of propulsion slice propellant can be offloaded if necessary to meet payload con-
straints. The propulsion slice is experiment unique and provides special thrusters
and equipment for sustained, low-g experiments. Table 3-4 indicates the specific
payloads that would be offloaded.

The FPE 5.11A Earth Surveys module is selected for elliptical orbit insertion because
of potential growth in weight.

The FPE 5.9/10/23 Space Biology module weighs about 1 percent more than elliptical
orbit capability of the shuttle. However, the weight includes a full complement of
specimens and cages totalling 2600 pounds. Typical Blue Book schedules show that

3-14
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NOTE: 1. LAUNCH PROBABILITY IS PROBABILITY
THAT WINDS REMAIN WITHIN IMPOSED
PLACARD.

2. NASA TN D610 ANNUAL WIND.

80

IE
9

M;9

1u
>4

LAUNCH PROBABILITY, %

(Source ED-2002-795)

Figure 3-7. Titan IIIF Bulbous Payload Launch Probability
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Table 3-4. Summary of Payload Delivery Requirements

--I

Title

X-Ray

Stellar

Solar

High Energy

Plasma Physics

Cosmic Ray

Cosmic Ray

Space Biology

Earth Surveys

Centrifuge

Materials Science

Fluid Physics

Fluid Physics

Fluid Physics

Fluid Physics

Component Test

Physics and Chemistry

Payload
Type

X E 

W : 

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Payload Length
(ft) (inches)

(1)

45 9

60 0

53 11

27 0

38 11

51 11

6 8(2)

59 5(3)

45 1

20 0

31 5

31 5

37 11

27 , ..-- -10(4)

27 .

38 4

31 5

Payload
(lb x 1000)

(7)

:'; 21','D

:30.6

26.8

26.1

20.8

29.8

24.0(5)

:32.4(3)(11)

24.1

6.8

20.6

15.9

31.9

7.8( 4 )

';9.6 ( 4 )

23.0(10)

21.3

Shuttle Delivery

270 n.mi. 100 x 270 n. mni.
55' Circular 55

°

Elliptical

Orbit Orbit

(6)
_ _ -. . . _ .. . .

x(9 )

x

x(9 )

x

x(9)

x(8)

x

x

x

x

x

X

X

X(9)

x(9)

Expendable Launch
Vehicle Delivery

270 n.mi. 100 x 270 n.mi.
550 Circular 550 Elliptical

Orbit Orbit
(6)

x

x

x

x

x

x

x(12)

x

x

x

x(12)

x

x

x(12)

x

x

Notes (1) Length to end of extended docking probe(s).
(2) Experiment equipment without packaging.
(3) Includes Bio-centrifuge.
(4) Experiment tanks-wet.
(5) Detector may be divided into packages as

small as 350 lb.
(6) Experiment module provides circularization AV.

(7) Includes 2560 lb propellant.
(8) Propulsion slice off-loaded up to 6800 lb propellant.
(9) Module may he off-loaded up to 1500 lb propellant.

(10) Weight with 3950 lb experiment cryogenics & off-loaded.

(11) Experiment specimens and cages may be off-loaded up
to 2600 lb.

(12) Alternate mode: delivery to interim circular orbit with
subsequent transfer to 270 n.mi.

I

G~

FPE

5.1

5.2A

5.3A

5.5

5.7/5.12

5.8

5.8

5.9/10/23

5.11A

5.13C

5.16

5.20-1

5.20-2

5.20-3

5.20-4

5.22

5.27
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all experiments will not be conducted simultaneously. It is probable that a large
fraction of the specimens would be delivered as logistics cargo and could be sub-
tracted from the initial payload weight.

An alternate shuttle delivery mode involves a Hohmann transfer executed by the
module from a low altitude. Experiment modules exceeding 25, 000 pounds can be
delivered to the 270 n. mi. x 55 degree orbit by using the experiment module RCS
propulsion system to increase orbital altitude. The shuttle delivers the module to
a lower, interim altitude orbit; for example, from Figure 3-8 a 31, 000 pound
experiment module can be delivered to a 200 n.mi. orbit. At this point the module
then undocks from the orbiter and using its RCS propulsion executes a Hohmann
transfer to the final 270 n.mi. orbit. Figure 3-8 shows that less than 1500 pounds of
propellant is required to complete the transfer of the 31,000 pound module.

A 1500-pound limit was selected for the baseline as the maximum propellant available
for transfer in order to leave sufficient propellant for rendezvous and docking, and
contingencies. Propellant provided in the design as a result of Failure Modes and
Effects Analysis was not considered as available for the transfer maneuvers.

If experiment module :weight exceeds 32, 500 pounds, the heavyweight module could
be delivered on expendable launch vehicles or shuttles if additional propellant
capacity was added as a kit to the baseline experiment module. If the module weight
were not increased, an additional module propellant tank with 6(qok:pbunds of usable
propellant (2100 pounds total) would provide the transfer capabilit-shown in Figure
3-8. A module of up to approximately 35, 000 pounds could be tras'ferred to final
orbit altitude by this mode.

Expendable launch vehicles also use two basic delivery modes. T-IIIC or T-IIIF
vehicles deliver lightweight payloads to 270 n.mi. circular orbits. Heavier pay-
loads are delivered by T-IIIF or SIB vehicles to a 100 x 270 n.mi. transfer ellipse
and circularize at space station altitude using the module RCS in a manner similar
to shuttle delivery.

Four experiment unique equipments have been identified as separately launched
payloads. As shown in Table 3-4 these unique payloads are the large detector used
in the growth version of FPE 5.8 - Cosmic Ray Physics, the manned Centrifuge -
FPE 5.13C, and two fluid physics tanks containing cryogenic experiments designated
FPE 5.20-3 and -4.

The growth version cosmic ray equipment is a segmented total absorption detector
/TAD) weighing a total of 24.000 pounds separable into sections of approximately
350 pounds each. On-orbit assembly of this detector appears required since the
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Figure 3-8. Payload Capability, 25k Space Shuttle
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total module weight, if installed on the ground, would exceed all launch vehicle
capabilities except the Intermediate 20. Shuttle delivery is assumed to be accom-
plished by the same means as standard shuttle logistics cargo. Expendable launch
vehicle delivery could be accomplished by segmenting the TAD into two 12, 000
pound units packaged for delivery by a module in a cargo transport role, or if the
detector segment, housing and subsystems weight did not exceed 20, 000 pounds,
a Tital IIIF vehicle could perform a direct orbital insertion.

The manned eentritfuge in the baseline program is delivered ad a saepfrate paylo0a.
The centrifuge is required to free-fly for expendable launch vehicles and the assumed
stand-off shuttle delivery, and dock to the space station. A transporter could
accomplish this function, but was not assumed since it may not be available to
retrieve the centrifuge from the delivery vehicle. The shuttle would deliver the
centrifuge to circular orbit in a similar manner to other payloads, or since the
payload is light, an expendable launch vehicle would direct insert the centrifuge
into circular orbit at 270 n. mi. The centrifuge would then execute docking
maneuvers and be available for checkout and experiment operations.

The fluid physics experiment peculiar tanks are delivered to circular orbit with the
shuttle or with expendable launch vehicle. The free-flying module which provides
subsystems and the propulsion slice which houses propellant and engines for sus-
tained low-g thrusting will be available from previous FPE 5.20 Qeperimentation.
The module and propulsion slice docks to the test tank, extracts :t f.om the shuttle
or expendable launch vehicle and returns to the space station for actyation checkout
and sustained low-g flights. At the conclusion of the 5.20-3 test phase, on-orbit
exchange of test tanks is accomplished. Tanks for 5.20-3 are returned via the
shuttle. The FPE 5.20-4 tank is delivered and utilized in a manner similar to
5.20-3.

Planning data for shuttle vehicles and for three classes of expendable launch vehicles
necessary to support the experiment module program is given in Table 3-5. The
Intermediate 20 launch vehicle was considered for experiment module payloads, but
payload capability to 270 n.mi. of approximately 100,000 pounds (Reference 3-3)
precludes selection for single module delivery. Multiple module delivery within
payload cylindrical length constraints of about 60 feet appear feasible, but must be
analyzed from a cost and experiment payload availability viewpoint.

As shown in Table 3-5, the Saturn IB launch vehicle provides a payload capability
attractive for four modules. An alternate delivery method is feasible using T-IIIF
through the addition of a 300 fps AV delivery kit to selected heavy weight experi-
ment modules. The module could then be delivered to a 100 n.mi. circular orbit
where it would separate from the Titan vehicle. The module RCS would provide
the capability to transfer to the desired 270 n.mi. orbit and dock to the space
station.
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Table 3-5. Launch Vehicle Requirements - Experiment Payloads

Experiment Unique

Experiment Unique

x

x

Experiment Unique

Experiment Unique

x

x

x

x

5.1

5.2A

5.3A

5.5

5.7/5.2

5.8

5.8

5.9/10/23

5.11A

5.13C

5.16

5.20-1

-2(2)

_3(2)

_4(2)

5.22

5.27

Title

X-Ray

Stellar

Solar

High Energy

Plasma Physics

Cosmic Ray

Cosmic Ray

Space Biology

Earth Surveys

Centrifuge

Materials Science

Fluid Physics

Fluid Physics

Fluid Physics

Fluid Physics

Components Test,.-.-

Physics & Ch!i;bti3y .

Shuttle Requirements
25k Payload

1

1

o. . I

1

I

1

1 (E)

1

1(E)

I

1 (E)

1

1

1 (E)

1

Expendable L/V ( 3 ) Requirements
T-IlIC

20K PfL

1 (El

1

1 (El

1 (E)

T-PIIF
28K P/L

1

1

1

1

2 (E)

1

1

1

1

S-IB
34K P/L

1 (4)

1 (4)

1 (4)

1 (4)

TOTALS [ 13 Module 1 Module 8 Module 4 Module
4 (E) 3 (E) 2 4E)

LEGEND:
(E) Indicates experiment unique launch.

NOTES: (1) Centrifuge is launched in combination with module.
(2) One propulsion slice is included. The same propulsion slice is used for the

-2, -3, -4 experiment. The same CM1-1 module is also reused.
Experiments are exchanged on-orbit.

(3) Based on extrapolated L/V performance data in References 3-1.1 and 3-1.2

(4) Alternate launch vehicle is TIIIF
to interim altitude with module
providingA V to final altitude.
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3.1.5 DISPOSAL/RECOVERY OPERATIONS. Equipment to be returned to earth
includes complete experiment modules as well as module components, experiment
equipment, hard data and specimens. The requirements for equipment, data, etc.,
return logistics are similar to up logistics and are discussed in Section 4.2. Methods
of return include the space shuttle as well as manned or unmanned re-entry vehicles
such as Apollo or data capsules. Return cargo such as glass film plates or experi-
ment specimens are packaged for the entry environment and secured in the return
logistics vehicle. Special equipment such as packaging, acceleration monitoring
or life support equipment, will be provided as experiment unique. An example of
special requirements is the space biology discipline, which requires return of frozen
or perhaps live specimens for subsequent analysis.

Module structure is ground ruled for a 10-year life and for compatibility with return
to earth via the shuttle. The module recovery function sets design requirements on
the experiment module which include retractable protuberances such as solar panels
and bar magnets. The shuttle de-orbit or landing profile could also establish require-
ments for special recovery equipment such as for the FPE 5.2A Stellar Telescope.

In the event that the shuttle is not available or in an emergency situation, module RCS
can be used for disposal, With one propellant tank not used, 415 fps AV would be
available for de-orbit'maneuvers. A landing footprint within an.arbitrary 3,000 n.mi.
x 2, 500 n. mi. ocean d'sposal area could be achieved. A cursory, xamination of
experiment and module equipment which might present special re-entry disposal
problems is shown in Table 3-6. However, further analysis is required to determine
if module design criteria are affected by disposal operations. i~:,

Table 3-6. Equipment Presenting Potential Disposal Problems

ITE M QUANTITY/ UNIT
MODULE * WT. (LBS)

Mirror (Fused Silica) 1 10 ft. dia. 4,000

CMG Rotor. 2 20 in. dia. 40

Inertia Wheel 3 20 in. dia. 55

Bar Magnet 10 8 ft. long 80

Thruster & Catalyst 32 15

Furnace 1 4 ft. dia. 1,000

Total Absorption Detector 1 40 in. x 24,000
40 in. x 80 in.

*All items are not carried by single module.
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3.2 ON-ORBIT OPERATIONS

Experiment modules are based at the space station in the baseline experiment module
program. Attached modules are permanently docked to the space station, and free-
flying modules periodically return to the space station for servicing. Atmospheric
drag and orbital mechanics influences on module on-orbit performance requirements
are analyzed in this section, and candidate schemes for accomplishing the necessary
on-orbit operations are discussed.

Module on-orbit operating criteria are established by analysis of:

a. On-orbit functional requirements and the assignment of these requirements to the
module, to the space station, or to other system elements.

b. Performance requirements and stationkeeping schemes for deploying and main-
taining free-flying modules operating in the near vicinity of the space station.

c. Performance requirements for growth missions to higher orbits.

d. Performance re~quirements and operation schemes for experiments requiring
sustained low g:levels over extended periods (i.e., FPE 5.2Q Fluid Physics).

Free-flying modules are deployed in the space station orbit (circular at 270 n. mi.
altitude at an inclination of 55 degrees) in the baseline experiment module program.
Baseline module designs have integral propulsion systems for accomplishing on-orbit
operations. However, an analysis of auxiliary spacecraft or transporters (i.e., space
tug vehicles) to provide module on-orbit propulsion is presented in this section.

3.2.1 MODULE FUNCTIONAL REQUIREMENTS. Experiment and mission require-
ments and study ground rules were analyzed to determine: (1) operating functions and
requirements, and (2) to allocate functions and requirements to either the experiment
modules or to other program elements.

Operating functions and requirements were allocated to the following elements of the
experiment module program:

a. Experiments/experiment modules

b. Space station

c. Launch vehicle

d. Ground support

/,

3-22

Volume II



Volume n

Table 3-7. Baseline Operational Requirements Allocation

Operational Requirement Allocation

Operation Experiment Module Space Station Launch VehIle Ground Support

Boost TM status Receive booster positton update. Provide guidance & =vigation, Track booster position and
prepare tocke over-control of .,.propulsion & TM statas. relay to space station, receive
module. booster and module TMl.

Launch Vehicle/Experimental Module Separation & Provide attitude control. TM Take over module control. re- Release module. separate Track booster, back up re-

Experimental Module Coast status. celve module TM, track module module from booster_ retro ception of module TM.
and activate module subsystems. or return booster.

Orbit Circularization (As Required) Provide attitude and thrust vector Provide command and control &
control and propulsion for V, guidance and navigation to the
TM status. module. receive TM. track

module.

Rendezvous & Docking for stand-off shuttle docking. Provide attitude and thrust vector Generate range and range rate
and for expendable launch vehicle case. control and propulsion for AV, and module tracking data, pro-
(See Section 3.2. 6. TM status. vide command & control and

guidance & navigation to module
receive module TM.

Module Relocation at Space Station Same as above. Same as above. _

Attached Module Experiment Send experiment data to space Provide stability control. re-
station. ceive experiment data.

Free Flight (deployment, experimentation, station- Provide stability, attitude and Track module, provide com-

keeping and return) thrust vector control and pro- mand and control and guidance
pulsion for AV. TM experiment &tavigation to module receive.,
data and module status. 'drnJadude.

.4 .

0

0

Pr
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30-day intervals. The module is returned to the space station at nominal 60-day inter-
vals for servicing, and is initially docked at the space station. Velocity requirements
over the 60-day servicing cycle are then:

Mission Phase AV (fps)

Undock 10

Doploynm nt 15

Stationkeeping (4 times) 4

Return 15

Dock 20

Total 64 fps

3.2.2 ORBIT MAINTENANCE AND STATIONKEEPING. A body in low earth orbit
experiences orbit decay due to aerodynamic drag. This drag is a function of atmos-
pheric density and the ballistic coefficient of the body. A body experiencing drag fol-
lows a path of lower radius and higher angular velocity relative to-a drag-free body,
and will soon pass and precede the drag-free body in orbit. Stat4onkeeping (or orbit
maintenance) consists then of applying a A V to the drag body to e'cite a Hohmann
transfer to its original, or higher, orbit and circularizes at the neW altitude as shown
in Figure 3-10. Three basic stationkeeping methods are shown:

a. Transferring to an orbit sufficiently high to cause the module to encircle the space
station by passing behind and below the station.

b. Conducting stationkeeping behind the station by boosting the module to a higher
altitude behind the station.

c. Conducting stationkeeping ahead of the station by transferring the module ahead
of the station position where its orbit will decay and increase the module to space
station range.

In each case, the average altitude of the decay transfer loop is the same as that of the
station and the module orbit during the decay is approximately a parabola relative to
the drag-free space station; AV requirements are about equal. The length of the para-
bolic loop is limited by range capability of the communications systems.

3.22.2. 1 Selection of Stationkeeping Method. Encircling the station provides the
longest periods between AV for a given communications distance, but presents the
station and other modules as potential occulting bodies to astronomy modules. Station-
keeping behind or in front of the station appear to be about equal, except for potential
contamination, which appears to be least in front of the station.

PRECEDING PAGE BLANK NOT FILMED
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For the baseline experiment module program, all free-flying modules are maintained
in proximity to the space station. Selection of the stationkeeping method for astron-
omy modules then considers factors which are primarily experiment oriented:

a. The module flight path should avoid occultation by the space station or by other
modules.

b. Observation times should be maximized. AV applications for stationkeeping
disrtpt obsorvationt duo to the need to (1) oroint tho tela01sepo with the thrust
axis, (2) accomplish the orbit transfer, (3) reorient the module, and (4) reacquire
the target.

c. Contamination in the vicinity of the space station will result when light-scattering
particles are in the telescope viewing column. These particles may degrade ex-
periment observations. Astronomy modules should also be kept away from areas
where the optical surfaces could be exposed to RCS exhausts from the station,
from modules or from logistic craft approaching the station.

