

1052

N72. 16461 weas

FOUNDATIONS FOR ESTIMATION BY THE METHOD OF LEAST SQUARES

W. W. HAUCK, JR.
 h. H. Hanck, Jh. (Smithsouian nstiophysical obsorvatocy \qquad Unclas
« …....... -.......
Smithsonian Astrophysical Observatory SPECIAL REPORT 340

Research in Space Science SAO Special Report No. 340

FOUNDATIONS FOR ESTIMATION BY THE METHOD OF LEAST SQUARES

Walter W. Hauck, Jr.

Decomber 27, 1971

Smithsonian Institution A Atrophysical Observatory Astrophysical Observatory
Cambridge, Massachusetts 02138

preceding page biank not nitafen

TABLE OF CONTENTS

ABSTRACT v

1. INTRODUCTION 1
2 PROBABILITY AND STATISTICS 3^{3}
2.1 Probability, Random Variables, and Distribution Theory 3
2. 2 Expectation. -7
2.3 Distributions of Interest 10
2.4 Statistical.Inference 18
2.5 Glossary of Notation. 27
3 THE LEAST-SQUARES MODEL 29
4 THE PROBLEM AND ITS SOLUTION - 31
5 A SECOND LUOK AT THE ASSUMPTIONS 41
5.1 The Model 41
5.2 The Solution 49
5.3 The Residuals 52
5.4 Normality. 57
6 TESTING HYPOTHESES ABOUT THE REGRESSION COEFFICIENTS 61
7 CHOOSING A REGRESSION EQUATION 63
8 OTHER TOPICS 67°
8.1 Constraints 67
8.2 Outlicrs. 70
9 REGRESSION WHEN ALL VARLABLES ARE SUBJECT TO ERROR. 73
10 NONLINEAR REGRESSION. 83
10.1 Linearization. 84
10.2. Stecpest Descent 35
10.3. Marquardt's Compromise 86
11 REFERENCES AND BIBLIOGRAPHY 89
preceding page blank not fllmed

ABSTRACT

This paper discusses least-squares estimation from the point of view of a statistician. Much of the emphasis will be on problems encountered in application and, more specifically, on questions involving assumptions what assumptions are needed, when are they needed, what happens if they are not valid, and if they are invalid, how can we deteet that fact.
résumé

Cet article ost une discubsion de l'ustimation des moindras carrés du point de vue du otatisticien. On mettro gurtout d'aceent sur les prablómes rencantrés en pratique ot plus spricielement sur les questions impliquant des auppositions - quellen s,uppositions sont nécessaires, quand sont-cllos núcessaires, ce qui arrive si elles ne cont pos valides, et si elles nont involides, comment pout-on déceler ce fait.

KOHCNEKT

в втод доклице обсухлается оиенка по методу нииеньих
 на звдачи встречавииеся при гриненении и р ососонности на вопроси затрагиваюцо иредположоиня-какие предиолсжения нсобходицн, когда они необхөлииы, что случастсп сели они нелеіствитель:и, и ссли оии педсйстияельни, как ин по:ен опренелить orot daky.

FOUNDATIONS FOR ESTIMATION BY THE METHOD

OF LEAST SQUARES

Walter W. Hauck, . J r .

1. INTRODUCTION

This paper is the result of four seminars given to the Satellite Geophysics Group of the Smithsonian Astrophysical Ohservatory in August and September 1970. The purpose of the seminars was to consider methods of applying least-squares estimation to satellite tracking.

The method of least squares is widely used for estimation, although in many applications little consideration is given to its strengths and limitations. On the other hand, statisticians have done considerable work on the subject, under the heading of regression, although not always on these questions that are of the most interest in application.

A knowledge of basic probability and statistics is required. For review, tho necessary concepts are explained in Sectio: 2. The notation introduced there is used consistently throughout the paper, For reference, especially for those not.reading the rest of the gection, a glossary of notation is included at the end of Section 2. A knowledge of banic matrix theory will be assumed.
proreming pagie blank not flumed
2. probabllity and statistics

A knowledge of some probabilistic and statistical concepts is necessary for an understanding of the discussion that follows. The level of this explanation will be that of a "quick refresher." For a more detailed explanation, refer to an introductory probability and statistics text, such as that by Hogg and Craig (1965).

2. 1 Probability, Random Variablcs, and Dlstribution Theory

A natural first question is: What is probability? The currently popular approach is to treat probabilities as a particular class of mathematical measures. This approach is very rigorous and kecps mathematicians happy, but it does not answer the question of interest. To do that, we will use the relative frequency approach. *

First of all, it ir necessary to have some group or aggregate to study. This group, whether of people, things, or events, will be called the population. Next, there is some property of this population that we are concerned with, and there must be something about this property that is undetermined. If everything is known about what is going on, there are no probabilities to determine.

This property must be able to be evaluated for each member of the population, and a numerical ${ }^{\dagger}$ value absigned to that evaluation. A random variable is a function of the members of the population: its value is the numerical evaluation of the property for that member. We will uso caplal

[^0]letters to denote the random variable, the argument of which will never be explicitly stated, and small letecrs to denote the values taken on by a random variable. ${ }^{*}$

For example, take the population to be all flips of a coin, and the property to be whether it lands heads or tails. Assuming the coin does not have two heads or two tails, it is not known before the flip on which side the coin will land.

One possible random variable, denoted by X, is an indicator variable; that is,

$$
\begin{aligned}
& X=1 \text { if heads, and } \\
& X=0 \text { if tails. }
\end{aligned}
$$

The set of all possible values the random variable may take is called the sample space, denoted by $s .{ }^{\dagger}$ In the example, $S=\{0 ; 1\}$.

To derive probabilitics, it is necessary to distinguish between discrete and continuous sample spaces.

Diserete Case. Let $x_{1}, x_{2}, \ldots, x_{N}$ (where N may be infinity) denote the points of the sample space. Consider taking some n members of the population and recording the value of the random variable X for each member. For $i=1, \ldots, N$, let $f_{i}^{(n)}$ be the proportion of these n member for which $X=x_{i}$. Then, take more and more members of the populntion, record the values of X, and keep updating $\left\{f_{i}^{(n)}\right\}_{i=1}^{N}$. For a finite population, take all the members. For an infintte population, take the limit as $n \rightarrow \infty$. The final $\left\{\dot{f}_{i}\right\}_{i=1}^{N}$ obtained by this method is the density function of the diserete random variable X. We can then say that the probability that the property in question will be evaluated as oqual to x_{i} is f_{i}, or in shorthand, $P\left[X=x_{i}\right]=f_{i}$. Usually f_{i} will be written as $f\left(x_{1}\right)$.

[^1]Continuous Casc. Again consider the procedure of starting with n members of the population, recording the values of the random variable, and then taking.morcand more members to the limit of the entire population. This time, let its :
,
be a sequence of points such that

$$
x_{i+1}-x_{i}=\Delta x,
$$

where Δx is some positive constant. Then, let $f_{n}\left(x_{i}\right) \Delta x$ be the proportion of values falling in the hall-open interval $\left(x_{i}-\Delta x / 2, x_{i}+\Delta x / 2\right)$. The limiting proces's is now two simultaneous processes: while taking $n-\infty$, let $\Delta x-0$ in such a way as to avoid the occurrence oi irregular frequencics. The problem is that if $\Delta x \rightarrow 0$ too quickly, there will be intervals where nothing has occurred simply because the number of members tekeri is not large enoügh.

In the limit,

$$
P\left[x-\frac{1}{2} d x<X \leq x+\frac{1}{2} d x\right]=f(x) d x
$$

That is, the probability of observing a value in an infinitesimal interval centered at x is given by $f(x) d x$. By taking the limit of sums, we have

$$
P[a<x \leq b]=\int_{a}^{b} f(x) d x
$$

$f(\cdot)$ is the density function of the continuous random variable X.
For both cases, the diatribution function F is defined by $F(x)=P[X \leq:] \quad$,
that is, the probability of observing a value $\leq x$.

In introductory texts, the three properties of probability that are presented as defining it are consequences of this derivation. These properties are the following:

If A and B are two subsets of S and if ϕ denotes the null set, then

1) $P(A) \geq 0$.
2) If $A \cap B=\phi$, then $P(A \cup B)=P(A)+P(B)$.
3) $P(S)=1$.

The approach in terms of measures, referred to carlier, defines a spesific class of mathematical measures as probability measures. These measures correspond to the distribution function as developed here. The measures are more general because the corresponding density function may not exist. Proofs based on this method can become quite complicated because of various measure theoretic problems that must be considered. It is my observation that a statistician will make as many measure theoretic assumptions as are necessary to prove a theorem (for example, that a function is measurable) since, in practice, they will be true.

The concept of probability can be extended to the case where two or more properties of the population are considered simultaneously. Aderivation similar to that done here leads to bivariate and multivariate densities and distritutions.

For example, corsider the population of all men and their height (H) and weight (W). Both helght and weight will have individual densitics and, if considered together, a bivariate density. Now restrict the population to all men with a certain weight - say, $W=w_{0}$. The density of H derived for this restricted population is called the conditional density of height given weight and is clenoted by $f\left(h \mid w=w_{0}\right)$ or $f\left(h \mid w_{0}\right)$.
"Ir the random varlable is understood, the notation $P(D)$ win sometimes be used
as shorthand for $P[X \in D]$, the probability that the value of the random variable X will lie in the oet D.

Two random variables X and Y are said to be (stochastically) independent if $f(x \mid y)=f(x)$ for all possible values y of Y. Intuitively, this says that knowing the value of Y does not provide any information about X. Two random variables that are not independent are said to be dependent.

Before we go on, it is important to note that the population under consideration may be "ideal"-that is, a hypothetical population that satisfice ecrtain properties and is used to approximate a real population. Most distributions in use - for example, the normal and the Poisson-were first derived for this type of population.

2. 2 Expectation

The expectation (or expected value) of any function $\mathrm{g}(\cdot)$ of the random variable X is a weighted average of the value of the function over all possible values of X, the weights given by the density function. That is, for discrete X ,

$$
E[g(x)]=\sum_{i=1}^{N} f\left(x_{i}\right) g\left(x_{i}\right)
$$

(remember that N may be infinity), and for continuous X,

$$
E[\dot{g}(x)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

where $E(\cdot)$ denotes expectation. Mathematically, $E(\cdot)$ is a linear operator

This concept can also be extended to multivariate and conditional cases by substituting the appropriate density into the above formulas. In the conditional caso, the notation is $E[g(X) \mid y]$.

We will be concerned with three particular functions, the third an example of the bivariate case:

1) $g(x)=x$.

Then $E[g(X)]$ is the mean value of X, denoted by μ_{X}. This can be considered the average value of X. For a finite population, it is exactly equal to the average. For an infinite population, it is commonly referred to as the long-range average.
2) $g(X)=(x-\mu x)^{2}$.
$E[g(X)]$, denoted by σ_{X}^{2} or $\operatorname{Var}(X)$, is the variance of X (see diagram below). The variance is a measure of dispersion, that is, a measure of how close to the mean the values of X are. For example,

A commonly used quantity is the standard deviation σ_{X} equal to $\sqrt{\sigma_{X}^{2}}$
Related to the variance is a well-known and sometimes very useful result known as Tchebycherf's Inequality:

$$
P\left[\left|x-\mu_{X}\right| \geq k \sigma_{X}\right] \leq \frac{1}{k^{2}}
$$

for any $k>0$ and for any distribution. The approximation ia very poor for small k (for oxample, try any $k \leq 1$), but for large k ($k \geq 3$) the upper bound can be very useful.
3) $g(X, Y)=\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)$.
$E[g(X, Y)]$ is the covarlance of X and Y, denoted by $\operatorname{Cov}(X, Y)$ or $\sigma_{X Y}$. Two simple properties of the covariarce are

When a set of n random variables x_{1}, \ldots, x_{n} is being considered, it is more convenient to work with the covariance matrix, Σ, defined by

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X), \text { and } \\
& \operatorname{Cov}(X, Y)=E[X Y]-\mu_{X}{ }^{\mu} Y
\end{aligned}
$$

Covariance is a measure of association, but for that purpose it is not well suited, since it is not invariant under a change of scale; that is, $\operatorname{Cov}(a X, Y) \neq \operatorname{Cov}(X, Y)$ for any constant $a \neq 1$. What is used is the (productmoment) correlation coofficient: $\rho_{X Y}=\operatorname{Cov}(X, Y) / \sigma_{X} \sigma_{Y}$, which is scale invariant.

Both covariance and correlation originate from studies of the multivariate normal distribution, where they have a specific meaning; that is, the exact nature of the association being measured is clear. This is not true for other distributions.

Some understanding oi the nature of the association measured by $\rho_{X Y}$ can be obtained by considering the following properties

1) If $Y=a X+b$, where a and b are constants, then

$$
\rho_{X Y}=\operatorname{sign}(a)=\left\{\begin{array}{rll}
1 & \text { if } & a>0, \\
0 & \text { if } & a=0, \\
-1 & \text { if } & a<0,
\end{array}\right.
$$

2) If X and Y are independent, then

$$
\rho_{X Y}=0
$$

but the converse is not true unless both X and Y are normally dist:ibuted. If $\rho_{X Y}=0, X$ and Y are said to be uncorrelated.

In our terminology and notation, this is saying

$$
\text { Error }=x_{1}+x_{2}+\ldots,
$$

where the X_{i} 's are independent raudiom variables such that

$$
P\left[x_{i}=+t\right]=P\left[x_{1}=-1\right]=\frac{1}{2}
$$

for some infinitesimal e and for all i.
-
These assumptions are very :estrictive but ran be greatly relaxet. We will come back to this later

The normal distribution is characterized by two parameters, μ and σ. If X is normally distributed; its density function is

$$
f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right]
$$

It is then possible to derive that

$$
E[X]=\mu
$$

and

$$
\operatorname{Var}[x]=\sigma^{2}
$$

A shorthand notation ${ }^{*}$ is

$$
\mathrm{X} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)
$$

which translates as "the distribution of X is normal wh thenang and vartance σ^{2}." A property of the normal distribution is that of $X \sim N\left(\mu, \sigma^{2}\right)$ amd $\mathrm{Y}=(\mathrm{X}-\mu) / \sigma$, then
$Y \cdots N(0,1)$

[^2]$N(0,1)$ is referred to as the standard normal and is the one tabulated in tables of the normal distribution function. Because of the above property, it is possible to transform any normal randorr variable into the standard form.

Returning to the theory of errors, it is not Hagen's result that makes the normal diatribution important. His assumptions are much too restrictive. The result that is usually sited is the Central Limit Theorem, which gives conditions for convergence to normality, but its assumptions can also be relaxed. The more neful resultes are theoremp due to Liapunov and to Lindolierg and Follor

Theorem! (liapungn's Theorcon)

1.it $s_{n}=x_{1}$. . X_{n} be the sum of n independent random variables whh means $\mathrm{H} X_{i}=\mu_{i}$, variances $\operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2} \neq 0$, and
$Y_{i}=E| | X_{i}-H_{i}^{\mid 3}, ~ L e t$

$$
z_{n}=\frac{S_{n} \cdot \sum_{i=1}^{0} \mu_{i}}{\sqrt{\sum_{i=1}^{n} v_{i}^{2}}}
$$

If

$$
L_{n}=\frac{\sum_{i=1}^{n} Y_{i}}{\left(\sum_{i=1}^{n} \sigma_{i}^{2}\right)^{3 / 2}} \underset{n-\infty}{ } 0
$$

then

$$
z_{n} \frac{d}{n \cdots n} N(n, 1)
$$

$\frac{d}{n \rightarrow \infty}$ denotes convergence in diatribution, that is, the diatribution of $\%_{\mathrm{n}}$ converges to $\mathrm{N}(0,1)$; and $\overline{\mathrm{n} \rightarrow-v_{2}}$, witheut the d , indicatea the usual mathematical himit]. Then, under the conditions of the theorem, the distribution of S_{n} is approximately $N\left(\sum_{i=1}^{n} \mu_{1}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$
for large n.

