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SECTION I

INTRODUCTION

This report supplement summarizes work accomplished on NASA Contract
NAS2-5804, following completion of the original tasks for the study of Automatic
and Manual Terminal Guidance and Control Systems for Space Shuttle Vehicles.

The original tasks involved design studies and simulator evaluations using four
different candidate vehicles as the test bed for demonstrating system concepts
and performance. As NASA's Phase B Design Studies for the space shuttle prog-
ressed, these four vehicles rapidly became obsolete. During 1970 and 1971, the
life expectancy of a space shuttle configuration was about 3 months. In order to
keep the study being performed on Contract NAS2-5804 from becoming a series of
simulator programming exercises as new space shuttle configurations evolved, the
vehicle models for this study were frozen in September 1970. A Low Cross Range
(LCR), straight-wing vehicle designed by McDonnell Douglas was used as the candi-
date of the straight-wing class, while a High Cross Range (HCR) delta configura-
tion designed by North American Rockwell was the selected vehicle of that class.
The space shuttle program abandoned the LCR class of vehicle in the winter of
1970-1971. The NAR HCR orbiter configuration (frozen for this study in September
1970) was redesigned several times by NAR before and after the completion of
their Phase B Design Study. The purpose of the work reported on in this supple-
mentary report was to take another look at the emerging space shuttle designs in

order to verify the applicability of the concepts developed in the previous work.
The supplementary study had three main objectives.
e Verify terminal guidance and control system performance with a

1971 space shuttle orbiter configuration.

e Refine terminal glide and flareout precision and speed management
using drag brake modulation (previous vehicle aero models did not
include drag brake characteristics) plus additional guidance law
techniques suggested in the previous study.

1-1



e Determine the sensitivity of landing performance to vehicle L/D;
identify how the guidance and control system variables should be
adapted to cope with different vehicle 1ift and drag characteristics.

To achieve these objectives, a late version (April 1971) delta orbiter designed
by McDonnell Douglas was used as the model vehicle. Guidance and control system
parameters were adjusted for good performance with this vehicle and parametric
studies involving L/D variations, starting with this vehicle, were performed to

determine the L/D sensitivity.

This report summarizes the new vehicle azero characteristics, the guidance
and control system parameters selected for this vehicle, the selected flight
path geometry, the landing performance obtained with winds and turbulence, and

the influence of wehicle L/D on that performance.
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SECTION II

DISCUSSION

A. VEHICLE AERQO MODEL

The McDonnell Douglas Astronautics Company (MDAGC) delta orbiter, designated
MDAC~255BJ0050~B, was the baseline wvehicle for this study. The salient char-
acteristics are summarized in Table 2-1.

TABLE 2-1

MDAC DELTA ORBITER CHARACTERISTICS (CIRCA FEBRUARY 1971)

Weight (landing) - pounds 253,448
Wing Span (b) - feet 97.5
MAC (c) - feet 62.9
) (slug--feet2 X 106) 2.2
XX :
I, - (slug-feet’® x 10%) 12.74
Izz - (slug~feet2 X 106) 13.35
I - (slug-feet” x 10° -0.087
Ref Area (S) - feet? 5,330
Wing Loading (W/S) - pound/feet2 47.5
Peak L/D at Landing Condition 6.7
a for (L/D)EEAK (degrees) 7.5
#Pitch Control Power - M (1/sec2) -2.26
8e
*Roll Control Power - L& (1/sec2) 5.07
A
*Yaw Control Power -~ N8 (1/sec2) -0.335

R

*For Landing Condition, Q = 150 pounds/foot2



The main difference (from the standpoint of terminal guidance)}, between this
vehicle and the NAR design used in the previous work, is in the L/D characteris-~
tics. The MDAC vehicle has a lower L/D for the final approach flight conditions,
about the same L/D as the NAR vehicle in the transonic regions and a slightly
lower L/D at supersonic speeds. The peak-trimmed L/D characteristics of the
MDAC and NAR vehicles are compared in Table 2-2,

TABLE 2-2

COMPARISON CF L/DT FOR NAR AND MDAC HCR VEHICLES

NORTH AMERICAN HCR MDAC HCR
ANGLE ANGLE

MACH  PEAXK OF MACH  PEAK OF
NO. L/D,  ATTACK NO. L/D,, ATTACK
0.3 9.4 10.5 0.26 6.7 7.5
0.9 5.5 10.5 0.8 6.5 7.0 deg
1.2 3.0 11.0 1.1 3.0 6.5
2.0 2.5 11.5 2.0 2.15 10 deg

