N12-18358

UNITED STATES

DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

INTERAGENCY REPORT NASA-156

GEOGRAPHIC ANALYSIS OF MULTIPLE SENSOR DATA

FROM THE NASA/USGS EARTH RESOURCES PROGRAM

by

CASE FILE COPY

Richard F. Pascucci Gary W. North Rose Anne Albrizian Barry D. Shelkin

Autometric Operation Raytheon Company Alexandria, Virginia

May 1969

Prepared by the Geological Survey for the National Aeronautics and Space Administration (NASA) under contract W-12589, Task No. 160-75-01-32-10. Work performed under USGS/Geographic Applications Program Contract No. 14-08-0001-11505 with Autometric Operation, Raytheon Company.

FOREWORD

This report was prepared by the Autometric Operation of Raytheon Company under U.S. Geological Survey Contract Number 14-08-0001-11505. It represents the results of a study made of multi-sensor imagery acquired by the NASA Earth Resources Aircraft Program for the Geographic Applications Program (GEOGAP) of the U.S. Geological Survey (USGS). Funding was by NASA through USGS.

In addition, to insure that the superstructure of the study rest on as broad a base as possible, frequent recourse was had to Autometric's extensive library of remote sensing imagery.

Work was begun on 15 July 1968 and completed 15 February 1969.

The authors would like to acknowledge their indebtedness, and express their thanks, to: Dr. Greg Butterworth, of IBM, for his contributions to the section, Cost Effectiveness Analysis; Dr. John W. Rouse, Jr., of Texas A & M University, for the section, Analysis of Scatterometer Data; Messrs. Frank R. Perchalski and Richard A. Bradie, of Autometric Operation, for their technical research and editorial contributions, respectively; to Mr. Harry Mallon, of the Office of Emergency Preparedness, for his perceptive comments; to Dr. Arch Gerlach, Mr. John W. Wilson, and Miss Susan Moorlag, of GEOGAP, for their helpful contributions and constructive criticism; and, above all, to Mr. Robert H. Alexander, GEOGAP program administrator, for his continuous, unstinting, and resourceful aid.

The authors:

Richard F. Pascucci - Program Manager Gary W. North Rose Anne Albrizio Barry D. Shelkin - Head, Terrain Sciences Section

Technical Approval

Jay H. Simons

Head, Interpretation and Intelligence Department

ABSTRACT

Qualitative and quantitative analyses were made of multi-sensor data acquired during aircraft missions conducted by the NASA Earth Resources Aircraft Program for the Geographic Applications Program (GEOGAP) of the U.S. Geological Survey. While the principal analysis effort was concentrated on imagery taken during Mission 73 over test sites in Southern California, data were also studied from records acquired on missions over test sites at Phoenix, Chicago, Asheville, and New Orleans. The objectives of the analyses were:

1) to determine the capabilities of ten remote sensors in identifying the elements of information necessary in conducting geographic investigations in land use analysis, urban problems, surface energy budget, and soil moisture;
2) to determine the feasibility of using these sensors for these purposes at orbital altitudes; 3) to collate and analyze ground and air data previously collected and assemble it in a format useful in the accomplishment of cost effectiveness studies.

TABLE OF CONTENTS

Section		Page
1.	INTRODUCTION	1
1.1	Purpose	1
1.2	Objectives	1
1.3	General Approach	1
1.3.1	Land Use and Urban Problems	1
1.3.2	Surface Energy Budget and Soil Moisture	2
1.3.3	Feasibility From Spacecraft	2
1.3.4	Quantitative Analysis of Film Quality	2
1.3.5	Cost Effectiveness Analysis	3
1.4	Background of the NASA Aircraft Program	3
1.4.1	Southern California Remote Sensing Test Operation	8
1.4.2	NASA/USGS Principal Investigator Research Projects	9
1.4.2.1	University of California - Riverside	19
1.4.2.2	University of California - Los Angeles	19
1.4.2.3	East Tennessee State University	19
1.4.2.4	Northwestern University	24
1.4.2.5	University of Kansas	24
1.4.2.6	University of Georgia	28
1.4.2.7	Florida Atlantic University	28
1.4.2.8	Office Of Emergency Preparedness	28
2.	DATA ANALYSIS	34
2.1	Land Use Classification System	34
2.1.1	Objective	34
2.1.2	Approach	34
2.2	Sensor Capability in Land Use Identification	42
2.2.1	Objectives	42
2.2.2	Approach	42
2.2.3	Passive Microwave Imager	52
2.2.4	Diseased Orchard Study (Phoenix)	52
2.3	Sensor Capability in Urban Analysis	62
2.3.1	Objectives	62
2.3.2	Approach	63
2.3.3	Housing Quality Study	63
2.4	Surface Energy Budget and Soil Moisture	76
2.4.1	Objectives	76
2.4.2	Approach	76

TABLE OF CONTENTS (Continued)

2.4.2.1	Measurement of Soil Moisture and Temperature	76
2.4.2.2	Interrelations of Temperature, Photographic	
	Density, and Moisture	79
2.4.2.3	Determination of Qualitative Correlation	
		81
2.5	Feasibility From Spacecraft	96
2.5.1	Objectives	96
2.5.2	Factors Limiting Resolution Obtainable from an	
	Orbiting Photographic System	96
2.5.2.1		01
2.5.2.2		07
2.5.2.2.1		09
2.5.2.2.2		15
2.5.2.2.3	Atmospheric Refraction 1	18
2.5.2.3		18
2.6		21
2.7	Cost Effectiveness Analysis 1	32
2.7.1		32
2.7.2		40
2.7.3	Use of the Cost Effectiveness Matrix 1	.42
2.8	Radal beatterometer bata marybro	.63
2.8.1	Introduction 1	.68
2.8.2	Radat ocatecrometer	.69
2.8.3	TITODION /5 BEAUCICIONICECE EXPERIMENTE !!!!!!!!!!!!	.70
2.8.4	incubatements	.70
2.8.5	initiary of our and the contraction of the contract	7.1
2.8.6	Analysis Results 1	.73
3.	CONCLUSIONS AND RECOMMENDATIONS 1	.84
3.1	Sensor Capability in Land Use Identification and	
	order from that your first the first	.84
3.2	builded biletay budget and boll holbedie	.85
3.3	Feasibility From Spacecraft 1	.86
3.4	Quantitative Analysis of Film Quality	.86
3.5	Cost Effectiveness	86
3.6	Scatterometer Data 1	.87

SUPPLEMENT I (Separate Volume)

LIST OF FIGURES

Figure		Page
1	NASA CV 240A Flight Lines Over Salton Sea Test Sites	10
2	NASA 240A Flight Lines Over Los Angeles Test Sites	11
3A	Examples of Multi-Sensor Data	15
3B	Examples of Multi-Sensor Data	16
3C	Examples of Multi-Sensor Data	17
3D	Examples of Multi-Sensor Data	18
4	NASA/Goddard Passive Microwave Imagery	53
5	Color and Color IR Imagery of a Citrus Grove Under Stress	55
6	Comparative Analysis of a Citrus Grove Under Stress	56
7	Representative Densitometric Trace Across a Row of Citrus Trees	57
8	Distribution of Density Readings Over Orchard	58
9	Spectral Sensitivities of Film Types Used in Diseased Orchard	
10	Study	59
10	Reflectance Properties of Healthy Green Vegetation	61
11	Assumed High Income Housing Blocks	67
12	Assumed Middle Income Housing Blocks	70
13	Assumed Low Income Housing Blocks	73
14	Histogram of Percentile Distribution of Moisture	78
15	Histogram of Percentile Distribution of Temperature	80
16A	Location of Temperature/Moisture Stations Plotted on	0.4
1 (D	Thermal IR Imagery	84
16B	Location of Temperature/Moisture Stations Plotted on	0.5
16C	Thermal IR Imagery	85
100	Location of Temperature/Moisture Stations Plotted on	86
17A	Thermal IR Imagery Thermal IR and Color IR	93
17B	Relative Soil Moisture Content from Thermal IR and Color IR	93 94
17B	Relative Soil Moisture Content from Thermal IR and Color IR	95
18	Relative Soil Moisture Content from Thermal IR and Color IR · · ·	97
19	Point and Line Spread Functions · · · · · · · · · · · · · · · · · · ·	97 97
20	Convolution Process	99
21	Analysis of a Square Wave Into its Fundamental and Harmonics .	99
22	Typical Spread Function with Corresponding Modulation Transfer	2.7
	Function	102
23	Image Geometry	103
24	Modulation Transfer Function for Linear Image Motion	106
25	Modulation Transfer Function of Camera/Film System	108
26	Relative Scatter as a Function of Wavelength for Various	100
	Magnitudes of Atmospheric Haze	111
27	Energy Balance Diagram	112
28	Aerial Contrast Above the Atmosphere As a Function of Solar	112
	Altitude	114
29A	Contrast Attenuation for a Rayleigh Atmosphere	116
29B	Contrast Attenuation for a Rayleigh Atmosphere	116
30	Effect of Near and Far Turbulence on a Sensor	117
		/

LIST OF FIGURES (Continued)

<u>Figure</u>		Page
31	MTF Due to Atmospheric Turbulence at an Altitude of 150 NM	
	and an Effective Turbulent Layer at 75,000'	119
32	Modulation Transfer Function of a 6" Focal Length RC-8 System .	120
33	Modulation Transfer Function of a 1' Focal Length System · · · · ·	122
34	Modulation Transfer Function of a 3' Focal Length System · · · · ·	123
35	Microdensitometer Edge Trace with Relative Exposure Conversion	
	Function	131
36	Average Resolving Power of 6" Universal Aviogon f/5.6 ······	133
37	Light Distribution in the Image Plane of 6" Universal Aviogon	
•	f/5.6 ·····	133
38A	Modulation Transfer Function of RC-8 System · · · · · · · · · · · · · · · · · · ·	134
38B	Modulation Transfer Function of RC-8 System · · · · · · · · · · · · · · · · · · ·	1 35
38C	Modulation Transfer Function of RC-8 System · · · · · · · · · · · · · · · · · · ·	136
38D	Modulation Transfer Function of RC-8 System · · · · · · · · · · · · · · · · · · ·	137
39	Controlled Test Range Targets · · · · · · · · · · · · · · · · · · ·	139
40A	Scatterometer Data, Mission 73, Site 130, Line 5 · · · · · · · · · · · · · · · · · ·	174
40B	Scatterometer Data, Mission 73, Site 130, Line 5 · · · · · · · · · · · · · · · · · ·	175
41A	Scatterometer Data, Mission 73, Site 130, Line 5a · · · · · · · · · · · · · · · · · ·	177
41B	Scatterometer Data, Mission 73, Site 130, Line 5a · · · · · · · · · · · · · · · · · ·	178
42A	Scatterometer Data, Mission 73, Site 130, Line 5b · · · · · · · · · · · · · · · · · ·	180
42B	Scatterometer Data, Mission 73, Site 130, Line 5b · · · · · · · · · · · · · · · · · ·	181
43	Scatterometer Data, Mission 73, Site 130, Line 5b · · · · · · · · · · · · · · · · · ·	183

LIST OF TABLES

<u>Table</u>		Page
I	Sensor Equipment - Convair 240A	4
II	Sensor Equipment - Lockheed Electra NP3A	5
III	Sensor Equipment - Lockheed Hercules C130	6
IV	Sensor Equipment - General Dynamics RB57F	7
V	Flight Schedule of NASA Convair 240A	12
VI	Flight Schedule of Supporting Research Aircraft	13
VII	Sensor Characteristics	14
VIII	Data Collection and Distribution - University of	
	California, Riverside	20
IX	Data Collection and Distribution - University of	
	California, Los Angeles	21
X	Data Collection and Distribution - East Tennessee State	
	University	22
XI	Data Collection and Distribution - Northwestern University	25
XII	Data Collection and Distribution - University of Kansas	26
XIII	Data Collection and Distribution - University of Georgia	29
XIV	Data Collection and Distribution - Florida Atlantic University	30
XV	Data Collection and Distribution - Office of	
	Emergency Preparedness	32
XVI	Land Use Classification Systems Consulted	35
XVII	Land Use Classification System	37
XVIII	Sensor Capability - Land Use	43
XIX	Sensor Capability - Urban Analysis	64
XX	Analysis of High Income Housing - Color	68
XXI	Analysis of High Income Housing - Color IR	69
XXII	Analysis of Middle Income Housing - Color	71
XXIII	Analysis of Middle Income Housing - Color IR	72
XXIV	Analysis of Low Income Housing - Color	74
XXV	Analysis of Low Income Housing - Color IR	75
XXVI	Percentile Distribution of Soil Moisture	77
XXVII	Percentile Distribution of Temperature	79
IIIVXX	Density Readings for Temperature/Moisture Stations	82
XXIX	Temperature as a Function of Moisture	87
XXX	Density as a Function of Temperature	88
XXXI	Density as a Function of Moisture	90
XXXII	Summary of Statistical Parameters	91
XXXIII	Distribution of the Atmosphere with Altitude	109
XXXIV	Sensor Capability at Resolutions Obtainable from Space	124
XXXV	Reflectance and Color Density Measurements	138
XXXVI	Examples of Data Entry	143
XXXVII	Cost Effectiveness Data Entry Form - As Completed by	
•	Principal Investigator	147
XXXVIII	Cost Effectiveness Data Entry Form - As Completed by	
	Graduate Student A	150
XXXIX	Cost Effectiveness Data Entry Form - As Completed by	
	Graduate Student B	151

LIST OF TABLES (Continued)

<u>Table</u>		Page
XL	Cost Effectiveness Data Entry Form - As Completed by Research Assistant C	152
XLI	Cost Effectiveness Data Entry Form - As Completed by Graduate Student D	153
XLII	Cost Effectiveness Data Entry Form - Ship Routing in Arctic Areas	
XLIIIA	Cost Effectiveness Data Entry Form - Irrigation Canal Route Location and Cost Estimation (Preliminary	
	or Feasibility)	162
XLIIIB	Cost Effectiveness Data Entry Form - Irrigation Canal	
	Route Location and Cost Estimation (Detailed)	165

1. INTRODUCTION

1.1 Purpose

The purpose of this report is to present the findings made, and conclusions derived, in the course of analysis of multi-sensor data acquired during NASA Mission 73, over test site 130 in Southern California, and also from Missions 14 and 23 (test site 46, Asheville, N. C.), Mission 19 (test site 29, Phoenix), and Mission 25 (test site 43, Chicago).

1.2 Objectives

The objectives of the study were three: 1) to analyze the data, both qualitatively and quantitatively, from ten sensors, nine of which have been used in NASA missions, in order to determine their capability in identifying the elements of information required to conduct studies in land use analysis, urban problems, surface energy budget, and soil moisture; 2) to determine the feasibility of using these sensors from an orbital platform; and 3) to devise a cost-effectiveness format by means of which the Principal Investigators within the NASA Earth Resources Program can enter their data requirements, to which they have assigned weighted values, and, by comparing these with their weighted estimates of the utility of sensors and sensor combinations to acquire these data, arrive at a numerical effectiveness of each sensor set.

1.3 General Approach

1.3.1 Land Use and Urban Problems

For these two portions of the analysis, detailed lists were drawn up of the elements of information that would have to be identified on the sensor records in order to carry out the geographic studies in land use and urban problems. In a study of housing quality, for example, elements of information might include such parameters as the presence of litter, the condition of roadways, the building density, and many others. Once determined, these elements were placed in the column dimension of a two-dimensional matrix, and the sensors most used by the Principal Investigators were placed in the row dimension. The object of analysis, then, was to determine how each sensor performs in providing the information needed. In the earlier phases of the program, each analyst searched the imagery from each sensor and recorded whether or not it: 1) can identify; 2) cannot identify; or 3) can identify sometimes, in part, or relatively, each element of information. In the later phases, the sensors were ranked, by a majority decision of the analysts, on a scale of excellent, good, fair, poor, or unusable.

It was found in the course of the investigation that it was a useful heuristic procedure to actually conduct a study, such as housing quality determination, rather than to search the imagery at random. This method served to limit and direct the search and to reveal, empirically, elements of information that

might have been overlooked when the lists of elements were compiled.

1.3.2 Surface Energy Budget and Soil Moisture

The positions of soil temperature and moisture measurements made during Mission 73 were plotted on a photo mosaic base map and subsequently transferred to the thermal infrared imagery that was acquired concurrently with the ground data.

It was originally intended to use positive transparencies of the thermal IR for making densitometric measurements of the ground test stations with a microdensitometer, and to attempt to relate the photographic density to soil temperature and moisture content. However, since the transparencies were not available, density was measured on the available positive prints with a calibrated photographic gray step tablet. From these data were computed the relationships: 1) photographic density as a function of temperature; 2) photographic density as a function of moisture.

1.3.3 Feasibility from Spacecraft

The purpose of this section is to explore a method for determining the resolution to be expected from a sensor orbiting the earth at one hundred and fifty nautical miles. (Resolutions obtainable at other altitudes can be computed by substituting the desired altitude in the appropriate equation.) The methodology has been kept as general as possible. The sensor under primary consideration was the NASA RC-8, and the resolution obtainable was derived using a lens system with a nominal resolution of 50 lines/mm. Other remote sensing systems may be likewise evaluated using the method outlined by inputting their modulation transfer function (MTF refers to the mathematical expression that describes the trans-(MTF) curves. formation of information that takes place between the input and the output of a system.) The effects of different altitudes can be evaluated by changing image motion and turbulence parameters. Substitution into the method of a detector other than film would allow the evaluation of telemetered data systems. Color systems, either film or television, may be evaluated by determining the spectral response in each waveband under consideration. This is accomplished by inputting the spectral contrast attenuation of the atmosphere, the wavelength modulation of the lens and the spectral response of the film layers or detectors.

1.3.4 Quantitative Analysis of Film Quality

In the section on quantitative analysis it was attempted to derive the original resolution of the RC-8 camera using a method of edge gradient analysis. A black-and-white negative transparency was made from the imagery supplied and developed with the requisite sensitometric exposure. From this reproduction it was possible to derive the MTF of the camera/film system. The data generated, however, represents a third generation of information degradation (IR Ektachrome on color Ektachrome on Dupont 228)

It was also attempted to correlate density measurements with ground truth reflectances.

1.3.5 Cost Effectiveness Analysis

In conjunction with Dr. G. S. Butterworth, Manager of IBM's Operations and Economics Analysis Department, Gaithersburg, Maryland, a cost effectiveness format was designed that would allow the Principal Investigators under contract to GEOGAP to arrive at a quantitative economic measure of the utility of selected remote sensors in providing data useful to geographers. By asking each of the Investigators, first, to list the specific geographic information elements they were interested in studying; second, to rank these elements as to their relative importance to each other; and finally, to assess the effectiveness of each NASA sensor or sensor combination in providing that information, an overall sensor effectiveness ratio was calculated. Then, when the operational costs incurred in obtaining the data are known, as well as the other costs incidental to acquiring the film, sensors and finished products, a cost effectiveness comparison can be accomplished for each sensor alternative.

1.4 Background of the NASA Aircraft Program

The NASA Aircraft Program is part of the NASA Earth Resources Survey Program (ERSP), whose national objectives are to:

Determine earth resources data that can be usefully acquired from space;

Develop the best combination of instrument subsystems and procedures to acquire data for studies in:

Geography Hydrology
Geology Oceanography
Forestry Cartography
Agriculture

To help meet these objectives, NASA organized the Earth Resources Aircraft Program, now located at Ellington Air Force Base, Texas, as part of the Earth Resources Division under the Director of Science and Applications, of Manned Spacecraft Center, Houston, Texas. The group maintains and operates three aircraft equipped with a variety of remote sensing and data collection devices. Descriptions of the aircraft and their respective sensors appear in Tables I, II, III, and IV.

The Aircraft Program is structured to support Principal Investigators, who are selected by various agencies, such as USGS and USDA, to serve as directors of the research carried out under the Earth Resources Program. The funding of the remote sensing research efforts and the acquisition of the data are all handled by NASA. Each Investigator selects certain test site areas that are representative of the type of investigation he is interested in pursuing and requests flights over these sites by means of a flight request form that has been completed and approved prior to its arrival in Houston. Flight time allocations are made at

TABLE I

SENSOR EQUIPMENT - CONVAIR 240A

The Convair 240A is a low-altitude (1,500 to 15,000 feet) aircraft

Instruments	Spectrum	Format	Resolution	Field of View
Reconofax IV infrared imager	8 to 14µ	70mm film	;	
Itek multiband camera ^a	0.4 to 0.9µ	2 1/4" x 2 1/4" film	50 lines/mm	18° by 18°
RC-8 metric camera (2)	0.4 to 0.9µ	9" x 9" film	48 lines/mm	74° by 74°

 $^{
m a}$ Itek multiband camera and the 2 RC-8 cameras cannot be used simultaneously.

TABLE II

SENSOR EQUIPMENT - LOCKHEED ELECTRA NP3A

The Lockheed Electra NP3A is a medium-altitude (1500 to 25,000 feet) aircraft

Instruments	Spectrum	Format	Resolution	Field of View
Dual-channel infrared imager	0.3 to 5.5µ 8.0 to 14 µ	70mm film Magnetic tape	3 ft at 1000 ft alt	.08
Infrared spectrometer	6.5 to 13µ	Magnetic tape	6 ft at 1000 ft alt	0.4° by 0.4°
Infrared radiometer	10 to 12µ	Magnetic tape	6 ft at 1000 ft alt	0.4° by 0.4°
400-MHz scatterometer	400 MHz	Magnetic tape	3° by 3°	120° by 3°
13.3 GHz scatterometer	13.3 GHz	Magnetic tape	0.01° in flight direction	120° by 3°
1.6 GHz scatterometer	1.6 GHz	Magnetic tape	3° across flight line	
16.5 GHz side-looking air- borne radar (SLAR)	16.5 GHz	Film	50 ft	2° by 56°
Multiple-frequency micro- wave radiometer	1.4;10.2;22.2; 22.3;32.4 GHz	Magnetic tape		1.4 GHz - $16^{\circ \pm}$ 0.5° others - 5° ± 0.2°
RC-8 metric cameras (2)	0.4 to 0.9µ	9 by 9-in film	48 lines/mm	74° by 74°
Modified KA26 camera cluster (4)	0.4 to 1.0µ	5 in film	53 lines/mm	74°

TABLE III

SENSOR EQUIPMENT - LOCKHEED HERCULES C130

The Lockheed C130 is a medium-altitude (1,500 to 25,000 feet) aircraft

Instruments	Spectrum	Format	Resolution	Field of View
RS-7 infrared imager	8 to 14µ	70mm film	ŀ	1
13.3 GHz scatterometer	13.3 GHz	Magnetic tape	3° by 3°	120° by 3°
Multiband camera	0.4 to 0.9µ	1	1	;
RC-8 metric camera (2)	0.4 to 0.9µ	9 by 9" film	48 lines/mm	74° by 74°
16.5 GHz side-looking airborne radar (SLAR)	16.5 GHz	Film	, 50 ft	2° by 56°

 $^{\mathrm{a}}$ To be determined

TABLE IV

SENSOR EQUIPMENT - GENERAL DYNAMICS RB57F

The RB57F is a high-altitude (greater than 50,000 feet) aircraft

Instruments	Spectrum	Format	Resolution	Field of View
RS-7 infrared imager	8 to 14µ	70mm film	ı	
RC-8 metric cameras (2)	0.4 to $0.9_{ m L}$	9 by 9-inch film	48 lines/mm	74° by 74°
Infrared spectrometer	6.5 to 13μ	Magnetic tape	6 ft. at 1000 feet alt.	0.4° by 0.4°
Infrared radiometer	10 to 12μ	Magnetic tape	6 ft. at 1000 feet alt.	0.4° by 0.4°
Multiband camera	0.4 by 0.9µ			

^aTo **be** determined

quarterly mission planning meetings, and copies of the acquired data are returned to the investigators after the flight has been accomplished and the data processed at the Manned Spacecraft Center (MSC). The investigators are required to submit a "Quick Look" review of the mission data and a 90 day report on research activities. Papers and technical reports are then produced when conclusions have been reached or contracts terminated.

1.4.1 Southern California Remote Sensing Test Operation

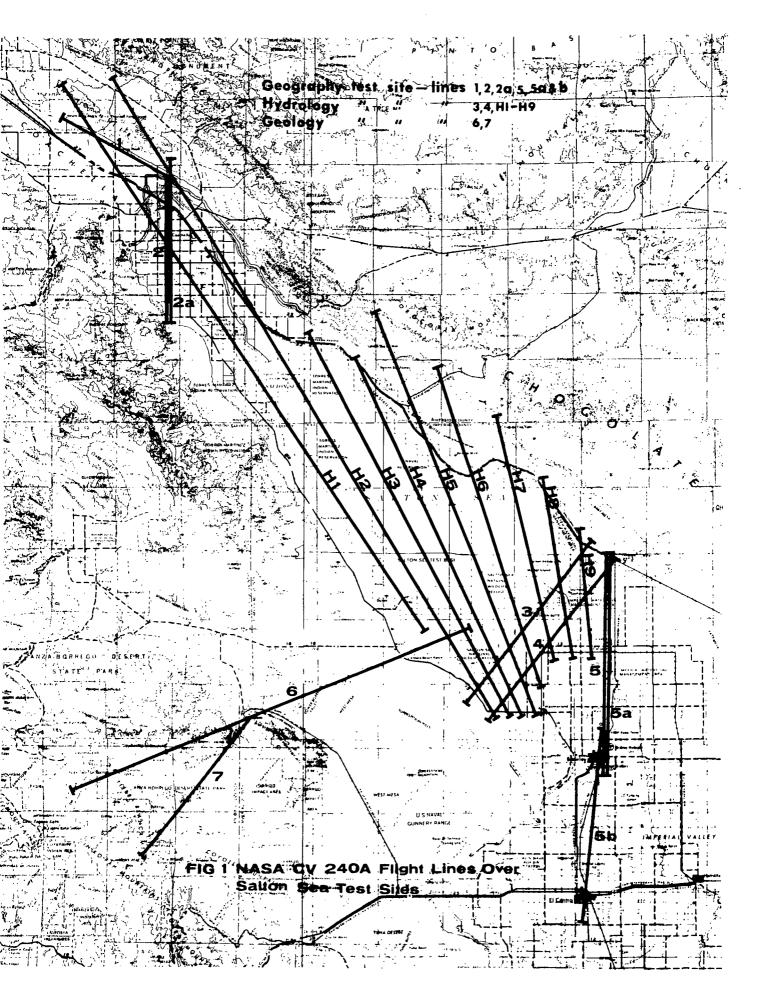
During the spring of 1968, USGS and NASA conducted a multi-disciplinary (Geography, Geology, Hydrology) remote sensing test program in Southern California. A series of flights, designated Mission 73, was carried out over the Los Angeles Basin, the Indio Hills, the Coachella Valley, the Imperial Valley, the Salton Sea, and the Anza-Borrego Desert. This report is concerned only with the Geographic Applications Program (GEOGAP) sites in Los Angeles, the Coachella Valley and the Imperial Valley.

The objectives of the GEOGAP exercise were:

- to define the scientific and economic benefits to be derived from examining the resources of a region by means of remote sensors;
- to acquire data by means of airborne sensors over an area the properties of which were being measured on the ground;
- 3) to demonstrate the cost/time effectiveness realized by acquiring and studying a single set of data for use by more than one team of Investigators for more than a single discipline;
- 4) to make recommendations on the scientific use of sensors in future space experiments; and
- 5) to serve as a field demonstration of remote sensing data acquisition, correlative ground data acquisition, and preliminary data analysis techniques for the NASA International Participation Program for visiting Mexican and Brazilian scientists.

The specific goals of the Mission 73 tests were to correlate multisensor and ground truth observations and evaluate the feasibility of sensors and sensor combinations as data-gathering components in aircraft (and eventually spacecraft) in four areas of emphasis: 1) land use; 2) urban problems; 3) surface energy budget; and 4) soil moisture. Two contrasting areas were selected for concentration of effort. One was a cross-section of Metropolitan Los Angeles, containing residental developments of wide range and quality, industrial areas, commercial districts, a variety of transportation facilities, and a classic locale for air pollution. The second was an area of irrigation agriculture, small towns, and desert in the Coachella and Imperial Valleys surrounding the Salton Sea,

about 100 miles inland from the Pacific coast. 1


Figures 1 and 2 illustrate the areas of interest, Tables V and VI show the flight schedules for the prime NASA/MSC aircraft and other supporting aircraft, and Table VII lists the characteristics of the sensors flown. Examples of multi-sensor data collected by the aircraft involved in the Southern California operations are shown in Figures 3A through 3D. For a complete summary of Mission 73, see Technical Letter, NASA-132, entitled MISSION 73 SUMMARY AND DATA CATALOG, by Richard F. Pascucci and Gary W. North of Raytheon Autometric Company.