The assumption $L_{n} \xrightarrow[n \rightarrow \infty]{ } 0$ is relerred to as "negligibility in the limit." A heuriatic condition for thia assumption to be valid is that no X_{i} dominates the others - that is, the random variables do not differ too much In either magnitude or variance.

Theorem 2 (Lindeberg-Feller Theorem)

Let $S_{n}=X_{1}+\ldots+X_{n}$ be the sum of n independent random variables with means $E\left[X_{i}\right]=\mu_{i}$, variances $\operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2} \neq 0$, and density functions $\mathrm{f}_{\mathrm{i}}(\cdot)$. Let

$$
s_{n}=\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}}
$$

and

$$
\%_{n}=\frac{S_{n}-\sum_{i=1}^{n} \mu_{i}}{y_{n}}
$$

If for all, >0,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{u_{n}^{2}} \sum_{i=1}^{n} \int_{n-\mu_{1} l_{1} x_{n}}\left(x-n_{i}\right)^{2} f_{1}(x) d x=0 \quad, \tag{1}
\end{equation*}
$$

tisen

$$
\eta_{n} \frac{d}{n \rightarrow \infty} N(0,1)
$$

Condition (I) is refered to an himebergincondtion. Roughly apotaking, this condition reguires that the vartance "f be due mandy to the denaty in an
 that in a certatn senae, lempleberg's condition in mecomany for convergence to normality In additon, he frisides examplen of when it in matiafted

Both Lindeberg's condition and the cundition in liapunov'n Theorem that $L_{n} \xrightarrow[n \rightarrow \infty]{ } 0$ are satisfieat when the X_{i} 's have the same distribution with finite variance. In that caso, the ntatement of the theorem can be nimplifled at follows:
> $\left|x-\mu_{1}\right|><{ }_{n}$ indicates that the integral fa taken over the bet of x hat Batisfics $\left|\mathrm{K}_{\mathrm{H}} \mathrm{H}_{1}\right|>\mathrm{H}_{n}$.

Theorem 3 (Central Limic Theorem)*

Let $S_{n} \boxminus X_{1}+\ldots+X_{n}$ be the sum of n lid $(=$ independent and identically distributed) rancion variables with mean μ, and variance $0<\sigma^{2}<\infty$ Let

$$
z_{n}=\frac{S_{n}-n \mu}{\sqrt{n} \sigma}=\frac{\sqrt{n}\left(\frac{1}{n} S_{n}-\mu\right)}{\sigma}
$$

then

$$
z_{n} \xrightarrow[n-\infty]{d} N(0,1)
$$

As in the previous two theorenis, the distribution of Z_{n} is approximately N(0, 1) for large n. How large n has to be for this approximation to be good depends on the distribution of the $X_{i} ' s$ For example, if $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, then $\%_{n} \sim N(0,1)$ exactiy for any n. For other distributions, $n \geq 20$ or 25 is usually large enough for the approximation to be good.

The crucial assumption in all three theorems is that the random variables be independent. Only in a few spacial cases has it been possible to prove convergence to normality when dependence is allowed.

The role that the correlation coefficient and covariance matrix play in normal distribution theory can be seen by examining the multivariate normal density function: Let

$$
x=\left(\begin{array}{c}
x_{1} \\
\cdot \\
x_{n}
\end{array}\right) \quad . \quad \mu=\left(\begin{array}{c}
\mu x_{1} \\
\vdots \\
r_{n}
\end{array}\right)
$$

and $\check{\Sigma}=E\left((X-\mu)(X-\mu)^{\prime}\right)$, the covarianee matrix. Then,

$$
\begin{equation*}
f(X)=\frac{1}{(2 n)^{n / 2}} \frac{\left.1 \Sigma\right|^{1 / 2}}{} \quad \exp \left|-\frac{1}{2}(X-\mu)^{\prime} \Sigma^{-1}(X-\mu)\right| \tag{2}
\end{equation*}
$$

The previnus two theorems are also central limit theorems, but the capital lettera on 'Central Limit' are usually reserved for this rosult.
is the multivariate normal censity function. For two random variables, X and Y, with a bivariate normal distribution, equation (2) reduces to

$$
\begin{aligned}
f(x, y)= & -\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-p^{2}\right)}\left[\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}\right.\right. \\
& \left.\left.-\frac{2 \rho\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}\right]\right\}
\end{aligned}
$$

where $\rho=\rho_{X Y}$. As can be seen, Σ and ρ are parameters of the distribution. Also, in the bivariate case, ρ antiafics $\operatorname{Var}[x \mid y]=\left(1-\rho^{2}\right) \sigma_{X}^{2}$, which gives ρ, or more correctly ρ^{2}, a spectific interpretation.

2. 3. 2 Other distributions

Three diatributions will be needed for making tests of gignificane A discussion of each follows.

1. Chi-Square Distribution

If X_{1}, \ldots, X_{n} areiid $N(0,1)$, then $\sum_{i=1}^{n} x_{i}^{2} \sim x_{n}^{2}$, where x_{n}^{2} denotes the chi-square distribution with n degress of freedom; n is the parameter of the distribution.

Two therrems concerning this diatribution are in order

Theorem 4

If X_{1}, \ldots, X_{m} are independemt randon variables such that

$$
\sum_{i=1}^{m} x_{i} \sim x_{k}^{2}, \quad \text { where } k=\sum_{i=1}^{m} n_{i}
$$

Theorem 5
If X_{1}, \ldots, x_{n} are ind $N\left(\mu, \sigma^{2}\right)$ and if

$$
\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

and

$$
s_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}
$$

then

$$
\bar{X}_{n} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

and

$$
\frac{(n-1) s_{n}^{2}}{\sigma^{2}} \sim x_{n-1}^{2}
$$

ind :endent of \mathbb{X}_{n}
Regardless of the distribution of the $X_{i}{ }^{\prime} s$, as long as they are ild, \bar{X}_{n} is called the sample mean and s_{n}^{2} is called the sample variance. If present, the subfectipta indicate the nurnber of obervations.
2. Student's t Distribution*

If $X \sim N(0,1)$ and $Y \sim x_{n}^{2}$ independent of X, then

$$
\frac{x}{\sqrt{Y / n}} \sim t_{n}
$$

where ${ }_{n}$ denotes the t distribution with n degrees of freedom.
"It is called Student's t because William Gonset, who first derived this distribution, was prevented, by the brewery where he worked, frein publishing the result unser his own name. So he published it under the pacudonym " A Student."

Theorem 6

$$
t_{n} \xrightarrow[n \rightarrow \infty]{ } N(0,1) ;
$$

that is, the limit of the t distribution, as the number of degrees of freedom approaches infinity, is the standard normal distribution.

The following thecrem is an immediate result of Theorem 5 .

Theorem 7
 If X_{1}, \ldots, x_{n} are iid $N\left(1, \sigma^{2}\right)$, then

$$
\frac{\sqrt{n}\left(\bar{x}_{n}-\mu\right)}{s_{n}} \sim t_{n-1}
$$

3. F Distribution

If $X \sim X_{n}^{2}$ and $Y \sim x_{m}^{2}$ independent of X, then

$$
\frac{X / n}{Y / m} \sim \mathrm{~F}(n, m)
$$

the F distribution with n and m degrees of freedom,

Theorem 8

If $X \sim t_{n^{\prime}}$ then

$$
x^{2} \sim F(1, n)
$$

The formula of the density functions of the se three distributions is not necessary. Most statistics books contain tables of their distribution function, which is all that is needert

As presented in this section, the term degrecs of freedom is used only to designate the parancters of the ac distributions. The reasonfor the terminology is related to estimation, especially of variances. In a very
general way, one degree of frectiom is gained for query observation if the observations are independent, and one lost for every parameter estimated. We will return to this subject in Section 5.1.1, which should clarify all that is necessary for this paper.

2. A Biatistical Inference

2.4.1 Estimatio

In almost all eases of interest, it is very difficult, if not impossible (as in tre case of infinite popuiations), to determine exactly certain properties of the population unce ${ }^{t}$ cons: iceration. For example, an exact determination of the mean height or weight of the world population would be a somewhat difficult tasi.

The allernative is to take a sample (that is, some subset) of members of the population and determine the value of the property for the 8 members. Some function of these observations is then used to approximate (estimate) the value of the property for the entire population. She very extensive problem of sampling theory - viz., how the members of the sample should be chesel. - is extraneous to the purpose of this paper and so will not be discussed.

The questions that are of interest here and that keep many statisticians cmployed, are the following: Which functions of the observations ghould be used? Or, more specifically, what characterizes a good estimate, and are there general methods for finding them? Before we attack these questions, some notation as necestary.
L.et the dengity of the random variable X be denoted by $f(x ; 0)$, where 0 is the unknown parameter (corresponding to some property of the underlying population) that we wish to estimate. Suppose that the sample is of size n
and that the observer values are x_{1}, \ldots, x_{n}. Denote an estimate of θ by $g\left(x_{1}, \ldots, x_{n}\right)$, where g is some function. Note that, before the n observations are taken, $g\left(X_{1}, \ldots, X_{n}\right)$ can be treated as a random variable with its own distribution, which in theory can be derived from the distribution of X. Now X_{1}, \ldots, X_{n} are n identically distributed random variables, though not necessarily independent.

Some properties that g may possess are the following:

1) Consistency.

gis consistent if

$$
g\left(x_{1}, \ldots, x_{n}\right) \xrightarrow[n \rightarrow \infty]{ } 0 ;
$$

that is, the estimate converges to the true value as the sample approaches the entire population. This is a miniroum condition to be placed on an estimate.
2) Minimum mean-square error.
g has this property if it minimizes $E\left\{\left(h\left(X_{1}, \ldots, X_{n}\right)-0\right\}^{2}\right\}$ over all possible functions of the observations h.

A problem here is that the quantity to be minimized depends on the unknown 0 . It is gratifying when one function minimizes the mean-square error (MSF) for all 0. In practice, it is usually necessary to find the estimate that minimizes the MSE on some interval that is thought to contain 0 .

$$
\begin{aligned}
& \text { 3) Unbiasedness. } \\
& \text { g is unbiased: } \\
& \qquad E\left[g\left(x_{1}, \ldots, x_{n}\right)\right]=0
\end{aligned}
$$

Wheng is not unbiased, its bias is given by

$$
E\left[g\left(X_{1}, \quad ., X_{n}\right)\right]-0
$$

4) Minimum variance
g has this property if it minimizes
$\operatorname{Var}\left[h\left(X_{1}, \ldots, X_{n}\right)\right]$
over all functions h. This property is undesirable if g has a large bias, since the distribution of g would then be concentrated around the wrong value. A. desirable estimate would be the minimum-variance unbiased (MVU) estimate. This property provide 6 a criterion for choosing among unbiased estimates when more than one exists, although there is the problem, as with MSE, that the variance will usually depend on 0 . In that case, an estimate is MVU if it = is unbiased and has minimum-variance among all unibiased estimates for some value of 0 .
it is genc rally desirable to find an unbiased or MVU estimate, but a word of caution is in order. Even when such an estimate exists, it does not alưays make sense This can be especially troublesome for the MVU case, since for a large class of problems the MVU estimate is unique.

As an example, suppose that $f(x ; \lambda)=c^{-\lambda} \lambda^{x} / x!$, the Poisson density with mean $\lambda(\lambda>0)$, and that $\theta_{1}=e^{-\lambda}$ is to be estimated on the basis of one observation. The only unbased estimate, and hence the MVU estimate, is

$$
H_{1}(x)=\left\{\begin{array}{lll}
1 & \text { if } & x=0 \\
0 & \text { if } & x=1,2, \ldots
\end{array}\right.
$$

If $0_{2}=e^{-2 \lambda}$ is to be estimated, the oniy MVU estimate is

$$
g_{2}(x)=(-1)^{x}
$$

k_{1} may be acceptable in some cascs, but g_{2} is plainly nonsensical. Among other things, it does not make sense to use a negative estimate of a parameter that is known to be positive.

In most cases, it is desirable to have an estimate of the variance of an estimatr. If s^{2} is an unbiasedeatimate of $: 1$, variance of $g\left(X_{1}, \ldots, X_{n}\right)$, thens is called the standarderror of g.

Only two of the many methods for determining estimatos will be disevesed here. The first is the method of genst aguares.

In genoral, g is chosen to milnimizo

$$
\sum_{i=1}^{n} w_{i}\left(y_{i}-\hat{y}_{i}\right)^{2} .
$$

where $y_{i}=h(0)$ for some function $h, \hat{y}_{i}=h\left[g\left(x_{1}, \ldots, x_{n}\right)\right]$, and $\left\{w_{i}\right)_{i=1}^{n}$ is a set of known constants or weights This method is the subject of the remainder of the paper, so no more will be said about it here.

The second is the method of maximum likelihood. If x_{i}, , x_{n} are iid with density $\mathrm{f}(\mathrm{x} ; 0)$, then

$$
f\left(x_{1}, \ldots, x_{n} ; 0\right)=\prod_{i=1}^{n} i\left(x_{i} ; \theta\right)
$$

is called the likelihood function and denoted by $L\left(0 ; x_{1}, \ldots, x_{n}\right)$. It is a function of the unknown 0 that treats the observations as known parameters. The maximum-likelihood estimate of θ, denoted by $\hat{\theta},{ }^{*}{ }^{*}$ is the estimate of 0 that maximizes $L\left(0 ; x_{1}, \ldots, x_{n}\right)$; that is,

$$
L\left(\hat{0} ; x_{1}, \ldots, x_{n}\right) \geqq L\left[h\left(x_{1}, \ldots, x_{n}\right) ; x_{1}, \ldots, x_{n}\right]
$$

for all other functions of the observations.
The maximum-likelihoodestimate is usuaily found by setting

$$
\frac{d}{d \theta} L\left(0 ; x_{1}, \ldots, x_{n}\right)=0
$$

or, equivalently. ${ }^{\dagger}$

$$
\frac{d}{d 0} \log L\left(0 ; x_{1}, \ldots, x_{n}\right)=0
$$

This last çuation is referred to as the likelihood equation.

[^3]
Theorem 9

If log $1 .\left(0 ; x_{1}, \ldots,{ }_{n}\right)$ is differentiable in an metervai including the true value, ${ }^{0}{ }_{0}$, let 0 be a root of the likelibood equation; that is, $\left.(d / d 0) \log L\left(0, x_{1}, \ldots, x_{n}\right)\right|_{0,0}=0$. Then, under certain conditions on $\mathrm{f}(\mathrm{x} ; \mathrm{0})$,
i) $\hat{\alpha}$ is a consistent estmate of 0 , and
2) $\sqrt{n}\left(\hat{0}-0_{n}\right) \frac{d}{n-\cdots} N\left(0,1^{-1}\right)$,
where i, hoon as Fisher's information, equals $E\left[\left(\frac{d}{d \theta} \text { log } f(x ; 0)\right)^{2}\right]$.
A result due to Cramér and la ao is that if $\overline{0}$ is an unbiasedestimate of 0 , then

$$
\operatorname{Var}(\bar{n}) \cdot r^{-1} \frac{1}{n}
$$

"heren is the number of ohservations Combined with Theorem 9, this means that, wsmptotically, the maximm-likelihood estimate is a minmumvarianee unbiasedestimate.

As with all asymptotic results, the question is: what happens for finite n. In this case, $n \cdot 25$ is usually sufficient for $\hat{6}$ to be very close to a minimum-variance unbiased estimate.

11 it is known that θ lies in some interval. $\hat{\theta}$ is chosen to maxumze the haehhuod function on that mterval. It is pussible that tims maxmmon will not be a root of the likethood equation. In that case, the results of Theorem 9 will not, in general, hold. For example, if $0 \geqq 0$ and all roots of the likelt hood equation are negative. the two boundary poitats, $0=0$ and $\theta=\infty$, mast be checked to see whach manmmaes L.

