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ANALYSIS OF TRANSIENT, LINEAR WAVE PROPAGATION
IN SHELLS BY THE FINITE DIFFERENCE METHOD
By Thomas L. Geers and Lawrence H. Sobel

Lockheed Missiles & Space Company
Palo Alto, California

Chapter 1

INTRODUCTION

The finite difference method has been used for many years in the solution
of differential eguations, iﬁcluding those of shell theory. Because the method
involves the transformation of differential equations for continuous variables
into difference equations for discrete variables, a question of primary interest
is the following: At what mesh size (if any) do the finite difference equations
accurately reproduce the solutions of interest to the differential equations?
This report addresses itself to that question as it pertains to transient,

linear wave propagation in shells.

The motivation behind this study was to provide a sufficiently firm under-
standing of the title subject that detailed comparisons could be made between
the finite difference method and other numerical methods of analysis. As the
study progressed, it became possible to make preliminary comparisons; while
these appear at appropriate points in the report, the comprehensive comparison

study is left for future work.

The report is divided into five chapters. This chapter contains an outline
of the considerations underlying the study and descriptions of the shell equa-
tions and the finite difference code used. The second chapter contains numerical
results and discussion for a variety of wave propagation problems; this serves to
establish the accuracy and practical limitations of the method. The third chapter
presents the results of analytical investigations that explain certain behavior
observed in the computations of Chapter 2 as well as some characteristics of
computations by other methods. The fourth chapter deals with a problem of
special interest, viz., the scattéring of transient longitudinal and flexural
waves in a cylindrical shell by cutouts. Chapter 5 completes the report with

a statement of major conclusions and recommendations for future study.



1.1 RESPONSE VARTABLES

It is of course important at the outset to identify the response variables
that are to be used as a basis for judging the accuracy of finite difference
computations. To do this, we indicate two uses to which such computations are
often put. First, transient shell response computations may be used as ex-
citation inputs to small structural systems that are attached to the shell, in
order to predict failure or survival of these systems. Second, transient shell

responses may be used to predict failure or survival of the shell itself.

In connection with the first use, let us examine briefly the response of
a damped, single-degree-of -freedom oscillator excited at its spring-dashpot
attachment point. The response quantity on which the fallure or survival of
such a system most directly depends is the relative displacement across the
spring-dashpot pair. Thus we write the governing equation for the oscillator

in the form (Ref. 1)
¥+2twy +w 2y = - X (1)
i) (o] (o}

where y is relative displacement, X, is attachment point displacement,
W, and [ are the oscillator's fixed-base undamped natural frequency and
critical damping ratio, respectively (g << 1 in the vast majority of cases),
and a dot denotes single differentiation in time. If we now introduce the

Fourier transform (Ref. 2)

F(w) = [(t)e It 2)

the relative displacement response for quiescent initial conditions is given by
@

o St
% ( )er
y(t):%—ﬂf w2 0'® dw (3)

o Wy T 2jgwow - W

Let us now consider three frequency regions in the (positive) frequency
domain: (1) the region 0 <y < @, , where uiz << ubg » (2) the region
<w < where 2 2 and (3) the io W it
W SWwsSw o W S>> wy n region w, <@ < ». e write

from Eg. 3, then, since xo(t) is real,
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where an asterisk denotes complex conjugate and where vo(t) and ao(t)

are the velocity and acceleration of the attachment point, respectively.
Examination of the three integrals on the right side of Eq. 4 leads us to
conclude that y(t) varies roughly as ao(t), vo(t) and xo(t) for low-
frequency (u? << wog), intermediate-frequency (w nzwo), and high-frequency

2 2
(0 > ) input motions, respectively.

From the above development, we conclude that, based on the highest
natural frequency of a small attached system, we need not be concerned
with intermediate~ and high-frequency shell acceleration components or with
high-frequency shell velocity components at the system's attachment point.
This is fortunate, since, as we will observe in Chapter 2, high-frequency
inaccuracies appear in computed acceleration histories before they appear
in the corresponding velocity histories; high~frequency inaccuracies rarely

appear in computed displacement histories.

In connection with the second use, that of predicting failure or sur-
vival of the shell itself, it is clear that the quantities of interest are
elther stresses or strains. These quantities are significant only to the
extent that they combine in such a say so as to reach a fallure criterion,
and, in almost all problems, a few of them greatly exceed the others in
magnitude. Hence, judgements regarding the accuracy of stress/strain com-
putations should be based more upon considerations regarding peak values of
significant stresses/strains and times of occurrence of the peak values than

upon response details.

1-3
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In accordance with the preceding discussion, conclusions regarding the
accuracy of finite difference computations will be based upon displacement,
velocity, acceleration, and stress/strain reéfonses. It will generally be
assumed that if a series of finite difference computations appropriate to a
sequence of decreasing mesh sizes exhibit convergence with respect to the
response quantities of interest, then the converged solutions constitute
accurate reproductions of the true solutions of the governing differential
equations. This assumption will be supported in many cases through com-
parisons with other types of solutions to specific prcblems and through

analytical studies of convergence.

1.2 EQUATIONS OF SHELL THEORY

The finite difference computations of this report are based on the
linear elastic equations for thin shells. There exist various equations
of this type (see, e.g., Refs. 3-6); all of the varieties have the common
characteristic that they admit errors of order h/a in the pertinent energy
expressions, where h 1s a characteristic shell thickness and a 1is a char-
acteristic radius of curvature. On this basis, then, they may all be con=-
sidered equivalent. The finite difference code employed herein, the STAR code,
is based in particular on the equations of Ref. 6. Although these equations
are thoroughly discussed in Ref. 6, it is helpful for discussion purposes to
specialize here to the case of the circular cylindrical shell. For this case,

the pertinent strain-displacement relations are

2
- v _,3¥
ecx(z) T fe far®) = 5 77 S0
Lo vz (2w, av (5)
_ _Lov ¥ Z_ 2= 4+ 5
eg(z) = cge * ope(2) =555 " " 2 (asg 35)
13w, av z 2w 1l ov
can(®) = cape ¥ cape®) "5 35 507 7 5 (e T2 %



where e and f denote extensional and flexural strains, respectively,*

and the pertinent constitutive equations are

_ E
O'a = l-vg (Ga + UGB)
B
= + 6
OE l_v2 (GB Uea) ( )
E

Taﬁ_ 2(l+v) eaB

The notation for EqQs. 5 and 6 is defined in the following figure.

P, Density
E, Young's modulus
v, Poisson's ratio

The introduction of Eqs. 5 and 6 into the appropriate strain and kinetic
energy expressions, and the subsequent application of Hamilton's principle
(see, e.g., Ref. T) yield the so-called Euler equations, or the equations
of motion for the shell

*

Since the flexural terms correspond to the Bernoulli-Euler theory for the
flexural deformation of beams, a theory which leads to equations of this
type is sometimes referred to as a Bernoulli-Euler theory.
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where v ( ) = i Rt (), v ()=vIv()]l, c=I[Bp(1-v)]
falo} a o

is the plate velocity for the shell material, and p , p_ , and p, are
o

B
surface tractions in the o- , B~ , and z-directions, respectively. The
initial and boundary conditions that are necessary for the complete descrip-

tion of a problem will not be given here (see, e.g., Ref. T).

If an excitation is such that flexural effects are negligible in the
response of the shell, then all terms multiplied by h2/l2a2 in Eqgs. T
may be dropped. This yields the equations of motion for the so-called mem-
brane shell. If an excitation is such that flexural wave lengths on the
order of the shell thickness are present in the shell response, then thin
shell (Bernoulli-Euler) theory is no longer adequate. One might then employ
the equations of improved theory, which take into account the effects of
transverse shear deformation and rotatory inertia. These equations may be
obtained in a manner similar to that used to obtain Eqs. 7 (see, e.g., Ref. 8).
For our purposes, it is only necessary to note that, whi;e the extensional
strain expressions for this theory are those of Eqs. 5, the flexural strain

expressions are
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eur(z) =2 §5
epe(z) = 2 2 (8)

cope(®) = 23 22+ 28)

where the shell rotations ¢ and ¢ become -3w/dc and -(1/a)(aw/ap + v),

*
respectively, in the limit of long structural wave lengths.

1.3 VARIQUS NUMERICAL METHODS OF SOLUTION

Because linear dynamic shell equations are generally far too compli-
cated to yield to direct solution in closed form, numerical methods of
solution have been extensively employed. The most common of these
have been the finite difference method, the finite element method,

the method of modal superposition and the method of characteristies.

The finite difference and finite element methods both impose a grid-
work on the shell, replace the continuous shell with a discrete model, and
solve a set of algebraic equations. The two methods differ in that the
finite difference method discretizes the governing partiael differential
equations for the continuous shell, while the finite element method dis-
cretizes the shell itself, representing it as an assemblage of plate or
shell elements, each of which is described by a finite number of dependent
varigbles. Temporal variation is generally treated in both methods with

step-by-step numerical integration techniques.

The method of modal superposition first solves the eigenvalue prcblem

associated with the homogeneous equations of motion in conjunction with the

*Since the flexural terms correspond to the Timoshenko theory for the flex-
ural deformation of beams, a shell theory which includes the effects of
transverse shear deformation and rotatory inertia is sometimes referred
to as a Timoshenko theory.



governing boundary conditions.* The resulting shell modes are then used to
construct the forced motion of the shell by linear superposition. The method
of characteristics requires hyperbolic shell equations (Eqs. 7 are of the
parabolic type with regard to flexural motion) and therefore makes use of
improved (Timoshenko) shell theory. The shell equations are then recast in

terms of the appropriate characteristics and solved numerically.

All of the above methods share a common failing, namely, the use of a
finite number of response variables to represent continuous functions. Their
success depends, therefore, upon the rate of convergence of their numerical
solutions with respect to finite increases in the number of response variables
(degrees-~of -freedom) and the efficiency with which they effect the necessary
computations for a given number of response variables. Generally speaking,
the finite difference and finite element methods are numerically the most
efficient for a given number of response variables; the method of modal
superposition is less efficient, but often requires a smaller number of re-
sponse variables and provides modal information that need only be generated
once for multiple response computations; the method of characteristics is
the least efficient method, but, because it embodies the essential character-
istics of wave propagation behavior, it can accurately treat short wave length
response, including response discontinuities. Thus, a decision as to which
method should be used to solve a particular problem can only be based on the
nature of the problem itself. (For a comprehensive assessment of current

shell analysis capability, see Ref. 9.)

1.4 THE STAR CODE: DESCRIPTION AND APPLICATION

The STAR (Shell Transient Asymmetric Response ) computer program can be
used for the two-dimensional, nonlinear, transient response analysis of in-
elastic shells with unreinforced cutouts. A detailed discussion of the code
is given in the User's Manual for STAR (Ref. lO). Improvements made in the

code as part of the present study are described in Appendix A.

*
For complicated geometries, the homogeneous equations of motion are usually
solved with finite difference or finite element methods.
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The STAR code is based on the general thin shell eqguations of Ref. 6,
which include nonlinear geometric terms, and on a set of constitutive equa-
tions for a temperature-dependent, work-hardening materiasl. Lines of prin-
cipal curvature are used for the curvilinear coordinates (q,B) of the middle
surface of the shell. (See Appendix A for notation and sign conventions.)
The basic solution procedure employed by the code is as follows. The govern-
ing partial differential equations of motion are reduced to a set of time-
dependent ordinary differential equations by the épplication of two-dimensional
finite difference approximations for derivatives with respect to the shell's
middle surface coordinates ¢ and B . An explicit (central) finite differ-
ence numerical integration scheme is then employed for the solution of the

ordinary differential equations.

Solutions obtained with the explicit scheme are numerically stable if
the time step At is not greater than some critical value, Aﬁcr' In the

present study, At . 1is computed from (Ref. 11)

2
T Ypax

(9)

where W ox is the highest natural frequency for the discrete system ob-
tained from the finite difference representation of the shell equations.
Expressions for Wox appropriate to uncoupled extensional and bending
vibrations of a flat plate are given in Section 3.1. TFrom those expressions
and the above equation, we obtain the following critical time steps Affr

and Aﬁir corresponding to extensional and flexural plate vibrations,

respectively:
.=
2 21 2
B c cs .
Yer = N\aa ) * \ane o (dwr<dne)
10
N (10)
Moy = 1{_2 5ot ——
Ao (app)



where c- = E/p(l-vg), cS2 = E/2(1+y)p, a = a(y) is the shell radius,

and Ay and A are the mesh widths for the meridional and circum-

*
ferential coordinates, respectively. (AB = o for axisymmetric problems.)
For all cases considered herein, At is less than the smaller of AﬁEr

and Ajzr. All numerical results thus obtained are numerically stable.

The mesh widths Ac and AR were selected in accordance with the
following consideration. Let A denote a characteristic structural wave
length appropriate to nondispersive, axisymmetric'wave propagation in the
shell. Then, for problems with in-plane excitations, Ay was selected in
accordance with the criterion AQ/K << 1. It was found that this criterion
consistently gave good results, so it served as the basis for all problems

characterized by predominantly in-plane excitations.

For problems with transverse loadings, Ao Wwas selected in accordance
with the criterion that Ag/h ~ 1 , where h 1is the shell thickness. A
more sophisticated method for choosing Ay evolved during the course of
the present study. This method is discussed in Chapter 3. In the solution
of asymmetric problems, the mesh aspect ratio (pAc/apB) was selected to be

on the order of unity.

One of the major considerations used in the selection and execution of
the problems of the next chapter was that the computation time for a single
problem should be less than five minutes. The following approximate ex-
pression was used to estimate computation times on the Univac 1108 for both

axisymuetric and asymmetric response problems:

COMPUTATION TIME IN MINUTES = na nB nt/MOOO (ll)
where n and n are the number of mesh points in the ¢ and B
o

directions, respectively, and n is the number of time points.

t
It should be emphasized that the scope of the STAR code (see Ref. 10)
is appreciably broader than that required for the class of problems con-
sidered herein, namely, the linear, isothermal,transient response of con-
stant-thickness, elastic, isotropic cylindrical and conical shells. Hence,
run times for the STAR code will generally be higher than those for computer

programs that are specifically developed for this class of problems.

*
If apB < Axsy A and apR are interchanged in the first of Egs. 10.
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Chapter 2

NUMERICAL STUDY OF CONVERGENCE

In this chapter, we investigate numerically the convergence of finite
difference transient wave propagation computations. Because we are pri-
marily interested in propagation along the meridional coordinate, most of
the cases involve axisymmetric response, although prcoblems with gentle

asymmetry are also included.

To facilitate our study, let us define four excitation classifications.
The first classification is (EL %3, which includes excitations that are
broad in the meridional dimension ¢ and gradual in the temporal dimension
t.* The second classification is (@, %7, which consists of excitations
that are narrow in g but gradual in t. The third is (g, T), which in-
cludes excitations that are broad in ¢ but abrupt in t. The final
classification is (@, ), which consists of excitations that are narrow
in @ and abrupt in t. All non-axisymmetric excitations to be considered

are broad in the circumferential dimension B-

In order to describe more precisely these classifications, we define a
"spatially broad’ excitation as one that contains no spatial discontinuities
on an unbounded domain or one whose characteristic spatial dimension con-
siderably exceeds the shell thickness; we define a "temporally gradual"
excitation as one that produces no temporal discontinuities in the velocity
response of the shell or one whose characteristic temporal dimension con-
siderably exceeds the transit time of an extensional wave through the shell
thickness. The terms "spatially narrow” and "temporally abrupt” are, of
course, just the opposite of the above definitions. Because the imposition
of boundary conditions is equivalent to the application of line loads to a
shell, any disturbance reaching a shell boundary gives rise to an excitation
that is spatially narrow in the direction normal to the boundary. Also,
specification of an initial velocity condition constitutes the application

of a temporally abrupt excitation.