1.4.2 NASA/USGS Principal Investigator Research Projects

Founded in January 1965 as part of the Department of the Interior's program for the utilization of remote sensing data, GEOGAP received its first operational funds from NASA in June of 1966. The program was designed to determine the potential applications of data derived from space observational vantage points and to investigate the capability of remote sensor technology for the study of geographic phenomena. The program is administered by a three-member staff under the Office of the Chief Geographer, with research being conducted by Geography departments at various colleges and universities across the country. Additional work is conducted by the Association of American Geographers (AAG). In this report, however only the following Principal Investigators and institutions will be dealt with:

Dr. Leonard W. Bowden	University of California Riverside
Dr. Norman J. Thrower	University of California Los Angeles
Dr. David S. Simonett	University of Kansas
Dr. Duane F. Marble	Northwestern University
Dr. Robert W. Peplies	East Tennessee State University
Dr. Merle C. Prunty, Jr.	University of Georgia
Dr. James P. Latham	Florida Atlantic University
Mr. Harry Mallon	Office of Emergency Preparedness

¹Leonard W. Bowden and Robert H. Alexander, "Geographic Remote Sensing Tests in Southern California, Spring 1968," in MISSION 73 SUMMARY AND DATA CATALOG, by Richard F. Pascucci and Gary W. North, (Alexandria, Virginia. August 1968).

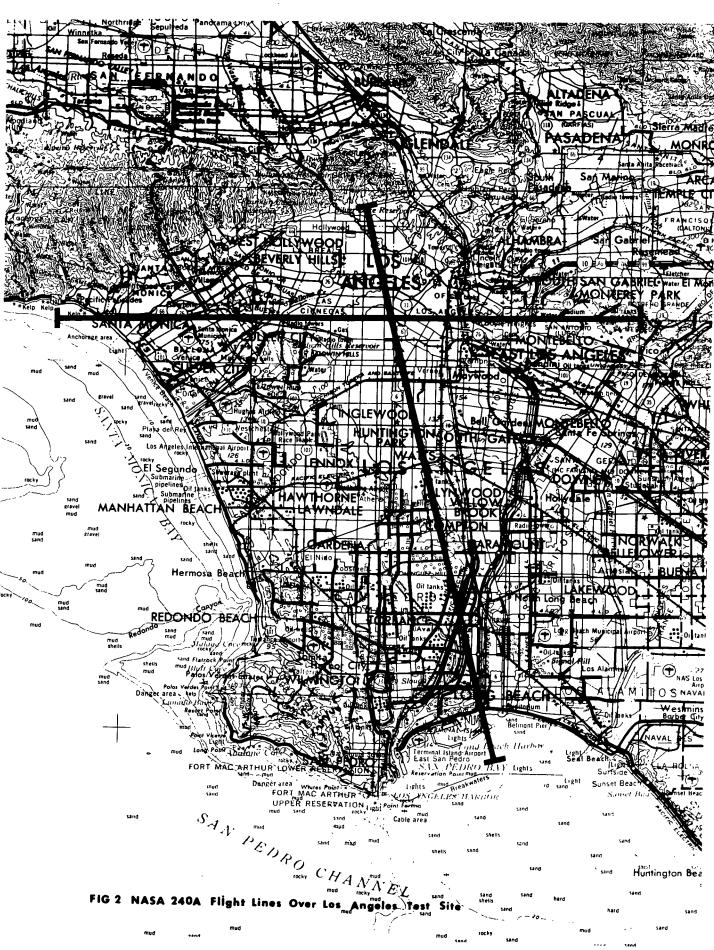
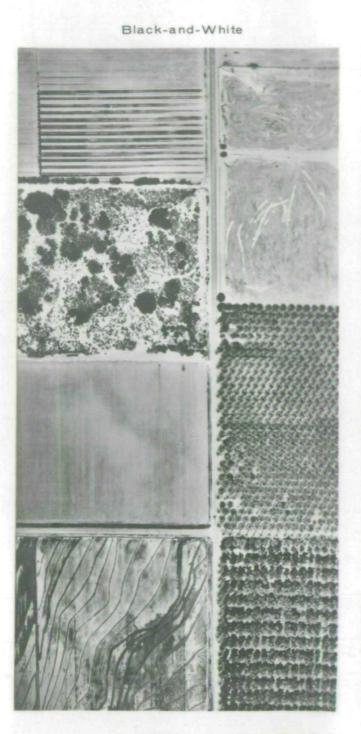


TABLE V

FLIGHT SCHEDULE OF NASA CONVAIR 240A

	SENSORS	Scatterometer Radiometers (MR62, MR64) Hasselblads (8442EKTO & 8443IR) RC-8 (B&W, Color IR) Reconofax IV 8-14m AAS-5	Reconofax IV Radiometers AAS-5 Scatterometer	Reconofax IV Radiometers AAS-5 Scatterometer	Reconofax IV Radiometers (H-1 to H-3) AAS-5 Scatterometer	Reconorax 1V Radiometers AAS-5	RC-8 Hasselblads (8442 and 8443) Reconofax IV Radiometers AAS-5
	ALTITUDE	2,000' (6 & 7 at 6,000')	6,000'	,000,	6,000'	. 000.6	N-S 3,000' E-W 3,000'
•	FLIGHT LINES	1, 2, 2a, 5, 5a, 5b, 6, 7, 3, 4	6, 7, 1, 2, 6, 7 (Mission cancelled after first two passes (6 & 7) because of IR scanner malfunction)	6, 7, 1, 2, 6, 7	to H-9)	o, /, 1, 2, 0, /	Los Angeles lines
	TIME	1108 to 1358 L	1845 to 2110 L	1853 to 2055 L	2324 to 0139 L	0438 to 0630 L	1152 to 1920 L
	DATE	Tuesday, May 21	Wednesday, May 22	Thursday, May 23	Thursday/Friday May 23/24		Friday, May 24

			TABLE VI		
	FLI	FLIGHT SCHEDULE OF	SUPPORTING RESEARCH AIRCRAFT	AIRCRAFT	
AIRCRAFT	DATE	TIME	FLIGHT LINES	ALTITUDE	SENSORS
Barringer Research Ltd.	Tuesday, May 21	1245 - 1410	1	Restricted because of low-lying clouds	Absortion Spectrometer
Aircraft	Wednesday, May 22	0830 - 1035	1, 2, 3, 4, 6		
	Thursday, May 23	1205 - 1435 $1630 - 1800$	1, 2, 3, 4, 5, 6	1	
	Friday, May 24	1 1	7, 8	1,000' - 10,000'	
		NOTE:	line numbers	refer	
			only to barringer filts over Los Angeles area.	ilts irea.	
Hugh E. Gall aher Inc. Apache	April 26 May 13	Daytime	Coachella and Imperial Vallevs	10,000' & 20,000	12" Aerial Mapping Camera - Color IR
		l	Los Angeles	l	
	May 21	1000 - 1330	~	10,000' & 2,000'	\circ
			6, 7		Camera, Hasselblads, 12" Aerial Camera
	May 24	1500 - 1630	Los Angeles	10,000'	Same
	June 10	Daytime	Coachella and	20,000	12" Aerial Mapping
	- 1		Imperial Valleys		Camera
	June 12	Ѕате	Same		Same
NASA/Goddard Convair 990	June 5	Daytime	Coachella and	12,000' - 37,000'	Imaging Microwave
	June 7	Same		50'-37.000'	MRIR, Color IR.
	June 11	Ѕаше	Los Angeles	Same	Aero Ektachrome
		Daytime	Coachella Valley	Variable	DVC 2400 Television Camera and 35mm Cameras
Private Aircraft	May 71	Moses in a	1.1	1000	- 1
Chartered by Dr. D. Marble		Morning	90	.0001500.	Lomm Movies, 35mm Color IR, 35mm Ektachrome
Colorado State Univ. Aerocommander	June 5 June 7	Daytime Daytime	Coachella and Imperial Valleys	50'-22,000'	Particle counter, Barnes IT-3 IR Thermometer


East Tennessee Base and U. of Base NASA/MSC Data NASA/MSC Data NASA/MSC Data NASA/MSC Data NASA/MSC Data NASA/MSC Data Barringer Research Ltd U. of Calif. LOCATION (Riverside) NASA/GSFC NASA/GSFC Tennessee NASA/GSFC NASA/GSFC State Base Base Base Base and magnetic Strip Chart Strip chart Strip Chart 9 x 9" Film o x 9 film FORMAT Magnetic Tape 35mm Film 70mm film Magnetic Tape Recorder Magnetic Tape tape 70mm Figures of merit not available at time of publication FIELD OF VIEW Grazing angle from 0-45° Variable with 3°; grazing angle + 60° from nadir zoom optics by 74° Unknown 140^{6} 55 74° **8**0° 480 50° SENSOR CHARACTERISTICS Greater than See Appendix L for description 400 TV lines RESOLUTION 48 Lines/mm Approx. 50 L/MM 2.5°-2.9° Beam width Applicable TABLE VII 3° by 55 km $1^{\circ}K$ Not Infrared 62: 9.3; 34.0 2900 to 5000A 64:15.8; 22.2 GHz Photographic Photographic 0.4 to 0.9 µ SPECTRUM Ultraviolet Visible and Visible and 19.35 GHz 8 to 14µ 13.3 GHz 4-6.9π [nfrared Visible 0.2-4 μ $10-11\mu$ 14-16µ 5-30 μ GHz Bausch & Lomb Research Ltd COMP ANY HRB Singer **Hasselblad** HRB Singer Barringer Heerburgg Raytheon Aerojet General Barnes Ryan DVC 2400 Television Sony Wild W IT-3 IR Thermometer inch Aerial Camera Imaging Microwave Conventional 12-Infrared Scanner Particle Counter Scatterometer Camera Reconofax IV Spectrometer NASA/Goddard SENSOR Ultraviolet RC-8 Metric Nimbus MRIR MR62, MR64, Absorption Radiometer Hasselblad Microwave 13.3 GHz Imagery Camera Camera AAS-5

Geographic Sensor Systems

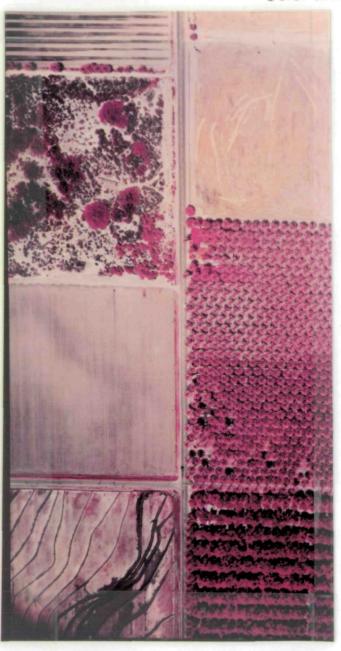
...RC-8 Black-and-White and Color Imagery

NASA/USGS Mission #73 21 May 1968 Test Site #130 Jackson Street Flight Line Scale 1:4,000

NASA/USGS Mission #19 15 February 1966 Test Site #29 Phoenix Pass #12 Scale 1:4,700

Color Ektachrome (8442)

FIGURE 3A: EXAMPLES OF MULTI-SENSOR DATA

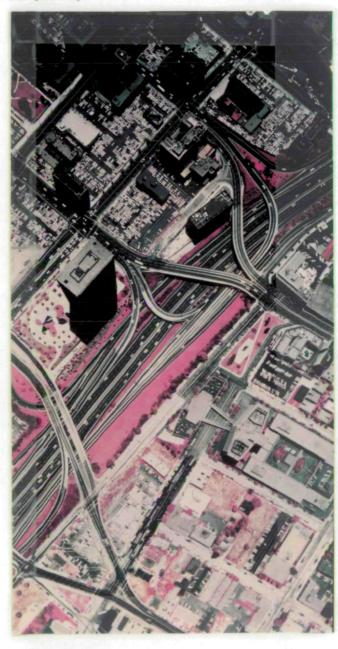

Geographic Sensor Systems

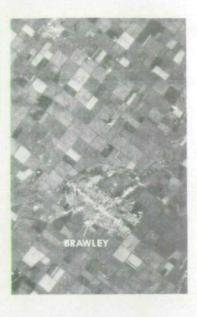
...RC-8 Color Infrared Imagery

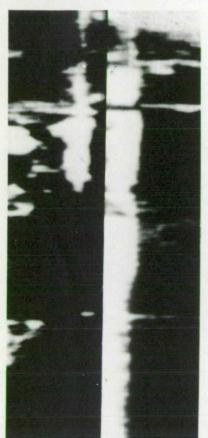
NASA/USGS Mission #73
21 May 1968
Test Site #130
Jackson Street Flight Line
Scale 1:4,000

NASA/USGS Mission #73 24 May 1968 Test Site #130 Los Angeles Pass #1 Scale 1:5,200

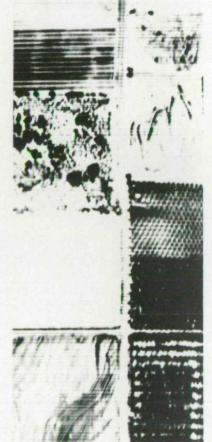
Color Infrared (8443)





FIGURE 3B: EXAMPLES OF MULTI-SENSOR DATA


Geographic Sensor Systems

...NASA Goddard Imaging Microwave Radiometer, Side-Looking Radar (SLR), AAS-5 Ultraviolet Scanner, and Reconofax IV Thermal Infrared Scanner


SLR (X-band) 21 May 1968 Imperial Valley Scale 1:186,000

AAS-5

RFX-IV 8-14µ

NASA/USGS Mission #73
21 May 1968
Test Site #130
Jackson Street Flight Line
Scale 1:6,100

Radar Scatterometer as an Indicator of Land Use

... A Graphic Correlation of Scatterometer Return with Land Use/Vegetation

USGS/NASA Mission 73 Jackson Street Flight Line

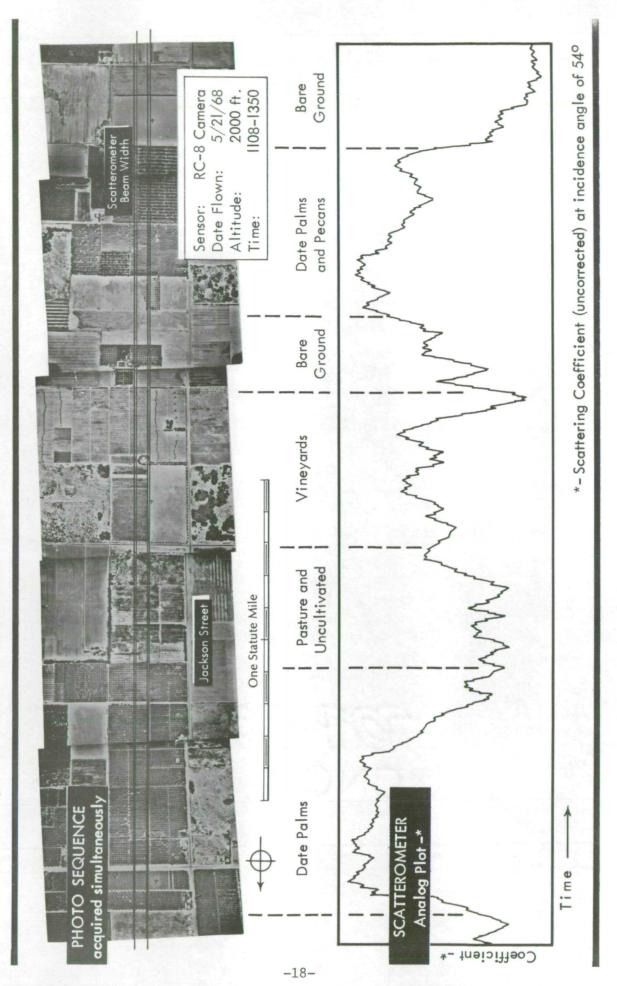


FIGURE 3D: EXAMPLES OF MULTI-SENSOR DATA

1.4.2.1 University of California - Riverside

At the University of California, Riverside (UCR), work is under way in the areas of regional studies, land use classification, soil moisture, surface energy budget, urban studies and vegetation mapping. Dr. Leonard Bowden directs the research at NASA Test Site #130 (Southern California), which was established because of its physical and cultural diversity, its critical resource problems and its high proportion of days having excellent flying weather throughout the year. Several NASA, military and commercial flights have been flown over this site, producing, perhaps, the most valuable source of data for study within the GEOGAP program. These data have also been supplemented by Gemini and Apollo photography, which makes this test site unique. Members of the UCR staff have pioneered in tests of the Kodak color infrared film (8443) for land use and housing quality studies, and the results of their film/filter combination tests are providing the data being used to construct a computerized land use classification system for the Imperial and Coachella Valleys. They are also conducting investigations in the areas of air pollution and the analysis of the effects of man on the environment of Southern California. See Table VIII for status of data pertaining to this Investigator.

1.4.2.2 University of California - Los Angeles

Students under Dr. Norman Thrower at UCLA are working on two projects. The first involves the development of a land use classification system for use in the study of urban environments, and the second is the Space Mosaic Land Use Mapping Project of a portion of southwestern United States. This work is being done with Gemini IV and V photographs, and the resulting 1:250,000 Fand use maps will soon be completed. These maps will then be analyzed and updated with information derived from the more recent Apollo coverage of the area. See Table IX for status of data pertaining to this Investigator.

1.4.2.3 East Tennessee State University

The Principal Investigator at East Tennessee State University (ETSU) is Dr. Robert Peplies. His work is primarily concerned with discovering the benefits that can be derived from remote sensing devices for regional analysis in the Asheville Basin of North Carolina. This area has been designated NASA Test Site #46 and was selected as being representative of a rural based economy with a wide variety of land uses. Specific studies of the area include work on rural settlement farms, population and economic traits, regional assemblages of economic-cultural types, slope failure forms, delineation of rock types from topographic expression, a study of ponds in the area, terrain morphometrics, and cultural data.

The Geography department at ETSU is unique in that it has its own Sony DVC 2400 television cameras and tape system. This unit was used during Mission 73 and, when exploited to its full advantage, could prove to be a valuable tool for the overall GEOGAP program. See Table X for status of data pertaining to this Investigator.

TABLE VIII

DATA COLLECTION AND DISTRIBUTION UNIVERSITY OF CALIFORNIA AT RIVERSIDE

Remarks								350 Frames of Hasselblad 8443 (filtered)	1 roll each APQ-102 and	AFS-94 Radar NASA/GODDARD microwave data and TV data from E. Tenn. State
Data Analyzed By Autometric						***		×	×	×
Data Dis- tributed By NASA*		×		××	×	×××				
Quantity	50' 40' 1 Reel		1 Strip	60° 50°	375' 75' 5 Reels	432' 450' 200' 70' 60' 10 Stribs	Several Reels			
Format	70mm 35mm	9" 70mm 35mm	_	1.6	9", 70mm	9" 9" 70mm 35mm 35mm				
Film	Tri-X Plus-X	8443 Tri-X Plus-X		8443	8443 5489	8401 8443 Tri-X Tri-X Plus-X	_			
Data Collected	Reconofax IV Nikon Data Panel Magnetic Tape Data	RC-8 Reconofax IV Nikon Data Panel Microwave Radiometer Strip	Charts	RC-8 RC-8	RC-8 RS-7 Magnetic Tape Data	RC-8 RC-8 Reconofax IV AAS-5 Nikon Data Panel Microwave Radiometer Charts	Magnetic Tape Data			*As indicated by NASA/MSC Records (Sep 68)
Mission	8/1/66	8/8,		3/8/67	9/6, 7-9/ 67	5/21- 24/68				
W	28	29		42	56	73				

TABLE IX

DATA COLLECTION AND DISTRIBUTION UNIVERSITY OF CALIFORNIA AT LOS ANGELES

Remarks							,		
Data Analyzed By Autometric**	×	×	×						
Data Dis- tributed By NASA*	×	×	×						
Quantity									
Format	7 Omm	7 Omm	7 Omm	 		 			
Film									
Data Collected	Hasselblad Photographs	Hasselblad Photographs	Hasselblad Photographs	*As indicated by NASA/MSC Records (Sep 68)	**Viewed by Autometric Personnel at UCLA				
Mission	Gemini IV	Gemini V	Apollo	 			 		

TABLE X

DATA COLLECTION AND DISTRIBUTION EAST TENNESSEE STATE UNIVERSITY

Remarks			AAS-5 Distributed but not listed as being colected
Data Analyzed By Autometric	×××	$\bowtie \bowtie \bowtie \bowtie$	
Data Dis- tributed By NASA*	×××	****	× ×××
Quantity	500' 135' 60' 285' 200' 5 Reels	1500' 50' 150' 150' 10' 4 Reels	1600' 800' 525' 150' 100' 40' 160' 17 Strips 4 Reels
Format	70mm 9" 9" 9" 35mm	70mm 9" 9" 9" 70mm	70mm 70mm 9" 9" 70mm 35mm 35mm
Film	Plus-X 8442 Dup.Pos. 8443 Plus-X	Plus-X Tri-X 8442 8443	Plus-X 8442 8443 TX-475 TX-417 Plus-X
Data Collected	Multi-Band IR RC-8 RC-8 RC-8 Nikon Data Panel Magentic Tape Data (Radiometer)	Multi-Band IR RC-8 RC-8 RC-8 Reconofax IV Magnetic Tape Data: (Radiometer)	Multi-Band Multi-Band IR RC-8 RC-8 Reconofax IV AAS-5 Nikon Data Panel Microwave Radiometer Charts Magentic Tape Data (Radiometer) *As indicated by NASA/MSC Records (Sep 68)
nolssi ^M	11/15,	5/7, 10,19/ 66	10/10 -14 66
IW	14	23	34

TABLE X (Cont'd)

DATA COLLECTION AND DISTRIBUTION EAST TENNESSEE STATE UNIVERSITY

Remarks			Other multi-band and RC-8 imagery without logs or annotations			
Data Analyzed By	מחרסווופרדזר		×			
Data Dis- tributed By NASA*						1-
Quantity	25'	304				
Format	6	6			 	
Film				 		
Data Collected	APQ-97	APQ-97		*As indicated by NASA/MSC Records (Sep 68)		
MISSION Date	84w 9/15/	106w 11/10/ 65				

1.4.2.4 Northwestern University

The NASA Test Sites used for urban studies are Los Angeles (Site #130), Phoenix (Site #29), New Orleans (Site #132) and Chicago (Site #43). The Principal Investigator responsible for directing activity on these sites is Dr. Duane Marble, head of the Remote Sensing Laboratory at Northwestern University.

The research conducted by Dr. Marble and his students involves investigations into the problems of urban centers and the ways in which remote sensing may prove valuable in providing data relevant to these problems. They are studying such things as the spatial relationships that play a major role in establishing the physical and functional structure of the city, the complex interactions of urban subsystems, the activities of urban planners, the lack of pertinent and reliable data about urban systems, the problems of our transportation systems, urban land use, the formulation and testing of urban models, the quality of the residential environment, air and water pollution, cost effectiveness of airborne and ground based data collection methods, movement dynamics, spectral signature versus pattern recognition, and information systems.

During Mission 73, Dr. Marble's research teams did extensive ground checking of urban sectors in Los Angeles to be used in validating information extracted from the NASA/MSC remote sensing systems. These data will be checked against data collected by such agencies as HUD, Bureau of Public Roads, Community Analysis Program of Los Angeles County Planning Commission, the U.S. Census Bureau, and others. Similar efforts have taken, or will take, place in other regional urban centers selected for study. See Table XI for status of data pertaining to this Investigator.

1.4.2.5 University of Kansas

NASA Test Sites #76 (Garden City, Kansas), #85 (Lawrence, Kansas) and #159 (Horsefly Mountain, Oregon) are administered by Dr. David Simonett, of the Center for Research in Engineering Science (CRES) at the University of Kansas.

Site #76 is a prime calibration test site for the radar and scatterometer sensor experiments. Investigations are under way in studying the influence of such crop parameters as type, height, percent ground cover, moisture content, row direction, and of the soil parameters, moisture and roughness, on the returns of side-looking radar. The site is being used to provide data for thematic land use mapping and for crop probability distribution through time. The site will eventually be used for spacecraft calibration tests.

Site #85 was selected for use in the thematic land use mapping program and also for studies relating to the discrimination of interfaces between grass, trees, cultivated land, woodland, and urban areas.

As stated in the NASA flight request form, the studies at site #159 are directed specifically to testing the value of radar in vegetation probabilistic studies, in statistical vegetation recognition, in thematic land use mapping, and, finally, in testing the degree to which radar and other sensors may usefully supplement and complement one another in land use studies. See Table XII for status of data pertaining to this Investigator.

TABLE XI

DATA COLLECTION AND DISTRIBUTION NORTHWESTERN UNIVERSITY

Remarks				Other Multi-Band RC-8 imagery without logs or film annotations	*As indicated by NASA/MSC Records (Sep 68)
Data Analyzed By Autometric		× × ×		X Other image	*As i NASA
Data Dis- tributed By NASA*	×××	×××××	×××	×	
Quantity	750' 75' 150' 150' 100'	750' 450' 300' 300' 55' 15' 75'	500' 250' 150' 25' 25' 25'	1 Ree1	421
Format	70mm 9'' 9'' 9'' 35mm	70mm 9" 9" 70mm 35mm 35mm	70mm 70mm 9" 70mm 35mm	- 6	6
Film	Plus-X Tri-X 8442 8443 Plus-X	Plus-X Plus-X 8442 8443 Tri-X Plus-X	Plus-X 8443 TX-475 TX-417 Plus-X		
Data Collected	Multi-Band IR RC-8 RC-8 RC-8 Nikon Data Panel Magnetic Tape (Radiometer)	Multi-Band IR RC-8 RC-8 RC-8 Reconofax IV AAS-5 Nikon Data Panel Magentic Tape (Radiometer)	Multi-Band Multi-Band IR RC-8 Reconofax IV AAS-5 Nikon Data Panel	(Radiometer) APQ-97	APQ-97
MIssion	11/19/ 65	6/ 29- 30/66	9/15/ 66	10/10	7/26/
TW	14	25	31	87w	126w

TABLE XII

DATA COLLECTION AND DISTRIBUTION UNIVERSITY OF KANSAS

Remarks		Data indicated as being distributed is not listed as being collected during this mission.	,	Multi-Band		s are t
Data Analyzed By Autometric						
Data Dis- tributed By NASA*		×	××× ;	×××××	×××	
Quantity			75' 20' 75' 15'	900' 450' 275' 100' 30' 50' 430'	400' 400' 50' 22' 30' Several Reels	
Format			9" 70mm 35mm 35mm	70mm 70mm 9" 70mm 35mm 35mm	9" 9" 35mm 35mm	
Film			8443 TX-475 TX-417 Plus-X	Plus-X 8443 Tri-X Tri-X Plus-X 5401	8442 8443 Tri-X Tri-X Plus-X	
, Data Collected		None Collected For This Site	RC-8 Reconofax IV AAS-5 Nikon Data Panel	Multi-Band Multi-Band IR RC-8 Reconofax IV AAS-5 Nikon Data Panel T-11	RC-8 RC-8 Reconofax IV AAS-5 Nikon Data Panel Magnetic Tape (Radiometer)	*As indicated by NASA/MSC Records (Sep 68)
MISSION Date	#76:		8/5,7/	11/13-	6/17, 19/68	
W	Site	32	54	61	74	

TABLE XII (Cont'd)

DATA COLLECTION AND DISTRIBUTION UNIVERSITY OF KANSAS

Remarks				Multi-Band			
Data Analyzed By Autometric							1
Data Dis- tributed By NASA*				×× ×		×××	
Quantity	321	30,		75' 60' 75' 15'	900' 450' 100' 100' 30' 50' 3 Strips	160' 25' 15' 15' Several Reels	10,
Format	6	6		9" 70mm 35mm 35mm	70mm 70mm 9" 35mm 35mm	9'' 70mm 35mm 35mm	,,6
Film				8443 TX-475 TX-417 Plus-X	Plus-X 8442 Tri-X Tri-X Plus-X	8442 Tri-X Tri-X Plus-X	
 Data Collected	APQ-97	APQ-97		RC-8 Reconofax IV AAS-5 Nikon Data Panel	Multi-Band Multi-Band IR RC-8 Reconofax IV AAS-5 Nikon Data Panel Microwave Radiomenter Chart	RC-8 Reconofax IV AAS-5 Nikon Data Panel Magentic Tape	APQ-97 *As indicated by NASA/MSC Records (Sep 68)
Mission	9/15/	7/27/	#85:	8/3,7/	11/12-	6/17- 19/68	9/14/
TW	83w	127w	Site	54	61	74	81w

1.4.2.6 University of Georgia

At the University of Georgia, Dr. Merle Prunty is Principal Investigator for a program that is obtaining remote sensing data from controlled burning in grassland areas in order to develop a comprehensive geographical analysis of fire phenomena in Savanna areas. The NASA testing areas are called Deseret/St. Marks and designated site #165.

