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PREFACE

The importance of impurity diffusion techniques for constructing semi-conductor
devices is well known, and a computer model for simulating diffusion techniques is very
desirable because data useful for design or analysis can be generated much more
rapidly with greater economy and less tedium than when obtaining the data experimentally.

Tnis report consists of five sections and five appendices. In Section 1, the
elementary classical models for idealized diffusion conditions are discussed, because
the ideas developed are subsequently used in the more realistic models discussed in
Section 2. These more practical models do not generally allow analytic solutions, but
require some type of numerical analysis. The numerical techniques which are used
are outlined in Section 3 with more details concerning implementation given in Appen-
dices I and II. Section 4 gives some of the results which have been obtained with the
computer programs implementing the numerical techniques with the programs given
in Appendices III and IV. Section 5 deals with the special problems of impurity-rich
interlayers forming between an oxide and silicon. Appendix V gives a set of computed
curves for sheet resistance, junction depth, and oxide thickness for different diffusion
schedules.
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1. IDEALIZED DIFFUSION MODELS

Many of the practical techniques for diffusion, such as used for

the fabrication of source and drain regions for the MOST, utilize a two-

step diffusion process. The two-step process involves a predeposition

step and a drive-in step which are described in this and the following

sections. Practical diffusion schedules require a complex model descript-

ion ; however, the more complex practical model utilizes simpler concepts

which are used to describe idealized diffusion conditions. In this section

the equations used to describe idealized diffusion conditions are given.

Diffusion processes are usually described by Fick's first and

second laws of diffusion. Fick's first law defines a parameter called

the diffusion constant or the diffusivity. In a one -dimensional model,

it is described by

F = - D 9N (1-1)

where F is the fluxdensity of particles, N is the concentration of

2
impurity atoms (per cm ), and D is the diffusion coefficient

(cm /sec). This mathematical statement implies that the flux

of particles is proportional to the gradient of the concentration. Particles

move from denser to less dense regions. The negative
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sign indicates that diffusion occurs from regions of high concentration

to those of lower concentration.

The requirement that particles be conserved gives Fick's second

law. In one dimension it is

^N AF

if = - -Hr (1-2a)

Substituting equation (1-1) into (l-2a) gives;

B N _ _ a B N
at ~ ox D ax

The diffusion coefficient is assumed to be constant and equation

(1-2) becomes

——— = D —— . (1 - 3 )
5 t . 2ox''

Solutions to equation (1-3) are usual ly used to describe di f fus ions .

The solutions are of two general classes, those in which the impurities

are externally added to the semiconductor and those in which impurities

that have previously been deposited in the semiconductor are allowed

to diffuse fa r ther from the surface.

The f i rs t class of solutions are for d i f fus ions called pre-

depositions. A large concentration of impurities are d i f fused slightly

beneath the su r face of a semiconductor wafer . There is a heavy con-

centration of impurities in the ambient surrounding the wafer , and it

is a s sumed that the surface concentration remains at a constant value

equal to the solubility limit of the impurity in the semiconductor.

20 .3
For boron in silicon the solubility limit is about 4. 0 x 10 cm
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For this type of diffusion the boundary conditions and initial conditions

are

N(07T) = NQ

N(oo, t) = 0 (1-4)
N(x, 0) - 0 x^O

where N is the solubility limit.

The solution to (1-3) is then

N(x, t) = N 0 E R F C *

where

ERFC(y) r I --J=-| exp( - u^ ) du>

'0

The second class of solutions are for drive-in diffusions. The

drive-in is performed after a predeposition in order to increase the

penetration depth and decrease the surface concentration. In order to

get a solution for the impurity profile after drive-in, the profile

after the predeposition is approximated by

NQ, x<h
N(x,0) = < (1-6)

0, x=-h

where N h= Q is the total number of impurities in the semiconductor

after the predeposition.

rQ = N Q ERFC(u) du (1-7)

/O
It is also assumed that the surface is inpenetrable so that the

flux of particles at the surface is zero.

dN
 =0 d-8)

x=0
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The second boundary condition requires that the concentration of

impurities goes to zero as x approaches infinity. The semiconductor

crystal is assumed to be infinite in the positive x direction. This

can be assumed if the diffusion Length, 2 7Dt, is small compared to

the crystal thickness.

The solution to equation (1-3) for the drive-in condition can be

approximated by equation (1-9).

N(x, t)- exp
2x

4Dt
(1-9)

P-N junctions are formed by diffusing into a wafer that has a

doping level that is opposite in polarity to the diffusing atoms. (Any

process for introducing impurities into a semiconductor to produce

some electrical property is called "doping".) The initial doping

level is called the background doping. By definition, the junction

is formed where the diffusing impurity concentration equals the

background doping. The junction depth for the impurity profile in

equation (1-9) is

x =4Dt In ( l - L O )

The junct ion depth is important in bipolar transistors because

of its effect on the base width. For the double di f fused transistor,

the base width is the difference between the junct ion depth of the

base diffusion and the junction depth of the emitter diffusion. The



injection efficiency, base resistance, current gain, and other

parameters of the transistor depend on the base width. Since the base

width—isusually-small, the June -t-ion depths must be^: on trolled

accurately.

Another important parameter is the sheet resistance defined by

equation (1-11). for an "N-type", or donor impurity, d i f fus ion.

X;
1 ' "• /„ n dx (l-in

'0

In equation (1-11), R is the sheet resistance, q is the electronic
s

charge,/! is the mobility of electrons, and n is the number of

electrons. Practically, n can be taken to be the same as N, the

impurity concentration, in many cases. The base spreading resist-

ance in bipolar transistors, parasitic resistances in M-O-S

transistors, and all parameters which depend on the impurity pro-

file depend on the sheet resistance. It is also important to the

process engineer since it can be measured easily and is an aid in

determining some characteristics of the impuri ty profile.



2. PRACTICAL DIFFUSION MODELS

In this section some of the practical conditions for diffusion

processes are considered. One of the first major deviations from

the idealized diffusion process which must be considered is the

effect of oxidation during a drive-in diffusion. The oxide is sub-

sequently selectively etched to expose other areas to be diffused,

or to expose areas that are to be electrically connected to an in-

put or output of a device. The oxide that is not etched away is

used for insulation, and, in some field effect devices, as part of

the device itself.

The rate at which the oxide grows on the surface of the

silicon depends on the temperature, the amount of oxide present,

and on whether it is grown in a stream or oxygen ambient. The

4
growth rate of the oxide is given by equation (2-1).

B (2-1)
dx0

dt
A + 2 • x0

In this equation xo is the oxide thickness, and B and A

are the parameters plotted as functions of temperature in Figure (2-1)

and (2-2) respectively. The parameter B is called the parabolic

rate constant, and B/A is called the linear rate constant.
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Figure (2-1) . The Temperature Dependence of B.
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Figure (2-2) . The Temperature Dependence of B/A.
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(a) (b)

Figure (2-3).r The Effect of a Growing Oxide on (a) a Boron Impurity
Profile (b) a Phosphorus Impurity Profile.

After a wafer has been through the predeposition process, the

oxide which is grown during the drive-in ideally masks the wafer so

that the predeposited impurit ies cannot di f fuse back out through the

oxide. There will be some impurity concentration in the oxide,

however, because of the segregation effect at the silicon-silicon

dioxide interface. The effect of the growing oxide on a boron and

a phosphorus diffusion are shown in Figure (2-3). A constant

called the segregation coefficient relates the concentrations on the two

sides of the interface. The segregation coefficient is defined by

equation (2-2).

Equilibrium concentration in the silicon
rnz—— —

Equilibrium concentration in the oxide
(2-2)



The segregation coefficient of boron is about 0.3, and for

phosphorus it is about 10.0. From Figure (2-3) it can be seen that

many of the boron atoms are lost to the oxide causing a depletion of

impurities near the surface. For phosphorus a small amount of the

impurity is lost to oxide, so that, as the oxide grows inward, it

pushes the impurities in front of it. This in turn causes the con-

centration near the surface to remain at a higher value than is

predicted by equation (1-9).

As the oxide grows, it consumes part of the wafer. The ratio

of the thickness of the silicon consumed to the total oxide thickness

is a constant called °c , which accounts for the difference in the

densities of the silicon and the oxide. The numerical value of

is approximately 0.45.