The principal results of this chapter are summarized in Table 1 on page 2-19.

*

Actually, excitations in this classification will not be specifically con-
sidered. This is because the studies pertaining to the other classifications
demonstrate that (&, T)- excitations present no convergence problems.
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2.1 DISPLACEMENT, VELOCITY AND ACCELERATION RESPONSE TO IN-PLANE EXCITATION

In this section, we examine convergence of the kinematic quantities
appropriate to in-plane or, more specifically, longltudinal excitation of

cylindrical shells.

2.1.1 (3, ) - Excitations

The first example involves an (g, %7 - excitation in the form of a
specified bell-shaped end-displacement whose temporal width is approximately
equal to a/EC*. Thus, as discussed in Appendix B, (k a)2 >> 1, where k
is the wave number characteristic of the longitudinal :train, and a bell-:haped
displacement wave propagates with negligible dispersion down the shell at the

plate velocity c.

E&g. 1l shows displacement, veloclity and acceleration histories at
o/L = %. We see that, because of the nature of the excitation, taking a time
derivative roughly halves the characteristic wave length ) = 2n/k. Thus,
the coarse finite difference mesh is satisfactory for displacement computa-
tions but is marginal for velocity computations and unsatisfactory for
acceleration computations. Fig. 2 shows displacement, velocity and accelera-
tion snapshots at ct/a = 0.533. Because of the non-dispersive propagation,
each response snapshot is essentially a laterally displaced mirror image of
the corresponding history. This description holds at later times also, as
indicated in Fig. 3, which shows snapshots at ct/a = 2.132. Comparing
Figs. 2 and 3, we detect, for a fixed mesh width, a gradual deterioration

in accuracy as time increases.

The second example also involves an (@, t) - excitation in the form
of a specified bell-shaped end-displacement. In this case, however,
k a ~1, and the wave suffers significant dispersion as it propagates down

e
the shell (see Appendix B). Fig. 4 shows displacement, velocity and

*All the examples discussed in this chapter are described in detail in Table 2.
**Because, from Appendix B, W ~ - p(c/a)u, a radial response gquantity is
smoother than the corresponding longitudinal response gquantity. Furthermore,
radial response is much smaller than the corresponding longitudinal response
for longitudinal excitation. Thus, only longitudinal response quantities

are shown.
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acceleration histories at /L = O.Eh*. Basing the mesh width to character-
istic wave length ratio, AQ/A , on response appropriate to non-dispersive
Propagation, we see that the convergence behavior of the finite difference
computations in the example is similar but slightly superior to that ob-
served in Fig. 1. This judgement is further supported by the response snap-
shots shown in Figs. 5 and 6. From Figs. 1-6, therefore, we conclude that
the convergence of finite difference computations of displacement, velocity
and acceleration response appropriate to in-plane (@, t) - excitation is

satisfactory if aAg/) < 1/20.

The two preceding examples pertain to (g, t) - excitations that are
temporally quite gradual and possess relatively well defined characteristic
temporal wave lengths. Let us now consider an example in which the excita-
tion is significantly less gradual and possesses no readily identifiable

temporal wave length, viz., the ramp loading case described as Example 3 in

Table 2. This excitation constitutes somewhat of an extreme test for in-plane

(3, ¥) - excitations in that it produces a discontinuity in longitudinal
shell acceleration. Fig. T presents displacement, velocity and acceleration
histories at o/a = 1. We observe that, because of the discontinuity in
longitudinal shell acceleration, convergence of the finite difference com-
putations for that quantity are only marginal; computations of the other
kinematic quantities are satisfactorily convergent. This cbservation also
applies to Fig. 8, which shows displacement, velocity and acceleration
snapshots at ct/a = 2. Both of these figures display oscillations in the
computed acceleration records that are characterized by non-dimensional
spatial and temporal wavelengths of approximately nAQ/a. This phenomenon

is analogous to the familiar Gibbs' phenomenon in Fourier series solutions.

2.1.2 (o, ¥) - Excitations

The next example (Example 4) involves an (g, T) - excitation in the

form of a longitudinal impulsive loading that gives rise to the initial

*
Because k a~ 1, the radial response quantities are comparable in magnitude

to the longitudinal response quantities. The former are at least as smooth
as the latter, however, so that again it is sufficient to display only the
longitudinal response quantities.



velocity distribution described in Table 2. As discussed in Appendix B,
(kea)2>> 1 , so that this example constitutes an essentially non-dispersive
wave propagation problem. Fig. 9 shows displacement, velocity and accelera-
tion histories at a distance Q/L = 0.21 to the right of the plane of loading
anti-symmetry. We observe that, for a given AQ/K - ratio, convergence be-
havior is about the same for this (g, T) - excitation as it is for the (a, T) -
excitation of Example 1. In order to assure ourselves that satisfactory con-
vergence for all kinematic quantities can indeed be attained, we examine Fig.
10, which presents displacement, velocity and acceleration snapshots at

ct/a = 0.2132 and 0.8528.

The fifth example also deals with an (o, T) - excitation in the form
of a longitudinal impulsive loading which produces an initial wvelocity
condition. In this case, however, k a ~1 (Appendix B), so that the wave
propagated along the shell suffers siénificant dispersion. Fig. 11 pre-
sents longitudinal displacement, velocity and acceleration histories at a
distance Q/L = 0.12 to the right of the plane of locading anti-symmetry.
The figure indicates that convergence is satisfactory for all quantities
when AQ/X << 1. This is supported by Fig. 12, which shows displacement,
velocity and acceleration snapshots at ct/a = 1.91 and 5.73. At the
earlier time, dispersion effects have not yet become significant, so that
the non-dispersive curves shown in the figure constitute accurate represen-
tations of the true response. This is no longer the case, however, at

ct/a = 5.73.

As Example 6, we examine an (g, ©) - excitation which gives rise to
discontinuities in longitudinal acceleration, i.e., we consider the saw-
tooth impulse loading described in Table 2. Displacement, velocity and
acceleration histories at o/a = 2 and snapshots at ct/a = 2 are shown
in Figs. 13 and 14, respectively; these display the same marginal (at best)
convergence in the acceleration computations that was observed in the

(o, T) - excitation example of Figs. 7 and 8.

2.1.3 (g, £) - Excitations

The seventh example deals with an (aq, ?) - excitation, viz., a step
end-velocity excitation. Because of the discontinuity in longitudinal

shell velocity, the finite difference computations for that quantity, as
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shown in Figs. 15 and 16, are only marginally convergent. Furthermore,
because the acceleration can only be defined in terms of a generalized
function (viz., the Dirac delta-function) at the wave front, computations
of that quantity by the finite difference method (or, in fact, by other

numerical methods) are unsatisfactory.

The final example of this section (Example 8) involves a non-
axisymmetric (@, T) - excitation in the form of a step end-velocity dis-
tributed as cos g for - % <p =< n/2- Figure 1T shows displacement, velocity
and acceleration snapshots at ct/a =2, g=0and 900. Comparing this figure
with Fig. 15, we observe that, for aAB/AB << 1, the presence of gentle asym-
metry has no effect on general convergence behavior. The gentle but distinet
asymmetry is illustrated in Fig. 18, which shows kinematic response snapshots

at ct/a =2 and qofa = 1.

2.1.4 Conclusions

From Figs. 1-18, we draw the following conclusions regarding thin
shell finite difference computation of shell response to in-plane excitation.
First, we conclude that computations of kinematic response guantities appro-
priate to (@, t) -, (o, ) -, and therefore (%, T) - excitations are satis-

factorily convergent as long as the ratio of each spatial mesh dimension to the

shortest corresponding characteristic spatial wave length of the response is much

less than unity. The value of the ratio required is determined by the length
of time for which solutions are desired: the longer the time, the smaller
the ratio must be. Second, we conclude that if an excitation produces a
discontinuity in a response qQuantity, the finite difference computation of
that quantity will be at best only marginally convergent due to the appear-
ance of a type of Gibbs' phenomenon. Third, we conclude that the finite
difference method cannot be used to compute the acceleration response of

a shell subjected to an in-plane (g, ?) - excitation. As a final note: It
is fitting that finite difference computations of shell response appropriate
to (o %7 - excitations possess about the same convergence behavior as those
appropriate to (w, t) - excitations. Finite difference computations of an
(o, T) - generated wave that is reflected from a shell boundary are therefore
as accurate after reflection as they are before reflection. This is because

the reflection of an (o, T) - generated wave by a shell boundary directly
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corresponds to the superposition of two waves: the (GL ?) - generated
wave propagating in the absence of a boundary and an (@, t) - generated
wave produced at the boundary through the enforcement of the boundary

condition.

2.2 DISPLACEMENT, VELOCITY AND ACCELERATION RESPONSE TO TRANSVERSE EXCITATION

The propagation of waves generated by transverse excitations is charac-
terized by severe dispersion. We are therefore denied here the simple
spatial wave length descriptions embodied in many of the preceding examples.
Thus we deal immediately with transverse excitations that introduce no
well-defined characteristic temporal or spatial wave lengths, but which

are mathematically simple.

2.2.1 (g, ) - Excitation

The first example of this section, Example 9, involves the (g, %} -
excitation of a clamped-clamped cylindrical shell by a uniform, radial step-
pressure. That this problem constitutes a simple (a, %j flexural wave
propagation problem is shown by the following argument. Consider an in-
finite shell excited over its entire length by the uniform step-pressure;
its response is given by w(q,B,t) = wm(t) = (Poa2/phc2) (1 - cos ct/a),
where Po is the magnitude of the pressure step. Now consider an identical
infinite shell excited axisymmetrically at o =0 and =1L Dby the pre-
scribed radial displacements w(0,B,t) = w(L,B,t) = - wm(t). Since the
conmbination of these two prodblems yields the problem of Example 9, and
since the uniformly excited infinite shell problem embodies no flexural
wave effects, Example 9 does constitute a simple (Bg %3 flexural wave prop-

agation problem.

Fig. 19 shows displacement, velocity, and acceleration histories at
*
Q/L = % for Example 9. We see that, while displacement and velocity con-
vergence may be termed satisfactory, convergence of the acceleration com-

putations 1s, at best, marginal. This convergence difficulty is analogous

*
Longitudinal responses computed at other stations along the shell proved
to be smaller and generally smoother than the corresponding radial responses.
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to that of the previous section, which was associated with a discontinuity
at the extensional wave front. As implied in Section 1.3, we cannot assoc-
iate the propagation of a wave front with the elementary (Bernoulli-Euler)
flexural equations. To do this, wé employ improved (Timoshenko) theory
that introduces an extensional wave front travelling at velocity

c = [E/p(l-vg)]l/2 and a shear wave front travelling at velocity

c, = [nE/Ep(l+v)]l/2, where » is the shear factor (0.8 < 4 < 1.0).

On this basis, we see that the high-frequency oscillations in the Aa/h =1
acceleration history of Fig. 19 appear to begin with the arrival of two
acceleration discontinuities (one from each end) that travel at c, and
simultaneously reach the shell's mid-station at ct/a ~ 2 (see, e.g., Ref.
13). A short time later, the acceleration history smooths out, only to be
disrupted again upon the second arrival at ct/a ~ 6 of the acceleration
discontinuities, which have been reflected from the ends of the shell.

This interpretation is supported by the Aa/h =1 curves of Figs. 20 and
21, which show displacement, velocity and acceleration snapshots at

ct/a = 1.2 and 4.8, respectively. The analogy between this behavior and
that of the previous subsection is more completely established by com-

parison of Figs. 19 and T.

While the Aa/h = 1 computations appear to predict with some degree
of accuracy the arrival of an acceleration discontinuity, the computations
for other values of Aa/h either ignore its arrival or, in the case of

the Aa/h = % computations, predict the arrival of a flexural wave with

a velocity even greater than the dilatational velocity. This is in contrast
to the case involving in-plane excitation, where changes in the value of
Aa/h produce no such radical changes in the computed responses (see Fig. 7).
We conclude, therefore, that the less than satisfactory convergence of the
finite difference acceleration computations is due to the inability of
eiementary bending theory to treat properly the short wave length components
contained in the acceleration response. The use of a finite differnce code
based on improved theory should materially inprove this situation, even
though the problem of dealing numerically with a response discontinuity

*
would still be present.

* -
The modal superposition acceleration snapshots of Figs. 20 and 21, which are

computed from 180 modal responses appropriate to improved shell theory (Ref . 15),

cannot be accurate in the vicinity of the acceleration discontinuity either;
this problem will be discussed in greater detail later.
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2.2.2 (g, ) - Excitation

The next example, Example 10, involves the (g, T) - excitation of the

clamped-clamped cylindrical shell of Example 9 by an axisymmetric, triangular

radial impulse. Fig. 22 shows displacement, velocity and acceleration his-
1

tories at Q/L =5 - As in the previous example, convergence of the dis-
placement and velocity computations is satisfactory, whereas convergence of
the acceleration computations is, at best, marginal. This is also reflected
in Figs. 23 and 24, which show displacement, velocity and acceleration snap-
shots at ct/a = 1.2 and 4.8, respectively. We observe from the latter that
the lack of convergence in the acceleration computations persists even at
rather late times. The problem is alleviated somewhat if the discontinuity
in the spatial derivative of the initial velocity distribution is reduced.
This is demonstrated in Fig. 25, which presents displacement, velocity and
acceleration histories at Q/L = % for the shell of Example 10 excited by
an axisymmetric triangular radial impulse whose base is twice as wide as

that appropriate to Fig. 22.

2.2.3 (@, ) - Excitations

We now proceed to an example (Example 11) that involves an (@, T) -
excitation in the form of a uniform radial impulse applied to the clamped-
clamped cylindrical shell of Example 9. It is easily seen that the dis-
placement and velocity responses of this example are identical to the
velocity and acceleration responses, respectively, of Example 9 (Figs.
19-21). Hence the discussion of the lack of convergence in the accelera-
tion computations of Example 9 directly applies to the wvelocity computations
of this example. We show the displacement and velocity responses as well
as an acceleration history and two acceleration snapshots for this example
in Figs. 26-28; these figures demonstrate that convergence of the finite
difference acceleration computations is clearly unsatisfactory. The im-
proved theory modal superposition computations are also suspect, in view

of the discontinuity in the shell's velocity response.

*

Again, longitudinal responses computed at other stations along the shell
proved to be smaller and generally smoother than the corresponding radial
responses.
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In order to assess the effects of variations in (@, t) - excitations,
we consider as Example 12 the problem of the previous example with the clamped
supports changed to free supports. Displacement, velocity and acceleration
histories at Q/L = l/h are shown in Fig. 29 to demonstrate the smoothness
of the longitudinal responses in relation to the corresponding radial re-
sponses. For these boundary conditions, longitudinal response is comparable
in magnitude to radial response, a situation that does not occur in the case
of clamped boundaries. Fig. 30 shows radial displacement, veloecity and accel-
eration histories at Q/L = 1/2; comparing these results with those of Fig.
26, we see that the change in boundary conditions has no effect on the con~
vergence behavior of the finite difference computations. This is also
demonstrated in Figs. 31 and 32, whicn show displacement, velocity and

acceleration snapshots at ct/a = 1.2 and ct/a = 4.8, respectively.