The aero data obtained indicates the wehicle is well behaved in pitch with
only a slight pitch up occurring at higher angles of attack (> 15 degrees).
Laterally, however, the vehicle stability becomes very unpredictable. The di-
hedral effeect (Figure 2-1), indicated primarily by the derivative Cgﬁ, becomes
very destabilizing in the lower transonlc regions for angles of attack greater
than 12 degrees. On the other hand, the directional stabillity <C76) (Figure 2-2)
becomes very stabilizing at these same conditions. For the subsonic and super-
sonic flight conditions (qn? is erratic and tends toward instability at almost
all angles of attack. It is noted that this characteristic of negative q%3 is
now considered typical of most space shuttle vehlcle configurations. As dis-
cussed in the main report, lateral/directional stabilization for the negative
CQB conditions is provided by lateral acceleration (Ay) feedback through the
rudders. This requires reasonable rudder effectiveness. The required effective—
ness 1s avallable at the supersconic and subsonic speeds involved in the terminal
phase of flight. (At hypersonic speeds, where rudder effectiveness may dis-—
appear, this problem of static directional instability must be golved with the
reaction control system.) The source of aerc data was MDAC. The data used in
this study was eventually published by McDonnell Douglas as Reference 11. (The

references of the main report are repreduced in this supplement.)
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Figure 2-1
MDAC Delta Orbiter Lateral/Directional
Static Stability Derivatives
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CQ versus Angle of Attack for Different Mach Numbers
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B. GUIDANCE AND CONTROL SYSTEM PARAMETER SUMMARY

1. Autopilot Stabilization Loops

Attitude stabilization 1s achieved through symmetrical elevon control
(pitch), differential elevon control (roll), and rudder (yaw). Figure 2-3 shows
the elevon control system block diagram that identifies an equilvalent aileron (5A)
and elevator (SE) output with appropriate limits. The identification of an arti-
ficial elevator and aileron deflection is needed for compatibility with the defi-
nition of control surface moment and force coefficients. Note on Figure 2-3 that
an aileron command summing into the asymmetrical elevon displacement limits can
result in unbalanced pitch moments for some combinations of elevon trim and
aileron command. The nominal trim elevon varies between ~30 degrees and about -8
degrees so that this phenomenon does not occur during a trimmed pitch condition.
There was no evidence of any problems of this type during simulations of combined
pitch and roll maneuvers associated with the landing trajectories; but if they
should ever prove to be a source of difficulty, the aileron displacement limit

can be varied as a function of elevon trim to cause symmetrical limiting.

The elevator control law 1s identical to that used previously with other

space shuttle conflgurations except for the gains.

N Y A kNt
8ECO]U[ 5 = kg |(0 -0+ kg <m - qc> T+ ) +0g O ) 2-1)

where 0C and q, are pitch and pitch rate guidance or manual maneuver commands and
by (M, @ppp
angle of attack.

) represents a predictive trim command based on Mach and reference

The aileron and rudder control laws are also identical to those used

previocusly.

A

K
<5 =k, (6 -0 ) +-L2 (p=-p) (2-2)
comvanp  © ¢’ kg c

where 0c and p, are roll and roll rate guidance or manual maneuver commands.
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T,8 kAY

4
145+1 +Tss+1 AY (2-3)

SRCO = kr [r -(g/V)sin ¢c]

T,8

6
+kpp Oac Tgs ¥ D@5 + 1)

The following gains and filter parameters were used for the MDAC vehicle:

o = 2.5

kyfkp = 1.0

71 = 2.5

kpgp = 0.1

k /g = 2.0

kg = 1.50 30

k.= 12.0 (1%9)

Ry = (3) (Mach) (%

14 = 2.5

1'5 =0.1;16, 1'7,kRA=0

*NOTE: A Q gain control is usually used; but for the MDAC flight condi-
tions, a constant gain of 2.5 was found to be adequate.

8E (m, aREF) was not used because 1t is intended primarily for hypersonic
to subsonic transition programs. This phase of flight control was not optimized
with the MDAC vehicle since this supplementary study concentrated on f£inal approach

and flareout.

2. Vertilcal Guidance Laws (not including flareout)

(Flareout and speed management guidance are discussed in a subsequent
section.) Terminal glide path acquisition and tracking is initilated when the
vehicle satisfies various criteria regarding approach to the glide path., For the

MDAC vehicle, the glide path control equations were:

2-7



a

- 2 -
6, =k, Opgp =M + 1Ky (hREF1 h) (1 + = ) (2-4)
where YREF is the glide angle of the reference glide path and hREF1 is the in-
stantaneous altitude reference corresponding to the center of the glide path.

Constraints on Hc are imposed to prevent excessive normal accelerations, angles

of attack, and speed variations.

Various geometrical relationships between the steep and shallow glide
path are possible for a given vehicle. The possibilities are increased when
speed brake control adds an additional variable to the problem. (This subject is
considered in greater detail later.) However, for the purpose of summarizing the
vertical guidance laws, the steep glide slope is —12 degrees, the shallow glide
path is -2.5 degrees, and the first flare is initiated at a nominal altitude of
1500 feet (where the nominal velocity is 595 ft/sec). First flare is initiated

at altitude h2 where h2 is determined by the following equation:
AV

h, =h 1+ C, o— (2-5)
2 NOM ( 1 VNOM)

where

h = 1500 ft

NOM
VNOM = 595 ft/sec
c, = 0.16

1

At first flare, the following pitch command is inserted:

t
X .
Bc = k7 (7REF -v) + ec (t) dt + 9p1 (t) (2-6)
t=t
(o7
where
t
x -
Trer = Y4 +/ 7. (t) dt (2-7)
0
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L4 N

Yy (t) = 8, (t) = 57.3 ZMAX

\'

deg/sec (2-8)