With a growing oxide on the surface of the wafer, two deviations

from the previous model for dr ive-in di f fus ion are immediately

apparent. There is no longer a convenient stationary coordinate

system. The surface is moving with a velocity of 0.45 times the

growth rate of the oxide. Furthermore, because of the escape of

impurities through the surface, the impurity gradient at the surface

is not necessarily zero.

The surface boundary condition is derived by assuming that the

oxide grows only at the silicon-silicon dioxide boundary, and by

requiring that particles crossing the boundary are conserved. It is

useful to redefine the spatial coordinate so that the moving boundary
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is the new reference, y-0. This is done by the linear transformation

y = x-ccx o . (2-3)

Then a particle which is stationary in the x-coordinate system

at a. point corresponding to y>0 will have an instantaneous velocity

due to the movement of the origin which is given by equation (2-4).

dx

(2-4)
dt dt V '

Therefore there is an instantaneous flux of particles because of the

moving boundary which is

N(y, t ) , y*0. (2-5)
dXo

dt

From equation (l-l) , the flux due to the impurity gradient is

The total instantaneous flux of particles in the semiconductor is the

sum of the terms in equation (2-5) and (2-6) .

With the assumption that all oxide growth takes place at the

boundary, a particle inside the oxide has an instantaneous velocity

due to oxide growth that is equal to the magnitude of the growth

rate of the oxide. The velocity is in the negative y direction so the

flux is the negative of the growth rate. Using the symbol C for the

impurity concentration in the oxide, and D for the diffusion

coefficient the total flux in the oxide is

C(y , t ) . (2-7)
dy dt
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Conservation of impurities at the boundary requires that the

flux of particles at y=0~ be equal to the flux at y=0t Equating the

-f-lu-x--i-n-the-ox-i-de-a-nd the flux-in the semiconductor _at the boundary

gives

— ' - ~ 'y = 0- = (K-
dX0

t) (2-8)

where C(0, t) is replaced by KN(0, t) on the right-hand side of equation

(2-8), and K is the reciprocal of the segregation coefficient.

For impurities which dif fuse slowly in the oxide, equation (2-8)

reduces to

For some impurities, such as boron and phosphorous, the dif fus ion

in the oxide will be negligible.

The diffusion equation is written in terms of the new coordinate

by returning to Fick1 s second law, equation (l-2a). By substituting

the total flux of particles in the wafer into equation (l-2a), the new

equation is

_
Ot gy 2 dt S y

Equation (2-10) accounts for the oxide growth during the drive-in

diffusion with the surface boundary condition of equation (2-9). For

diffusion with an external source of impurit ies in an oxidizing at-

mosphere, the boundary condition would not be the same.
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The diffusing impurities must each have a charge of plus or

minus one electronic charge depending on whether the impurity is

N or P-type. There is an electric field associated with these charges,

since there must be an impurity gradient for diffusion to occur. The

electric field exerts a force on these charged particles which gives

them a drif t velocity, and the product of this drift velocity and the

concentration gives another component of flux.

The electric field can be calculated by assuming that the

semiconductor is in a thermal equilibrium. There are several

orders of magnitude difference in the diffusion cooefficients of holes

or electrons and impurity atoms. Therefore, the holes or electrons,

depending on the type of semiconductor, tend to diffuse away faster

than the impurity atoms. The electric field prevents this from

happening, so that the impurity current and the hole or electron

current are equal. The impurity current is known to be small,

since the impuri t ies move on the order of a micron per hour. Then

in order to approximate the electric field, the hole current for a

P-type semiconductor is set equal to zero.

0= -q Dp-IE- fqnpEp (2-U)

From equa.tion (2-11), where D andLl. are the diffusivity and

mobility of holes respectively, the electric field is obtained as

given by equation (2-12).

qp
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In equation (2-12), D In has been replaced kT/q from the Einstein

relation.

The impurity atoms will have a drift velocity which is given by

equation (2-13 ).

v=-^J.E (2-13)

where n is the mobility of impurity atoms, and the negative sign

indicates that negatively charged particles move in a direction

opposite to the direction of the field.

The flux of particles due to the drift velocity, assuming all

impurities are ionized, is the product of the concentration of

impurities and the drift velocity.

F=-^IEN (2-14)

If the electric field, the oxide growth, and diffusion are ac-

counted for, the total flux of particles is the sum of the flux terms

given in equations (2-5), (2-6), and (2-14).
dXQ

F = - D-^ - ot - N - LLEN (2-15)
dy dt '

From Fick's second law and equation (2-5) , the diffusion equation

which accounts for oxide growth and field aided diffusion is

To calculate the hole concentration, p, it is assumed that at

the high temperatures used for diffusion all impurities are ionized.
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The relationship between the hole and impurity concentrations is

defined by the following two equations.

p = Nfn (2-17a)

pn = n2 (2-17b)

Substitution of the electron concentration, n, from equation

(2-17a) into equation (2-17b) gives an expression for the hole con-

centration in terms of the impurity concentration and the intrinsic

concentration, n^.

' 1/2
(2-18)

If the number of impurities is much greater than the intrinsic

concentration, the number of holes is approximately equal to the

impurity concentration. For this condition, the diffusion equation can

be rewrit ten using equations (2-12) and (2-15).

d*~ aw ^2MO o IN o IN / o i n \(2-19)
3t ay2 dt dy

Equation (2-19) shows that the dif fus ion coefficient is effectively

doubled for high impurity concentrations under the influence of a

built in electric field. For low impurity concentrations, the

number of holes is approximately equal to the number of intrinsic

carriers, and the field aided term in the diffusion equation is small.

The electric field adds a term to the flux used in determining the

surface boundary condition, equation (2-9). For a predeposition

this term maybe significant, because of the high surface concentration,
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but the boundary condition for predeposition is not calculated from

the flux of particles. For drive-in diffusion the temperature is

usually mi^chJi^ghe^rA but the intrinsic concentration is als^ohighe_r_.

The temperature dependence of the intrinsic concentration is given

7
by equation (2-20).

o ftc I n l6 -3/2 / 1.21n. = 6. 85 x 10 T exp \- ' _ (2-20)
:T (

For typical drive-in temperatures, n- is between 10 and 10 , and

the surface concentration will be lower than the intrinsic concentra-

tion. Since the hole concentration, equation (2-18), is almost

constant; the field, given by equation (2-12), is insignificant.

Q

Lehovec and Slobodskey have investigated field aided dif fus ion

by lumping the diffusion and field terms into a single term with an

effective di f fus ion coefficient, D'v.

D* = D(Uf ) ( 2 - 2 L )

The function f accounts for the difference in the hole concentration

and the impurity concentration. Using this relation to account for

the field, they have shown a region of high impurity concentration

in which the diffusion coefficient was doubled, and region in which

the field was not significant.

9
Equation (2-10) has been used by Grove to model di f fus ion with

a growing oxide for wafers with a constant initial doping, and Kato

and Nishi have used this equation to approximate the solution

for the impurity profile for the more general case.
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3. COMPUTATIONAL METHODS.

The practical diffusion models require the application of

numerical methods to integrate the diffusion equation. This section

describes some finite difference methods useful for obtaining solu-

tions. The simplest finite difference method is called the explicit

method which is discussed in Appendix I. The method consists of

the repeated use of equation (3-1).

= RN' _ + N1 { 1 - GA + R. [ (PJ^ -PJ )/PJ -2] +NJ+1
J " i J

.[GA + E + E (PJ+1 -pj > / Pj + i ]) (3"1}'

In equation (3-1) all variables are the same as defined in Appendix I.

The difference approximation becomes more accurate as the

increments, At and Ay, approach zero; but there are further

restrictions for a solution to be convergent. For equation (1--3),

the value of R is restricted as is indicated in equation (3-2).

R = AT 0 < R < 1/2 (3-2)

AY2

Assuming a similar relation holds for the more general

diffusion equation, equation (3-1) can be used for predicting impurity

profiles. Starting with the initial condition, the impurity profile is

predicted at the next time instant using the present profile. For

each time
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step, the values of impurity concentration are calculated at the

discrete intervals JAy for all values of j between,but not including,

zero and J. These two points mus t be reserved for the boundary

conditions. This will require J-2 calculations for each time step.

If the total d i f fus ion time is divided into I increments, the J-2

calculation mus t be made 1-1 times to obtain the final impuri ty

profile.