As Example 13, we examine the non-axisymmetric response of a clamped-
clamped cylindrical shell to an (a, ?) - excitation in the form of a longi-
tudinally uniform radial impulse that is distributed as cos B over the
region -n/2 <B = ﬂ/2. In order to evaluate better the effects of gentle
agsymmetry, displacement, velocity and acceleration histories at Q/L = 0.50
are shown in Fig. 33 for the associated axisymmetric problem involving a
uniform radial impulse. The less than satisfactory convergence of the ve-
locity and acceleration computations is again apparent. Fig. 34 shows dis-
placement, velocity and acceleration histories for the cosine radial impulse
problem at Q/L = 0.50 and B = 0. The differences between these resulis
and those of Fig. 33 are minor. Fig. 35, which shows corresponding histories
at Q/L = 0.50 and B = 9OO,demonstrates that the convergence behavior of
the axisymmetric and B = O results also characterizes the results at points
on the shell that are not directly excited. The gentle but distinct asym-
metry of the cosine impulse problem is illustrated in Fig. 36, which shows
displacement, velocity and acceleration snapshots at ct/a = 0.78 and
Q/L = 0.50. The Ao/h = 0.92 and 1.73 results agree well at this early
time; from Figs. 34 and 35, however, we see that these results begin to
diverge a short time later. Finally, Figs. 37 and 38 show displacement,
velocity and acceleration snapshots at ct/a = 0.78 for the uniform impulse
problem and at ct/a = 0.78, g = O for the cosine impulse problem,
respectively. As with Figs. 33 and 34, these computations display virtually
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identical behavior. We conclude from Figs. 33-38, therefore, that finite
difference response computations for gently non-axisymmetric excitations
display the same convergence behavior as those for corresponding axisymmetric

excitations.

2.2.L Smoothed Excitations

The three preceding examples have demonstrated that, because of the
limitations of the elementary bending theory on which they are based and
because of their inability to treat properly response discontinuities,
convergence of the finite difference computations of velocity and accelera-
tion responses to (g, T) - excitations are less than satisfactory. It is
of interest, then, to examine two methods for modifying the excitation so

as to ameliorate this situation.

The first method consists of smoothing the excitation temporally,
e.g., converting the impulsive loading of Example 12 into a pressure load-
ing of small, but finite,duration. Such a conversion is shown as Example 1k
in Table 2. Displacement, veloclity and acceleration histories appropriate
to the load duration ctw/a = 0.82 are shown in Fig. 39. This duration is
much less than the period dT/a = 2 of the sinusoidal response appropriate
to the associated problem of an impulsively excited infinite shell. Hence
the displacement response of Fig. 39 agrees quite well with that of Fig. 30,
once the former is moved to the left a distance cts/a = 0.41 +to allow for
the finite duration of the triangular pressure locading. Convergence of the
velocity and acceleration computations of Fig. 39 is much better than that
of Fig. 30, however; we observe that smoothing even allows us to use the

very fine mesh AQ/h = without introducing the high-frequency oscillations

N+

encountered in Aa/h = 1 acceleration computation of Fig. 30. Still further
improvement in convergence behavior is achieved if the width of the triangular
pressure loading is increased to ctw/a = 1.6h4, as shown in Fig. L0. If the
time shift cts/a = 0.82 is introduced into these results, even this tempor-
ally rather broad excitation constitutes a reasonable approximation to the

impulsive excitation of Example 12.

The effects of temporal smoothing are even more clearly demonstrated
in Fig. 41, which shows velocity and acceleration snapshots at ct/a =1.2

for the shell of Example 12. Shown are 1) response snapshots for a uniform
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impulse loading as computed with the modal superposition method based on
improved theory, and 2) response snapshots for a spatially uniform tri-
angular pressure loading of width ctw/a = O.hg as computed with the finite
difference method based on elementary theory. From this figure and Fig. 31,
we see that there is much better agreement between the finite difference
responses appropriate to the triangular pressure loading and the modal super-
position solutions than between the latter and the finite difference solu-

tions appropriate to the impulse loading.

The second method for improving the convergence of finite difference
computations of velocity and acceleration responses to (3, ?) -~ excitations
consists of smoothing the excitations spatially. For example, we might con-
vert the uniform impulsive loading of Example 12 into an axisymmetric impul-
sive loading which constitutes a truncated Fourier series expansion (sin mmo/L)
of the longitudinally uniform loading, as shewn as Example 15 in Fig. L2.
Displacement, velocity, and acceleration histories at /L = % for Woax = 5
are shown in Fig. 43; we observe that convergence is satisfactory for all
three responses. Similar histories for m = 11 are shown in Fig. LL,
here we must make velocity and acceleration computations with Ag/h = 1/2
to demonstrate satisfactory convergence. Fig. 45 shows comparable histories
for mmax = 23; at this point we find that the convergence of the displace-
ment, velocity and acceleration computations is satisfactory, marginal and
unsatisfactory, respectively. Thus, for Moax = 23 , we have essentially
the same convergence situation as that shown in Fig. 30 for the uniform

impulsive loading.

2.2.5 Conclusions

From Figs. 19-45, we draw the following conclusions regarding thin
shell finite difference computation of shell response to transverse ex-
citation. First, we conclude that computations of displacement and velocity
response appropriate to (o, ©) -, (& T) -, and therefore (g, t) - excitations

are satisfactorily convergent as long as the ratio of each spatial mesh

*
A time shift of cts/a = 0.20 has been introduced into the finite difference
results to position the peak of the triangular pressure loading at t = O.
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dimension to the shortest corresponding characteristic spatial wave length of
the response is appreciably less than unity.* The convergence of transverse
acceleration computations, however, is only marginal for (g, %3 - and

(@ T) - excitations, especially when discontinuities are involved. Second
we conclude that the convergence of finite difference computations of
transverse displacement, velocity, and acceleration response to (g, T) -
excitations is satisfactory, marginal, and unsatisfactory, respectively.
This difficulty may be substantially overcome, however, by either temporal
or spatial smoothing of the excitation. Third, we conclude that the con-
vergence difficulties c¢bserved derive from two sources: the presence of
discontinuities in certain responses, and the failure of thin (Bernoulli-
Euler) shell theory to account properly for short structural wave length

response components that contribute significantly to the total respomse.

2.3 STRESS/STRAIN RESPONSE TO IN-PLANE EXCITATION

We examine here the convergence of finite difference computations of
stress/strain response to predominantly in-plane excitation of cylindrical

and conical shells.

2.3.1 (@ t) -, (&% %) -, and (g, t) - Excitations

We first consider the (g, t) - excitation problem of Example 2,whose
kinematic shell responses were studied in Section 2.1. We skip Example 1
of that section because, for the virtually non-dispersive propagation that
it displays, the essentially mewbrane stress and strain responses are almost
directly proportional to the longitudinal velocity response of the shell,
which has already been studied. Since Example 2 involves dispersive propa-
gation, however, it is of interest to examine longitudinal meumbrane stress
response for this case. Fig. 46 shows membrane stress responses at ofL = 0.2k,
ct/a = 5.73 and ct/a = 1T7.2 , respectively; convergence is seen to be satis~
factory for Ao/xc << 1 , where Xc is the stress characteristic wave length

for dispersion-free propagation.

*Although we have not observed in this Section any gradual deterioration in
accuracy with increasing time, the emergence of this problem in certain com-
putations of the previous Section suggest that it may occur in computations
for transverse excitations also. Fortunately, the problem is readily detected
by means of multiple computations with various mesh dimensions.
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The next example is the (g, T) - excitation problem of Example 3.
Membrane stress responses at o/a = 1 and ct/a =2 for this example
are shown in Fig. 47. Because of the absence of discontinuities, conver-

gence of the finite difference computations is entirely satisfactory.

For the reason given gbove in comnection with Example 1, we skip
Example 4 and proceed to the (o, T) - excitation problem of Example 5.
In Fig. 48, which shows longitudinal strain responses at /L = 0.62,
ct/a = 1.91, and ct/a = 5.73, we find again that convergence of the finite

difference computations is satisfactory for AQ/A << 1.
o]

Since the (@, T) - excitation of Example 6 (the saw tooth impulse)
produces no discontinuities in stress/strain response, convergence of the
corresponding finite difference computations is satisfactory, as it was
for the (@, t) - excitation of Example 3 (see Fig. 47). Thus, we omit
detailed examination of the stress/strain responses for this loading and
proceed to the (@ T) - excitation of Example 7. Because this excitation
does produce discontinuities in longitudinal membrane stress/strain re-
sponse, convergence of the finite difference computations of such response
is, as indicated in Fig. 49, only marginal. The same is true for the

corresponding non-axisymmetric case of Example 8, as indicated in Fig. 50.

2.3.2 Conclusions

From Figs. L6-50, we draw two conclusions. First, we conclude that
finite difference computations of stress/strain response to predominantly
in-plane excitation converge satisfactorily for cases involving (@, ©) -,
(%, T) -, and therefore (o. T) - excitations, as long as the ratio at each
spatial mesh dimension to the shortest corresponding characteristic spatial
wave length of the response is much less than unity. Second, we conclude
that the convergence of these same computations appropriate to in-plane
(@, T)- excitations is only marginal as a result of the discontinuities

present.

2.3.3 Comparison with Experimental Data

We now direct our attention to the comparison of finite difference

computations of strain response with corresponding experimental data. The
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first set of data, which derive from the excitation of very long cylindrical
shells at one end by the imposition of axisymmetric, 20 ysec long, box-
shaped longitudinal velocities, is described as Example 16 in Table 2.
Strain histories for Specimen T-l are shown in Fig. 51 at ¢ = 3 dinches
and 7.5 inches. We observe that, while the computations of peak strain

and wave arrival time are accurate, the late time behavior of the experi-
mentally measured longitudinal strain histories is not accurately predicted
by the computed histories. Similar histories for Specimens T-13 and T-14
are shown in Figs. 52 and 53; we observe that the computations of peak
strain are also accurate for these shells, but that computed arrival times
and pulse shapes are not completely satisfactory. Disagreement between
computed and measured pulse shapes should not be given too much weight,
however, because the velocity excitations at the ends of the shells were
never actually measured; the box-velocity excitation is ounly an assumed

input based on less refined measurements.

Experiments in which the excitations were quite carefully measured
are reported in Ref. 17. These experiments, which are described as Example 1T
in Table 2, involve the axisymmetric longitudinal excitation of a hollow cone
that is struck at the closed end by steel balls of various diameters. The
excitations are given as longitudinal strain histories measured by a quartz
crystal located at the impacted end of the cone. These inputs can be ac-~

curately described as

. 2
€ sin™ — , 0=t <<

eI(t) = (1)

, otherwise

Since this 1s hardly a complete specification of boundary conditions at

the impacted end of the cone, some analyslis is necessary.

The meridional stress resultant for an axisymmetrically excited

conical shell can be written in the form

- Eh_fou v ; -
R [Ba + = (usin ¢ - W cos ¢)] (2)
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At the impacted end of the "shell” of Fig. 54, it seems reasonable to take

w/dx = 0 , so that, at that point, e = SC;%%E—EU-(ulongitudinal)
= 3u/dx + tan ¢ /3¢ = dM/da. It also seems reasonable to take Wooaial
= -u sin @ + w cos @ equal to zero at the impacted end, which makes the
term containing Poisson's ratio vanish. Unfortunately, the STAR code cannot
handle mixed end conditions like u sin ¢ - w cos ¢ = O, so that we now in-
troduce an approximation. Since, for this "shell", ¢ = 0.175 = «< n/2 ,

we write from Eq. 2

Na ~ z%fg (gg -V g) (3)

which is the equivalent cylindrical shell aproximation. To make the
Poisson's ratio term vanish, then, we take w = 0. Our boundary con-

ditions at the impacted end of the hollow cone are therefore taken as

Eh
Na(ai:t) = Ij;g eI(t)
w(ay,t) = 0 ()

oM -
dar (CYlJt) =0

Figure 54 shows STAR code computations of meridional membrane strain
responses along with the experimental results. The very satisfactory per-

formance of the thin shell equations used in the STAR code is surprising

. until we note that, except for the excitation of Fig. 54d, the structural

wave lengths characterizing the primarily longitudinal shell response
considerably exceed the 1/4 inch "shell" thickness. However, even in the
case of Fig. 54d, for which the spatial width of the pulse is only about
four times the mesh spacing, agreement between the computed and experimental
results is satisfactory. Figure 5khe shows extended results which include
bending effects as well as wave reflection effects from the other end of

the hollow cone. From this figure, we conclude first (Gage 2 results)

that the STAR code accurately accounts for bending effects in the hollow

cone, and second (Gage 3 results) that the free edge boundary condition
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assumed at the far end of the cone is not a very successful simulation of
the experimental boundary conditions, which were "not definitively established”

by the experimentalists.

2.4 STRESS/STRAIN RESPONSE TO TRANSVERSE EXCITATION

We now investigate the convergence of finite difference computations
of stress/strain response in cylindrical shells to predominantly transverse

excitations.

2.41 (3, £) -, (o, B) -, and (@, £) - Excitations

Our first example is Example 9, whose kinematic responses to a transverse
(2, %) - excitation were the first studied in Sgction 2.2. Figure 55 shows
longitudinal strain histories at Q/L = 0 and %. We find that convergence
of the membrane strain computations is uniformly satisfactory. Although we
must use the rather fine mesh Aa/h = % to obtain generally acceptable con-
vergence of the flexural strain computations, and although the computations
appropriate to this mesh predict the arrival of a disturbance that travels
faster than even the dilatational velocity, convergence of the finite dif-
ference computations of flexural strain may still be termed satisfactory.
This judeement is supported by Fig. 56, which shows longitudinal strain

snapshots at ct/a = 1.2 and 4.8.

The next example is the (3; ?) - excitation problem of Example 10.
Longitudinal strain responses at o/L = % , ct/a = 1.2 and ct/a = 4.8 are
shown in Fig. 57. We conclude, on the same basis as that used in con-
nection with Figs. 55 and 56, that convergence of the finite difference

menbrane and flexural strain computations is satisfactory.

We now proceed to the (g, ) - excitation problem of Example 11,
Longitudinal strain responses of the shell to this uniform impulse loading

are shown in Fig. 58. Convergence of the finite difference computations for

*
In this and subsequent examples, circumferential strain response is so
smooth that convergence of the finite difference computations of this
quantity is uniformly satisfactory.

2-16



flexural strain response is seen to be uniformly unsatisfactory. The use
of Aog/h - ratios smaller than unity offers no solution; the resulting re-
sponse computations are even more wildly oscillatory and predict the exist-
ence of disturbances which propagate at velocities exceeding even the dila-
tational velocity. Since improved theory predicts the propagation of no
discontinuities in longitudinal strain response for (g, T) - excitations,
this convergence problem can only be associated with the short wave length

limitations of elementary bending theory.

It is interesting to note in Fig. 58 that (especially the results
for ct/a = 1.2) the thin shell finite difference computations seem reason-
ably accurate in regions well behind the shear wave front (see the discussion
of Example 9 in Section 2.2). This is in agreement with the results of other
investigators (see, e.g., Ref. 18). As we would expect from Section 2.2,
the convergence behavior of the finite difference computations is unchanged
by a variation of boundary conditions. For example, changing the clamped
boundary conditions of Example 11 to free support boundary conditions
(Example 12) produces no improvement in the unsatisfactory convergence of

the finite difference flexural strain computations.