P-4
It

+16 ft/sec2

ZMAX
tx = time at which 7c dt = AyREF = =2.5 deg - (~12 deg) = 9.5 deg (2-9)
where
-2.5 deg = 7REF1 (shallow glide slope)
-12.0 deg = 7REF2 (steep glide slope)
0P (t) is a predictive term equal to
1
t d t,.
o () =/ 7, dt + 57.3 71 <1 - 9‘—;—51"—7-)— 57.3 dzf (%)% dt (2-10)
Py ZMAX

(o] o

which may be simplified to

t t,.
’ 57.3 v
0p1 (t) =f Ye dt + —6—— d1 - d2 / <V> dt (2-11)

(o] o

where d1 and d2 are constants

Closed-loop tracking of the shallow glide path (defined by hREF ) is

initiated when: 2

o Altitude is below the shallow glide slope and the descent is

steeper than 7REF2

< -
h2>o a“d7\7REF2 (2-12)

2-9



or

e Altitude is above the shallow glide slope and the descent is

shallower than 7REF
2

< = -
hE <0 and vy /’)‘REF (2-13)
2 2
The closed loop tracking equation for the shallow glide path is identical
to that used for the steep glide path, except for predictive commands that com—

pensate for the deceleration and gear deployment. The tracking equation is:

a

- _ 2 -
6_= k, <7REF2 7) + I hy (1 + = )+ 0p2 (2-14)

where, as in the case of the steep glide path tracking, kh varies inversely with

d sin 7y FF
8 = -57.3 - <1 - A7 ~57.3 d / ( % (2-15)
Py Q N REF

The first part of 0p2 cancels the identical term that existed during the flare

velocity.

maneuver. The cancellation is necessary if the guidance computer uses the pre-

vious value of Bc as the initial condition for mode transition.

The gains used for the MDAC vehicle were:

(for steep and shallow glide paths) = 1.0 deg/deg

(for steep glide path control) = 0.06 deg/ft

S G

(for shallow glide path control) = 0.067 (500) deg/ft

d1 = 12.8
d2 = 77.0
d3‘= 88.0

2-10



3. Lateral Guidance

The control law to the lateral flight path reference (localizer) is

4y + kg, y) ky =9, (2-16)

This control is initiated after a proper intercept path has been established and
Ay and Vv are below specified thresholds. Note that Ay and y are smoothed quan-
tities. That is, if y and y are obtained from radio navigation computations, the
quantities used in the control law should be smoothed using low-pass filtering of
the radio-derived information with signal bandwidth restored with short-term
inertial data. The radio information provides the low frequency content of the
control signals, while the inertial information provides the higher frequency

content of Ay and y.

Thus far in these studies, an integral control term in the lateral con-
trol equation has not been used (integral of Ay). It is common practice in air-
craft lateral guidance systems to use integral control of the Ay error to correct
for estimation errors in &. Integral control on Ay also helps minimize lateral
errors resulting from crosswind shears. However, if integral control is used, it
is essential that it be activated only when Ay errors are very near zero because
a long period oscillatory mode is created by the addition of the integral loop.
That mode is tolerable if the maximum amplitude of the errors can be held to very
small values, as they are after a tight lateral tracking phase has been
established.

The gains used with the MDAC vehicle were:

k: 20
y

*n

Note that these gains were the same as those used for all previous vehicles

0.03 deg ¢c/ft

studied. Stability analyses indicate that ky can be increased to about 0.06 to
0.1 in order to improve control tightness. Since detailed investigations of
lateral dispersions were not made, this higher gain was not evaluated. However,
with the assumption that inertially smoothed y and Ay data is available, the
higher gains should be used in any further studies of lateral guidance

performance.



C. FLIGHT PATH GEOMETRY AND SPEED MANAGEMENT

1. High Altitude Guidance

The high altitude lateral steering (energy management) equations devel-
oped for the NAR delta orbiter were used with the MDAC vehicle. The system
allowed the MDAC vehicle to acquire the terminal glide path by the time an alti-
tude of 20,000 feet was reached. However, no attempt was made to determine the
size of the energy management window or to optimize the stored nominal trajectory
[ Equation (3-98) of the main report for this study]. For pitch guidance, a Q
loop was used with the Q reference established by an angle-of-attack program [ as
described in the main report, Equations (3-92) through (3-96)]. This type of
pitch guidance had not been used previously in the studies with the NAR vehicle.

The guidance equations were:

1 - cos ¢

.= % (Q B QREF) <1 + §>+ K\ Tos ¢ - (2=17)
where
Qrer = Qnon + AQ (2-18)
ka
AQ = = (a - aREF) (2-19
aopF = f (M, h, AE)

For the MDAC vehicle, was made only a function of Mach (M). The

o
function of altitude (h) and enszy error (AE) is retained in the guidance
equation, but zero values were used thus far. The a reference was made the
function of Mach, which resulted in peak L/D. A typical descent from 100,000
feet using this type of pitch guidance is illustrated in Figure 2-4. Note that
the dynamic pressure converges toward about 150 pounds per feet2 in the super-
sonic Mach 2.0 to 1.0 region, but then changes in the transonic region. The
flight path angle (Y) reaches about -11.0 degrees, and then, as the 1lift coeffi-
cient increases in the transonic region, it shallows back toward about -7.0 de-
grees. The guidance law contained logic that would have locked on to Y control
if the reference terminal glide Y of -12 degrees had been reached. 1In previous
work with the NAR vehicle, where a terminal glide angle of -10 degrees was used,
the pitch guidance system always ended on Y control prior to intercepting the

terminal glide path.
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2. Terminal Glide Path Geometry and Speed Brake Control

Figure 2~5 shows the equilibrium flight path angle versus ailrspeed for
the MDAC and NAR delta orbiters. A steeper equilibrium flight path angle is re-
quired to fly the MDAC HCR orbiter and remain well on the front side of the L/D
curve. This results from the lower L/D for the MDAC vehicle. It is noted that
the reference to the NAR vehicle relates to the vehicle used in the previous

simulations.