The long-range purposes of this research program, as stated by Dr. Prunty, are: 1) to develop an information bank that is temporally uniform and areally inclusive/extensive regarding the occurrence, distribution, type, and effects of fires on tropical Savanna grasslands; and 2) to examine findings from (1) in terms of their implications in the expansion of settlement in tropical grassland regions. See Table XIII for status of data pertaining to this Investigator.

1.4.2.7 Florida Atlantic University

At Florida Atlantic University, Dr. James Latham serves as Principal Investigator for NASA Test Site #164 (Boca Raton and Belle Glade, Florida). The research work carried out at this institution concerns multi-sensor analysis of geographical patterns of resources and land use in tropical and subtropical environments. Dr. Latham employs both traditional and electronically instrumented methods of photointerpretation with the aim of measuring and integrating data extracted from distribution patterns on the imagery, and thereby identifying and categorizing geographic land use patterns. Other research includes studies of resolution and tonal characteristics that discriminate urban and rural environments and seasonal changes of a monsoonal tropical environment. Also included in his work are electronic waveform analysis, selection of parameters for the orbital placement of earth resources satellites, determination of scale and resolution needed for identifying and measuring geographic phenomena, and analysis of Gemini photography of the Boca Raton area. See Table XIV for status of data pertaining to this Investigator.

1.4.2.8 Office of Emergency Preparedness

Mr. Harry Mallon, of the Office of Emergency Preparedness (OEP), is Principal Investigator for Test Site #132, New Orleans, La.; #133, NASA Michoud Assembly Facility; #134, NASA Slidell Computer Operations Office; and #137, NASA Mississippi Test Facility. These test sites were flown with a variety of sensors including black-and-white, color, color infrared, multiband, and thermal infrared. These and other data were analyzed by the Autometric Operation of Raytheon Company for the purpose of: 1) determining the level of detail interpretable from each type of sensor record; 2) examining industrial, urban, and other cultural activities and inspecting for unique spectral signatures; and 3) determining the applicability of each type of sensor record to functional and structural analysis and to the post-emergency analysis of earthquake damage.

The conclusions derived with respect to the specific objectives of the assessment were: 1) that, since the level of detail observed is a function of resolution and contrast, the black-and-white photography, having the largest scale,

TABLE XIII

DATA COLLECTION AND DISTRIBUTION UNIVERSITY OF GEORGIA

_				
	Remarks		T-11	
	Data Analyzed By Autometric			
	Data Dis- tributed By NASA*	×××	****	
	Quantity	150' 15' 200' 25' 2 Reels	263' 298' 200' 75' 90' 25 Strips	
	Format	9" 70mm 9" 35mm	9" 9" 70mm 35mm	
	Film	8443 8442 Plus-X	8442 8443 8443 Tri-X Plus-X	
	Data Collected	RC-8 Reconofax IV T-1] Nikon Data Panel Magnetic Tape (Radiometer)		NASA/MSC RECORDS (Sep 08)
	Mission	1/5/	3/1/	
	14	964	29	

TABLE XIV

DATA COLLECTION AND DISTRIBUTION FLORIDA ATLANTIC UNIVERSITY

Remarks	
Data Analyzed By Autometric	
Data Dis- tributed By NASA*	×××
Quantity	200' 200' 200' 100' 183' 40' 11 Strips 4 Reels
Format	9"9 9"9 1"9 1"35mm
Film	8442 8443 8443 Tri-X 5401 5401 Plus-X
Data Collected	RC-8 RC-8 RC-8 Reconofax IV T-11 Vikon Data Panel Microwave Radiometer Charts Magnetic Tape Data (Radiometer) *As indicated by NASA/MSC Records (Sep 68)
Mission	2/5-8/
TW.	99

proved to be the most efficient sensor where the detection of fine detail was the objective; 2) that the results of the search for exclusive spectral signatures were inconclusive; 3) that large scale and good resolution were the principal factors affecting functional and structural analysis; 4) that oblique photography is a most useful adjunct to vertical photography in determining the extent and severity of earthquake damage; 5) that color infrared and thermal infrared are the best sensors for locating, respectively, chemical and thermal water pollution; 6) that the multiband camera shows promise in determining the unique signatures of roof materials; and 7) that thermal infrared imagery shows promise of applicability in examination of tank contents for fluid level detection.

On the basis of these conclusions it was recommended: 1) that color IR, thermal IR, and multiband imagery be acquired over sites that are known to exhibit a variety of spectral signatures; 2) that the use of side-looking radar for the assessment of flood damage be investigated; 3) that the use of a trimetrogon or panoramic photographic system for providing structural and compositional data be determined; 4) that the capabilities of satellite imagery be studied; 5) that consideration be given to the establishment of an OEP data base; 6) that more consideration be given to the use of original negatives and sensitometry data in order to better quantify data reduction results; and 7) that efforts be made to convert analyzed data into a format compatible with the National Resource Evaluation Center's computer simulation programs. See Table XV for status of data pertaining to this Investigator.

Mr. Mallon's activities have been dealt with in somewhat greater detail than those of the other Principal Investigators because they are less diffuse and have been documented in a single report, prepared by Autometric Operation: Huffman, E. T., Bay, C. A., and Pascucci, R. F., Analysis of Multi-Sensor Data for Office of Emergency Preparedness Purposes, Alexandria, Virginia, December 1968.

TABLE XV

DATA COLLECTION AND DISTRIBUTION OFFFICE OF EMERGENCY PREPAREDNESS

TW	Mission	Data Collected	Film	Format	Quantity	Data Dis- tributed By NASA*	Data Analyzed By Autometric	Remarks	
Site 40	#132: 2/24/ 67	RC-8	8442	"6	251	××	×	Reconofax IV, AAS-5, and Microwave also indicated	
							×	as being distributed, but not as being collected. Reconofax IV	
62	12/6 67	RC-8 Reconofax IV Nikon Data Panel	8443 Tri-X Plus-X	9" 70mm 35mm	150° 25° 65°	××	×× ×	Multi-Band	
99	2/5- 10/68	RC-8 T-11 Reconofax IV	8443 5401 Tri-X	9" 9" 70mm	100' 168' 69'	××××	×× ×	Nikon Data Panel Also viewed data from Mission #81 (11/11/68).	
Site	#133					×		RC-8, Reconofax IV, AAS-5 and Microwave Data indicated as being distributed but not collected.	
		*As indicated by NASA/MSC Records (Sep 68)			:				

TABLE XV (Cont'd DATA COLLECTION AND DISTRIBUTION OFFICE OF EMERGENCY PREPAREDNESS

Remarks	RC-8 (8442) Reconofax IV (Tri-X)		Multi-Band	Same As Site #133 Mission #40	RC-8 (8442)	Reconofax IV (Tri-X)		Multi-Band	Same As Site #134 Mission #40 RC-8 (8442) Reconofax IV (Tri-X)		Multi-Band
Data Analyzed By Autometric	××	××	×		×	×	××	×	××	××	×
Data Dis- tributed By NASA*		××	×	×			××	< ×	×	××	X
Quantity		150° 25° 65°					150' 25' 65'			150' 25' 65'	
Format		9" 70mm 35mm			-		9'' 70mm 35mm			9" 70mm 35mm	
Film		8443 Tri-X Plus-X					8443 Tri-X Plus-X	:		8443 Tri-X Plus-X	
Data Collected		RC-8 Reconofax IV Nikon Data Panel					RC-8 Reconofax IV Nikon Data Panel			RC-8 Reconofax IV Nikon Data Panel	*As indicated by NASA/MSC Records (Sep 68)
Mission		12/6/ 67	#134:				12/6/	# 137:		12/6/ 67	
W		62	Site	70			62	Site	07	62	

2. DATA ANALYSIS

2.1 Land Use Classification System

2.1.1 Objective

A uniform and systematic nomenclature, while a useful tool in any endeavor, would be especially welcome to geographers working with remote sensors. It would provide, not only a common framework within which to categorize observed phenomena, but would also order and expedite the process of categorization and, therefore, the entire process of data reduction. Our objective, therefore, has been to design a land use classification system applicable to the Continental United States that will satisfy these needs.

2.1.2 Approach

The initial approach to the problem was to conduct a search of the literature in order to find the classification system best suited to the needs of geographers working with remote sensors. It quickly became apparent that the existing systems were not adequate to the needs of such geographers, since they were either limited in their coverage of subject or area, or, if comprehensive, they were compiled from the point of view of the ground surveyor, viewing the world in section, rather than from that of the remote sensor, viewing the world in plan. See Table XVI for a list of the classification systems consulted. The first reaction to this discrepancy was that the difference was in the level of resolution, the ground surveyor being able to resolve finer levels of detail than could be identified on the best large-scale vertical photography. If this were the case, all that would be necessary to make the system useful would be to move upward through the hierarchy of classification until a level was reached at which the elements of information that characterized a particular hierarchical entity could be identified on a vertical aerial photograph. The problem is not to be solved in this way, however, because the classifications for use by ground surveyors are based on conceptual, not perceptual, gradations. To the ground surveyor the system need only be conceptually logical in order to be workable. Perception does not enter his calculations because it is an a posteriori factor that can be taken for granted; he can always identify, say, a "Retail Store, Automotive" by looking in the showroom window. The investigator working with remote sensors, however, will be forever denied the ability to make this identification, not because the critical element of information - the automobile - is too small to be resolved by his sensor, but because it is covered by a roof. It was necessary, therefore, to devise a classification system the hierarchies of which were not only logical but perceptual.

The approach taken was logical-eclectic-empirical. The logic consisted in postulating criteria for inclusion of units in the system and for establishing a scheme of hierarchy. The criteria for admission of a land usage were two: 1) it must be of present or potential interest to a geographer; and 2) it must be verifiable, most of the time, on large-scale vertical, aerial photography. There are obvious subjective elements in both of these criteria; the only defense to be made is that each land use element included represents the best judgment of a panel of experienced geoscientists.

TABLE XVI

LAND USE CLASSIFICATION SYSTEMS CONSULTED

- Bureau of the Budget, 1960, Standard Industrial Classification Manual, U.S. Government Printing Office, Washington, D. C.
- Bushnell, T. M., 1951, "Use of Aerial Photography for Indiana Land Use Studies," Photogrammetric Engineering, Vol. 17, No. 5.
- Center for Aerial Photographic Studies, 1968, New York State Land Use and Natural Resources Inventory, Cornell University, Ithaca, New York, 60 p.
- Clawson, M., and Stewart, C. L., <u>Land Use Information</u>, The Johns Hopkins Press, Baltimore, Md., 402 p.
- Division of Industrial Development and Planning, undated, <u>Luray</u>, <u>Virginia</u> Land Use Plan, Commonwealth of Virginia, 40 p.
- Goodmen, M. J., 1959, "A Technique for the Identification of Farm Crops on Aerial Photographs," Photogrammetric Engineering, Vol. 25, No. 1.
- Klimm, L. E., 1958, "Description of a Land Use Map of Pennsylvania," University of Pennsylvania, Philadelphia, Pa., 7 p.
- Kohn, C. F. 1952, "An Essay Key for the Photoidentification of Farm Crops at Several Intervals During the Growing Season in Northern Illinois," Northwestern University, Evanston, Illinois, 26 p.
- Reconnaissance Data Extraction Branch, 1965, Master Target List, Rome Air Development Center, Griffiss Air Force Base, New York 28 p.
- Urban Renewal Administration and Bureau of Public Roads, 1965, Standard
 Land Use Coding Manual, U.S. Government Printing Office, Washington,
 D. C., 111 p.

The hierarchy was established according to the level of detail required for identification, keeping in mind a range of scales from about 1:4,000 to about 1:1,000,000.

The eclectic aspect of the approach consisted of searching out, from existing classification systems, those land uses that satisfied the criteria for inclusion. The three most fruitful sources in this search were the Master Target List, compiled by the Rome Air Development Center, which was most valuable in providing kinds of industrial land use; The New York State Land Use and Natural Resources Inventory, used by Cornell University, which was designed to be used by photointerpreters; and the NASA Flight Request Forms, in which the Principal Investigators listed or suggested the land uses in which they were most interested.

Finally, the empirical elements were supplied by Autometric geoscientists who, in analyzing sensor records from nine NASA missions covering a wide range of climatologic, physiographic, and economic regions, noted many land uses that were not listed in existing systems and that would have been overlooked in a purely hypothetical approach.

The resulting land use classification system, shown in Table XVII is, we believe, the most complete one extant and potentially the most useful to geographers working within the framework of the Earth Resources Program. It should not, however, be regarded as a finished product. Quite the contrary; it would best serve its purpose if it were accepted as a point of departure and debate, a nucleus upon which to build as well as a stimulus to build.

 $[\]frac{3}{\text{Missions }}$ 14, 19, 23, 25, 40, 62, 66, 73 and 81.

TABLE XVII

CODE	ELEMENTS OF INFORMATION
1000	VEGETATION
1100	Agriculture (includes all farming activity)
1110	Tree Crops
1120	Field Crops (grain, fodders, etc.)
1130	Row Crops (vegetables, small fruits, etc.)
1140	Pasture
1150	Stock Feed Lot
1160	Inactive Land
1161	Fallow
1162	Reverting to Natural State
1170	Horticulture or Floriculture (nurseries, sod, and feed farms)
1180	Stock Operations
1190	Poultry Operations
11100	Specialty Farms
11110	Agricultural Storage (grain elevators, cribs etc.)
1200	Forest (>50% cover by trees >30 feet in height)
1210	Coniferous
1220	Deciduous
1230	Mixed Coniferous & Deciduous
1300	Open Forest (< 50% & > 10% cover by trees > 30 feet in height)
1310	Coniferous
1320	Deciduous
1330	Mixed Coniferous & Deciduous
1400	Forest Brushland (< 50% & > 10% cover by vegetation < 30 feet in height)
1500	Brush & Grassland (weeds, mesquite, tundra growth, etc.)
1600	Savanna
	Modifiers to be subsumed under any applicable number beginning with 11-16.
0001	Species
0002	Height
0003	Moisture Content
0004	% Ground Cover
0005	Stand Density (forests)
0006	Row Direction
0007	Diseased, Dead, or Dormant
0008	Pyrogenic Area

CODE	ELEMENTS OF INFORMATION
2000	URBAN
2100	Commercial
2110	Central Business District
2120	Frame
2130	Middle City
2140	Strip Development
:	Modifiers to be subsumed under any applicable
:	number beginning with 21.
0001	Shopping Center
0002	Office Space
0003	Commercial Resort
0004	Commercial Storage
0005	Vacant
2200	Residential
2210	Suburb
2220	Fringe Zone
2230	Exurb
2240	Satellite
2250	Urban-Rural Transition Zone
	Modifiers to be subsumed under any applicable
	number beginning with 22.
0001	Single Family Structure
0002	Multiple Family Structure (exclusive of hotels or motels)
0003	High Density (lots less than 1/8 acre)
0004	Medium Density (lots > 1/8 < 1/2 acre)
0005	Low Density (lots > 1/2 acre)
0006	Residential Estates (greater than 5 acres)
0007	Strip Development (> 1/2 acre)
0008	Hamlet or Village
0009	Farm Labor Camp
00010	Cottages & Vacation Homes
00011	Hotel & Motel
00012	Trailer Park (> 3 trailers)
00013	Rural Non-Farm Residences

CODE	ELEMENTS OF INFORMATION
	Modifiers to be subsumed under any applicable number beginning with 22.
000001	. Low Income Housing
000002	Middle Income Housing
000003	High Income Housing
2300	Industrial
2310	Extraction Industry
2311	Open Pit Mining
2312	Stripping Operation (including mining
	and lumbering)
2313	Shaft and Drift Mining
2314	Wells
2320	Processing Industry
2321	Chemical Processing (exclusive of water and
	sewage treatment)
23211	Organic
23212	Inorganic
2322	Mechanical Processing
2330	Fabrication
2330	Heavy
2332	Light
2340	Industrial Storage (POL, warehouse, open)
2350	Vacant
3000	WATER (with associated control structures)
3100	Natural Pond or Lake
3200	Artificial Pond, Lake or Reservoir
3300	Non-Navigable Streams
3400	Navigable River
3500	Canal (other than Barge Canal, see 4400)
3600	Marshland, Shrub Wetland, Wooded Wetland or Bog
3700	Intermittent Stream
3800	Ephemeral Pond or Lake
3900	Flood Control Structures (dams, dikes, levees)
4000	TRANSPORTATION
4100	Highways (with associated facilities)
4110	Limited Access Highway
4120	Lane Highway (4 lanes)

CODE	ELEMENTS OF INFORMATION
4130	Lane Highway (2-3 lanes)
4140	Urban Street
4150	Unimproved Gravel or Minor Paved Roads
4160	Interchange (ramp & cloverleaf)
4170	Service, Terminal or Freight Facility
4180	Parking Facility
4190	Bridge
41100	Tunnel
	Modifiers to be subsumed under any applicable number beginning with 41
0001	Concrete Composition
0002	Asphalt Composition
0003	Unconsolidated Road Metal
0004	Unpaved
4200	Railways
4210	Main Track
4220	Spur
4230	Marshalling Yard
4240	Station & Structures
	Modifiers to be subsumed under any applicable number beginning with 42
0001	Single Track
0002	Double Track
4300	Airfields
4310	Commercial Aircraft
4320	Non-Commercial Airfield, (private, flying farmer
4330	Military
4400	Barge Canal
5000	RECREATIONAL
5100	Golf Course
5200	Skiing and Other Winter Sports
5300	· Public and Commercial Swimming Pools
5400	Developed Beaches

CODE	ELEMENTS OF INFORMATION
5500	Marinas and Yacht Clubs
5600	Camping Grounds
5700	Stadiums
5800	Drive-In Theaters
5900	Race Tracks
51000	Amusement Parks
51100	Fairgrounds
51200	Public Parks (urban)
51300	Playgrounds
6000	CIVIC AND INSTITUTIONAL
6100	Educational Institutions
6200	Religious Institutions
6300	Health Institutions
6400	Correctional Institutions
6500	Military Bases
6600	Armories
6700	Cemeteries
7000	UTILITIES AND COMMUNICATIONS
7100	Waste Disposal
7110	Sewerage
7120	Solid Waste (dumps, junkyards & landfill)
7200	Drinking Water Supply
7210	Treatment
7220	Storage (reservoirs, including covered)
7230	Transmission (excluding under ground)
7300	Gas & Oil Transmission (above ground)
7310	Pumping Station
7320	Transmission Pipelines
7400	Electrical & Electromagnetic Transmission
7410	Electrical Power Transmission Lines
7420	Utility Lines
7430 7440	Microwave Transmission & Navigation Station TV - Radio Transmission Tower
/440	TV - Kadio Transmission Tower
8000	NON-PRODUCTIVE LAND

2.2 Sensor Capability in Land Use Identification

2.2.1 Objectives

A land use classification system having been selected, the way was then open for determining the capability of sensors to provide the information necessary for the identification of each land use element of information. An element of information is herein defined as a unit of data that must be identified in order to carry out a study.

2.2.2 Approach

Eight sensors were selected for analysis on the basis of two criteria: 1) that they have already proven, or are likely to soon prove, useful in the Earth Resources Program; and 2) that they have been sufficiently well studied by Autometric personnel to allow for the passing of reliable judgments as to their capability. (All of the sensors except the laser had been thoroughly analyzed in examples from the nine NASA Missions referenced above. The laser is not a part of the NASA Aircraft Program.)

The sensors, having been agreed upon, were rated by a panel of three, with backgrounds in geoscience and military image interpretation. The experience of the men in these fields was ten years, seven years and seven years, respectively, and included the mapping from imagery of geology, hydrology, forestry, agriculture, urban features and water pollution, as well as general land use mapping. They were also involved in making the first interpretation manuals of their kind for side-looking radar and for a mechanical-optical laser recorder.

The sensors were rated on an arbitrary point scale in which 4 = excellent, 3 = good, 2 = fair, 1 = poor, and 0 = unusable. The ratings are shown in Table XVIII, opposite the elements of land use. Each rating is the result of a majority decision by the three panelists. In filling the matrix represented by Table XVIII, 1296 decisions were made by each panelist (eight [sensors] times one hundred sixty-two [land use elements]). Of this number nine hundred fifty three, or 73.5%, were unanimous. (Random unanimity would be 4%.) In no case was there disagreement by more than one category; i.e., at least two of the three decisions were always in agreement and the third never disagreed by more than one increment upwards or downwards.

Each decision was made on an open, rather than secret, basis so that, in the event of disagreement, each panelist had the opportunity to justify his vote by presenting examples in the imagery. This method fostered a lively give-and-take atmosphere and promoted a constant resort to the imagery that prevented making a decision lightly, with insufficient evidence.

In all cases decisions were made on the basis of "good quality" imagery at the scales and of the instrument and film types specified in Table XVIII. This explains the high ratings assigned to the television and laser, which were considered at operational scales. The TV system studied for this report was the Sony DVC 2400, the small hand-held camera that was used in Mission 73.

	- Ţ-						
			I:5'000 FYSEK	[46] ubasa 2 % % % % % % % % % % % % % % % % % %	* * * 7 7 7	[16]	
			VT T:1,000	[43] 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	* * *	[13]	
			000 ' ς:τ ΛΩ	*** 0000 0000 0000 0000 0000 0000 0000	000	[0]	
		ORS	1:100'000 STK	[10]	7 7 7	[8]	
		SENSORS	л: 5,000	[50] * * * * * * * * * * * * * * * * * * *	2 2 2	[6]	
			T:T0'000 (8¢¢3) CIK	. t 22 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	777	[16]	
	T CO		1:10,000 (8442) COLOR	. 5 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 7 7	[16]	
VII	- LAND		B & W	7 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3* * 3*	[13]	
TABLE XVIII	SENSOR CAPABLELI		LAND USE ELEMENTS OF INFORMATION	VEGETATION Agriculture (includes all farming activity) Tree Crops Field Crops (grain, fodders, etc.) Row Crops (vegetables, small fruits, etc.) Pasture Stock Feed Lot Inactive Land Fallow Reverting to Natural State Horticulture or Floriculture (nurseries, sod and feed farms) Stock Operations Stock Operations Poultry Operations Specialty Farms Inactive Farmsteads Agricultural Storage (grain elevators, cribs etc.) Forest (>50% cover by trees >30 feet in height)	Coniterous Deciduous Mixed Coniferous & Deciduous	TOTALS	*Lack of Unanimity
			CODE	1000 1110 1110 1120 1130 1150 1150 1160 1160 11100 11110	1220 1220 1230		

		00017:-			<u> </u>							
		T:5'000 FY2EK		* *	* *	[16]	%	7	ო	N N N N N N N N N N N N N N N N N N N	[18]	
		VT		* * ©	* *	[12]	*	7*	*	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	[18]	
		000 ' S:T		0 0	00	[0]	0	0	0	00011000	[1]	
	RS	1:Т00°000 2ГК		7 7	7 7	[8]	2*	*0	П	0001, \$, \$, 000	[9]	
	SENSORS	яі 1:5,000		7 7	0 0	[8]	5 *	*.	*	1,2,4,4,100	[13]	
		1:10,000 (8443) CIR		7 7	7 7	[16]	*7	2*	* 7	0 * 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	[26]	
		1:10,000 (8442) COLOR	}	7 7	44	[16]	*	2*	* 7	0 M L 4 4 M 4	[25]	
(Cont'd)		W & A		* * * *	* *	[12]	*	5 *	**	M24440 W H	[21]	
TABLE XVIII (Co		LAND USE ELEMENTS OF INFORMATION	Open Forest (< 50% & > 10% cover by trees > 30 feet in	Coniferous	Deciduous Mixed Coniferous & Deciduous	TOTALS	Forest Brushland (< 50% & > 10% cover by vegetation < 30 feet in height)	Brush & Grassland (weeds, mesquite, tundra growth, etc.)	Savanna Modifiers to be subsumed under any applicable number beginning with 11 - 16.	Species Height Moisture Content % Ground Cover Stand Density (forests) Row Direction Diseased, Dead, or Dormant Pyrogenic Area	TOTALS	* = Lack of Unanimity
		CODE	1300	1310	1330		1400	1500	1600	0001 0002 0003 0004 0005 0007 0007		

		T:7,000 Laser	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 0 4 3 4 [15]	4 4 4 4 7 7 7 7	
	1	VΤ 000,1:1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 1 4 4 [17]	4 3 4 4 4 [22]	
		000'ς:τ ΔΩ	[2]	00000	1 0 2 2 [5]	
	SENSORS	1:100,000	44 3, 12 [13]	2 0 1 2* [6]	2 1* 0 3 3 [10]	
'	SEN	яі 1:5,000	4 * 3 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5	3 0 2* 2* [9]	3 2* 2* 1 3 3 [14]	
		1:10'000 (8¢¢3) CIK	4 4 3 3 4 [22]	4 1* 4 4 4 [17]	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
(Cont'd)		Color (8442) (8442)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 1* 4 4 4 [17]	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-
XVIII (Co		1:10,000 B & W	4 4 3 3 4 [22]	4 1* 4 4 6 [17]	4 3 3* 4 4 [21]	
TABLE X			TOTALS	TOTALS	TOTALS	
		LAND USE ELEMENTS OF INFORMATION	URBAN Commercial Central Business District Frame Middle City Strip Development Modiflers to be subsumed under any applicable number beginning with 21.	Shopping Center Office Space Commercial Resort Commercial Storage Vacant	Residential Suburb Fringe Zone Exurb Satellite Urban-Rural Transition Zone	Modifiers to be subsumed under any applicable number beginning with 22. * = Lack of Unanimity
		CODE	2000 2100 2110 2120 2130 2140	0001 0002 0003 0004 0005	2200 2210 2220 2230 2230 2240 2250	

	TABLE XVIII	(Cont'd)							
					SEI	SENSORS			
CODE	LAND USE ELEMENTS OF INFORMATION	T:10,000 B & W	1:10,000 (8442) (0010r	T:10,000 (8443) CIR	I;5,000	T:100,000	000's:T An	VT 000,1:1	Laser 1:2,000
0001	Single Family Structure Multiple Family Structure (exclusive of	. 3	en e	en e		* *	*0	en e	e *
0003	High Density (lots less than $1/8$ acre) Medium Density (lots > $1/8$ < $1/2$ acre)	744	144	144	* * 7		о .	144	44
9000	> 1/2 acre)	44	44 .	44.	ო ო -	10	H 0	44	44
0008	Strip Development (> 4 residences/1000 feet) Hamlet or Village	7 7	4 4	7	۳ *	3 8	л *	4 4	7 7
0000	Farm Labor Camp Cottages & Vacation Homes	ო ო	ന ന	ന ന	1,0	o *	00	ന ന	ന ന
00011	Hotel & Motel Trailer Park (> 3 trailers)	7 4	7 4	7	0 1	00	00	7 4	7
00013	Rural Non-Farm Residences TOTALS	2 * [44]	2 * [44]	2* [44]	0 * [21]	0 [10]	[4]	2 [44]	2 [44]
	Modifiers to be subsumed under any applicable number beginning with 22.							·····	
000001 000002 000003	Low Income Housing Medium Income Housing High Income Housing	* * *	* * *	444	* * *	* * *	000	ო ო ო 	* * *
	TOTALS	[6]	[6]	[12]	[3]	[0]	[0]	[6]	[6]
2300	Industrial	7	4,	4.	m (2 *	д (4.	4.
2311	Extraction industry Open Pit Mining	7 7	7 7	4 4	n #	m m	k o	4 4	4 4
2312	Stripping Operation (including mining & lumbering)	4 .	4 4	4	m (, m с	н с	4	4 -
2314	a lid	4	1 4	4	, *	5°C	o *	4 4	4 4
2320	ų	7	7	4	ю	н	0	4	7
1767	sewage treatment)	4	4	4	3*	1*	0	7	4
									_