In calculating the impurity profile by the explicit method, each

predicted value of concent ra t ion depends only on three previous

values as is shown in equation (3-1). The value of R is restr icted

to certain limits for stable solutions. The implicit method, described

in Appendix II, overcomes both of these difficult ies; but the ease of

computation is lost. A matrix of d i f fe rence equations mus t be

solved simultaneously, but for this method each predicted value of

concentrat ion depends on all of the previous values and on the

predicted values. The implicit method should be more accurate

than the explicit method because of this increased dependence.

The solution to the d i f fu s ion equation is calculated in a way

that is similar to the explicit method, except that the entire impurity

profile is calculated by solving the ma.trix equation. A simplified

flow diagram that shows the order in which the calculations proceed

for a computer solution to the d i f fu s ion equation is shown in Figure

(3-1). A complete listing of the program used for predicting solutions

to the equation by the implicit method is given in Appendix III.
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Read time and temperature
schedule

Calculate dif fusion coefficients,
oxide growth rate parameters,

normalization factors, etc.

Determine ambient condition
and set boundary condition

accordingly

Calculate terms for matrix equation
and solve by Gaussian elimination

Increase time
by AT

LYes
Calculate junct ion position,
oxide thickness, and sheet

resistance

Figure (3-1). A simplified flow diagram for the computer solution
of the d i f fus ion equation
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The boundary condition at the sur face is met by imposing the

restriction given by equation (2-9) to calculate the surface concen-

tration-. — W-r-i-ti-n-g equat-ion-(2 -9) i-n-fi-nite d i f fe rence form- a nd~ solving —

for the surface concentration gives the equation used to meet the

surface boundary condition.

N ( O f T ) =
dX

H-AY (K -cc) - — / D
dt

The oxide growth rate is ca'.c ui .a ted from equation (2-1) according

to the ambient condition. The ambient condition can be changed

during a di f fus ion and the boundary condit ion will still be met.

The second boundary condit ion is that the impur i ty concentration

goes to zero as y approaches i n f i n i t y . For a numer ica l solution,

some convenient point must be chosen where the impurity concen-

tration is known. If a point is chosen far enough a.way from the

surface, the concentration can be specif ied to be zero. Since the

impuri ty profile between the surfa.ce and the junct ion is usually the

only part that is of interest, the solution will not be significantly

affected in this region if the specified point is slightly in error.

For the computer program given in Appendix III, the junction

depth is predicted from equation (1-10), and the impurity concen-

tration is set to equal zero at three times the junction depth. This

allows the program to handle d i f fus ions for shallow or for very deep
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junctions; although, solutions for shallow junctions are more accurate

because the increments will be smaller.

Although the predeposition can be numerically simulated to get

the initial condition before drive-in, it was found that the impurity

profile after the drive-in was not affected significantly by the

deviation from a complementary error function, equation (l-5b),

during the predeposition. The effect of field aided diffusion is taken

into account empirically for the predeposition by adjusting the diffusion

coefficient and assuming that the impurity concentration still

follows the complementary error function profile. The profile is

calculated by taking the integral indicated in equation (l-5a), which

is integrated numerically by the Gauss-Laguerre quadrature method.

For the case where a predeposition is not followed by a drive-in,

such as the emitter diffusion for a double diffused transistor, the

effec t of the electric field ca.nnot be accounted for empirically. This

type of diffusion can be ha.ndled numerically by a slight alteration

of the program given in Appendix III.

The sheet resistance is determined by numerical integration

of equation (3-4).

P~R = G dY (3-4).
J o

In this equation G is the conductivity which is given as a funct ion

of impurity concentration by Irvin.
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4. RESULTS

Both the explicit and implicit methods have been used to solve

the diffusion equation. The explicit program has been run on the MSU

UNIVAC 1106 and the MSFC Xerox Sigma V. Checks on computational

accuracy have been made by comparing with the erfc(x) and gaussian

tables and by comparing with previous work on oxidation done by

other methods. Some comparisons with experimental data have also

been made. These results are reported in this section.

Solutions by the explicit method were found to be accurate

enough for many diffusion problems. It is well suited for the gener-

ation of sheet resistance and junction depth data for diffusions in which

the ambient condition during a drive-in is constant. The implicit

method also works well for drive-ins with one or two ambient changes

if the times in each ambient are about equal. If the time in one

ambient condition is much greater than another, then the shorter time

will be divided into a smaller number of time increments, and the

effect of the short ambient change may not show up properly in the

solution.

Changing the ambient during a diffusion creates another problem

in the stability of the solution. As previously stated, the value

ey

of R, AT/ AY^ , must be chosen between zero and one half in

order to obtain a stable solution to equation (1-3) by the explicit

method. If the numerical solution is to be general, then equation (2-16),

which accounts for the oxide growth and the electric field, must be



22
solved. For this equation the range in which R must be chosen for a

stable solution may not be the same. For a predeposition, the elec-

tric field is significant, but there is no oxide so that an equation

different from equation (2-16) is solved. In the case of a drive-in

that starts out in an oxidizing ambient, the concentration near the

surface drops rapidly. The electric field is negligible, in this case,

after the impurity concentration drops below the intrinsic concen-

tration and still another equation is solved.

A single value for R -which gives the smallest error for each

of these conditions cannot be found for the explicit method. The

implicit method should give better results in general because the

dependence of solutions on the value chosen for R is greatly reduced.

Fewer calculations are required to show the effect of an ambient

change, but more computation is required for each prediction of the

impurity profile. If one hundred increments in the Y-coordinate

are used and R is one fourth, the explicit method requires about

three seconds of execution time on the UNIVAC 1106. Under the

same conditions, the implicit method requires about thirty seconds

of execution time; but by choosing R to be unity, better resul ts are

obtained and the execution time is comparable to that of the explicit

method.

The solutions given by Grove were simulated numerical ly for an

oxide growing on a wafer with a constant initial background doping
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0.2 0.4 0.6 0.8
distance from surface (cm x 10 j

1.0

Figure (4-1). Comparison of Predicted Results with the Resul ts
of Grove.

level. Since reported values of d i f fus ion parameters vary widely,

the diffusion coefficient and segregation coefficient given by Grove

was used. The result of this di f fus ion is given in Figure (4-1).

The circles represent the extremeties of experimentally Treasured

concentration.
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Figure (4-2). Comparison of Predicted Results with the Results
of Kato and Nishi

The diffusion data given by Kato and Nishi was also simulated.

Figure (4-2) is a comparison of the computer solution and the ex-

perimental measurements. The impurity profile given is for a short

predeposition followed by a fifty minute drive-in in an oxygen ambient.

The di f fus ion coefficient and segregation coefficient used were the

values reported by Kato and Nishi.
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Figure (4-3). The Effect of the Electric Field on a Predeposition.

Figure (4-3) shows a calculated impuri ty profile with the electric

field considered and one in which the field term has been removed

from the diffusion equation. These profiles are for a predeposition

with boron at 980 degree centigrade for one hour. The most signifi-

cant difference in these two profiles is that the profile calculated

with the field-aided term included shows more impurities in the

semiconductor. The effect of these added impurit ies as a function

of the predeposition temperature is shown in f igure (4-4). The

per cent change in sheet resistance and junction depth were

obtained by comparing the resul ts of computations of impurity
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Figure (4-4). The Effect of the Electric Field as a Function of
Temperature.

profiles with field aided d i f fus ion and with the field equal to zero.

For these calculations the surface concentration was assumed to be

constant at 4. 0 x 10

In some cases the ambient is changed several times during a

diffusion in order to shape the impuri ty profile to give some desired

electrical characteristic. Table (4-1) shows four diffusion schedules

with several changes of ambient and a comparison of calculated and

experimental values of sheet resistance and junction depth.
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AMBIENT
CONDITION

TIME (MINUTES)

N2

°2

i H20

°2

: N2

°2

N2

; Rs (MEASURED)
! R0 (CALCULATED)

O

Xj (MEASURED)
X- (CALCULATED)

(a)
14

15

10

5

10

60

10

160
188
2.0
2.08

(b)
14

15

10

5

10

0

0

140
149
1.3
1.44

(c)
8

10

10

5

10

0

0

150
172
1.2
1.2

(d)
8

10

10

5

10

60

60

200
206
2.0
1.98

Table (4-1 ). Some Predicted and Experimental Results
for Several Ambient Changes.