We conclude this subsection with a brief examination of nonaxisym-
metric longitudinal strain response appropriate to the (g, T) - excitation
problem of Example 13. Fig. 59 shows longitudinal strain histories at
Q/L = 0.50 for the associated axisymmetric problem appropriate to & uniform
impulse and for the cosine impulse problem at B =0 and B = 90i We ob-
serve the unsatisfactory convergence of the flexural strain computations
in all cases, noting especially the dramatically premature arrival of a
computed flexural wave for Ao/h = 0.60. Thus, we again find that finite
difference response computations for gently non-axisymmetric problems
display the same convergence behavior as that appropriate to the corres-

ponding axisymmetric prcblems.

2.4.2 Smoothed Excitations

In view of the unsatisfactory convergence behavior just observed,
let us now apply the temporal and spatial excitation smoothing techaiques

discussed previously in Section 2.2. We first consider the case of
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Example 14, i.e., the application of a uniform triangular pressure pulse.
Longitudinal strain histories for a load duration ct/a = 0.82 and longi-
tudinal strain snapshots for a load duration of ct/a = 0.40, along with
corresponding results for the impulse loading, are shown in Fig. 60. We

see that convergence of the finite difference computations is substantially
achieved for the ct/a = 0.82 triangular pressure locading, and that the

ct/a = 0.40 finite difference computations lie closer than those for the
impulse loading tc the impulse loading response computed with improved shell
fheory. Similar improvement in convergence is effected with spatial smooth-
ing, as shown in Fig. 61. This figure, which pertains to truncated longi-
tudinal Fourier series expansions of a uniform impulsive loading (Example 15),
shows longitudinal strain histories at Q/L = %. We see that convergence

is satisfactory for mmax = 5 and 11, but is only marginal for mmax = 23.

2.4.3 Conclusions

From Figs. 55-61, we draw the following conclusions regarding finite
difference computation of stress/strain response to transverse excitation.
First, we conclude that computations appropriate to (g, ) -, (@ ) -,
and therefore (B; %7 - excitations are satisfactorily convergent providing
that the ratio of each spatial mesh dimension to the shortest corresponding
characteristic spatial wave length of the response is appreciably less than
unity. Second, we conclude the computations appropriate to (g, T) - excita-
tions are unsatisfactory, a difficulty which may be partially overcome,
however, by either temporal or spatial smoothing of the excitation. Third,
we conclude that the unsatisfactory convergence encountered is caused by
the failure of thin shell theory to account properly for short structural

wave length response components that contribute significantly to total response.

2.5 SUMMARY

The conclusions of Subsections 2.1.4, 2.2.5, 2.3.2 and 2.4.3 are sum-
marized and generalized in Table 1. It is lmportant to recognize that this
table does not indicate at what mesh dimensions convergence will be achieved,
but indicates only the convergence behavior to be expected as the mesh di-

mensions are reduced.
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Table 1.

Based on Thin Shell Theory

Convergence Behavior of Finite Difference Computations

Type of Excitation (all B)

T~ ~ ‘——’* ~ —
Response Quantity (@ T) (2, %3£d:t) (3, )
e — - o - . - T
u, v, w, v, W, V satisfactoryl satlsfactoryl satisfactory
eBe)eaf) er,GQ’Be,eQBf
- : s — T : T . 5
u, W satisfactory satisfactory marginal
€oe
. - . 1 . 1,2 . 2
u satisfactory marginal to vnsatisfactory

satisfactory

IN-PLANE EXCITATIONS

Type of Excitation (all §)

Response Quantity (r&; ?) (&’J%\))) (rC\YJ) :‘::) (a: TC')
w, v, v, 4, v, U, Vv satisfactoryl satisfactoryl satisfactoryl
E:Qe, €Bej QBf) SQ,Be} GO’Bf
W satisfactoryl satisfactoryl marginal to 2,3
unsatisfactory
. 1 . 1 X 3
€ur satisfactory satisfactory unsatisfactory
. . 1 . 2,3 . 2
W satisfactory marginal to unsatisfactory

unsatisfactory

TRANSVERSE EXCITATIONS

lConvergence occurs as Ag and aAg become appreciably smaller than the shortest
corresponding characteristic spatial wave length of the response of interest

2 s
Less than satisfactory convergence is due to the presence of response discontinuities

3Less than satisfactory convergence is due to the short flexural wave length
limitations of thin shell theory
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Table 2. Numerical Examples
Shell Parameters Excitation
Shell » Spatial or
Bx.|Figures | No. |L/a a/h v |B.C.'s | Prescribe Shape |Temporal Width[Ref.
1 |1-3 1 J2.5 j25 0.3 |c-c u(o,t)§ o.533§- 12
2 |L4-6,46 2 20 100 0.3 |C-C u(0,t) A—t 3.82% 12
3 |7,8,47 3 w 10 1/3 |c Na(o,t) L1 1k
b [9,10 1 Wa,0) ) S 0.25a 12
(23
5 |11,12, 2 4(@,0) La 12,
48 15
6 13,14 | 3 i(a0) VAQ 28
T |15,16, 3 1(0,t) —E: 13,
49 1k
8 117,18, | 3 4(0,8,t) —E’S—B S<psg
50
9 }19-21, L 2.h |20 0.25 |Cc-C pla,t) _E_ 15
55,56 L
2
10 |22-25, n W (e,0) ‘A_ 0.8a,1.6a
5T
11 | 26-28, 4 p(a,0) 15
58 r
12 | 29-32 5 2.4 |20 0.25 |F-F p(a,0) h 15
t -T7 < B < ks
13 | 33-38, 6 1.65( 17 0.286|C-C p(os8,0) l eosB | /2 {n/g
59
1L | 39-k1, | 5 p(ast) At_ 0.82 2,1.64 &
60 C C
o.ho &
M max c
. = 4 . mTY
16 | 51,52, 7T | very|19,7.5 0.333|F-F u(0,t) __DL_ 20 y-sec 16
53 long | 3.5
17 |5k 8 |[Fig. 5k 0.333|Fig.54 | ¢(0,t) l&, 50,22,11, 17
and 5 p-sec
*
C: clamped
F: freely-supported 2-20
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Figure 1. Kinematic Response Histories for Example 1
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3
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Figure 2. Kinematic Response Snapshots for Example 1
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-~
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I 1 | l I
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Figure 3. Kinematic Response Snapshots for Example 1
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Figure 4. Kinematic Response Histories for Example 2
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u/ [um‘m]e“d

u/(c/a) [u""’"]end

ii/(c/o)z[umx]end
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— =1/32
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Figure 5. Kinematic Response Snapshots for Example 2
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Figure 6. Kinematic Response Snapshots for Example 2
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d]end
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-a/a

1.O o Aa/h=10Aa/a=1
s Aash=10Aa/a =2
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Figure 7. Kinematic Respouse Histories for Example 3
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ct/a =2 o Aa/h=10Aa’a — o(r2) Solution

displacement
(a2/pc3h) [N]

ond

velocity
(a/pc2h)|

acceleration

(1/pch)|

a]end

Z

ﬂ]end

- Z

a Aa/h=10Aa’/a

2 (Appendix B)

]

Longitudinal

Figure 8.

a’/a

Kinematic Response Snapshots for Example 3
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Kinematic Response Histories for Example 4
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Figure 10. Kinematic Response Snapshots for Example L
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Kinematic Response Histories for Example 5
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Figure 12. Kinematic Response Snapshots for Example 5
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Figure 13. Kinematic Response Histories for Example 6
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Figure 18. Kinematic Response Snapshots for Example 8
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Figure 19. Kinematic Response Histories for Example 9
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Figure 22. Kinematic Response Histories for Example 10 (Qh = 0.8a)
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Figure 29. Kinematic Response Histories for Example 12
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Figure 30. Kinematic Response Histories for Exampie 12

2-50



]iniﬁal

o

w/ (a/c)[

V.V/[w]iniﬁul

]initial

-2

w/ (c/a)[

ct/a =12

1.2 I I I I

-4 [ l l I
o 0.1 0.2 0.3 0.4 0.5

a/L

Figure 31. Kinematic Response Snapshots for Example 12
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Figure 34. Kinematic Response Histories for Example 13 (Cosine Impulse)
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Figure 35. Kinematic Response Histories for Example 13 (Cosine Impulse)
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Figure 36. Kinematic Response Snapshots for Example 13 (Cosine Impulse)

2-56

<,



ct/a = 0.78 Aa/h

W/(a/c)[‘i']initial

W/[w]iniiial

w/ (c/a)[viv]i“i fial

o ol 0.2
a/L

Figuwe 37. Kinematic Response Snapshots for Example 13 (Uniform Impulse)
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Figure 38. Kinematic Response Snapshots for Example 13 (Cosine Impulse)
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Figure 42. Initial Velocity Conditions for Example 15
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Figure L48. Stress Response History and Snapshots for Example 5
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Figure 50. Siress Response Snapshots for Example 8
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Chapter 3

ANALYTICAL STUDY OF CONVERGENCE

The primary objective of this chapter is to study the causes of the con-
vergence problems encountered in Chapter 2. Two causes are possible; limi-
tations inherent in the finite difference method, and limitations of the.

shell theory employed.

It is clear that in problems characterized by the presence of response
discontinuities, there always exists a region near each discontinuity where
non-convergent oscillations in the finite difference computations occur.
Even though this behavior causes only marginal difficulties, it still re-

presents an inherent limitation of the finite difference method.

We observed in Chapter 2 convergence problems related to flexural re-
sponse computations that are not caused by the presence of discontinuities
in the response of interest. We will see in this chapter that this difficulty
is not the result of a limitation in the finite difference method itself,
but is instead the result of a limitation of the thin shell (Bernoulli-Euler)

theory used.

There is ample evidence in the results of Chapter 2 that the convergence
difficulties of finite difference computations are assoclated with response
components with short structural wave lengths. For these components, shell
curvature effects are unimportant and it is therefore justifiable to con-
sider the simpler case of a plate instead of a shell. Furthermore, since
convergence difficulties in the absence of response discontinuities have not
occurred for shells subjected to in-plane excitations, we need only consider

transverse motions of the plate.

The principal results of this Chapter are (1) that the finite difference
method fails to converge only in regions around discontinuities in the response
of interest, (2) that flexural response convergence problems not in regions
around response discontinuities are the direct result of the failure of thin
shell (Bernoulli-Euler) theory, and (3) that a thin shell finite difference
solution may be more accurate than even an exact solution of the corresponding

differential equations. In addition, it is pointed out that the method of
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modal superposition also suffers from convergence limitations, and that the
use of improved shell (Timoshenko) theory instead of thin shell theory will
tend to relieve some of the convergence difficulties associated with com-
putations of flexural response, but may also prove to be inadequate for

some purposes.

3.1 CONVERGENCE OF FINITE DIFFERENCE COMPUTATIONS OF FLEXURAL RESPONSE

This section examines the dynamic characteristics of a finite difference
model of a thin plate. These characteristics are then related to those of
the continuous plate and convergence of the finite difference model in the

limit of wvanishing mesh size is demonstrated.

3.1.1 Frequency Equation for the Finite Difference Plate

A convenient way to characterize the dynamic behavior of a system
is to determine the frequency equation for the system. Such an equation
relates the (angular) frequency w to the wave number k. As shown in the
subsequent derivation for a plate, and as Ref. 19 shows for simple discrete
systems, the frequency equation = (k) for homogeneous discrete systems
is independent of the boundary conditions and the number of degrees-of -freedom;
different boundary conditions or a different number of degrees-of-freedom
merely give different points on the same g = m(k) curve. It should also
be noted that the frequency equation is the same for traveling waves, stand-
ing waves due to free oscillations, and forced sinusoidal oscillations
(Ref . 19); again the different cases simply give different points on the same

frequency curve @ = w(k).

The frequency equation will now be determined for the discrete system
that results from a finite difference representation of the flexural motion
of a thin, flat plate. A comparison is then made between the frequency
equation for the continuous plate and that for the finite difference plate

in the limit of vanishing mesh width.




The free transverse motion of a thin plate is governed by the following

*
equation:
2
i L b 2
L AW D W AWV (l ) Qv
= +2 + = (=) 2¥ (1)
n 2_ 2 n 2
ax *%2y oy Y at

where w(x,y,t) is the lateral displacement, x and y are Cartesian
coordinates, c¢ 1is the plate velocity, VY = h/JiE is the radius of
gyration (h = plate thickness) and t is time. This equation will now
be converted to a partial difference equation through the use of second
order finite difference expressions. The plate domain is replaced by a
finite difference mesh with mesh widths Ax and Ay in the x- and y-
direction, respectively. The mesh or nodal points are located at the in-

tersections of the lines

<
1l

AX, 2AK, +vo, MAX, -0
(2)

y AV, 2AYs ---» DAY

where m and n are mesh point indices. The finite difference approxi-
mation to the differential operator vuw in Eq. 1 is represented at the
mesh point m,n by the module shown in Fig. 1. For example, the co-
efficient of L at point m,n is 6[(5}()_)+ + (Ay)_h] + 8(Ax)_2(Ay)'2,
In the interest of brevity, we do not explicitly write down the complete
difference equation at the point m,n; it can readily be obtained from

Eq. 1 and Fig. 1.

For a wave-type solution of the difference equation we take

E 3]
I

Aexp [3(ut - kox - ky)]
(3)

Aexp [jlut - k mpx - kynAy)]

Where kx and ky are the trace wave numbers relative to the x- and

y-axes, respectively, and w is angular frequency. We can write, therefore,

*
This expression can be readily obtained from the last of Egqs. 1.T7.
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Vrl,n " A exp{jlut - kx(m+l) X - kynAy]}

wm,n exp[-jkxéx] ()

wm-l,n-l - wm,n eXP[J(kxAx * kyAY)]

etc.

Proceeding in this way, we can express the lateral displacement at each

nodal point of the computational module (Fig. 1) in terms of L
2

Thus the difference equation at the mesh point m,n reduces to an alge-
braic equation which is homogeneous in wm,n' Since wm,n represents the
displacement at a general mesh point, the coifficient of wm,n must vanish,
so that, after some algebraic manipulations, we obtain the condition re-
quired for the plane wave given by Eq. 3 to be a solution of the finite
difference equation for the plate. This condition is the frequency

equation for the discrete system, and is given by

k_Ax k_Ay
1 .2l x 1 .2 Y
w(kX)AX’ky’AY) =MCY == sin 5 )+ —5 sin ( > )

(5)
) (&)
This relation has been obtained without consideration of boundary
conditions and is therefore independent of them. Also, w(kx:AX:ky:AY)
is not a function of the indices m and n; hence the frequency curve

is independent of the number of degrees-of -freedom.