Module designs are not particularly sensitive to which of the three stationkeeping
methods are used. Selection of the method has therefore been based primarily on
experiment or operations considerations. It is subject to review when a more com-
plete definition of total space station operations (tracking, navigation, traffic control,
communications, etc.)' is available.

The selected method for stationkeeping astronomy modules maintains the modules in a
loop which precedes the space station in orbit. This method reducers potential for:
(1) occulting by the station, and (2) for viewing degradation due t& taminants which
might exist in a trail behind the station.

Stationkeeping scheme is shown in Figure 3-11. The vertical scale is greatly exag-
gerated. Loop dimensions for a typical module (,i-16) during a period of average
atmospheric density are about 500 by 1 n.mi. The limiting factor in this range selec-
tion is the communication range created by extended intervals between orbit mainte-
nance operations. For the average module ballistic coefficient and average atmos-
pheric density, orbit maintenance operations conducted in 30-day cycles will result in
less than 1% lost observation time. This 30-day cycle will result in a communication
range from module to station of about 500 n.mi., which requires five watts trans-
mitted power for the baseline data rates. These parameters have been selected for
module baseline design.

Detached laboratory modules are operated in a similar manner in the vicinity of the
station within boundaries of traffic control, distance from astronomy modules, and
communications range.
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3.2.2.2 Stationkeeping Performance Requirements

a. Module Drag Offset.

Module performance required to offset drag is dependent on the density of the

atmosphere and the module ballistic coefficient. Perhaps the simplest useful
model atmosphere is a spherically symmetric air mass having an exponential
density variation with altitude and rotating as if rigidly attached to the earth.
The nominal density at a given altitude is a strong function of solar activity which
varies on a solar cycle with a period of about 11 years. Perturbations in density
include a strong diurnal bulge effect due to daily solar heating, and smaller per-
turbations due to many lesser effects.

Several popular model atmosphere density curves are shown in Figure 3-12 for
reference. The COSPAR International Reference Atmosphere for 1965 (CIRA '65)
is a reference atmosphere which is given in ten different models; Model 1 is
typical of a very low level of solar activity, Model 5 of a moderate level, and
Model 10 of a very high level of solar activity. The CIRA '65 Model 5 atmos-
phere was used in the calculations presented in this section. This model gives
average maximum expected values of atmospheric drag which correspond to the

actual values for early 1969 and as expected for 1980.

Density values derived from NASA Model Atmosphere are als :shown in Figure

3-12 (Reference 3-2.1). These values are given for four diff e'et conditions, i.e.,

nominal, 4 -2u, geomagnetic storm, and severe geomagnetic stqirm. Predicted
worst-case values for the years 1975 and 1980 are shown. It Y-apparent that the

CIRA '65 Model 10 atmosphere is representative of the worst cases to be expected

in 1980.

W
Module ballistic coefficient (@) is defined as 3 = where W is the vehicle

CDA
D

weight in lb, CD is the dimensionless drag coefficient, and A is the reference

area in ft2 In the B system the drag equation becomes

D 
2

CA CA 
2

g 2
m-2 P V D =v D P 2 g 2
m 2 W 2 W p/

so that drag deceleration(.D is inversely proportional to P3.
PVCLO UU UVIVurviml -'--·-·-- (M)----~
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Figure 3-12. Atmospheric Density Models
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Drag deceleration is plotted in Figure 3-13 versus orbital altitude for a
fi: 16. 1 lb/ft2 . Drag deceleration for P values other than 16. 1 are computed
from:

D ) (116.1

= 16. 1 

where (-D) is the drag deceleration from Figure 3-13 and , is the value

of the spacecraft ballistic coefficient.

An average ballistic coefficient (arithmetic mean of minimum and maximum
values) is typically in the 15 to 20 pounds per sq. ft. range for the astronomy
modules. At space station altitudes, approximately 0.33 fps AV per day is re-
quired for years of highest atmospheric density (CIRA Model 10), about 0. 1 fps
for mean density (CIRA Model 5) and about 0.002 fps for least density (CIRA
Model 1) as shown in Figure 3-14. The propellant requirement is about 3 to 4
pounds per fps AV for these modules (at an I = 220 sec.). About 1 pound is
used per day for the worst case at space statign altitudes. Experiment modules
maintain stationkeeping orbits using RCS thrusters integral to th' module.

Stationkeeping AV requirements diminish rapidly with increasing altitude.
However. for modules required to operate higher than the station but below alti-
tudes of about 350 to 400 n.mi., the effect of altitude decay shqld be investigated
to determine the maximum on-orbit stay time and the effect on relative orbital
precession rates.

Module altitude loss or sink rate is shown in Figure 3-15 for the case where no
stationkeeping AV is applied. Approximate module sink rates for other ballistic
coefficient values can be calculated for typical experiment module conditions
using the following equation:

Ar 2 D/m
t w

where Ar - altitude change

t = time

D/m = drag deceleration

, = orbital rate
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Figure 3-13. Aerodynamic Drag Acceleration

3-33

400

rD
aoxo

U)

Ev

LZ
O
:V;

¢

c;

w

100



GDC-DAA70-004

MOD 5

MOD 1

300 400
MODULE ALTITUDE (n.mi.)

Figure 3-14. Stationkeeping Velocity Requirements

300

ALTITUDE (n. mi.)

Figure 3-15. Module Sink Rate
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Separation (AS) between an experiment module and the drag-free space station is
approximated with the following equation.

2
S = 3 D t

2 m

Both of these equations are the first, and most significant, terms of a series of
terms (see Reference 3-2.2 for the full equations). They are reasonable approxi-
mations of the true values for normal experiment module Pi values, baseline
orbital altitudes and permissible experiment module/space station separations.

The velocity increment to execute the stationkeeping Hohmann transfer is:

-3AV 0.55 x 10 Arsk

Substituting the equation for Ar and As and the drag deceleration inverse relation-
ship with j3 results in the equation for the stationkeeping velocity increment as a
function of 3 and the length of the stationkeeping orbit. (Note that the length of
the stationkeeping, orbit, AS, is traversed twice as the module follows a parabolic
path relative to the space station.)

AV = 37.2 f ()P= 16.1

where

AV sk the stationkeeping velocityincrement (both perigee and apogee
velocity increments) in ft/sec

AS = length of stationkeeping orbit in ft

= experiment module ballistic coefficient in lb/ft2

(-m)B = 161= drag deceleration (from Figure 3-10) in g

b. Stationkeeping Cycles

Stationkeeping is accomplished by an application of the Hohmann transfer AV to
recover the lost module altitude, and thereby keep the module within close prox-
imity of the space station. Typical astronomy module AV requirements are
summarized in Table 3-8. Module ballistic coefficients (1) are the arithmetic
mean of module minimum and maximum P values. The number of days between
service cycles (60 or 30 days) is established by the planned experiment servicing
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Table 3-8. Typical Astronomy Module Service Cycle AV Requirements

FPE

PARAMETER

Experiment Module 3 (lb/ft2 )

Number of Days Per Service Cycle

Maximum Number of Days Per Stationkeeping Cycle

Number of Stationkeeping Cycles Per Service Cycle

AV Per Stationkeeping Cycle (fps)

Undocking AV

Deployment AV

Out-of-Plane AV

Stationkeeping AV Per Service Cycle

Return AV

Out-of-Plane AV

Docking AV

Total AV Per Service Cycle

5.1
X-RAY

20

60

35

2

2.2

5.2
STELLAR

16.-

60

31.4

2

2.8

5.3A
SOLAR

19

30

34.2

2

2.4

5.5
I HIGH ENERGY

25

60

39.2

2

1.8

-- l~~~---~ r~f -f 4-

10.0 fps

8.6

6.0

4.4

8.6

6.0

63.6 fps

10.0 fps

8.6
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and adjustment schedule. Maximum stationkeeping cycle periods vary from 31.4
days (FPE 5.2 - Stellar) to 39.2 days (FPE 5.5 - High Energy) where the range
from the space station to the experiment module is limited to 500 n.mi. and the
apex of the stationkeeping orbit is 10 n.mi. ahead of the space station. An average
(CIRA Model 5) atmosphere was used to calculate the stationkeeping cycle. Space
station to module ranges will typically be less than 500 n.mi. to force the station-
keeping cycle period to be an even sub-multiple of the servicing cycle. Either
one or two stationkeeping cycles are accomplished during each servicing cycle
for these modules. Stationkeeping orbits for these free-flying astronomy modules
are sketched in Figure 3-16. Note that the vertical scale is greatly expanded.
The Hohmann transfer AV to maintain the stationkeeping orbit varies from 1.8 to
2.8 fps per stationkeeping cycle.

Typical velocity increment requirements per service cycle are tabulated in the
lower portion of Table 3-8. A AV allowance of 10 fps is assigned for undocking
of the experiment module from the space station. The scheme for deploying the
modules to the apex, of the parabolic stationkeeping orbit 10 n.mi. ahead of the
space station is sh:wn in Figure 3-17. Following undocking, ~ velocity increment
opposing the module velocity is applying causing the module to'enter an elliptic
orbit with a shorter period. Once each orbit the module returpnls the apogee of
its orbit which corresponds to the space station circular orbitiiltitude. When a
velocity increment equal but opposite in direction to the origin!:-AV is applied at
the apogee, the module re-enters the original orbit; but now th,; experiment module
is deployed ahead of the space station as a result of the difference in orbital rates.
Two AV applications of 4.3 fps each (for a total of 8. 6 fps) are necessary to sep-
arate the module and the space station by 10 n.mi. after one orbital period.

The out-of-plane AV is applied with the deployment AV (and again on return) to
displace the module orbit relative to the space station orbit and reduce module-
to-module occulation. Modules are also separated laterally as well as in the
orbital plane by this scheme to ease the traffic control problem. Stationkeeping
ZV per service cycle is the product of the number of stationkeeping cycles per
service cycle and the ZV per stationkeeping cycle. Module return is the reverse
of the deployment maneuver, and an out-of-plane AV equal but in the opposite
direction to that applied during deployment is applied with the return AV to bring
the module orbit back to that of the space station. A AV of 20 fps is allowed for
the docking maneuver. The total AV per service cycle varies from 61.6 fps for
FPE 5.3A Solar to 64.8 fps for FPE 5.2 Stellar.

Module accelerations experienced during applications of stationkeeping velocity
increments are 10-3 g or lower. This is within the limits of the solar panels in
the extended position. Solar panels are not retracted for stationkeeping AV
applications.
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The amount of time lost to observations as a result of stationkeeping maneuvers
is a direct function of the frequency at which stationkeeping AV must be applied.
It therefore is very desirable to maximize the interval between stationkeeping
AV applications. The frequency of stationkeeping AV applications is determined
by the allowable module to space station distance. Communication system capa-
bility is the primary limiting factor. For the module baseline communication
system limits of 500 n.mi. the stationkeeping cycle time will vary from about
16 days to 96 days for a module 3 = 20 lb/ft2 at the extreme atmospheric condi-
tipoh (atnmophere Models i and 10 of Figure 3-10). The average stationkeeping
cycle time (Model 5 atmosphere) is 35.2 days.

When the possible variations in module /3 are considered, stationkeeping cycle
time variations are considerably greater since /3 values can vary by about 10 to 1
depending upon the orientation of the experiment module cylinder section and the
orientation of the solar panels to the relative wind.

Stationkeeping cycle time is a strong function of allowable space station to module
range. This relationship is plotted in Figure 3-18. Cycle tinme under average
atmospheric conditions (Model 5 atmosphere) is reduced from' about 35 to 15 days
when the stationkee:ping orbit is reduced from 500 to 100 n.mi.

Losses in experiment observation time are about four hours for the worst case
stationkeeping cycle for module orientation, thrusting, orbital transfer. re-
acquisition of the observation target, stabilization of sensors ani: initiation of
observation. Total available observation time per stationkeepinr cycle is about
99.5% for the 500 n.mi. range case (cycle time of 35 days) and 98.9% at 100 n.mi.
range (cycle time of 15 days).

3.2.3 ON-ORBIT TRANSPORTATION. Experiment modules must be either self-
propelted or be transported while on-orbit to:

a. Deliver the module from the lanmch vehicle to the space station.

b. Relocate experiment modules from one space station docking port to another.

c. Deliver modules to free-flight orbits and return modules to the space
station.

d. Provide station keeping velocity increments for maintenance of free-
flight orbits.
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Experiment module baseline designs have propulsive capability integral to the modules.
To evaluate the effectiveness of these designs, modules with integral propulsion were
compared with modules with no, or limited, propulsive capability.

The modules with reduced propulsion capability require auxiliary vehicles (i.e.,
space tug type spacecraft or transporters) for on-orbit module transportation. Trans-
portation concepts (integral module propulsion and transporters) comparisons were
nooaomplihod Oa tho bladi of goot, expsriment qroWth potontim., tiraot on epace sta-
tion, funding, flexibility and technical risk, and study results are presented in this
section.

3.2.3.1 Summary of Results. Both manned and unmanned transporters with storable
and cryogenic propulsion systems were evaluated. A CM-1 common module was used
as a transporter with a storable (N2 H4 ) propulsion system. The manned version of
this transporter requires additional life support equipment. The cryogenic (LO 2 &
LH2 ) transporter was patterned after a growth version of Centaur. Manned capability
was added by incorporating a CM-1 module as a crew compartment. These trans-
porters were selected because: (1) they are representative of the types of transporters
which may be developed, and (2) are vehicles which could be developed at the minimum
additional cost. CM-ltransporter development costs are largely accounted for when
the CM-1 module is developed for the experiment program, and the cryogenic trans-
porter development costs are less since the transporter is an evolution of the existing
Centaur vehicle.

A cost comparison of the experiment module program with unmanned and manned
CM-1 transporters is shown in Table 3-9. Similar cost information for the cryo-
genic transporter is presented in the text - program costs with a cryogenic transporter
are generally higher. Costs are presented as cost increments referenced to the base-
line transportation concept of propulsion integral to the experiment modules. Cost
increments for the module subsystem development and production are combined under
"subsystem deletions"; additional costs for module docking ports are tabulated under
"interface hardware"; transporter development and production costs are listed in the
adjacent column. Ten year operations' costs include the cost of boosting transporters
to orbit and on-orbit propellant costs; in the case of the manned transporter servicing
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Table 3-9. Transporter Trade Study

SERVICE IN SITU
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the free-flying modules, costs associated with in-situ servicing of the modules are
also included in the 10-year operations' column.

Experiment modules subsystem costs are decreased by sizable margins; particularly
for the attached modules where the reaction control system, stability and control sys-
tem, guidance and navigation hardware and a portion of the communications equip-
ment are deleted resulting in a $76.2M decrease in subsystem costs. All other cost
increments are positive (referenced to the baseline integral propulsion concept) re-
sulting in a net cost increase of $111. 2M when an unmanned transporter is used only
with the free-flying modules and a net cost decrease of $22.6M when an unmanned
transporter is used only with the attached modules. $22.6M is approximately 1% of
the total program cost. If an unmanned transporter were used with both the free-
flying and attached modules, the program cost increment would be the sum of the two
values (+$111. 2M & -$22:. 6M) for a net program cost of $88. 2M.

Net program costs areiigher when a manned transporter is used wi hthe experiment
rModules; cost increase _by $137. 7M with the free-flying modules an4d$35. 7M with the
attached modules. The increased net costs largely result from the4ncrease in trans-
porter development and production costs.

Study conclusions for the use of a transporter as part of the experimnit module
program are:

a. There is no conclusive cost advantage to the use of a transporter for experiment
module operations.

b. Transporter use may be advantageous for noncosted factors:

1. Reduction in contamination through in-situ servicing.

2. Growth missions to other orbits.

c. Maximum program flexibility is achieved with modules capable of operations'
independent of a transporter.

3. 2. 3.2 Transporter Concepts and Transportation Requirements. The approach
followed in this study was to first identify candidate transporter concepts. Next,
maneuver and velocity increment requirements were defined. The use of the trans-
porter with free-flying astronomy modules and with attached modules was then
evaluated separately. This was followed by evaluation of the candidate transportation
concepts for the total experiment module program and the study conclusions and
recommendations.

The candidate transportation concepts are sketched in Figure 3-19. Propulsion is
integral to the experiment modules in the baseline concept. This is consistent with
the current module conceptual designs. Both manned and unmanned versions of
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transporters with storable and cryogenic propulsion systems were evaluated. The
transporter with storable propellants is an adaptation of the CM-1 module; additional
life support equipment is included in the manned version of this module. Propellant
is N2 H4 with an Isp = 220 sec. This transporter minimizes additional development
costs assuming prior funding of the experiment module program. The cryogenic
transporter is a growth version of Centaur. Propellants are liquid hydrogen and oxy-
gen with an Isp of 454 sec. In the manned version a CM-1 module is used as the crew
oompartment.

Transportation requirements for the baseline (propulsion integral to the experiment
module) concepts are identified with the aid of Figure 3-20. The shuttle or an expend-
able booster delivers the experiment module to a 100 x 270 n. mi. orbit. The experi-
ment module then supplies the velocity increment necessary to circularize the orbit at
270 n. mi. altitude. The integral propulsion is also used for the rendezvous and dock-
ing with the space station, module relocation at the space station, module deployment
to their free-fly orbit, stationkeeping, and to return free-flying experiment modules to
the space station. Free-flying modules are deployed at the apex ofltheir free flight
parabola which is approximately 12 n. mi. ahead of the space station. Stationkeeping
velocity increments are. applied to keep the module-to-space station r nge at 500 n.mi.
or less.