Some results which show the effect that the oxide growth has on

impur i ty prof i les as time progresses are shown in Figures (4-5)

and (4-6) . Figure (4-5) shows that for phosphorus the oxide rejects

the impuri t ies and pushes them inward keeping the concentrat ion

near the surface relatively high. For the boron profi le , Figure (4-6) ,

the concentrat ion near the surface is depleted. A comparison of the

two f igures shows that the boron prof i le contains fewer impuri t ies

than the phosphorus profi le .
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Figure (4-5). Profile Evolution for Phosphorus in an Oxidizing Ambient

N(cm"3)

1020

10 19

1018

5 Minutes
I i
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Figure (4-6). Profile Evolution for Boron in an Oxidizing Ambient



29

5. PREDEPOSITION DIFFUSIONS

There are several methods used for accomplishing the pre-

deposition diffusion: (1) a gaeous impurity source such as diborane

or phosphine is mixed with carrier gases of nitrogen, oxygen, and

argon; (2) a liquid source such as POC13 is used with a carrier

gas mixture which bubbles through the liquid; (3) a solid source

such as boron nitride wafers or ^2^5 *s used with a carrier gas;

(4) a doped oxide source is deposited on the wafer surface either by

pyrolytic techniques or by "spin-on" methods using a liquid emulsion

which is dried and baked.

The first three methods require that the surface concentration

be maintained at the solid solubility limit in order to obtain control

of the impurity profiles. High surface concentrations result in lattice

strains which are not always annealed out by subsequent drive-in

diffusions. These lattice strains may produce deleterious effects in

terms of device performance. Consequently, there has recently been

a good deal of interest in method (4) which can produce predeposition

profiles with acceptable control and lower surface concentrations. The

other methods are also widely used and method (1) was studied in this

work.

The diborane predeposition procedure is usually carried out in

a furnace at about 1,000° C. (980° C . in the furnace at MSFC.)

The carrier gases are N2 , at 4,000cc/min flow rate, C>2, at 120cc/min,

and argon at 22cc/min with 1 percent diborane in the argon. The
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diborane argon mixture is supplied for times ranging from about 15

minutes to 60 minutes. A layer of boron glass (6203) is formed

with a thickness up to about 1, 200 Angstroms. This layer is quickly

dissolved in a 10:1 HF etch. There is an inter-layer which is a

solid mixture of boron-silicon-oxygen which is resistant to the HF

etch. The layer ranges from about 100 to more than 200 Angstroms

according to ellipsometer measurements (which may not be reliable.)

Exactly how much of this recalcitrant layer that remains after

the 10:1 HF etch is dependent upon the time used for the predeposition.

The data obtained at this time indicates that for a 15 minute pre-

deposition, the layer is almost completely etched away in HF. The

surface sheds water readily, and a subsequent short drive-in diffusion

in Ng does not produce a dramatic drop in the sheet resistance. For

a 30 or 60 minute predeposition, the layer which remains after an

HF etch is about 200 Angstroms thick, water clings to the surface,

and a short drive-in in Ng (5-10 minutes) produces a drop in the

sheet resistance by a factor of four. An etch cycle in hot (105° C)

nitric followed by a 10:1 HF etch is effective in removing the layer.

Three cycles seemed to be sufficient. A short oxidation (5 minutes)

at 1150° C followed by a 10:1 HF etch is also effective in removing

the layer.

Wafers which were predeposited for 30 and 60 minutes were

divided into two groups. Half of the wafers were etched (HNO3+HF)

and half were not. These wafers were then subjected to drive-in
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diffusions in N2 at 115QOC. for a total time of 50 minutes. The wafers

were removed at intervals and the sheet resistance checked. Of course,

there is an ambiguity concerning the effective time because of the

heating and cooling times; however, the results are shown in Figure 5.1.

Apparently, the boron-rich interlayer serves as an effective unlimited

source for a period of 50 minutes. Since the chemical composition

of the interlayer is unknown, any calculation of the total number of

impurities based on the layer thickness must be considered to be

purely speculative. An estimate based on the assumption that the

layer is roughly a 50 percent mixture of B2C>3 and SiOg gives 10l6cm-2

for the effective Q of the source. This is sufficient to maintain a

saturated surface concentration for roughly an hour at 1150°C.

Ohms

40

30

20

60 m i n . I etched

I 30 min. i //
etched -I—"

30 nin.
/" no etch.

60 min.
no etch.

10 20 30
Minutes

50

Figure 5.1 Sheet Resistance vs. Time for Drive-in Diffusion in
Nitrogen at 1150° C with Boron-Rich Surface Layer.



32

If the wafers with the boron-rich interlayer are placed into an

oxidizing ambient, either dry oxygen or steam, the results are quite

different. The sheet resistance at first holds steady with the drive-

in time and then begins to increase. The increase will continue until

such a time that the impurity gradient at the junction is too low to

maintain a space charge layer. Then the junction becomes "leaky"

and the resistance measured is no longer related directly to the

resistance of the diffused P-layer above the junction. Apparently, the

oxide begins to grow between the boron-rich layer and the silicon, and,

no doubt, some transformation takes place within the layer. Con-

sequently, the layer is masked from the silicon, and probably dilated,

so that it no longer supplies impurities at a rate which maintains a

saturated surface concentration.

The best model which one can construct at this time on the

basis of the available data is as follows. An effective surface source

_ 2
with strength Qgj (cm ) is assumed for all predeposition times be-

tween 30 and 60 minutes. The value chosen for Q is approxi-
s j.

1R - 2mately 3. 5 X 10JD cm . For 15 minutes or shorter predep times,

QS! = 0- *n order to incorporate this predep model into the overall

two-step diffusion model, the following scheme is employed: (1) For

a drive-in in a ^ ambient, the flux of impurities at the surface is

calculated and integrated with respect to iime. The surface concen-

tration is assumed to be at the solid solubility limit until the inte-

grated flux is equal to Qsj. Then the flux is set to zero. If Qsj
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is incorrect, then the model eventually becomes invalid. However,

in most practical cases only a short drive-in in N2 is required, so

that this is not a severe limitation. (2) For a drive-in in an oxi-

dizing ambient, the surface flux is assumed to be zero until an

oxide 800 Angstroms thick is grown. Then the flux is assumed to

follow the law dependent upon the oxide growth rate, the segregation

coefficient, etc. The model is to some extent, arbitrary., and other

models may give equivalent results. A more rigorous approach

would deal with the chemical conversion of the interlayer plus the

oxide growth and diffusion through the oxide. This is obviously a

very involved problem requiring micro-chemical analysis of thin

layers for boron, silicon, and oxygen content. Until such empirical

data are available, the present model is no more nor less speculative

than any other.

The curves given in Appendix V for diborane predepositions

without removal of the boron-rich layer were obtained using the model

described in the preceding paragraph. The curves are calculated

using the "explicit" integration program which is given in Appendix IV.

The program as given has a set of instructions to generate the input

data. These instructions may be easily replaced with read instructions

or other instructions to input the data. The program uses the fol-

lowing data: (1) RSI, the sheet resistance after the predeposition,

(2) TE1, Til, the predep temperature and time (degree C., and

minutes,) (3) TE2, the drive in temperature (deg. C), (4) Tl, T2, T3,
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the drive-in are obtained by assuming that the field-aided diffusion

during the predep results in an effective diffusion constant of 2D.

Then the surface concentration is adjusted to give the correct sheet

resistance for the predep, RSI. This is done by a subprogram

called FINDNCXRS1, LA, NO). Practically, this usually results

in a junction depth after the predep which is too deep and gives a

bias to the junction depths for drive-in. Sheet resistance values

seem to agree fairly welL The junction depth error is roughly

. 2 microns for a 60 minute predep.

OHMS

80

60

40

20

\

\

- MSFC

MSFC

17+ ices

60+6 proces

-flel*
aided)

MICRONS

20 40 60

Minutes

80 100 120

Figure 5.2 Sheet Resistance and Junction Depth vs. Time tor
• ^ 2 6 , Diborane, Predeposition Diffusion.

(Circled point calculated by including time in 0 )
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The sheet resistance after the predep can be calculated fairly

accurately by taking into account the aiding electric field. Curves

are shown in Figure ( 5 . 2 ) for sheet resistance versus predep time

at 980°C. It is questionable whether or not it is practical to cal-

culate the predep profile using the program including the field aided

effect each time the drive-in profile is calculated. There are several

difficulties which must be resolved, one being the problem of recon-

ciling the two choices of "regions for the solution." If one chooses

a reasonable region for solving the drive-in problem, this region is

inevitably too large for an accurate numerical integration for the

predep profile. On the other hand, choice of two regions, one for

predep and one for the drive-in, requires a coordinate transformation

type of operation to translate data calculated using a finer grid to a

description with a coarser grid. However., one accomplishes this,

extra computing time and added program complexity are required.