Example

This illustrates how these results can be extended to estimate nore than one parameter. Suppose X_{1}, \ldots, X_{n} are iid $N(\mu, 0)$, where both μ and 0 are unknowr:
$L\left(\mu, 0 ; x_{1}, \quad \ldots, x_{n}\right)=\frac{1}{(2 \pi 0)^{n / 2}} \exp \left[\cdot \frac{1}{20} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right]$.
$\log L\left(\mu, 0: x_{1}, \ldots, s_{n}\right)=C-\frac{n}{2} \log 0-\frac{1}{20} \sum_{i=1}^{n} \lambda_{1}^{2}+\frac{n \mu}{0} \bar{x}-\frac{n \mu^{2}}{20} \quad$,
where C is a constant Then,

Thereiore, $\hat{i}=\overline{\mathrm{X}}$. Note that μ is an unbiasedestimate of μ for any n. To obtain 0 ,

$$
\left.\frac{\partial \operatorname{tog} 1}{\hat{\partial} 0}\right|_{\substack{\mu=\hat{\mu} \\ 0=\hat{\theta}}}=-\frac{n}{2 \hat{\theta}} \cdot \frac{1}{2 \hat{\theta}^{2}} \sum_{i=1}^{n} a_{1}^{2} \cdot \frac{n \bar{x}^{2}}{\hat{0}^{2}}+\frac{n^{\prime} \hat{\mu}^{2}}{2 \hat{\theta}^{2}}=0
$$

$$
\hat{n}=\frac{1}{n} \sum_{i=1}^{n} a_{i}-\bar{x}
$$

O 1s only aspmpotically unbiased, siner the unbasedestimate of
0 for any n is $\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{1}-\bar{X}\right)^{2}$

2.4.2 Sinmificance tests

Suppose a hyputhesis about the property in question (requently called the null hypothesig, denoted by H_{0}) is to be checked as to whether H_{0} is consist ent with some whervatoons that have been or whl be tiken. A test an ber per formed by constructing neme function of the data, y. culled the texsishatistic, that has a known distribution if the hypothests is true and such that, if H_{0} is false, an "extreme vatue" of this cistribution would be expected. Then, if an extreme (that is, unlikely if H_{0} is truc) value is observed, the hypothesis is "rejocted." Otherwise, Hi_{0} is "arcepted."

The use of the termmology "accept" and "reject" can be misleading. A test oi a hypothesis is very one-fided It only subiects the hypothesis to a process of "disconitmation," if H_{0} is retected, this may be taken as evidonce aganst the bepothesis. If H_{0} is accepted, all that can be said is that it could not be refected. Acreptance in not \cdot. dence for a hupothesis.
 I.at (a dence the wet on all pessble values of $\}$, and let A and b be two

$$
\text { remeltion: y tares a whar m } 13
$$

is is dete ramed, thompl not maquely, by the requmement that, of H_{0} is true,

 when it is, antat, true "o choose 13 subpect 0 equation (3), consideration
 - hownthe 18 th mamber the :ype llerror, β is is the probability of accept-

dats are frefumbly named by the distribution of the test statistic when $H_{t,}$ I: trar

x_{1}, \quad, x_{n} udN $\left.N, 0^{2}\right) \quad$,
whererand π^{2} are unknown.
---...-
'In Reforat, β is a fanction of the varous alternatives to Ho. lecally, B is
 to mandice is tur a choseachans of alternatives.

Suppose H_{0} states that $\mu=0 \quad B y$ Theorem 7 , when H_{0} is true, $\sqrt{n} \bar{X} / s \sim t_{n-1} \quad$ Take $\gamma\left(x_{1}, \ldots, x_{n}\right)$ घ $\sqrt{n} \bar{X} / s$

If $\mu<0$, we would expect smaller values of y than if $\mu=0$. Similarly, if $\mu>0$, we would expect larger values of y.

If it is possible that μ may be any value, pick the constant C so that

$$
P(|y| \geq C\}=n \quad:
$$

then $A=(-C, C)$. If $a=0.05$ and $n=10$, then $C=2.634$, (ronn a table of the distribution with 9 degrees of freedem.
if it is known that $12 \because 0$, then pick C so that

$$
\mathrm{P} \mid \mathrm{V} \supseteq \mathrm{Cl}=a
$$

Now, $A=(-\infty, C)$ For $a=005$ and $n=10, C$ e $2228 . C$ is chosen differently in this case, since negative values of y cannot be due to $\mu<0$.

This test is called the test, two-sided is all values of μ are possible, and one-sided if only $\mu \geq 0$ (or $\mu \leq 0$) is possible,

As presented so tar, the hypothests testing procedure leads one wher to accept or reject the null hypothesin. In practue, though, this is not what is usually done. Insteid, the tollowing is done: collect the data, x_{1}, \ldots, x_{n}, and calculate the whe of the test statistic $y_{0}=\gamma\left(x_{1}, \ldots, x_{n}\right)$. Then calculate the probability of observing a more extience value of y than γ_{0}, using the distribution of for the cabe wnen the null hypothesis is true. This probability, to be denoted here by p_{0}, is then a measure of the degree to which the data are inconsistent with the null hypothesis or, equatently, of the strength of the evidence agienst the null hypothesis. The smatler the value of p_{0}, the greater the streng h of the evidince agunst H_{0}. Therefore, it is usually best simply to state p_{0} as the result of the test, whough for large enough p_{0} (for most purposes, $p_{0}>0.20$ or 0.25 is considered large), it is sate to say that there is no oignificant evidence ogainst H_{0}. An alternative to stating P_{0} would be to say that the test result is stgnificant at the $\delta \%$ level, where δ is usually taken as $0.5,1,5,10$, or 20 and is such that $\delta / 100=p_{0}$. A result signifleant at the $\delta \%$ level is atso significant at the $\delta^{\prime} \%$ level for any $\sigma^{\prime}>6$.

Example
in the presoous example, suppose $n=100, \bar{x}=0.8$, and
$?^{2}=160$ Then

$$
r_{0}=i\left(x_{1}, \ldots,{ }_{100}\right)=\frac{\sin \bar{x}}{s}=2.0
$$

for the mo-sided test,

$$
P_{0}=10|11,2.0|=0.0+6,
$$

by ust of the mirmat distributhon io approximate Student's idistrithaten whh indecrese of frectom. This result is significant at the Hesel. For the ane-sided test,

$$
\left.P_{0} 1 J_{1}=2.0\right]=0.023
$$

agun by and ot the nomal approximation. This result is signiffant at the $3^{\prime \prime}$ level and, bence, also at the 5% level.

It an accep orejed dectston in newessary, as when testing for outlicers (n) hons. 2), then an a must be chosen. How dese one go about preking an 4. That chance depermin on the purgse of the wat and on the jerson dong the : 'hang. Io choose a, one mast de tde how much protecton is desired

 the the probabilits of talsels accoping H_{0}, the type ll ereort. The value of a wust then be a peramal dectsion tor whith there an be ne peneral ansiver, Wopt to say that $a=005$ and $a=0.01$ are the most common choicen.
for the test: that appear in the temandur ot thes paper, we wall indicate
 tastic, the dintribution of that statistic when ${ }^{\prime} 0$ is true, and what eonstitutes
 for example, rexert the hypothers man the tan statistic, bay Z, ir too large.

[^4]Sample mean
Sample varlance
t distrillution with n degrecs of frecdom
F distribution with n and m degrees of freedom

Designates estimotes

3. THE LEAST-SQUARES MODEL.

The general model is

$$
Y=f\left(Z_{1}, \ldots, Z_{p}, e\right)
$$

for some function f , where Y is the "dependent variable," that is, the variable that is to be predicted; Z_{1}, \ldots, Z_{p} re the 'independent variables," that is, the variable that will be used to predict Y; and e is the error or residual term. This includes all errors - for example, in measurement and all effects - that is, other variables - that are nut inclided in the model. c is a random variable about which we want to make ae few assumptions as possible. The form of the model is determined by physical considerations (when known), judgment, and trial and error.

In most of this paper, we will consider a special case called the linearadditive model:

$$
Y=\beta_{1} X_{l}+\ldots+\beta_{k} x_{k}+e,
$$

where the X_{i} 's are known functions of the $Z_{i}{ }^{\prime} s$, and the β_{i} 's are constants, presumably uninown. The term linear refers to the condition that the model be linear in the coefficiente and in the residual term.

Example

1) $Y=\beta_{1} \cos \sqrt{3 Z}+\beta_{2} \exp \left[Z^{2}\right]+\beta_{3} \frac{i}{\log Z}+\beta_{4}+e$ is linear, with
$x_{1}=\cos \sqrt{3 Z}$
$x_{2}=\exp \left[z^{2}\right] \quad$,
$x_{3}=1 / \log z$.
$x_{4}=1$
2) $y=\beta_{1} z^{\beta_{2}}+e$ is not linear unless β_{2} is known.

Occanionally it is possible to transform to a linear mode!. For example, $W=e^{x p} \mid \beta, \cdot+$ cl can be transformed to

$$
Y=\log w-\beta y+c
$$

which is linear.

Theoxphout this paper, assumptions will be made as needed. Once made, all assumptions are to be carried through unless it is otherwise stated.

Assumption 1. The model is correct.
Assmmpen_ The X_{1} 's can in observed without error.
4. THE PROBLEM AND ITS SOLUTION

Very simply, the problem is that $\beta_{1}, \ldots, \beta_{k}$ are unk nown and sone estimate of them is needed. Possible reasons for needing the estimates are

1) Totest hypotheses about $\beta_{1}, \ldots, \beta_{k}$.
2) To be able to predict Y from some future observation on X_{1}, \ldots, X_{k}.
3) To test the correctness of the model.

To estimate $\beta_{1}, \ldots, \beta_{k}$, two things are nceded. First, we must have some data. Let us assume that we have $n(n>k)$ observations of the ($k+1$)-component vector (X_{1}, \ldots, X_{k}, Y). (If $n \leq k$, the probiem is net statistical.) Lower case letters will be used to denote the observed quantities, and the subscript u will be used to denote the number of the observation. Note that the distribution of the residual variable e may be different for each u. Anything that is said about e (without a subscript) is to be interpreted as true for each e_{u}, where applicable.

Second, some criterion is necded. It should come as no surprise that the criterion to be consideredhere is to minimize the sum of the squared errors; that is, $\hat{\beta}_{1}, \ldots, \hat{\beta}_{k}$ are chosen to minimiz.

$$
\sum_{u=1}^{n}\left(y_{u}-\hat{y}_{u}\right)^{2}
$$

where

$$
\hat{y}_{u}=\sum_{i=1}^{k} \hat{\beta}_{i} x_{u i}
$$

Hence, the term least squares.

Why this criterion? The two main reasons for using least squares follow:

1) The solution for the linear cane we are working with is mathematically easy.
2) The estimates have some nice propertics.

Unfortunately, these nice properties sometimes break down, and even when they do not, they are not always optimal.

To keep the notation manageable, we will use matrices:

$$
\begin{aligned}
& \tilde{Y}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \quad \beta=\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\dot{\beta_{k}}
\end{array}\right) \\
& x=\left(\begin{array}{ccc}
x_{11} & \ldots & x_{1 k} \\
\vdots & & \\
x_{n 1} & \ldots & x_{n k}
\end{array}\right) \\
& \epsilon=\left(\begin{array}{c}
e_{1} \\
\vdots \\
e_{n}
\end{array}\right) \\
& \hat{\beta}=\left(\begin{array}{c}
\hat{\beta}_{1} \\
\vdots \\
\dot{\beta_{k}}
\end{array}\right) \\
& \hat{Y}=\left(\begin{array}{c}
\hat{y}_{1} \\
\vdots \\
\hat{y}_{n}
\end{array}\right)=x \hat{\beta}
\end{aligned}
$$

Primes denote transposes.

In matrix notatirn, the model is

$$
\tilde{\mathrm{Y}}=\mathrm{X} \beta+\varepsilon
$$

and $\hat{\beta}$ is chosen to minimize

$$
(\tilde{Y}-\hat{Y})^{\prime}(\tilde{X}-\hat{Y})
$$

By taking derivatives and setting them equal to zero, we obtain the normal equations

$$
s \hat{\beta}=s_{Y},
$$

where S is a $k \times k$ symmetric matrix defined by

$$
s_{i j}=\sum_{u=1}^{n} x_{u i} x_{u j} \quad \text { or } \quad s=x^{\prime} x
$$

and S_{Y} is a k-component vector defined by

$$
S_{Y_{i}}=\sum_{u=1}^{n} x_{u i} y_{u} \quad \text { or } \quad S_{Y}=X^{\prime} \breve{Y}
$$

Then, if S is invertible,

$$
\hat{\beta}=s^{-1} s_{Y}
$$

is the least-squares estimate of β. It is important to note that X, and hence S, have been treated as matrices of constants. This is the traditional approach. In effect, the problem is considered in terms of what can be said about Y for given values of the $X_{i}{ }^{\prime}$. Because of rhis, all expectations that follow are really conditional on X, although this will not be explicitly stated.

Assumption 3. Sis nonsingular

Agsumption 4. $E[e]=0$. As stated above, this assumption is really $E[c \mid X]=0$. Since this should be true for any value of X, it is necessary that e be uncorrelated with the $X_{i}{ }^{\prime}$ s.

With Assumption 4, there is another way of looking at the model, since

$$
\begin{equation*}
E\left(Y \mid x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} f_{i} x_{i} . \tag{4}
\end{equation*}
$$

Thl: means that for each $\left\{x_{i}\right\}_{1=1}^{k}$, Y has a distribution about the mean value
$\sum_{i} x_{i} ;$ the distribution being that of the random variable e. The curve $\sum_{i=1}^{k} x_{i} \beta_{j} ;$, the diatribution being that of the random variable e. The curve
given by formula (4) is called the regression curve (hence the term linear regression), andit is this curve that we wish to estimate.

Theorem 10

in $E(0)=0$, then $E\{\hat{\beta}\}=\beta$.
Assumption $5 E\left[e_{i} \mathrm{c}_{\mathrm{j}}\right]=\sigma^{2} \delta_{i j}$, where σ^{2} is a constant and $\delta_{i j}$ is Kronecker's delta: $\delta_{i j}=\left\{\begin{array}{l}1 \text { if } i \neq\} \\ 0 \text { if } i \neq j\end{array}\right.$, Shat is, the residuals are uncorrelated and have constant variance

The assumption that the residuals are uncorrelated is less restrictive than is an assumption of independence, but the re is tittle practical difference.

This assumption makes the following three theorems possible:

Thearem 11

Let $C=S^{-1}$; then $\Sigma_{\hat{\beta}}=\sigma^{2} C$ That is, $\operatorname{Var}\left(\hat{\beta}_{1}\right)=\sigma^{2} C_{i i}$ and $\operatorname{Cov}\left(\beta_{i}, \beta_{j}\right)=\sigma^{2} C_{i j}$

Theorem 12

Let $d_{u}=y_{u}-\hat{y}_{u}$, the obscrved residuals, and $s^{2}=\frac{1}{n-k} \sum_{u=1}^{n} d_{u}^{2}$
Then, $E\left[s^{2}\right]=\sigma^{2}$

Using these two theorems, we have

$$
E\left[\left(Y-\sum_{i=1}^{k} x_{i} \hat{\beta}_{i}\right)^{2}\right]=E\left(\left(\Sigma x_{i}\left(\beta_{i}-\hat{\beta}_{i}\right)+e\right)^{2}\right)=v^{2}\left(1+X^{\prime} C X\right),
$$

where $x=\left(x_{1}, \ldots, x_{n} y^{\prime} g_{k}\right.$ some future observation. This quantity is the variance of the prediction $\sum_{i=1}^{k} x_{i} \hat{\beta}_{i}$ The term $\sigma^{2} x^{\prime} C X$ is due to our not knowing β, and σ^{2} is due to the residual term. The gtandard error of prediction is $s \sqrt{1+X^{\prime} C X}$.

Theorem 13 (Gauss-Markoff Theorem)

If we consider only estimates of linear functions of the $\beta_{i}{ }^{\prime}$ s that are

1) unbiased and
2) linear functions of the y_{u} 's,
then the least-squares method gives the estimate with minimum variance (for all linear functions of the β_{1} 's).