An unmanned transporter is used to accomplish the maneuvers sketched in Figure
3-21. The transporter is initially docked at the space station and trmains there when
not in use. Following delivery of the experiment module to the 100-: 270 n. mi. orbit
the unmanned transporter is undocked from the space station and inser;ted into the
experiment module orbit where the transporter docks to the module. The transporter
is either controlled from the space station or its maneuvers are pre-programmed
except during docking operations which are accomplished with a closed loop automatic
control system. The transporter provides the impulse to circularize the experiment
module orbit at 270 n. mi. and also provides the impulse for rendezvous and docking
with the space station. Experiment modules are relocated at the space station by the
transporter and the velocity necessary to deploy and station keep experiment modules
are also provided by the unmanned transporter. Experiment module propulsion is only
used for attitude control. The transporter is stationed approximately 500 n. mi. ahead
of the space station and provides stationkeeping velocity increments to the modules as
they approach this position. It remains at this station unless required to return an
experiment module to the space station for periodic servicing.

A manned transporter can be used to accomplish a series of maneuvers identical to
those previously described for unmanned transporters. However, maintaining the
transporter crew in the stationkeeping orbit for extended periods or returning the crew
repeatedly to the space station from the stationkeeping orbit would place unnecessary
demands upon this transportation concept. A more efficient use of the manned trans-
porter is sketched in Figure 3-22.
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The initial delivery and relocation of experiment modules at the space station remain
identical to those of the unmanned transporter. However, the concept for delivery
and servicing of the free-flying modules differs. Modules are delivered to the apex
of the stationkeeping parabola and modules are serviced in-situ in the near vicinity of
apex. Experiment module propulsion is used for stationkeeping velocity increments
at the 500 n.mi. range point.

3.2.3.3 Free-F ying Astronomy Modules. Characteristics of the 5 astronomy experi-
ments and experiment modules are listed in Table 3-10. Stationkeeping cycles are
based in the CIRA 65 Model 5 atmosphere -- an average atmospheric model. Station-
keeping cycles were established using this atmosphere model and the indicated module
ballistic coefficient (g) for free-flight parabolic orbits with a maximum range of 500
n. mi. from the space station. The indicated weights are for the baseline experiment
modules designs prior to modification for transporter interface.

Velocity increments used for the evaluation of transporter propellant requirements are
summarized in Table 3-11. The 12 n. mi. orbit transfer is used -for the baseline trans-
portation concept and the manned (in-situ servicing) transporter concept. The 500 n.
mi. transfer is used for deploying free-flying modules with an unmanned transporter.
Transfers in two orbital periods for the 12 n. mi. case and eight periods for the 500
n. mi. case were selected on the basis of a trade study between the;cost of added pro-
pellants for more rapi4Jtransfers versus the cost of lost experiment time and addition-
al crew time. An out-of-plane velocity increment of 6 fps is applfed as free-flying
modules are delivered and returned from their stationkeeping orbit sto provide
additional separation between on-orbit modules. '~:

These velocity increments are combined to obtain velocities for total maneuvers as
shown in Table 3-12. Velocity increments for the baseline case, where propulsion is
integral to the experiment module, are considerably less than those for the manned
and unmanned transporters. This is the result of the additional maneuvers which the
transporter must accomplish to move into position to transfer the experiment module
and the added maneuvers to return the transporter to its docking port at the space sta-
tion. As an example, consider the relocation of an experiment module from one
space station docking port to another. For the baseline case this requires that the ex-
periment module be undocked (10 fps) and then docked (20 fps) for a total velocity
increment of 30 fps. For the manned and unmanned transporter cases the transporter
is undocked (10 fps) and docked to the experiment (20 fps). The transporter then un-
docks the experiment module (10 fps) and docks the experiment module to the new port
(20 fps). The transporter must then undock from the experiment module (10 fps) and
dock again to the space station (20 fps) for a total velocity increment of 90 fps. The
obvious advantage of reducing experiment module weight and costs by removing pro-
pulsion and control system components is, at least partially, cancelled by the greater
velocity necessary to accomplish the maneuvers.
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Table 3-10. Astronomy Experiment Characteristics

STATION EXPERIMENT
LAUNCH WEIGHT 2 KEEPING SERVICE

FPE TITLE YEAR (b) lb) lb/ft CYCLE* (days) CYCLE (days)

5. 1

5.2A

5.3A-1

5. 3A-2/3

5. 5

X-RAY

STELLAR

SOLAR I

SOLAR II

HI-ENERGY

N

N+4

N+3

N+3

N+2

21,600

26,800

21,880

13,365

23,470

20'

18

23

23

8

^ 35.2

33.4

37.8

37.8

22.4

60

60

60

30

30
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Table 3-12. Transportation Requirements Free-Flying Astronomy Modules

AV (FPS)
BASE LINE UNMANNED MANNED

TRANSPORTATION (INTEGRAL TRANSPORTE R TRANSPORTER
OPERATION PROPULSION) (IN-SITU SERVICING)

DELIVER MODULE FROM
BOOSTER TO SPACE STATION 385 800 800

RELOCATE MODULE AT SPACE
STATION 30 90 90

TRANSFER MODULE TO STATION
KEEPING ORBIT 18 126 86

IN-SITU SERVICING -- -- 76

RETURN MODULE FROM STATION
KEEPING ORBIT FOR SERVICING 28 136 --
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Both releasable and captive transporters as sketched in Figure 3-23 were considered.
The releasable transporter docks to one end of the experiment module. A second
docking port is required on the opposite end of the experiment module for docking with
the space station. This requires the addition of a second docking port to all modules
with the obvious increases in weight and cost. The captive transporters concept re-
quires that the transporter simultaneously interface with the experiment module and
the space station whenever the module is stationed at the space station. The captive
transporter concept must have an internal passageway for manned access (IVA) to the
intariOr of the oxpartmnnt trdilo. Thti is not posablQo with tho typo of oryogonio
transporter hypothesized for this analysis. Since the captive transporter is not avail-
able to service other modules while it acts as an interface between one module and the
space station, additional captive transporters are required.

Modifications of the free-flying astronomy modules for use with the releasable trans-
porters include the addition of a second docking port and a shell structure to support
the second docking port,- This type of installation is shown in Figure 3-24. The sec-
ond docking port is added at the telescope aperture end of the module and is hinged so
the mechanism can be rotated away from the aperture during experimental periods.
Module weight is increased by approximately 2600 pounds when the second port is
added. Access for placement of sun shades, thermal tubes and figure sensors is also
constrained by the shell structure.

A portion of the reaction control system can be deleted from the experiment modules
when a transporter is used. The transporter then serves as the b%40'up RCS. The
primary RCS is still required to back up the control moment gyros Y Propellant can
also be off loaded in the amount of about 590 pounds. The weight of the removed back-
up RCS is 390 pounds for a total reduction of 980 pounds.

Program cost increments for a 10-year operations period of the five CM-1 free-flight
modules transported by an unmanned transporter are shown in Table 3-13. Cost in-
crements are referenced to the baseline transportation concept with propulsion integral
to the experiment modules. Transporters supply all velocity increments including
stationkeeping. Experiment module DDT&E and production costs are reduced (by
$10. 2M and $1. OM, respectively) due to the elimination of the backup RCS. However,
in the case of the releasable transporter, interfaced hardware costs (those additional
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Table 3-13. Program Cost Increments Unmanned Transporters Servicing the Astronomy Modules

* COSTS REFERENCE TO PROPULSION
INTEGRAL TO MODULES (BASELINE)

* TRANSPORTERS PROVIDE ALL
VELOCITY INCREMENTS

I- _ _ 50 N. MI. ___ _
[... ......... 560 Dr.' Mi.'-_-......

o

Cn
o~

INCREMENTA L COSTS ($1, 000, 000)
TOTAL-WITH (W/O) TRANSP.

INTERFACE 10-YEAR (W/O) DDT&E DDT&E

ITEM DDT&E PRODUCTION HARDWARE OPERATIONS OR PROD. & PROD.

CM-1 XMODS (5) - 10.2 - 1.0 +16.4 0 + 5.2 + 5.2
+

CM-1 TRANSP. (1) + 31.1 +13.6 0 +61.3 +61.3 +106.0

PROGRAM
RELEASABLE TRAN. + 20.9 +12.6 +16.4 +61.3 +66. 5 +111.2

CAPTIVE TRANSP. + 20. 9 +12. 6 0 4 61. 3 +50.1 + 94. 8

CM-1 XMODS (5) - 10.2 -1.0 -: 4 0 + 5.2 + 5.2

CRYO TRANSP. +365. 0 +13.0 0 + 8.6 + 8.6 +386. 6

PROGRAM +354. 8 +12.0 +16.4 + 8.6 +13.8 +391.8

0

0
0

:0
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costs associated with the second docking port) are increased by $16.4M. Total cost
increments are shown with and without transporter development and production costs.
The total without DDT&E and production costs corresponds to the case where a
transporter is both developed and produced at no cost to the experiment module
program - costs are attributable to other sources of funding. Ten-year operation
costs included module delivery cost, cost of fuel for on-orbit servicing and station-
keeping, and the cost of boosting the transporter to orbit twice during the 10-year
operating period. Booster costs are computed at $4.M per launch and transporter
propellant costs at $250 per pound. The top portion of the chart contains cost inere-
ments for the storable CM-1 transporter. Costs with the cryogenic transporter are
shown in the lower portion. Costs between the releasable and captive CM-1 trans-
porter program differ by the interface hardware value of $16.4M. Only releasable
transporter costs are shown with the cryogenic transporter since a captive transporter
is not possible with the hypothesized configuration. This chart shows that program
costs are increased in all cases when an unmanned transporter is used to provide
velocity increments for the free-flying modules. The cost increases vary from a
minimum of $13. 8M for the case where a cryogenic transporter ifs developed and pro-
duced at no expense to the experiment module program to $111.2M when a CM-I
releasable transporter is developed, produced and charged to the experiment module
program. The maximum cost increases $391. 8M when the cryogenic transporter is
developed. produced ild charged to the program. Captive transl~orter total costs do
not include the cost of producing at least one additional transporter.,

Manned transporters are used in an in-situ servicing mode. The: are two consider-
ations which, although difficult to quantify may, at some later date, prove to be of
major importance. First, in-situ servicing offers the possibility of reduced experi-
ment sensor exposure to contamination and radiation. Second, in-situ servicing
will probably be limited in flexibility, capability and/or quality of servicing.

Crew hours and experiment down time are important considerations which can be
quantified. Table 3-14 summarizes the servicing timeline, crew hours required
for servicing and experiment down time for a typical service cycle of the baseline
concept (servicing at the space station), and for the in-situ servicing case. Total
servicing time is 0.8 hour longer for the in-situ case, but experiment down time is
reduced by 4.2 hours per service cycle. Crew hours are increased from 38.7 hours
for the baseline to 68.4 hours for the in-situ case. This is the result of manning the
transporter with two men and requiring that a third crew man monitor the status of
the transporter and its crew from the space station.

Experiment down time and crew hours are converted into costs in Table 3-15. Down
time costs are computed at the rate of $1500/hour and manhour costs at the rate of
$1000/hour.
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Table 3-14. In-Situ Servicing Considerations

o REDUCES EXPOSURE OF EXPERIMENTS TO CONTAMINATION AND RADIATION

* LIMITED SERVICING CAPABILITY AND FLEXIBILITY

OPERATION

TRIP TO SERVICE LOCATION

PRE-SERVICE

SERVICE

POST-SERVICE

RETURN TO STATION

TOTAL

TIME
(HRS)

2.5

2.5

8.0

6.2

2.8

22.0

BASE LINE
CREW
SIZE
(MEN)

1

2

2

2

1

CREW
HOURS

(MAN-HRS)

DOWN
TIME
(HRS)

2.5 2.5

5.0 2.5

16.0 8.0

12.4 6.2

2.8 2.8

:38.7 22.0
.' .

IN-SITU
i CREW CREW DOWN

TIME SIZE HOURS TIME
(HRS) (MEN) (MAN-HRS (HRS)

2.9

2. 5

8.0

6.9

2. 5

22.8

3

3

8. 7

7. 5

24.0

20.7

7.5

68.4

.4

2. 5

8.0

6.9

0

17.8

9
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Table 3-15. In-Situ Servicing Cost Increments

SERVICING CONCI

F.
IN-SITU

BASE LINE

INCREMENT PER

SERVICE CYCLE

YEAR **

10-YR PROGRAM

EXPERIMENT DOWNTIME CREW HOURS

EPT HOURS COST ($ x 106) * MAN- HRS 1 COST ($ x 106)*

17.8 .0267 68.:4 i ,.0684

22.0 .0330 38.7 .0387

.~~~~~~~~_ _ _~~ ..... ._ _~_ . ._ .... ._ .__ .

-4.2

-176.

-1,760.

-. 0063

-. 265

-2.65

+29.7

+1,247.

+12,470.

+.0297

4+1.247

+12.47
. ... . .. _.

DOWNTIME +
MANPOWER COSTS ($ x 106)

.0951

.0717

+.0234

+.982

+9.82
.... .. . . .. . _ ._ . _ _ .A*~~~~~~~~

* DOWNTIME COST AT $1,500/HR: MAN-HOURS AT $1,000/MAN-HOUR

** TOTAL OF 42 CYCLES FOR FIVE MODULES

o
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Cost increments are referred to the baseline space station servicing case and are
shown per service cycle, per year with a total of 42 service cycles, and for the
10-year program. The effect is to increase costs by $9.82M when experiment mod-
ules are serviced in-situ rather than at the space station.

Cost increments over the 10-year operating period are summarized in Table 3-16
for the manned transporter servicing the astronomy modules in situ. The format of
this table is identical to that of Table 3-13. The manned transporter delivers experi-
ment modules to the apex of the stationkeeping parabola; in-situ servicing is accom-
plished in the near vicinity of the stationkeeping parabola apex. Experiment module
RCS is used for stationkeeping velocity increments. The additional cost associated
with in-situ servicing of $9. 8M is tabulated under the 10-year operations column for
the experiment modules. Transporter operation cost increments are reduced from
those ($61. 3M to $20. 7M) of the unmanned transporter. This is a result of the trans-
porter being used only for transportation to and from the apex of the stationkeeping
parabola rather than to the 500 n. mi. range. However, transporter DDT& E and
production costs increase significantly due to the addition of the manned capability.
Manned capability is provided for the cryogenic transporter by adding a CM-1 module.
Total costs increase when a manned transporter services the astronomy modules
from a minimum of $1~M when the cryogenic transporter is developed and produced
at no expense to the experiment module program to a maximum of 475. 6M when the
cryogenic transporter i's developed, produced, and charged to the pOgram.

Table 3-17 contains a summary of the evaluation of manned and unmanned transporters
for use with free-flying astronomy modules. Only releasable transporters are con-
sidered in this summary so that both storable (CM-1) and cryogenic (growth version
of Centaur) transporters can be compared. Where significant variations would occur
with a CM-1 type captive transporter the differences are pointed out in the text.
Preferred characteristics are enclosed by heavy dark lines. Note that the baseline
characteristics are preferred in all cases with one exception - the propellant required
per year. Ten-year program costs are lowest for the baseline (by $111. 2M if
DDT& E and production costs are included and by as little as $13. 8M if these costs
are borne by another program). Use of a captive transporter increases CM-1 trans-
porter costs by the value of at least one transporter. Experiment growth capability
is evaluated for the weight critical experiment (FPE 5. 2 - Stellar Astronomy) and in
terms of the volume available for experiment expansion. In both cases the baseline
propulsion concept is preferred. If a captive transporter were used, experiment
growth would be the same for the baseline and the transporter cases. The number of
space station ports necessary is least for the baseline and for the manned transporter
cases. Propellant supplied by the space station to the transporter is minimum for
the manned cryogenic transporter. However, this is at least partially balanced by the
need to store cryogenic propellants rather than storable propellants. Funding flexi-
bility measures the additional funds required above those attributable to the astronomy
experiment modules when transporters are used. The baseline case requires the
minimum funds and hence is the most flexible and most desirable concept. Technical
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Table 3-16. Ten Year Cost Increments of Manned Transporters
For In-Situ Servicing of the Astronomy Modules

o COSTS REFERENCED TO PROPULSION
INTEGRAL TO MODULES (BASELINE)

* MODULE RCS PROVIDES STATION
KEEPING

0

Oi

I

INCREMENTAL COSTS ($1, 000,000)
TOTAL-WITH (W/O) TRANSP.

INTERFACE 10-YEAR (W/O) DDT&E DDT&E '

ITEM DDT&E PRODUCTION HARDWARE OPERATIONS OR PROD. & PROD..

CM-1 XMODS (5) - 10.2 - 1.0 +16.4 +9.8 +15.0 + 15.0
+

CM-1 TRANSP. (1) + 85.1 +16.9 0 +20.7 +20.7 +122.7

PROGRAM
RELEASABLE TRANS. + 74.9 +15.9 ~ +16.4 +30.5 +35. 7 +137. 7

CAPTIVE TRANSP. + 74.9 +15.9 0 +27.8 +19.3 +121.3

CM-1 XIMODS (5) - 10.2 - 1. 0 +16.4 +9.8 +15.0. + 15.0
+

CRYO TRANSP. (1) +432. 7 +27. 9 0 0 0 +460. 6

PROGRAM +422.5 +26.9 +16. 4 +9.8 +15.0 +475. 6

C~
0

0
0

c~!