At the moment, it is not certain that the increase in accuracy war-

rants this approach, but it: is being considered. 'It seems now that

the most practical approach is TO use tht. sheet resistance data as

input data to solve the drive-in problem.

The "explicit" program can also be used to simulate pre-

depositions using boron-nitride wafers lor diffusion sources. In this

case, the predep sheet resistance is calculated from formulas based

on Goldsmith's (et .al . ) data. ^ For this option, the control index

ICON is set equal to zero.
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6. CONCLUSIONS AND RECOMMENDATIONS

The model and program described in this report is useful for

calculating junction depths and sheet resistances for practical two-step

diffusion processes. In cases where the model has been compared

with empirical data, the results for junction depths have agreed to

within less than 10 percent, better than the uncertainty of measurement

for some individual measurements. Sheet resistance data agrees well

in some cases. Experimental data shows that the sheet resistance

after a diborane predep is sometimes erratic. Variations of as

much as 8ohms from the average of 27 ohms for a 60 minute

diborane predep have been observed. The program cannot, of course,

cope with this problem. More controllability of the process is needed

and this requires more understanding of the physics and chemistry

of the process. When the experimental values for the predep sheet

resistance are used to predict the value after drive-in, the predicted

value agrees within 10 percent of the measured value.

There are some practical effects known to be missing from

the model. The non-linearity introduced with very heavy phosphorous

concentrations and resulting in the "emitter-dip" phenomena are not

modeled in the program. This is not a severe limitation for dif-

fusions used for MOST devices. There is also a tendency to get

away from this type of diffusion because of the deleterious effects

produced as well as the unpredictable nature of the process. The

complexity of the conversion of the impurity-rich interlayer upon
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subsequent oxidation has not been modeled. More experimental

data will be required before a more accurate model can be constructed.

One feature of the model which is deficient and will be sub-

sequently remedied is in the method of calculating the sheet resistance.

The sheet resistance is obtained by integrating the conductivity from

the surface to the junction. Some of the data in Appendix V are ob-

tained using the resistivity of the diffused concentration rather than

the net concentration. In most cases, this does not matter^but

for a light doping it will. The other problem is that the junction

becomes leaky when the impurity concentration is light and the gra-

dient at the junction is low. A calculation for the impurity gradient

at the junction will be inserted to indicate when the calculations are

unreliable. Practically such a diffusion is useless, but one would

wish to know when such results will be obtained.

Additional studies should be made to apply these programs to

diffusions from doped oxides and from the boron nitride type source.

Curves can be obtained for the boron rat ride predepositions and the

program can be used to study the P-well diffusions used in CMOS

work. This problem is very difficult, because the P-region must be

lightly doped and the junction must be deep. Consequently, it is

very difficult to produce a junction which is riot leaky or "lost"

altogether because the diffused region becomes N-type.

Further studies are needed to improve the model for the

impurity-rich interlayer. In this case, data are needed to learn
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what is actually happening physically. Chemical analysis of the layer

before and after oxidation is needed. The program should be modi-

fied so that the predep profiles calculated using the field-aided model

are readily incorporated into the computations for the drive-in dif-

fusion. Subsequent work will integrate the features of the explicit

and implicit programs and utilize the field-aided predep model if

the accuracy improvement is felt to warrant the complication.

At this point the programs can be used to simulate a variety

of diffusions and for experimentation. Further attention will be

given to simplifying the procedures for using the programs. This

will probably result in several programs, each incorporating the

basic integrated program mentioned above but differing in the input

data and output data instructions.
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APPENDIX I

NORMALIZATION AND EXPLICIT DIFFERENCE APPROXIMATION

The diffusion equation is normalized so that it can be written in

terms of dimensionless time and space coordinates. The normal-

ization factors are given in the following two equations;

T=-T- (6-2)

where T is the total diffusion time.

Writing an equation with this type of normalization facilitates

the choice of increments to be used in a numerical solution.

The equation is normalized by using the chain rule for differ-

entiation. As an example, the time derivative is rewritten as

follows;

The normalized diffusion equation is given in the following

equation.

~> HV \
(6-4)3N

at
M

dy2 D dt dY
d
3Y 3Y

N

P
i



The time and space derivatives are approximated by finite

differences.

N
i+1
J

9T -

3N

AT

AY

(6-5)

(6-6)

The superscripts i+1, i, and i-l indicate that N is evaluated

at times Tt AT, T, and T-AT'respectively. The j subscripts are

analagous for the spatial coordinate.

Substituting the finite differences into the diffusion equation

gives the following difference equation.

Nj =N. , R + N - I-GA+:

- p
J j+U

(6-7)

AY

dXo

dt

In equation (6-7) all unsuperscripted variables are assumed to

be evaluated at time T.

With the first and last values of N given from the boundary

conditions, the difference equation can be used iteratively to predict

the impurity profile at the next time instant if the present profile

is known..
1-2



APPENDIX II

IMPLICIT DIFFERENCE METHOD

The implicit method is similar to the explicit method except

that the spatial derivatives are written in terms of the impurity

concentration at the next instant of time.

2 A Y
1 N i * i ( 7_ 2 )

a Y2
 AY

2

Substituting the finite difference derivatives into the diffusion

equation gives the following difference equation.

NJ = N;:} j^R - R / 4 ( p j t l - P^P/p^ - GA/2J+N]*' [" - 1 - 2R

R / 4 ( p 1
 < - p1

j - l '

• f -GA/ZJ (7-3)

In equation (7-3) there are three unknowns, i.e., the three values

of impurity concentration. If j runs from zero to J, where JAY is

the largest value of Y to be considered, then there are J-2 equations

in J-2 unknowns to be solved simultaneously. These equations can

be written in the form of a matrix equation as is shown in equation

(7-4).



1 o

N£

N3

•

NJ-2

B C

A B C

A B C

•

A B C

A B

I

NT1

i+1
N3

i+l
NJ-2

J-l

(7-4)

In this equation A, B, and C are the coefficients of N. ., N.,

and N- | respectively; and they vary in both time and space. Since

the coefficient matrix is tridiagonal, equation (7-4) can be easily

solved by Gaussian elimination for all of the next values of impurity

concentration. The first and last elements of the column vector on

the left-hand side of equation (7-4) each contain two terms. The

boundary conditions determine the second term in both cases; and

since the boundary conditions are included in the matrix, the

solution to equation (7-4) will depend on these boundary conditions.

II-2



APPENDIX _IJ.I

IMPLICIT PROGRAM LISTING

C PROGRAM FOR CALCULATING IMPURITY PROFILE* JUNCTION DEPTH*
C AND SHEET RESISTANCE FOR TwO STEP DIFFUSION IN SILICON

DIMENSION N(200) r A(200) »R(200) »E<200) »DA<200) »CON<200)

REAL NO»LA»NB»N

REAL*H MJrANMlrANPlrAU

NI ( T ) =[• XP C 21 . 25 J / ( ( 300 . U ) * * 1 1 . b ) ) * 1 . 5ElO*f:XP (- (6420 .

*-£.08*T)/D*T**(i.5)

C Nb IS THL BACKGROUND DOPING t PER CC

Nb=1.0Elb

C PREDEP TlN-,E(MlN)»TEMP(DEG.C.)ft.RlVE-IN

C TIME IN N2(MIN) »02(MIN) » ANi'i STLAM(N!lN)

C PD IS 1.0 FOR PREDEP.- ------ U.CMOK BLANK) OTHERWISE

C TOT IS TG'iAL DRIVL-IN TIME IN MINUTES

40 READ<5»lU)TIl»TElrT[:2»Ti»T2fT3»PU»TOl

1(1 FORM AT (flFl 0.3)

IF(F'D.GT.O.)XK=0.0

WRITfc((.» oOl )TI1»TEJ *TE2»T1»T;.??T3

301 FORMAT (« »»6E10.*i)

IF(TI1.LE.O.O)STOP

Ul=8 . 0 t-FXP < -«I2 • E3/ ( TE 1 4-275 . 0 ) )
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TIl=m*60.0

TOT=TOT*6G-0

T2=T2-H1

Tl=Tl*60.o

C CALCULATION OF OXIDE GROWTH RATE PARAMETERS

C0=0 .171 *LXP 1-23. 1E3/ ( TE2+-273.) )

C DIFFUSION CONSTANT CM**2/ShCU;oRON GIVEN)

•IF(PD.G1 . ,91)TI2=U1/0*TX2

IF(T12.LL. 0.0>GO TO 6

C GAUSSIAN ESTIMATION OF JUNCTION DtPTH

C CALCULATION OF NORMALIZATION FACTORS

XO=SQfU(iJ*TOT>

OX=3.*XJ/(100.*XO)

UT=DX**2
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RT=DT*TOT

RX=DX*XO

M=IFIX(1 . /OT)

M=M*TI2/TOT

J=IFIX(3.*XJ/(XO*QX) )

X=0.