Simulator runs were taken to determine the MDAC vehicle's terminal glide
and flareout characteristics without speed brakes. These runs were aimed at de-
fining the speed convergence characteristics of this vehicle after it acquires
the steep glide path. Figure 2-6 is a velocity/altitude plot from 20,000 feet to
touchdown. Three significantly different initial velocity conditions (M = 0.5,
0.7, 0.9) at 20,000 feet were investigated to determine the velocity convergence
on a glide path of -11 degrees. At flare onto the 2.5-degree flight path (alti-
tude = 1750 feet), the velocities have converged to within *15 feet per second,
with the nominal landing at -1.8 feet per second. The touchdown velocities
varied from 177 to 184 knots.

Figure 2-6 indicates that the speed convergence of the MDAC delta wing
vehicle toward an equilibrium speed on the steep glide path i1s relatively good.
However, in headwind and tailwind conditions, constraining the vehicle to the
fixed glide path results in a significant velocity spread at touchdown. Speed

brakes are needed to minimize the effect of winds on touchdown velocity.

Two possible speed brake control techniques were investigated.

e Below 20,000 feet, deploy speed brakes to a nominal position
{about 25 to 50 percent). Modulate speedbrakes about this
equilibrium position in order to maintain a desired reference

airspeed.

o Select a desired equilibrium speed that can be flown with
zero speed brake deployment in a nominal headwind condition.

Deploy speed brakes only for excess speed conditions.

2-14
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The trade-off between these methods is reduced shallow glide (float)
capability (first method) versus excessive approach speed for the second method.
In previous studies with the NAR HCR vehicle, the low drag, high L/D character-
istic of that vehicle permitted an extended shallow glide control phase starting
at about 1200 feet. Attempting to achieve the same length of shallow glide path
control with the MDAC delta-wing vehicle requires a high velocity at first flare
(as 1t did for the NAR vehicle). In order to obtain this speed, the approach
flight path for the higher drag MDAC vehicle was steepened to -12 degrees from

the -10-degree value used in the previous delta-wing vehicle study.

Figure 2-7 shows the flight path geometries associated with above-
referenced drag brake methods. For the second method to yield a 1200-foot run on
the shallow glide path, the equilibrium speed at fitrst flare was about 350 knots
(probably excessive). If the second method was mechanized with 25-percent nomi-
nal speed brake deployment, the resulting speed was too low to maintain a signi-
ficant shallow glide path tracking phase. A drag brake control loop using 300
knots as the reference airspeed can acquire the shallow glide path at about 700
feet. 1If the speed reference is lowered to 250 knots, the capability for a
shallow glide path tracking phase is eliminated.

Figure 2-8 is an altitude/airspeed recording of approach and landing runs
using speed brake control for three diverse initial speed conditions at 20,000
feet where the -12-degree glide path is acquired. The particular case illustrated
in this figure represents the high speed upper bound for an approach. The air-
speed reference maintained by the speed brake control loop is 350 knots. (The
trajectory for the more reasonable speed case of 300 knots is indicated with an

arrow on this figure.) The three initial conditions at 20,000 feet are:

M=20.9 With tailwind at low altitudes and high altitude winds (90
degrees - West to East), which results in a 45-degree headwind

=
L]

0.7 With no winds

M=0.5 With headwind at low altitudes and high altitude winds (90
degrees - West to East), which results in a 45-degree headwind

(Winds used were mean winds as defined in the Appendix. Note that low altitude
headwind and tailwinds shear to zero at zero altitude. At 10 feet of altitude
the headwind is 12.5 knots and tailwind is 5 knots. At 400 feet, the headwind is
about 23 knots and tailwind is about 9 knots.)

2-17
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To demonstrate the effectiveness of the speed brake controls, they are
not deployed until an altitude of 4,000 feet is reached. The speed variation

prior to speed brake deployment is the result of two factors:

o The normal tendency to converge to a constant calibrated air-

speed as the flight path angle is constrained

o The wind shear effects of the high~altitude and low-altitude

winds

Note that the large speed decrease for the M = 0.9 case at altitudes between
10,000 and 20,000 feet is the result of the high—-altitude (jet stream) wind,
which is predominantly a headwind for the 224-degree approach path.

When speed brake control is initiated at 4,000 feet, a speed error of
about 50 feet per second is brought to zero in about 400 feet of altitude. The

simple proportional control law used was:

BSB = (V - VNOMl) KSB1 (2-21)
for h?st FLARE <thg < 4,000 ft (2-22)
where
VNOM1 = 595 ft/sec
KSB1 = 1.0 deg/ft/sec
h1st FLARE & 1500 ft = altitude of first flare
A = true airspeed

(Note that if speed brakes were deployed at higher altitudes, the parameter to

be controlled should be calibrated airspeed, VC, rather than true airspeed.)