3.1.2 Cutoff Frequency

The frequency w(kx,Ax,ky,Ay) reaches a maximum for

kXAx=kyAy=1"r, 3, 9, .. (6)

X s Cys . . 2 . 2
Trigonometric identities for sin'g and (sin"g)(sin"¢) are employed.
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which corresponds to wave lengths A\, = 2n/kx,xy = 2n/ky given by

2 2
}\x=2AxJ '§AX,§'AX,
(7)
2 2
Ay=2mr,§Ay: B'AY:
Since wave lengths smaller than twice the mesh spacing have no meaning
(Ref. 20), we conclude that "cutoff" is reached at the following wave
numbers
kxc = TT/AX: kyc= ﬂ/AY (8)

so that, from Eq. 5, the cutoff frequency is given by

w = hey [+ —l;>
° Y((Ax () (9)

The introduction of Egs. 8 into Egs. 4 yields the following mode shape
appropriate to the frequency w,:
+men, lp| + la| even
Vimtp,ntq (10)

-wm’n, !pl + lqt odd

Thus, at the cutoff fregquency each mesh point moves with equal absolute
value and in a direction opposite to that of its immediate neighbors.
This "zig-zag' mode is depicted for the basic finite difference module

in Fig. 2.

For one-dimensional discrete problems, such as a linear array of
oscillators, it has been shown (Ref. 20) that the wave number k is real
if the frequency w 1is less than the cutoff frequency W, -+ However, for
w, > W, no travelling wave exists and a standing wave develops. This
standing wave is characterized by adjacent points oscillating in opposite

phase with amplitudes decreasing exponentially in space; k 1is therefore
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complex. At w = @, s an ambiguity exists and the wave motion can be
considered either traveling or standing. Hence the one-dimensional dis-
crete system behaves as a "low pass filter", i.e., it allows propagation

of response components with frequencies up to a cutoff frequency w, -

If we specialize our plate problem to the one-dimensional discrete
case, 1.e., the finite difference beam, the above remarks apply and the
finite difference beam constitutes a true low pass filter. The two-dimen-
sional case (Eqs. 5 and 9) is more complicated, for it is conceivable that,
at certain frequencies, we may have a traveling wave in one direction and
a standing wave in the other direction. This possibility has yet to be
adequately studied. However, it is clear that for w > w, 5 exponentially

decaying standing waves will exist in both directions.

Knowledge of the cutoff frequency for a given mesh size is important,
since spurious noise will exist in the response computations if the discrete
system is significantly excited at frequenclies y > W, (Ref . 21). In
addition, there is a deterioration of accuracy in the computed response
appropriate to the region @ - wc;-this will be studied in detail in
Section 3.2.

3.1.3 Critical Time Step

The cutoff frequency is also important in the determination of the
maximum time step allowed in conjunction with a given spatial mesh for
numerically stable computation. In Ref. 11 it is shown that, for a dis-

crete linear system, the critical time step At . can be determined from
c

2
T ey (1)

where Wy is the highest fredquency of the system. For ooy we use

the cutoff frequency W, given by Eq. 9 to obtain the second of Egs. 1.10.
For the special case of a square mesh, Eq. 1.10 agrees with the result

given in Ref. 22, which is derived through the application of the von Neumann

stability method (Ref. 23).

For completeness, we now present an expression for Atcr appropriate

to in-plane motion of a plate. Guided by the results obtained above for
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transverse motion, we assume that the cutoff frequency corresponds to a
zig-zag mode for adjacent mesh points (Fig. 2). Then, from the governing
difference equations for in-plane motion, or through the application of

Rayleigh's principle, we can readily show that

w2 [l - ()

where e, = [E/2(1+v)p]l/2 is the shear velocity. Introducing this into
Eq. 11, we obtain the first of Egs. 1.10; this result agrees with the

/
} » (< ) (12)

result of Ref. 24, which also employs the von Neumann stability criterion.
Now it has been stated (Ref. 25) that EqQ. 11 is inconvenient in applica-

we have just seen that

tion because of the difficulty of determining Woax?

the assumption of zig-zag motion constitutes a very simple means for over-

coming this difficulty.

3.1.4 Convergence of tgg Finite Difference Method

Eq. 5 is the frequency equation for the finite difference plate.
We now consider the limiting case when the mesh widths ax and py

both approach zero. Thus we have, for fixed structural wave numbers kx

and k_,
Y
kxAX-—vO
(13)
k -0
yﬁy
so that the Taylor's series expansion for sin g then ylelds
k )1 = Y(k2+k2)
LIM {w(kx:AX: y:Ay }— c - v (l)-#)

&, Ay—0

This is in agreement with the frequency equation for the uniform plate,
which may be obtained from Ref. 26. Thus, a finite difference solution

does, in fact, converge to the corresponding continuous solution as

M,y - 0 , in the absence of response discontinuities.
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.3.2 FREQUENCY PARAMETERS

In this section, we give expressions for the characteristic frequency
parameters that pertain to the shell theory employed, the given excitation,
and the finite difference mesh. These parameters are then used to inter-
pret some of the numerical results presented in Section 2. A finite differ-
ence computational procedure based on the use of these parameters is then

presented.

3.2.1 Limit Frequencies of Shell Theory

Thin shell theory is limited to the frequency range (Ref. T)

w < wfzo.l ws (lS)

for flexural motion, and
w == (16)

for extensional motion. In these equations, Wy is the frequency of

the lowest antisymmetric thickness-shear mode of a plate, given by

. 1/2
oo n 2 F [ile] an)

For comparison, we also write the limit frequency appropriate to

improved theory (Ref. T)

W s w.=Ww (18)

We dbserve that W= W, = 10 w

3.2.2 Cutoff Frequency of Excitation

A convenient way to describe a transient excitation is to char-
acterize it in terms of its frequency content, through the use of the

Fourier transform (Ref. 2). For example, let us consider a function
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with the following triangular temporal variation (Fig. 3)

(2t 1

t 2 OStS'é'tW
W
t 1
£(t) = {21 'E;) , 5t ostst (19)
0] 5 otherwise

The Fourier transform of f£(t) is then (Eq. 1.2)

f(w) ='? . ————-T-— e (20)
wh )
W
(T

Figure 3 shows the spectrum % lf(w)l from Eg. 20. This spectrum is
W

clearly a compact function with a reasonably well defined excitation

cutoff frequency given by

Yy
U.)x 2 —‘t (21)
W

Not all excitations are blessed with a well defined excitation
cutoff frequency. It is often desirable to filter such excitations
in order to enforce cutoff. This will be discussed shortly in Sub-section

3.2.5.

3.2.3- Limit Frequency of Mesh

We have observed in the previous section that harmonic waves with
frequencies greater than the cutoff frequency will not propagate in the
finite difference analog of a continuous system. Furthermore, there is
no guarantee that the discrete system will accurately represent all waves
propagating in the continuous system with w < w, -« The degree of inaccuracy

is, in fact, indicated by the divergence between the frequency equations
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for the two systems. Let us now define a limit frequency of the mesh
(ah) below which the frequency curve for the discrete system diverges
by less than a prescribed amount from the frequency curve for the con-
tinuous system. That is, let W, be the highest value of ¢ for which
the following reletionship holds:

w(kx: AX:ky; AY)
w(kx:ky)

-ll<e (22)

where the numerator of the fraction is given by Eq. 5, the demoninator

is the frequency equation for the continuous plate, and ¢ << 1. Now we
might use any one of three frequency equations for the continuous plate:
that appropriate to elementary (Bernoulli-Euler) theory, that appropriate
to improved (Timoshenko) theory and, finally, that appropriate to elas-
ticity theory. If we take the shear constant of improved theory equal to
n2/12 , the latter two frequency equations are nearly identical. Thus

we consider only the elementary flexural equation (Eg. 14) and an equation
that constitutes a very accurate approximation to the one for improved
theory (Ref. 27)

h n2g
e ulioly) “g
1/2
2
n 1+7T e
= (k k)= r (23)
© TRV ()P rRryr2 | 2

1
where g =3 (1-y) and T = (he/n2g)(kx2 + kyg)

We first consider flexural waves propagating along the x-axis, so
that ky = 0. From Egs. 5 and 23, then, we have

h sin % kAx h
o w(k,AX,O, AY) = —l_——_— ° (llf(k)o) (21*)

2
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for w(k,sx,0,ay) < w,- Egs. 23 and 2k are plotted in Fig. b for y = 0.3
and px/h = %) 1 and 2. We observe that the ax/h = 1 curve deviates

less than about 15% from the improved theory curve for kh < ¢ R

whereas the elementary flexural theory curve differs from the improved
theory curve by more than 100% in this range. If we accept ¢ = 0.15,
then, we can state that for transverse motions the finite difference
equations appropriate to thin shell theory possess a significantly higher
limit frequency (for ax/h = 1) than the corresponding differential equations.
This implies that a thin shell finite difference solution (with Ax/h =1)
may in some cases be more accurate than even an exact solution of the cor-
responding differential equations; These results, of course, apply equally

to waves propagating along the y-axis.

Let us now consider flexural waves propsgating in a direction not parallel

to either the x- or y-axes. Since, from Egs. 5 and 23, the discussion of the

previous paragraph applies when either k e >> ky2 or kye >> kxz, we turn our
attention to the case kx2 = ky2 = % k2. Egs. 5 and 23 then yield
2
sin 2 kax sin’%kAy

(25)

oo
£
s
>z
ﬁa
N

h 2 2 1
c w(*fe' e k:AY)= )& * Ey
kax kay

This equation and Eqs. 23 are plotted in Fig. 5 for y = 0.3 and varlous
values of ax/h and Ay/h. Note that, because of symmetry in the equa-
tions, results for aAx = bs &Y = b, are identical to those for

M= Doy & = Ay We see from the figure that the curve for ax =J§_h,

Ay =J§ih lies considerably closer than the curve for A = h, Ay = h

to the improved theory curve for frequencies below c/h. The curve for

A =h, Ay =2h (or vice-versa) lies closer still, but is less desirable
for the following reason. Figure 5 pertains to a wave propagating at an
angle of 45 degrees with respect to either axis. In order to obtain com-
parable resolution along each axis (i.e., to have the same nunber of nodal

points per trace wave length), we would wish to set px = Ay.

In general, the requirement for comparable resolution is

k mx = ko Ay (26)



Thus, if we anticipate that the solution to a problem of interest will be
characterized by shorter structural wave lengths in one direction than in
another, Eq. 26 immediately yields the desired aspect ratio Ay/Ax for
the finite difference mesh. To determine the mesh width magnitude, we note
that the finite difference frequency curves of Figures L and 5 constitute

a nearly optimum fit below @ = c/h to the improved theory frequency

(&) (&) - &

Combining Egs. 26 and 27, we find that, for a specified value of ky/k

curve if

XJ
the optimum mesh widths are given by

) J1/2
fis :
= |1 + (k
(h) (k /K )
optimum - -
] _1/2 (28)
N .
= + k
(h ) 1k /x)
optimum -
Often it is all but impossible to anticipate a value for ky/kx.
It is then advisable to use a square mesh. In this case, Figs. 4 and 5
suggest the use of the compromise mesh widths
-& = M o~ .
< = ~ 1.2 (29)
compromise compromise

Egs. 28 and 29, in conjunction with Figs. 4 and 5, yield a limit frequency
for an optimum or compromise finite difference mesh of W, ~ u%/E- However,
because the rather large negative curvature of the corresponding frequency
curves in this region leads to undesirable inaccuracies in the group velocity

Cg = dw/dk , we reduce the limit frequency to

w4y ~ 5 0y (30)

3=-12




This is considerably above the limit frequency for continuum thin shell
theory given by Eq. 15, but is still well below the improved theory limit
frequency given by Eq. 18.

Finally, it is interesting to examine the resoclution characteristics
of finite difference response computations appropriate to the limit fre-
guency of Eq. 30. If, for example, we set Aa/h = 1 and then take
At = Atcr (see the first of Bqgs.ll0) for a one-dimensional transient re-
sponse problem, we find from Eqgs.ll0, 17 and 30 that At/Tm ~ cs/6c ~ 1/10,
where Tm = Eﬂ/uh- Thus we have ten computation points per period corres-
ponding to the limit frequency, which is satisfactory. In contract, we
find from Fig. 4 that the limit wave number km (the value of k determined
by the Ao/h = 1 frequency curve for w = wm) is such that AQ/xm R,:l_/h,
where xm_= 2n/km. Thus we have only four computation points per spatial
wave length corresponding to the limit freguency. We conclude, therefore,
that resolution is almost always better in finite difference response his-
tories than in the corresponding snapshots, a conclusion which is supported
by numercus response computations in the previous chapter. This flexural
result contrasts with the corresponding extensional result, which, because
w(k) = ck for such motion, states that temporal resolution is identical to

spatial resolution.

3.2.4 Interpretation of Previous Numerical Results

Let us now make use of the results of this section to interpret some
of the numerical results of Chapter 2. We first consider Example 14 (Sub-
sections 2.2.4 and 2.L4.2), which involves the temporal smoothing of a uni-
form radial impulsive loading on a freely-supported cylindrical shell.
From Eq. 30, Eq. 17 and Table 2.2, we find that the limit frequency for

Aa/h = 1 computations is

h
w, T~ 0.64

From Subsection 3.2.2, the excitation cutoff frequency for the

ctw/a = 0.82 triangular pressure loading is

h
w T~ 0.77

Thus, we are not surprised to see the marginal convergence behavior of the

acceleration computations of Fig. 2.39. The satisfactory convergence
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behavior of the corresponding displacement, velocity and longitudinal strain
computations (Figs. 2.39 and 2.60a) is apparently due to the fact that re-
sponse components with frequencies above wh/c~0.64 do not contribute
significantly to these responses. Comparison of Figs. 2.39 and 2.60a with
Fig. 2.30 demonstrates that filtering the radial impulse loading of Example
12 at u&h/c==o.77 improves the convergence of velocity computations from
marginal tc satisfactory, the convergence of longitudinal strain computa-
tions from unsatisfactory to satisfactory, and the convergence of accelera-

tion computations from unsatisfactory to marginal.

As we would expect, filtering the impulsive loading at a lower fre-
quency improves convergence even more. The excitation cutoff frequency for

the ctw/a = 1.64 +triangular pressure loading of Example 1k is
h
W o~ 0.38

which is well below the limit frequency wmh/c = 0.6k, Thus, we would ex-
pect to see the uniformly satisfactory convergence exhibited by the

Ae/h = % and 1 response computations of Fig. 2.40. Filtering the ex-
citation at a frequency significantly higher than uhh/c = 0.64 yields,

of course, less satisfactory convergence behavior. This is demonstrated
in Figs. 2.41 and 2.60b, which show results for ctw/a = 0.40, correspond-

ing to

ol

Wy ~ 1.57

Let us now consider Example 15 (Subsections 2.2.4 and 2.4.2), which
involves spatial smoothing of a uniform radial impulsive loading on a
freely-supported cylindrical shell. The limit frequency is uhh/c = 0.64
for this example also; this corresponds, from Fig. 4, to a limit wave

number

k h ~ 1.64
m

Because Fig. L pertains to harmonic waves in an infinite plate, the

spatial domain over which the truncated Fourier series impulse loading of

314




Example 15 is defined must be considered infinite in extent. Hence we take
the spatial Fourier transform of the loading to find an excitation cutoff

wave number k w~ (m _ + 2)n/g. For Moy = O

k. h ~ 0.46
X

which is much smaller than kﬁh' Thus we would expect to see the uniformly

satisfactory convergence exhibited in Figs. 2.43 and 2.6la. For mox = AL
kxh ~ 0.85

which is approximately equal to the apparent limit wave number for Aa/h =2
computations (Fig. h). We would therefore expect to see satisfactory con-
vergence behavior for all the ag/h =2 and Ag/h = 1 computations of
Figs. 2.44 and 2.61b. The fact that this is not quite the case means that
the true limit wave number for AQ/h = 2 computations is somewhat less than

0.85. We do find uniformly satisfactory agreement between the Aq/h = 1

and Aa/h = % computations, however, which assures us that spatial filter-
ing is effective.
For mox = 23 ,
k h =~ 1.6h
X

which is equal to the limit wave number above. We see, however, that agree-
ment between the aAq/h = 1 and Ao/h = % computations of Figs. 2.45 and
2.61c is not uniformly satisfactory. This means that the true limit wave
number is somewhat less than 1.64 and suggests that Fig. 4 is more readily
applied to temporal filtering than to spatial filtering.