1F(PO.LT. 1.0)60 TO 300

S£T INITIAL CONDITION FROM COMPLEMENTARY ERROR FUNCTION

DO 1 I=l,j

N < I ) =NO*tKf-'C ( X / ( SGRT ( 01 *T 1 ) *2 . 0 > )

1 CONTINUE

60 TO f,C

300 CONTINUE

L=2

R=[)T/(I)X*»£)

DO 3 L~1»H

: O E T F . R M I N A J ION of AMBIENT CONDITION

IF(1.*RT.LT.TJ)COX=CS

IF ( L*RT .uT • Ti ) BOX=US

IF (L*R T . L V . T2 ) nOX=i!0

OXO=i30X/ ( L>OX/COX+£ . *XK

IF ( L * R T . L T . T D 0X0=0.

XK=XK+ijXO*RT

JO=J-1

M(J)=0.0
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SET SOUNUARY CONDITION ACCoKOING TO AMBIENT CONDITION

Ntl)=N(2)/(RX*(3.3-A!.rHA)*DXO/nn.O>

IF ( pn . (~T , u « 95 ) N ( 1 ) "NO

DO 2 I=

AMMl=DliLE(N(I-l> )

ANPl=Oi U. (N( l+D )

IF (PD• l.iT« L; • ) 1 =TLi

C CALCULM'u. I.\T

AO=M(r +273.0)

AO=NI(TE2<-273.0)

AO=DBL:". (Au)

C CALCULATE HQLf. CONCENTRATION

R A N1=F<;'. < A N M1» A 0) + .1. 0

KAN2=RA(Ai\Pl»AO)+1.0

CALCULATE TtlKN'.S HCR MATRIX KOUAT IOM

B 11 ) =-1 . 0-2 « *R*K* t i<AN?.-2 ,*RAN+F\ANl ) /HAN

HI) =R/'» . G* ( UAlMS-

CONTINUE
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CALL SUBROUTINE FOR SOLVING MATRIX EQUATION

DA<2>=DA<2 ) -A (2 ) *N (1 )

DACtJO)=DA<JO)-E<JQ)*N<J)

CALL TKinAG<2» JOfA»B»E »DA»N>

3 COf4TlNl.it

GO T040

H CONTINUE

6 CONTINUE

DO 5 I=2»J

C=N(I-J.)

©CO FITS IRVINS DATA FOR CCWfiUCTIVITY

CON(I- ] )=6(C)

Y=I*KX-? .*RX

Nl=I-3l

99 FORMAT (» t f £ £ 2 0 . 5 >

c Kino JUNCTION DEPTH

XF(W(I).LT.NU)eO TO ?0

5. CONTINUE

C CALCULATE SHEET RESISTANCE

30 RSR

T1=T1/60.

TJ=T3-T2

T2=T2-T1

III-5



2 0 F O R M A T ( » » » • V»7E15.3)

GO TO uO

END

REAL FUNCTION G(cx>

CN= ABS<CX)

lF(CX.i_T.O.O) GO T03

XF(CN.CiT.u«Q) A=1.0

iFtCN.GT.o-O) H=7.2£-17

IF ( CN . »T . 1 . b£ +lb ) B=3 » 3E-1 1

IF

lF (CN.v 'T . i . t i t . -»19) A=0.966

IH ( CN. <,T . 1 . :.)(-:-» 19 ) d=4 .L-17

GO TO b

I F ( C N . G T , 0 « 0 ) A = i . O

IF (CM . v>T . o • i. ) l%=2 , t-16

1 F ( C N . OT . 3 • SE 1 !i ) J-b . 97E- 1 '»

IF (CN.01 . 1 t OC17) A=0 .543

IF ( CN . GT . .1 . of. 1 7 ) d=6 . 93E-9

lF(CN.viT.«.SEl3} A=0.9'+

if- ( C N . f - n . y .5fr . i i i )u=2.E- i fa

i F C C N . G T . o . F-19) A=0.7'*«*

I F ( C N . G T . t > .

I F ( Ci-i . OT . c '
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jF(CN.GT»£.35E20)A=0.'fr>6

5 G = B*(CN**A)

RETURN

END

F U N C T I O N H S ( C O N » N ? i ' X >

x=c.c

DC 1 I - J l » f M

B=U . 0

IF (I/.?v,?:.t.0. 1 )0=2.0

l F ( I . f . - j . l ) K = 1 . 0

IRI .!.:•;•••. iOB-l .O

SUM=S-O:-'.*-CON{ n*P

1 CONTINUE

END

SU[.ROirj 1 !-^i_ TR IOAG ( JF » L r A » i-3 r C F D » V )

DU'£i-JSIl)N A ( 2 0 0 ) ».?,(200> » C ( 2 0 0 ) »D(200) » V ( 2 0 0 )

UliLL: Pf<tCISlCN bLTA<200) F GAMMA ( 200 )

( JF ) =D ( JF ) /BETA ( JF )
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DO 100 I=JFP1'L

BETA(I)~!HI)-A(T)*CCI"1>/BETA(I-1)

100 GAMMA ( I > " i 0 ! .;; ) ~M 1 ) *GAMMA ( 1-1 ) ) /BETA < I )

LAST-I..-JF

V (L) -GAMMA (U

DO 200 K=1»LAST

I=L-K

200 V ( I ) --GAMMA C I ) ~C < I ) *V ( f. *1 ) /B£7 A ( I )

FUNCTION £RFC(/\>

DIMENSION Z(lb) »v»(15)

HOUBLE PRl-.CIS.TON X

REAL .? / . 09331 » • U9269 » 1 .2156 F 2 . 2699«» » 3 .66?2 » 5. U

*7. S659. 1 U. 1,2022 » 13 • 13028 » 16. 654 **t 20 .77647' 25.62389*

RE.AL 'A / »21fc23» ,34212' ,26302» .12642' .40206» .OSfvS

*. 12124* .1J.167' .6m>99r .22263' .42274* .39218* .14565

*t *14«365» . IbOOS/

SUM=i).

DO 1 I=1»15

1 CONTIN;. '!-:

l:.RFC= SUM*£XP ( -A) *cl . 0/SuRT (5 . 14.159 )

RETURN

END II I -8



IX_ iy
EXPLICIT PROGRAM LISTING

C PROGKAH FOR CALCULATING IMpiifO'TY PROF U (^..tUWrT TOM D(;PTH»

C AND SHEET RESISTANCE FOP. TriO STf>> DJf-TUSXON j[H f:.il...IOON

DIMENSION H(100) r NOT (100) » C O N ? 1 Q O > »YP(2 ( IO> p/M^'JO."

REAL M » N C « » I -10 » LA » Nil

C IF f'LwT OF i J ( X ) IS UCS'KLU fM/VKr TH?:: FIRST CAN.'l OUTPT=2.

C OTHEKWISL MAKE THE CAKn <iUTF'Vr:j, n

OUTPTr:,i..j

1 F ( OUT PT . LT . 1 . 0 ) hRITEtbfl

loo FOHf. iAT( /» «TLI~PREDFP TFJ^P.

^•KSl^PKrUhP SHEET RE?ISlANCi->nS2"ORU'E"Tfv; SHrTT fT-.?> T STAH

*»OhNSV'Xj= JUNCTION Pl-PlH»MlCnONS*XC=OXH»f-. : Tn.rr»ff,::-sj; f

*« ir-J AdG. -3TRO^S ' /«T(N2)= TIl^E IN NlTROtF>J» T ( ( ) f ? > :' T ' /Mf - ;»

*« IN O X Y G t N V ' T t H a O ) = TIME IN STfr.AM* ALL IN M < H t UTS' // »

»TL1» » 7 X » 'TE2' » 7 X » «RSl' » 7 X f »«S2 ' • 7Xc ' X,!" .T -Xr " X O " P

F( .2) » * 5X» ' T (02 ) « » J j X » « F(H20) «/>

C NB IS TH£ BACKGROUND DOPING » PER CC

NB=1.0Llb

C PKC.DEP TIME.I.XIN),TEMP(DEG.C.)