WAT	TABLE XVIII (Cont'd)	SENSORS	1:2,000 IAV 1:1,000 I:1,000 I:2,000 I:10,000 IIR I:2,000 IIR I:2,000 IIR I:10,000 IIR I:10,000 IIR I:10,000 IIR IIR IIR IIR IIR IIR IIR IIR IIR	Organic Inorganic 4	3* 3* 3* 2* 1* 0* 3* 3* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0* 0*	trh associated facilities) Access Highway hway (2 - 3 lanes) * = Lack of Unanimity TOTALS [36] [37] [37] [27] [20] [6] [34] 4 4 4 4 3 3 2* 4* 4 4 4 4 2 1* 1 0 4 4 4 4 2* 1 0 4 4 4 4 2* 1 0 4 4 4 4 2* 1 0 4 4 4 4 2* 1 0 4 4 4 4 2* 1 0 4 4 4 4 2* 1 0 4 4 4 4 2* 1 0 4 4 4 4 2* 1 0 4 4 4 4 2* 1 0 0 4 4 4 4 2* 1 0 0 4 4 4 4 4 3 3 2* 1 4 4 4 4 4 3 3 2* 1 4 4 4 4 4 3 3 2* 1 4 4 4 4 4 3 3 2* 1 4 4 4 4 4 4 3 3 2* 1 4 4 4 4 4 4 4 3 3 2* 1 4 4 4 4 4 4 3 3 2* 1 4 4 4 4 4 4 3 3 2* 1 4 4 4 4 4 4 3 3 2* 1 4 4 4 4 4 4 4 3 3 2* 1 4 4 4 4 4 4 4 4 3 3 2* 1 4 4 4 4 4 4 4 3 3 2* 1 4 4 5 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8
			CODE LAND USE ELEMENTS (Fab Ind Vac. WATER (wit		4000 TRANSPORTATION 4100 Highways (with associated 4110 Limited Access Highway 4120 Lane Highway (4 lanes) 4130 Lane Highway (2 - 3 la 4140 Urban Street

		1:2,000 T:5,000 T:5,000 T:5,000	0 3 3 3 3 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6	[7] [44] [5 5 3 3	[0] [10] [10] 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	[0] [8]	
	SENSORS	1:10,000 IR 000,2:1	7	[31]	2 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[6] [0] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[8]	
		(8443) 1:10,000 (8442)	7 * * * * * * * * * * * * * * * * * * *			[11] [12] 4 4 4 4 4 4 4 4 6 4 6 7		
ıt'd)		T:10,000 B & W	* * * * * * * * * * * * * * * * * * * *			[10]		
TABLE XVIII (Cont'd)		LAND USE ELEMENTS OF INFORMATION	Unimproved Gravel or Minor Paved Roads Interchange (ramp & cloverleaf) Service, Terminal or Freight Facility Parking Facility Bridge Tunnel	TOTALS Modifiers to be subsumed under any applicable number beginning with 41		Railways Main Track Spur Marshalling Yard Station & Structures	TOTALS Modifiers to be subsumed under any applicable number beginning with 42	* = Lack of Unanimity
		CODE	4150 4160 4170 4180 4190 41100		0001 0002 0003 0004	4200 4210 4220 42 30 4240		

	TABLE XVIII (Cont'd)	ıt'd)							
				:	SENSORS	RS			
CODE	LAND USE ELEMENTS OF INFORMATION	N & H	COLOR (8442)	CIR (8443) 1:10,000	1: 5,000	1:100,000 SLR	000'S:T	VT 000,1:1	1:2,000
6300 6400 6500 6600 6700	Health Institutions Correctional Institutions Military Bases Armories Cemeteries	3 * * * * * 3 3 4 4 5 7 1	1 7 3 3 4 4 7 7	3 4 4 7 7 3 7 4 7 7 7 7 7 7 7 7 7 7 7 7	0 1 1 0 0	0*****	00000	7 * 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 × 1 × 5 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7
7000 7100 7110 7120	UTILITIES AND COMMUNICATIONS Waste Disposal Sewerage Solid Waste (dumps, junkyards & landfill)	[18]	[18] 3 4 4	[18] 3 4 4 4	[6] 1 1* 1	[4]	0 000	[17] 2 4 3 3	[17] 3 4* 3
7200 7210 7220 7230	Drinking Water Supply Treatment Storage (reservoirs, including covered) Transmission (excluding under ground) TOTALS	[14] 2* 3* 4 2 [11]	[15] 2* 4* 4 2 2 [12]	[15] 2* 4* 4 2 [12]	[4] 11* 0 0 [5]	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>	[12] 2 2 3 1 1 [8]	[13] 2 3* 3 2 [10]
7300	Gas & Oil Transmission (above ground) Pumping Station Transmission Pipelines TOTALS	3 3 [8]	3,*	3* 3*	-	0* 0* 1* [1]	000 [0]	1 2 2 [5]	2 3* (8)
7400 7410 7420	Electrical & Electromagnetic Transmission Electrical Power Transmission Lines Utility Lines	n * a	2 **	2 4 3	0 **	1 2*	000	132	4 4 K
	* = Lack of Unanimity								

<u> </u>	<u></u>	0001=:=		3]			
		I:2,000	7 %	[]	4	[516]	
		000'T:T	2 3	1		2]	
		VT	53	[]	4	[495]	به صر
		000'ς:τ	00		0	7]	
		ΔΠ		<u> </u>		[27]	
		000,001:1	***	[4]	2	[185]	
	SENSORS	2°° 2°° 2°° 2°° 2°° 2°° 2°° 2°° 2°° 2°°		··			
	SEN	I'E UUU	0 1,	[4]	က	[295]	
		000'01:1					
		(8¢¢3) CIK	3.4	[16]	4	[560]	
		000'0T:T (8¢¢5)	4 E	[16]	4	[555]	
		COFOR		<u> </u>		[5]	
<u> </u>		1:10,000	34	[15	4	[531]	
nt'o		M 3 8	<u> </u>	<u> </u>			
TABLE XVIII (Cont'd)		LAND USE ELEMENTS OF INFORMATION	Microwave Transmission & Navigation Station TV - Radio Transmission Tower	TOTALS	NON-PRODUCTIVE LAND	GRAND TOTALS	* = Lack of Unanimity
		CODE	7430		8000		

The ratings of the black-and-white, color, and color infrared emulsions are perhaps somewhat misleading. Although in most instances each is ranked "excellent", it was the unanimous opinion of the panel that color IR is best, color next best, and black-and-white poorest of the three.

2.2.3 Passive Microwave Imager

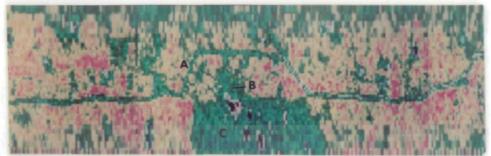
In addition to the eight sensors discussed above the performance of two others - the microwave scatterometer and the passive microwave imager - were studied. The scatterometer, being the single non-imaging sensor of the ten under consideration, has unique interpretation problems and is discussed separately in Section 2.8

The passive microwave imager was not included in Table XVIII for three reasons: 1) it was not designed to have application to land use analysis; 2) its resolution and imaging capabilities make it apparently unsuited for such an analysis; and 3) the sample of imagery available for study, for which there was correlative data (in the form of color IR), was too small to warrant the postulation of conclusive, specific results. See Figure 4.

On the basis of the available sample, however, the following imaging capabilities (i.e., spatial, as opposed to electro-magnetic, resolution) were observed:

- . Rivers and canals wider than thirty feet were readily observed and traced.
- . Irrigated areas could be identified.
- Urban areas could be identified. (The four cold areas in the lower central portion of Figure 4 are major built-up areas.)
- The interface between residential and commercial-industrial areas could be approximately delineated.

For a more complete treatment of the capabilities of the passive microwave imager, see Edgerton, A. T., Trexler, D. T., Sakamoto, S., et al , 1969, Microwave Radiometric Studies and Ground Truth Measurements of the NASA/USGS Southern California Test Site, U.S.G.S. Contract No. 14-08-001-11425, Aerojet General Corp, El Monte, California.

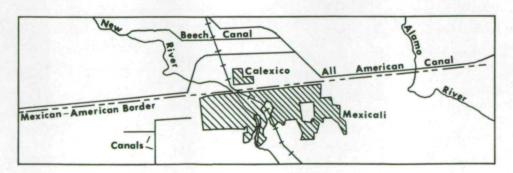

2.2.4 Diseased Orchard Study (Phoenix)

In addition to the more general land use analyses conducted, a specific study was designed to examine the premise that diseased vegetation can be more effectively discerned on color infrared imagery than on color or black-and-white photography. Visual examination of several citrus orchards in the Phoenix area indicated that some disease was present, and it was decided to conduct a comparative test of the color (8442) and color infrared (8443) films' ability to detect diseased trees. Standard photographic interpretation methods and equipment were employed in the study, and each tree was categorized as either good, partially diseased, totally diseased/dead, or removed. The subjective nature of the study

NASA/Goddard Passive Microwave Imaging Radiometer

...A Comparison of Imagery With Map

NASA/Goddard 7 June 1968 Altitude: 37,000 Daytime Flight Scale 1:262,000



NASA/Goddard Passive Microwave Imaging Radiometer A - All American Canal

B - Calexico, California

C - Mexicali, Mexico

Line Copy of (AMS) El Centro Map NI 11-12, Series F501 - 1:250,000

could not be avoided since ground truth was not available (because the imagery was acquired for urban studies), and the scientist conducting this study was not familiar with citrus diseases and used only color changes and variations as the key to establishing the classifications. This section is, then, only an example of a way in which color IR can be used. Figure 5 is an illustration of the citrus grove and Figure 6 is a schematic representation of plant vigor as interpreted on the two emulsions. Below is a summary of Figure 6.

	TREE CLASS	APPARENT TONE	TOTAL	PERCENT OF TOTALS 4
	Good	Dark Green	36	11.8
	Good	Light Green	113	37.3
Color _	Partially diseased	Brownish Yellow	110	36.2
(8442)	Completely Diseased/			
	Dead	Brown	28	9.2
	Removed	_	9	2.9
	Young Replant	Light Green	8	2.6
	Good	Red	20	6.6
	Good	Pink	42	13.8
	Partially Diseased	Brownish Pink	172	57.0
CIR	Completely Diseased/			
(8443)	Dead	Brown	55	16.5
	Removed		8	2.6
	Young Replant	Pink	7	2.5

Color infrared photography showed a significant increase in the number of partially diseased trees that were classified as good on the color photography.

It was then decided to make microdensitometric measurements of the selected orchard to check the subjective analysis of the photointerpreter. Figure 7 shows a representative densitometric trace of the fifth row of trees. From this, the photographic density of each tree classification was determined and the whole statistically analyzed. The results are summarized in Figure 8.

The spectral sensitivities of the film types used are given in Figure 9. The color film was filtered to eliminate wavelengths below approximately .4 microns, and the color infrared was exposed through a Wratten 12 filter that cuts off wavelengths below approximately .5 microns. The resulting transfer of color is given below.

Percentages based on 304 trees. Trees covered by shadows on one emulsion or the other were not counted.

Color Infrared as an Indicator of Citrus Stress

...An Interpreted Comparison of Color Infrared and Color Ektachrome

NASA/USGS Mission #19 15 February 1966 Test Site #29 RC-8 Camera Scale 1:2,200

Color Ektachrome (8442)

Color Infrared (8443)

ANNOTATIONS

- * Row of Trees Analyzed with Microdensitometric Trace.
- _ Limits of Studied Area

FIGURE 5: COLOR AND COLOR INFRARED IMAGERY OF A CITRUS GROVE UNDER STRESS

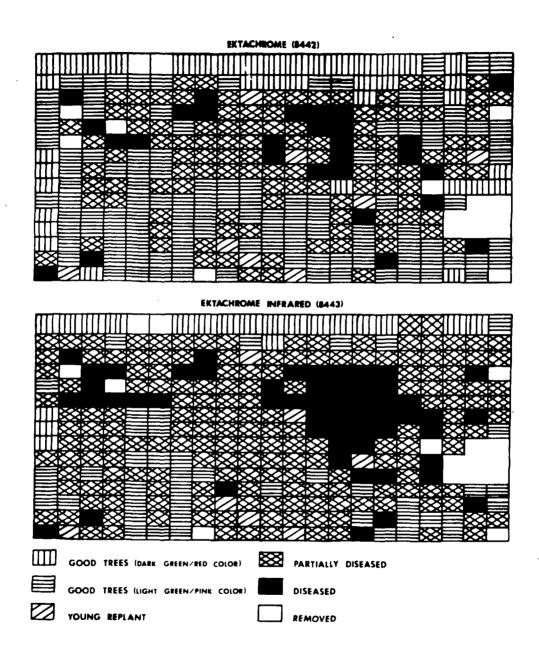
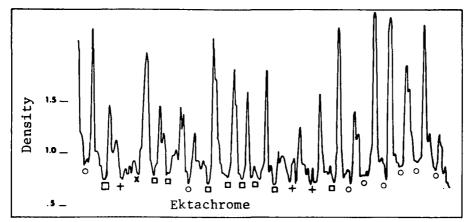
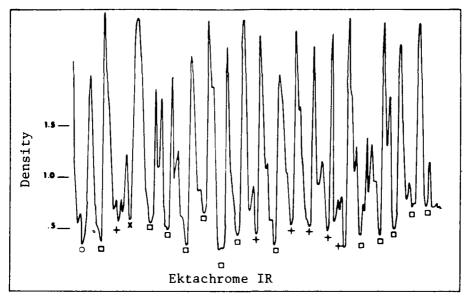
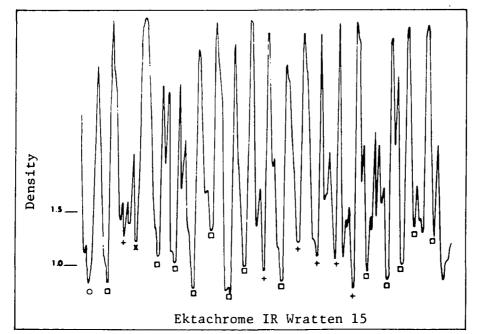





FIGURE 6 COMPARATIVE ANALYSIS OF A CITRUS GROVE UNDER STRESS

These traces were made across the fifth row (from the top) of citrus trees depicted in Figure 6.

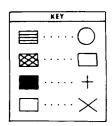
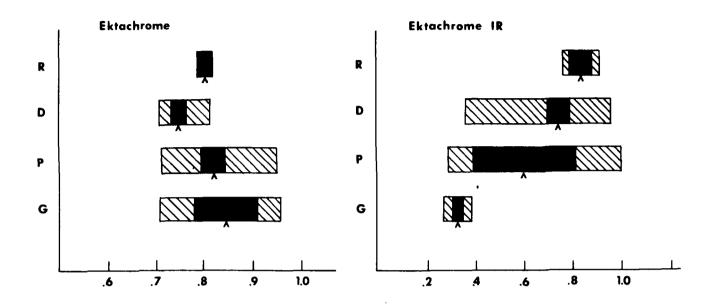



FIGURE 7 REPRESENTATIVE DENSITOMETRIC TRACE ACROSS A ROW OF CITRUS TREES

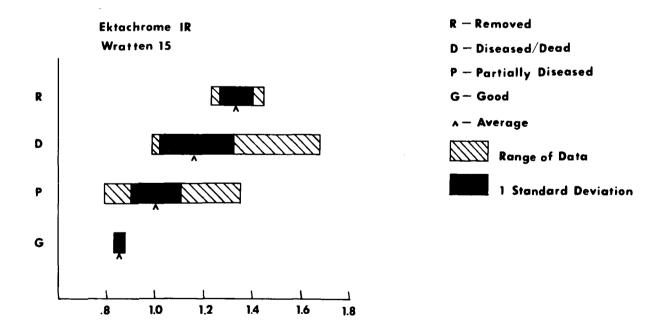


FIGURE 8 DISTRIBUTION OF DENSITY READINGS OVER ORCHARD

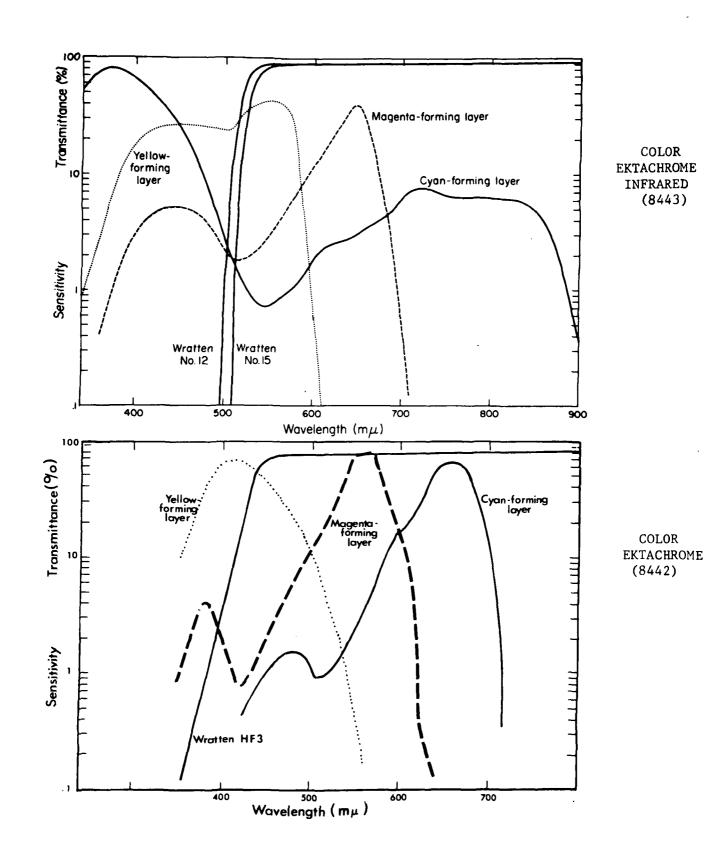


FIGURE 9 SPECTRAL SENSITIVITIES OF FILM TYPES USED IN DISEASED ORCHARD STUDY

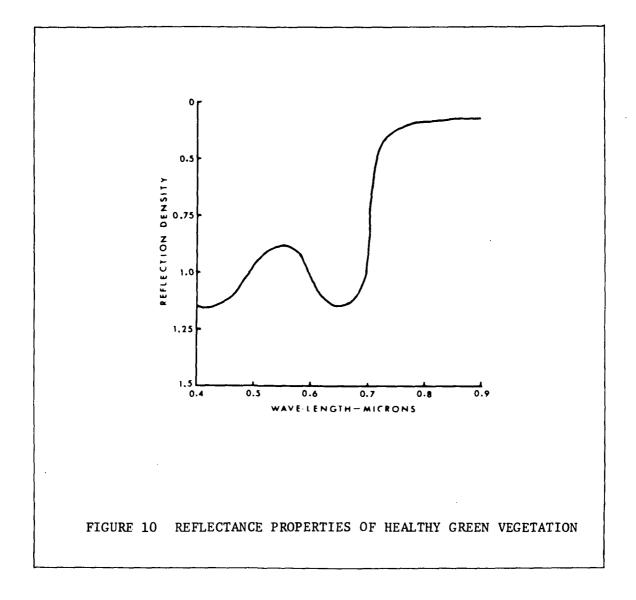

	Spectral Region	Blue	Green	Red	Infrared
Kodak	Normal Color Film				
Ektachrome	Sensitivities	Blue	Green	Red	
Aero	Color of the Dye				
Film	Layers	Yellow	Magenta	Cyan _	
	Resulting Color				
	in Photograph	Blue	Green	Red	
Kodak	Sensitivities with				
Ektachrome	Yellow Filter	L :	Green	Red	Infrared
Infrared	Color of the Dye				
Aero	Layers		Yellow	Magenta	Cyan
Film	Resulting Color in				
	Photograph		Blue	Green	Red

Figure 10 shows the reflectance properties of healthy green vegetation. Note that the reflectance is greatest in the infrared, where about 40% of the energy is reflected, ⁵ compared to the reflectance within the spectral band of panchromatic photography (with haze filter .52 - .65 microns), where only about 10% of the total reflectance occurs. For diseased and dying vegetation, spectral reflectance changes drastically in the infrared. After a branch is cut or becomes diseased, the reduction of transpiration of water from the leaves immediately reduces the reflectance in the infrared. The visible reflectance changes much later.

It was noticed in the course of this study that, by viewing the IR imagery through a Wratten 15 (minus blue) filter, red tone discrimination was enhanced and overall viewing appeared to improve. This is partly explained by the fact that, by eliminating the blue, the overall tone of the photograph is shifted to a region where the human eye operates more efficiently. This was corroborated by densitometric measurements which showed that density differences were enhanced by using a yellow filter. However, there was an increase in the overall density level.

This figure is sometimes given as 50%. See Meyers, V. I., and Allen, W. A., Electro-optical Remote Sensing Method as Nondestructive Testing and Measuring Techniques in Agriculture, Applied Optics, Vol. 7, No. 9, Sept. 1968, p. 1827.

⁶Jensen, N., 1968, Optical and Photographic Reconnaissance Systems, Wiley and Sons, Inc., New York, p. 70. However, recent work by Pease indicates that there is no reduction of reflectance in the infrared of a plant under stress; the IR reflectance is simply masked by the increasing reflectance in the visible. (Pease, R. W., 1969, "Plant Tissue and the Color Infrared Record," U.S. Dept. of the Interior Contract 14-08-001-10674, University of Cal., Riverside, California.

2.3 Sensor Capability in Urban Analysis

The United States is currently burdened by one of the greatest problems man has yet had to face - the urban crisis. As the population continues to increase and ever greater numbers of people move to the urban centers of the country, these central places can be expected to double in population in the next forty years. The effect that this will have on the quality and environment of the cities, and the effect that the cities will have, in turn, on man, is a matter of utmost concern.

In order for the citizens, planners and policy makers of the next decades to make decisions concerning the urban environment, vast amounts of data pertaining to the city must be collected, analyzed, and recast in the form of ideas, plans, and programs. Among the most important tools in this data collection effort are remote sensing devices, such as those employed on NASA/MSC remote sensing aircraft.

2.3.1 Objectives

Several GEOGAP Principal Investigators have channeled most of their efforts towards reaching a solution of urban problems. Test Sites #29, #43, #130 and #132 all include urban settlements. Duplicate copies of some of the sensor records flown by NASA over these cities were received by Autometric to be evaluated in terms of the following objectives:

- 1) To determine the elements of information necessary for studies of:
- . Urban land use
- . Transportation
- . Traffic congestion
- . Air pollution
- . Water pollution
- . Housing quality
- . Barriers to growth
- . Shopping intensity and patterns
- . Census updating
- . Time/distribution of population
- . Urban-rural interface
- 2) To investigate the utility of remote sensors for the identification of the geographic elements of information necessary for carrying out the above studies;
- 3) To determine which sensor(s) can best identify these geographic elements of information:
- 4) To determine the relative merits of color (8442) and color infrared (8443) film in studies of housing quality.

2.3.2 Approach

The approach to objectives 1, 2, and 3 was to study the NASA/USGS data in terms of its ability to provide information necessary to conduct the various studies mentioned in 1, and to then construct a sensor capability matrix as the means for presenting the results.

The first step involved the determination of the specific elements of information necessary to conduct each geographic study in the urban environment. This was accomplished by reviewing the urban studies being conducted by the GEOGAP Investigators for certain elements and making additions whenever necessary. In many cases, imagery and studies from other sources were used to supplement the data supplied by GEOGAP.

The second step involved determining the utility of each NASA sensor in identifying each of the elements of information. The description of the way in which the Sensor Capability - Urban Analysis matrix was constructed is identical to that for the Sensor Capability - Land Use matrix, an explanation of which appears in Section 2.2.2. In filling out the matrix represented by Table XIX, three hundred and sixty-eight decisions were made by each panelist (eight [sensors] times forty-six [urban elements of information]). Of this number, two hundred and eighty, or 76%, were unanimous. (Random unanimity would have been 4%.)

Objective 3 can be satisfied by examining the matrix, element by element, or referring to the grand totals at the end. By doing this the effectiveness of each sensor, as determined by a panel of geoscientists (using the methods described in Section 2.2.2), can be determined and compared with that of the other sensors.

The approach to objective 4 was to conduct a special housing quality study using color and color infrared imagery flown over Phoenix by NASA in February 1966. The description and results of this study appear in Section 2.3.3

2.3.3 Housing Quality Study

The GEOGAP Investigators conducting studies of urban centers have been unanimous in their request for the use of filtered color infrared imagery. Since it has been suggested by several investigators that lawn quality is a surrogate for housing quality, and, since it has been further suggested that lawn vigor and condition could be more readily sensed by the color infrared, it was concluded that the color infrared would be a very useful medium for recording information indicative of housing quality.

To check this, as well as other housing quality parameters, three areas of single family housing in Phoenix, Arizona were selected for study. These areas were selected on an assumed, intuitive basis as representing, respectively, high, middle and low income neighborhoods. (Although excellent quality color infrared imagery was collected over Los Angeles during Mission 73, comparable color photography was not flown.) These test areas included four blocks of high income housing (Figure 11), a nine-block middle income development (Figure 12), and a five-block area of low income housing in the middle city (Figure 13). Tables XX through XXV represent the interpreted data relative to each housing area.

		000,2:1	3 4 4 4 4 4 5 7 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	[8]
		LASER		<u> </u>
		VT 000,1:1	*** 33 34 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	[13] 0,* (8]
		000'S:T	* 000000000000000000000000000000000000	0000
	RS	1:100,000 SLR	13] 13] 13]	[1] 0 0 0 1 [1]
	SENSORS	1:5,000	24	[5] 0,* 1,* 3,* [8]
		1:10,000 (8443)	[36] 4444 4444 4444	[16] 3 1 4 4 [12]
YSIS		1:10'000 (8¢¢5) COFOK	36] 4444 1201444 4444	. 3* 3* 1 4 4 4 [12]
IX URBAN ANALYSIS		1:10,000	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	[16] 2 1 4* 4 [11]
TABLE XIX SENSOR CAPABILITY - UR		URBAN ELEMENTS OF INFORMATION	TRANSPORTATION NETWORK Roads Number of Lanes Pavement Condition Highway Illumination Lights Signal Lights Access Railroads Number of Tracks Water Width TRAFFIC CONGESTION Automobiles Trucks Busses	POLLUTION Water Chemical Thermal Land Air (Probable sources) TOTALS * = Lack of Unanimity
		CODE	1000 1100 1110 1120 1140 1150 1200 1210 1310 2200 2200 2300	3000 3100 3110 3120 3200 3300

	SENSORS	1:2,000 LY 1:1,000 1:2,000 LY 1:100,000 SLR 1:10,000 CLR (8443) 1:10,000 COLR (8442) 1:10,000 COLR (8442) 1:10,000 COLR (8442) 1:10,000 COLR (8442) I:10,000 COLR (8442) I:10,000 COLR (8442) I:10,000 COLR (8442) I:10,000	3 3 3 1 1 1
	ORS		[1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	SENS		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		(8443)	[20] c c c c c c c c c c c c c c c c c c c
		(2778)	[4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
			[53] [4 * * * * * [4 * * * * * * * * * * * *
TABLE XIX (Cont'd)		URBAN ELEMENTS OF INFORMATION	HOUSING QUALITY (Socio-economic) Dwelling Type (Single vs. multi-unit) Building Density Lot Size Home Size Home Size Accessory Buildings Pools and Patios Landscaping (Presence and condition) Litter Street Patterns Width Condition Lighting Sidewalks and Curbs (Presence) Traffic Community Facilities (Parks, pools, playgrounds) Traffic Community Facilities (Parks, pools, playgrounds) Transportation Rivers Lakes Swamps Topography Zonal interfaces TOTALS
		CODE	4000 4100 4200 4210 4220 4300 4400 4700 4720 4730 4720 4730 4750 4750 4750 5200 5300 5500 5500

	T	00015					·	_,		 	
		I:2,000	4 1*	[5]	*	4 H	[5]	4	[148]		
		VT 1:1,000	7 1	[5]	*	4 L	[5]	4	[132]	 	
		000'S:T	00	[0]	0	00	[0]	*	[10]		
	ORS	1:100,000 SLR	0 1	[1]	0	10	[1]	4	[41]		
	SENSORS	яI 1:5,000	2	[2]	*	2	[2]	4	[79]		
		CIK (8443)	4 1*	[2]	*	7*1	[5]	7	[154]		
		1:10'000 (8775) COFOK	7*	[2]	*	1*	[2]	7	[153]		
(p		B & W	7	[2]	*	7 1*	[2]	7	[146]		
TABLE XIX (Cont'd)		URBAN ELEMENTS OF INFORMATION	SHOPPING INTENSITY & PATTERN Number of Vehicles in Parking Lot People	TOTALS	CENSUS UPDATING Number of Dwellings	TIME/DISTRIBUTION OF POPULATION Vehicles People		URBAN-RURAL INTERFACE	GRAND TOTALS	* = Lack of Unanimity	(368 Decisions - 280 unanimous or 76.1%)
		CODE	6000 6100 6200		7000	8000 8100 8200		0006			ı

Color Infrared as an Indicator of Housing Quality

...An Interpreted Comparison of Color Infrared and Color Ektachrome

NASA/USGS Mission #19
15 February 1966
Test Site #29
RC-8 Camera
Scale 1:4,400

Color Ektachrome (8442)

Color Infrared (8443)

ANNOTATIONS

A, B, C & D: Sample Housing Quality Study Blocks.