This last theorem details the me properties that were promised earlice. It says that the least-squares estimate is best (that is, mimmum variance unbiased) in the clase of estimates that are linear functions of the y_{u} 's. This is nice, but there is no reason for restricting oneself to this clasu if a better estmate can be found. \therefore

When the model contains a constant term, say β_{k}, then an alternative - method is available Smee the least-squares solution ior β_{k} is

$$
\hat{\beta}_{k}=\bar{Y} \cdot \sum_{i=1}^{k-1} \hat{\beta}_{i} \bar{X}_{i}
$$

the estimates of $\beta_{1}, \ldots, \beta_{k-1}$ can be obtained by considering the model rewrittenas

$$
y_{u}=\bar{\gamma}+\sum_{i=1}^{k-1} \beta_{i}\left(x_{u i}-\bar{X}_{1}\right)+c_{u}
$$

where

$$
\bar{x}_{i}=\frac{1}{n} \sum_{u=1}^{n} x_{u t}
$$

and

$$
\bar{Y}=\frac{1}{n} \sum_{u=1}^{n} y_{u}
$$

If S and S_{y} are modified to

$$
\because \quad s_{i j}=\sum_{u=1}^{n}\left(x_{u i}-\bar{x}_{i}\right)\left(x_{u j}-\bar{x}_{j}\right)=\sum_{u=1}^{n} x_{u i} x_{u j}-n \bar{x}_{i} \bar{x}_{j} .
$$

and

$$
s_{y_{1}}=\sum_{u=1}^{n}\left(x_{u i}-\bar{x}_{i}\right)\left(y_{u}-\bar{Y}\right)=\sum_{u=1}^{n} x_{u i} y_{u}-n \bar{X}_{i} \bar{Y} \text {. }
$$

then

$$
\left(\begin{array}{c}
\hat{\beta}_{1} \\
\vdots \\
\hat{\beta}_{\mathrm{k}, \mathrm{I}}
\end{array}\right)=s^{-1} s_{\mathrm{Y}}
$$

The advantage of thas proceriure is that the matrix to be inverted is smaller. its disadvantage is that it mav be neither casy nor accurate to compute S and S_{Y} it is neressary cither to make one pass through the data to calculate the means and then another pass to calculate S and S_{Y} or to run the risk of taking the difference of two very large numbers, which could result in nonsense, that 1 b , no cemaning significant digits. These problems can be considerable, espectally with large quantities of data.

This alternative procedure will not be mentioned again, but the re are iwo points to note. First, the fitted curve goes through the point
$\left(\bar{X}_{1}, \ldots, \bar{X}_{k-1}, \bar{Y}\right)$ Sccond, the standard error of prediction is now of the form

$$
=\sqrt{1+\frac{1}{n}+(x-\bar{x})^{\prime} c(x-\bar{x})}
$$

where \bar{X} is the (k - l)-dimensional vector of means from the original sample. This shows very elearly the price paid for extrapolation in terms of large standarderrors

Note that it has not yet been necessary to assume a distribution for the $e_{u}{ }^{\prime} s$. It has not even been assumed that all the $e_{u}{ }^{\prime}$ g have the same distribution. Some assumption is required for us to be able to make any probabillty statements about the solution, for example significance tests.

Usually, the normal distribution is assumed. for two main reasons: First, owing to results such as Theorems । to 3, the normal distribution is frequently a very good approximation to the residual distribution. Sccond, the normal distribution is the easiest to work with; that is, tests are available using test statistics with known and tabulated distributions. In theory, it is possible to find tests and the distributions of their test statistics for any assumed distribution of e. In practice, the effort is usually not worth it.

One additional point about normality is that if the $c_{u}{ }^{\prime}$ s are normally distributed, then the maximum-likelihood estimate is the same as the leastsquares estimate. This has two implications. First, the east-squares estimate has, in this case, the adiditional nice property of being asymptotically minimum-variance unbiased among all estimates, not just among those in the restrictefl class consideredearlier. Second, if the distributions of the en's are known and are not normal, it may be preferable to use maximum likelihood rather than least squares.

Example

If $f(c)=\frac{1}{2 \lambda} \exp (-\lambda|0|) \quad(\lambda>0)$

$$
=\frac{1}{2 \lambda} \exp \left(-\lambda\left|y_{:}-\sum_{i=1}^{k} \beta_{2} x_{i}\right|\right)
$$

the double exponential distribution.

then, maximun likelihood says to choose $\hat{\beta}$ to minimize

$$
\sum_{u=1}^{n}\left|d_{u}\right|=\sum_{u=1}^{n}\left|y_{u}-\sum_{i=1}^{k} \beta_{i} x_{u i}\right|
$$

Use of maxmmun likelihood shonld expectally be considered if the clistribution of e is not symmetric. Least squares treats a deviation ($d_{\mathbf{u}}$) of -a the same as one of to the dietribution of e were not symmetric, one of these deriations would be more untrely than the other (P[e: -a) < P[e $\geq+\mathrm{a}$) would mean that a was the more unlikeiy)

Examzple

Suppose f(e) looks lihe:

In this abs, -a is more unlakely than $+n$

What is desired is that cqually probable deviations be treated alike. In the above example, if $P|==-\delta|=P \mid c \equiv+a\}$, then $-\delta$ and $+a$ are equally likely deviations. The quantity to be minimized should take this into account. Least squares does not.

Assumption 6. r_{1}, \ldots, e_{n} are iid $N\left(0, \sigma^{2}\right)$.
This assumption will be used only for the significance tests that are to follow, unless otherwise stated. Results not connected to a test do not require this assumption.

Theorem 14

If $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$ are iid $\mathrm{N}\left(0, \sigma^{2}\right)$, then

$$
\hat{\beta}_{i} \sim N\left(\beta_{i}, \sigma^{2} c_{i i}\right)
$$

Also, if P and R are two k-dimensional vectors of constants, then

$$
P^{\prime} \hat{\beta} \sim N\left(P^{\prime} \beta, P^{\prime} \Sigma_{\hat{\beta}} P\right)
$$

and

$$
\operatorname{Cov}\left(F^{\prime} \hat{\beta}, R^{\prime} \hat{\beta}\right)=P^{\prime} \Sigma_{\hat{\beta}} R
$$

[Remember: $\Sigma_{\hat{f}}=\sigma^{2}$ C.]

A lack of fit due to the nonlinearity of the true regression can sometimes be eliminated by restrieting the X_{i} 's to a range on which the linear model is a-better approximation. If this cannot be done, it is neessary to use a nonlinear procedure.

The two principal me ods for checking this assumption follow.
5.1.1 Atest for gooriness of it

This test assumes that for each ($\left.x_{u l}, \ldots, x_{u k}\right), n_{u}\left(n_{u}>\right)$) observations of Y have beentaken: $\gamma_{u l}, \ldots, y_{u n_{u}}$. Then, for each u

$$
s_{u}^{2}=\frac{1}{n_{u}-1} \sum_{v=1}^{n_{u}}\left(y_{u v}-\bar{y}_{u}\right)^{2}
$$

:

$$
\overline{\mathrm{y}}_{\mathrm{u}}=\frac{1}{n_{u}} \sum_{\mathrm{v}=1}^{\mathrm{n}_{\mathrm{u}}} \mathrm{y}_{\mathrm{uv}}
$$

will always be an unbiased estanate of σ^{2}, whether the model is correct or not. By combining over u.

$$
s_{2}^{2}=\frac{\sum_{u=1}^{n} \sum_{v=1}^{n_{u}}\left(y_{u v}-\bar{y}_{u}\right)^{2}}{\sum_{u=1}^{n}\left(n_{u}-1\right)}
$$

will be an unbiased estimate of σ^{2}. By Theorem 12 .

$$
s_{1}^{2}=\frac{\sum_{u=1}^{n} n_{u}\left(\gamma_{u}-\hat{y}_{u}\right)^{2}}{n-k}
$$

will be an unbiased estimate of σ^{2} if the model is correct. If the model is wrong, s_{1}^{2} will be inflated by the difference between the fitted regression line and the true regression line, s_{1}^{2} is called the lack-of-fit term and is obtancel liy treating \bar{y}_{u} as the observation of Y corresponding to
($x_{\text {ul }}, \ldots, x_{u k}$) and then weighting inversely te the variance (which will be covered later) . $11 \mathrm{so}, s_{1}^{2}$ is independent of s_{2}^{2}. This does not constitute a complete proof, but to see that s_{1}^{2} and s_{2}^{2} are independent, consider

$$
\begin{aligned}
\sum_{u=1}^{n} \sum_{v=1}^{n_{u}}\left(y_{u v}-\hat{y}_{u}\right)^{2}= & \sum_{u=1}^{n} \sum_{v=1}^{n_{u}}\left(y_{u v}-\bar{y}_{u}+\bar{y}_{u}-\hat{y}_{u}\right)^{2} \\
= & \sum_{u=1}^{n} \sum_{v=1}^{n_{u}}\left(y_{u v}-\bar{y}_{u}\right)^{2}-2 \sum_{u=1}^{n} \sum_{v=1}^{n_{u}}\left(y_{u v}-\bar{y}_{u}\right)\left(\bar{y}_{u}-\hat{y}_{u}\right) \\
& -2 \sum_{u=1}^{n}\left(\bar{y}_{u}-\hat{y}_{u}\right) \sum_{v=1}^{n_{u}}\left(y_{u v}-\bar{y}_{u}\right)+\sum_{u=1}^{n} n_{u}\left(\bar{y}_{u}-\hat{y}_{u}\right)^{2}, \\
= & \sum_{u=1}^{n} \sum_{v=1}^{n}\left(y_{u v}-\bar{y}_{u}\right)^{2}+\sum_{u=1}^{n} n_{u}\left(\bar{y}_{u}-\hat{y}_{u}\right)^{2}
\end{aligned}
$$

and use the following lemma:

Lemma

If g_{1}. \ldots, g_{n} idd $N\left(0, \sigma^{2}\right)$ and $v<n$, then

$$
T_{1}=\frac{1}{v^{2}} \sum_{i=1}^{v} g_{i}^{2} \sim x_{v}^{2},
$$

$$
T_{2}=\frac{1}{\sigma^{2}} \sum_{i=v+1}^{n} s_{i}^{2} \sim x_{n-v}^{2}
$$

and T_{1} and T_{2} are independent.

Before the test is stated, a discussion of the degrees of freedom of variance estimates is necessary. In general, a variance estimate is of the form $S^{2}=\frac{1}{l} \sum_{j=1}^{m} g_{j}^{2}$, where g_{j} is some function of the $j^{\text {th }}$ observation and $m \geq 2$. \& is a constant equal to the number of independent observations minus the number of parameters estimated by those observations. As an example, for s_{1}^{2}, the $\left\{y_{u}\right\}_{u=1}^{n}$ are n independent observations and k parameters have been estimated $\left(\hat{\beta}_{1}, \ldots, \hat{\beta}_{k}\right)$, so $\ell=n-k$. In that case, $\mathbf{g}_{\mathrm{j}}=\sqrt{\mathrm{n}_{\mathrm{j}}}\left(\overline{\mathrm{Y}}_{\mathrm{j}}-\hat{\mathrm{Y}}_{\mathrm{j}}\right)$, is the number of degress of frecdom of the variance estimate. If the distribution of $\mathrm{g}_{\mathrm{j}}{ }^{\prime}$ is $\mathrm{N}\left(0, \sigma^{2}\right)$, as is the case for s_{1}^{2} when the model is correct and Assumption 6 holds, then

$$
\frac{s^{2}}{\sigma^{2}} \cdot \ell=\frac{\sum_{j=1}^{m} g_{j}^{2}}{\sigma^{2}} \sim x_{i}^{2}
$$

(The number of degrees of freedom of the x^{2} disiribution is i not m, as might at first be expected, because the g_{j} 's are dependent.)

By this result and the lemma,

$$
\frac{s_{1}^{2}}{s_{2}^{2}} \sim F\left(n-k, \sum_{u=1}^{n}\left(n_{u}-1\right)\right)
$$

if the model is correct, If the model is wrong, a lorge value of the test statistic is expected. The test is to reject the hypothesi.. that the model is correct if

$$
\frac{s_{1}^{2}}{s_{2}^{2}} \doteq c
$$

where C is obtained from a table of the $F\left(n-k, \sum_{u=1}^{n}\left(n_{u}-1\right)\right)$ distribution for the chosen significance level.

If the result of the test is not aignificant, there is little need to worry about a lack of fit. All results will at least be very close to being completely valid. If the result is significant, some other procedure must be used to determine the cause of the lack of fit so that it can be corrected.

If multiple observations are not available, an estimate of σ^{2} from another set of data can be used as the denominator of the F test replacing $\sum_{u=1}^{n}\left(n_{u}-1\right)$ by the appropriate number of degrece of freedom. The only requirements that this estimate must satisfy are that it be unbiased, whether the model is correct or not, and that it be independent of s_{1}^{2}.

5.1.2 Residual aralysis

Residual analysis will be used to check goodness of fit if the F test cannot be performed or to try to discover the cause of the lack of fit if the test result was significant. Residual analysis has other uses, so it is best to start, with a general overilew of the procedure before going into the specifics of this application.

The basic idea behind residual analysis is that if the assumptions are correct, the $\left\{e_{u}\right\}_{u=1}^{n}$ are n uncorrelated random variables (possibly normally distribute 0) with mean 0 ard variance σ^{2}. The $\left\{d_{u}\right\}_{u=1}^{n}$, being estimates of $\left\{e_{u}\right\}_{u=1}^{n}$, should then look like a sample with those properties. In fact, the $d_{u}{ }^{\prime}$ s have the covariance matrix $\sigma^{2}\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(\neq \sigma^{2} I\right)$ and so are correlated, but this effect is negligible unless the ratio ($n-k$) $/ n$ is very small. Therefore, the d_{u} 's should appear to be uncorrelated, to have constant variance, and to be uncorrelated with any of the variables in the model.

Usually, a residual analysis will give some idea of which assumptions, if any, are not valid and how, if necessary, the estimates can be corrected. The procedure is to examine plots of residuals, first overall (for example, as a histogram), and then against

1) Time, if known
2) \hat{Y}
3) $X_{j}(j=1, \ldots, k)$.
4) Anything else that makes sense for a particular problem. For example, if the observations cume from three different stations, the residuals for each station could be plotted separately.

When the residuals are being examinet for goodness of fit, the following should be-looked for:
i) Piot against \hat{y} or $X_{j}(j=1, \ldots, k)$.

The'residuals should lic in a horizontal band:

If they do not, something is wrong. For example,

If this occurs in a plet against \hat{Y}, it indicates that a cunstant term was left out. In a plot against seme X_{j}, it indicates an error in the calculations.

If this is a plot against X_{j}, it indicates that an X_{j}^{2} term is necded; if against \hat{Y}, that some variable needs to be added to the model.
2.) As an example ni other possible plots, for the plot of the residuals by station, all three plots should look alike. If something like the following happens,

009-113

STATM: 6
it would indicate systematic differences between the observations from the three stations This could be corrected by introducing, by use of indicator variables, an additional constant term for each station

$$
x_{u A}= \begin{cases}1 & u^{\text {th }} \text { obscrvation from station } A \\ 0 & \text { otherwise }\end{cases}
$$

and similarly for $X_{u B}$ and $X_{u C}$.
3) Plot against tinse.

Again, the residuals should he in a horizontal band. If they do not, semething not in the model is changing over time.

It is possible to test the randomness of the pattern of the sign of the residuals. The test is called the signtest and does not require the normality assumption.

Start by counting the number of runs. For example,

$$
++-++t+\ldots-
$$

has four runs. The test is to reject the hypothesis of randomess if there are too few runs. For small n, a special table (such as in Draper and Smith 1966) must be refered to for the distribution of the est statistic. For large n, the following normall appruximation can be used. Let

```
n}=\mathrm{ = number of positive signs,
n}=\mathrm{ number of negative signs and
W = number of runs.
```

Then, if $n_{1}>10$ and $n_{2}>10$,

$$
Z=\frac{W-\mu+1 / 2}{\sigma} \sim N(0,1) \text { (approximately) }
$$

where

$$
\mu=\frac{2 n_{1} n_{2}}{n_{1}+n_{2}}+1
$$

and

$$
\sigma^{2}=\frac{2 n_{1} n_{2}\left(2 n_{1} n_{2}-n_{1}-n_{2}\right)}{\left(n_{1}+n_{2}\right)^{2}\left(n_{1}+n_{2}-1\right)}
$$

Reject the hypothesis if 2 is too small.