For improved performance at a lower speed reference where a steady-state
deployment is needed (rather than zero steady-state SSB for the 350 knot case),
an integral loop would be useful. Thus K

SB would be replaced by KSB
(1 +0.1/8).

1 1
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On the shallow glide slope, the speed brakes are deployed in accordance

with a programmed velocity reference. The control law is:

SSB = (V - VNOM ) KSB (2-23)
2 2
for 100 ft < hcg < 500 ft (2-24)
where
VN0M2 =K v K (2-25)
KSB = 2.0 deg/ft/sec
2

K, = 0,32 (1/sec)
K2 = 318 ft/sec

~ Note that the speed brakes were retracted during the first flare maneuver and
during the initial phases of the shallow glide slope acquisition and tracking.
They were also retracted at an altitude of 100 feet (at the maximum rate) to
eliminate brake deflection at final flare. It was found advantageous to avoid
any speed brake activity during final flare because of the extreme sensitivity of
the flareout to speed brake variations. The linear velocity change program used
on the shallow glide path is a simple approximation that gave good results. The
refinement of speed brake deployment techniques through the use of a stored
velocity versus altitude programs or other techniques that can converge all land-
ings to within very narrow velocity dispersions must await additional refinement
of the vehicle design and detailed study of operational procedures. Using the
simple system described in this report, the velocity dispersion at touchdown was
within 15 feet per second (9 knots) ranging from 295 to 310 feet per second (175
to 184 knots). Note that much of this dispersion occurred after the speed brakes
were retracted at 100 feet. For the three diverse cases illustrated in Figure
2-8, the touchdown rate of descent ranged from -1.6 to -2.1 feet per second with
runway dispersion within 100 feet. For all runs, the maximum speed brake deploy-

ment required was 30 degrees, which corresponds to about 50-percent authority.
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3. Flareout Guldance

An extensive investigation of the final flare control laws was performed
in an attempt to improve the touchdown dispersion experienced in the previous
studies with the NAR vehicle. Previous results with the NAR vehilcle indicate

that, although the closed-loop controller:

b =x: <ﬁREF - fx) (1 + —3) - Ky & (2-26)

1

with constant predictive commands

f
_ 1 57.3 ~
ecz =TT 7s + /————V fzdt (2-27)

ylelded good touchdown rates of descent under wind conditions, the longitudinal

dispersion needed improvement.

Four areas of improvement were consldered.

e Optimize vertical speed dynamic response; elimlnate tendency

to overshoot the touchdown vertical speed reference.

e Optimize the flare initiate correction law; select the proper
sensitivity of Ah for flare-initiate-per-feet-per-—second devi-

ation from nominal ﬁ.

o Correct the predictive flare maneuver command as a function of

off-nominal vertical speed and forward speed.

o Adjust touchdown vertical speed reference as a function of
deviation from a nominal h versus h maneuver; this trades off

a harder landing against excessive runway dispersion.

The first three items provided the desired level of performance for the
MDAC vehicle. The first involved tightening the closed loop h control system and
matching the predictive pitch maneuver so that the reference ﬁ (-2 feet per
second) is achieved at the desired altitude. Overshooting the -2-~feet-per-second
reference or achieving it at too high an altitude results in excessive runway

consumption.
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The second item (flare initiate correction) requires a proper gain that
relates h variation to a change in the flare initiate point. In previous work
with the NAR vehicle, h correction sensitivity was too high and the resultant
effect was an overcompensation of flare initiation agltitude for off~nominal
vertical speeds. The proper equation for the MDAC vehicle and the specific

flareout control laws used is

h altitude at which flare is initiated (2-28)

F

i

h+h-45<0

The third correction item involves adjusting the predictive part of the
flareout maneuver rather than use a constant term as in previous work. The pre-
dictive term includes a filtered step plus a ramp. The ramp already included a

velocity compensation term. The total predictive command is

£
B 5 57.3 .
Op =0 *0p “T37s 115 f(v >dt (2-29)

The adjustment was made on f1 as follows.

£= £+ (ﬁREF - fx°> Ry + <VREFO - VO>K6 (2~30)
where
f1' = Nominal maneuver magnitude (equal to 1.5 degrees for the MDAC vehicle
ﬁREF = Nominal vertical speed at flare initiate (t = to) = -15 ft/sec
o
Eo = Actual vertical speed at time of flare initiate
VREF = Nominal airspeed at flare initiate = 345 ft/sec
Vo = Actual alrspeed at flare initiate
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For the MDAC vehicle, the optimum gains were

K

5 ~-0.3 deg/ft/sec

K

6 +0.09 deg/ft/sec

The complete pitch command equation for flareout is
. . . KI
Gc = 'Kﬁ h + kﬁ hREF -h}l1 +-1; + ch (2-31)

where

0.2 deg/ft/sec2

ol

0.35 deg/ft/sec

%

=
It

0.5 deg/sec/deg

hREF -2 ft/sec

Il

The h versus h phase planes for three landings corresponding to the three
trajectories illustrated in Figure 2-8, are given in Figure 2-9. Touchdown
occurs when cg height is 22 feet. These three landings involved a touchdown rate
of descent variation of -1.6 to -2.1 feet per second (or a total spread of 0.5
foot per second about the nominal). All three landings touched down with a total

runway dispersion of about 100 feet.