-q
o
I
o
o
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Table 3-17. Evaluation Summary of Astronomy Modules With Releasable Transporters

BASELINE- UNMANNED TRANSPORTERUNMANNED TRANSPORTER
MODULE (IN-SITU SERVICING)

ITEM PROP ULSION CM-1 CRYOGE NIC CM-I C RYOGE NIC

ACOST ($1, 000, 000)
WITH DDT&E & PROD. -- +111.2 ..... +391.8 +137.7 +475.6
W/O DDT&E OR PROD. -- + 66.5 + 13.8 + 35.7 + 15.0

EXPERIMENT GROWTH
WEIGHT - FPE 5.2 (LB) 26,800 28,470 28,470 28,470 28,470
VOLUME GOOD LIMITED* LIMITED* LIMITED* LIMITEDI

SPACE STATION IMPACT
DOCKING PORTS N N + 1 N + 1 N N
PROPELLANT (LB/YR) 6,250 28,120 7,040 11,920

FUNDING FLEXIBILITY ;
PROGRAM A($ x 106) -- +111.2 +391.8 +137.7 +475.6

TECHNICAL RISK + A's
MODULE COMPLEXITY NO YES YES YES YES
TRANSPORTER NO · .. SYES YES YES
MAN-IN-TRANSPORTER NO O NO YES YES
CRYOGENICS NO NO YES NO YES
REMOTE DOCKING NO YES YES NO NO

*LIMITATION ON SUN SHADE, THERMAL TUBES & FIGURE SENSOR
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risks are also minimum for the baseline case, although several transporter concepts
are also equally preferred. Module complexity is lowest for the baseline case since
the second module docking port is not necessary. This technical risk would be equal
for all concepts if captive transporters are considered. If the experiment module
program is dependent upon a transporter, all the technical risks to which the trans-
porter is subjected must be shared by the experiment module program. A similar
situation exists if man is essential to the experiment module transporter. If cryo-
genic propellants are used, the experiment module must share the technical risks of
storing, tiansforrings and venniting rtyogatin1w during long periods in space. Remote
docking, where both vehicles are unmanned, introduces a technical risk with the
unmanned transporter. The baseline and manned transporters do not suffer in this
category.

This analysis leads to the following conclusions for the use of transporters with the
free-flying modules.

a. The use of a transporter is not justified on the basis of cost,

b. Technical risk is lowest and program flexibility greatest with propulsion integral
to each experiment module.

c. In-situ servicing is not justified on the basis of cost but may Je desirable to
reduce experiment exposure to contamination.

It is recommended that the CM-1 design be retained as it is (the Bseline configura-
tion) with: !:

a. Free flying capability

b. Single docking port

c. Compatible with transporters but not dependent upon transporters for accomplish-
ing the baseline experiment module program.

3.2.3.4 Attached Modules. Experiment characteristics and transportation require-
ments for the attached modules are summarized in Table 3-18. This summary shows
the common module type assigned to each FPE, launch year, and the weight of the
module including the experiment equipment for the baseline case where propulsion is
integral to the experiment module. Only two transportation operations are necessary:
delivery from the booster to the space station and relocation of the modules at the
space station.

Since no experiment module propulsion or stability and control systems are necessary
when a transporter is used, some sizable reductions in experiment module subsystem
weight and, hence, cost are possible. All of the stability and control and RCS com-
ponents can be deleted as can all of the guidance and navigation equipment except for
the reflector cube. Figure 3-25 shows the breakdown of these hardware elements.
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Table 3-18. Experiment Characteristics and Transportation

Requirements, Attached Modules

LAUNCH WEIGHT

FPE TITLE MODULE YEAR (LB) TRANSPORTATION OPERATION A V (F P S)

5.8-1 COSMIC RAY I CM-3 N - 4 16,870

5. 8-2 COSMIC RAY II CM-3 N + 4 30, 580

DELIVIER MODULE FROM 385*
5.9/10 BIOLOGY I & II CM-3 N 18, 275 BOOSTER TO SPACE

BOOSTER TO SPACE

STATION (800)**
5.16 MATL. SCI. CM-3 N + 1 20,495

5.20-1 FLD. PHY. I CM-3 N 13,456

5. 11 EARTH SCI. I CM-4 N 25, 640

RELOCATE MODULE AT 30*

5. 12 RMS CM-4 N + 2 22, 025 SPACE STATION ONCE

EACH TWO YEARS (90)**

5.22 COMP. TEST CM-4 N + 1 23,615

5.13C CENTRIFUGE CM-4 N 23,510

* BASE LINE

** WITH TRANSPORTER

0
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REMOVE RCS PROPELLANT

r REMOVE RCS THRUSTERSI

ADD SECOND DOCKING PORT FOR
FPE'S 5.8 - 1, 5. 9/10, 5.11, 5.12,
5. 13C (+400 TO 1600 LB)

DELETIONS:

REMOVE SELECTED
SUBSYSTEMS

STABILITY & CONTROL - 70
GUIDANCE & NAVIGATION - 56
REACTION CONTROL -868
COMMUNICATIONS (PARTIAL) - 40
TOTAL HARDWARE -1 034

RCS PROPELLANT

TOTAL

Figure 3-25. Attached Module Modifications
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Hardware weight can be reduced by 1034 pounds. An additional 1920 pounds of pro-
pellant can be removed for a total weight reduction of 2954 pounds. A second dock-
ing port must be added when attached modules are used with releasable transporters.
Captive transporters are not considered since an additional transporter would be
required for each experiment module. A second docking port increases module
weight by 400 pounds (where experiment module designs already have a flat bulkhead
to which the second port can be attached) to 1600 pounds (where a support structure
is necessary to accommodate a second docking port attached to the centrifuge
on oluro).

Ten-year program cost increments are summarized in Table 3-19 for the attached
module program with unmanned storable (CM-1) and cryogenic transporters. Costs
are referenced to the baseline transportation concept with propulsion integral to the
experiment module. Deletion of subsystem components reduces DDT&E and produc-
tion costs significantly for the five CVI-3 and four CM-4 modules. After including
CM-1 transporter DDT& E costs, program DDT& E costs are still reduced by $46. 1M.
Interface hardware costs are increased by $7. OM as a result of the second docking
port and operations costs increase by $15. 5M. The net result is a reduction in pro-
gram cost of $22. 6M after including the cost of developing and producing the CM-1
transporter. If transporter development and production costs are not assignable to
the experiment module program, a reduction in program cost of $61. 6M results for
the cryogenic transporter<. With development and production costs assignable to the
experiment module program, program costs with the cryogenic transporter are
increased by $316.4M.

When a manned transporter is used to deliver and relocate attached modules, the
added costs of developing and producing the manned transporter exceed the reduc-

tions in common module development and production costs as shown in Table 3-20.
If development and production costs are assignable to the experiment module pro-
gram, program costs are increased by $35.7M with CM-1 transporter and by $402.3M
with a cryogenic transporter. Without development and production costs, total pro-
gram costs are reduced by $52.7M when the CM-1 transporter is used and $58. 3M
when the cryogenic transporter is used. The crew is carried within the CM-1 module
when the cryogenic transporter is manned.

The evaluation of transporter use with attached modules is summarized in Table 3-21.
Cost, funding and technical increments are referenced to the baseline transportation
concept. Preferred characteristics are again enclosed in heavy dark lines. Minimum
10-year program costs are obtained with the use of an unmanned transporter. Costs
are reduced by $22.6M when DDT&E and production costs of a CM-1 transporter are
assignable to the experiment module program. Costs are reduced by $61. 6M when
cryogenic transporter DDT&E and production costs are not included. Experiment
growth capability is measured in terms of weight critical experiment (FPE 5.8 -
Cosmic Ray) and available volume internal to the common module. Both of these

items are improved when transporters are used as a result of subsystem deletions.
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Table 3-19. Ten-Year Cost Increments Attached Modules with Unmanned Transporters 0
CD

114
INCREMENTAL COSTS ($1, 000 000)

TOTA L-WITH (W/O) TRANSP.
INTERFACE 10-YEAR (W/O) DDT&E DDT&E

ITEM DDT &E PRODUCTION HARDWARE OPERATIONS OR PROD. & PROD.

.,."'?

CM-3 XMODS (5) - 35.2 - 7.7 +2.6 0 -40.3 - 40.3

CM-4 XMODS (4) - 28.4 - 4.9 +4.4 0 -28.9 - 28.9

CM-1 TRANSP. (1) + 17.5 +13.6 0 +15.5 +15.5 + 46. 6

PROGRAM - 46.1 + 1.0 +7.0 +15.5 -53.7 - 22.6

CM-3 XMODS (5) - 35.2 - 7.7 +2.6 0 -40.3 - 40.3

CM-4 XMODS (4) - 28.4 - 4.9 +4.4 0 -28.9 - 28.9

CRYO.TRANSP. (1) +365. 0 +13.0 0 + 7.6 + 7.6 +385. 6

PROGRAM +301.4 + 0.4 +7.0 + 7.6 -61.6 +316.4

O
0
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Table 3-20. Ten-Year Cost Increments Attached Modules with Manned Transporters

(D
.C

INCREMENTAL COSTS ($1, 000, 000) _-

TOTA L-WITH (W/O) TRANSP.
INTERFACE 10-YEAR (W/O) DDT&E DDT&E

ITEM DDT&E PRODUCTION HARDWARE OPERATIONS OR PROD. & PROD.

CM-3 XMODS (5) - 35.2 - 7.7 +2.6 .. 0 -40.3 - 40.3

CM-4 XMODS (4) - 28.4 - 4.9 +4.4 0 -28.9 - 28.9

CM-1 TRANSP. (1) + 71. 5 +16.9 0 +16.5 +16.5 + 104. 9

PROGRAM + 7,9 + 4.3 +7.0 +16.5 -52.7 + 35.7

CM-3 XMODS (5) - 35.2 - 7.7 +2.6 0 -40.3 - 40.3

CM-4 XMODS (4) - 28.4 - 4.9 +4.4 0 -28.9 - 28.9

CRYO TRANSP. (1) +432. 7 +27. 9 0 +10.9 +10. 9 +471.5

PROGRAM +369.1 +15.3 +7.0 +10.9 -58.3 +402.3

0
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Table 3-21. Evaluation Summary for Attached Modules
0

(DBASE LINE-
ASEMODULE UNMANNED TRANSPORTER MANNED TRANSPORTER
MODULE .. ........

ITEM PROPULSION CM-1 CRYOGE NIC C M-1 CRYOGE NIC

ACOST ($1,000,000)
WITH DDT&E & PROD. 0 -22.6 +316.4 +35.7 +402.3

W/O DDT&E OR PROD. 0 -53.7 - 6 .61. -52.7 - 58.3

EXPERIMENT GROWTH
FPE 5.8-2 WEIGHT (LB) 30,580 28,030 28, 030 28,030 28,030

VOLUME ADEQUATE IMPROVED IMPROVED IMPROVED IMP ROVED

SPACE STATION IMPACT
DOCKING PORTS | N +1 N +1 N +1 N +1

PROPELLANT (LB/YR) 1,240 4,230 1,090 4,650 2,430

FUNDING FLEXIBILITY * .I

PROGRAM A ($ x 106 ) 0 +487.4 +316.4 +559.3 +912.3

TECHNICAL RISK + A's
MODULE COMPLEXITY UNCHANGED REDUCED REDUCED REDUCED REDUCED

'REMOTE DOCKING NO YES YES NO NO

TRANSPORTER NO .YES - YES YES YES

MAN-IN-TRANSPORTER NO NO - NO YES YES

CRYOGENICS NO NO YES NO YES.
_ -- -

*ABOVE ATTACHED MODULE ONLY PROGRAM
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The number of required space station docking ports is minimum with the baseline
concept. Propellant resupply requirements per year are minimum for the unmanned
cryogenic transporter but only slightly less than that of the baseline case. Funding
flexibility is greatest (minimum dependency on funding of programs above that for the
attached module program) for the baseline. Module complexity technical risk is
minimum when module subsystems are deleted for use with the transporters. The
other technical risks are minimum for the baseline transportation concept where
propulsion is integral to the experiment modules.

The following conclusions are derived from the analysis of transporters with attached
modules.

a. Attached module program costs are reduced with a CM-1 transporter.

b. Additional weight and volume capability is provided with the use of the
transporter.

c. Funding flexibility is reduced if module design is dependent on transporter use.

d. Technical risk and required number of docking ports are minimum for the base-
line propulsion corcept.

3. 2. 3.5 Program Conclusions and Recommendations. Total experiment module pro-
gram cost increments referenced to the baseline integral experimen:'module propul-
sion concept are shown in Table 3-22. Costs are shown for a transporter used with
both attached and free-flying modules and for a transporter used on With attached
modules. When transporter DDT&E and production costs are assignable to the experi-
ment module program, use of the transporter increases program costs by a minimum
of $43. 9M with an unmanned CM-1 transporter. If the transporter is used only with
the attached module program, costs with the unmanned CM-1 transporter are reduced
by $22. 6M when transporter development and production costs are included. Program
costs are reduced by $61.6M when development and production costs of an unmanned
cryogenic transporter are not assignable to the experiment module program.

Conclusions for the use of a transporter with the total experiment module program
are:

a. Costs are reduced by $22. 6M (including transporter, DDT&E and production
costs) in the case where attached experiment modules are only used with a
unmanned CM-1 transporter.

b. When experiment modules are dependent upon a transporter,

1. Operational flexibility is reduced since the capability for module self-
propulsion is deleted or reduced.

2. Funding flexibility is reduced since additional funds above those required
for the basic experiment module program must be allocated.
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Table 3-22. Program Cost Evaluation
0

ED

COST INCREMENT

TRANSPORTER FOR ATTACHED
& FREE-FLYING MODULES

UNMANNED

($ x 106)

CM-1 TRANSPORTER

WITH DDT&E & PRODUCTION + 43.9

W/O DDT&E OR PRODUCTION + 12.8

CRYOGENIC TRANSPORTER

WITH DDT&E & PRODUCTION + 330.2

W/O DDT&E OR PRODUCTION - 47.8

_~~~~~~~~~~~~~~~~~~~~~~ _ -_ .._ __

VIANNED*

$ x 106)

+ 71.4

- 17.0

TRANSPORTER FOR
ATTACIIED MODULES ONLY

UNMANNED MANNED*
($x 106) ($x 106)

- 22.6

- 53. 

+ 35.7

- 52.7

+ 486.5 + 316.4. + 471.5

- 43.3 - 61.6 - 58.3
. _ . . ........... _ _ ...... . . . . _ . ... . .. _ . . _ _ . _ _ j~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1

* IN-SITU SERVICING
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3. Technical risk is increased since the transporter hardware concepts have
not been thoroughly flight proven.

It is recommended that the experiment modules be designed to:

a. Retain experiment module docking compatibility with transporters which is avail-
able in the baseline module designs through a single docking port.

b. Operate independently of transporters for the baseline missions by using pro-
pulsion integral to the modules as provided in the baseline designs for on-orbit
transportation.

c. Maintain maximum funding flexibility by minimizing experiment module depend-
ency on transporter programs and thereby minimize the impact of redirection of
funds for other programs on the experiment module program.

3.2.4 SPECIAL EXPERIMENT FLIGHT MISSIONS. One of the experiment FPEs
other than the astronomy experiments contain experiments that are operated in the
detached free-flying mode:

FPE 5.20 (Fluid Physics) is operated detached to achieve the sustained g level
(10-6 to 10- 3 g) conditions required to meet experiment objectivens.

The relative flight paths and performance requirements of these det:p1ed operations
are presented in the following paragraphs.

3. 2.4. 1 Elevated g Level Experiments. Fluid physics experiments require sustained
levels of 10- 3 to 10

-
g for periods from two to 1000 hours, while maintaining prox-

imity to the station for communication and data transmittal. Achieving these by
thrusting or other means must be accomplished in a manner that does not result in
transferring the module to a significantly different orbit. Another requirement is
that dynamic perturbations, gravity gradients, and other accelerations be kept to a
very low level - not to exceed 10% of the experiment g-level. Several methods have
been considered as shown in Figure 3-26.

a. Orientation of both the module and thrust held constant in inertial space. This
produces an outward spiral flight path that is acceptable for low g-levels but
creates excessive distances for higher g-levels.

b. Constant centripetal thrust, or tethered module. Module is placed in an outer
orbit and thrust force (or tether tension) is applied. When altitude and thrust
are properly selected, the module and station will rotate at the same angular
rate. This results in an earth-oriented experiment that produces one module
revolution per orbit. The resulting gravity gradient within the module appears
within acceptable bounds for higher g-level experiments, but outside the limits
for lower-g experiments. The tether mode is attractive from a propellant sav-
ings standpoint, but needs in-depth analysis of the effects of perturbations.
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CONSTANT INERTIALLY ORIENTED THRUST
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Figure 3-26. Alternate Flight Modes for Sustained g Level Experiments
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c. Apply constant thrust normal to the orbital plane. This method appears to pro-
duce no significant body-originated perturbations and is a candidate for all
g-levels.

These various methods provide a choice of conditions to the experimenter regarding
orientation and level of perturbation.

Tables 3-23 and 3-24 list the sustained-g flight and AV requirements for experiment
implementation using propulsive methods to achieve the required g levels. The FE;P
5.20 Fluid Physics experiments are organized in this table in three groupings:
5. 20-2, -3 and -4 representing short term non-cryogenic, and medium and long term
cryogenic experiments, respectively.

Table 3-23 identifies g levels, flight times and AV values per flight for each of the
FPE 5. 20-2, -3, and -4 sub-experiments. The number of separate flights required
at each of the g levels is identified in Table 3-24 along with the total AV required for
that sub-experiment (i. e., 5. 20. 4-1) and for that FPE (i. e., 5-20-2). After each
of the flights the experiment module is returned to the space station for experiment
modification, recovery ofdata, or to replenish test fluids, propellants, or other
expendables. Forty flights are required for FPE 5. 20-2 and a total AV of 4216 fps is
expended. FPE 5. 20-3 requires 25 flights and a A V = 5897 fps is developed. Ten
flights are necessary to,accomplish FPE 5.20-4 and a A V = 11, 05q fAps is expended.

3.2.5 ALTERNATE ORBITS FOR ASTRONOMY MODULES. Astroniomy modules
baseline designs are based on the assumption that experiments will i, :accomplished
in or nearly in the space station orbit. However, some experimenttthiditions might
require that astronomy modules operate in an orbit which is different from that of the
space station. The module is returned to the space station for periodic servicing in
these cases.

The question that arises then is should the capability for positioning the modules in
a different orbit, and returning them to the space station for servicing be incorporated
into module designs, or should this capability be provided by a space tug.