Finally, in view of Egs. 28 (with ky = O), it is not surprising that
the Aa/h = 1 acceleration response curve of Fig. 2.19 (as well as the iden-
tical velocity response curve of Fig. 2.26) is the most physically meaning-
(see the discussion of Subsection 2.2.1). In fact, these figures imply
that the Ao/h = 1 frequency curve lies sufficiently close to the improved
theory curve over a sufficiently wide kh-range to predict accurately the

gross features of the propagation of response discontinuities.

3-15




3.2.5 PFinite Difference Computational Procedure

Based on the results of this and the previous chapter, it is possible

to construct a recommended procedure for the application of the (thin shell

theory) finite difference method in studies of transient, linear wave propa-

gation in shells. This procedure, specialized to the discretization method

used herein, is as follows:

Step 1:

Step 2:

Step 3:

Step L:

Step 5:

Step 6:

Step T:

From Table 2.1, determine whether, for the type of excitation
and the responses of interest, convergence can be expected

to be satisfactory. If no convergence prcblems are anticipated,
skip to Step 5; if convergence difficulties are expected, pro-
ceed to the next step.

From information pertaining to the characteristics of the ex-
citation (Sub-section 3.2.2), determine an excitation cutoff
frequency W, -

Using Egs. 30 and 17, compute . If W, ;‘wx, skip to
Step 5; if w is apprecilably smaller than W, proceed
to the next step.

Temporally filter the excitation at ( ; perhaps the best

filter to use is the digital filter of "Ref . 28, which completely
suppresses excitation components with frequencies above the
filter cutoff frequency while introducing no amplitude or

phase distortion into the excitation components with fre-
quencies below the filter cutoff frequency.

If the characteristic structural wave lengths along one axis
are expected to be shorter than those along the other axis,
determine the mesh widths from Egs. 28. If there appears
to be no preferred direction, determine the mesh widths
from Eq. 29.%

For temporal step-by-step integration with an explicit numer-
ical scheme, select ¢ time step value slightly less than

the critical time step given by the first of Egs. 1.10. An
implicit numerical scheme permits the use of a larger time
step.

Check the accuracy of the finite difference solution either
through an error evaluation procedure incorporated into the
numerical scheme or by means of additional runs with smaller
mesh dimensions.

Now the above recommended procedure is based upon the short wave length

limitations associated with flexural shell response. If the excitation is

*For very low frequency excitations, it is possible to use mesh widths larger
than those given by Egs. 28 and 29. The number of nodal points per struc-
tural wave length and/or the number of time points per temporal wave length
(period) then becomes the deciding factor. (For frequency-wave number ve-
lationships, see Figs. 4 and 5).
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primarily in-plane, flexural effects play a small role, and the flexural
response limitations no longer apply. In this case, Eg. 16 gives a limit
frequency of w, ~ 2c/h s so that mesh widths smaller than the shell thick-
ness may be profitably used. If the excitation and responses of interest
are such that convergence difficulties are anticipated (see Table 2.1), it
is advisable to filter the excitation at w, in the manner of Step 4 in
order not to exceed the limitations of thin shell theory. Convergence of
the finite difference computations may then be expected for mesh widths

1 1
smaller than about IO}‘e = IO(2nc/we) ~ h/3.

3.3 ADDITIONAL CONSIDERATIONS REGARDING THIN SHELL AND TMPROVED THEORTES

This section briefly discusses the solution of flexural response prob-
lems by the method of modal superposition and the method of characteristics.
The results indicate that, while the modal convergence properties appropriate
to improved theory are generally better than those of elementary theory,
the ability of improved theory to treat flexural response discontinuities

may constitute no real advantage.

3.3.1 Convergence Properties of the Method of Modal Superposition

The previous sections of this chapter have demonstrated that the
major limitation on the flexural response computation capabilities of a
thin shell finite difference code is the rather long structural wave length
limitation of thin shell theory. Here we briefly examine the effect of

this structural wave length limitation on the method of modal superposition.

We have dbserved in Subsection 3.2.3 that limit frequency considera-
tions for finite difference computations of shell response reduce essentially
to those for a simple beam. In addition, because convergence behavior is a
short structural wave length phenomenon, boundary condition details are un-
important. Hence it is sufficient to focus our attention on the transient

response of a simply-supported beam.

Consider a simply-supported Bernoulli-Euler beam that is excited by
a uniform impulsive locad over a finite part of its length. The pertinent

kinetic energy, potential energy and virtual work expressions are (Fig. 6):
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v-} o [ i
O
) 2
3 2
v = Eh2 f(aw2)dx (31)
2h(1-v7) X
(o]
Xo+ Afl
&W =/ Is(t)-swdx
X - M

(o}

where I 1is the magnitude of the applied impulse. From the known

solution of the associated free vibration prcdblem, we write

w(x,t) =Zwm(t) sin m%;x_ (32)
m=1

Introducing Eq. 32 into Eg. 31 and applying Lagrange's equation, we cb-
tain the modal equation of motion; solution of this equation then leads

to the series solution for beam displacement

ad I
_ m . omix .,

w(x,t) = E W sin —= sin qt (33)
m=1

where the generalized mass Mm » natural frequency W, and generalized

impulse Im are given by

1
Moo= 5y
u? _ Eh (gﬂ)ﬁ
- 12 p(1-1,2) £ (34)
mmx
I = g-:E-f-’-sn.n o sin o
m mt I
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Because flexural stress/strain is proportional to agw/ax2 s We are
interested in this quantity as well as the kinematic quantities displace-
ment, velocity and acceleration. Thus, since Im ) W and M vary as

-1 2 o) . . . - 2
m~ ,m- and m (Eq. 34), respectively, i.e., since Im ~m, g o

and Mm ~m° , we find that

w~m_3 ;\;le
2 (35)
=1 d W =1
W ~m ——2—~m
ox

We dbserve that the series for displacement response converges quite
satisfactorily; in addition, it can be shown by a theorem of Dedekind
(Ref. 29) that (for t > O) the series for velocity and stress/strain con-
verge, although they do so slowly. The series for acceleration response

clearly diverges.

Let us now consider a simply-supported Timoshenko beam under an
identical loading. The pertinent kinetic energy and potential ex-

pressions for this beam are (Fig. 6)

2
1 .2 h .2
T=§phf(w +1—2<P)dx
° (36)
3 2 2 4 2
__Eh 39 Ehy ik
vV = ——___—E_-,/’ (BX) dx + ETEIGTU,P(BX + @) dx
2h(l-v ) s s

From the known solution of the associated free vibration prcblem, we write

@

w(x,t) =Z w (%) sin B

2
m=1
. (37)
9(x,t) = @, (t) cos X
m=1
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Introducing Eqs. 37 into Egs. 36 and the last of Egs. 31, and performing

the integrations, we obtain

> )
1 .2 1= .2
T-g e (i + i )
m=1
ol 2 2 2
_ _Ehy h_(mm 2 L -y y(ET
vom S e e n e g f] (559
b(1-v7) m=1
I=

[ee}
E I, 8(t) 8w
m=1

where IIn is given by the last of Egs. 3L.

Since there are now two modes for each value of m , further in-
vestigation of the associated free vibration problem is required. Such
an investigation (Ref. 27) yields as an accurate approximation for the

first mode

2 1
C‘_P.nl ~ - Iﬂ (l i Fm) i é- n(l—v> rm (39)
R N A I I e a
1 m 2 v m m
2 2
where [ = h (EE) . Introducing this into Egs. 38 and applying
m 3;&1-1}5 4
Lagrange's equation, we obtain the modal equation of motion whose solu-
tion is
m
w . (t) = ——— sin 4 (40)
ml Mojwo Y1
in which Im is given by the last of Egs. 3L and
2
2
1 h R
1 (b1)
2 1+ rﬁ 2

Upy ™ 2 1
(1 + Tm) t 5 w(l-v) T
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®
where (ﬁzi) is given by Eq. 39 and uﬁ? is given by the second of BEas. 3b.
m
gl

@
The second mode, being orthogonal to (;EE) » 1s given by

mh

(l+1“)3 —n(l-v)r(l-r 2

(k2)
A L wodr, [0+ 1) + & w(ory]

Introducing this into Eds. 38 and applying Lagrange's equation, we cbtain

the modal equation of motion whose solution is

I
t) = —2  5in Qb (43)

W
M oW

ot
in which Im. is given by the last of Egs. 34 and
2 (9
1 h m

2
()

u(l—v)rm - o

u’mz 1 1 2
1+, + 5 n(do)r /() |5 n(l-v)ry

MEN

where ( is given by Eq. 42 and “h is given by the second of Egs. 3L.

[ 1+ % w(1-v )-rm/(l + rm) w 2
)

The above results now enable us to write down our response solutions.

Since

wm(t) wml(t) + wm2(t)

me cpI.Tl
(;;) wml(t) + ("Z) wm2(t)

1 2

(45)

Pp(t)

we have, from Egs. 37, 45, 40 and L3
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1 . 1 : . mMTX
w(x,t) = I |7—=— sin t + =———— sin t| sin —
s Z m [Mﬁluhl Un T Yo ] )
(46)
® CWAAN) (g /%)
o(x,t) = I M———]; sin w .t + LT———E sin o ,t] cos X
et 1 P ¥ m2 %2 £

Because flexural stress/strain is proportional to aq/ax , We are
interested in this quantity, displacement, velocity and acceleration.

1 o
> Wy v, My~
(cpm/wm)2 ~mo, @, ~vmoand Mo, ~mo o, we find that for large values of m

. -1
Thus, since (for large m) I,~m , (q&/wm)l ~m

m2
o) - . o
W ~m W ~ 1
(47)
w Aam-l % 2
ox

Thus, not only is the limit frequency higher for improved theory than for
elementary theory, but, from Egs. 35 and 47, the modal convergence prop-

erties of the former are generally superior to those of the latter.

3.3.2 Limitations of Improved Theory

Shell theories in general, and thin shell theory and improved theory
in particular, constitute long wave length approximations to elasticity
theory. Hence response solutions appropriate to such theories can be
considered accurate only by appeal to Saint-Venant's principle, viz.,
that the inclusion of the effects of neglected, self-equilibrating boundary
loads would lead to significant corrections in the stress field only in
certain highly localized regions. Novozhilov and Slepian have demonstrated
in an excellent paper (Ref. 30) that, for suddenly applied loads, these

regions are located at the wave fronts and at the points of load application.

As an example, consider the infinite plate of Figure T that is ex-~
cited uniformly along a straight line by a step shear load of triangular
profile through the plate thickness. Treating this excitation as the

superposition of a shear load which is uniform through the thickness and
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a self-equilibrating shear load that varies linearly through the thickness,
ve separate the total problem into two component problems. The first has
been solved by Boley and Chao (Ref. 18), who used improved plate theory;

the second has been solved by Novozhilov and Slepian, who used a plate theory

one step "higher" than improved theory (Ref. 30).

Beley and Chao present a snapshot of uniform shear stress onlv at
t = 5n/23 ¢ = 1.45 h/c; the closest comparable result by Novozhilov and
Slepian for linearly-varying shear stress is at t = 3h/c = 1.5 h/c.
Since the Novozhilov and Slepian results demonstrate only minor dispersion
over a time span of 0.05 h/c, their result has been "moved back" and plotted
in Figure 8a along with the Boley and Chao result. Because the magnitude
of neither spike at the shear wave front decreases as the wave propa-
gates down the beam, this figure demonstrates that the spikes which improved
shell theory ignores can be comparable in magnitude to the spike that it
predicts. We find, therefore, that consistent application of a shell theory
to transient elastic wave propagation prcoblems requires that one keep in
mind the limitations appropriate to Saint-Vernant's principle at both the
points of load application and at the wave fronts. This means that compar-
isons between elementary and improved theory solutions can only be made

outside of these regions.

Uncertainties at the wave fronts may, in fact, be only a minor problem,
in view of Fig. 8b. This figure shows the solution of Ref. 30 for the
moment response of a semi-infinite plate to a step moment applied uniformly
along its edge. We observe that the "further improved" theory demonstrates
a rapid "melting away'" of the energy at the wave front which is not in-
dicated by the improved theory. Thus, there is a question whether, at
reasonable distances from the region of load application, short wave length
pulses predicted by improved (Timoshenko) shell theory are actually present.
This is illustrated in Fig. 9, which shows longitudinal moment response

h/2

Ma(a,t) =/ ca(z,e,t) zdz (48)
-h/2

for a semi-infinite cylindrical shell excited by the imposition of an

axisymmetric, radial, ramp-step velocity at its end (Ref. 16). The figure
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shows moment snapshots at ct/a =2 for various ramp rise times. We ob-
serve that, even for a rise time as short as h/c , the ramp-step excitation

produces no response comparable to the spike caused by the step excitation

(t =0).

rise
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Figure 1. Finite Difference Operator for vhw at the point
X = mAX, ¥ = nAy
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(a) Flexural Motion

Figure 2.

(b) Extensional Motion

Zig-Zag Modes for Cutoff Frequencies
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Figure 6.

Figure 7.
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Chapter L

EXCITATION OF A SHELL WITH CUTOUTS

This chapter presents numerical results for the response of a circular
cylindrical shell with four identical cutouts to unit impulse loads applied
at one end. These loads, the first a longitudinal load and the second a

radial load, are given by (see Fig. A.2 for notation).

2
l—u . a
Fa Na(O,B,‘t) 5 sin O.4a , 0<%t < 0.k c

- (1)

2
e Q_(0,8,t) 0, , otherwise

They have been chosen irn order to compare computed results for the radial

excitation with planned experimental results (Ref. 31).

A diagram of one-eighth of the shell's surface is shown in Fig. 1.
Included in the figure is information pertaining to the boundary con-
ditions selected, the points at which response histories are computed,
and the o- and pg- lines Tor which response snapshots are obtained.
Although the mesh dimensions Aqg/h = l:aAB/h = m/3 are not in strict
accordance with Egs. 3.28 or 3.29, they constitute nearly optimum choices
that conveniently fit the shell geometry. The time step, selected in
accordance with Eqs. 1.10, is cAt/a = 0.04. The maximum computation time
corresponds to the length of time required for a disturbance travelling
at the plate velocity to traverse a distance equal to twice the length
of the shell (ctmax/a = 4.8).

Because the experiments of Ref. 31 rely chiefly on the use of holog-
raphy to measure shell response, emphasis is placed here on displacement
computations. Velocity, longitudinal strain and effective stress responses
will also be considered, however. Axisymmetric results for the correspond-
ing virgin shell with Aq/h =1 and Aq/h = % demonstrate satisfactory
convergence for the responses to be discussed, except when indicated

otherwise.