C TIME Iv< rJ2{f-'IN) »02(MIN) » AHi; S

C INITIAL VALUES OF DATA
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C SET ICON.LT.2 FOR A BORON NITRIDE PREDEP

ICON=2

Tl=0.0

T2=0.0

T3=0.0

IDAT=1

TU=17.

TE1=980.

TE2=1050.

RS1=72.

C DATA GENERATION PROGRAM

HQ CONTINUE

IFUDAT.GT.6) GO TO 504

T2=0.0

T3=0.0

T1=T1+20.

IDAT=IDAT+1

GO TO 510

50H IF(IDAT.GT«12> GO TO 506

Tl=0.0

T2=T2+20.

T3=0.0

IDAT=IDAT+1

GO TO 510

506 IF(IDAT.GT»18) GO TO 508

Tl=0.0
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T2=0.0

T3=T3+20.

GO TO 510

508 TE2=TE2+50»

IFCTE2.GT.1200.) STOP

IOAT=1

60 TO i|0

510 CONTINUE:

C DIFFUSION CONSTANT CM**2/S£C(BORON GIVEN)

T=Tt

COND=0.

60 TO 200

198 Dl=2.*uC

• CONO=2.

60 TO 200

199 L)=OC

60 TO 13

200 IFCT-1423.) 201 » 201 r 202

201 TACT=AL06(7.81)*1273.*lt23./150.

DOC=0.65it-13*EXP(TACT/l273t)/(3.fa)

60 TO

202 TACT =

DOB=0.6bE-l2*tXP(TACT/l'*73.)

60 TO 203

203 DC=DOH*EXR(-TACT/T)
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IFCCONP.LT.I.) GO TO 198

60 TO 199

13 LA=2.0*SORT(60.*01*TI1)

IFUCON-2) 14rl5»15

14 ALNRS=lfl. 19-1. 3<3E-2*TF: 1-6. 24E-2*TIl+7.E-4*TIl**2

QSL=0.()

GS 1=0.0

CALL F i M J i \ i O ( R S l » L A » N O >

60 TO 16

15 CALL F I N O W O C R S 1 , L A » N O )

(.151 = 0.0

C SET QSu=-i.O IF GLASS INTLKLAYKR IS RF.MOVKD.

GSL=-1.0

18 T£=T2+T1

T1=T1*«O.U

T3=T3*60.0

C OXIDATION RATE STEAM(Cf> AND BS) AND 02(CO AND BO)

CO=0.l7l*LXP(-23.1E3/<TE2+273.))

C TOTAL TIMt FOR GAUSSIAN ESTIMATION

TI2=T3
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Q=NO*LA*.b6*f

C GAUSSIAN ESTIMATION OF JUNCTION DEPTH

C DIFFUSION EONS. INTEGRATED OVER REGION OF 2*XJ

Xw= { 4 . *D*Tl2*ALOtt ( Cl/ < NB* < 3. l'i*D*TI2 )**(•»)»)**(, 5 )

C NORMALIZING FACTORS

XO=SQRT(D*TI2>

DX=2.*XJ/(iOO.*XO)

RT=DT*Tlii

KX=OX*XO

f-'=IFIX(lo/OT)

J=IFIX(£.*XJ/CXO*DX»

x=o.

INITIALISATION Oh CONCENTRATION

DO 1 1=1 »j

N(I)=NO+tKFC(X/LA)

x-x+ox* xo

1 CONTINUE

X02=0.0

WKITE(b t^0 0)XJ»0»RX tQSL»QSU»CSS

FORMAT(/rbE10.3)

L=2
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21 CONTINUE

NDT(J)=N(J)

C BOUNDARY CONDITION AT Sl-SI-02 INTERFACE

IF(L*RT-T1) I20rl20»122

122 IF(L*RT-T2) 124»124»126

C OXIDATION AND DRIVE-IN WITH STEAM

C IMPURITY FLUX AT SURF" ACE ASSUMED CONSTANT UNTIL GLASS 15

C REMOVED OK TRANSFORMED

126 TIMES=AB3(L*RT-T2>

XK=GS*( (i.+i*.*(CS**2)-*TlMES/BS>U.* 4CS**2) *<XQ2**2>/

IF(QSL.LT.U.O) GO TO

lF(XK-fi.E-6) I40flq0»l't2

140 DXOrO.

60 TO 16U

l'*2 DXO =CS/(1 ••*•'+ »*tCS**2>* I TIMES > /bS"*1*** (CS**2 ) *<X02**2 )

*/ ( BS**i: 5 -«-H • *CS*XQ2/BS) ** ( • 5>

GO TO 16U

C OXIDATION AND DRIVE-IN IN DRY OXYGEN

C IMPURITY FLUX AT SURFACE ASSUMED CONSTANT UNTIL GLASS

C LAYER IS TRANSFORMED

124 TIMEO=ABS(L*RT-T1)

X02=HO*< (1»+4.*(CO**2>*TIMEO/BO +6.E-6*CO/BO>** ( .5>-l.)/

*(2.*CO)

iF(QSL.Lr.O.O) GO TO 146

IF (X02-O.E-6) 1'4H»144»146
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0X0=0.0

GO TO 160

DXO =CO/U.+4.*(CO**2>*< TIMEO )/BO+8.E-6*CO/BO»**< .5)

GO TO 160

C DIFFUSION IN NITROGEN - ACCOUNTS FOR BORON GLASS NOT

C REMOVED FROM THE SURFACE BY TH£ HF ETCH

120 IF(QSL.LT.O.O) 60 TO 152

IF(QSI-QSL) 150»150rl52

150 F=D*(C5,S-N(2))/RX

QSI=GSI+DQSI

0X0=0.0

GO TO 162

152 F = 0.0

0X0=0.0

GO TO 162

160 F=(ALPHA~3«3o)*Oxo*N(l)

162 6A=0.«*b*RT/RX*DXo

JO=J-1

C THIS IS AN ARTIFICIAL BOUNDARY CONDITION TO MAKE N(X)

C FINITE AT 2*XJ AND EQUAL TO GAUSSIAN VALUE

I F ( L • GT . 1 0 > NOT ( J ) =Q/ ( 1 . 7g*iiQRT ( D*L*RT ) ) *£XP ( - < J*f<X ) *»2 ) /

*(«*.*C*L*RT)

C INTEGRATION 0?" NORMALIZE.D DIFFUSION EQUATIONS

DO 2 I=2»JO

NUT ( I ) =R*N ( l + i ) + ( 1 . -2 . *R+GA ) *N ( I ) -KR-GA ) *N ( 1-1 )

IF(NDT(I).LT.1.0E-15)NOT(I)=1.0E-15
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2 CONTINUE

IF<N(1)+(UX*XO*F)/D.LT.O.)F=-NDT(2)*D/<RX>

NOT ( 1 ) =OX*P*KO/0+NOT (2 )

DO 3 1-lfJ

NH) =NDT I i )

3 CONTINUE

IFIL.&E.M) GO TO 6

L=l_+l

GO TO 21

H CONTINUE.

6 CONTINUE

K=2

DO 5 I-2.J

C MAKE NEXT INSTRUCTION CARD r C=N(I-1) FOR P-TYPE

C MAKE NtiXT INSTRUCTION CARD fC=-N(I-l) FOR N-TYPE

C=N(I-1)

C G(C) USES IRWIN'S CURVE FORMULAS

CONU-l)=fatCl

YP(K)=0*fc:xP<-(P*KX)**2/(4.*0*TI2) ) /SORT ( 3» 1***D*TI2)

YPIK-1)=N(I-1>

P=N1

2(K)=2(K-1)
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IF(N<I-1).LT.NB.AND.N<I).LT.N<I-JL))GO TO 30

5 CONTINUE

C INTEGRATION FOR RSrSHKET RESISTANCE

~ 30 ~ KS'szrfsTCTwiTNirR'X) ~

IF(CUTPT.6T.X.O> CALL »!LOT</.f YP»K~2rNB, Y >

XK=ES* ( ( i . +<i . * ( <: b**2 ) * c TJ-T;: ) /•&+«. * ( c

* ( US**2 ) + 4 . *C5*X02/HS ) *»? < . 5 ) -1 . 0 » / < 2 - *Cf, >

Tl=71/60.