Using these control laws, 30 runs were made under headwind and tailwind
conditions including wind shears and turbulence. (Winds and turbulence models
used are defined in the Appendix.) The major contributor to variation in nominal
touchdown h and runway position was the turbulence. Figure 2-10 plots these two
critical touchdown parameters to demonstrate a performance plane for these 30
landings. The spread about the nominal is reasonable for both x and h with only
one large x value (2000 feet from glide slope intercept) as possibly excessive.
Figure 2-11 summarizes these landings with an h and x histogram. (The touchdown
distance given here is measured from the glide slope intercept.) The average
touchdown distance given here ig measured from the glide slope intercept.) The
average touchdown h was ~2.83 feet per second, and the average x from glide slope
intercept was 643 feet. In general, this represents good performance, but the
sample size does not permit any statistically significant conclusions to be drawn
at this time.
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Speed and Wind Conditions
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D. DECRAB GUIDANCE

The same decrab guidance laws used in previous studies were used for the MDAC

vehicle.
K )
) =<w—xp>< + s+-—I>+——11rL— (2-32)
RCOMMAND R KD KR s Tzs + 1
KA
-5 =K +Kp+ W -¢) ——r (2-33)
ACOMMAND () P R o’ T8 + 1
where

¢5 = heading at initiation of decrab maneuver
¢R = runway heading

No effort was made to optimize the decrab control law gains. The same gains used
for the previous studies with the NAR vehicle were also used for the MDAC vehicle.
Runs with crosswinds were not taken, but crab angles resulting from turbulence
were present. Typical lateral dispersions were a few feet, but no y and § data
at touchdown were recorded to determine lateral dispersion statistics. The gains

used were:

= . = - 8 =
KA 1.73 Kp 2.5 RP 0
11 = 1,0 sec KR = 2.5 12 (not used)
K# = 2.5 KI =0

E. PARAMETRIC STUDY OF L/D EFFECTS

1. Simulation of Variable L/D

Although the MDAC vehicle was used as a baseline for these studies, the
intent of the studies was to determine the guidance law sensitivity to L/D and
other pertinent aero characteristics, which may be encountered in the general
class of delta wing configurations. The simulation model was set up to introduce

any desired variations into the 1lift and drag. Since the simulation equations
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are written in body axis coordinates, the delta 1ift, and drag parameters must be

resolved as follows:

C, and

# Rotate the body parameters
introduce the delta C

L

A
and CD.

N

C,, into stability axes and

® Rotate the incremented CL and CD back to body axes to obtain

a new set of normal and axial force coefficients (CA' and CN')

rC i = [ cos « sin a~ ré ]
N L
(2-34)
CA = -sin « cos o CD
I _J__
If we increment CL by A and CD by ¥, the new components CN' and CA' become
~ o
'=
CN cos o sin « (1 + 4 CL
(2-35)
'=-
CA sin « cos «a 1+ CD
Replacing CL and CD by the original CN and CA relationship, we obtain
B B ] g
CN' cos a sin « (1 + 4) (CN cos @ - C, sin ) .
(2-36)
'=—
CA sin « cos « a+vy) (CN sin a + CA cos )
- - -
After performing the multiplication and collecting terms, the relationship
becomes
CN' = CN (1+A cos2 o+ sin2 «) + CA (v - 4) cos « sin « (2~37)
' - 2 2
CA = CA (1 +Asin“a+ 79 cos” a) + CN (y - Q) cos o sin « (2-38)

which was incorporated into the simulation.
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2. Parametric Studies of Landing Performance

a. Introduction

The objectives of the simulator studies, in which L/D is wvaried, are
twofold. First, we wish to determine the sensitivity of the guidance design to
uncertainties in vehicle L/D characteristics. Second, we would like to establish
a methodology for selecting the flight path geometry on the basis of vehicle L/D.
In the first category, the simulation results to be described subsequently, pro-—
vide a very complete documentation of the guidance system performance in the
presence of headwinds and tailwinds with variations in L/D (about the MDAC nomi-
nal). In the second category, the establishment of a methodoclogy for selecting
glide path geometry, there were no definitive conclusions because of uncertainties
in operational criteria. These uncertainties are primarily related to the trade-
off of higher approach speeds and higher approach angles versus shorter durations

on the shallow glide path.

The effect of L/D variation on guidance system performance can be de-
duced from its effect on the equilibrium glide versus ailrspeed characteristics.
This 1s illustrated qualitatively in Figure 2-12. Shown on this figure are a
typical nominal flight path angle versus airspeed curve and two curves represent-
ing the effect of reducing L/D. In one case, L/D is reduced by increasing Cphe
In the other case, L/D is reduced an identical amount by decreasing CL. These
curves show that drag increase has a more significant effect on the speed and
glide angle relationships than lift decrease for an equivalent change in L/D.
Consider a —12-degree glide angle on Figure 2-12. In the nominal case (A) the
equilibrium speed is about 270 knots. If L/D is reduced by decreasing CL (B) the
~12 degree glide angle results in an equilibrium speed of about 260 knots. How—
ever, if L/D is reduced the same amount but by increasing Ch (C) then the equili-

brium speed is reduced to 237 knots.