4.1 LONGITUDINAL EXCITATION

Since the axisymmetric response of the virgin shell is characterized
by (k a)2 ~ (2ﬂ/0.8)2 ~ 60, that response constitutes essentially non-
dispe;sive wave propagation in an infinite plate (Appendix B). Hence we
expect to observe the "staircase™ longitudinal displacement histories for
the virgin shell shown in Fig. 2. The corresponding results for the cut
shell along the line B = 0 initially display simple reflection at the left
edge of the cutout for ¢ = 0.4 and 0.6, as well as significant shielding
effects for o = 1.0 and 1.2. Well behind the wave front, however, the
effects of the cutouts on shell response are not very great, except for an
enhancement of radial response in the vicinity of the cutouts. These effects
are even less significant at points along the line g = ﬂ/l2 , as shown in
Fig. 3. Perhaps the clearest indication of the shielding effects of the
cutouts is given in Fig. 4, which shows displacement histories at points
along the line a/a = 1.2. While shielding effects are clearly discernable

in the figure, they cannot be considered dramatic.

Longitudinal strain histories, however, can exhibit rather dramatic
effects caused by the cutouts, as demonstrated in Figs. 5 and 6. Whereas
the strain responses of the virgin shell contain negligible flexural con-
tributions, significant flexural strain response does occur in the cut shell
near the cutouts. ©Shielding effects of the cutouts are shown in Fig. T,
which presents strain histories at points along the line o/a = 1.2.
Although the cutouts have a substantial effect on individual strain histories,

their impact on values of peak strain is rather minor.

Figures 8-13 show displacement snapshots for the longitudinal lines
B =0, n/12, and n/k at times ct/a = 0.8, 1.2, 2.0, 3.2, 4.0, and k.k.
These results seem to add little new information to that obtained from
Figs. 2-4. They are included mainly for comparison with possible future
experimental results obtained by holographic techniques. They do illustrate,
however, that, although snapshots are very useful for the interpretation of
simple wave propagation behavior, they tend to lose their effectiveness, at
least for the purposes of these investigations, as the behavior becomes
increasingly complicated. For complex response, then, response histories

seem to emerge as the more effective interpretive tool.
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Figures 1L and 15 are presented to indicate the degree of circum-
ferential non-axisymmetry produced near the wave front of the transient
wave by the cutouts. From Fig. 14, we observe that, after the wave front
has passed the cutouts, and especially after it has been reflected from
the boundary at o/a = 2.4 » longitudinal displacement response near the
wave front tends to become nominally axisymmetric. Much of this is due to
the steady growth of rigid body displacement. The tendency toward axisym-
metry, however, also characterizes the longitudinal velocity and strain
responses near the wave front, except in the vicinity of the cutouts (Fig. 15).
Radial displacement and velocity response tends to become increasingly

p-dependent as time proceeds (Fig. 14).

A question that remains unanswered by the present computations is
whether the presence of the cutouts tends to facilitate the large-scale
transfer of energy from extensional (primarily longitudinal) into flexural
(primary radial) response. This, in fact, seems to be developing in
Figs. 5a, 5b, 5c and 6b; on the other hand, it seems to have been suppressed
in Fig. 54. A satisfactory answer can only be provided by a long-time
solution, one that is not efficiently cbtained by the present method. It
is a problem of considerable interest, however, because such an energy

transfer can lead to very large radial responses.

4.2 RADIAL EXCITATION

As implied earlier, the choice of the radial load used here was con-
strained by the characteristics of an electromagnetic repelling wire ex-~
citation mechanism to be used in planned experiments (Ref. 31). In one
sense this is unfortunate, since the resulting pulse load possess an ex-~
citation cutoff frequency that is about 2-1/2°times the 1imit frequency
given by Eq. 3.30. Hence, from Table 2.1, stress/strain responses computed
with the present code are inaccurate. This is illustrated in Fig. 16,
which shows longitudinal strain histories for the virgin shell computed
with Aa/h = % and 1. We observe that the peak responses computed with
Ao/h = 1 exceed the corresponding responses computed with Aa/h = % by

as much as 50%.
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We also cobserve that the Aa/h = 1 responses of Fig. 16, especially
for Q/a = 0.4 and 1.0 , contain small amplitude oscillations at the mesh
cutoff frequency (Eq. 3.9) that are not present in the corresponding
Aa/h = % responses. This is due to the fact that the excitation cutoff
frequency lies above the mesh cutoff frequency for Aa/h =1 , but below
that for ag/h = % . Hence the pag/h =1 mesh "rings" while the pw/h = %
mesh does not. This dces not necessarily mean that the Aa/h = % responses
are superior to the Ag/h = 1 responses, however, for the reasons given

in Section 3.2.

In another sense, the shortness of the pulse load is only of minor
consequence, since we are mainly interested in displacement responses,
which do exhibit satisfactory convergence behavior (Table 2.1). Thus we
proceed to Fig. 17, which shows displacement histories for the virgin
shell; we observe that the flexural wave front travels at about the shear
velocity c = [%—(l-v)]l/gc , while the longitudinal wave front travels
slightly faster. Corresponding histories along the line g = 0 on the
cut shell are shown in Fig. 18. We immediately note the dramatic increase
in radial displacement response at the front edge of each cutout over the
-corresponding response of the virgin shell. The opposite occurs (to a
lesser degree) at the back edge of each cutout. Only minor differences

occur away from the cutouts.

Shielding characteristics of the cutouts are indicated in Fig. 19,
which shows displacement histories at points along the line o/a = 1.2.
The cutouts seem to produce a moderate reduction in radial displacement
response in the shadow regions behind them. Figures 20-23 show displace-
ment snapshots of both the virgin and cut shell displacement responses
along the longitudinal lines g = 0, /12 and m/L at times ct/a = 0.8,
1.2, 2.0, 3.2, 4.0, and 4.4. Here too the response histories seem to be
less effective as interpretive tools than response snapshots for increas-
ingly complex response. Figures 20-23 are included mainly for comparison

with experimental results obtained by holographic techniques.

Let us now examine the degree of non-axisymmetry in the displacement
response of a shell. Figure 24 shows displacement snapshots along lines
of constant ¢ near and well behind the shear wave front. We see that,

while the longitudinal displacement response tends to be g-independent,
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radial displacement response tends to become increasingly p-dependent.
This behavior is the same as that observed in Fig. 14 for the longitudinal

excitation.

We have here too the interesting question as to whether the presence
of the cutouts tends to facilitate the large-scale transfer of energy
from extensional (primarily axisymmetric radial) into flexural (primarily
non-axisymmetric radial) response. Long-time solutions are again reguired

to answer this question.

L.3 SUMMARY

We have examined here the early-time response of a cylindrical shell
with cutouts to end pulse-locads whose spatial width appropriate to propa-
gation at the plate velocity is only eight times the thickness of the
shell. Computed results indicate that the cutouts introduce no order-of-
magnitude changes in the response of the shell. They do point to moderate
shielding effects in shadow regions behind the cutouts, however. Further-
more, they suggest that the cutouts may facilitate the transfer of load-
injected extensional energy into non-axisymmetric flexural response, a
potentially dangerous situation. Definitive conclusions about this phenom-

enon, however, awalt long-time solutions.

A broad picture of the effects of the cutouts on the response of the
shell is given in Fig. 25. For each point at which a response history was
computed, two ratios of peak response in the cut shell to the corresponding
peak response in the virgin shell are shown. The responses chosen for
these ratio indicators are, for the longitudinal excitation, longitudinal
velocity and effective stress and, for the radial excitation, radial velocity
and effective stress. Velocity response is chosen because it is often con-
sidered to be the most useful indicator of damage potential for attached
structural systems (see, e.g., Ref. 32). BEffective stress for the Mises
yield surface, in the form (Ref. 10)

1/2

2 2 2
Ogrf ~ [ca * UB - cchB * 3Ta43 ] (2)
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is chosen because it 1s a useful measure of damage potential for the shell
itself. Even though the velocity and strain computations appropriate to
the radial loading are not entirely satisfactorily convergent, they are

considered adequate for the purposes of Fig. 25.

We observe in Fig. 25 that the cutouts appear to possess significantly
greater shielding capability for the radial excitation than for the longi-
tudinal excitation. We also observe that the related tendency toward
non-axisymmetry 1s more prevalent in the case of the radial excitation.
The effect of reinforcement of the cutout on these results would be of

considerable interest and a worthwhile subject of future studies.
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Chapter 5

CONCLUSION

This report contains: (1) analytical and numerical studies pertaining
to the solution of transient, linear wave propagation problems in thin shells
by the finite difference method (Chapters 2 and 3), (2) a recommended com-
putational procedure for the use of the method (Chapter 3), and (3) a numer-
ical investigation of the response of a cylindrical shell with cutouts to
both longitudinal and radial transient excitations (Chapter 4). An outline

of major conclusions and recommendations for future study follows:

5.1 MAJOR CONCLUSIONS

0 The finite difference method accurately reproduces solutions of
the partial differential equations of linear thin shell theory
if the mesh dimensions are appreciably smaller than the shortest
significant structural wave length characterizing the response of
interest. (Sections 2.5 and 3.1)

0 The only inherent limitation of the finite difference method is its
inability to reproduce accurately response discontinuities, a limi-
tation that also applies to the method of modal superposition but
does not apply to the method of characteristics. (Sections 2.5 and

3.1)

o The short wave length limitations of thin shell (Bernoulli-Euler)
theory create significant convergence difficulties in computed
responses to certain types of transverse excitations. (Sections
2.5 and 3.2)

0 Proper selection of finite difference mesh dimensions, combined,in
some cases, With temporal smoothing of the excitation, increases
the frequency range of thin shell (Bernoulli-Euler) theory by a
factor of three for transverse excitations. (Section 3.2)

0 Convergence difficulties in the case of transverse excitations may
be materially alleviated through the use of improved (Timoshenko)
theory; the ability of improved theory to treat flexural response
discontinuities, however, may constitute no real advantage.
(Sections 3.2 and 3.3)

0 Cutouts in a cylindrical shell excited at one end by axisymmetric
longitudinal and radial pulse-loads produce moderate changes in
shell response during early and intermediate times; the cutouts
may, however, facilitate the undesirable late-time transfer of
load-injected extensional energy into non-axisymmetric flexural
response (Section L4.3)
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5.2

RECOMMENDATIONS FOR FUTURE STUDY

o}

The studies of Chapter 2 should be extended to include excitations
that are spatially narrow in the circumferential dimension; numeri -
cal studies are required.

The computational procedure recommended in Section 3.2, especially
that aspect which deals with temporal filtering of the excitation,
should be thoroughly tested; numerical studies are required.

The advantages and disadvantages associated with the use of improved
theory as opposed to the use of thin shell theory should be definitely
established; both analytical and numerical studies are required.

The short wave length limitations of improved theory should be de-
termined with the techniques of Ref. 30; analytical studies are
required.

The degree to which cutouts may facilitate the late-time transfer
of load-injected extensional energy into non-~axisymmetric flexural
response should be determined; solution by the method of modal
superposition is suggested for this task.

The effects of reinforced cutouts, structural (ring and longitudinal)
stiffeners, and attached mechanical systems on the propagation of
transient waves in shells should be investigated; numerical studies
are required.

The effects of geometric and material nonlinearities on the genera-
tion and propagation of transient waves in shells should be examined;
numerical studies are required.

A comprehensive study that compares finite difference, finite element,
modal superposition and characteristics methods for the solution of
problems involving transient linear wave propagation in shells should

be performed.




Appendix A

THE STAR CODE

The finite difference computer program STAR (Shell Transient Asymmetric
Response) is capable of computing the two-dimensional, finite-amplitude
response oOf inelastic shells with unreinforced cutouts to mechanical and
thermal transient loads. The code is based on the general thin shell
equations of Ref. 6 and on constitutive equations for a temperature-
dependent, work-hardening material. A detailed description of the code
is given in Ref. 10; this appendix merely defines pertinent notation and

describes improvements made in the code as part of the present study.

A.1 GEOMETRIC NOTATION

The middle surface of the shell is shown in Fig. 1. The lines of
principal curvature, o = constant and B = constant, are selected as the
coordinates of the middle surface of the shell. The coordinate in the
direction of the inward normal to the middle surface is denoted by =z.

We see that the coordinates are such that (o, B, z) form a right-handed
system. The element of arc length ds on the middle surface is given by

as® = A2 da2 + B d52 (1)

where A(q, B) and B(wa, B) are the Lame’ parameters for the middle
surface of the undeformed shell. Figure 1 also shows the principal

radii of curvature r , r the displacement components u, v, w, and
o

B,
the rotation components w Wy The components (u, wu), (v, mB), and W
are taken positive in the direction of increasing o, B, and =z ,

respectively.

If o denotes either the arc length measured along the generator from
the apex of a circular cone or the end of a circular cylinder, and if g is
the angular coordinate in the circumferential direction, then the Lame’ par-

ameters and radii of curvature for these surfaces are as follows:

A-1



A B r T
o B

Cone 1 o sin ® © o tan P

Cylinder 1 a ® a

where ¢ dis the half cone angle and a is the radius of the cylinder.

A.2 IMPROVEMENTS IN THE CODE

Tmprovements to the STAR computer program made during the present

study are now summarized.

A.2.1 End Loadings

In many wave propagation problems it is of interest to determine
the response of shells excited by end loadings. This is effected through
the specification of nonhomogeneous boundary conditions. However, prior
to the current study, only homogeneous boundary conditions could be handled
by the STAR code. As a result of the present work, this restriction has
been removed for cylindrical and conical shells, and various combinations
of nonhomogeneous, time-dependent boundary conditions now can be handled
through specification of one member of each of the following pairs (Figs. 1
and 2):

0 At a boundary o = constant

[u(B)t)) ﬁa(B)t)]
AN
[W(B:t); Q—a(ﬁyt)]
[wB(BJt)J M_Q(B)t)]

[v<BJt)) N

o At a boundary B = constant

[U-(O/Jt); ﬁsa(a,t)]
[v(ast), ﬁB(a:t)]
[W(O’:t); Qﬁ(a,t)]

[(.l)a(Ol)t )) ﬁs(d:t)]
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A.2.2 One-Dimensional Problems

The STAR code, which was originally developed for the asymmetric
response of shells, can, of course, also accommodate one-dimensional
problems, such as axisymmetric shells under axisymmetric loads or rings
subjected to asymmetric loads. However, prior to the current study,
special logic had not been provided for such problems. Thus, to define
the finite difference expressions for spatial derivatives in the general
equations, it was necessary to specify a minimum of five nodal polnts along
each of the grid lines in the « and B directions. For one-dimensional
problems (such as many of the problems considered in Chapter 2), this pro-
cedure is obviously quite inefficient and hence, for reasons of economy of
computer run time, the code was modified to treat one-dimensional problems
more efficiently. As a result of the modification, only one set of grid
lines (rather than two) needs to be specified; this leads to a reduction

of run time by a factor of approximately five.