A significant result could possibly be due to some uncontrolled variable changing values. In particular, the magnitude fa systematic error may be changing.

5. 2 The Solution

The as sumption that S is nonsingular is not generally a problem. S will be singular if there are some linear relations among the X_{i} s. In that case, the normal equations will have an infinite number of soiutions, all of which are equivalent in the sense that they give exactly the same predicting equation. There are two ways of handling this problem.

First, if there are ℓ linear relations among the $X_{i} ' s$, you can either drop ℓ of the X_{1} 's or introduce ℓ constrainte on the β_{i}^{\prime} 's

Example (Cochran, 1969)
Let $n=4$, suppose $x_{u 3}=x_{u 2}-x_{u 1}, u=1, \ldots, t$, and let

$$
S=\left(\begin{array}{rrr}
14 & 39 & 25 \\
37 & 158 & 119 \\
25 & 119 & 94
\end{array}\right)
$$

and

$$
S_{Y}=\left(\begin{array}{c}
72 \\
234 \\
162
\end{array}\right)
$$

Solution 1: Put $\hat{\beta}_{3}=0$ and solve for $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ (this is equivalent to dropping X_{3}).

$$
\binom{\hat{\beta}_{1}}{\hat{\beta}_{2}}=\left(\begin{array}{ll}
14 & 39 \\
39 & 158
\end{array}\right)^{-1}\binom{72}{234}=\binom{\frac{2250}{691}}{\frac{+68}{691}}
$$

Then,

$$
\hat{y}_{u}=\frac{1}{691}\left(2250 x_{u 1}+468 x_{u 2}\right)
$$

Solution 2: Put $\hat{\beta}_{1}+\hat{\beta}_{2}+\hat{\beta}_{3}=0$. Eliminate any one of them from the normal equations and solve:

$$
\begin{aligned}
\hat{y}_{u} & =\frac{1}{69!}\left(-468 x_{u!}+3196 x_{u 2}-2716 x_{u 3}\right) \\
& =\frac{1}{69!}\left(2250 x_{u!}+468 x_{u z}\right)
\end{aligned}
$$

The second method is to find a generalized inverse of S, that is, a matrix, $S^{\prime /}$, that satisfies

$$
\varsigma s^{g} s=s
$$

At least one generalized inverse exists for any matrix. If $S^{\boldsymbol{g}}$ can be found,

$$
\hat{\beta}=s^{3} S_{y}
$$

is the least-squares solution. Rao (1965) and Graybill (1969) discuss methods for finding, S^{8}. Note that $S^{8}=S^{-1}$ if S^{-1} exists.

The function $P^{\prime} \beta$ of the β_{i} 's is said to be estimable if the re exists an n-component vector R such that

$$
E\left[R^{\prime} \tilde{Y}\right]=P^{\prime} \beta
$$

that is, if there exists a linear combination of the γ_{d} 's that is an unbiased estimate of $p^{\prime} \beta$. If there arc linear erlations among the X_{i} 's, not all linear combinations of the $\beta_{i}{ }^{\prime}$ s are estimable, in contrast to the case of no linnar relations, where all linear combinations of the β_{i} 's are estimable.

Theorem 15

1) $P^{\prime} \beta$ is estimable if and only if $P^{\prime}\left(I-S^{\mathcal{B}} S\right)=0$, where $S^{\mathcal{B}}$ is any generalized inverse of S
2) If there exists an $t \times k(l<k)$ matrix G such that $G X^{\prime}=0$, then $P^{\prime} \beta$ itestimable if and only if $G P=0$. (G is the matrix of the cocfficients of the ℓ linear relations among the $X_{i}{ }^{\prime}{ }^{\prime}$.) 3) If $\hat{\beta}$ is any solution of the normal equations and $P^{\prime} \beta$ is estimabie, then its uniquc estimate is $P^{\prime} \hat{\beta}$. This means that is $P^{\prime} \beta$ is estimable, there is exactly one linear combination of the $Y_{u}{ }^{\prime}$ sthat is an unbiased estimate of $P^{\prime} \beta$, sumely $P^{\prime} \hat{\beta}$.

Example

In the previous example, $G=(1,-1,1)$, so $P_{1} \beta_{1}+P_{2} \beta_{2}+P_{3} \beta_{3}$ is estimatbic if and only if $P_{3}=P_{2}-P_{1}$. For ingtance, $\beta_{1}+\beta_{2}$ and $\beta_{1}-\beta_{3}$ are estumable, but $\beta_{1}-\beta_{2}$ in not. Note also that, in this case, neather β_{1}, β_{2}, nor β_{3} is estimable:

A more common problem is that S may be ill-conditioned, that is, nearly singular. Finding S^{-1} is then a problem in numerical analysis.

One possible metiod, due to Houscholder, uses orthogonal transformations. The problem is to find an $n \times n$ orthogonal matrix Q such that

$$
Q x=\mathrm{R}=\binom{\tilde{R}}{0}
$$

where \tilde{R} is a $k>k$ upper triangular matrix. Then,

$$
\hat{\beta}=\tilde{R}^{-1} X
$$

where \mathcal{Z} is the vertor consisting of the first k components of $Q \widetilde{Y}$. An iterative procedure for finding $\hat{\beta}$ based on this method is detailed in two papers (Golub, 1965; Golub and Businger, 1965 Golub claims that his procedure will also find $\hat{\beta}$ when S is singular

Since 5 is a symmetric, positive-definite matrix, another possible method would be to use the Cholesky decomposition of S :

$$
S=R^{\prime} R,
$$

where R is an upper trangular, k, k matris. Then,

$$
S^{-1}=R^{-1}\left(R^{-1}\right)^{\prime}
$$

Once R is found, S^{-1} is easy to find since it is simple to invery iriangular matrices. Golub (1969) discusses this method and other, including the modificd Gram-Schmidt orthogonalization procedure. Golub also provides a goud bibliograpty on this topie.

Some work has been tone on comparing various mehods for inverting S (sec Jordan, 1968: Rice, 1966. Wampler, 1969)

5. 3 The Residuals

Assumption 4 was that $E|c|=0$. If the model contains a constant term, this assumption will always be cffectively valid. Suppose that $E[c]=\mu_{e} \neq 0$ and that β_{k} is the constant term. Then,

$$
\begin{align*}
y & =\sum_{i=1}^{k-1} x_{i} \beta_{i}+\beta_{k}+c \tag{5}\\
& =\sum_{i=1}^{k-1} x_{i} \beta_{i}+\left(\beta_{k}+\mu_{e}\right)+\left(e-\mu_{c}\right) \\
& =\sum_{i=1}^{k-1} x_{i} \beta_{i}+\beta_{k}^{*}+e^{*} \tag{6}
\end{align*}
$$

where $\beta_{k}^{*}=\beta_{k}+\mu_{e}$ and $e^{*}=e-\mu_{e}$. Since $E\left[e^{*}\right]=0$, the model has been transformed so as to satisfy the required condition. The least-s quares procedure will go ahead as ii (6) were the correct model instead of (5), and all the estimates except for the constant term will be unbiased. This could be taken as an argument for always including a constant term in the model, since if there is no constant term and if $\mu_{e} \neq 0$, all the estimates will be biased by some unknown amount. The estimate of β_{k}^{*} will have mean

$$
E\left[\hat{\beta}_{k}^{*}\right]=\beta_{k}+\mu_{e}
$$

The assumption that $E\left[e_{i} \theta_{j}\right]=\sigma^{2} \delta_{i j}$ is unnecessary. Suppose that Σ_{e} is the covariance matrix of the $\mathrm{e}_{\mathrm{u}}{ }^{\prime} \mathrm{g}$:

$$
\Sigma_{c}=E\left[\iota^{\prime}\right]
$$

Then

$$
\tilde{\mathrm{Y}}=\mathrm{x} \beta+\mathrm{c}
$$

can be transformed to **

$$
\Sigma_{c}^{-1 / 2} \hat{Y}=\Sigma_{e}^{-1 / 2} \times \beta+\Sigma_{e}^{-1 / 2}
$$

or

$$
w=28+g
$$

Then,

$$
\Sigma_{g}=E\left[g g^{\prime}\right]=E\left[\Sigma_{e}^{-1 / 2} «^{\prime} \Sigma_{e}^{-1 / 2}\right]=1
$$

So,

$$
E\left[g_{i} g_{j}\right]=\delta_{i j},
$$

and the g_{n} 's sausiy Assumption 5 with $\sigma^{2}=1$. Then, by minimizing $(w-\hat{W})^{\prime}(w-\hat{W})$

$$
\begin{aligned}
& \hat{\beta}=\left(Z^{\prime} Z\right)^{-1} Z^{\prime} W \\
&=\left(X^{\prime} \Sigma_{c}^{-1} X\right)^{-1} X^{\prime} \Sigma_{c}^{-1} \tilde{Y} \\
& \Sigma_{\hat{\beta}}=\left(X^{\prime} \Sigma_{e}^{-1} X\right)^{-1}, \\
& E\left[s^{2}\right]=! \\
& s^{2}=\frac{1}{n-k}(W-\hat{W})^{\prime}(W-\hat{W})=\frac{1}{n-k}(Y-\hat{Y})^{\prime} \Sigma_{c}^{-1}(X \cdot \hat{Y})
\end{aligned}
$$

and
where

The Gauss.Markoff Theorem applies to $\hat{\beta}$ obtained this way. In the cune where Σ is diagonal that is, where there are uncorrelatederr.irs), thin is called weighting inveryely to the variance. Since if Var $\left(c_{u}\right)=\sigma_{u}^{2}$, then
$\overline{\#} \Sigma^{1 / 2}$ is the unique positive definite square root of $\Sigma_{e^{\prime}}$ and $\Sigma_{c}^{-1 / 2}$ is its
inverse.

$$
\Sigma_{u}=\left(\begin{array}{ccc}
\sigma_{1}^{2} & & 0 \\
1 & \ddots & \\
0 & \ddots & \sigma_{n}^{2}
\end{array}\right)
$$

and the quantity to be minmized is

$$
\sum_{u=1}^{n} \frac{1}{\sigma_{u}^{2}}\left(y_{u}-\hat{y}_{u}\right)^{2}
$$

Unfortunately, this requres sther that \dot{Z}, be known or that ar estimate of it is avallable. Even when not hown, the relative magnitudes may be known, especially in the diaponal case. Then,

$$
\Sigma_{c}=\sigma^{2} G
$$

where σ^{2} is an unknown constant and G is a known synmetric positivedefinite matr:\%. By transformint with $\mathrm{G}^{-1 / 2}$, we obtain

$$
\begin{aligned}
& \hat{\beta}=\left(X^{\prime} G_{i}^{-1} X\right)^{-1} X G^{-1} \tilde{\gamma}, \\
& \Sigma_{\hat{\beta}}=H^{2}\left(X^{\prime} G^{-1} X\right)^{-1},
\end{aligned}
$$

and

$$
E\left|s^{2}\right|=0^{2}
$$

where

$$
g^{2}=\frac{1}{n} \frac{1}{k}(Y-\hat{Y})^{\prime} G^{-1}(Y-\hat{Y})
$$

What happens if the weight matrix is not used when it should be? Consistent unbiased estimates of the β_{i} 's will still be obtained, but they will not 'bo the minimm-variance estimates and s^{2} will not be an unbiased estimate of σ^{2}. This effect is small, however, if the correlations between the e_{u} 's aro vary small and if the $\sigma_{u}^{2 / s}$ do not vary greatly.

Two methods can be used to detect that the variances are not constant. The first is residual analysis. Deviations from constant variance are characterised by deviations from the horizontal band that are symmetric about the \hat{y}_{u} (or tume) ans. For example,
$009 \cdot \ldots$

This indicates that σ_{u}^{2} mereases with $\hat{\mathrm{Y}}_{\mathrm{u}}$. The following is also evidence of nonconstant variance.

In many cases, a nonconstant variance indicates that another variable should be included in the model. If it is possible to determine what that variable should te, it would be preferable to include it in the model rather than trying to estimate the Σ_{c} matrix.

An approximation that is available if needed is

$$
\sigma_{u}^{2} \propto g\left(\hat{y}_{u}\right) \text { (approximately) }
$$

$0:$

$$
\sigma_{u}^{2} \alpha_{g}(t \operatorname{tinc}),
$$

where g is some function and \propto means proportional to. In the first example above,

$$
\sigma_{u}^{2} \propto \hat{y}_{u}
$$

This would require two least-squares solutions: the first to determine $\hat{\psi}$ from unweighted estimates of β, and the second to determine the weighted estimates of β using this approximation to the G matrix.

If multiple observations on Y are available for at least some of the ($x_{u 1}, \ldots, x_{u k}$), it is possible to make Bartlett's test for homogeneity of variances.

Suppose that for u ■ $1, \ldots, m \leq n$, there are $n_{u}>1$ observations on Y corresponding to ($\left.x_{u l}, \ldots, x_{u k}\right)$. Let

$$
\begin{aligned}
& s_{u}^{2}=\frac{1}{n_{u}-1} \sum_{v=1}^{n_{u}}\left(y_{u v}-\bar{y}_{u}\right)^{2}, \\
& \bar{s}^{2}=\frac{\sum_{u=1}^{m} \sum_{v=1}^{n}\left(y_{u v}-\bar{y}_{u}\right)^{2}}{\sum_{u=1}^{m}\left(n_{u}-1\right)}=\frac{\sum_{u=1}^{m}\left(n_{u}-1\right) s_{u}^{2}}{\sum_{u=1}^{m}\left(n_{u}-1\right)}, \\
& M=\left[\sum_{u=1}^{m}\left(n_{u}-1\right)\right] \operatorname{iog} \bar{s}^{2}-\sum_{u=1}^{m}\left[\left(n_{u}-1\right) \log s_{u}^{2}\right]
\end{aligned}
$$

and

$$
\left.\Sigma=1+\frac{1}{3(m}-1\right)\left[\sum_{u=1}^{m} \frac{1}{n_{u}-1}-\frac{1}{\sum_{u=1}^{m}\left(n_{u}-1\right)}\right] .
$$

Then, if the hypothesis of equal variances is correct,

$$
\therefore \frac{M}{C} \sim x_{m-1}^{2} \quad \text { (approximately) },
$$

and the test is to reject the hypothesis if ki / C is too large. This will test only the equality of variances at those points for which the multiple observations were available.

There are two problems with this test:

1) It is very sensitive to departures from normality.
2) The X^{2} approximation is not very good it $n_{u} \leq 6$, although special tables of the distribution de exist for that case.

3.4 Normality

The effect of any departure from normality is that the actual significance levels of any tests used are different from the stated values. For the F and t tests, if the departure from normality is not large, when a 5% test is stated, the real significance level will be on the order of 7 to 10%. As a general rule, F and two-sided tests are less affected by departures from normality than is the one-sided test. The one-sided test is strongly affected by ary skewsess (that is, departure from symmetry) of the c distribution.

There are two reasonable methods for checking normality. The first is to construct a histogram of the observed residuals d_{i}. This is then compared to the histogram that would be expected if the e were normally distributed, with the estimated variance s^{2} being used. There are two methods of making this comparison. The first is the x^{2} goodness-of-fit test. Let

$$
G=\sum_{i=1}^{m} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

where m is the number of classes in the histogram, C_{i} is the number observed in the $i^{\text {th }}$ class, and E_{i} is the number expected in the $i^{\text {th }}$ elass., Then, approximately,

$$
G \sim x_{m-2}^{2}
$$

2052

 $N 7216461$ UNGLAS

 $N 7216461$ UNGLAS}

and the test is to reject the hypothesis of normality if G is too large. * For the x^{2} approximation to be good, the distribution of c should be near normal and the classes should be chosen so that $E_{i} \geq 1 \quad(i=1, \ldots, m)$.