(Assumed High Income)

FIGURE 11:
ASSUMED HIGH INCOME
HOUSING BLOCKS

ON #19							
FILM TYPE: 8442 FRAMES: #6230-6232	* \$1007#	8 4007#	3 40074	O ADOTA	STATOR	TONIA REDARA	POK.
ELEMENTS OF INFORMATION							
No. of Homes	16	8	00	9	38		
No. with Additions	2	1	2	1	6	23.6%	
No. of Different Roof Colors	13	4	9	e	26	68.4%	
No. with Outbuildings/Sheds	80	2	2	4	19	20 %	
No. without Any Landscaping	0	0	0	0	0		
No. with Well Kept Front Lawns	8	3	1	4	16	42.1%	
	7	2	0	3	6	23.6%	
No. with Littered Appearances	0	0	0	0	0		
No. with Fencing and/or Hedges	16	8	8	9	38	100 %	
No. with Swimming Pools	00	4	3	9	18	47.4%	
No. with Above Ground Pools	0	0	0	0	0		
No. with Tennis/Handball/Basketball Courts	1	3	0	0	4	10.5%	
No. with Stables	1	0	0	0	1	.26%	

			24	
HOTOS RONA FONTARIA TO				
ASINIAN ICA		SAME +10.6% - 2.6%	SAME - 5.3% - 7.8% SAME SAME	SAME SAME SAME SAME
STATOT		23.6% 79.0% 47.4%	36.8% 15.8% 100 %	47.4% 10.5% .26%
		38 9 30 18	0 14 6 0 38	18 0 4
0 +DO7#		9746	0 7 7 0 9	m000
OUS ING		8 1 8 6	01008	m 0 0 0°
TABLE XXI OF HIGH INCOME HOUSING COLOR IR ALOCA ALOC		8 1 1 2 5	0 1 3 3 0	40%0
		16 5 13	0 6 3 0 16	1 1 0 8
ANALYSIS				Handball
TEST SITE #29 (Phoenix) MISSION #19 FILM TYPE: 8443 FRAMES: 6395-6397	ELEMENTS OF INFORMATION	of Homes with Additions of Different Roof Colors with Outbuildings/Sheds	No. with Well Kept Front Lawns No. with Well Kept Back Lawns No with Littered Appearances No. with Fencing and/or Hedges	with Swimming Pools with Above Ground Pools with Tennis or Basketball/Handball with Stables
TEST SITE # MISSION #19 FILM TYPE: FRAMES: 63	EL EMEN	No. of No. will No. of No. will	No. wil No. wil No with	No. with No. with No. with No. with No. with
			CHE THE TANK	

Color Infrared as an Indicator of Housing Quality

...An Interpreted Comparison of Color Infrared and Color Ektachrome

NASA/USGS Mission #19 15 February 1966 Test Site #29 RC-8 Camera Scale 1:4,650

Color Ektachrome (8442)

Color Infrared (8443)

ANNOTATIONS

A thru I: Sample Housing Quality Study Blocks.

(Assumed Middle Income)



FIGURE 12:
ASSUMED MIDDLE
INCOME HOUSING BLOCKS

		1	<u> </u>											
		STATE OF THE OWNER			24.8% 3.4%	13.4%	1.1%	18.3%	1.7%	83.8%	5.8%	2.0%		
		L' 400TA	:	295	73	39	3	54	2 C	247	17	9		
		P 450TA		33	60	က	0	٧ ج		26	က	0		
		3 450 14		48	14	10	1	'nς	n 0	39	0	7		
				45	∞ О	9	0	11	о н —	39	2	-1		
	NG	is toole		77	8 7	9	0	10	7 0	43	5	0		
	MIDDLE INCOME HOUSING COLOR	LA SOLE		41	16 * 2	8	Н	m ×	t 0	31	0	-	*2 Being	Built
TABLE XXII	LE INCO	P to pa		32	0 0	∞	0	9 <	† 0	27	2	1		
TABI	뇬	3,430,14		17	7	-4	-	4 °	0	15	2	0		
	ANALYSIS C	& tolia		26	04	2	0	ر	۷ 0	18	2	-		
	AN/	* to clar		6	1 2	0	0	ლ -		6	⊢	0		
	TEST SITE #29 (Phoenix) MISSION #19 FILM TYPE: 8442	FRAMES: #6216-6218	ELEMENTS OF INFORMATION		No. with Additions No. of Different Roof Colors	No. with Outbuildings/Sheds		No. with Well Kept Front Lawns	No. with Littered Appearances	No. with Fencing/Hedging		No. with Above Ground Pools		

			TABL	TABLE XXIII							
TEST SITE #29 (Phoenix) MISSION #19 FILM TYPE: 8443		ANALYSIS		F MIDDLE II COLOR IR	OF HIDDLE INCOME HOUSING COLOR IR	USING					
FRAMES: 6384-6386	* tors	8 450T8	3 40014	Q 400TA	3 40014	***************************************	3 43014	# 450TA	STATION	dia	\$0.00 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$
ELEMENTS OF INFORMATION									_		
No. of Homes	6	26	17	32	41	77	48	33	295	1	
	7	∞	2		14*	14	12	14	. 88	29.8%	+5. %
	г (4 1	(0 \		(0 1	0 ·	6 6	۳ ا ا	
No. with Outbuildings/Sheds	5	ኅ	7	Φ	7	7	·	4	78	9.5%	-3.9%
No. without Any Landscaping	0	0	0	0	0		0	Н	2	.67%	43%
No. with Well Kept Front Lawns	-	7		*7	2	ო	m	7	35	11.9%	24.9-
No. with Well Kept Back Lawns	2	7	-	7	7	7	m	7	28	9.5%	-1.3%
No. with Littered Appearances	1	0	0	-	0	7	0	-	5	1.7%	SAME
No. with Fencing and/or Hedges	7	18	13	26	34	42	32	24	234	79.5%	-4.3%
No. with Swimming Pools	П	2	7	2	0	Ŋ	0	ო	17	5.8%	SAME
No. with Above Ground Pools	0	7	0	П	н	0	7	0	Q	2. %	SAME

Color Infrared as an Indicator of Housing Quality

...An Interpreted Comparison of Color Infrared and Color Ektachrome

NASA/USGS Mission #19 15 February 1966 Test Site #29 RC-8 Camera Scale 1:4,700

Color Ektachrome (8442)

ANNOTATIONS

Color Infrared (8443)

A thru E: Sample Housing Quality Study Blocks.

(Assumed Low Income)

FIGURE 13: ASSUMED LOW INCOME HOUSING BLOCKS

		T							_			
	PONTAGO VILA		14.3%	53.5% 46.8%		16.1%	6.2%	%68°.	62 %	1		
	STATION		112	16 60	52	18	7	1 28	69	0	0	
	\$ \$1007#		21	7 80	6	3	1	0 "	10	0	0	
HOUSING	a 400 Tex		26	2 15	12	n	5	0 6	12	0	0	
TABLE XXIV	COLOR ALOCK C. ALOCK		25	13	11	8	0 (0 1	19	0	0	
TABL:	*TOTA		19	4 0	∞	4	0 (ο «	13	0	0	
ANAL	* *5007#		21	15	12	5	7	1 0	15	0	0	
TEST SITE #29 (Phoenix)	MISSION #19 FILM TYPE: 8442 FRAMES: #6188-6190	ELEMENTS OF INFORMATION	No. of Homes	No. of Different Roof Colors	No. with Outbuildings/Sheds			No. with Well Kept Back Lawns No. with Littered Annearances		No. with Swimming Pools	No. with Above Ground Pools	

	NO TOO TONING TO THE TONING ON		+ 2.3 %	+ 5.0 %	1.3	+ 1.91% +12.7 % - 8.4 %		
			16.6%	51.8%	14.8%	2.8% 37.9% 53.6%		
	STATOT		108	26	16	3 41 58	00	
ING	3 400 TA		20	=	0 2	0 7 6	00	
XXV INCOME HOUSING	0 400TA		26	12	5 0	1 5 15	00	
TABLE XXV OF LOW INCO	3 40074		23	14	0 0	1 6 17	00	
ANALYSIS OF	& 450 TA		18	1 6	1	10	00	
ANA	* 400th		21 4	10	1	13	00	_
TEST SITE #29 (Phoenix) MISSION #19 FILM TYPE: 8443	63	ELEMENTS OF INFORMATION	No. of Homes No. with Additions	No. of Different Roof Colors No. with Outbuildings/Sheds		No. with Well Kept Back Lawns No. with Littered Appearances No. with Fencing and/or Hedges	No. with Swimming Pools No. with Above Ground Pools	

The elements of information that were considered fall into three categories: the first comprises the number of houses, the additions to each home, the roof colors, and any additional buildings located on the property; the second embraces lawn care, landscaping, and fencing; and the third is simply a count of luxury items, such as swimming pools, tennis courts, stables, etc.

The color Ektachrome (8442) imagery was interpreted first and the color IR next. Percentages were calculated for each element of information, following which the percent deviation between the elements found on the two emulsions was computed.

2.4 Surface Energy Budget and Soil Moisture

2.4.1 Objectives

In order to determine the capability of remote sensors in the monitoring of energy exchange variations at the earth's surface resulting from and affecting man's activities, an investigation was conducted into the interrelations of temperature and moisture with each other and with the photographic density of thermal infrared imagery.

2.4.2 Approach

2.4.2.1 Measurement of Soil Moisture and Temperature

Data concerning soil moisture and temperature were acquired during NASA Mission 73 from seventy-one ground test stations, but only thirty-four of these stations had data on both moisture and temperature. The moisture content of the soil was computed as percent by volume using the formula:

$$\frac{W_{w} - W_{d}}{V} \times 100$$

where,

 W_{w} = wet weight of sample,

 $W_d = dry weight of sample,$

V = volume of sample.

Soil temperatures were taken with bulb thermometers inserted horizon-tally into the soil at a depth of one quarter inch.

The first step in the analysis was to compute the percentile distribution of soil moisture within the test area. The results are shown in Table XXVI and in histogram form in Figure 14. In both of these illustrations the extreme aridity of the majority of the samples is brought out, as well as is the very high moisture content of a small number of samples. Figure 14 exhibits a surprisingly smooth curve, interrupted only in the 20-25% range.

The distribution of temperatures within the test area was much less systematic, as is shown in Table XXVII and Figure 15.

PERCENTILE DI	TABLE XXVI STRIBUTION OF SO	IL MOISTURE
Moisture Content	No. Samples	% Samples
<1% <1<5 >5<10 >10<15 >15<20 >20<25 >25<30 >30<35 >35<40	36 16 8 2 1 5 1 1	50.7 22.5 11.2 2.8 1.4 7.4 1.4 1.4
TOTALS	71	100.2

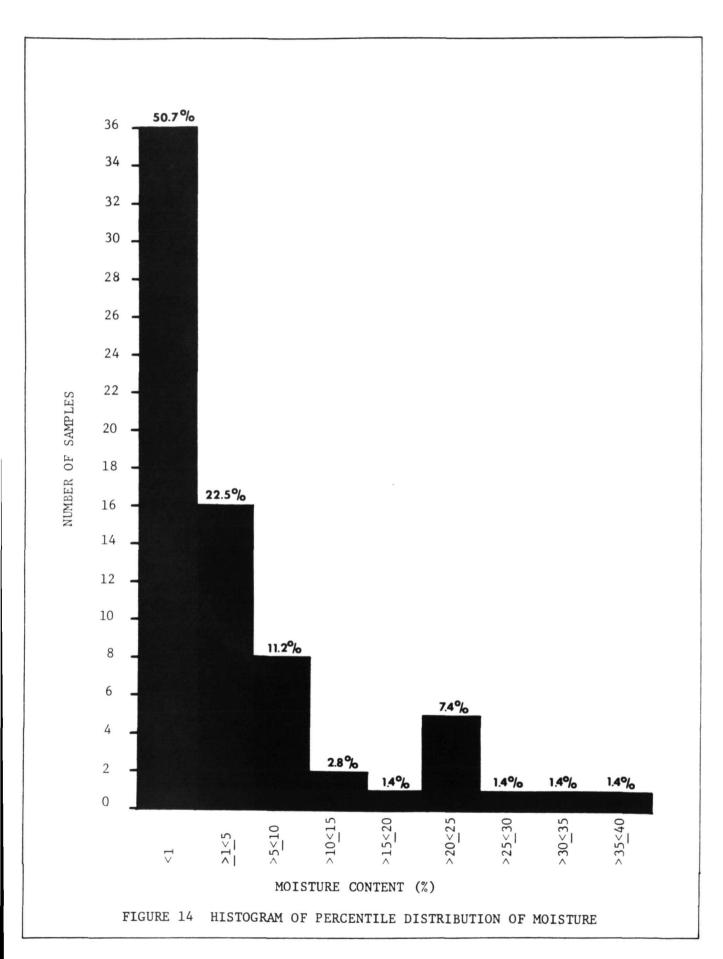


TABLE XXVII
PERCENTILE DISTRIBUTION OF TEMPERATURE

Temperature (^O C)	No. Samples	% Samples
21-25	2	5.6
26-30	1	2.8
31-35	5	13.9
36-40	3	8.3
41-45	3	8.3
46–50	5	13.9
51-55	9	25.0
56-60	7	19.4
61-65	_1_	2.8
	36	100.0

2.4.2.2 Interrelations of Temperature, Photographic Density, and Moisture

It was originally planned to measure, with a microdensitometer, the photographic density of the thermal IR transparencies at the location of each of the plotted thirty-four moisture/temperature sample locations and to determine the degree of correlation between photographic density and soil moisture. The procedure could not be followed, however, because the imagery provided was in print form.

As an alternative procedure, the Kodak Photographic Step Tablet Number 2 was used. This tablet is a gray scale divided into twenty-one calibrated steps. For this study the steps were arbitrarily numbered from 1 (lowest density) to 21 (highest density) and compared visually with the image density of the thermal IR at each test point.

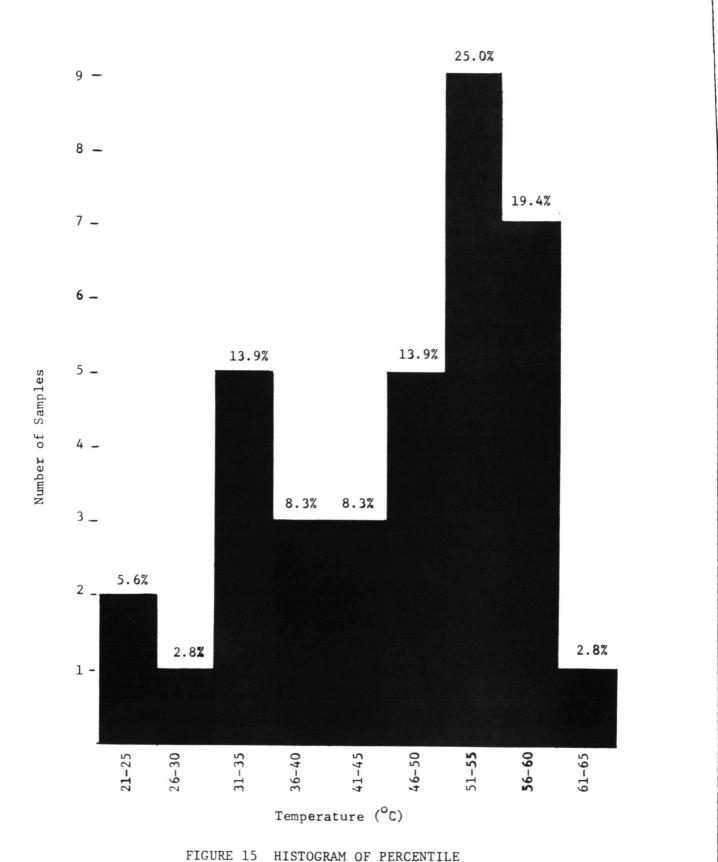


FIGURE 15 HISTOGRAM OF PERCENTILE DISTRIBUTION OF TEMPERATURE

Here an added difficulty arose - most of the fields in which the moisture samples were taken were more or less densely covered with vegetation, leaving the soil itself to be seen only in the rows between, or canopy breaks in, the crops. This made it very difficult to assess density, since the point location whose density it was desired to determine was not only very small but was also surrounded by the eye-integrated density of the background (noise), which tended to lend a bias to the observers' assessment.

Another factor that adversely affected the results was the indeterminate position of the temperature/moisture sample in respect to the top or bottom of the furrow. In many fields an alternate light-dark banding was observed, undoubtedly caused by the alternation of moist furrow bottoms with drier furrow tops. Thus, at the very beginning of the experiment, doubts were cast on the validity of the results.

Table XXVIII shows the density readings for each temperature-moisture test station. The data from four of the thirty-four test stations have been omitted from the subsequent computations since, because of the disparate density readings obtained for them, they were considered to be unreliable. Figures 16A, 16B and 16C show the positions of the test stations plotted on thermal infrared imagery.

Statistical analyses were performed on these data and correlations established between: 1) temperature and moisture (Table XXIX); 2) density and temperature (Table XXXX); and 3) density and moisture (Table XXXI).

As shown in Table XXIX, there is no apparent statistical correlation between temperature and moisture, suggesting that factors other than moisture were responsible for temperature differences, such as soil type and soil compaction.

A slight coefficient of correlation (.23) was found to exist between density and temperature, with a coefficient of non-determination of 94% (see Table XXX). Therefore, based upon the input data, density appeared to be a function of temperature only 6% of the time. A slightly larger coefficient of correlation (.39) was obtained between density and moisture. The coefficient of non-determination, 85%, indicated that, apparently, density is a function of moisture only 15% of the time (Table XXXI). See Table XXXII for a summary of the statistical parameters found.

These low correlations were not unexpected for the two reasons previously mentioned: the inaccuracy inherent in the method of density measurement; and the positional indetermination of the soil samples. Automatic gain control might also have been responsible for inaccuracies in photographic density values.

2.4.2.3 Determination of Qualitative Correlation Between Soil Moisture and Image Color and Density

Thermal IR used in conjunction with color IR proved to be the most useful sensor combination for qualitatively detecting changes in soil moisture. The most efficient method of utilizing this combination is to first examine the thermal IR. Tone changes on this sensor can usually be interpreted as being due to changes in

TABLE XXVIII

DENSITY READINGS FOR TEMPERATURE/MOISTURE STATIONS

Test				
Station Number	Photographic Density	Temperature (°C)	Moisture (% by Volume)	
1	5	22	37.75	
2	12	25	20.52	
Y	4 & 16	29	25.20	(discarded)
3	12	31	32.60	
	6 & 12	33	15.55	(discarded)
4	7	33	10.65	
5	13	33	7.70	
6	10	36	0.00	
7	4	39	0.06	
8	11	40	2.09	
9	6	44	24.0	
	3 & 12	44	0.30	(discarded)
10	9	44	0.09	
11	6	46	0.30	
12	4	46	0.39	
13	3	47	0.39	
14	6	47	0.12	
15	4	48	5.52	
16	6	51	8.28	
17	2	51	0.52	
18	6	51	0.27	
19	2	51	0.18	

TABLE XXVIII (Cont'd)

Test				
Station Number	Photographic Density	Temperature (°C)	Moisture (% by Volume)	
20	4	51	0.15	
21	7	51	0.03	
	2 & 17	52	0.00	(discarded)
22	5	54	0.09	
23	5	54	0.00	
24	16	56	24.00	
25	5	56	.09	
26	4	56	.06	
27	3	57	.03	
28	15	58	2.31	
29	8	60	0.45	
30	5	64	.09	

Ground Sampling Stations

...Location of Temperature/Moisture Stations Plotted on Thermal IR Imagery

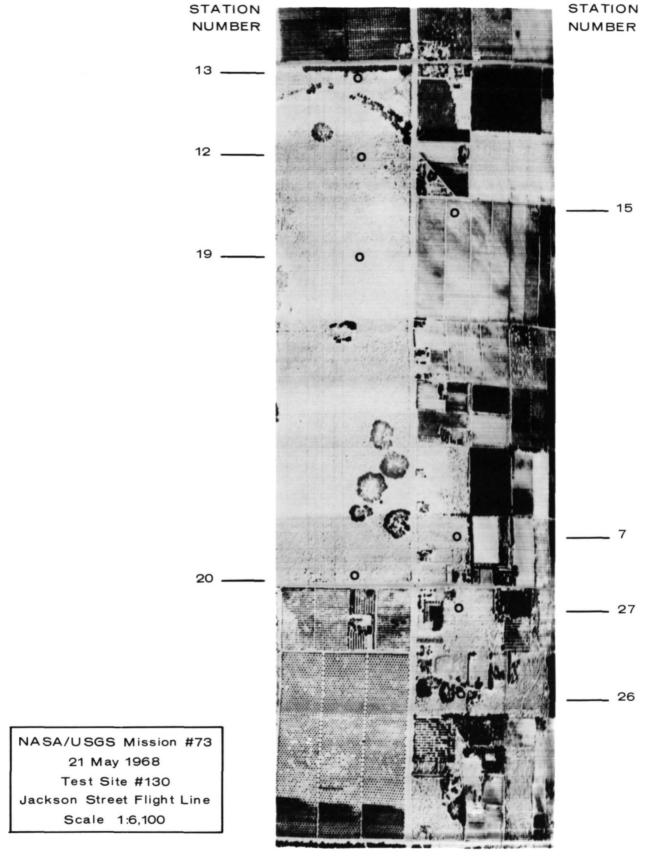


FIGURE 16A:

LOCATION OF TEMPERATURE/MOISTURE STATIONS PLOTTED ON THERMAL IR IMAGERY

Ground Sampling Stations

...Location of Temperature/Moisture Stations Plotted on Thermal IR Imagery

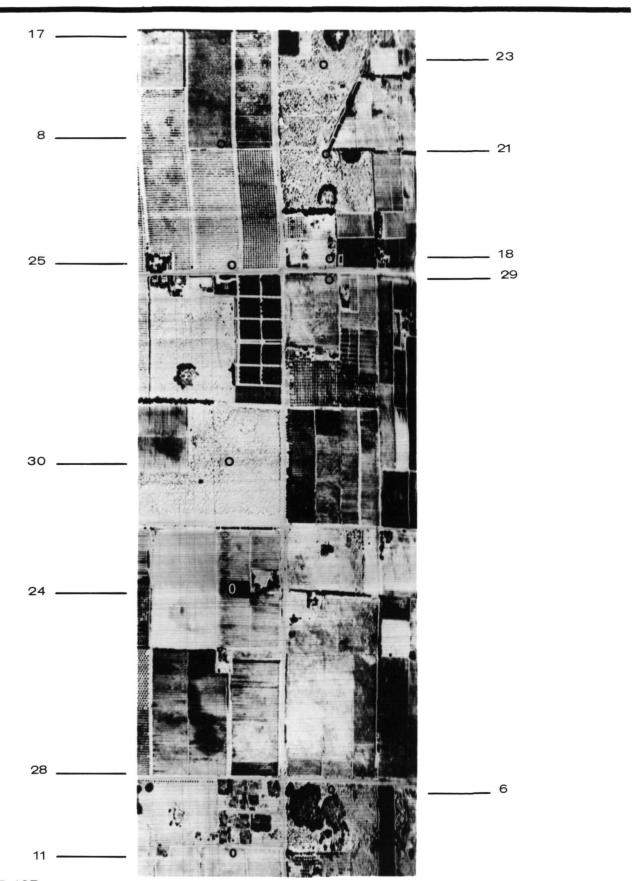
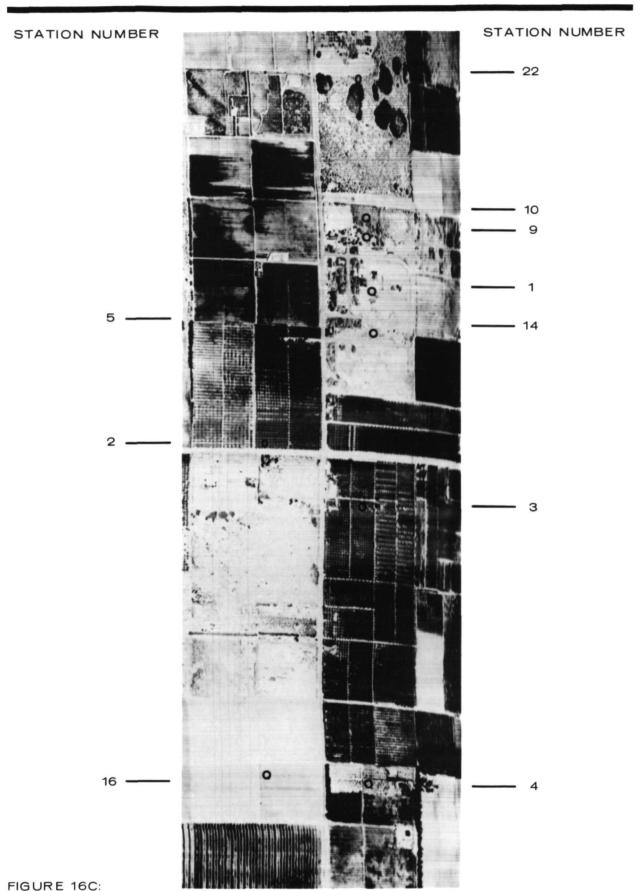



FIGURE 16B:

LOCATION OF TEMPERATURE/MOISTURE STATIONS PLOTTED ON THERMAL IR IMAGERY

Ground Sampling Stations

...Location of Temperature/Moisture Stations Plotted on Thermal IR Imagery

LOCATION OF TEMPERATURE/MOISTURE STATIONS PLOTTED ON THERMAL IR IMAGERY

TABLE XXIX
TEMPERATURE AS A FUNCTION OF MOISTURE

Temperature (°C)		Moisture (%)		
Y	y ²	Х	x ²	XY
22	484	37.75	1425.06	830.50
25	625	20.52	421.07	513.00
31	961	32.60	1062.76	1010.60
33	1089	10.65	113.42	351.45
33	1089	7.70	59.29	254.10
36	1296	0.00	0.00	0.00
39	1521	0.06	0.00	2.34
40	1600	2.09	4.37	83.60
44	1936	24.00	576.00	1056.00
44	1936	0.09	0.01	3.96
46	2116	0.30	0.09	13.80
46	2116	0.09	0.01	4.14
47	2209	0.39	0.15	18.33
47	2209	0.12	0.01	5.64
48	2304	5.52	30.41	264.96
51	2601	8.28	68.56	422.28
51	2601	0.52	0.27	26.52
51	2601	0.27	0.07	13.77
51	2601	0.18	0.03	9.18
51	2601	0.15	0.02	7.65
51	2601	0.03	0.00	1.53
54	2916	0.09	0.01	4.56
54	2916	0.00	0.00	0.00
56	3 136	24.00	576.00	1344.00
56	3136	0.09	0.01	5.04
56	3136	0.06	0.00	3.36
57	3249	0.03	0.00	1.71
58	3364	2.31	5.34	133.98
60	3600	0.45	0.02	27.00
64	4096	0.09	0.01	5.76

TABLE XXX DENSITY AS A FUNCTION OF TEMPERATURE Temperature Density Y² X^2 Y XY X

	TABLE XXX (Cont'd)				
	Density Y	y ²	Temp.	x ²	XY
	5	25	54	2916	270
	16	256	56	3136	896
	5	25	56	3136	280
	4	16	56	3136	224
	3	9	57	3249	171
	15	225	58	3364	870
	8	64	60	3600	480
	5	25	64	4096	320
SUM	205	1813	1402	68,674	9,291

TABLE XXXI
DENSITY AS A FUNCTION OF MOISTURE

	T			Г
Density		Moisture		
Y	y ²	х	x ²	XY
5	25	37.75	1425.06	188.75
12	144	20.52	421.07	246.24
12	144	32.60	1062.76	391.20
7	49	10.65	113.42	74.55
13	169	7.70	59.29	100.10
10	100	0.00	0.00	0.00
4	16	.06	.0036	.24
11	121	2.09	4.368	22.99
6	36	24.0	576.0	144.0
9	81	.09	.0081	.81
6	36	.30	.09	1.80
4	16	.09	.0081	.36
3	9	.39	.1521	1.17
6	36	.12	.0144	.74
4	16	5.52	30.47	22.08
6	36	8.28	68.56	49.68
2	4	.52	.270	1.04
6	36	.27	.0729	1.62
2	4	.18	.0324	.36
4	16	.15	.0225	.60
7	49	.03	.0009	.21
5	25	.09	.0081	.45
5	25	0.00	0.00	.000
16	256	24.0	576.0	384.0
5	26	.09	.0081	.45
4	16	.06	.0036	. 24
3	9	.03	.0009	.09
15	225	2.31	5.34	34.65
8	64	. 45	.2025	3.60
5	25	.09	.0081	.45
205	1813	178.43	4343.185	1672.47

TABLE XXXII
SUMMARY OF STATISTICAL PARAMETERS

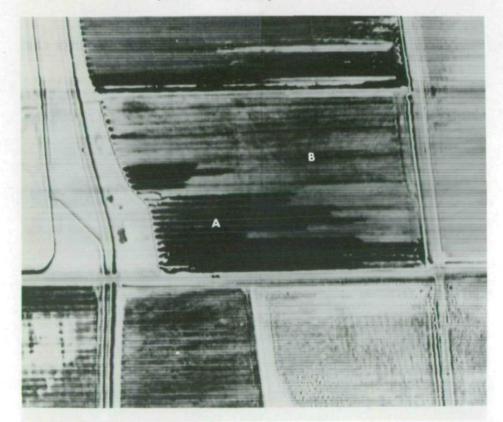
	Temperature as a Function of Moisture	Density as a Function of Temp.	Density as a Function of Moisture
Standard Error			
δy ²	1730.35	12.74	11.63
δy	41.60	3.58	3.41
Standard Deviation			
σy ²	107.26	13.48	13.74
σу	10.36	3.67	3.70
Coefficient of Correlation			
Υ	0.00	0.23	0.39
Coefficient of Non-determination			
	100%	94%	85%

either vegetation or in soil moisture, after other causes have been logically eliminated. Determination as to which of the two - vegetation or moisture - is causing the change in photographic density is then accomplished by applying to the color IR image. Thus, in Figure 17A the tone change between areas A and B can be interpreted on the thermal IR as being due either to changes in vegetation or in moisture. The pattern, however, suggests irrigation, and the response of the color IR emulsion confirms this, showing no change in vegetation. Note that the thermal IR detects the irrigated area much better than does the color IR.