A.2,3 More Accurate Computation of Velocity

To describe the explicit numerical technique employed in the com-
putation of the velocity components at each mesh point, it is sufficient
to consider the normal component, Ww(t) , which had been previously com~

puted from

w(t) = w(t-at) + W(t-at): At (2)

where (') denotes differentiation with respect to time t , and At is
the time step. Equation 2 can be derived either from a Taylor series
representation of Ww(t) , with retention of only linear terms, or from a
forward finite difference approximation for W(t-At). The truncation
error w(t) as computed from Eq. 2 is O(At)z.* A truncation error of

order (At)3 is achieved if the velocity is instead computed from

wi(t) = w(t-pt) + % [ (t-at) +%(t)] - at (3)

* 2 . 2
0(at)" denotes a term with an error of order (at)
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This expression may be derived from the central difference representation
.s ~ 1 . .
W(t-pt/2) = ra [W(t) - w(t-at)] (&)
and the approximation
~ 1
W(t-pt/2) = 5 [W(t-pt) + 4 (t)] (5)

The last term in Eq. 3 is computed from the equation of motion in the

normal direction, namely,
W(t) = FZ(t) - czv&(t) (6)

where CZ is a viscous damping coefficient and Fz i1s a known function
of the displacement and the loads. The introduction of Eq. 6 into Eq. 3
yields the following O(At )3 explicit expression for the velocity that

is currently employed in the STAR code:

—~
—3
~

1 . 1
; I S (t-pt) + = [W(t-At)+F(t)]-At
w(t) > gt)CZ w(t-at) + 3

AL
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Figure 1. Notation and Coordinate System (Right-Hand Vector System)
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Figure 2. Sign Convention for Stresses and Stress Resultants
(Right-Hand Vector System)
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Appendix B

AXISYMMETRIC LONGITUDINAL EXCITATION
OF A MEMBRANE CYLINDRICAL SHELL

For axisymmetric, predominantly membrane wave propagation, Egs. 1.7

for the circular cylindrical shell become

I auw _ au vy ¥ _

2 2 2 (a) du ©

¢ 3t dw 1)
2

l§ Q_% + E§ - (k) ©_o

c at a 8 o

If an axial wave propagates down the shell that is characterized by a
structural wave number k(= 2m/A), we have u A:uo(a)elkckt, so that

the second of Egs. 1 becomes

2 2 du 2 .
c "0 cC ike. t
= o+ (EJ W o~ 3o o e k (2)

This is just the equation for an harmonically excited single-degree-of -
freedom oscillator. Now if (ka)2 << 1 and c\ <ec, (kck)2 << (g-)2 B

so that the oscillator is excited well below its natural frequency. For
such a quasi-static excitation the inertial term in Eq. 2 is unimportant,

and we have

W ~ Va — (3)

Introducing this into the first of Eqs. 1, we obtain

2 2
c” 3t 3 (1)



so that_the (non—dispersive) wave travels with the bar velocity
e, = l-v2 e = (E/p)l/g. If, hawever, (ka)2 >>1 and ¢, 3 c , then

the inertial term in Eq. 2 is dominant, and we have

BEW 02 fal®}

Introducing this into the first of Eqs. 1, we obtain

L L 2 2
1l 3w _au . 2.y 3u _
5 L 3 tv (3) S5 =0 (6)
c a‘t a'tAa Yo

With u Nerl(“’Kt'ko‘) , this yields, since (ka)° >> 1,

2
o = (F) <5 [ s ¥ tar]s @

so that the wave travels essentially without dispersion at the plate
velocity c¢. PFinally, if ka ~ 1 , no simplification is possible and

the propagation is characterized by significant dispersion.

We have just observed that, for axially propagating disturbances
with pronounced characteristic wave lengths, long wave length disturbances
[(ka)2 >> 1] propagate as nondispersed waves along a bar and short wave
length disturbances [(ka)2 >> 1] propagate as nondispersed, straight-
crested waves in an infinite plate. For general excitations, however, a

more sophisticated analysis i1s required.

B.1 PERTURBATION TECHNIQUE

Let us write Egs. 1 in terms of the non-dimensional variables

8 = u/a, &= W/a; T = Ct/a (8)



% W

B2

and then omit the circumflex notation to obtain

2 2
av _ o4 M~ 0

2
aT falo% o

(9)
2
- BLA v &2 - 9
oo

aT

We now expand u and w as follows

(), ), 2.(),

+ pu + pu

(10)
(0)

W= W + vw(l) +

2 (2)

v W

substitute into Egs. 9, and equate the coefficients of like powers of

v to obtain the displacement recursion formulas

2,00 2.) 6
= = -
37 aa? oo

, i =0,1,2, ... (11)
2,(1) gy galitl)

J W
N
dT do

Considering the right side of each of these equations as known, we see

that the equations are particularly easy to solve, the first being the

wave equation and the second the equation of motion for a simple oscillator.
Furthermore, satisfaction of the applicable boundary conditions at the
zeroth level yields w(o) = u(l) = w(z) = u(3) = ... = 0. Thus, since

v2 is generally much smaller than unity, convergence of the series of

Egs. 10 is rapid. We now illustrate the application of the perturbation
technique by treating two simple impact problems for a semi-infinite

shell.
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B.2 PRESCRIBED END MOTIONW

Consider an initially quiescent semi-infinite shell that is subjected
to a prescribed longitudinal end displacement u(0,t) = £{7)H(T) , where

H(T) is the Heaviside step-function. From Egs. 11, then,

u(O)(Q') ’T)

(7 - o) H(7 - «)

(12)
™
1
w )(oz;fr) = -f ' (r - o - €) sin gdg
o)
*
where £/ 1is the derivative of f with respect to its argument.
We now seek u(a) (u(l) being zero), which, from Egs. 11 and 12,
is given by
T~
2,(2)  2,(2)
2 (g ein s 13)
o7 oo’
o}
The desired particular solution to this equation is of the form
2
0 B, = (14 0) (7 - ) (14)
Thus, Egs. 13 and (4 yield
T-Of
7 l " .
g’'(1-a) = - [ £7 (7-0-€) sin €ag (15)
o

The homogeneous solution to Eq. 13 is of the form

w B (ay1) = n(r-0) (16)

*Response discontinuities are most conveniently handled through the use
of generalized functions.



Finally, since u(o) satisfies our boundary condition at ¢ =0 ,

2
we have u( )(O,fr) = 0 , which, from Eqs. 14 and 15, yields

Uh(e)(q,T) = ~ (1-) g(T-0) (T)

Thus, from Egs. 14, 15 and 17, we obtain

T-o M

u(g)(%.r) = - % a[f £ (M-g) sin EdEdT (18)
o ©o

so that, from Eqs. 10, 12 and 18,

1 2 P L
(o) = £(r-a)H(r-0) - 5 v a//f”(n-g) sin gdgdn + O(yp )
o ©o
- (29)
wia 1) = "vf f/(1-o-€) sin E4E + O(vj)

o]

As T increases, additional terms are required; for example, we will
reguire below the addition of the O(v3) term to the second of Egq. 19.
From Eq. 18 and the second of Egs. 11, this term is given by

T Tro-E

W(B)(O/; T) :'é—/-/ F(T])dﬂ-aF(’r—a/-E)]sin EdE (20)

(0] O

where

i
F(n) =f £7(n-€) sin gag (21)

(@]

Let us now, as an example, consider the case of a step end-velocity,

i.e., f(t) = T. From Egs. 19, then,

w(a, ) = {(r-a) - ‘21' ugoz[l - cos( )]} H(7-o) + O(ULL)

W(a,7) = -p[1 - cos(r-0)] H(r-a) + 0(v3) (22)
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and from Eg. 20,
W(3)(ou ) = )i% 7T 8in (7-o) - %Q’(T'O’) cos (@) - %[1 - COS(T'O/)]}H<T-Q/) (23)

Figure 1 presents longitudinal and radial velocity snapshots from

Egs. 22 and from Refs. 13 and 1% for T =2 and 5. The results from
Ref. 14 were obtained by application of the method of characteristics
to the membrane shell equations; the results from Ref. 13 were obtained
by application of the method of characteristics to equations appropriate
to improved (Timoshenko) shell theory. Figure 2 shows longitudinal and
radigl velocity snapshots from Egs. 22 and 23 and from Ref. 14 for the
rather late time T = 10. We observe the significant improvement in the

solution for Ww(g,10) through the addition of the o(u3) term.

Longitudinal and circumferential membrane stress in the cylindrical

shell are given by

(2k)

% ~ o
where o and o, are normalized to E/(l-vg). Results for these
guantities in the form of snapshots at T =2 and 5 appear in Figure 3.
The o, " resultsgfrom Eqs. 22 and 24 include terms up to and including
those of order v , while the oy - results from those equations per-
tain to a single O(v) term. The results from Ref. 1k pertain to a
modal superposition solution of membrane theory shell equations, while
those from Ref. 13 pertain to a method of characteristics solution of
improved theory shell equations. Figure 4 shows longitudinal and cir-
= 10. A o, - result with

6
is shown in this figures;

cumferential membrane stress snapshots at T
terms up to and including those of order v3
we notice here too the significant improvement in the solution through

the addition of the O(v3) term to the second of Egs. 19.

We observe in Figures 1-4 that a perturbation solution of given
order begins to fail as T increases. This comes as no surprise, since
we expect the cumulative effects of coupling through Poisson's ratio

eventually to produce such failure. It is, in fact, rather surprising
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that the T = 5 and 10 solutions of Figures 1-L4 are as accurate as they
are, since we also expect to encounter convergence problems as v2T
u27 S , however, the perturbation solu-~

approaches unity. Even when

tion is convergent in the vicinity of the wave front. Furthermore, when

T > 1 , asymptotic methods may be used to obtain solutions, as in Ref. 33.

B.3 PRESCRIBED END LOAD

We now consider an initially quiescent semi-infinite shell that is
excited by a prescribed longitudinal end load ca(O’T) = £(7) H(1). To
treat this problem, we use Egs. 24 to transform Eqs. 9 into the set

2 2 2
3o 5 00 o) O
20/ - (l'U ) 20/ - v ) =0
oT o aT
(25)
2 2
fole) . da
2
—2 4 (1-v"), - v =% =0
2 ) 2
oT oT
Now it is clear that these equations lead to perturbation solutions which
/o
Y
predict that the wavefront travels at the bar velocity Cy = (1-v7) c
Hence, we recombine these equations to obtain the equivalent set
2 2
ole; Q0
& . Q@ + v 0
2 2 Sy
o7 [e1e
(26)
2 2
dc Q0o
e 4 - Q_ g
2 Oy "V 2
T dw
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Following the same procedure used to obtain Egs. 11, we obtain the

stress recursion formulas

2 (1) 2 (1)
o o _ o o _ c(i"l)
0
oT oo
, i=0,1,2, ... (27)

2 (1) 2 (i-1)
o g (i _ o Iy

€ + o’ ==
oT ' Fole

Satisfaction of the boundary conditions appropriate to these equations
1 2

1) __ @ __ 6. _,.

o 8 o

£(r) #(T) , we obtain from

at the zeroth level yields GG(O) =g

For the prescribed end load ca(o’T)
Egs. 27
O
Oa( )(a;T) = f(T-0) H(7-2)

T (28)

/f”(w-oz-g) sin £4€

o

()
S)

(O’)T)

Next we seek ¢ (2) , which, from Egs. 27 and 28, is given by
o

2 (2) 2 T~0

9 o, IS, 00(2) B
5 - 5 = -/ T (T-oz—g) sin gdg (29)
oT oo

o)

Proceeding as before, we find

T T
oa(g)(a,'r) = -% f / £ (M-€) sin gdedn (30)
[e] o}

so that, from Egs. 28 and 30
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T=a )

ol = £rma) Brma) = 3% fer(nee) oin gagan + o)
o] (0]
T-O (31)
ce(a:'r) = 1i/f”(.r-a-g) sin gdg + O(v3)
]

As 7 dincreases, additional terms are again required; for example, from
Eq. 30 and the second of Egs. 27, the O(v3) term for o (o,T) 1is given
by ®

o

06(3)(a:7) iJ/1F(T-a-g) - % o F’(T-a—g)}sin EdE (32)

where F(T) is given by Eq. 21 and F’(T) is the derivative of F(7)

with respect to argument.

As an example, we consider the case of a ramp end-load; i.e.,

f(1) = 7. From Egs. 31, then,

cd(oa-r) = {(r-a) - % voell - cos (=)} H(g-qr) + O(UM)
(33)

Ge(a;T) = v sin (r-g) H(1-q) + O(v3>

Figure 5 shows snapshots of longitudinal and circumferential stress
response at T = 2. The results from Ref. 14 were obtained by applica-
tion of the method of characteristics to the membrane shell equations;
we see that they are very closely approximated by the perturbation

solutions at this rather early time.

Before concluding this discussion, let us briefly examine the argu-
ment behind the transformation of Egs. 25 into Egs. 26, viz., that per-
turbation solutions obtained from Eq. 26 give c¢ instead of C, @as the
wave front velocity. This is clearly desirable if one is interested in
information near the wave front, but is less desirable if the excitation
f{(1) varies so slowly that the shell behaves much like a bar. In the
latter case, it is better to use Egs. 25 or, in the case of prescribed

end motions, the equations



azu (1 2 aeu a3w
38 (1,7) -, T
oT da J0OT
(3%)
3 2
2
aW2+(l_v )_g%_v%=o
JOT oT
The solutions to these equations that correspond to Egs. 19 are
TF-g 1
. 1 2 iv . l
(o, ) = £(r*-0) H(7¥*-a) + 5 v o £77°(n-g) sin gdean + 0(y )
o]
gy (35)
Wi, %) = 'vf f/(r*-g-€) sin gdg + 0(173)
o
and the solutions to Egs. 25 that correspond tJd Egs. 31 are
*-a T
o (o) = £(r%-a) H(r¥-a) + 5 v° £V - .
T o T*-a 5V o (M-€) sin €dgn + O(v )
o o
e ~ (36)
ce(oz)'r*) = u/ T”(+*-o-E) sin €dg + 0(1;3)

o)
1/2 .
* 2 iv o, . .
where 1 = (1L-v7) o T = cbt/a and f is. the fourth derivative of f
with respect to argument. For the examples considered above, Egs. 35 and
36 yield responses which differ from those produced by Egs. 19 and 31
*
only in that T is replaced by T . For slowly-varying excitations,
however, Egs. 35 and 36 should yield better solutions than Egs. 19 and
31.
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B.4 CONCLUDING REMARKS

We have seen that the perturbation method can provide remarkably
accurate solutions for problems involving the propagation of transient,
axisymmetric stress waves in elastic cylindrical shells. In addition,
the technique may be applied to a variety of related prcblems, such as
the propagation of compressional waves in elastic rods. To illustrate

this application, we consider the Mindlin-Herrmann equations (Ref. 3h)

2N 2N ~
2

pa a—g“ - ()\ + 2u) 232 —a-% - 2;4_—.!_}\_8 —g%— =

ot ox
(37)

2~ 2ro ~

pa -_E + 8;1,1 ()\ + IJ") W - unay —2‘ + Ltnl}\a ‘a—;(- =0
ot X

where U and W are longitudinal and radial displacements, respectively,
p and a are the rod density and radius, respectively, A and |, are
the Lame’ constants, and #» and ny are correction factors on the order
of unity. For motions with spatial wave lengths on the order of and larger
than the rod radius, the third term on the left side of the second of

Egs. 37 may be neglected in favor of the term immediastely preceding it.
This yields a set of equations that are of the same form as Egs. 9, which

permits direct application of the perturbation technigue applied to Egs. 9.
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Figure 1. Velocity Snapshots at ¢ = 2 and 5 (Step-Velocity Excitation)
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Figure 5.

Stress Snapshot at T = 10 (Ramp-Stress Excitation)
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