The second method of comparison is the Freeman-Tukey test. Let

$$
v=\sum_{i=1}^{m}\left(\sqrt{O_{i}}+\sqrt{O_{i}+1}-\sqrt{4 E_{i}+1}\right)^{2}
$$

using the same notation as above. The approximate distribution of V is the same as for G. The test is to reject if V is toolarge. This test does not require that the distribution of e be near normal and is also much less sensitive to small values of E_{i}. (When any E_{i} is small, a small change in that E_{i} can result in a very large change in G.)

The second method for checking normality is a normal plot. Let $\$$ denote the standard normal distribution function; that is, if $W \sim N(0,1)$, then $P[W \leq w]=\Phi(w)$. Suppose the residuals d_{1}, \ldots, d_{n} are ordered from smallest to largest. Then, plot d_{u} versus $\Phi^{-1}(u /(n+1)) .{ }^{\dagger}$ A sample from $N\left(\mu, \sigma^{2}\right)$ will lie on the line through $(\mu, 0)$ with slope $1 / \sigma$. Special paper is available (for example, from Keuffel \& Esser) that takes care of the Φ^{-1}, so that only d_{u} versus $u /(n+1)$ (or $\left.(3 u-1) /(3 n+1)\right)$ need be plotted.

Unfortunately, this plot is not very eensitive to small departures from normality, but it should show if something really horrible is happening, as in the following sketches:

[^5]

This implies large tails, that is,

This implies skewness

Another possible test for normality, which is not so easy, is to test for skewness and kurtosis. Suppose W is a random variable with mean μ and standard deviation σ. Let $\gamma_{1}=\left(1 / \sigma^{3}\right) E\left[(W-\mu)^{3}\right]$ and $\gamma_{2}=\left(1 / \sigma^{4}\right) E\left[(W-\mu)^{4}\right]-3$. Then γ_{1} is a measure of the skewness, that is, the departure from symmetry, of the distribution of W :

$y_{1}=0$

NORMAL DISTRIBUTION
Y_{2} is a measure of the kurtosis, that is, the flatness or peakedness, of the distribution of W :

NORMAL DISTRIBUTION

With the sample estimates of these measures, a test for equality to zero could be made.* A significant result would imply nonnormality. The calculations, especially of the standard errors, are quite complicated. See Anscombe (1961) for detalls

The reader should be warned that there are two definitions of kurtosis They differ by the constant 3, so some references may give 3 as the kurtosis for the normal distribution.
6. TESTING HYPOTHESES ABOUT THE REGRESSION COEFFICIENTS

Now that the problems with the assumptions have been considered, we will again make all six assumptions; that is,

$$
\begin{aligned}
y_{u}= & \sum_{i=1}^{k} x_{u i} \beta_{i}+c_{u} \quad(u=1, \ldots, n), \\
& c_{1}, \ldots, c_{n} \text { arc iid } N\left(0, \sigma^{2}\right) .
\end{aligned}
$$

The three most frequent hypotheses are

1) $\beta_{i} \mathrm{E} W$ (for some i)
2) $\beta_{r+1}=W_{r+1}, \ldots, \beta_{k}=W_{k}$.
3) $w_{i 1} \beta_{1}+\ldots+w_{i k} \beta_{k}=w_{i}(i=1, \ldots, g \leq k)$,
where the $w_{i j}{ }^{\prime} s$ and W_{i} 's are known.
The procedure for testing 3), and hence 1) and 2), is the (ollowing:
4) Fit the regression without the conditions and calculate $R_{k}=\sum_{u=1}^{n} \hat{y}_{u}^{2}$ and s^{2}.
5) Refit the regression subject to the conditions to be tested and calculate
 subject to the g conditions.) Then if the hypothosis is true,

$$
H=\frac{R_{k}-R_{k-g}}{g s^{2}} \sim F(g, n-k)
$$

and the test is to reject the null hypothesis if H is too large. The distribution of H is the result of the following theorem (by redefining the β_{i} 's):

Theorem 16

If $\beta_{k-g+1} \because \ldots=\beta_{k}=0$, then,

1) $\left(1 / \sigma^{2}\right)\left(R_{k}-R_{k-g}\right) \sim x_{g}^{2}$.
2) $\left(1 / \sigma^{2}\right)\left(\Sigma y_{u}^{2}-R_{k}\right)=(n-k) \sigma^{2} / \sigma^{2} \sim x_{n-k^{\prime}}^{2}$
3) they are independent.

Therefore,

$$
\frac{R_{k}-R_{k-g}}{g s^{2}} \sim F(g, n-k) .
$$

The statistic R_{k} is called the reduction in the oum of squares due to regression. The subscript indicates the number of independent parameters estimated. A useful identity is $R_{k}=\sum_{u=1}^{n} y_{u}^{2}-\sum_{u=1}^{n} d_{u}^{2}$

An equivalent method for testing a hypothesis of the form 3) when $g=1$ is the following. Let the hypothesis be that $P^{\prime} \beta=W$. By Theorem 14,

$$
P^{\prime} \hat{\beta} \sim N\left(P^{\prime} \beta, \sigma^{2} P^{\prime} C P\right)
$$

So, if the hypothesis is true

$$
A=\frac{P^{\prime} \hat{\beta}-W}{B \sqrt{P^{\prime} C P}} \sim t_{n-k}
$$

The test is to reject the hypothesis if $|A|$ is too large (a two-sidad fest).
This is exactly equivalent to the F test, as can be shown by proving that $A^{2}=\left\langle R_{k}-R_{k-1}\right\rangle / s^{2}$ and using Thoorem 8 .

A test we will be using later is that of $\beta_{i}=0$ for some i. In that casc,

$$
A^{2}=\frac{\hat{\beta}_{i}^{2}}{s^{2} C_{11}}=\frac{R_{k}-R_{k-1}}{s^{2}}
$$

If the null hypothesis $\beta_{1}=0$ is rejected by this test, the corroaponding variable, X_{i}, will be said to be significant.

7. CHOOSING A REGRESSION EQUATION

The two questions to be considered in this section are

1) Which of two or more competing equations (models) is best?
2) If the model must be simplified because of limitations on cost and space, which variables are to be dropped?

The criteria to be considered are conflicting:

1) As many variables as possible arc wanted so that the predictions are good.
2) As few variables as possible are wanted so that cost and apace problems can be avoided.

It is easier to answer the second question first, so we will begin there. Assurne that there exists a list of variables X_{1}, \ldots, X_{q} from which some number (not necessarily decided on in advance) need to be aelected for use in a regression equation, A number of procedures have been developed to solve this problem. Unfortunately, they do not always lead to the same solution.

Before these methods are discussed, two more statistics muat be introduced. Let

$$
r^{2}=\frac{\sum_{u=1}^{n} \hat{y}_{u}^{2}-n \bar{Y}^{2}}{\sum_{u=1}^{n} y_{u}^{2}-n \bar{Y}^{2}}=\frac{\sum_{u=1}^{n}\left(\hat{y}_{u}-\bar{Y}\right)^{2}}{\sum_{u=1}^{n}\left(y_{u}-\bar{Y}\right)^{2}}
$$

The square of the sample multiple-correlation coefficient is r^{2}, which is equal to the square of the ample correlation between Y and $X \beta$. It is intorpreted as the poreentago of the variation in the sample that is explained by the fittod regrosilion. In general, it is desirablo to maximize r^{2}. IThe sample correlation between two variables, V and W, is given by

$$
r_{V W}=\frac{\sum_{u=1}^{n}\left(v_{u}-\bar{v}\right)\left(w_{u}-\bar{w}\right)}{\left[\sum_{u=1}^{n}\left(v_{u}-\bar{v}\right)^{2} \sum_{u=1}^{n}\left(w_{u}-\bar{w}\right)^{2}\right]^{1 / 2}}
$$

wheren is the number of observations.]
The methods are as follows:

1) All possible regressions.

Compute all possible regressions. For each number of variables used in the regression, pick the one that maximizes r^{2}. This gives the following curve: 009-113

You must then decide where on this curve you would like to be, a nonstatiatical decision.

This method can be too much work to be feasible, especially for a large number of variables. (k variables imply 2^{k} different regressions.) On the other hand, it is the only method guaranteed to give the best regression (in terms of maximum r^{2}) for the number of variables used.
2) Backward elimination.

Start by computing the regression with all variables and then successively climinate them, calculating the new regression after cach climination. The criterion for elimination is to pick the one with the smallest value of $\hat{\beta}_{i}^{2} / s^{2} C_{i i}$ (the teat statistic for the F teat that $\beta_{i}=0$). Stop when all remalning variables test as being significant at some chooen aignificance level.

This is a good procedure if the regrasaion with all varlables can be: handled.

3) Forward selection

Start with the variable that is the most highly correlated (in absolute value) with Y in the sample. Then insert other variables in turn. The criterion for choosing the next variable te be entered is a bit complicated Suppose that X_{1}, \ldots, X_{j} have already been entered. The next variable to be entered is the one that maximizes the square of the partial-correlation cocfficient with Y while controlling for X_{1}, \ldots, X_{j} (we will return to this). This is equivalent to finding the variable that maximizes $R_{j+1}-R_{j}$ and hence causes the largest increase in r^{2}. This procedure is stopped when the last variable entered tests as not being significant, or when a satisfactory value of r^{2} is obtained.

This procedure is usually more economical than backward elimination, but it can be improved upon.

4) Stepwise regression.

This is the same as iorward selection except that after fitting a new regression, look back at the variables that had been included. If any of them test as not being significant, throw out the one that is least significant (smallest F value).

The partial-correlation cocfficient mentioned carlier can be very difficult to compute, especially for $\mathrm{j}>1$ 1. Draper and Smith (1966) present an algorithm for stepwise regresbion that grealy simplifies the computational problems.

For most problems, this is the best method. It is an improvement over forward selection since it does not retain variables that are no longer significant.
${ }^{\#}$ For $\mathbf{j}=1$, the formula for the partial correlation between X_{2} and Y, controlling for X_{1}, is

$$
{ }^{r} X_{2}, Y \cdot X_{1}=\frac{{ }^{r} X_{2} Y^{-r}{ }_{Y X_{1}}{ }^{r} X_{2} X_{1}}{\sqrt{\left(1-r_{X_{1}}^{2} Y^{\prime}\left(1-r_{X_{1}}^{2} X_{2}^{\prime}\right.\right.}}
$$

For whatever method employed, it is useful firat to compute the regression with all the variables (if possible). This will tell how large r^{2} can become. It is also a good idea to use a large a for the tests. This forces more variables into the equation and hence leaves some leeway to throw out particularly bothersome variables.

Turning now to the first question, it is not one that can be answered entirely by statistics. The only thing that can be said statiatically is to pick the equation that maximizes r^{2}. However, this does not take into account the number of variables used. A better procedure, especially for small n, would be to pick the one that maximizes

$$
\hat{R^{2}}=1-\left(1-r^{2}\right) \frac{n-1}{n-k-1},
$$

where k is the number of variables. \hat{R}^{2} is the unbiased eatimate of the population multiple-regression cocfficient $R^{2}, ~ R^{2}$ is the portion of the variation in Y that can be explained by the true regression and is equal to the square of the correlation between Y and $\sum_{i=1}^{k} X_{i} \beta_{i}$. Of course, owing to sampling variation, maximizing \hat{R}^{2} dees not necessarily maximize R^{2}, but there is nothing that can be done about that.

Still, maximizing r^{2} or $\widehat{R^{2}}$ does not take into account various costs, such as that of obtaining data. Tradeoff between cost and the number of variablee must be decided by the user.
8. OTHER TOPICS

8.1 Constraints

In many cases, it may be known that the β_{i} 's must satisfy certain constraints. For example, if the $k \quad B_{i} ' s$ are functions of $\ell Y_{j} ' s(\ell<k)$, which are the quantitics of interest, there will be $k-l$ constraints on the β_{i} 's.
If the $\hat{\beta}_{i}$'s are to satisfy the same constraints as the $\beta_{i}{ }^{\prime}$, or if constraints are to be imposed on the $\hat{\beta}_{i}{ }^{\prime}$ s in order to test a hypothesis, the ordinary leastsquares solution will not work. Suppose the constraints are consistent and linear; that is, they can be written in the form $G \beta=D$, where G io an $r \times k$ matrix of rank r, D is an $r \times 1$ vector, and both G and D are known. The assumption that G has rank r climinates redundant constraints. Two methods of handling this problem will be considered. If the constraints are not linear, some nonlinear procedure must be used.

1) Lagrange multipliers.
This method finds the $\hat{\beta}$ that minimizes $\sum_{u=1}^{n}\left(y_{u}-\hat{Y}_{u}\right)^{2}$ subject to $G \hat{\beta}=D$. The solution, assumang without loss of generafity that $\Sigma_{e}=1$, is obtained by minimizing

$$
(\tilde{Y}-X \beta)^{\prime}(\tilde{Y}-X \beta)+2(G \beta-D)^{\prime} \lambda,
$$

where λ is the $r \times 1$ vector of Lagrange multipliers. The factor of 2 is used only to simplify the calculations. The normal equations then be come

$$
\left(\begin{array}{ll}
S & G^{\prime} \\
G & 0
\end{array}\right)\binom{\hat{\beta}}{\hat{X}}=\binom{S_{Y}}{\mathbf{D}},
$$

and the solution is

$$
\hat{\beta}_{L}=\hat{\beta}_{0}-S^{-1} G^{\prime} \hat{\lambda}
$$

where
$\hat{\beta}_{0}=s^{-1} S_{Y}$ (the usual least-squares estimate)
and

$$
\delta=G \hat{\beta}_{0}-\mathrm{D},
$$

as suming that $\left(G S^{-1} G^{\prime}\right)^{-1}$ exists. This assumption is reasonable since $G S^{-1} G^{\prime}$ is an $r \times r$ matrix, G is of rank r, and S is assumed to be of rank $k>r$. If the inverse dees not exist, a generalized inverse, $\left(G S^{-1} G^{\prime}\right)^{g}$, can be used.

Theorem 17

If $\mathrm{G} \beta=\mathrm{D}$ is truc, then

1) $E\left[\hat{\beta}_{L}\right]=\beta$,
2) $E\left[\frac{1}{n-k+r}\left(\sum_{u=1}^{n} d_{u}^{2}-\hat{\lambda}^{\prime} D\right)\right]=\sigma^{2}$.
3) $\Sigma_{\hat{\beta}_{L}}=\sigma^{2} S^{-1}\left[I-G^{\prime}\left(G S^{-1} G^{\prime}\right)^{8} G S^{-1}\right]$

2) Weights.

This method does not give an estimate that satisies $G \hat{\beta}=D$. What it does is make it possible to "give up" a little on the constraints in order to obtain a smaller sum-of-squares of residuals. The method is widely used because it can be handled without modifying an existing least-squares program.

The procedure is to treat the constraint as an "observation equation"; that is, the model is considered as being of the form

$$
\binom{\tilde{Y}}{\mathrm{D}}=\binom{X}{\mathrm{G}} \beta+\binom{\mathrm{e}}{\mathrm{f}} \text {. }
$$

where f is the "residual variable" for the conatraint equations. Let

$$
w=\binom{\widetilde{Y}}{\mathrm{D}}, \mathrm{z}=\binom{\mathrm{X}}{\mathrm{G}}, \text { and } \mathrm{h}=\binom{\dot{G}}{i} \text {; }
$$

then

8.2 Outliors

An outlier is an observation whose residual is far larger than the others, that is, 4 or 5 standard deviations from the mean. It may be due to gross errors, for example, a mistake in recording an observation, in which case, it is desirable to remove that observation from the data. On the other hand, the outlier may be duc to an unusual combination of circumstances and is therefore providing information that the other observations do not. Automatic rejection of outlicrs - that is, removal of the corresponding obecrva. tions from the data - is not very wise, because of the risk of losing this information. Rejection of points that are not grosserrors leads to an underestimate of σ^{2}. In gencral, it is valuable to investigate outliers carefully to determ:ne their cause. Any outliers that are rejected should be reported on separately.