3.2.5.1 Candidate Orbits. The baseline orbit for module design is identical to that
of the space station - 270 n.mi. circular x 550 inclination. Experiment programs
which may benefit by operations in other orbits are:

Experiment Potential Alternate Orbit

Solar Astronomy Sun synchronous for continuous viewing.
All Astronomy High altitude ( 300 n.mi.) to avoid viewing interruptions

for orbit maintenance.
Stellar Astronomy Very high altitude to reduce earth occultation, for contin-

uous ( 1 orbit) viewing.
X-Ray Astronomy Equatorial or low inclination to avoid high radiation areas

(South Atlantic Anomaly).
Earth Observations Polar orbit for global coverage.
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Table 3-23. Fluid Physics Experiments AV Requirements Per Flight Per g Level

THRUSTING TIME & AV REQUIREMENTS PER FLIGHT
FPE EXPERI- 10-3 g 10-4 g i 10-6 g TOTAL

GROUPING MENT TIME AV I TIME ,XV TIME AV TIME AV AV (FPS)
NO. (HRRS) (FPS) (HRS) (FPS) (HRS) (FPS) (IIRS) (FPS) PER FLIGHT

5.20-2 5.20.4.1 0.27 31.4 0.27 3.14 0.27 0.314 35

5.20.4.4 1.14 132 ' I : 132

j 1.44 167 i 167

5.20.4.3 1.47 171 i 1.47 17.1 1.47 0.17 188

5.20.4.7 2.0 232 .i 2.0 2.32 234

1.0 116 1.0 1.0 1.16 117

5.20.4.8 , ! 1.04 12 12

2.76 32 . 32

5.20.4.6 0.5 58 I 0. 5 .058 58

5.20-3 1 5.20.4.2 17.8 -12064 33.5 389 144 167 51.B 6 2626 in
(In 5 Flights) (In 2 Flights) (In 4 Flights) (In 2 Flights) 13 flights

5.20.4.9 1.65 192 1 192
1.65 19.2:, .,. 20

, '1.-65 1.92 2
5.20.4. 12 7.0 812 8 i 1 812

80.0 928 i 1 928
120 139 139

5.20.4 5.20.4.10 ' 50.0 580 580
i 10 1160 I 1160
12.2 1417 1417
1.15 134 100 1161 1295
5.4 626 476 552 2000 232 1410
0.5 58 5.0 58 116

l l , l l~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Table 3-24. Fluid Physics Experiments. AV Requirements - Total

Uadocking, Total
FPE Expt. Number of Sustained G Flights & Docking AV Expt. AV

Grouping No. x AV Requirements per Flight (fps) per Flt(fps) (fps)

5.20-2 5.20.4.1 13 x 35* 30 I 845

5.20.4.4 4 x 132; 1 x 167 30 I 845

5.20.4.3 4 x 188* 30 872

5.20.4.7 2 x 234; 2 x 117 30 822

5.20.4.8 7 x 12; 3 x 32 30 480

5.20.4.6 4 x 58* 30 352

(5.20-2 Total) (3,896)

5.20-3 5.20.4.2 1 x 348; 1 x 1090; 1 x 25; 1 x 278; 1 x 86; 1 x 14; 1 x 232; 30 3,016
1 x 303; 1 x 12; 1 x 4; 1 x 2; 2 x 116

5.20.4.9 3 x 192; 3 x 20; 3 x 2 30 912

5,20.4.12 1 x 812; 1 x 928; 1 x 139 30 1,969

(5.20-3 Total) (5,897)

5.20-4 5.20.4.10 1 x 580; 4 x 1160; 1 x 1417; 2xi2 I95; 1 x 1410; i-x 116 30 11,053

(5.20-4 Total) (11,053)

* Baseline experiment program change deletes 10 g test level.
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Study ground rules place a space station in the required polar or near polar orbit to
support polar type missions. Support to modules in an equatorial orbit is assumed to
be provided by a space station in an equatorial orbit. However, any space station
support for inclined orbits is assumed to come from the station at 270 n.mi. x 55° .
Candidate alternate experiment module orbits are discussed in the following paragraphs.

3. 2. 5.2 Analysis of Operation at Higher Altitudes. The support of modules operat-
ing in orbits other than the space station orbit must consider the differences in orbit
precession rates which exist between the module and the space station orbits. Since
6rbital precession rate decreases with altitude, the two orbits will rapidly become
noncoplanar if they are at the same inclination. Orbit resynchronizing occurs periodi-
cally, but at long intervals.

Precession rate differences with altitude can be equalized by placing the experiment
module at a lower inclination angle since precession rate increases with lower
inclination.

Parametric performan e data was developed for two methods of operating modules
in higher orbits:

a. Module in a 55° inclined orbit at altitudes from 300 to 4000 n. mii., supported by
a station in a 270'n. mi. x 55° inclination orbit.

b. Module in an orbit with the altitude and inclination selected to produce a preces-
sion rate equal to station orbit precession, thereby maintaining coplanar orbits
continuously. 

In addition to propulsive considerations, module operation (in orbits, other than the
space station) imposes functions normally supplied by the space station on the mod-
ule or on ground systems. These functions include navigation and guidance, experi-
ment programming, data handling, and experiment monitoring. This investigation is
limited to performance requirements only.

Method No. 1. This method places the module in an orbit higher than that of the space
station, but at the same inclination angle as the station. Since the orbital plane
precession caused by earth oblateness decreases with altitude, the two orbits will
have different precession rates. This difference in precession rates will soon result
in orbits that are not coplanar. Return of the module to the station must await
resynchronization of the orbital planes or AV must be expended by the module to
effect a plane change. Module return from coplanar orbits is considered in this
method - plane change maneuvers are discussed in the Second Method. Velocity
increments required to deliver the module to a higher orbit or return the module to
the space station are shown in Figure 3-27. Synchronization periods are plotted in
Figure 3-28. The values shown are calculated as follows:
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Figure 3-27. Velocity Requirements for Transfer Between

Coplanar Circular Orbits
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0 1000 2000 3000
MODULE ALTITUDE (n.mi.)
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Figure 3-28. Module/Space Station Synchronization Periods
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1. Differential orbital precession between station and module orbits is computed
from the orbital precession (6) equation:

g= -9.97 R
a

-22
(1 -e) cos i (where /2 is in degrees/day)

where e = o, circular orbit

coE i = cos 55 = 0. 573

R = 3440 n. mi. earth radius

a = (3440 + h) n. mi. module altitude

=3440( 3440 + h

3. !

) (0.5 73) = / 3440 3.5
(0.573) = -5.71 34 +h\440 +h

2. Synchronization frequency:

Months to resynchronize =
3600

( 6s - m) 30 days/mo.

where a = station precession rate = -4.40 deg/day

= module precession rate, deg/day i

3. AV Requirements to deliver module to a higher orbit or to return module to station.

2(r /r I

l+(ra/rp ).l (r/ 

r

r r
a a

where r = radius of apogee
a

r = radius of perigee

K = 1. 407 x 1016 ft3/sec2

Method No. 2. For this method the module is placed at a higher altitude than the
station, and at an inclination where module and station orbital plane precession rates
are equal. The module can then be returned at any time for servicing. The only
requirement is that the position of the two bodies be 1800 apart in their orbits as
required to complete a Hohmann transfer.

3-80
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a. Inclined Orbit - The required module inclination angle for equal precession rates
as the station, and the AV requirements for return of the module are shown in
Figures 3-29 and 3-30. These parameters are calculated as follows:

1. Required module inclination:

Station- _ A i

S = -9.97(a ) (1 - e2) cos i, where a=R +h,

Q = -4. 40°/day for station @ 270 x 550

fZ Station
cos i = -9 .7(R/)35 =

0.'442
-1m

m = os (R/a)3 5

-4.40

-9. 97(R/a)3' 5

degrees, module orbit inclination.

2. AV requirements are minimized by combining the velocity increment required for
the Hohmann transfer with the plane change AV. Combined plane change and
Hohmann transfer velocity increments can be approximated by accomplishing
one-half of the plane change with each of the Hohmann tran'isr velocity impulses.

b -12

CE(

z
-8

c0
z

O

Z0

2 0
2'
50
50 300 350 400 450

MODULE ORBIT ALTITUDE (n.mi.)
500

Figure 3-29. Change in Module Inclination for Equal Module
and Space Station Precession Rates
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5000

C)

c2

w-
z

w

z

8i.

250 300 350 400 450
MODULE ORBIT ALTITUDE (n.mi.)

Figure 3-30. Velocity Required to Deliver or Return a Module
to an Equal Precession Rate Orbit
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This approximation is adequate when apogee and perigee altitudes do not differ
greatly. However, as apogee altitude approaches synchronous altitude while the
perigee remains close to the earth, the value of this approximation decreases;
and the optimal division of the plane change angle between perigee and apogee
should be determined.

Hohmann transfer velocity impulses at apogee and perigee are:

V
a

= f

p r
hV·;I I

(ra/p)

)
[7 2 (r /r) 1

where AV = apogee velocity impulsea !

AV = perigee velocity impulse

and the combined Hoh,pnann transfer and plane change velocity impulses applied at apogee
e ..

(AV1) and perigee (AV ) are:
1

V
ca

2 2
AV1 =AVca1 ca

2 2
V2 = V2 cp

2 Ai
+ V - 2 V V cos

a ca a 2

2 LAi
+ V2 _ 2 V V cos -

p cp p 2

where V = circular velocity at apogee
ca

V = circular velocity at perigee
cp

V
a

V
P

= V - AV
ca a

= V + AV
cp p

3. Total AV for module delivery or recovery is then

AVt = AV1 + AV2
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3.2.5.3 Conclusions. The preliminary conclusions drawn from a comparison of the
two methods for operating experiment modules at orbits higher than that of the space
station are:

a. At lower module altitudes (<500 n. mi.) Method No. 2 (synchronized precession)
is preferred. This method results in continuous coplanar space station and
experiment module orbits. The synchronization period for Method No. 1 exceeds
one year for altitudes of 500 n. mi. or less.

b, For the higher altitude (000 i, ni, i) Method NO, , nnMrnhQbPni.d pIo.~itO
becomes a candidate for the preferred method due to the much lower AV require-
ments as compared to Method No. 2 at the high altitudes. The synchronization
period at 2000 n. mi. is about once per four months which may be operationally
acceptable.

c. In the region between -500 to 2000 n. mi. altitude there is a tradeoff between the
AV penalty for Method No. 2 vs. the infrequent service opportunities provided
by Method No. 1.

3. 2. 5.4 Effect on Modules.esign Criteria. The conclusions drawn from the perform-
ance requirements for servicing modules in higher orbits are:

a. The AV capability required to return modules from orbits higher than 325 to
350 n. mi. appears to be better provided by a separate space tug vehicle rather
than by inclusion in module designs.

b. The AV for return of modules from below 325 to 350 n. mi. is small enough to
potentially be part of module design. However, experimentation advantages for
orbits below 325 n. mi. are not sufficiently clear to warrant penalizing the base-
line module design. If the experiment benefits are determined to be worth the
additional AV, at a later date, this capability can be added without significantly
affecting module baseline design.

c. In-situ servicing of higher orbit modules with a space tug carrying crew and serv-
ice capabilities to the module, rather than returning the module to the station
for servicing, should be considered.

3.2.6 FACTORS AFFECTING MODULE FREE-FLYING CAPABILITIES. For free-
flying experiment modules, normal orbital operations will require an RCS capability
for flight safety purposes. Augmenting this for delivery and orbital maneuvers
appears quite economical (see Section 3.2.3).

However, for attached modules, free-flying capability is linked only to the program-
matic and cost considerations listed below, and since no RCS is needed once attached
modules are docked to the station, deleting this capability would result in a reduction
in module production costs of about 30 million dollars for the eight attached modules.
These considerations include:
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a. Type of launch vehicles available at the onset of the experiment program.

b. Docking techniques selected for the shuttle orbiter - stand-off or hard dock.

c. Availability of space tug or other transport vehicle as part of the space station
system.

d. Delivery technique used for modules that exceed the shuttle or launch vehicle
capability to circular orbit at station altitudes (Ref. Section 3.1).

Table 3-25 summarizos the programmatic conditions where this reduction in module
production cost is possible for the attached module case. Table 3-26 summarizes the
equipment that can be deleted by removing free-flying capability from attached
modules.

Review of Table 3-25 shows that (1) where a tug is not available, free-flying capabil-
ity is required in all cases except for the case where the shuttle-hard docks a module
of less than 25, 000 pounds, and (2) where a tug is available, free-flying requirements
of attached modules is a consideration only in cases where module weight requires the
use of an elliptical dblivery orbit.

Current weight estimates of the attached modules (10% contingencies, no growth
allowance) indicate tlit three out of eight attached modules exceed shuttle delivery
capability to circular orbit, and seven out of eight exceed Titan .TIF capabilities to
circular orbit. Considering an allowance for module growth, a " potential reduction
in net shuttle payload by considering module deployment mechanims weight as pay-
load deductible, it is reasonable to assume that the elliptical delivery method by the
shuttle may be needed for a significant number of the attached modules.

Section 3. 2. 3 of this volume presents the results of a study of the potential use of a
tug or transporter vs. integral module propulsion.
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Table 3-25. Program Conditions vs.
R = Free Flying

NR = Free Flying

Attached Module Free Flying Capabilities
Capability Required
Capability Not Required

Launch & Delivery Condition

Module Shuttle Launch Shuttle Launch Expendable Launch

Case Weight Hard Dock Delivery Stand-Off Delivery Vehicle
Tug No Tug Tug No Tug Tug No Tug

A <25000 lb NR NR NR R . __

B >25000 lb R R . __

Tug circ. NR NR

Tug not circ. R R

C < 18000 lb -- -- - NR R

D >18000 lb -- -- -- -- R

Tug circ. NR

Tug not circ. R

Cases Where Free- Module wt Module wt Module wt All cases Module wt All cases

Flying Capability >25k lb >25k lb >25k lb >25k lb
Reqd and tug and tug and tug

does not . does- not does not
circularize circularize circularize

o
00

<0
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Table 3-26. Equipment Requirements for Attached Modules
(Reference Section 3. 2. 3)

A. Deletions possible by eliminating free-flying capabilities:

Weight (lb)

Stability and Control System 70 pounds

Guidance and Navigation 56 pounds

Reaction Control System 868 pounds

Communication System 40 pounds

Totals 1,034 pounds

Total Cost (8 modules) $30M *

* Costs include production only since DDT&E costs for theso subsystems
would be totally borne by free-flying modules. These sublsystems are
common between free-flying and attached modules and siksystem DDT&E
costs are currently prorated between the two types of muiles.

B. Additions required for use with a space tug:

Second docking port for four modules plus FPE 5.13C
centrifuge (weight varies + 400 pounds to + 1, 600 pounds)

Cost: $7M
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SECTION 4

EXPERIMENT MODULE OPERATIONAL INTERFACES

Module operating requirements are based on the experiment modules being a part of
the total space station system and, as such, deriving significant support from the
other elements and being constrained to be compatible with these support elements.
Modules are delivered to orbit by the earth-to-orbit shuttle (or expendable launch
vehicles). Attached modules dock to the space station and remain docked for their
normal mission life.

Free-flying modules dock to the station for initial activation/calibration, free-fly for
experiment operations, and periodically return to the station for servicing. During
the free-flying mode, experiment and module operations are controlled by the space
station, and experiment data and module subsystem status are transmitted back to
the station for processing, action, and retransmittal to ground.

Modules are also to be capable of being serviced while in the free-flying mode by the
shuttle or other manned service vehicles.

The operational interfaces between module and other system elements are presented
in the following paragraphs and graphically related in Figure 4,-1

System Element Type of I.terface

Section 4.1 Space Station Power, data, thermal, pointing,
stability, physical characteristics,
and crew

Torque

RF

Docking

Suitcase experiment installations.

Ground Communications

Section 4.2 Logistic System Launch Vehicle

Resupply of experiment update equip-
ment, spares, propellant, test fluid,
and film.
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RE i P-I 'SPACE STATION

RF.
4.1 %.

~~4 1:0~~ GROUND
STATIONS

EXPERIMENT
PROGRAMMING
& CONTROL

Figure 4-1. Module Operational Interfaces
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Table 4-1. Space Station Interface Summary

Item Maximum Values of Maximum Values of
Attached Modules Detached Module

Thermal None

Electrical - Peak 7.0 kW

Average 5.2 kW

Data:

Hardline Digital Data (Rate) 26.4 x 10 bPS

Hardline TV/Analog (Bandwidth) 4 x 10 Hz

RF Digital Data (Rate i 1: x 10bPS

RF TV/Analog (Bandwidth) 0.20x10 Hz

Telemetry, Tracking and -
Command S-Band S-Band

Magnetic Torque None

Pointing Nadir + 0.25 deg

Propellant loading is required to support experiment operations for five detached

modules. Attached modules could require topping off of propellant storage tanks

after initial delivery to provide for module disposal or frequent shifting of docking

port location if necessary to optimize thermal conditions. Propellant transfer

resupply from the space station is performed by umbilical lines to the module RCS
tanks. Annual resupply requirements for 6000 lbs. of hydrazine propellant are
detailed in Section 4.2.