In the simulations performed to study these effects, the L/D of the
MDAC vehicle was varied +30 percent by changing both CL and CD. Landings on the
nominal flight paths were run with the following touchdown parameters observed as

the essential measurements of performance:
® Vertical Speed (ﬂ)

® Touchdown Distance from Glide Path Intercept and from

End of Runway
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® Angle of Attack

® Ground Speed

Flights were made with winds varying between 40-knot tailwind and 40-knot head-

wind in 10-knot intervals.

Simulation Results

The simulator results are documented in Figures 2-13 through 2-20.

Table 2-3 summarizes the information contained in these figures.

TABLE 2-3

SIMULATOR RESULTS FOR PARAMETRIC VARIATION OF (L/D)

Figure |Observed Parameter Type.of L/D Comments
Variation
2-13 X-Dispersion +30%, -20% (CD) Decreased (L/D) with headwinds are
versus Winds critical
2-14 X-Dispersion +30%, -20% (CL) Same as above, but not as critical
versus Winds for -L/D more critical for +(L/D)
2-15 « versus Winds +30%, -20% (CD) Decreased (L/D) above 10% with
headwinds are unacceptable
2-16 @ versus Winds +30%, -20% (CL) Same as above, but not as critical
2-17 h versus Winds +30%, —-20% (CD) Insensitive to increased (L/D),
cannot cope with (L/D) decrease
above 10%
2-18 h versus Winds +30%, -20% (CL) Same as above, but not as critical
2-19 V (ground speed) +30%, -20% (CD) Excessive speed reduction for
versus Winds headwinds and L/D reductions
greater than 10%
2-20 V (ground speed) | +30%, -20% (CL) Same as above, but not as critical
versus Winds
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. The significant points illustrated by Figures 2-13 through 2-20 are
that the guidance laws and a fixed glide path geometry are insensitive to in-
creases in vehicle L/D. The only parameter that is not fully satisfactory for
L/D increases up to 30 percent is the touchdown distance (x) in headwinds. How-
ever, the system does not cope well with decreased (L/D)'s in the presence of
headwinds. This is to be expected since the headwind case is normally a lower
energy final approach, and the decreased L/D also results in a lowered equili-
brium speed. The decreased ground speed associated with headwind flight results
in a longer duration traverse on the shallow glide path which has the effect of
increasing the deceleration time. All of these factors combine to cause the
speed at final flareout to tend toward excessively low values. The only sure
solution to this type of problem is to alter the glide path geometry for lower
L/D vehicles.

c. Glide Path Geometry Alteration

Figure 2-21 illustrates how the glide slope geometry should be
altered to cope with changes in vehicle L/D about a nominal value. Consider the
case of a decrease in L/D. Two procedures are possible. The glide angle may be
increased to restore the equilibrium speed (or speed at first flare) to the
nominal value. If this is done, the lower L/D along the shallow glide path will
still result in a greater deceleration and less maneuvering margin for the final
flareout. Thus, in addition to changing the steep glide path angle, the inter-
cept with the shallow glide path should also be moved forward (toward the touch-
down point).

Another method of compensating for the change in L/D is to retain the
original glide angle and move the intersection of the two glide paths forward or
backward for decreased or increased L/D, respectively. This changes the time on
the shallow glide path so that at final flareout, the desired speeds are still
achieved (providing adequate maneuvering margin still exists with the reduced L/D

case).
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GLIDE PATH GEOMETRY
ALTERATION CONCEPT
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Figure 2-21
Glide Path Geometry Alteration for Vehicles with Different L/D's
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Either adjusting 7REF or adjusting the point of intersection of the
1
two glide paths can achieve the desired compensation for a nondisturbed environ-

ment. However, a combination of the two methods might produce the best system in
terms of coping with headwinds, tailwinds, wind shears, and turbulence. An in-
vestigation to determine an optimum combination of the &y and Ah correction on
Figure 2-21 was beyond the scope of this study, but it appears to be an inter-
esting task for future work in this area. Simulator runs were taken in which Ah
of Figure 2-21 was determined on the basis of reaching the final flareout alti-

tude at the desired nominal velocity. The Ah equation determined in this manner

was:
oh
o
A = /D) <AL/D>
L/D L/D
where
aho
_Q_é%%gl_ = 20 ft per 1.0% change in (L/D)
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SECTION III

CONCLUSIONS

1. The guidance and control laws used in previous simulator evaluations with
the NAR delta orbiter were applicable to the MDAC delta orbiter with only minor
gain changes.

2. The lower subsonic L/D of the MDAC vehicle (compared to the NAR vehicle
used in the previous studies) necessitated an increase in the steep glide path
angle from -10 to -12 degrees. This steeper angle was needed to yield sufficient
speed for tracking the shallow glide path for several hundred feet.