In Figure 17B, the thermal IR shows field C to be either very moist or else covered with living vegetation. The color IR reveals that the field is covered with standing water. (Fields in the Imperial Valley are subject to gradual build-up in salt content and are periodically flooded to leach the salts out.)

In Figure 17C, the thermal IR shows the gulley pattern, D, to be warmer than the surrounding area, which it drains. This is anomalous, since drainage channels usually contain more moisture than the interfluves drained by them. The color IR, however, shows the gulley bottom to be densely covered by dormant vegetation, the high emissivity of which produces the light (warm) tone on the thermal IR.

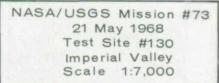
Color IR & Thermal IR as Indicators of Moisture


... Comparison of RC-8 Color IR and Reconofax IV Thermal IR Imagery

NASA/USGS Mission #73
21 May 1968
Test Site #130
Imperial Valley
Scale 1:7,000

Color Ektachrome (8443)

Thermal Infrared (8-14 microns)


ANNOTATIONS

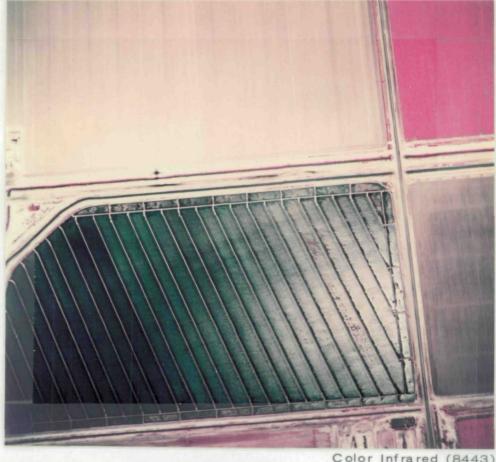
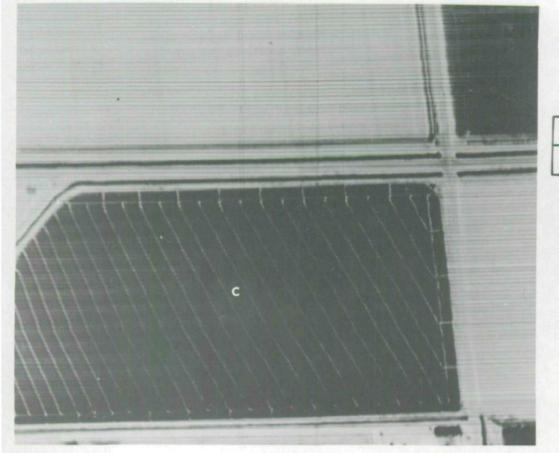

A: Irrigation in Progress
B: Alfalfa Field

FIGURE 17A:
RELATIVE SOIL
MOISTURE CONTENT
FROM THERMAL IR
AND COLOR IR

Color IR & Thermal IR as Indicators of Moisture

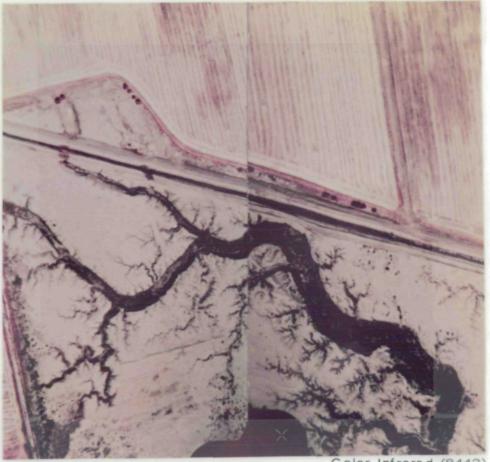

... Comparison of RC-8 Color IR and Reconofax IV Thermal IR Imagery

Thermal Infrared (8-14 microns)

Color Infrared (8443)

ANNOTATIONS

C: Standing Water


FIGURE 17B:

RELATIVE SOIL MOISTURE CONTENT FROM THERMAL IR AND COLOR IR

Color IR & Thermal IR as Indicators of Moisture

... Comparison of RC-8 Color IR and Reconofax IV Thermal IR Imagery

NASA/USGS Mission #73
21 May 1968
Test Site #130
Imperial Valley
Scale 1:7,000

Color Infrared (8443)

Thermal Infrared (8-14 microns)

ANNOTATIONS

D: Dormant Vegetation in Gulley.

FIGURE 17C:
RELATIVE SOIL MOISTURE
CONTENT FROM THERMAL
IR AND COLOR IR

2.5 Feasibility From Spacecraft

2.5.1 Objectives

In this section, techniques are developed for evaluating the performance of NASA's RC-8 camera at satellite altitudes using Kodak Ektachrome IR film. The methodology is kept as general as possible to allow for the substitutions of other imaging and data recording systems. The imaging situations for which sensor performance is evaluated will be related to the detection of agricultural, cultural, and urban features.

Two factors are responsible for the limitation of ground resolution obtainable from an overhead photographic system: the lens/film resolution and the atmospheric transfer process. In section 2.5.2, these factors limiting resolution from a spacecraft will be discussed.

2.5.2 <u>Factors Limiting Resolution Obtainable From an Orbiting Photographic</u> System.

The lens/film photographic system which is under primary consideration is the Wild Heerbrugg RC-8 camera equipped with an f/5.6, f = 150 mm(6") Universal Aviogon lens (15UAg.) imaging on Kodak Ektachrome IR Aerographic film.

Resolution is defined as the ability to record fine detail. One commonly used means of determining resolution is to image a test chart containing a sequence of objects of increasingly fine detail, usually a bar target or pattern consisting of lines and spaces of equal widths. The threshold at which it is possible to barely distinguish a line-space pair is determined. The width of the line-space pair in millimeters is taken as the smallest recognizable distance. The reciprocal of this distance is the resolution in lines per millimeter.

While the resolving power, as determined by the preceding method, has the advantages of convenience and simplicity, it does not always provide an adequate index of sharpness or edge definition. For a measure of sharpness, the concepts of the optical transfer function (OTF) and modulation transfer function (MTF) are employed. This approach involves the analysis of optical images in a manner analogous to electrical signals. Brightness is considered a function of linear distance in the same manner that current or voltage varies as a function of time. Instead of frequency expressed as cycles per second, there is spatial frequency expressed as cycles per millimeter. The optical transfer function is the analogue of the frequency response of an electrical network.

The response of an optical system is determined by inputting a basic pattern and measuring and comparing the output in terms of modulation. The input pattern is usually either a point, line or edge function. The response of the system to these input functions is the point, line or edge spread function. The spread function describes the distribution of flux density in the image plane. Figure 18 shows that the edge spread function can be considered as half of the line spread function.

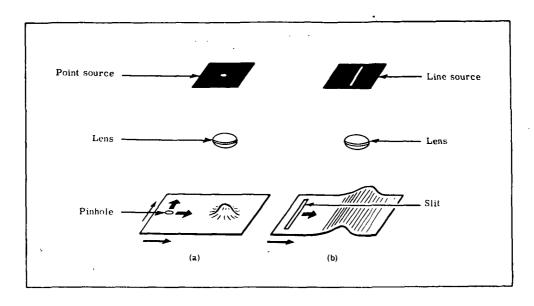


FIGURE 18 POINT AND LINE SPREAD FUNCTIONS (James, T. H, and Higgins, G. C., Fundamentals of Photographic Theory, Second Edition, Morgan and Morgan, Inc., New York, 1960, p. 229.)

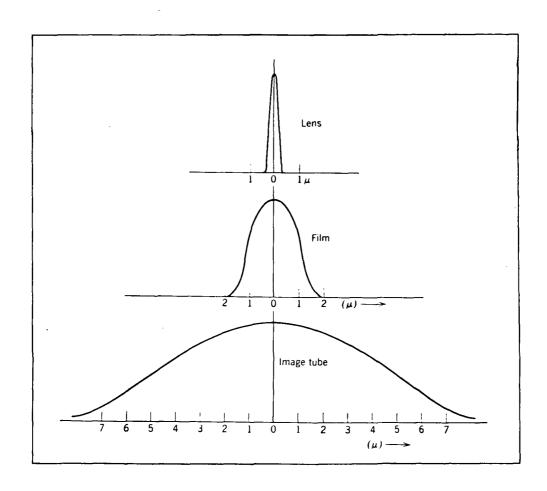


FIGURE 19 CHARACTERISTIC SPREAD FUNCTIONS

The point spread function is seldom used in the evaluation of optical systems because of problems encountered in measuring the low energy level of flux density. Instead, the line spread function is used, which can be considered as a series of point spread functions added together to form a line. In the case of imaging onto film, the image of a point or line is distorted or spread by silver grains, scattered within the emulsion, or refracted by the emulsion thickness and halation. In a like manner, the spread function of any other imaging system or part of an imaging system can be determined by putting a line or point function and deriving a spread function. Thus it is possible to express the response of an image tube, data link, or atmospheric transfer process. Figure 19 shows some characteristic spread functions. Usually the spread function can be approximated by a Gaussian distribution. In actuality, the spread function of each sensor element is a function of position from the optical axis. As a rule, only the spread function of a point on the optical axis will be symmetrical.

If a point spread function of an imaging sensor is known, the illuminance of any object can be found by a convolution process, i.e., by summing the point spread function corresponding to the points in the object. This process is illustrated in Figure 20, where the illumination of an image $\mathbf{1}(\mathbf{x}_1)$ is determined by an object defined by a function $\mathbf{0}(\mathbf{x}_2)$. The convolution integral is given by:

$$i(x_1) = \int_{-\infty}^{\infty} s(x_2) o(x_1 - x_2) dx_2$$
 (1)

A more general and practical method of optical system analysis is to determine the response of the system to sinusoidal targets of varying spatial frequency. The function that describes this performance is called the optical transfer function (OTF), which expresses both amplitude and phase changes as functions of spatial frequency. The function describing only the amplitude modulation is called the modulation transfer function (MTF).

Rather than image sinusoidal test patterns, the sinusoidal response can be determined by using the Fourier transform to convert an impulse function such as a point or line function from the spatial domain to the frequency domain. An example of a function broken down into sinusoidal components is given in Figure 21. The function analyzed is a square wave. For a square wave function, the Fourier transform is a series of sine waves composed of the fundamental, having a frequency of f, and odd harmonics of frequency 3f, 5f, 7f, etc., with corresponding amplitudes of 1/3, 1/5, 1/7, etc. By adding together the various harmonics, the original function is approximated. The more harmonics present, the closer is the approximation to the original function. The intensity modulation of each component, M, is defined by:

$$M = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$
 (2)

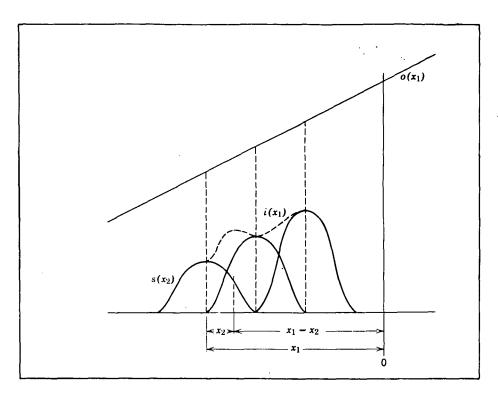


FIGURE 20 CONVOLUTION PROCESS (Perrin, F.H., Method of Appraising Photographic Systems, J. Soc. Motion Picture Television Engineers 69, p. 151-156, 1960.)

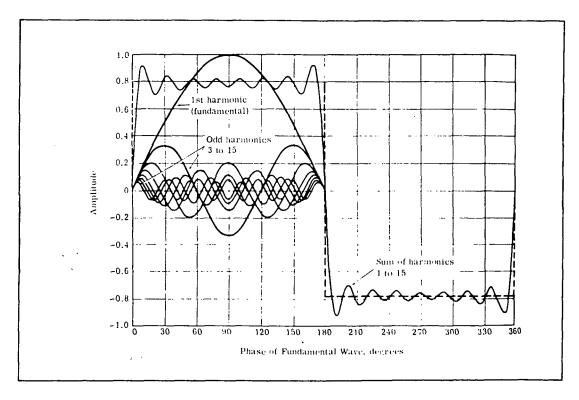


FIGURE 21 ANALYSIS OF A SQUARE WAVE INTO ITS FUNDAMENTAL AND HARMONICS

In a real system, the high spatial frequencies suffer greater attenuation resulting in an image with blurred edges. Transforming an image into its spatial frequency spectrum and computing the modulation as a function of frequency (MTF) provides a powerful tool in image analysis.

The Fourier transform, (ω) , of a function g (x) is defined by

$$G(\omega) = \int_{-\infty}^{\infty} g(x)e^{-iwx}dx.$$
 (3)

By taking the Fourier transform of equation (1), the frequency spectrum of intensity becomes

$$I(\omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} s(x_2) \circ (x_1 - x_2) e^{-i\omega x} dx_2 dx_1$$

$$= \int_{-\infty}^{\infty} s(x_2) dx_2 \int_{-\infty}^{\infty} o(x_1 - x_2) e^{-i\omega x} 1 dx_1 dx_2.$$

$$I(\omega) = \int_{-\infty}^{\infty} s(x_2) dx_2 \int_{-\infty}^{\infty} o(u) e^{-i\omega u} e^{-i\omega x} e^{-i\omega x} 2 du.$$

$$\int_{-\infty}^{\infty} s(x_2) e^{-i\omega x} 2 dx_2 \int_{-\infty}^{\infty} o(u) e^{-i\omega} u_{du}.$$

$$I(\omega) = S(\omega) O(\omega). \tag{4}$$

Thus the Fourier transform of the image $I(\omega)$ is equal to the product of the Fourier transforms of the object, $o(\omega)$ and the spread function, $S(\omega)$.

Thus,
$$S(\omega) = I(\omega)/O(\omega)$$
. (5)

Normalizing the Fourier transform of the spread function, τ (ω), the optical transfer function is obtained

$$\tau (\omega) = \frac{\infty}{\infty} \cdot (x) e^{-ix} dx$$

$$\int_{-\infty}^{\infty} s(x) dx$$
(6)

The absolute value or amplitude of this complex function is the MTF. For convenience, angular frequency is converted to linear frequency and the MTF becomes

$$T(k) = |\tau (\omega/2\pi)| . (7)$$

Figure 22 shows a typical spread function and corresponding modulation transfer function for an optical system.

2.5.2.1 Image Motion Compensation

The movement of the sensor with respect to the ground is responsible for image blurring. The amount of image degradation so caused is dependent on the altitude and speed of the sensor with respect to the ground, the type of motion (linear and/or rotational), the exposure time, and the presence or absence of image motion compensation (IMC).

If the orbit of the imaging sensor is assumed as circular, the velocity can be derived from the equation

$$V^2 = GM(2/r - 1/a)$$
 (8)

where

G = Gravitational Constant

M = Mass of the earth

 $GM = 1.40769256 \times 10^{16} \text{ ft}^3/\text{sec}^2$

r = Semi-minor axis
a = Semi-major axis

For a circular orbit, r = a.

$$V^2 = GM(1/a_0). (9)$$

where

a = radius of circular orbit = a + a h

 $a_{\rm e}$ = radius of earth at the equator = 20.9023057 x 10^6 ft.

 a_h = altitude of satellite = 150nmi = .911415 x 10^6 ft.

Under these conditions, orbital velocity is $V = 2.54 \times 10^4 \text{ft/sec} = 7.74262 \times 10^3 \text{m/sec}$. The velocity with respect to the ground becomes

$$V = 24.3404 \times 10^3 \text{ft/sec} = 7.41897 \times 10^3 \text{m/sec}.$$

Image velocity under idealized conditions where the sensor is moving parallel to a flat earth as shown in Figure 23 is given by

$$v = VF/H \tag{10}$$

F = Focal length,
H = Sensor altitude.

In the particular case under consideration,

$$v = 13.385 \times 10^{-3}$$
ft/sec = 4.08 mm/sec.

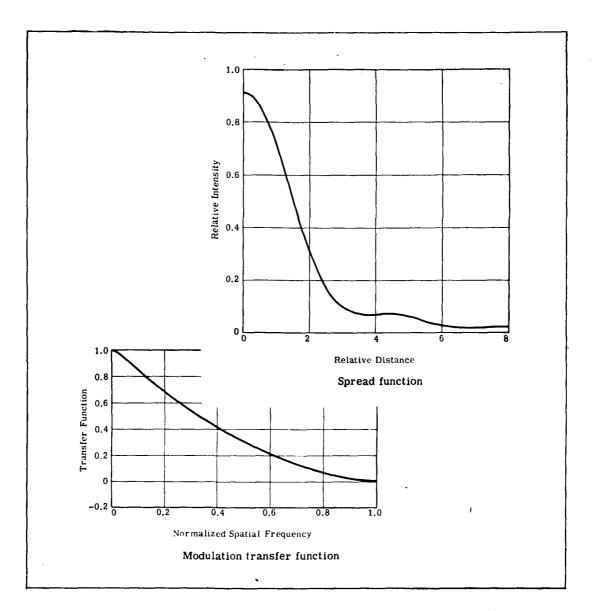


FIGURE 22 TYPICAL SPREAD FUNCTION WITH CORRESPONDING
MODULATION TRANSFER FUNCTION (G. C. Brock,
D. I. Harvey, R. J. Kohler, and E. P. Myskowski,
"Photographic Considerations for Aerospace,"
Itek Corporation, Lexington, Mass., 1966.)

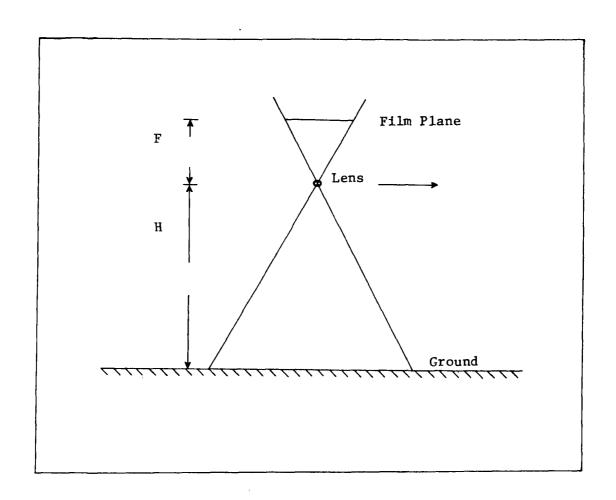


FIGURE 23 IMAGE GEOMETRY

(Taking into account the curvature of the earth, however, results in a non-uniform motion of image points.)

For an exposure of 1/100 second, the linear motion is 40 microns. This corresponds to a ground movement of 74 meters or 243 feet and a spatial frequency at the film plane of 24.5 lines/mm.

The dynamic resolution obtainable from a satellite imaging at an altitude of 150 NM with a 6" focal length and 50 lines/mm resolution can be roughly estimated by adding the static ground resolution, $S_{\rm o}$ and the amount of blur due to image motion.

$$S = S_0 + \gamma V T_e. \tag{11}$$

S_o = static ground resolution neglecting atmospheric attenuation

$$= H/FR \tag{12}$$

H = altitude

F = focal length

R = resolution

 $S_0 = 121.5 \text{ ft.}$

 γ = IMC factor - (1 for no IMC)

V = ground speed

 $T_o = \text{exposure time} = 1/100 \text{ sec}$

S = 121.5 + 243 = 364.5 ft.(no image motion compensation)

The MTF for linear image motion can be determined by assuming an image with a sinusoidal luminance pattern.

$$i(x) = i_0 + i_m \cos 2\pi kx.$$
 (13)

The modulation according to equation (2) becomes

$$M_{O} = \frac{(i_{O} + i_{m}) - (i_{O} - i_{m})}{(i_{O} + i_{m}) + (i_{O} - i_{m})} = \frac{i_{m}}{i_{O}} .$$
 (14)

If the image is moving at a velocity, v, the luminous distribution is expressed by $i(x,t) = i_0 + i_m \cos 2\pi k (x + vt)$. (15)

During an exposure interval, t, the average intensity is given by

$$\frac{1}{i(x,t)} = (1/t_e) \int_0^t e^{-it_o} dt + i_m \cos 2\pi k (x + vt) dt$$

$$= i_o + (i_m/2\pi kvt_e) (\sin 2\pi k (x + vt))_0^t e$$

$$i_o = i_o + (i_m/2\pi kvt_e) (\sin 2\pi k (x + vt_e) - \sin 2\pi kx) (16)$$

Using trigonometric identities reduces equation (16) to

$$i(\overline{x,t}) = i_0 + i_m \frac{\sin \pi k v t_e}{\pi k v t_e} \cos 2\pi k (x + \frac{v t_e}{2})$$
 (17)

Equation (17) is similar to (13) except for a phase lead of πkvt_a and a modulation,

$$M' = (i_{m}/i_{o}) \frac{(\sin \pi kvt_{e})}{\pi kvt_{e}}.$$
 (18)

The modulation transfer function becomes

$$T_{k} = \left| \frac{M'}{M_{o}} \right| = \left| \frac{\sin \pi \ kvt_{e}}{\pi \ kvt_{e}} \right| . \tag{19}$$

The MTF is zero when vt = i/k. In the satellite system under consideration this corresponds to a cut off frequency of 24.5 lines/mm. Figure 24 shows the MTF for this situation.

Other types of motion besides linear affect the image quality. These include rotational movements due to the roll, pitch, and yaw of the spacecraft and sinusoidal vibrations caused by the opening and closing of the camera shutter and the movement of the film. These motions, however, can be mechanically compensated for by vibrational isolators or gyro-stabilized camera platform 7.

The MTF of the camera/film system can be found by cascading or multiplying the various individual transfer functions of the lens, film and image motion. Several techniques have been developed for empirically determining the lens MTF. Film MTF's are now routinely determined by the manufacturer for most films. The image motion transfer function can be determined from

⁷ cf Jensen, Op. Cit. p. 120. , "Modulation Transfer Function: Seminar-in-Depth" SPIE proceedings, Vol. 13, 1969.

(Also Trott, Timothy, "The Effects of Motion on Resolution," Photogrammetric

Engineering, XXVI (Dec. 1960), p. 819 - 827)

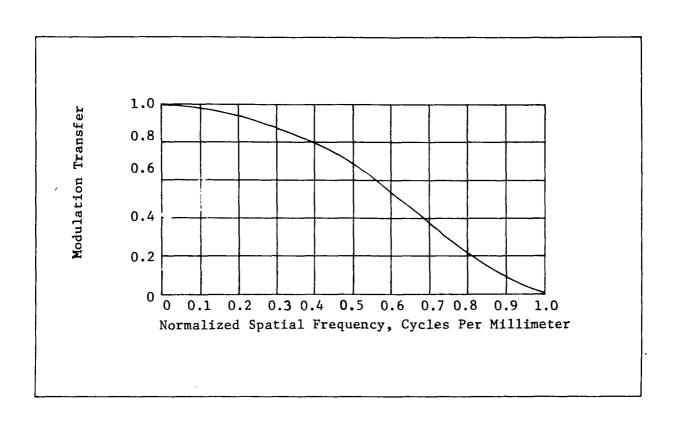


FIGURE 24 MODULATION TRANSFER FUNCTION FOR LINEAR IMAGE MOTION

equation (19). Since the actual MTF of NASA's RC-8 was not available, a nominal MTF with a resolution of 50 lines/mm was used. The MTF of Ektachrome IR is considered proprietary information by Kodak and is not available for public dissemination. Infrared Aerographic 5424 is used for the purpose of illustration.

The detection threshold is a locus of points relating the modulation and spatial frequency at which it is possible to detect three-bar targets. The detection threshold depends on the size of the silver grains, which in turn depends on the film type processing. If the resolving power for varying contrast targets is known, the threshold modulation can be computed from equation (2). For Infrared Aerographic, a resolution of 89 lines/mm for a contrast of 1,000:1 corresponds to a modulation of .999, and a resolution of 28 lines/mm for 1.6:1 corresponds to .23. The spatial frequency at which the detection threshold intersects the system MTF is a measure of system resolution. The MTF of a camera system operating under the aforementioned conditions is determined in Figure 25. In this example, system resolution is 17 lines/mm. At an altitude of 150 nautical miles, this is equivalent to a ground resolution of 357 feet, which agrees with the number derived by equation (11). It should be noted from equation (10) that an increase in focal length results in an increase in film motion and a decrease in system resolution. The effect of increasing focal length will be discussed in a later section.

In the following section (2.5.2.2) the effects of the atmosphere on the system resolution will be discussed along with a method for determining ground resolution from the spread functions of the system. In section 2.5.2.3 the atmospheric and camera transfer functions will be combined to determine the overall resolution of the system.

2.5.2.2 Atmospheric Transfer

The atmosphere consists of a mixture of gases. The permanent gases have a fixed proportion to the total and vary only slightly with time and location. The most important variable gases are water and ozone. Although water vapor comprises less than 2% of the gases, it absorbs six times as much solar radiation as all the other gases combined and is responsible for nearly all the absorption by gases of the terrestrial radiation.