3CgEDING PAGE BLANK NOT FIIE

4-4

Volume II



GDC-DAA70-004Volume II

Table 4-2. Space station Interface Requirements
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Total Power Allocation (kw)
FPE Title

Power(kw) 1.0 2.0 3.0 4.0 5.0 6.0

5.8 Cosmic Ray - Pealk 4.5 

- Avg 3.7 

5.9/10/23 Bio Lab - Peak 5.5 .- A

- Avg 5.2 7

5. 11A Earth Survey - Peak 7.0 0 

- Avg 1.65 )

5.27 Physics & Chem - Peak 2.55 A A LOAD AT SPACE STATION DOCKING PORT

- Avg 2.35 A

5. 16 Materials Lab - Peak 5. 3 

-Avg 3. 05

5.20 Fluid Physics - Peak 1.2

-Avg 1.0 

5.22 Comp Test - Peak 2.0

-Avg 1.75 

Figure 4-2. Space Station Interface Loads, Power to Attached Modules
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Total Power Allocation (kw)

FPE Title Power(kw) 1.0 2.0 3.0 4.0 5. 0

5. 1 X-Ray - Peak 0. 693

- Avg 0.526

5.2A Stellar - Peak 1.383 A

- Avg 1. 176 A

5.3A Solar - Peak 1.283

-Avg 0.936 A

5.5 High Energy - Peak 0. 993 A LOAD AT SPACE STATION DOCKING PORT

- Avg 0.843

5.20-1/ Fluid Physics - Peak 2.53 -1 I -2
5.20-2

-Avg 1.93 -1 1 -2

5.20-1/ Fluid Physics - Peak 5. 13 -1 l -3 A

5.20-3
- Avg 2.33 -1 -3 

5.20-1/ Fluid Physics - Peak 2.33 1 -4 '..'
5.20-4

Figure 4-3. Space Station Interface Loads, Power to CM-1 Modules

while Docked, Excluding Stability and Reaction Control
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Table 4-3. Source of EC/LS Functional Support

EC/LS FUNCTIONS

Air Flow Control

Air Cooling/Heating

Air Purification and Monitoring

Atmospheric Pressure Control

Atmospheric Gas Supply

Pressure Suit Circuit

Water Processing and Supply

Water Storage and Dispensing

Metabolic Waste Collection

Nutrition, Hygiene, and Waste Management

CM-1
WHILE

ATTACHED*

I EM/SS

EM

SS

SS

SS

EM/SS

SS

SS

SS

SS

CM-3

' E M/SS

EM

SS

SS

SS

E M/SS

SS

SS

SS

i SS

0-

5<Ol

|I CM-4

NO MINAL .BIO-
_LABORATORY

E M/SS EM

EM EM

SS I EM

SS EM

SS SS

E M/SS E M/SS

SS SS

SS EM

SS EM

SS SS

Notes: SS = Space Station
EM = Experiment Module
* CM-1 does not require EC/LS support while detached (depressurized and unmanned)