Ta=T2/60.

IF ( OUTP T . «T . 1 . 0 > WR A T E J 6 f ild >" r Y » Ti » Tg f T3 » XK » Tf^

20 FORMAT (//, iOXf 'SHEET f'ESlSTAivrr.:.- • »F0.2//» lOXr MUNCT IQN»

*' DEPTH iiM CM=f »E10r3//rlOXf t'i jMt; IN NITROGEN IM «

*»MINUTLS - ' fF9. l//r ICX-' ° TT.Mt Ji\' OXY&F..N JM f

* 'MINUTES = r >r9.1//r *CXc « T rfC J.N STEAM JN MTfv'JTCS = »»

*F9.1//»loX»fyXIl)E THJTC^N'gS? IN CM = '»E10.fl//»

*10X»fDf?H/t;>lK! DJFFUr.IOM TEMP IN DLG. C. = «rFg.l.)

IF(OUT}'T.I.T.1.0) WRI

22 FORMAT ( / » 1 OX 1 9K .1 0 . ? '

400 CONTINUE

GO TO i;0

END
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SUBROUTINE FINDNO(RS1»LA,NO)

C FINDNO 15 BftSED ON THE RELATION SHIP FOR RS FOR AN ERFC

C PROFIU.". IT WAS CALCULATED FROM A NUMERICAL

C INTEGRATION* AMD THEN FITTED WITH A PJ.ECEWISE

C CONTINUOUS FUNCTION.

REAL NO»LA

GAVE=1.0/(RS1*LA)

lF(GAVL.-lti5.) '!

U IF(GAV(-..LT.40.) GO TO 8

ALOGC = AL06 < GAVE/ALPB ) /I1ETH

GO TO 10

ALOGC=AL06(6AVE/ALPC)/DETC

00 TO 10

AL06C=ALOG<6AVE/ALPA)/3ETA

GO TO 10

10 NO=EXP(AL06C)

RcTURN

END

REAL FUNCTION ERFC<U)

I F ( U - I . O ) 3 » S » 5
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3 - N=31

60 TO 15

5 IFUJ-2.0) _7»9»_9_ ________

7 N=U1

60 TO 15

9 lF(U-2.5) Ilrl3»13

11 N=61

GO TO 15

13 lFCEXP{-U**?.).LT.i«E-15>EKFC=l.E-l5

IF <EXP<-U**2) .LT.l.E-l5>RtTURN

ERFC=ExPtU«-U**2)/( 1.772*0)

GO TO 17

15 SU=0.0

DX=U/(fi-l)

X=0.0

1 = 1

1 B=2.0

IF (1/2* 2.tQ.I)P=^.0

IF (I. EG. 1) D-1.0

X=X

IF(N-I) ^»l

2 CONTINUE

S=DX/3,C*SU
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ERFC =1.0 -2.0*S/i.772

17 CONTINUE

RETURN

END

REAL FUNCTION G(CX>
CN= ABSCCX)

1FICX.I.T.O.O) GO TO 3

IF(CN.GT.O.O) A=i.O

IF(CN.GT.O.O) 8=7.2E-17

lRCN*GT.l.bE +16) A=0.65

!F(CN.OT.i.t)E +16)0=3. 3E-H

!F(CN.C>T.2.ifE«-16) A=0

IF(CN.GT.1.5E+19) A=0.966

lF(CN.GT.1.5IH-19)B=4.f_-l7

GO TO S

3 IF(CN.GT.O.O) A=1.0

IF ( CN . G7 . 0 • 0 > £5=2 .£"16

IF(CN.GT.3.5E15)A=0.037

IF(CN.GT.l.OElV) A=0.543

!K(CN.(iT.l«OE17)b=6.93E-9

lF«CN.O»T.9«5E18>B=2,E-lb

IF(CN.GT.(3. £19) A=0.74^

IF(CN.GT.6. E19)B=1.43E-12
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IF(CN.GT.2.35E20)A=0.«*56

5 6 = t)*(CN*#A)

RETURN

EN[j

FUNCTION KS(CON»N»DX)

DIMENSION CON<N)

x=o.o

DO 1 I=

8-2.0

IF (1«E«. 1)15=1*0

IF(1.EQ.N)B=1«0

• SUM=SUK4CON(I)*B

1 CONTINUE

R=DX/3.*SUM

RS=1./R

RtTURN

END

SUBROUTINE PLOT(X1»Y1»N»MB»XJ)

REAL NB

DIMENSION Xl(£50)rYl(250) » AKRAY U5» 101 )

DATA AST»DASh»BAR»DLANK/lH*t !H-tlH3»lH /

DO 19 L=l»15
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00 19 M=1»101

ARRAY<U»M)= BLANK

19 CONTINUE

DO 20 M=l»101

ARRAY(1»M)=DASH

ARRAYU5»M>=nASH

20 CONTINUE

DO 22 L=i.<*5

ARRAY <L»1)=OAR

22 CONTINUE

CMAX=Af jS(Y l (D-Nd)

CMIN=Ai-?S(YKD-Na)

00 4 I = 2 » N

Z1=A8S(Y1(I)-NU)

IF(Zl.GT.CMAX) CMAX=Z1

JF(Zl.LT.CMIN) 60 TO 12

GO TO JM.

12 CMJN=Z1

GO TO I'l

14 I F < Z 1 . L T . 1 » 0 ) 21=1.0

* (X l< I ) ) /XMAX- t - .5>

.LT.l) L=l
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IF(M.LT.I) M=l

IF(M.GT.iOi) M=

ARRAY(L»M)=AST

CONTINUE:

WRITE<6>30> CMAXrCMIN'XJM

30 FORNiATUHlr lOXf'CMAXr • f E8.3»5X» «CMIN

*»XJ(MICRONS) = « rF6.3/)

L=l

WRITE(6»80) ( A R R A Y ( L » M ) » M=1»J01)

60 F O f x M A T ( « «»10H -------- --.101A1)

L=2

WHlTE(6»8a> (ARRAY(L»M) »M=1»101>

82 FORMAT (• « » i H D » f C(X) *(10lAl)

L=3

WRITE (6 » 8k) (A(?RAY(L»M) »M=1»101>

0«+ FORMAT {• »rJ.H3»9Xr 101AD

WRITE(6»(36)

66 FORMAT (• » » l H 3 f » PER CC »»101A1)

IT=1

DO 32 L = 5r«»5

EX=10.**( (L-l)/^)

CX=l.E2l/fc.X

1F((L-1> .hQ.(4*IT)) GO TO 10

WRITE (erdft) (ARRAY(LfM) rM=lflQl)

88 FORMAT (• • f lH3r 9X» 101A1 )
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60 TO 32

HO WRIT£(6»90> CX»(ARRAY<L»M>»M=1»101)

90 FORMAT (» »»2H3 »E6.1»2H — »101A1)

32 CONTINUE

WRITE (6»9*»)

94 FORMAT( • '»lHl»9Xf 1H3»9X. 1

»9X»lHj r9Xf 1HD»9X»1HJ»9X)

XAC=fa.£3*XMAX

XAD=8.C3*XMAX

96 FORMAT ( /f«*5X»fX -MICRONS')

RETUKN

END

E(f!»9b) XAA»XA8»XAC»XAD»XftE

96 FORMAT (/ r lOXr 1HO» 1?X»F5.2» 1 SXr Fb-2» lbX»F5.2» 15X»F5.2>
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APPENDIX V

JUNCTION DEPTH, SHEET RESISTANCE,
and OXIDE THICKNESS CURVES

The curves given in this appendix are for drive-in diffusions in

nitrogen, oxygen, and steam at drive-in temperatures of 1050°C,

1100° C, 1150° C, and 1200° C. The predeposition diffusions are

assumed to be the 72 ohm or 27 ohm diffusions carried out at 980° C

that are done at MSFC. The 72 ohm predep is for 17 minutes in

diborane followed by 7 minutes in O^,- The 27 ohm predep is for 60

minutes in diborane followed by 6 minutes in N2- All the boron glass

is assumed to be removed for the 72 ohm diffusion, but the boron-

rich interlayer is assumed to remain for the 27 ohm diffusion. The

explicit integration program listed in Appendix IV was used to generate

the data. Experimental data is given on graph V-5 which has some

scatter in the resistance after predeposition. All experimental data

points are for 1150° C diffusion and are shown as circles with data

spread indicated by a vertical bar.
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