COMPOSITION OF THE ATMOSPHERE

	Permanent Gases	Variability
Nitrogen Oxygen CO ₂ Other	78.084 20.946 .033	±0.004% ±0.002% ±0.001% %
	Variable Gases	

Water Vapor 0-2% Ozone 0-0.07% (ground) 1-3 ppm (20-30 km)

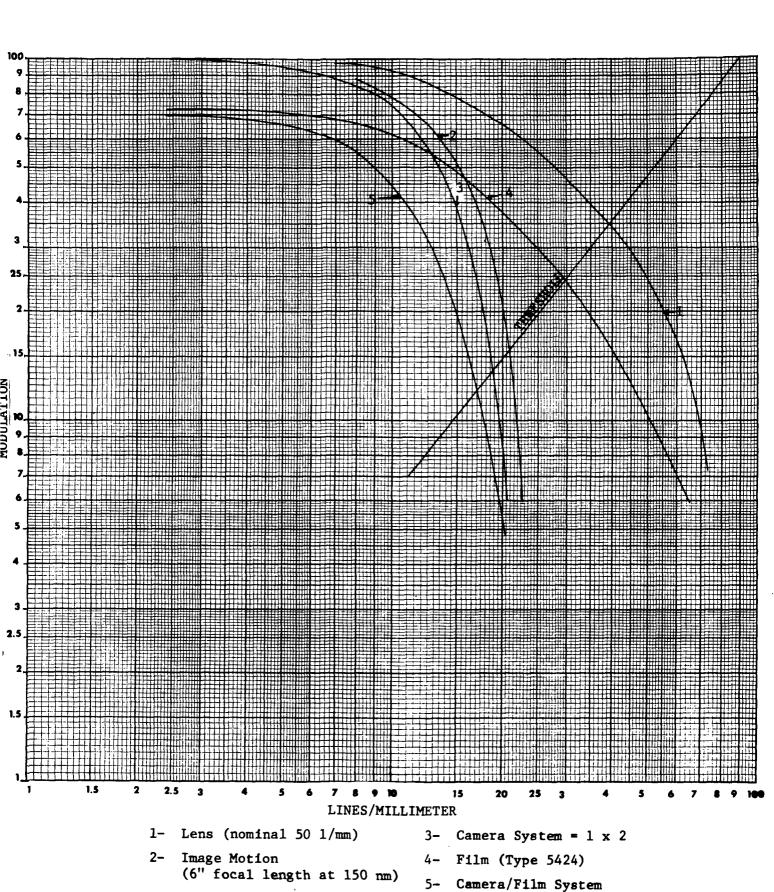


FIGURE 25 MODULATION TRANSFER FUNCTION OF CAMERA FILM SYSTEM

The distribution of atmospheric gases with respect to altitude is shown in Table XXXIII. The reduced height, H, of the atmosphere is defined as the total mass of air contained in a vertical column of unit cross-section above the point of observation divided by the density at sea level.

D. Campara		ABLE XXXIII	
DISTRIE	UTION OF T	HE ATMOSPHERE	WITH ALTITUDE
Height (km)	Height (mi)	H (cm)	% Atmosphere beneath
0 5	.0 3.1	804,000 430,000	.000 47.000
10	6.2	211,000	74.000
15	9.4	90,000	89.000
20	12.5	45,000	94.500
30	18.8	10,000	98.800
35	21.9	4,700	99.420
40	25.0	2,500	99.690
50	31.2	790	99.902
60	37.5	220	99.973
70	43.8	57	99.993
80	50.0	10	99.999

The atmospheric phenomena affecting space photography are contrast degradation, which lowers photographic system resolution; mean refraction, which necessitates photogrammetric corrections to determine true position of ground objects; and turbulence, which causes changes in the refractive index of the atmosphere.

2.5.2.2.1 Contrast Reduction

A beam of light traversing a medium is reduced in intensity partly by absorption and partly by scattering. In the scattering process, light energy is deflected from its original path and reradiated in an altered direction. Scattering is always due to inhomogeneity within the medium. In a reconnaissance situation, atmospheric particles are responsible for light attenuation by scattering. The spectral nature of the scattered light depends on the size of the scattering particles. For a clean atmosphere chiefly composed of nitrogen and oxygen gas molecules, which are much smaller in size than the wavelength of visible light, Rayleigh scattering occurs. Under this condition, the scattering is inversely proportional to the fourth power of the wavelength. The result is a predominance of blue, since shorter wavelengths undergo greater scattering than the longer wavelengths. This phenomena

explains the bluish color of the sky and atmospheric haze. Attenuation of light caused by absorption can be considered negligible in a Rayleigh atmosphere. True absorption accounts for only one-millionth of the scattered light.

A Rayleigh atmosphere seldom, if ever, exists, however. In reality, the atmosphere contains aerosol particles equal to or greater than the wavelength of light. These particles can be considered to be confined to an altitude below 15,000 ft. The following is a summary of atmospheric particle size:

ORDER OF SIZE OF ATMOSPHERIC PARTICLES

Gas Molecules	10 ⁻⁴ micron
co, co ²	10-2 "
Sea Salt Nuclei (dry air)	10-1 "
Sea Salt Nuclei (humid air)	1 " .
Fog, Cloud	1-100 microns
Dust	1 micron
Wavelength of Green Light	.5 micron

An atmosphere containing particles on the order of magnitude of the wavelength of light is termed a Mie atmosphere. In a Mie atmosphere, scattering shows less dependence on wavelength. Studies have shown that the scattering of a real atmosphere is proportional to $\lambda-1.3\pm0.6^{10}$. The relative scatter as a function of wavelength is shown in Figure 26 for a variety of atmospheric conditions. Except under extreme haze conditions a predominance of blue light scattering can be seen. The actual prediction of Mie scattering is difficult due to the variability of the distribution of Mie particles within the atmosphere. It is necessary to rely on empirically determined scattering coefficients.

The effect of scattering by the atmosphere is to impart a luminance to the atmosphere. The complicated process by which sunlight strikes the earth and is reflected back into space is outlined in Figure 27. From this diagram it can be seen that atmospheric luminance depends on the scattering of incident radiation and reflected terrain radiation.

Brock, G. C., "Physical Aspects of Air Photography", Longmans, Greenland Co., 1952, P. 197.

Mazurwski, M. J. and Walker, J. E., Study of Aerial Photographic Attenuation by the Atmosphere Cornell Aeronautical Laboratory, Report No. VF-1478, Page 2. (May 25, 1962).

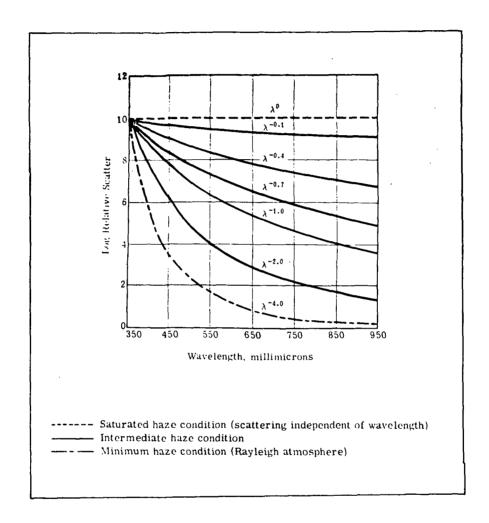
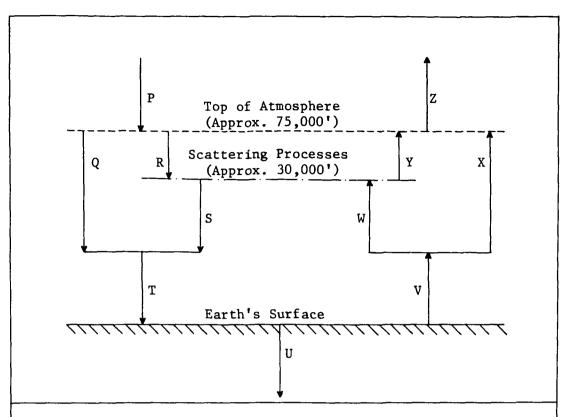



FIGURE 26 RELATIVE SCATTER AS A FUNCTION OF
WAVELENGTH FOR VARIOUS MAGNITUDES
OF ATMOSPHERIC HAZE (G.C. Brock,
D.I. Harvey, R.J. Kohler, and E.P.
Myskowski, "Photographic Considerations
for Aerospace," Itek Corp., Lexington,
Mass., 1966)

- P Total visible solar radiation that reaches the earth's surface
- Q Portion of P that reaches the earth's surface without having been scattered
- R Scattered fraction of P
- S Scattered light that reaches the earth's surface
- T Total light reaching earth's surface
- U Fraction of T absorbed by earth
- V Fraction of T reflected by earth
- W Scattered fraction of V
- X Fraction of V that escapes into space without having been scattered
- Y Scattered light that escapes into space
- Z Total light from the earth that escapes into space

FIGURE 27 ENERGY BALANCE DIAGRAM (Dylewski, J.J., Presented to Optical Society of America [Oct.23, 1963])

The effect of atmospheric attenuation and luminance on the contrast of a ground object can be expressed by

$$C_{a} = \frac{B_{o}T_{a} + B_{a}}{B_{b}T_{a} + B_{a}} , \qquad (20)$$

where

C = apparent aerial contrast

 B_0 , b = luminance of object and background in foot-lamberts

T = atmospheric transmission coefficient

B = atmospheric luminance.

Alternately, luminance can be expressed as

$$B = I_s R$$
 ,

where

I = incident solar illuminance in foot-candles

R = reflectance.

Thus equation (20) becomes

$$C_{\mathbf{a}} = \frac{I_{\mathbf{S}} R_{\mathbf{o}} T_{\mathbf{a}} + B_{\mathbf{a}}}{I_{\mathbf{S}} R_{\mathbf{o}} T_{\mathbf{a}} + B_{\mathbf{a}}} \qquad (21)$$

Equation (21) represents a simplification, since solar illuminance, transmission, and luminance are functions of wavelength. A complete description of aerial contrast would include the effects of wavelength. However, the use of a minus blue haze cutting filter minimizes these effects.

Figure 28 shows the aerial contrast above the atmosphere as a function of solar altitude. The three ground scene contrasts have a constant background reflectance of 10% incident solar illumination. From Figure 28, it can be seen that the contrast reduction by the atmosphere is a non-linear process.

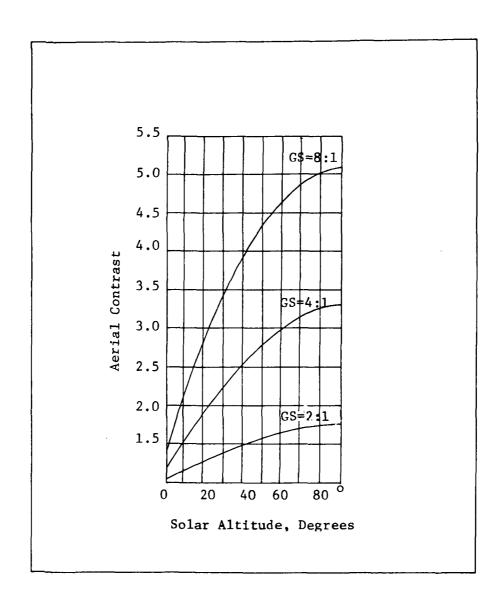


FIGURE 28 AERIAL CONTRAST ABOVE THE ATMOSPHERE AS A FUNCTION OF SOLAR ALTITUDE (G.C. Brock, et als., "Photographic Considerations for Aerospace," Itek Corp., Lexington, Mass., 1966.)

Figures 29A and 29 B show the contrast attenuation for a Rayleigh atmosphere. As such, they represent the minimum possible contrast attenuation for contrasts viewed through the earth's atmosphere. A comparison between Figure 29A and 29B shows that contrast attenuation increases with decreasing background terrain reflectance. It can also be seen that the effect of contrast attenuation is less in the near infrared (λ = 0.810 microns). This shows that the extended sensitivity of Ektachrome IR makes it a more efficient detector for remote sensing than Ektachrome Color.

2.5.2.2.2 Turbulence

Thermal gradients due to uneven heating and cooling of the ground and atmosphere are the major causes of turbulence. Since the index of refraction is proportional to the density, which is in turn dependent on temperature, uneven heating of the atmosphere results in a non-homogeneous index of refraction. The changes in refraction are random in nature, producing time variations in position (shimmer) and intensity (scintillation).

The effect of turbulence on space photography is dependent on the relative altitude of the turbulent layer and the imaging system. The further the turbulence is from the camera, the smaller is the angular subtense at the lens plane and the greater the imaged resolution, (Figure 30). This is intuitively evident when one considers the analogous situation of viewing an object through an uneven or wavy surface glass such as that used in shower stalls. The amount of detail which can be observed depends on the relation of the distance of the uneven surface from the object to the viewer.

Many studies of turbulent effect have been made by astronomers. The angular variations have been reported to lie between 0 and 10 seconds of arc with an average of .75 seconds on nights with good visibility. Since daytime fluctuations are at least four times greater than nighttime, for the situation of satellite imaging, the average turbulence encountered may be assumed to be 2 to 4 seconds of arc. For a particular situation, however, the actual turbulence may be greater.

The effect of turbulence is to cause a smearing of the image similar to that caused by image motion. The image spread in microns due to turbulence can be calculated by the following:

$$S_t = 3.5 \times 10^{-4} \quad F \delta \frac{h_t}{H}$$
 (22)

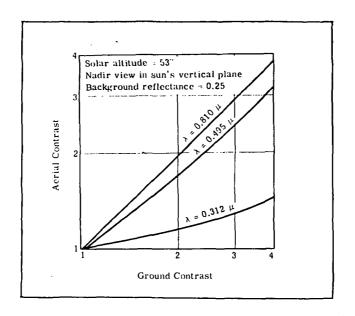


FIGURE 29A CONTRAST ATTENUATION FOR A RAYLEIGH ATMOSPHERE

(G. C. Brock, D. I. Harvey, R. J. Kohler, and
E. P. Myskowski, "Photographic Considerations
For Aerospace," Itek Corp., Lexington, Mass., 1966.)

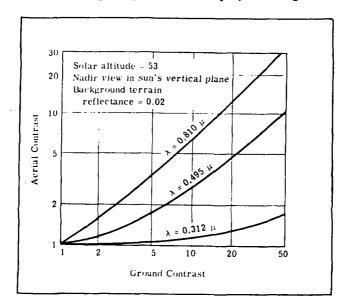


FIGURE 29B CONTRAST ATTENUATION FOR A RAYLEIGH ATMOSPHERE (G.C. Brock, D.I. Harvey, R.J. Kohler, and E.P. Myskowski, "Photographic Considerations for Aerospace," Itek Corp., Lexington, Mass., 1966.)

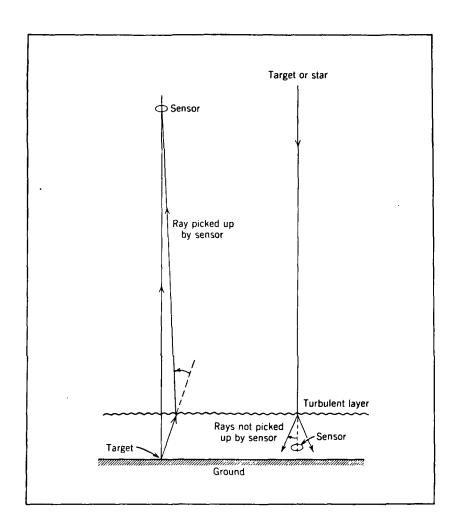


FIGURE 30 EFFECT OF NEAR AND FAR TURBULENCE ON A SENSOR (N. Jensen, "Optical and Photographic Reconnaissance Systems," John Wiley and Sons, Inc., New York, 1968.)

Where

F = Focal length in feet

 δ = Mean angular deviation due to turbulence (sec. of arc).

H = Camera Altitude in nm = 150 nm.

The transfer function associated with atmospheric turbulence can be derived in a manner similar to that of image motion and is given by

$$T_{a} = \left| \frac{\sin \pi k s_{t}}{\pi k s_{t}} \right|, \qquad (23)$$

(assuming s_{t} to occur within the effective exposure time).

If the equation (22) is solved for turbulence heights of 30,000 and 75,000 feet with an angular deviation of 20 seconds, the resulting image smears are 0.70 and 1.75 microns respectively. The transfer function associated with a turbulence height of 75,000 feet is given in Figure 31.

2.5.2.2.3 Atmospheric Refraction

As shown in Table XXXIII, atmospheric density varies with altitude. Corresponding to the change in density is a change in the index of refraction. The result is that objects do not appear in their true positions. Corrections for these errors must be made for precise mapping. The mathematics involved in photogrammetric corrections for refraction effects are complicated. For a thorough account of atmospheric refraction corrections see Helmut H. Schmid, "The Influence of Atmospheric Refraction on Directions Measured to and from a Satellite", AD 409-851.

2.5.2.3 Total System Resolution

The total system resolution is determined by cascading the transfer function of the camera system, Figure 25, and the atmosphere, Figure 31. This process is illustrated in Figure 32.

Contrast attenuation is independent of spatial frequency. Its effect on ground contrast is to reduce imaged contrast, as seen in Figures 29A and 29B. The modulation attenuation as computed from 29A for a wavelength of .810 microns is .96. The background reflectance value of 0.25 is within the range of reflectances for agricultural targets. The wavelength of .810 microns falls within the infrared sensitive layer of Ektachrome IR. The effective modulation due to turbulence is 1.0, within the range of the lens transfer function.

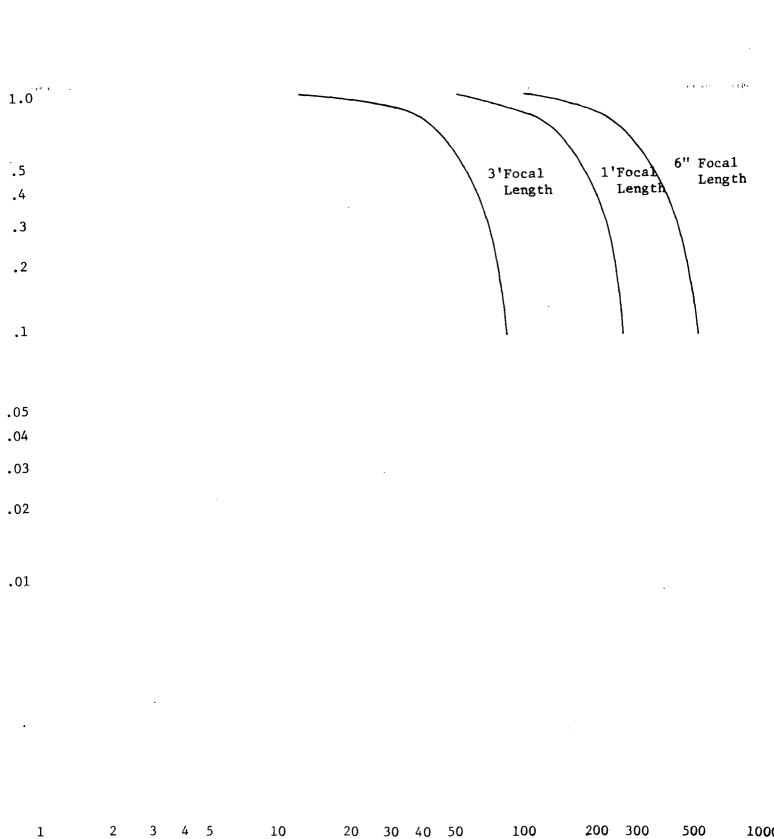


FIGURE 31 MTF DUE TO ATMOSPHERIC TURBULENCE AT AN ALTITUDE OF 150 NM AND AN EFFECTIVE TURBULENT LAYER AT 75,000'

LINES/MILLIMETER

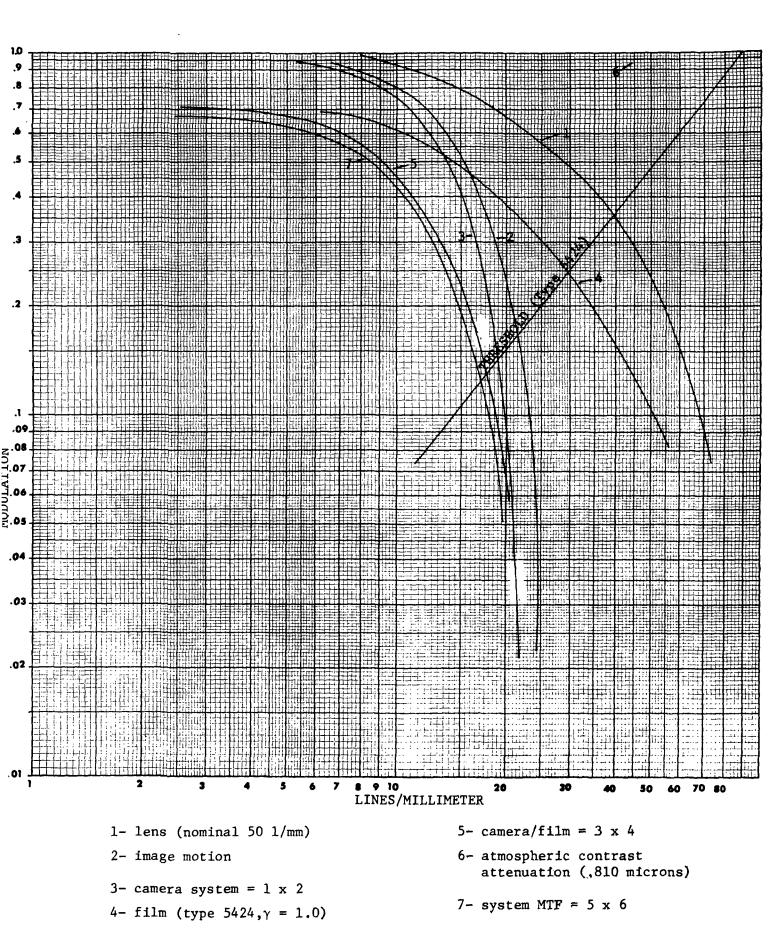


FIGURE 32 MODULATION TRANSFER FUNCTION OF 6" FOCAL LENGTH RC-8 SYSTEM

So far the various factors influencing film MTF have been ignored. The film emulsion converts exposure to density by a non-linear process. Thus, it is necessary to generate a conversion function by exposing a calibrated step tablet. The relationship between exposure and density is the D-log E curve. The slope of this curve is called gamma and is a measure of contrast. A change in gamma will result in a change of the film MTF. An upwards or downwards shifting of the MTF depends on whether gamma is increased or decreased. The MTF for Infrared Aerographic developed to gamma = 1 is used throughout this analysis.

The film MTF is also dependent on the spectral quality of radiation used in the determination of the MTF. In this example, Infrared Aerographic is exposed to a tungsten source with a Wratten 25 filter. The resultant MTF can be considered a rough approximation of that of the cyan-forming (IR sensitive layer) of Ektachrome IR.

The total resolution as determined from Figure 32 is 16 lines/mm with a ground resolution of 382 feet. (with image motion compensation).

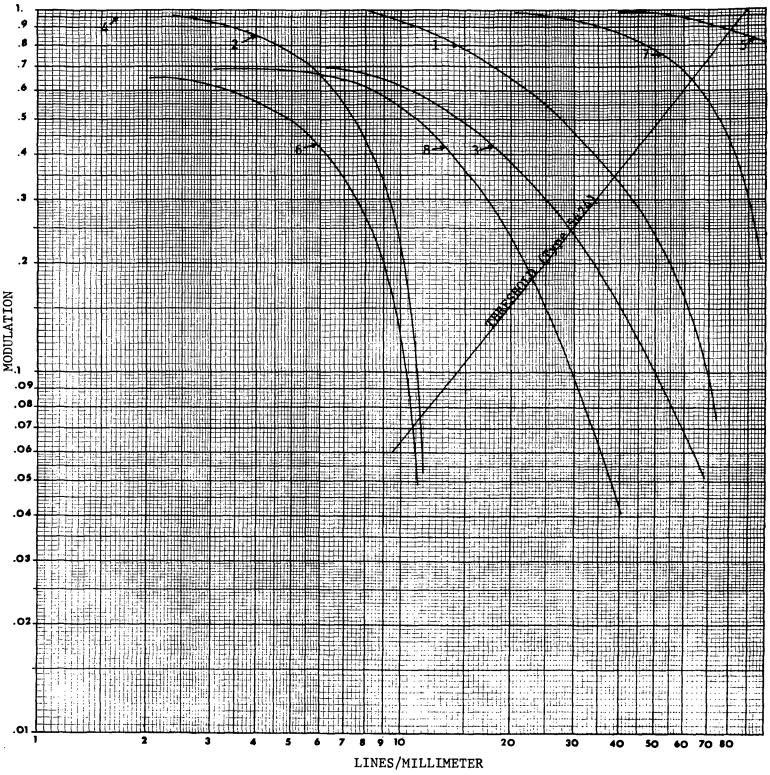

Figures 33 and 34 represent the response obtainable from the same system with a one-foot and three-foot focal length respectively. Note that the transfer functions due to image motion and atmospheric turbulence limit the resolution of the system. Without any image motion compensation, the ground resolution for a one-foot focal length system is 289' and for a three-foot focal length, 253'. Figures 33 and 34 also show the transfer function due to IMC with a residual image motion of 10%. In this case, the ground resolution obtained is 132' and 50.6' for a 1' and 3' system respectively.

Table XXXIV shows the capability of the RC-8 camera, at three of the computed resolutions, to identify the elements of information needed for a rather detailed, comprehensive land use analysis. It also shows what can be expected from the return beam vidicon at orbital altitudes. The capability of the sensors at the given resolution was arrived at in a manner similar to that used in the sensor capability matrices shown in Table XVIII and XIX.

2.6 Quantitative Analysis of Film Quality

A quantitative analysis was attempted on the color IR photography flown over Test Site 130. Two kinds of measurements were made on this emulsion-those of resolution and density.

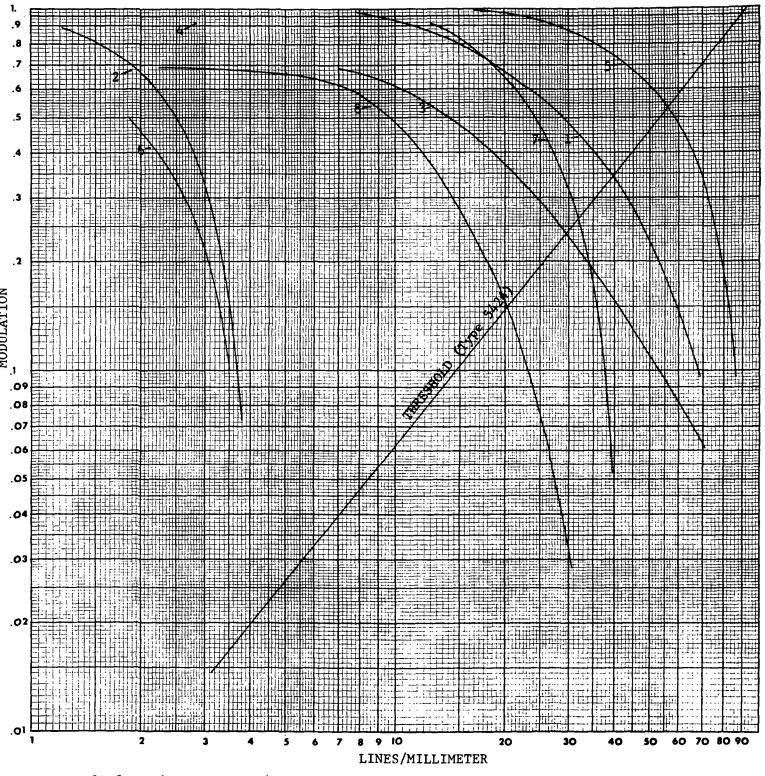
Resolution measurements were made on a frame of color IR imagery from Mission 73 over the Data Corporation controlled test range. The method used for determining the resolution of the system as imaged on the film was edge gradient analysis. Knife edge targets on the ground were selected, including building edges and the resolution bar charts. These edges were scanned with a microdensitometer (Figure 35). Since modulation is measured in terms of exposure, it is necessary to make a black-and-white transparency of the frames, exposing it with a calibrated step wedge. Both wedge and photo were given the same processing. By scanning the step wedge with the microdensitometer, a conversion function was generated.