0

o
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--- 1~~~~~~~~~~~~~~ -- I- -I

~~~--r~~~~~~~-~~~~~--------- - -~~~~~~~~~~~~~~~~~~



GDC -DAA70-004

4.1.3 TORQUE INTERFACE. Two of the experiment unique payloads contain
centrifuges. FPE 5.9/5.10/5.23 Space Biology contains the bio-centrifuge. FPE
5.13C Centrifuge contains the manned centrifuge for biomedical experiments. In the
centrifuge design recommended as a result of this study, both centrifuges have a
single rotating head attached to and rotating external to the supporting module or
space station. Counter momentum systems are not considered part of the centrifuge
designs and therefore during starting and shutdown operations torque will be trans-
mitted to the supporting element. In addition, the mounting location of these two

aoolteifugoa should be made in 06nbidorauton of oraeofoni torqoas gaeneratod by
space station angular maneuvers. Figure 4-4 shows the centrifuge operating
characteristics.

The growth version of FPE 5.8 Cosmic Ray lab module contains two superconducting
magnet coils. With this experiment design concept, torque interaction with the space
station is eliminated.

4.1.4 DOCKING INTERFACE. Figure 4-5 depicts the current module/space
station docking interface concept. The probe and drogue mechanism is based on a
NASA concept. The experiment module design uses similar docking elements,
but reverses two of-the components to provide a "neuter"mechanism. This concept
permits operational flexibility in that any module can dock to art other module,

or to the space station, space shuttle or other orbital vehicle. ,q.rominal 5-inch
snubbing stroke is provided for the probes, plus an additional rp'inch stroke to
accomplish seal mating and lock-down under positive control. ti:bilicals around the
docking ring circumference are mated manually after docking is completed and may
subsequently be covered with access panels.

Each experiment module and the propulsion slice incorporates at least one docking
mechanism. The following modules include a second docking mechanism since they
function as basic labs servicing other existing or projected lab elements.

FPE 5.9/5.10/5.23 Space Biology Lab

FPE 5.16 Materials Science and Processing Lab

FPE 5.20 Fluid Physics Lab

FPE 5.22 Component Test and Sensor Calibration Lab

FPE 5.27 Physics and Chemistry Lab

Three experiment unique payloads utilize docking mechanisms. The fluid physics
intermediate term cryogenics (FPE 5.20-3) and long term cryogenics (FPE 5.20-4)
experiments each include two docking mechanisms which permit exchanging the test
tanks on orbit. The manned centrifuge (5.13C) incorporates a single docking
mechanism.

4-9
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4.1.5 RF INTERFACE. Tables 4-4 and 4-5 summarize the expected experiment
module and related elements rf links and rf emanations.

Table 4-4. Module/Station RF Links

Nominal
Link No. Freq (MHz) Range (N. Mi.) Location Function

1 2200-2300 500 All detached Wideband
mod. + sub- digital
satellites

2 2200-2300 500 All detached TV*
modules

3 1800 500 Space station Command
or ground

*Up to 6 TV links required for FPE 5.20 Fluid Physics

Table 4-5. Module RF Emanations

Operational
Frequency a ,
or Band Power Location Function

250 MHz 1 Milliwatt FPE 5.9/5.10 Experiment
Inside Experiment Telemetry

250 MHz 1 Milliwatt FPE 5.13C Experiment
Inside Experiment Telemetry

5-10 GHz 2500 Watt FPE 5.11 Experiment
Total Input External Sensors
Power

1.2 GHz 50 Watt Input FPE 5.11 Experiment
External Sensor

8 GHz 130 Watt Input FPE 5.11 Experiment
External Sensor

4-10
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4.1.6 "SUITCASE" EXPERIMENT INSTALLATION. Suitcase experiments are

those carry-on type experiments that do not require separate modules. These are:

FPE 5.17 Contamination Measurements, and FPE 5.18 Exposure Experiments.

Experiments in this category are accommodated by either attached or detached
modules or the space station, depending on the experiment requirements. Tables

4-6 and 4-7 show those suitcase experiments which have been allocated to the space
station.

Station mounted experiments consist of active measurement instrumentation and
passive samples for contamination and exposure assessments related to FPE 5.17

Contamination Measurements and FPE 5.18 Exposure Experiments.

4. 1.7 GROUND INTERFACES. Module interfaces directly with the ground during

the on-orbit operational phase are limited to a back-up communications link. Com-

patibility with MSFN stations is provided in module subsystems for tracking, telem-

etry, and control functions.

4.2 LOGISTIC SYSTEM INTERFACES

Experiment modules have been designed based on certain characteristics of both

expendable launch vehicles and space shuttle. These characteristics then constitute

an assumed interface with these vehicles and are presented in th following

paragraphs.

4.2.1 EXPENDABLE LAUNCH VEHICLE INTERFACE. The fTllowing are inter-

face criteria used to establish module design criteria for use with Int 20, S-1B or

T-III launch vehicles:

a. Payload cylindrical length: 60 ft.

b. Payload diameter: 15 ft.

c. Peak acceleration: 6 g axial, 3 g lateral.

d. Payload fairing: provided by the payload when required.

e. Launch vehicle provides navigation, guidance data to module prior to separation,

f. Separation retro provided by the launch vehicle, separation systems provided

by module.

g. Nosecone and payload interstage -- compatible with the payload diameter.

h. Typical payload delivery to transfer ellipse or circular orbit at the station

altitude (space station is assumed at 270 n.mi. altitude, 55* inclination).

i, Module provides circularization at apogee of transfer ellipse.

4-13
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Table 4-6. FPE 5.17 Contamination Measurements - Space Station Requirements Location
Selection Based on Measurements Best Suited to Experiment Objectives

Location Criteria Support Rcquirenent
Expt. Experiment Operating Mode Orientation, Distance & Measurement and Space Station Mounting
No. Title Active/Passive Experiment Equipment Contaminants to be Measured Evaluation Method Crew Power Data Location and Requircements
1. Sky Background Active (1) Photometer 25#, 1.8 ft3 Maximize coverage of celestial Direct real time reading from IVA - 15 W to60 W Mount on boom on exterior of station co-

Brightness mounted on 2 axis table. sphere. Pointing 0. 5. Deploy photometer. Operate incident with orbital plane, to achieve
Measurements (1) Operating panel operating to 8 ft from station. Radial scan max. spherical coverage. Mount panel

temp photom. - space amb. direction. 350 Slp inside station.
panel 70F *20F. .: ....

2. Particle Sizes Active (1) Coronagraph 10 1. 6 ft 3 Maximize solar view. Pointing Direct real time reading from IVA - 50W to-5 W Mount on boom for solar viewing.
& Distribution mounted pointing table. (1) op- 0. 1 deg. coronagraph, TV recording Oper.
Measurements erating panel operating temp TV

corona. - space amb. panel
70F : 20F.

3. Real Time Active (50) Microbalance instr. 5"x8" Various locations on station & Direct reading from micro- EVA - 35W talOW 0Wount mcrobalance units adjacent to
Contamination xl" - 10# ea. (1) panel for each module, exterior surfaces. balance Instr. Optical sur- Place & per set critical surfaces, near ItCS, dump

Monitor set of Instr. - 15#. Oper. temp. faces, solar panels, thermal retrieve ports, optical surfaces, etc. Mount

Instr. - space amb. Panel 70F control surfaces. instr. panel in station.

_ 20F.

4. Optical Passive (1) Carousel type sample array Orient carousel axis to >45 with Direct readout from instr. in EVA - 10W to100W Mount carousel on exterior of station.

Surface with 12 samples of optical matIs. line to sun, locate on station carousel. Samples returned Place & - 45from sun view, relatively clean

Degradation and measuring instr. Total 200 in area free of RCS plume, to earth for further analysis. retrieve 10 liz area; free of RCS, dumps. Mount
samples/2 yrs. Oper. temp. dumps, etc. samples 100 Hz panel in station.
- space amb.

5. Thermal Passive (4) Exposure strip racks each Mount on exterior of space In situ measurement of reflec- EVA - None Mount racks on exterior of station in

Control Sur- with 1 strip of 10, 1" dia. station in areas free of direct tivity using hand-held reflec- Place, max. solar exposure, free of RCS and

faces sample thermal coatings. 20# RCS plume station dump ports, tometer. retrieve, dumps
Degradation each, 3"x12" racks. (1)hand- etc. Maximize solar expo- meas.

held (EVA) reflectometer. sure.

6. Surface Passive (1) set of 12 collectors 4"x8" Mount in grid pattern of RCS Real time reading from micro- EVA - 35 W Mount collectors and microbalance instr
Adsorbed Con- x.85"@8# ea. (4) microbalance engine plume. Maximize balance instr. Collectore re- Place/ - in grid pattern on station exterior In
taminant units. 5"x8 "x4" @ 10# ea. solar exposure turned to earth for analysis. retrieve direct RCS plume area. Maximize

Measurement Total (4) sets cect/2 Ms collect /2solar view.

7. Contaminant Active (6) Mass spectrometers Maximize spherical coverag : Drect-reading from spectrom- - IYA - 24 W Mount on booms to cover outwards to

Cloud Compo- 8 "x8 "x9 (@ 8# each) of station. From 1 ft. ont- . eters Oper. 1 Mhz 50 ft. from station
sition (1) Operating Panel wards to map contaminant Therms con-
Measurement cloud. trol Insfr.

8. Contaminant Active (2) Cameras combined TV and Locate to view all eject ports Direct TV POW film IVA - 25W to Mount on booms to cover all normal
Dispersal photographic. 10 "x12"x18" & sources of leakage - RCS Oper. 150W eject points.

Measurements 20# each. (1) Operating Panel dumps. etc. TV

9. Charged Con- Active (2) Electric field meters. Maximize spherical coverage Direct reading from instru- IVA - 8W Mount on booms to cover exterior of
taminant Cloud (1) Magnetometer, 10 "x 12 "x around station out to 60 ft. ment. Oper. station outwards to 60 ft.

_ Experiments 15" 25#. (1) Operating Panel.

Volume nI
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Table 4-7. FPE 5.18 Exposure Experiments - Space Station Requirements Location Selection

Based on Exposure to Environment Best Suited to Experiment Objectives

Operating Support Requirements
Expt. Experiment Mode location Criteria Orientation Measurement Space Station Selected Mounting
No. Title Active/Passive Experiment Equipment Sensitivity to Contamination & Evaluation Method Crew Power Data Location and Requirements

1. Meteoroid Active 3' x 3' target plate. Impact Pointed away from earth - min. Direct reading from mass EVA 50 W. For earth oriented SS, mount target
Composition flash spectrom. Impact mass 50% time. Not sensitive to spectro. Film from flash spectro Film & 30 liz plate and spectrometers on top ex-

spectrom. Wt= 25#. Vol= 10ft 3 contamination. plate returned to earth. Plate Thermal con- terior of SS. Provide power and

_ per instrument. .. Retr. trol of fim thermal control of film.

2. Meteoroid Active 4 channel optics sensor assy - Pointed towards center of earth Direct readings from sensor IVA 7.5 W. Not acceptable for SS mounting due

Flash radiometer, photo-emissive - 10'. Field of view - 730'. electronics on/off 100 liz to contamination expected.
Analyzer diode. Electronic assy - Wt. Very sensitive to any contami- Thermal on-

14# for 2 pkgs. -20F to 120F nants on optical surfaces. trol of sensor

oper. temperature & elect. seqd
3. Meteoroid Passive Vicor glass panel Pointed away from earth zenith To be returned to earth for EVA None Probably not acceptable for SS mount-

Impact & 60"x16"x3" - 90. No shadowing. Sensitive analysis - weight & light trans- ing due to RCS on docking modules,
Erosion Wt. 13# to RCS plume Impingement or mission. No evaluation in space logistics craft. Potential Impinge-

other sources of erosion. ment.
4. Meteoroid Active 3'x4' detector consisting of Pointed away from earth zenith Direct reading from logic net- EVA 10 W. For earth oriented SS, mount detector

Velocity sets of (2) 12"x12" capacitors 90° . No shadowing. Not sensl- work. (3)12'x12" det. plates Detector 100 Bits assy on top exterior of SS. Install
fronting soft aluminum plates tive to contamination. to be selected & returned to Retrieve Thermal con- detector logic on interior of module.

CA (6 "xl2") with connected logic earth for analysis. trol det. & Provide power & thermal control.
network. Wt 100#, 12 sq. ft. x logic. Thermal control of detector assy to

6" thick. -11OF to +260F.

5. Meteoroid Active (3) independent optical systems Pointed away from earth zenith Direct reading from electronic IVA 2 W. Not acceptable for SS mounting due to
Flux & mounted in 1. 3 cu. ft. box, non- 45'. FOV - 10' (for all 3 instru. system in optical instruments. on/off 400 Bits contamination expected.
Velocity parallel aimed. Wt.=5#. Oper. Very sensitive to light scatter- Thermal

temperature -20 to +11OF. ing & to deposition on optical control.
surfaces.

6. Orbital Passive (3)testspecimen strips. 0. I "x No specific orientation. May or Specimens fatigue tested to fail- EVA 100 W. Mount test specimens (2) on station
Fatigue 0. 5 "x6. 0" long. (1) fatigue may not be sensitive to contam- ure prior to exposure to station Retrieve 1 per mizt exterior in variety of environments.

test machine. 15 "x4 "x2"- 35# ination effects. Best test may atmosphere, using in-space fa- Mount fatigue test machine at conven-
be to expose to variety of tigue tester. Failed specimens lent location free of environmental
environments. returned to earth. extremes.

7. Spacecraft Passive (4)1'x1' thermal controlcoated Maximize qiposurp to. sun No. In situ nreasourement of reflec- EVA Self contained Not acceptable for SS mounting due
Surfaces specimens. (1) hand held (EVA) shadowing. :Fa tivity tocon- tiity of thermal coating at 1, Reflect. in reflect to contaminants & RCS firings.

reflectometer. (1) color camera taminants which affect reflec-' 3, 6, 12 & 24 mo. exposure per- meas. &
(hand held). tivity or endurance of therm- iods. Specimens returned to conduct fa-

al coatings. earth after mission for further tigue test
analysis.

8. Material Passive (50) samples of typical space- Maximize exposure to sun. Pre & post exposure measure- EVA None Not acceptable for SS mounting due
Bulk craft materials. No shadowing. Sensitive to any ments of bulk properties using Retrieve to contamination.
Properties 1"x6"x6" approx. 2# each. source or type of contaminant. space or earth labs. at 1, 3, spec.

6, 12, & 24 mos. IVA-test
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4.2.2 SPACE SHUTTLE INTERFACE. The following are interface criteria used to
establish module design criteria for use with the space shuttle:

a. Maximum time to on-orbit is 48 hours (24 hours pad + 24 hours phasing)
assuming that loading, topping, and chilldown on pad using umbilicals will
be a requirement.

b. Experiment modules w'ill be self-sustaining while contained in the shuttle/
payload compartment.

c. Experiment module is the active vehicle for docking to the shuttle. However,
the shuttle will have the capability of active docking to the module. Shuttle
will provide the active electronics for dockings.

d. Shuttle will provide payload deployment mechanism and standardized payload
mounting.

e. Maximum payload envelope is 15 ft - 0 in. dia. x 60 ft - 0 in. long.

f. Limit load is 3 g in any direction.

g. Modules are loaded and checked out prior to shuttle movement tO pad.

1. Loaded horizontal or vertical.

2. Five days maximum time to pad.

3. Umbilicals are provided into cargo bay from ground/booste:liftoffs.

4. Doors closed at T-2 hours or as required by launch operation.

5. Perishables supplied through T-0 from ground support.

6. Emergency access to the experiment module will be provided on the
launch pad.

h. No cargo bay environmental control is available during flight. Prior to liftoff
cargo bay is cooled as required from ground sources. No cargo bay acoustical
level control is provided. Assume 24 hours between liftoff and dock on-station.
All module thermal control is self-contained during this period.

i. Payload weight is 25, 000 lb to 270 n. mi. x 550 inclination orbit.

j. Experiment modules containing hazardous material will have self-contained
protective devices or provisions against all hazards.

The primary structural tiedown interface between the experiment module payload
and the shuttle orbital payload compartment is through a system of six tiedown pins,
four of which are located on two sides of the module and two at the bottom.

Longitudinal loads are taken by the two horizontal pins located nearest the module
center of gravity; vertical loads are reacted by all four of the horizontal fittings.

4-16
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Lateral or torsional loads are reacted by all six of the fittings.

Auxiliary sway fittings will be required for some of the longer experiment configura-
tions such as the three-meter stellar telescope and the 1-1/2 meter XUV solar
telescope.

The end view of the CM-1 baseline module (Figure 4-6) illustrates the accommodation
within a shuttle payload bay having a circular envelope of 15 feet. The 13 feet 2 inches
dimension is the pressure sholl inside dimnoetor. ELxtorior to this shell is tho insula-
tion, meteoroid bumper/radiator panels with an outside diameter of 13 feet 8 inches.

The solar cells arrays, RCS engines, and magnetic torquing bars havebeen configured
for launch stowage within the eight-inch annulus. The solar cell arrays consist of
flat panels tangent to the module diameter. These wrap around the module exterior
and are secured against the meteoroid bumper. The five-element bar magnet is
arranged in a flat configuration of two rows to lower the stowed profile. The eleva-
tion and azimuth driv'e mechanisms are also configured to maintain a low profile.

The module-to-shuttle support fittings project to the extremes of the 15-foot-diameter
payload bay.

4.2.3 LOGISTICS RESUPPLY REQUIREMENTS. Estimates of logistics items to
be delivered to orbiting experiment modules include updated experiment apparatus,
spares needed to replace failed module equipment, propellant consumed in station-
keeping, maneuvering, and docking, and other expendables such-as film, test fluids,
batteries, and pressurizing gases, and are shown in Figure 4-7.

Propellant consumption for stationkeeping astronomy modules is variable and is
based on an average year (CIRA model 5 atmosphere) for average module ballistic
coefficients. Docking propellant is also variable and can be reduced by extending
the docking frequency. A typical frequency of 60 days was used for astronomy
modules.

Module spares quantities are based on estimates of sparing level and MTBF.

Large propellant usage occurs for fluid physics (FPE 5.20) due to frequent docking
and for sustained g requirements. Components testing (FPE 5.22) incorporates
long term fuel cell tests and other experiments requiring considerable test fluids.

Experiments -- assuming all in operation at one time (worst case) -- require
approximately 100, 000 pounds of supplies each year, consisting chiefly of
propellants for sustained-g fluid physics experiments, cryogenics for fuel cell
component tests, and biology laboratory makeup atmosphere gases. Requirements
for film, specimens, and experiment update equipment appear relatively modest.

4-17
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Experiment module supply requirements (again, worst case, all in operation) are
about equally divided between atmosphere makeup (leakage in station-to-module dock,
and module structure and hatches), propellants for free-flying modules, and sub-
system spares including replacement batteries and solar panels -- resulting in a
total of approximately 25, 000 pounds per year.

Detailed logistics weight estimates for delivery to orbit are shown in Tables 4-8
through 4-11. The following categories of logistics were established for purposes
of the analyses and each is shown in the form of annual rateu:

a. Experiment update requirements.

b. Propellant (stationkeeping, docking, sustained g thrusting).

c. Spare including components, batteries and solar panels.

d. Other, such as film, pressurizing gas, and experiment test fluids.'

The following paragraphs discuss basic assumptions related to each category.

Experiment apparatus updating is considered fundamental to the experiment module
program throughout the mission lifetime. Typical mission lifetimes and'update
frequency were estimated for each FPE. An experiment weight breakdoWn was pre-
pared and average annual equipment updating weights were generated.

Table 4-8 shows a sample of the method used to derive experiment update equipment
logistics requirements. Table 4-9 summarizes experiment updating logistics for
each FPE.

Propellant consumption for stationkeeping astronomy modules is based on average
year atmospheric data (CIRA Model 5). An average module ballistic coefficient of
20 lb/ft and I of 220 sec was used for purposes of analysis. The docking interval
for astronomys nodules was set at 60 days. Table 4-10 summarizes propellant
logistics. Fluid physics docking totaled 75 for FPE 5.20-2, -3 and -4 over about a
year period; however, propellant consumption for fluid physics experiments is
mostly determined by sustained g thrusting requirements. Reduction in docking
frequency would contribute to reduction of operational propellant for all detached
modules. Substantially all of the resupplied propellant is hydrazine.

Both experiment and module spares will be required during the mission lifetime.
Currently, only module spares weight has been estimated.

Pressurizing gas is assumed to be required for three conditions: (1) initial pressuri-
zation of modules when delivered to orbit, (2) daily losses when docked estimated at
about 2 lb/day, and (3) pump down losses after each docking arbitrarily set at 5% of
the pressurized volume.
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Table 4-8. FPE 5.2A Stellar Astronomy Experiment Update Logistics

Updating

Item Weight (lb) Required

Primary Mirror 4000 No

Primary Mirror Supports 500 No

Insulation 310 No

Telescope Truss Work 3000 No

Secondary Mirror 150 No

Secondary Mirror Supports 240 No

Flip Mirror 100 No

Photometer 30 Yes

Polarimeter 30 Yes
--385

Spectrographs 65 'Yes

Cameras (2) : 160 Yes

Video 100 Yes

Batteries and solar panels are assumed to last for two years. Other logistics

requirements including film and large quantities of cryogenic test fluids for Compo-

nents Test FPE 5.22 and Fluid Physics FPE 5.20. Table 4-11 summarizes the

other logistics requirements.

Return logistics requirements are generally the same as "up" logistics for non-
comsumable hardware items such as batteries, solar panels, film, emulsions,
spares and updated experiment equipment.
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Table 4-9. Experiment Equipment Update Summary
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X-RAY

STELLAR

SOLAR

HI-ENERGY

PLASMA PHYS /HANGAR

COSMIC RAY

BIOLOGY

BIO CENTRIFUGE

EARTH SURVEYS

CENTRIFUGE

MAT'L SCIENCE

FLUID PHYSICS

FLUID PHYSICS
(Incl. Prop. Slice)

FLUID PHYSICS

FLUID PHYSICS

COMPONENT TEST

PHYS/CHEM LAB

CONTAMINATION

EXPOSURE

X

X

X

X

X X

X X

X X

EXPERIMENT X

X X

EXPERIMENT X

X X

X X

X

EXPERIMENT

EXPERIMENT

X X

X X

NOTES: Updated equipment is generally experiment sensors.

Telescopes are assumed to require no updating during a typical
mission.
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FPE NAME

X

X

X

X

5. 1

5.2A

5.3A

5.5

7/5. 12

5. 8

9/10/23

5.9/10

5.11

5.13C

5.16

5.20-I

5.20-2

5. 20-3

5. 20-4

5. 22

5.27

5. 17

5.18

I/yr

1/yr

1/yr

l/yr

1/2yr

1/yr

1 /2yr

1/2yr

1/Zyr

1 /2yr

1/2yr

1/2yr

1/2yr

1/2yr

1/Zyr

1/yr

1/Zyr

X 1/2yr

X 1/2yr

5 33

5 87

5 69

5 78

2 50

5 340

2 90

2 .::8

2 46

2 10

2 6

2 7;`85

1/4 :5r.

1/2 35

1 52.5

2 17.5

2 62

2 8.5

2 4

9.8

3.9

3.8

2.0

18

68.

13.

17.5

30. 7

Negl

Negl

Negl

Negl

Negl

Negl

1080

1920

Negl

Negl

X

196

78

76

40

900

1360

650

875

1535

Negl

Negl

Negl

Negl

Negl

Negl

540

960

Negl

Negl

X

X

olume HI



Table 4-10. Propellant Logistics (
6 )

FPE TITLE

r.I 0
g -

l .) 6

k X >

P.,
- 0

o4 6,

P-4
PL)

o o

o C

o -v
0 ~3 '-, '

o_4

a

C4 CL P

Or O r

I

o O

° -00.0 

.. -4~ +

a obob0 

-t4 0. g 
4-' 04 0 0E 0.0cU hu ~Q~

O 0
C) +

oa 
l))a-

0.
Xw
$.4
0

4:1

i

(O

P,
rI)

10
0
$4
C)
Al

I
C

C Q

r_ U)
1-4,

-0 710. 

5.1 X-Ray 5.6 33. 6 59.2 355 21.0 105 1109
5.2A Stellar 5. 6 33. 6 59.2 355 30.5 215 1490

5.3A Solar 5.6 33,6 59.2 355 27.0 134 1415

5.5 High Energy 5.6 33.6 59.2 355 26.0 130 1375
5.20-2 Fluid Physics 27.0(2) 4216 17000( 3 )

5. 20-3 Fluid Physics 26.5(2) 5897 23200( 4 )

5.20-4 Fluid Physics 29. 0(2) 11053 48000(5 )

Notes: Based on average ballistic coefficient P= 20, for average

typical mission cycle of 60 days assumed.

year (Model 5 Atmosphere), I = 220 sec, and asp

Actual mission cycle for return/dock/deploy could vary from 30 days to 90 days of longer.