3. Improvements in the flareout guidance laws that adjust the predictive
commands as a function if initial vertical speed and forward speed errors can
reduce touchdown vertical speed dispersions in the presence of steady winds by a

factor of about 2:1. *

4, Speed brakes can be used to minimize dispersions resulting from headwinds
and tailwinds. If the speedbrakes are deployed with a nominal deflection to cope
with speed errors of both polarities, L/D is sacrificed and the use of the
shallow glide path is reduced. If a traverse covering a few hundred feet of
altitude on the shallow glide path is desired, then the speedbrakes should be

controlled only to reduce speed increases.

5. With the statistical sample limited to 30 landings, flareout performance

in the presence of winds and turbulence was:

® hTOUCHDOWN = mean touchdown h = -2.8 feet per second

o Maximum h < 5 feet per second

TOUCHDOWN

e Nominal touchdown distance from shallow glide path intercept
with the ground, XeoM = 800 feet

o Estimated 2-sigma dispersion of x from oM ™ 800 feet. The
distribution is skewed to favor touchdowns that are short of
the 800 feet nominal point.



6. The nominal guidance and control system and the selected glide path
geometry for the MDAC vehicle can give acceptable landing performance if the
vehicle L/D is allowed to vary +30 and -10 percent and headwinds or tailwinds are
as high as 40 knots.

7. Negative L/D variations greater than -10 percent result in excessively
low speeds, unacceptable angles of attack, and landings short of the runway when

headwinds are present.

8. Glide path geometry can be altered to cope with different vehicle L/D's.
Alteration involves changing the shallow and steep glide path intercept point and
changing the angle of the steep glide path. A typical adjustment parameter is
20 feet variation in the altitude of the intersection of the two glide paths for
each 1.0-percent change in vehicle L/D.
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APPENDIX

WIND AND TURBULENCE MODELS

1. WIND MODEL

A detailed description of the wind model used in these studies was given in
Appendix B of the main report. The salient equations are repeated here. All
simulations were performed using the mean wind (zero variance). The equation

for the mean wind is:

+ Sh (A-1)

where

-

Vo = low altitude wind velocity (ft/sec)

—

Vj = jet stream velocity (always west to east)
hy = altitude at center of jet stream = 40,000 ft

Dj = thickness of jet stream = 13,000 ft

S = golar activity constant = 1.35 x 10-8 ft/sec/ft2

h = altitude of vehicle (ft)

-

Sh2 is in the west to east direction

VOS e [D 1og10 () + E] (A-2)

<=1 {p

vV = (A + B cos AMW + C cos2 AMW)
o D log10 (10) + E

where

A = 25.317 ft/sec (15 knots)
B = 12.6585 ft/sec (7.5 knots)
C=4.2195 ft/sec (2.5 knots)
D = 0.43

E=0.35



fas}
i

L
I

08

wind VOS ='E

AMW

10,000 ft

1

Normal distribution factor that scales the level of Vo'
. (The ¢ of the normal distribution = %J

For a2 mean

Angle of mean wind = 0 deg for headwind and 180 deg for tailwind.

Table A-~1 summarizes the value of mean wind as derived from Vj and Vb from

altitudes of 10,000 feet to about touchdown.

TABLE A-1
SUMMARY OF MEAN WIND OBTAINED FROM VECTOR SUM OF

JET STREAM AND LOW ALTITUDE WINDS

(Headwind Case .. AMW = 0 Degree)

h A <$Mw : 8,‘5“"8> ViET Vi
(ft) o8 (ft/sec) (ft/sec)
(ft/sec)

10,000 20.6 13.9 34.5
7,000 27.0 7.18 3.2
5,000 31.9 4.03 35.9
4,000 34.4 2.93 37.3
2,000 42.5 1.23 43.7
1,000 40.0 0.543 40.5

500 39.0 0.255 39.3
100 32.5 0.059 32.6
10 21.1 0.0 21.1

2. TURBULENCE

Gust characteristics specified as a function of the complex variable

(S) = jw are:

(A-3)



L
L)1+ J':;'(;,E S
ng(s) = Ow pr Lw 3 (A-4)
1+ v S
L
[t.)1+43 V—" S
Gvg(s) = av v Lv 2 (a-5)
1+ v S
for h > 1750 feet
L =L =1L = 1750 ft (A-6)
u v W
for 100 < h < 1750 feet
1
= = 3 -
Lu Lv 145 (h) (A-7)
Lw = h (A-8)
for h < 100 feet
1
L =L = 145 (100)° (A-9)
Lw = h (A-10)

When a value for Ou, Ow, and Ov is applied to equations (A-3), (A-4) and (A-5),
the turbulence simulation will provide random gusts having the desired frequency
spectra and having an rms value equal to the specified au, aw and OV. These
sigmas are in turn specified as random variables. For example, at h < 100 feet,
the 3-sigma value of au is 6.8 feet per second. For the simulations performed in
this study, the 2-sigma values of ou, ov and ow were used. Thus, below 100 feet,
o, was (2/3) (6.8) = 4.54 feet per second. The complete specification of ou, 0V

and aw at all altitudes was:

0 <h <100 ft; au = (%) (6.8) = 4.54 ft/sec



100 < h < 60,000 ft; o =(§)<s.24 - 0.720 log10>h

90,000 < h < 600,000 ft; 0 = (%)(135 - 27.259 logm)h

o, and o, are defined from equations (A-6) through (A-10).