The most general rule for rejecting outliers is the following: Pick the largest residual (in absolute valur), remove the co:responding point - say, (x_{0}, y_{0})-from the data, and then redo the analysis. (As uked here, x_{0} is a k component vector.) Using ${ }^{2}, C$, and $\hat{\beta}$ from the redone analysis, let

$$
w 口 \frac{y_{0}-x_{0}^{\prime} \hat{\beta}}{s \sqrt{1+x_{0}^{\prime} C x_{0}}}
$$

The test is to reject the hypothesis that (x_{0}, y_{0}) is not a grosserror if w^{2} is too large ($W^{2} \sim F(1, n-k-1)$ if the hypothesis is true). By Theorems? and 8 , a good approximation for large n is

$$
w \sim N(0,1)
$$

It is a good idea to use a very small significance level in order to minimize the possibility of rejecting a point that is not a gross error.

It is also necessary to take into account the fact that the largest residual has been picked. If the actual significance level of the test is to be a_{0}, then $a=a_{0} / n$ should be used in the following manner. *Reject the hypothesis if $w^{2}>d$, where d is determined by $P[V>d]=a$, with $V \sim F(1, n-k-1)$. Then, $P\left[w^{2}>d\right]=a_{0}$.

Example

Let $n=20$ and suppose $a=0.05$ is used. Then, $a_{0}=0.64$
$\left(=1-(0.95)^{20}\right)$, so it should not be a surprise if the largest residual is rejected. If $a_{0}=0.05$ is wanted, than $a=0.05 / 20=0.0025$ would have to be used. For $n=1000$, with the normal appreximation, rejecting tive hypothesis for $|W|>4.05$ \& $\sqrt{1+x_{0}^{\prime} C x_{0}}$ gives a 5% test: for $|W|>4.4$ s $\sqrt{1+x_{0}^{\prime} C x_{0}}$ gives a 1% test.

[^6]
PRFCFDNG PAGE BLANK NOT ITINED

\%. REGRESSION WHEN ALL VARIABLES ARE SUBJECX TO ERROR

In this aection, it will be necessary to distingulsh between two types of relations, rearession and functional:

1) A regression expresses a relation between the axpected value of one varinble. Y, andi another set of variables, X_{1}, \ldots, X_{k}. For example,
```
E[Y] =a+\betaX or Y =a+\betaX+c.
```

Where e is the usual residual term Note that the relation $X=(Y-a) / \beta$ does not make any nonse.
2) A functional relationship expresece an exact relationship among a set of variables. In this case, if the variables could be observed without crror, there would be no statistical problem and the unknown coofficiente could be calculated directly. For example,

$$
Y=a+\beta X .
$$

or. equivalently,

$$
x=\frac{y-n}{\beta} .
$$

which now makes sense.

These two types are not mutually exclusive. A functional reiation with one and only one variable subject to error is the same as a regeessicn relation with the residual term being the urror.

The notation for thia section will be the following: The model Inf

$$
Y=X \beta+c, X=\left(X_{1}, \ldots, X_{k}\right),
$$

where a la the cther-cffects term, which will be identically zerofor a functional relation. The observed variables are
$v=x+h$
and

$$
W=Y+i
$$

where $h=\left(h_{1}, \ldots, h_{k}\right)$ and f are random variables representing the errors of observation. For n observations, the model in matrix notation becomes

$$
\tilde{W}=(\tilde{v}-H) \beta+\cdots+\tilde{i}
$$

where
$\tilde{W}=\left(\begin{array}{c}w_{1} \\ \vdots \\ w_{n}\end{array}\right), \quad \tilde{v}=\left(\begin{array}{ccc}c_{11} & \cdots & v_{i k} \\ \vdots & & \vdots \\ v_{n!} & \cdots & v_{n k}\end{array}\right), \quad H=\left(\begin{array}{ccc}h_{11} & \cdots & h_{1 k} \\ \vdots & & \vdots \\ h_{n!} & \cdots & h_{n k}\end{array}\right), \quad$ and $\tilde{r}=\left(\begin{array}{c}c_{1} \\ \vdots \\ i_{n}\end{array}\right)$,

Suppose W le to be predicted from some future obacrvation on V. For this casc, the least-aquares aolution $\left(\beta{ }^{\prime \prime}\left(\tilde{V}^{\prime} \tilde{V}\right)^{-1} \tilde{v}^{\prime} \tilde{W}\right)$ for the regronaton of W on V works, since W and V are observed withoul error. The model is

$$
W=V \beta+R .
$$

where

$$
g=a+c-1 \beta
$$

It is neccosary, though, to assume that $E(g)=6$. If all the variancen and covarlances are constant, then

$$
\left.\sigma_{g}^{2}=\sigma_{c}^{2}+\sigma_{l}^{2}+\beta^{\prime} \Sigma_{h} \beta+2 \sigma_{N f}-2 \beta^{\prime}!\sigma_{o h}+\sigma_{(h}\right) ;
$$

${ }^{4} \mathrm{eh}{ }^{\text {and }} \sigma_{\mathrm{fh}}$ aro k-dimonsional vectors where

$$
\left(\sigma_{c h}\right)_{i}=\sigma_{2 h_{1}},
$$

and

$$
\left(\sigma_{i h_{i}}\right)^{0} \sigma_{i}
$$

$\left(\sigma_{c}^{2}=\sigma_{e f}=\sigma_{e h_{1}}=0\right.$ for the canc of a functional relation between X and Y.) The effect of the errors of observation in the "independent" variables is an increase in the reaidual variance.

Before we fo on, there are three points to congider. Firat, $\hat{\beta}$ fis not necesnarily unbiased, nor lor that mather, uven consistent. For predictions, thes should not matler. However, there are conditions for unblasedness that will be mentioned later. Also, ${ }^{2}$ in not always an unblased estimate of τ^{2} It will be, though, if the wame conditions hold that are necessary to guararite the unidiasedness of $\hat{\beta}$ and it $E\left[g_{u} g_{v}\right]=0$ for $u \neq v$.

Second, since σ_{g}^{2} depends on β, weighting inversely to the variance by
nimizing minimizing

$$
\frac{1}{\sigma_{g}^{2}} \sum_{u}\left(v_{u}-w_{u} \hat{\beta}\right)^{2}
$$

leade to a different solution $\left[w_{u}=\left(w_{u}\right), \ldots, w_{u k}\right]$. That solution can be obtained by solving k simultaneous cubic er,uations or by using a direct minimization technique. Even if it is feasible to find this solution, there is no guarantee that the solution will be unbiased under any conditions, or even unique.

The real problem is the assumption tha: $E[g]=0$, As explained in Section 5.3, $E[c] \neq 0$ and $E[f] \neq 0$ can be taken care of if we inciudoia constant term in the model. This does not gencrally work ior $E[h] \neq 0$, To see where the problem is, remember that the X_{i} 's are really functions, uf atome other set of variables Z_{1}, \ldots, Z_{p}, which aro observed with errior. If the X's are . not linear functions of the Z 's, then except.in very apocial cases, $E[h] \neq 0$
even if the crrora on the Z_{i} 's have mean zero, and $E\left[h_{u}\right]$ may be different for cach u.

Example

Suppose you make n obscrvations on Z and observe $z_{u} ; x_{k}$ for $u=1, \ldots, n$, where k_{u} is the errorterm. If $x_{u}=e^{z_{u}}$, then

$$
e^{z^{+k} u}=x_{u} e^{k_{u}} \text {; }
$$

therefore,

$$
h_{u}=x_{u}\left(e^{k_{u}}-1\right)
$$

and

$$
E\left[h_{u}\right]=x_{u}\left(E\left[e^{k} u^{u}\right]-1\right)
$$

Unless $\left.E \mid c^{k}\right]=1, E\left[h_{u}\right]$ will not be zero and will be different for each u, since it deperds on x_{u}.

The only way I know to handle this problem is to avoid it; that is, whenever possible, observe directly those variables, or linear functions of them, to be used in the regresaion aquation.

Another difficulty is that $E[g]=0$ requires that g be uncorrolated with the V_{i} 's (or $X_{i}{ }^{\prime}$ s. dependiog on which is taken as fixed-cf. Section-4). This, in turn, will generally require that the V_{i} 's ($X_{i}{ }^{\text {sid }}$) be uncorrelated with c, f, and the h_{i} ' m . Of these, the most unreasonable is that $\mathrm{V}_{\mathrm{j}}\left(\mathrm{X}_{\mathrm{j}}\right)$ be uncorrelated with h_{j}, i.e., that the observation (true value) be uncorrelated with the error in that observation.

Becanse of these difficulties, there is no doubt but that the assumption $E[g]=0$ is, at least, queationable. Unfortunately, it is a necesary assumption If anything ls able to be said about what happens to loast aquares in the presence of obervation errise in the $X_{i}{ }^{\prime \prime \prime}$. So, from now on, we will lignore the difficultlea and make the assumption.

To determine when $\hat{\beta}$ will be unblased, consideration must be given to how the data were obtained, As a clarlfyingexample, suppose that-obaervations of some sort are made on Y at different values of X (one independent variable), that the equipment can bo adjusted to obtain different, but unknown, values of X, and that there is at hand ametor from which the values of $V(=X+h)$ are read. Then, the data can be obtained in two ways:

1) Controlled experimont. The values of V at which observations are to be made are set beforehand; that is, when the experiment is being run, the equipment is adjusted until the meter reading agreea with the values chosen. The result is that V can be conoldered as fixed - that is, not random - and X, the tres value, is a random varlable. With $E[h]=0$, this means that $X(=V-h)$ has a distribution with $E[X]=V$ as shown:

009-113

If the experiment is repeated, the true valee may be different, but the expected value of both true values will be the same, namely, equal to V.
2) Random experiment. The values of V are not set beforehand. They are determined by "spinning the dial," that is, in some random manner. Here, X is fixed and V is random. If $E[h]=0$, then V has the following distribution with $E[V]=X$:

If the experiment is repeated - that is, if a duplicate observation for the same value of V is made - the distribution will be different, as shown: 099-113

When the experiment is first run, the true value is x_{0}, say, but v_{0} is obscrved. When the experiment is repeated, v_{0} is observed, but the expected value of the second true :alue is not $x_{0^{\prime}}$ except in very rare circumatances.

Returning to the general case of $k \quad X_{i}$'s, consider $\hat{\beta}$:

$$
\begin{aligned}
& \hat{\beta} \boxminus\left(\tilde{V}^{\prime} \tilde{V}\right)^{-1} \tilde{V}^{\prime} \tilde{W}, \\
& =\beta+\left(\tilde{V}^{\prime} \tilde{V}^{-1} \tilde{V}^{\prime} g,\right.
\end{aligned}
$$

where

$$
\tilde{\mathrm{W}}=\tilde{\mathrm{Y}}+\mathrm{y}
$$

If V is fixed, $E[\hat{\beta}]=\beta$ since $E[g]=0$. If V is not fixed,

$$
E[\hat{\beta}]=\beta+E\left[\left\{(X+H)^{\prime}(X+H)\right]^{-1}(X+H)^{\prime} g\right\}
$$

The last term is definitely not equal to zerounless $H=0$, since it contains terms in $h_{\text {ul }}^{2}$. The situstion is also complicated by the fact that X is unknown, sộ $\hat{\beta}$ has an unknown bias.

Related to this ts the following interesting result. If the model is

$$
Y=\beta_{0}+\beta_{1} x+\ldots+\beta_{k} x^{k}+c
$$

with $V=X+h, E[h]=0$, and V considered to be fixed as in the controlledexperiment casc, then $\hat{\beta}_{k}$ and $\hat{\beta}_{k-1}$ will be the only unbiased catimates.

If the parameters of a functional relationship are to be estimated with data from a sandom experiment, there are some additional problems. Consider the functional relationship

$$
Y=a+\beta X
$$

with $k=1$ and let the observed variables be $W(E Y+f)$ and $V(=X+h)$, where $E[f]=E[h]=0$. Now suppose a and β are to be estimated from n observations.

One set of estimates would be that obtained by least squares for the regression of W on V, that is, for

$$
\begin{gathered}
w=a_{1}+\beta_{1} v+g_{1}, \\
\text { where } s_{1}=f-\beta_{1} h . \text { Then, } \\
\hat{\beta}_{1}=\frac{\sum_{u=1}^{n}\left(v_{u}-\bar{v}\right)\left(w_{u}-\bar{W}\right)}{\sum_{u=1}^{n}\left(v_{u}-\bar{v}\right)^{2}}
\end{gathered}
$$

and

$$
\hat{a}_{1}=\vec{w}-\hat{\beta}_{1} \bar{v}
$$

Another possible set of estimates could be found by considering the regression of V on W, that is,

$$
v=a_{2}+\beta_{2} w+g_{2}
$$

where $g_{2}=h-\beta_{2}$ f. Then,

$$
\hat{\beta}_{2}=\frac{\sum_{u=1}^{n}\left(v_{u}-\bar{v}\right)\left(w_{u}-\bar{w}\right)}{\sum_{u=1}^{n}\left(v_{u}-\bar{v}\right)^{2}}
$$

and

$$
\hat{a}_{2}=\bar{v}-\hat{\beta}_{2} \bar{w}
$$

The four unknown parameters are related by $\beta_{1} \beta_{2}=1$ and $a_{1}=-a_{2} \beta_{1}$, but the estimates do not satisfy these relations. The estimates lead to two different lines:

009-113

Is either one of these lines the estimate of $Y=a+\beta X$? In general, no; the true line lies somewhere between the two. The special case, as mentioned carlier, is where one of the variables can be considered fixed. Then, there is only one regression line to be cotimated and $E[\hat{\beta}]=\beta$. For the randomexperiment case, least squares breaks down because it considers errors only in one direction, while there are errors in both directions that must be taken Into account. Liadiey (1947) and Madansky (1959) claim that minimizing $\left(1 / \sigma_{g_{1}}^{2}\right) \sum_{u=i}^{n}\left(w_{u}-\hat{a}-\hat{\beta} v_{u}\right)^{2}$ takes both errors into account. (Remember that σ^{2} depends on β.). This procedure raquires knowledge of, or ostimates of, all the variancos and covariances. Also, the solution fy not necessarily
unique. A good justification for using this estimate in the case $\sigma_{f}^{2}=\sigma_{h}^{2}=1$ and $\sigma_{\mathrm{fh}}=0$ is that minimizing this quantity, now $\left[1 /\left(1+\hat{\beta}^{2}\right)\right] \sum_{u=1}^{n}\left(w_{u}-\hat{a}-\hat{\beta} v_{u}\right)^{2}$. minimizes the sum of squares of the distances between the observed points. (v_{u}, w_{u}) and the fitted line.

An alternative to least aquares would be to use the maximum-likelihood estimate. This would require a knowledge of the joint distribution of all the errors. As an example, let $k=1$ and suppose f and h have a bivariate normal distribution. It turns out that for there to be a solution to the maximum-likelihood equation, some assumptions must be made about $\sigma_{f}^{2}, \sigma_{h}^{2}$, and σ_{fh}, but if they are all assumed to be known, there will be more equations than unknowns and the solution will not be unique. If no essumptions are made, the solution will depend on the unknown variances and covariances. Examples of assumptions that result in a unique solution are

> 1) $\sigma_{f h}=0$ and $\sigma_{f}^{2} / \sigma_{h}^{2}=\lambda$ known.
> 2) σ_{h}^{2} and σ_{f}^{2} known; $\sigma_{f h}$ unknown.

Madansky (1959) gives the estimates in these two and several other cases.
Maximum likelihood can be a problem, since it may not always be desirable to assume that the crrors have a multivariate normal distribution, or any other distribution for that matter. Also, enough may not be known about the variances and covariances for it to be possible to get a solution

Balinvaud (1966) and Madansky discuss some other methods that do not require knowledge of the various covariances and variances. Each involves some particular assumptions about the true values and errors.