Includes 12 FPS for out of plane thristing and deployment 12 n. mi. average.
Average Weight.
Consumed in 3 months.
Consumed in 6 months.
Consumed in 12 months
Does not include approximately 5000 lbs propellant consumed in initial-delivery circularization of
the Free Flying Modules.

0

Fi:

Ip,I

CI

(1)
(2)

(3)
(4)
(5)
(6)

O
0

cJ0

o
o

0

0

I
,4x



GDC-DAA70-004Volume II

Table 4-11. Spares, ECLS and Other Logistics Summary

FPE

5.1

5.2A

5.3A

5.5

5.7/5.12

5.8

5.9/10/23

5.9/10

. 5.11

5.13C

5.16

5.20-1

5.20-2

5.20-3

5. 20-4

5.22

5.27

5.17

5.18

NAME

X-Ray

Stellar

Solar

H-Energy

Plasma Phys/llangar

Cosmic Ray

Biology

Bio. Centrifuge Exp.

Earth Surveys

Centrifuge Exp.

Mat'l. Science

Fluid Physics

Fluid Physics
(Incl. Prop. Slice)

Fluid Physics Exp.

Fluid Physics Exp.

Component Test

Phys/Chem Lab

Contamination

Exposure

Common
Module

-1
x

x

x

x

-3 -4

x

x

x

x

x

x

x

x

x

OPNL MODE

x

x

I

x

I

I

I

X

I

I

0

a,
a

x

x

x

x

I

I

x

w

WRW

I

x

Film Spares

oI

0 o, _.
>. C0.0.

288

500 (5)

1200 (5)

80 (1)

720 (4)

450 (2)

1080

2000

80

144

1420

60

260 (4)

100

24

I0

:3..
5. 

128

128

128

128

600

600

600

600

600

600

128

600

.600

I ,

a

0. Z 1 U

'=. , E

270

170

300

270

90

280

280

280

280

210

210

210

210

210

210

280

210

210

Press. Gas

I8,

24

24

24

24

750

730

730

730

730

730

730

730

160

348

159

730

730

FSQV

8
a -..M_ ,.

47.5

47.5

47.5

47.5

316

198

79

158

158

158

158

245

158

158

90

245

90

158

158

158

158

158

245

158

OTIHEI

1500 lb/yr-LN 2Il 2

(6)
Barium canisterm - 40 lb/yr
Propellant - 240 ib/yr
3000 lb/yr-Dewa3'wlth liquid
helium magnets
10,000 lb/yr -fod,02, &120, LIOI

240 lb/yr - LN
2

80 lb/yr gas, 121)lb/yr LN2

2000 lb/yr avg. Epecdmen

3000 lIb/yr - LH2

11,750 lb/yr - Lf L2, L02LN 2

1600 lb/yr - LHLN2 , & LHe

NOTES

(1) Emulsion packs (4)
during first 28 days.
Resupply required
for retest.

(2) Emulsions.

(3) Batteries and solar
panels are assumed to
have a two yr life.

(4) Total film requirements
for FPE experiment
sequence.

(5) Film requirement to
be deleted if elec-
tronic imaging is
used.

(6) Closed cycle refrigera-
tion assumed - negl
logistics reqmts.
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SECTION 5

ENVIRONMENT

Experiment modules must survive launch by either reusable or expendable boosters
and operate on-orbit for periods up to ten years. Preliminary launch and on-orbit
environmental criteria and requirements are presented and discussed in this section.

5.1 LAUNCH ENVIRONMENT

Both reusable (space shuttle) and expendable (Titan IIIC, Titan IIIF or Saturn 1B)
launch vehicles are to be considered as potential boost vehicles for the experiment
modules. Load, factors, acoustic levels, and thermal criteria for worst case en-
vironments are discussed in the following paragraphs. The general requirement is
that the experiment modules survive the launch environment with no damage.

5.1.1 LOAD FACTOR ENVIRONMENT. Maximum boost or reentrv load factors
for the space shuttle vehicle are 4 g in any direction (Reference 5-1). Design load
factors with expendable launch vehicles typical of the Titan III class are 6 g longitudi-
nal and 3 g lateral.

5.1.2 ACOUSTIC ENVIRONMENT. A reasonable acoustic design environment dur-
ing boost to orbit of experiment modules is the environment existing internal to the
shroud of an expendable booster. The acoustic spectrum tabulated in Table 5-1 is
representative of this type of acoustical environment. This datai.i the average of
the acoustical noise measured forward of the transtage during several Titan IIIC
flights. Test and design criteria acoustic levels are commonly 6 db above measured
values to provide adequate safety margins. Space shuttle cargo bay acoustic levels
have yet to be determined.

5.1.3 THERMAL ENVIRONMENT. Thermal criteria for expendable launch vehicles
are not demanding; the payload area can be conditioned while on the ground to main-
tain temperatures within the desired limits during boost. Space shuttle cargo bay
temperatures, however, may be extreme. The exact temperatures to be expected are
yet to be determined since designs have not been finalized. However, present designs
show uninsulated LOX tanks adjacent to the cargo bay, which indicates that very low
temperatures are to be expected during boost. Cargo bay temperatures may also
be quite high during reentry and landing, particularly if an emergency condition
arises which requires dumping the orbiter LOX supply as a safety measure.

5-1
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Table 5-1. Acoustic Environment

Center Frequency of
1/3 Octave Band Acoustic Level *

(Hz) (db)

20

25

32

40

50

63

80

100

125

160

200

250

315

400

500

630

800

1,000

1,250

1,600

2,000

2,500

3,150

4,000

112

110

113

112

113

116

118

117

121

121

125

126

127

128

127

125

122

120

117

115

113

113

108

103
(overall level = 136 db)

*Average of several measurements in internal compartment
transtage. Add 6 db for test and design criteria.

5-2

forward of Titan m-C

Volume I



GDC -DAA70-004

5.2 ON-ORBIT ENVIRONMENT

Radiation (natural and induced), meteoroid, and contamination environments to which
the experiment modules will be subjected are discussed in the following paragraphs.

These environments are described for the baseline experiment module circular orbit

of 270 n. mi. x 55 deg.

5.2.1 RADIATION ENVIRONMENT. The radiation environment in space consists of

cosmic rays. trapped (Van Allen) radiation, solar flare particle events, ari: whlVCn t
radiation is generated by man while on-orbit. The space station nuclear power source

is the major contributor of man-made radiation. The radiation requirement is shown

in Table 5-2 in allowable radiation limits for crewmen (Reference 5-2). Permissible

dosage limits for film and photosensitive emulsions are approximately two orders of

Table 5-2. Crew Radiation Limits

Dose (rem)

Radiation Depth Career Year 30 Days

Skin (0. 1 mm) 2400 240 150

Eye (3 mm) - 1200 120 75

Marrow (5 cm) 400 40* 25

*May be doubled to 80 rem if crewman is not exposed to radiation

during the next 12-month period.

magnitude more sensitive to radiation than man. Special shielding and frequent re-
supply will be necessary to reduce film fogging to acceptable limits. All other experi-

ment module materials are less radiation sensitive than man by at least two orders of

magnitude. Transistors and diodes are the most sensitive items. It is anticipated

that shielding which is adequate to protect man for 30 days on-orbit will also reduce
radiation to levels which are satisfactory for the other experiment module materials.

Natural radiation, particularly solar flare radiation, is a strong function of time.

A reasonable estimate of the extreme radiation environment expected in the 1975

period from all natural sources is presented in Table 5-3 (Reference 5-3) and repro-

duced below. This data holds only for a 270 n.mi. by 55 deg orbit since radiation is

also a strong function of orbital altitude and inclination angle.

5-3
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Table 5-3. Estimated Natural Radiation Dose (1975 Period)

Dose (REM/6 month)Shield Thickness
(gm/CM2 of Al) Skin Dose Depth Dose

2.0 50.2 11.6

5.0 23.6 9.8

8.0 17.1 8.6

15.0 10.7 5.6

Radiation from the space station nuclear reactor power supply varies widely with dis-
tance and geometric relationship to the reactor core. Expected dosage levels from
space station nuclear power supplies to which an experiment module will be subjected
is assumed to be less than 0.01 rem/hr, based on a 250 ft separation distance.

Radiation sensitivity by FPE is summarized in Table 5-4. Film is the most sensitive
item found in most FPEs. Several of the FPEs have instruments or eunlsions which
are particularly sensitive to radiation, as noted in the table. Man is'reaent for all
FPEs either for periodic servicing or to conduct sustained operations. biology speci-
mens (small vertebrates, plants, and primates) are also sensitive to radiation levels.

5.2.2 METEOROID ENVIRONMENT. The meteoroid protection design requirement
is a 0.9 probability of no experiment module pressure skin punctures over a 10-year
period. Sporadic and stream meteoroid flux models for the 1975 to 1985 period are
defined mathematically in Reference 5-3.

Reference 5-4 presents a graphical solution of a total meteoroid flux-mass model.
It is an average cumulative total meteoroid (average sporadic plus average stream)
flux-mass model and is shown in Figure 5-1. In the near vicinity of the earth this
flux-mass model is modified by gravitational and earth shielding effects. The model
is corrected by multiplying the values from Figure 5-1 by the gravitational defocus-
ing factor (0. 965 at a 270 n. mi. orbit altitude) and by the earth shielding factor at a
270 n. mi. orbit altitude (0. 69). Defocusing and shielding factors for orbital altitudes
other than 270 n.mi. are presented in Reference 5-4.

5.2.3 CONTAMINATION ENVIRONMENT. The problem of potential contamination of
optical, and other sensitive surface, by effluents from spacecraft is of concern in two
primary areas: the near vicinity to the space station and in the vicinity of detached
free-flying modules. In the vicinity of the space station the problems of concern are:

a. The extent and type of contamination that may exist in the vicinity of the space
station,

5-4
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Table 5-4. Radiation Sensitivity by FPE
0

RADIATION SENSITIVE ITEM
MAN 

PERIODIC SUSTAINED
FPE/TITLE FILM OTHER

SERVICING OPERATION

5. 1 X-Ray

5.2 Stellar

5.3 Solar

5. 5 High Energy

5.7/12 Plasma Physics

5. 8 Cosmic Ray

5. 9 Small Vertebrates

5.10 Plants

5.11 Earth Surveys

5. 16 Materials Science

5.17 Contamination

5.18 Exposure

5.20 Fluid Physics

5.22 Component Test

5.23 Primates

5.27 Physics & Chemistry Lab

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X-Ray Instruments

Photomete r

X-Ray Telescope, Misc. Instr.

X and 7-Ray Instruments, Emulsions

Emulsions, Cosmic Ray Detectors and
Multipliers

Small Vertebrates

Plants

IR Instruments

High Speed Film

LWIR Sensor

Primates

0o

oI I I~~~~~~~~~~~~
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Figure 5-1. Average Cumulative Total Meteoroid Flux-Mass Model for 1 A.U.
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b. The effect this may have on instruments exposed to this environment.

c. The degree of success for observations made through a column of the contaminant.

An estimate of the density profile and brightness of the contaminant cloud about the
space station can be calculated using the method of Reference 5-5 and described here.
These equations are for contaminants emitted in a continuous flow; ejecta expelled in
bursts are not included in this preliminary estimate.

The contamination model (}onsiders spherical pixti0l, sea oA leatge leaving the
station radially outward. A spherical contaminant cloud with mean radius is assumed

2
U

R = +R
m s

to be established about the spacecraft where R
s

is the approximate station radius, UO
the initial contaminant particle ejection speed, and U the particle acceleration due to
atmospheric drag. For the case of spherical debris, acceleration is estimated by

3 a 2
-- V "
4 t

r

with v the satellite orbital speed, r the particle radius, t the debris particle mass
density, and . the ambient mass density

The quantity of interest is the radiance (B) of the sunlight scattered by the debris
cloud. This is conveniently expressed, relative to the mean solar radiance B , by

w-e) =d s a ()M

where: o is the solid angle of the sun from the scatterer, r (0) the mean scattering
function a[angle 0 with respect to sun rays and M the total column mass density.

When the mean cloud radius is much larger than the spacecraft radius (i. e.,
Rm/Rs > 10), the cloud mass density assuming contaminant flow may be estimated
by the relation:

47rR M(R,r) U0 dt

Mass density of particles with radius r at distance R from the station is given by

M(R, r), and ( dt ) is the rate of mass loss from the satellite due to particles of
tr

5-7
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radius r. The expression for the column mass density at any point in the cloud is ob-
tained by integrating from the point of interest (R) to the mean cloud radius (RM):

Rr dR

M (R,r) = J dR2
47rU R R

dm

_ r(1 1

4 7U RR M

Consequently, the relative brightness ( ) decreases as R provided R >>R.

As R approaches Rm the relative brightness drops sharply.

A list of space station contaminant sources is given in Table 5-5 alpng with mass loss
rates and initial velocities. Important contaminants resulting fro: i'ropellant

Table 5-5. Space Station Contamination Sourco?'

Mass Rate Initial Velocity
Source (lb/day) (cm/sec)

Atmospheric Leakage & Dumps @ 50% 18 3 x 104

Relative Humidity

CO2 Dumps 15 3 x 104

Fluid Leakage 7 1 x 104

H2 Cryogenic Boiloff 5 1 x 104

Fecal Water 3 7 x 102

exhausts, propellant loading leakage, EVA missions and module dockings are not in-
cluded in the table. More detailed information about the nature and magnitude of
these latter contaminants is required before they can be included.

Figures 5-2 and 5-3 show the mass density and relative brightness from scattered
sunlight at an experimental module which is located within the space station contami-
nant cloud. Viewing from the module is radially away from the space station at a
light scattering angle (0) of 60° . These calculations assume an average spherical

5-8
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Figure 5-2. Density of Space Station Contaminant Cloud
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Figure 5-3. Effect of Space Station Contaminant Cloud on Relative Brightness

5-10

-13

-14

m
-10

lo

En

z

0

X 10z;

-1510

Volume II



GDC -DAA 70 -004

2 2 -5
particle radius of r = 3 micron, a() = 8 x 10 cm /g, =6.7x10 STERanda

270 n. mi. orbital altitude. Data is presented for two conditions: Condition A is based
on the space station contamination sources of Table 5-5 excluding fecal water; Condi-
tion B includes fecal water. It is assumed that 100% of the escaping water is con-
verted into ice crystals. These figures show that both contaminant density and rela-
tive brightness are increased by approximately an order of magnitude when fecal
water contributes to the contaminant cloud.

Figure A5- ghorwa the hrightonr, of thq OQga*hohoin (the btightxnie mtdasured in the
ecliptic plane looking directly away from the sun) as a reference point. Minimum
brightness of about 0.2 of the Gegenschein level is found near the 75 deg ecliptic lati-
tudes viewed in a direction away from the sun. Ideally, brightness due to contami-
nants would be a small fraction of the natural background level so the sum of the two
would be approximately equal to the natural background brightness. Figure 5-3 shows
that the experiment module must be at least 4000 feet away from the space station to
reduce the brightness due to contaminants to the Gegenschein level when fecal water
is part of the contaminant cloud. If fecal water is not in the contaminant cloud, the
module must still be :removed from the space station by 1000 feet to reduce brightness
due to contaminants to the Gegenschein level.

Caution: some of the major contaminants (propellant exhausts, etc.) have not been
considered in these calculations, and the spherical continuous ~fl model under-
estimates the debris profile and scattered brightness for periodWcally dumped con-
taminants. The treatment of crystalline particles also needs to res improved, both
with respect to their scattering properties and to explicit consideration of their life-
times.

The brief high velocity exhaust from the station RCS and from RCS of logistics vehi-
cles, and modules docking to or leaving the station needs to be added to the steady

spherical expanding cloud. These exhaust products may have a contaminating effect
on any exposed surfaces in the near vicinity of the station (dependent on propellants,
thrust levels, and surface properties), but will probably be of sufficiently short
(seconds) duration infrequency in occurrence, and sufficiently high in temperature to
have no very significant effect on viewing column reflectances.

Conclusions drawn from these considerations are:

a. Viewing of very faint sources of light for long periods of time (distant stars) from
positions immediately adjacent to the station may be impeded by the reflectance

from sunlighted particles in the viewing column. Viewing in some other spectral

regions may also be effected.

b. Exposure of optical surfaces to the environment existing in the immediate vicinity
of the space station may result in temporary or permanent degradation of the

5-11

Volume II



GDC-DAA70-004

optical properties of the surface, either by deposition/condensation or RCS ex-
haust erosion.

Detached modules were selected to house the contamination-sensitive astronomy ex-
periments since the contamination problem is reduced when moisture from a manned
atmosphere exists only while modules are in the vicinity of the space station. View-
ing column reflectance is therefore believed to be reduced below the level of concern.

The major remaining problem is the potential contamination created by the module
RCS, and by materials outgassing. Contamination potential is minimized by selection
of propellants and propulsion systems and through module design and operating tech-
niques.

a. The selection of propellants and propulsion systems must consider the potential
contamination of optical surfaces created by the exhaust products.

b. Module design and operating plans must consider methods to prevent exposure of
optical surfaces during periods of potential contamination such awsnodule RCS fir-
ings, or when module is docked to the space station.
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APPENDIX I

EXPERIMENT EQUIPMENT WEIGHTS BY FPE
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Experiment Equipment Weight Summary

Experiment Added Support/Control Total

FPE Title Item (lb) Item (lb) (b)

Polarimete r

Spectrometer

High Res. Scope

X-Ray Detectors

X-Ray Mirrors

Telescope Tube

Primary Mirror

Spectograph s

Cameras

Video

1. 5M Photoheliograph

Heliograph Controls

Spectroheliograph

350

100

200

. 30

300

400

4000

65

160

100

4000

75

660

Insulation

Telescope Drive

Detector Ilousing

'Sensor Turret Instl.

Misc Struc. Supports

Misc Exip. Support

Primary Mirror Supp.

Insulation

Telescope Trusswork-

Secondary Mirror

Sec. Mirror Supp.

Flip Mirror

Photometer

Polarimete r

100

150

350

600

420

300

500

310

3000

150

240

100

30

30

3300

8685

6875

I (-

O
U

0

oCoOP

5. 1

5.2A

5.3A

X-Ray

Stellar

Solar

I
t1D



Experiment Equipment Weight Summary (Continued)

Experiment Added Support/Control Total

FPE Title Item (lb) Item (lb) O(b)

1-6 Radii Coronagraph 660

5-30 Radii Coronagraph 220

0. 5M Solar Telescope 880

Magnetograph 200

Vidicon 180

5. 5 High Energy X-Ray Spectroscope 800 7800

X-Ray Telescope 515

X-Ray Spectrometer 5000

X-Ray Chamber 1485

5.7 Plasma Physics Measurement Eqpt 1800 1800

5. 8 Cosmic Ray Total Absorp. Det. 24000 34180

(Growth Version) Tad Photomultiplier .910

Shower Counter 3000

Tasc Photomultiplier 280

Magnet-Dewar 3000

Liquid Cerenkov 1000

Spectrometer Assembly 200

I
o

o

C)

0

0
0

I
o
!o
o



Experiment Equipment Weight Summary (Continued)

Experiment Added Support/Control Total

FPE Title Item (lb) Item (lb) (lb)

Detector Bays

Spare Detectors

Emulsion Storage

Emulsion Processing

Control Console

Computer & Recorder

Microfilm Storage

Spare Photomulti.

Spare Electronics

Centrifuge

Laminar Flow Bnchs(2)

Verte. Speci. & Cages

EC/LS (90 Day Supply)

Atmosphere Monitor

Plant Speci. & Racks

EC/LS

Atmosphere Monitor

400

150

100

100

200

500

20

120

200

800

2400

1475

800

162

1127

800

162

Centrifuge Instr.

Acc. Isolation Equip.

110

400

12846

0

CDI

a
U
0

I

&I
o

o

5.9/

10/23

Biology

I

·;



Experiment Equipment Weight Summary (Continued)

D
0:Experiment Added Support/Control Total

FPE Title Item (lb) Item (lb) (lb)
_ _ _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Earth Surveys

Research Equip.

Monkey Housing

Chimp. Housing

Metric Camera

Multispectral Camera

Multispec. IR Scan.

IR Infer. /Spectro.

IR Atmos. Sounder

IR Spectro. /Radio.

MW Scanner

Multifreq. MN Rad.

MW Atmos. Sounder

Radar Imager

Act. - Pass MW Rad.

VW Polarimeter

VHF Sferics

Absorp. Spectro.

110

"1500

3000

360

185

150

65

45

65

76

50

80

100

50

22

95

Tracking Telc.

Indexing Camera

Day/Nite TV

Misc. Res. & Supt.

250

30

50

1525

4600

0
>

I

d~

5. 11
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Experiment Equipment Weight Summary (Continued)

Experiment Added Support/Control Total

FPE Title Item (lb) Item (b) Ob)
I~~ ~~~~~~~~~~~(b Ilb

RMS

Materials Sci.

Laser Altimeter

UV Imager Spectro.

Radar Alt. /Scatter

Photo-Imaging Camera

Data Collection

Imaging Spectro. Cam.

Subsatellites

Thin Film

Glass Casting

Spherical Casting

Single Crystals

Composite Casting -'7'."

Variable Density Casting

371

150

75

145

11

30

1300

285

215

185

165

.;215

215

Control Eqpt

Fuel & Tanks

Service Eqpt

X-Ray Diffraction

Electron Diffraction

Refraction Meter

2 Color Pryometers

'Matrl. Test Mach.

X-Ray

500

900

500

1650

210

400

20

200

200

3200

5580

<
o

(D

OC1

UI

IDo
o

C~)

PFNI
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I
Mh
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5.16



Experiment Equipment Weight Summary (Continued)

Experiment Added Support/Control Total

FPE Title Item (lb) Item (Ib) (lb)

Fluid Physics

Fluid Physics

Fluid Physics

Crit. Reg. & Comb. Tests

Interface Stab.

Capillary Studies

Cond. Heat Trans.

Rotat. Liq. Globules

Two Phase Flow

Film Stab. & Inert. Sep.

Boiling Heat Trans.

Propellant Trans.

Slush Hydrogen

160

935

2850

476

320

460

100

-6D0

1430

1430

Metallograph

.... Chem. Lab.

Mass Spectrograph

FIu rnace

Spectroscope

Fit. Cont. & Data Display

100

200

300

1000

20

625 785

5141

3460

<
o-e
0
1=

CD

e

I

5.20-1

5.20-2

5.20-3

I

I �:

I

r



Experiment Equipment Weight

Experiment Added Support/Control Total

FPE Title Item (lb) Item (lb) (lb)

Fluid Physics

Component Test

Long Term Cryo. Stor.

Work Bench

Computer/Console

Optical Bench

IR Calibration

MW Radiometer

Fuel Cell

Fluid/Gas Comp.

Heat Exchanger

Air Bearings

MW Sensor

Telescope Optics

LWIR Sensor

Film Developing; .

Space Welding

Develop. Flowmeter

5252

200

':.;?:. 5

100

75

45

100

50

75

25

5

15

150

150

10

5

Misc. Research Equip. 570

5252

1650

0o
c-

U
0
Uo

I

cD

5.20-4

5.22

Suniniary (Continued)
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Experiment Equipment Weight Summary (Continued)

Experiment Added Support/Control Total

FPE Title Item (lb) Item (lb) (lb)

5. 27 Physics & Artif. Meteroids 200 Refraction Mcter 400 6220

Chemistry Lab. Capillary Study 200 Electron Diffracticn 210

Ultrapure Metals 165 2 Color Pyrometers 20

Critical State Stdy 100 Mat. Test. Mlach. 200

Bubble Formation 935 X-Ray 200

Liquid Drops 320 Spectroscope 20

Chemical Lab 200 X-Ray Diffraction 1650

Mass Spectograph 300 Metallograph 100

Furnace 1000

0

CD
g
mo

0
0

0
O

I

o
0!o

to
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10 STATIONKEEPING AV
APPLIED

11 MODULE SLEWED TO ALIGN
WITH TARGET.

CONTAMINATION LEVEL VERIFIED
LE-S COVER OPENED.
ROLL MODULE TO ORIENT
SOLAR PANEL8

14 AT END OF 30 OR 60 DAY
OBSERVATION PERIOD -
PREPARE FOR RENDEZVOUS
& DOCKING TO STATION.
CLOSE LENS COVER.
RETRACT SOLAR PANELS.
SLEW TO ALIGN THRUST &
OPTICAL AXES.

-

/
`N1

_~ .~

12 ACQUIRE TARGET USING
TELESCOPE FINE POINTING.
BEGIN OBSERVATION
PROGRAM.
TRANSMIT DATA TO STATION.

15 RENDEZVOUS AV APPLIED

MISSION PHASE
16 RENDEZVOUS BRAKING AV APP.

17 MODULE ORIENTED TO
ACQUIRE LASER.

V APPLIED FOR FINAL
APPROACH.

\ 4 SAC
Nl- ~ Co~fj· b 

REPEAT 6 THRU L
FOR 30 OR 60 DAYS

OBSERVATION

13 COINIUE OBSERVATIONS

9 MODULE TRANSITION TO
BEGINNIN'G OF OBSERVATION CYCLE
VIA HOHIANN TRANSFER

74 1 10

I
-I

~~l~

/>I

RENDEZVOUS &
DOCK (INITIAL)

UNDOCK

DEPLOYMENT

STATIONKEE PING

18 AVAPPLIED TO DOCK

5 MODULE SLEWED TO
ALIGN WITH TARGET.
LENS COVER OPENED.

STA. DOCKSTA. TRACK,
COMMAND

STATION
DATA HNDLG.

STATION

INSPECT.

RETURN

DOCK

19 SERVICE & REFUEL
MODULE.

1 MODULE DEPRESSURIZED &
PREPARED FOR DEPLOYMENT.

STATION
lE FUEL

SERVICE

I
I

I

O STATIONKEEPING AV
APPLIED

6 END OBSERVATION PERIOD
PREPARE FOR STATIONKEEPINO
CLOSE LENS COVER

4 AV APPLIED TO
FDC MODULE IN
VIEWING CYCLE.

7 MODULE SLEVED TO ALIGN

OPTICAL AXIS WITH
THRUST AXIS.

-I J _ 2 MODULE DEPLOYED

3 MODULE SLEWED TO THRUSTING
POSITION. &V APPLIED

Figure 3-9. Typical Astronomy Module Mission Profile
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