One of these is the method of instrumontal variables. This requires knowledge of other variables, which are observed without error, that are uncorrelaced with the h_{i} 's and, ideally, highly correlated with the V_{i} 's: For the case $k=1, \beta$ is estimated by

$$
\hat{\beta}=\frac{\sum_{u=1}^{n}\left(w_{u}-\bar{W}\right)\left(r_{u}-\bar{R}\right)}{\sum_{u=1}^{n}\left(v_{u}-\bar{v}\right)\left(r_{u}-\bar{R}\right)}
$$

where R is the instrumental variable. Given the assumption that R is observed without error, $\hat{\beta}$ will be unbiased. The problem is that it is not yet known what happens when the assumption is not true but is still a reasonable approximation, the most likely situation to be encountered in practice.

Another method is that of grouping. This involves classifying the observations into groups and fitting the group means. This method yielda consistent estimates under certain rather stringent assumptions about the obscrvations and crrors.

In summary, if what is warted are estimates for prediction purposes, least squares can be uesd without worrying about the problems. If unbiased estimates of the parameters are wanted, then the independent variables should be controlled. If that is not possible, try to use maximum-likelihood estimates that are at least asymptotically unbiased, or use Lindley's method.

0. NONLINEAR REGRESSION

In practice, it is not elways pessible to use the linear additive model, The application of least squeres then almost always implics the use of an iterative minimization technique.

For nominear regression, our model is

$$
Y=f\left(Z_{1}, \ldots, Z_{p} ; \beta_{1}, \ldots, \beta_{k}\right)+c,
$$

where c is the residual term and $\beta_{1}, \ldots, \beta_{p}$ are the cocfficients to be estimated. Note that even with the nonlinear model, we must assume that the residual term is additive. Given the observations $\left(z_{u 1}, \ldots, z_{u p}, y_{u}\right)$ for $u=1, \ldots, n$, the problem is to find $\hat{\beta}_{1}, \ldots, \hat{\beta}_{k}$ to minimize

$$
s(\hat{\beta})=\sum_{u=1}^{n}\left(y_{u}-\hat{y}_{u}\right)^{2},
$$

where $\hat{y}_{u}=f\left(z_{u}, \ldots, z_{u p} ; \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}\right)=\left\{\left(\tilde{z}_{u} \hat{\beta}\right)\right.$, and $\tilde{z}_{u}=\left\{z_{u}, \ldots, z_{u p}\right\rangle$. The assumptions needed here are essentially the same as in the linear case:
[) The madel is correct.
2) The Z_{i} 's are observed without error.
3) $E\left[e_{i}^{*}=0\right.$.
4) $E\left[c_{u} e_{v}\right]=\sigma^{2} \delta_{u v}$, for $u, v=1, \ldots, n$, which can be satisfied by using Σ_{e} if necessary, as in Section 5.3.

The use of $Z_{i}{ }^{\prime}$ s instead of X_{1} 's is delfberate. There is no longer any reason to use functions of the $Z_{i} ' s$ in the modisl.

Before we consider the methods for solving this probiem, threc points. that are true in general must be stated:

1) There is no guarantec that the $\hat{\beta}_{1}^{\prime}$ s will be unbiased.
c) In general, $E\left[s^{2}\right] \neq \sigma^{2}$.
2) If $\varepsilon_{1}, \ldots, e_{n}$ are iid $N\left(0, \sigma^{2}\right)$, then the least-squares estimates are also the maximum-likelihood ostimate:-

The most conimonly used methods are difcussed in the following nulsectione

10.1 Lincarization

By Taylor's theorem,

$$
f\left(\widetilde{Z}_{u} ; \beta\right)=f\left(\tilde{Z}_{u} ; \beta_{0}\right)+\left.\sum_{i=1}^{k} \frac{\delta f\left(\tilde{Z}_{u} ; \beta\right)}{\delta f_{i}}\right|_{\beta=\beta_{0}}\left(\beta_{i}-\beta_{0 i}\right)
$$

is approximately truc for ρ_{0} nepr β. Then, the model is approximately

$$
y_{u}-f\left(\tilde{z}_{u} ; \beta_{0}\right)=\sum_{i=1}^{r} \delta \beta_{i} w_{u i}+e_{u} .
$$

where

$$
\delta \beta_{i}=\beta_{i}-\beta_{0 i}
$$

and

$$
w_{u i}=\left.\frac{\partial r\left(\tilde{z}_{u} ; \beta\right)}{\partial \beta_{i}}\right|_{\beta=\beta_{0}}
$$

This is a linear model, and least squares can be ued to estimate $\delta \beta_{1}, \ldots, 6 \beta_{k^{\prime}}$ where β_{0} is an initial guess at the value of β, β_{0} is then roplaced by $\hat{\beta}_{0}+\hat{\phi} \hat{\beta}$, whero $\hat{\beta}=\left\langle\hat{\beta} \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}\right\rangle$; and the process is repeated. This continuos untth the improvement, as measured by the decrgase in S , becomes small.

Three problems may be encountered when this method is used

1) It may converge very slowly.
2) It may oscillate wildly. :
3) It may diverge.

To ninimize these problems, uнe $\hat{\delta \beta} / 2$ instead of $\hat{\beta}$ is

$$
S\left(\beta_{\mathrm{c}}+\hat{\sigma} \beta\right)>S\left(\beta_{0}\right)
$$

It is always a geod iden to calculate $S\left(\beta_{0}+\delta \beta\right)$ after cach stop to be able to keep track of what ia happening.

When this methed is used, approximato tests of sifnificance can be obtained by ansuming that the linearized form of the model is valld around β. the final estimate of β. Then s^{2} can be used as an approximation for σ^{2}, although it ta not untiaged, and the final ($W^{\prime} W^{-1}$ matriy, can be used for the atandnricierrors of $\hat{\beta}$.

10. 2 Stcepest Descen:

The basic idea of all the stecpest descent (gradiert) methods is that from any point β_{0}, the vector . $\left.\nabla S(\beta)\right|_{\beta_{x \alpha} \beta_{0}}$ points in the direction of the greatest decrease in S. Many modifications of thia idea nove been developed, the best of which secres to be that by Fleteher and Pawell (1963). The basic stops of their procndure are the following, where subecripts denote the iteration number. At the $n^{\text {th }}$ step, you begin with $\hat{\beta}^{i n)}, g_{n}=\nabla S\left(\hat{\beta}^{(n)}{ }_{j}\right.$, and $H_{n^{\prime}} \quad\left(H_{1}\right.$ is chosen to be positive ecfinite, ausi $\hat{\beta}^{(1)}$ is any initial evtimatu.) Then,

1) $P_{n}=-H_{n} b_{n}$.
2) Find a_{n} to minimize $s\left(\beta^{(n)}+a_{p}\right)$ with respect to 0 .
3) $\beta^{(n+1)}=\hat{\beta}^{(n)} \div a_{n} p_{r}$.
f) $f_{n}=g_{n+1}-\varepsilon_{n}$.
4) $H_{n+1}=H_{n}+A_{n}+B_{n}$, where

$$
A_{n}=\frac{a_{n} P_{n} P_{n}^{\prime}}{P_{n}^{\prime} P_{n}}
$$

and

$$
B_{n}=-\frac{H_{n} f_{n} f_{n}^{\prime} H_{n}^{\prime}}{i_{n}^{\prime} H_{n}^{f} n_{n}^{\prime}}
$$

Stracter and Hogge (1970) say that thia procerure is easy to implenient for general problems, but it does require an accurate Intar minimiantion technique (stop 2). For least-aquares problems, they prefer the following method, which has o much faster rate of convergence in terms of function evaluations.

10.3 Marquardt's Compromise ${ }^{\text {D }}$

Marquardt (1963) found that for a number of the least-squaren problems he worked with, the directione of imprevoment (in the k-dinensional parameter space) obtained by lineirization and stecpest descent were nearly 90° apart. His algorithm provides a method for interpolating between tho two directione.

Baginning with an estimate $\hat{\beta}$, let

$$
\mathrm{d}(\hat{\beta})=\left(y_{2}-\hat{y}_{i}, \ldots, y_{n}-\hat{y}_{n}\right)^{\prime} \text { and } \delta \beta=\left(\delta \beta_{1}, \ldots, 5 \beta_{k}\right)^{\prime} \text {. }
$$

Then dofine $\underset{\sim}{d}(\hat{\boldsymbol{p}})$ to be a $k \times k$ matrix given by

$$
[\hat{\alpha} d(\hat{\beta})]_{i j}=\frac{\partial\left(y_{1}-\hat{y}_{i}\right)}{\partial \hat{\beta}_{j}}
$$

The basic idoa is te find $\delta \beta$ to minimize

$$
C=[\alpha(\hat{\beta})+\Delta d(\hat{\beta}) \delta \beta]^{\prime}[d(\hat{\beta})+\Delta d(\hat{\beta}) \delta \beta] 』 S(\hat{\beta}+\delta \beta)-S(\hat{\beta})
$$

[^7]subject to the constraints that $(\delta \beta)^{\prime}(\delta \beta)<\gamma$, for som $: Y$, and that $C<0$. The correction vector la given by
$$
\left.' \delta \beta=\left\{\Gamma^{\prime} \Delta \mathrm{d}(\hat{\beta})\right]^{\prime}[\Delta \mathrm{\Delta} \mathrm{~d}(\hat{\beta})]+\lambda I\right\}^{-1}[\Delta \mathrm{~d}(\hat{\mathrm{~F}})] \mathrm{d}(\hat{\mathrm{\beta}}) .
$$

Where, in practice, λ is chosen so that $S(\hat{\beta}+\delta \beta)<S(\hat{\beta})$ and the matrix $\left.\{(A)(\hat{\beta})]^{\prime}[\hat{A} d(\hat{\beta})]+\lambda\right\}^{\prime}$ is invertble. Armstrong discusses approachen for apocifying λ (Arrastrong, 1970) and has ahown (Armatrong, 1968) that an $1 \rightarrow \infty, \delta \beta$ goes toward the diroction of tho negativo gradient and that as $\lambda-0,6 \beta$ approaches the correction vector that would be obtained using linearization.

Brown and Dennie (1970) have derived a derivative-fece analogue of this method. According to their papar, this analogue comparea favorably with the oridinal algorithm.
prdcenng page riank not fit mpr

11. REFERENCES AND BIBLIOGRAPHY

ACTON, F. S:
1959. Aralygid of Stralght-Line Dath. John Wiley \& Sons, New York, 267 pp.
ANSCOMBE, F.J
1961. Examination of residuala. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probabllity, vol. 1, cd. by I. Neyman, Univeraity of Callforaia Press, Beikeley, Galif., pp. 1-36.
ANSCOMBE, F. J., and TUKEY, J. W.
1963. The examination and analysis of residuals. Technomeirics, vol. 5. pp. 141-159.
ARMSTRONG, E. S.
1968. A combined Newton-Raphson and gradient parameter correction technique for solution of optinal-control problems. NASA Publ. TRR-293, 61 pp.
1970. On the specifleation of Levenberg parameters for improving convergence in least-squares programming. NASA, unpublished, 23 pp.
BERKSON, J.
1950. Are thore two regressions? Journ. Amer. Statiatical Assoc. . vol. 45. pp. 164-180.
BROWN, K. M.., and DENNLS, J. E.
1970. Derivative frec analegues of the Levenberg-Marquardt and Gauss algorithma fo: nonlincar least squares approximation. 1BMPhiladelphia Scientific Centex, Tech. Rep. No. 320-2994, 21 pp .
COCHRAN, w. G.:
196 . Unpublished netes for Statistics 139, Analyals of varlance. Dedartment of Statistics, Harvardu Univeralty; 67 pp

DRAPER, N. R., and SMITH, H.
1966. Applled Regression Analyals. John Wlley \& Sons, Ninw York, 407 pp.
FELLER, W :

- 1966. An Introdscion to Probability Theory and Its Applications. Vol. II, John Wiley \& Sons, New York, 626 pp.'

1968. An Introduction to Probability Thoory and Its Applications. Vol. 1, 3rd ed., Joha Wlley \& Sons, New York, 510 pp.
FLETCHER, R., and POWEML, M. J. D.
1969. A rapidly converging descent method for minimization. Comp. Journ., vol. 6, pp. 163-168.
GOLUB, G.
1970. Numerical methods for solving linear least squares problems. Numerische Mathematik, vol. 7, Pp. 206-216.
1971. Matrix decompositions and statistical calculations. In Statistical Computation, cd, by R. C. Milton and'J. A. Nelder, Academic Press, Nev: York, pp. 365-397.
GOLUB, G., and BUSNGER, P.
1972. Linear least squares solutiors by Houschoider's transformations. Numerische Mathematik, vol. 7, pp. 269-276.
GRAYBILL, F. A.
1973. Introduction to Matrices with Applications in Statistics. Wadsworth Publ. Co. , Inc. , Beimont, Calif, 372 pp .
HOGG, R. V., and CRAIG, A. T.
1974. Introduction to Mathematical Statiatics: 2nd cdition, Macmillan Co., New York: 383 pp .
JORDAN, T. L.
1975. Experiments on error growth assoclatod with linear least-squares procedures, Math. Conip., vol. 22, pp. 579.58s.
KENDALL, M. G. , and STUART, A:
1976. The Advancod Theory of Statistics. Vol. II, Hainer Publ. Co.,
\therefore New York, 676 PP.
1977. Tho Advanced Thoory of Stathatics. Vol. I, znded., Hafner Publ. Cu., Now York, 433 pp.

biór raphical note

WAL'TER W. HAUCK, JR., received his B. S. degree in mathematics and economics from Carnegic-Mellon University in 1969 and the M. A. degree in statistics at Harvard University in 1970. He is currently a graduate student in the Department of Statistics, Harvard Univeraity.

Mr. Hauck's principal research interests include statistical deciaion theory and least-squares estimation.

This series of Spectal Reports was instituted under the supervision of Dr. F. L. Whipple, Dieector of the Astrophysical Observatory of the Smithsonian Institution, shoztly after the launching of the first artificial earth satellito on October 4, 1957. Contributions come from the Staff of the Observatory.

First is sued to ensure the immediate dissemination of data forsatellite tracking, the reports have continued to provide a rapid distribution
of catalogs of satellite observations, orbital information, and preliminary results of data analyses prior to formal publication in the appropriate journals. The Reports are also used extensively for the rapid prublication of preliminary or' special results in other fields of astrophysics.

The Reports are regularly distributed to all institutions participating in the U. S. space rescarch program and to individual seientists pho request them from the Publications Division, Distribution Section, Smithsonian Astrophysical Observatory, Cambridge, Massachusetts 02138.

[^0]: *An alternate approach, which 1 do not agrec with, views probability theory An aternate approach, which doming processes, and probabllitics as subjective measures of degrecs of certainty
 $t_{\text {Tho une of numerlial hore la meant to be very genoral.' }}$

[^1]: There will be exceptions to this rule in later soctions. a
 $\boldsymbol{t}_{\text {Strictly speaking, this is only one representation of the sample, space, but }}$ the more general notion is not necoseary for our purposes.

[^2]: Throughout the papar, the symbol ~ will mear "is distributed as."
 ${ }^{\dagger}$ When there :"ould be no confusion, the subscript X on μ_{X} and σ_{X}^{2} can oe dropped

[^3]: 0 will always denote an nstimate of 0 regardiess of the method used to obtain 1 t.
 $\dagger_{\text {All loge in this paper are natural or base } e .}$

[^4]: With exceptions

[^5]: "In general, $G \sim X^{2}$, where $\ell=$ (number of classes) - (number of estimated parameters) - (number of constraints on the E_{i}). In this case, σ^{2} is
 estimated and the E_{i} are constrained by $\sum_{i=1}^{m} E_{i}=n$.
 ${ }^{\dagger}$ Anscombe and Tukey (1963) recommend the use of $\Phi^{-1}[(3 u-1) /(3 n+1]$.

[^6]: This la an approximation valid for small a ${ }_{0}$. The exact relationship is $a_{0}=1-(!-u)^{n}$.

[^7]: Sometimes referrod to as the Levenberg-Marquarde or ArmatrongMarquardt algorithm.