1- lens (nominal 50 1/mm)

2- image motion (uncompensated)

3- film (type 5424)

4- atmospheric attenuation


5- turbulence

6- total system = 1x2x3x4x5

7- image motion (90% compensated)

8- total IMC system = 1x3x4x5x7

FIGURE 33 MODULATION TRANSFER FUNCTION OF 1 FOOT FOCAL LENGTH SYSTEM (no IMC: resolution = 10.5 lines/mm; with IMC: resolution = 23 Lines/mm)

- 1- lens (nominal 50 1/mm)
- 2- image motion (uncompensated)
- 3- film (type 5424)
- 4- atmospheric attenuation

- 5- turbulence
- 6- total system = 1x2x3x4x5
- 7- image motion (90% compensated)
- 8- total IMC system

FIGURE 34 MODULATION TRANSFER FUNCTION OF 3FT. FOCAL LENGTH SYSTEM (No IMC: resolution = 4 lines/mm; with IMC: resolution = 20 lines/mm)

	TABLE XXXIV	TI TO A INT A FIGO	10 A CO M		
	TII WI		FROM SPACE		
			SENSORS	SS	
CODE	LAND USE ELEMENTS OF INFORMATION	RC - 8 Res. 132" 6"f/1 Image motion com-	RC - 8 Res. 253' 1'f/1 Image motion un- compensated	RC - 8 Res. 289' 3'f/1 Image motion uncompensated	RETURN BEAM VIDICON RESOLUTION 100'
1000 11100 11100 11120 11300 1160 1160 1162 1162 1162 11100 111100 111100 111100 111100 111100 111100 11210	ore ore	*>>>>	>00>>>>	>0000>>> 0000>0 >>>	*>*** >>>>
	<pre>X = can identify V = can identify sometimes, partially, or by inference 0 = cannot identify</pre>			·	

	TABLE XXXIV (Cont'd)	ıt'd)			
			SENSORS	3.8	
CODE	LAND USE ELEMENTS OF INFORMATION	RC - 8 RESOLUTION	RC - 8 RESOLUTION	RC - 8 RESOLUTION	RETURN BEAM VIDICON RESOLUTION
1310 1320 1330	Coniferous Deciduous Mixed Coniferous & Deciduous	×××		607	X X X
1400	Forest Brushland (<50% & >10% cover by vegetation <30 feet in height)	×	`~	`_	×
1500	Brush & Grassland (weeds, mesquite, tundra growth,etc.)	×	>	`^	×
1600	Savanna Modifiers to be subsumed under any applicable number beginning with 16.	` `	>	`	`
0002	ectes ight isture	>>0	o > o	000	>>>
0005 0006 0007 0008	% ground cover Stand Density (forests) Row Direction Diseased, Dead, or Dormant Pyrogenic Area	×>×>×	×>×0×	·> o × o >	× × × ×
2000 2100 2110 2120 2130 2140	URBAN Commercial Central Business District Frame Middle City Strip Development	> 0 > >	> 0 > 0	0000	<i>>>></i>
	Modifiers to be subsumed under any applicable number beginning with 21.				

SENSORS	RC - 8 RC - 8 RC - 8 VIDICON	UTION RESOLUTION RES	ter 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tential burb inge Zone inge Zon	Single Family Structure 0
		LAND USE	Shopping Ce Office Spac Commercial Commercial		0001 Single Family S 0002 Multiple Family 0003 High Density (1 0004 Medium Density 0005 Low Density Qot Residential Est 0007 Strip Developme Hamlet or Villa Farm Labor Camp Cottages &Vacat Hotel & Motel Trailer Park (> Rural Non-Farm Modifiers to be sul
	SENSORS	SENSORS - 8 RC - 8 RC - 8	SENSORS RC - 8 RC - 8 RC - 8 ELEMENTS OF INFORMATION RESOLUTION RESOLUTION RESOLUTION RESOLUTION	RC - 8 R	LAND USE ELEMENTS OF INFORMATION RESOLUTION O

TABLE XXXIV (Cont'd)	SENSORS	RC - 8 RC - 8 VIDICON TAND USE ELEMENTS OF INFORMATION RESOLUTION RESOLUTION RESOLUTION RESOLUTION RESOLUTION	132' 253' 289'	000001 Low Income Housing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Industrial	Processing Industry Chemical Processing (exclusive of water and sewage treatment) 0 0 0	Organic 0 0 Inorganic 0 0 Mechanical Processing 0 0 Heat Processing 0 0	Heavy	00 WATER (with associated control structures) 0
		CODE		0000	2300 2310 2311 2312 2313 2313	2320	23211 23212 2322 2323 2323	2331 2332 2340 2340 2350	3000 3100 3200 3300 3400 3500

	TABLE XXXIV (Cont'd)	t'd)			
			SENSORS	RS	
CODE	LAND USE ELEMENTS OF INFORMATION	RC - 8 RESOLUTION	RC - 8 RESOLUTION	RC - 8 RESOLUTION 289'	RETURN BEAM VIDICON RESOLUTION
3600 3700 3800 3900	Marshland, Shrub Wetland, Wooded Wetland or Bog Intermittent Stream Ephemeral Pond or Lake Flood Control Structures (dams, dikes, levees)	>>>>	>>00	>>00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
4000 4100 4110 4120 4130 4140 4150 4160 4170 4190 4190	Highways (with associated facilities) Limited Access Highway Lane Highway (4 lanes) Lane Highway (2-3 lanes) Urban Street Unimproved Gravel or Minor Paved Roads Interchange (ramp & cloverleaf) Service, Terminal or Freight Facility Parking Facility Bridge Tunnel Modifiers to be subsumed under any applicable number beginning with 41.	>>>>>>>	000000000	000000000	>>×>×>>>>
0001 0002 0003 0004	Concrete Composition Asphalt Composition Unconsolidated Road Metal Unpaved	>>>>	0000	0000	<i>>>>></i>
4200 4210 4220 4230 4240	Railways Main Track Spur Marshalling Yard Station & Structures Modifiers to be subsumed under any applicable number beginning with 42.	>>>0	0000	0000	<i>>>></i>

	TABLE XXXIV (Cont'd)	t'd)			
			SENSORS	RS	
CODE	LAND USE ELEMENTS OF INFORMATION	RC - 8 RESOLUTION 132'	RC - 8 RESOLUTION 253'	RC - 8 RESOLUTION 289'	RETURN BEAM VIDICON RESOLUTION 100'
0001 0002 4300 4310 4320	Single Track Double Track Airfields Commercial Aircraft Non Commercial Airfield (private, flying farmer,	0 > X	00 >	00 >	>> ×
4330 4400 5000 5100 5200 5300 5400 5500 5500 5700 51000 51100 51200	Military Barge Canal RECREATIONAL Golf Course Skiing and Other Winter Sports Public and Commercial Swimming Pools Developed Beaches Marinas and Yacht Clubs Camping Grounds Stadiums Drive-In Theaters Race Tracks Amusement Parks Fairgrounds Fublic Parks (urban) Playgrounds	×× >00>00>0>000	>>	> 0000000000000000000000000000000000000	>×> >0>>>0>>>>
6000 6100 6200 6300 6400 6500 6700	CIVIC AND INSTITUTIONAL Educational Institutions Religious Institutions Health Institution Correctional Institutions Military Bases Armories Cemeteries	>000>	000000	000000	>>00>0>

TABLE XXXIV (Cont'd)	SENSORS	LAND USE ELEMENTS OF INFORMATION	UTILITIES AND COMMUNICATIONS Maste Disposal Number of the properties of the properties Number	NON-PRODUCTIVE LAND O ' O O ' O O
		CODE	7000 7100 7110 7120 7200 7210 7220 7230 7230 7230 7240 7400 7410 7420	8000

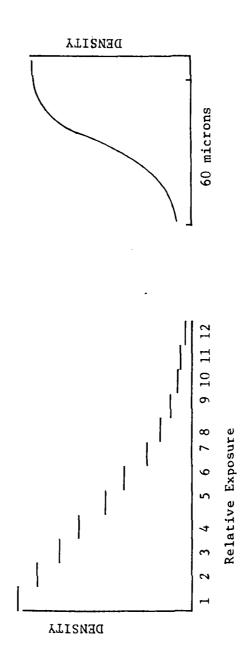


FIGURE 35 MICRODENSITOMETER EDGE TRACE WITH RELATIVE EXPOSURE CONVERSION FUNCTION

This data was fed into an IBM computer, and the Autometric program TOE was called upon to derive the MTF. Essentially the computer program TOE computes the spread function of the edge and then takes the Fourier transform of the spread function to determine the MTF. The MTFs generated were for a position off the lens axis since none of the photo frames imaged the test range on the axis. There is a considerable roll-off of resolution and light distribution (vignetting) with lens angle as shown in Figures 36 and 37.

The MTFs obtained (Figures 38A through 38D) show a rough correlation with expected resolution for their lens position. It should be borne in mind that these curves represent the response obtainable from a third generation transparency on Dupont 228. From the information supplied, it was not possible to determine the MTF of the system (camera plus atmosphere effects).

The second part of the qualitative analysis involved density measurements made on the imagery supplied by the USGS and on the black-and-white reproduction made by Autometric. Neutral density measurements were made on both the color and black-and-white imagery. In addition, color density measurements were made on the color imagery by filtering the microdensitometer with Wratten 92 (red), Wratten 93 (green), and Wratten 94 (blue) filters. A summary of these measurements is included in Table XXXV.

It was attempted to correlate these measurements with the target reflectances measured by Data Corporation. A rough correlation between reflectance and density can be seen in Table XXXV. It should be borne in mind that the ground truth measurements recorded by Data Corporation were taken of reflectance in the visual range, while sensing film records in the near infrared. It is recommended that, in the future, ground measurements be taken in the spectral range of the sensitivity of the detector.

A controlled test range, such as that deployed in Mission 73, can contribute greatly to the Geography program if correctly and selectively employed. When the original imagery cannot be obtained by the Investigator, as is the case and properly so, with the NASA policy of distribution, such ranges provide him with the only measure of his film's resolution and acutance ("T" bar target), excellent sensitometric data (gray scale target), and a measure of color reflectance (color panel target). The test ranges should not be employed indiscriminately, however, such as in those cases in which the Investigator's program does not require such data or when he has not the equipment needed to make use of it. See Figure 39 for Mission 73 imagery of the controlled test range.

2.7 Cost Effectiveness Analysis 11

2.7.1 Objective

The objective of the format described in this section is to provide a framework for the economic evaluation of the utility of selected sensors in providing data for geographers. It is assumed that there are a definable set of outcomes that

This section was prepared in conjunction with Dr. Greg Butterworth, Manager, Operations and Economic Analysis Department, IBM.

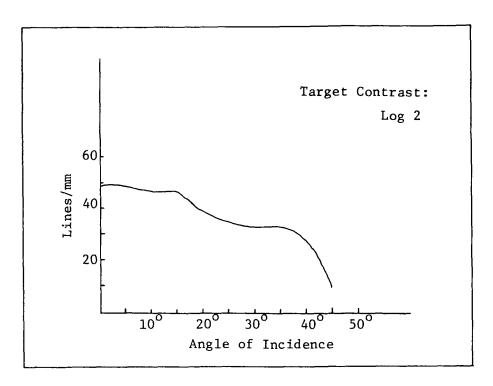


FIGURE 36 AVERAGE RESOLVING POWER OF 6" UNIVERSAL AVIOGON f/5.6

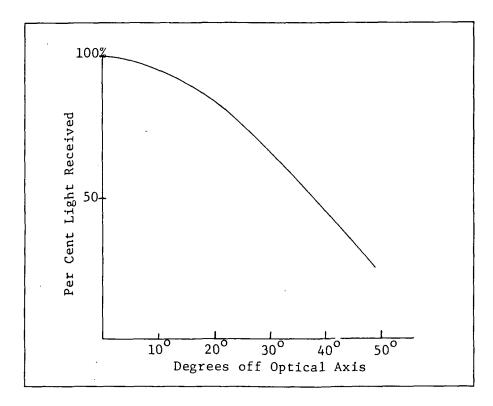


FIGURE 37 LIGHT DISTRIBUTION IN THE IMAGE PLANE OF 6" UNIVERSAL AVIOGON f/5.6

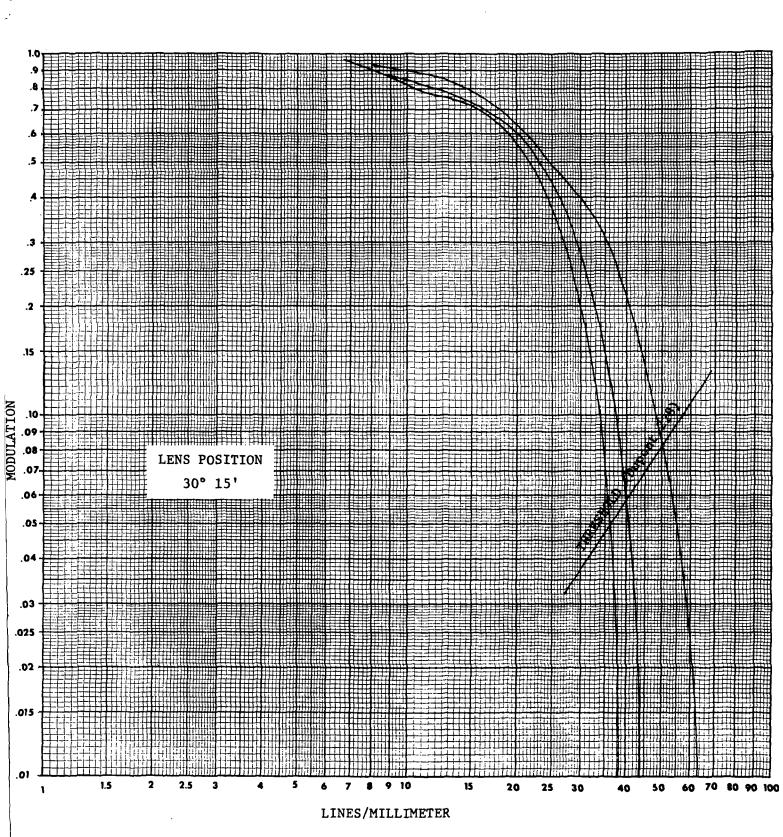


FIGURE 38A MODULATION TRANSFER FUNCTION OF RC-8 SYSTEM*

(*MTF derived from third generation transparency on Dupont 228)

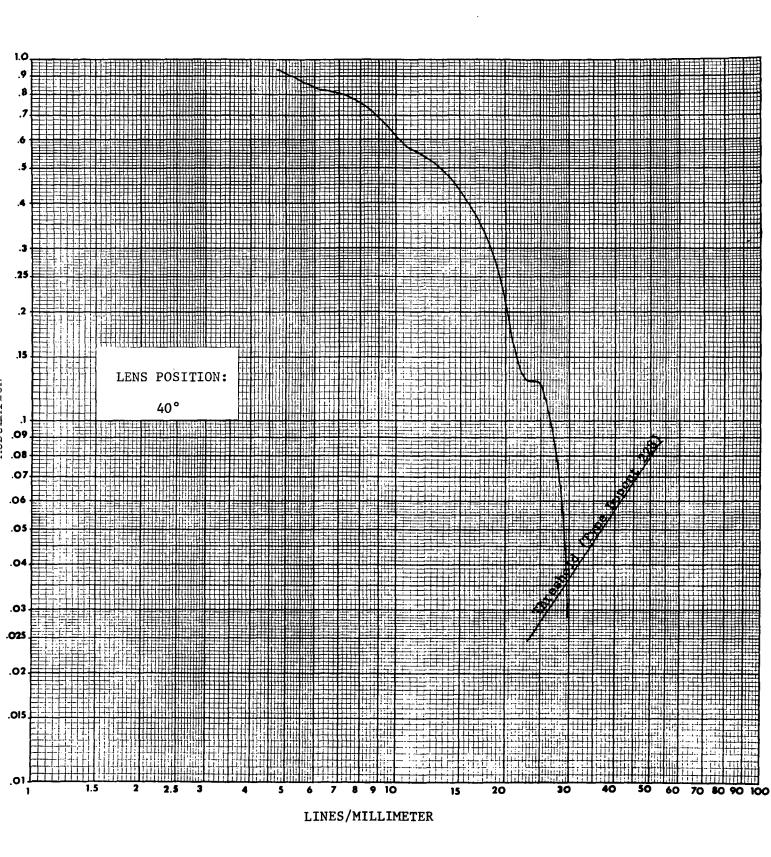


FIGURE 38B MODULATION TRANSFER FUNCTION OF RC-8 SYSTEM*
*See Figure 38A

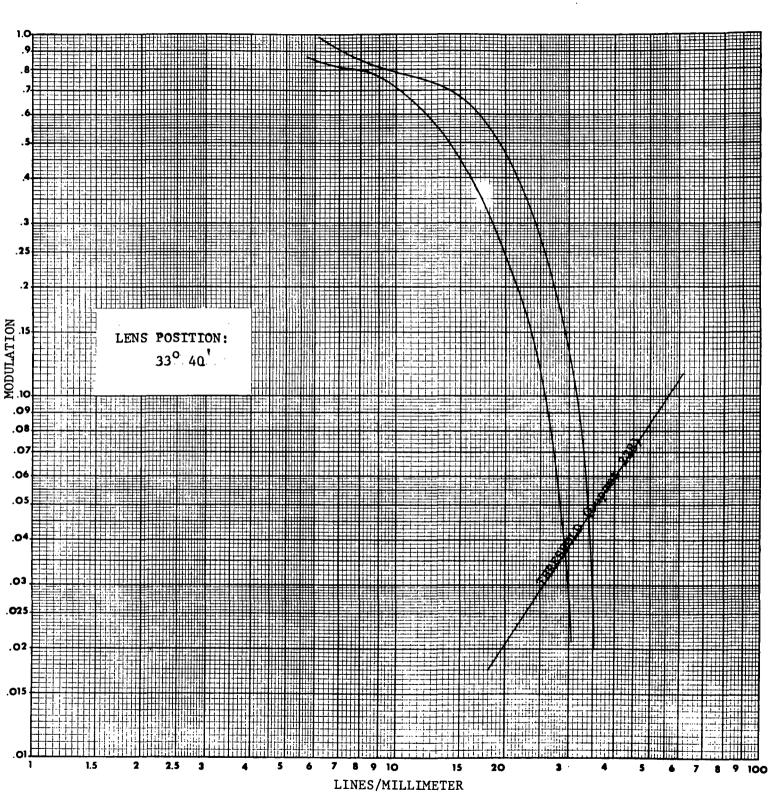


FIGURE 38C MODULATION TRANSFER FUNCTION OF RC-8 SYSTEM*
*See Figure 38A

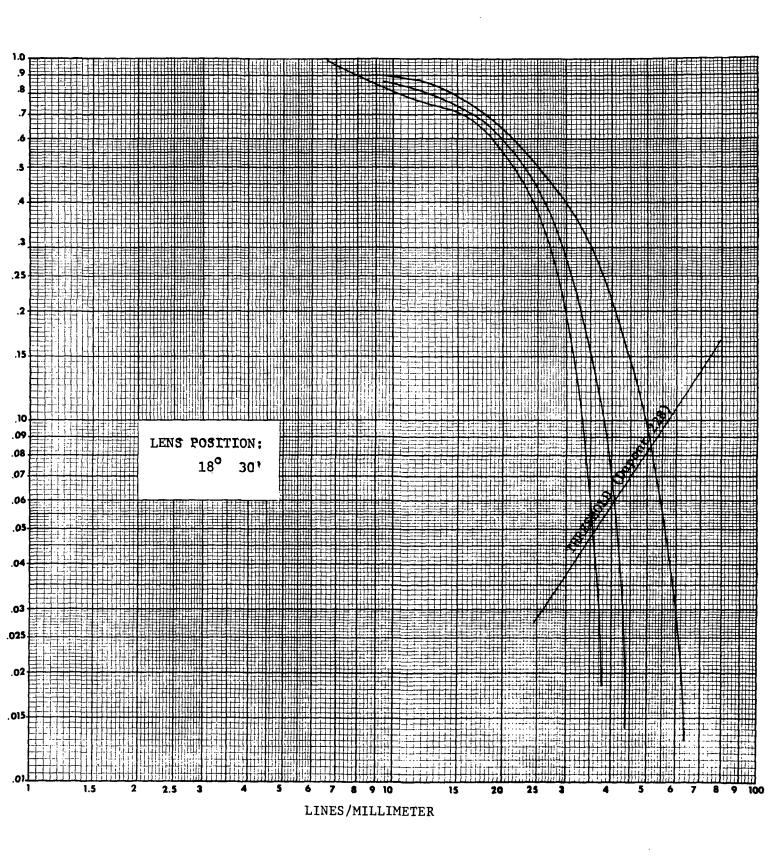
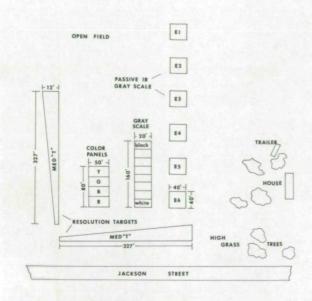
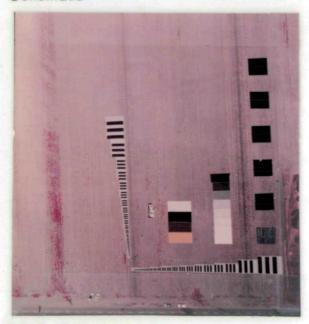


FIGURE 38D MODULATION TRANSFER FUNCTION OF RC-8 SYSTEM*
*See Figure 38A

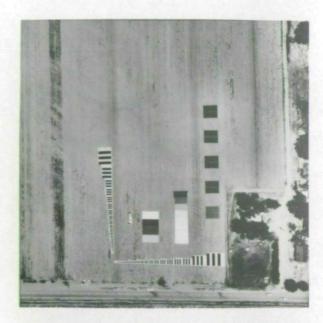
TABLE XXXV
REFLECTANCE AND COLOR DENSITY MEASUREMENTS

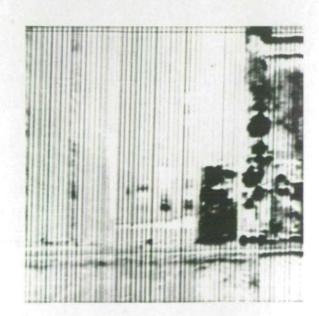

	Refle	Colo.	N. G. W. Densifty	Pensules Red J	Set for Set of S	Wratten Bensity Blue D.	Tree mosts
Grey Scale							
1	.88	.25	1.81	1.85	1.70	1.67	
2	.70	.27	1.0	1.40	1.09	1.10	1
3	.56	.29	.53	.66	.65	.67	
4	.46	.32	.26	.34	.41	.41	1
5 6	.35	.39	.19	.26	.28	.35	1
6	.20	.67	.13	.24	.26	.31	1
7 8	.10	1.20	.10	.23	.23	.30	ļ
8	.03	2.00	.07	.22	.21	.28	
Color Panels	1131*						
Red	.11	.38	,.05	.22	.42	1.23	
Blue	.12	1.15	.03	.93	1.24	1.37	!
Green	.099	1.71	.02	1.85	1.70	1.54	1
Yellow	.50	. 10	.80	.21	.24	.33	
Bar Targets	1124*						
Grey	.52	.35	.80		1		ļ
Black	.08	1.70	.03		1	1	ļ

*Ground measurements taken at 1131; time of flight 1124.


Controlled Test Range Panels

... Multi-Sensor Views and Schematic Diagram


NASA/USGS Mission #73
21 May 1968
Test Site #130
Jackson Street Flight Line


Schematic

RC-8 (Color Infrared)

RC-8 (Black & White)

Reconofax IV (Thermal Infrared)

geographers produce. It is further assumed that these outcomes are derived by assembling and analyzing some basic elements of information. A group of information elements is typically characterized by data collected by an investigator for a particular experiment, each entry on his data sheet being an information element. The information elements are, then, the fundamental data that the experimenter determines are necessary to the performance of his experiment. Recognizing that an experiment is a personal endeavor, an investigator using the format described herein would be required to structure his analytical and thought processes, or other activities relevant to this study, to this framework of information elements.

Further, it is assumed that each information element does not play an equal role in the analytical routine that produces the desired outcome. The situation frequently arises in which it would be nice to have information X, but in which it is essential to have information Y. There is some relative importance of each element. Deriving a numerical value to represent relative importance is often a subjective process, because required data are not available. However, it is a mechanism for conveying the subjective opinions of experienced persons to other disciplines, and, as such, it may even be utilized within the discipline to identify areas needing improvement.

To meet the objective stated above, some measure of the effectiveness of available sensors is required. Under the NASA Earth Resources Aircraft Program, tests have been conducted with remote sensors, and the data collected has been reviewed by Principal Investigators. Only the Principal Investigators can decide how well specific sensors provide information for their needs. It is assumed that the Principal Investigator has opinions that can produce a finer division in measure of effectiveness than (0,1) or (yes, no); probably five levels of effectiveness (exclusive of zero) can be obtained without detailed analysis. Examples of relevant effectiveness measures are given in Section 2.7.3 below.

Given the relative importance and effectiveness for each information element, the next task is to combine these values in some meaningful form to yield the effectiveness of a sensor in producing the set of information elements required by the Principal Investigator. The weighted sum technique outlined in the following section (2.7.2) provides a uniform framework for further analysis between sensors and/or Principal Investigators. A more sophisticated model is not justified because of the subjectivity and consequent lack of precision in the input data, viz., the relative importance and effectiveness values.

2.7.2 Approach

The approach adopted was to compare the effectiveness and cost of alternative methods of identifying information elements relevant to specific geographic analyses. Principal Investigators were asked to define the specific data they require and to record these data as a number of information elements. For each information element, the Principal Investigator was asked to assess the effectiveness of each sensor alternative in providing that element. An overall effectiveness is calculated as follows:

$$E_{jk} = \sum_{i} w_{i} e_{ijk}$$

where E_{jk} = Effectiveness of the k^{th} sensor(s) in providing data at an effective resolution level j.

 w_i = Relative importance of the ith element of information $(\sum_{i} w_i = 1)$.

 e_{ijk} = Effectiveness of the k^{th} sensor(s) in providing the i^{th} information element at an effective resolution level j.

A cost-effectiveness comparison can be accomplished if the cost of each sensor(s) alternative is known. This cost would include the procurement of the sensor(s) and film, operational costs incurred in obtaining the imagery or recorder medium, processing, and other costs incidental to acquiring the finished product in a form desired by the Principal Investigator.

To effectively involve GEOGAP and the Principal Investigator in the formulation of this cost effectiveness format, several meetings and trips were necessary.

In November, 1968, the initial draft of the format was completed and approved by the GEOGAP staff, whereupon it was decided that it should be tested by some of the investigators. Trips were then made in December to East Tennessee State and Northwestern Universities to discuss the matter. At each University the participants in the USGS/NASA research programs were asked to complete a form based on their particular project and to comment on the format itself.

This phase of the development was actually a "debugging" phase, for it was found that the approach to entering the data into the format was not consistent from investigator to investigator. Both the cost effectiveness scheme and its explanation were then revised based on the data received during the first trip.

In January, the work on the revised format was completed and discussed with GEOGAP personnel. A trip to the University of California (Riverside and Los Angeles) was then arranged and satisfactory sample data collected.

Due to conflicts in schedules and prior commitments, not all of the GEOGAP investigators had completed their forms at the time of publication of this report. The format, however, is complete and can be used by the GEOGAP staff in both cost effectiveness and sensor effectiveness studies.

2.7.3 Use of the Cost Effectiveness Matrix

Table XXXVI, along with the following comments, may be useful in conveying to the Principal Investigator the information that is needed.

- Step 1 The information elements are portrayed in the left column of the data sheet. These information elements are the lowest item in the hierarchial data structure. The particular structure shown in Table XXXVI was taken from one Principal Investigator's listing of items he needed to observe. One technique for deriving the relative importance value (w;) is the following:
 - Assign relative importance values to the first or second level breakdown:

Water	3
Mineral	3
Transportation	5
Structures	5
Vehicles	4
Humans	3
Vegetation	4

Use any convenient numbering scheme that conveys relative magnitude of importance to the Principal Investigator. As a beginning, Transportation and Structures were considered equal in importance and more important than any other item; therefore, (5) was entered after Transportation and Structures. This established a reference for weighting the other items. The number (5) is completely arbitrary, but usually easier to work around than (7), (13), etc.

Now cross check your number allocation:

Are Water, Mineral, Humans equally important in your work?
Are Vehicles and Vegetation equal?
Do the ratios 3/5, 3/4, 4/5 seem correct?

TABLE XXXVI Example of Data Entry

							CEN	ISORS				
				ound	В	s W 9		3083		В &	W + I	R 9"
			Su	rvey		ormat					Forma	<u>t</u>
	INFORMATION ELEMENT	Rjk	10	1	.5'	2'	15'			.5'	2'	15'
		wijk	101	201	102	202	302			109	209	3 09
	WATER (3)	xxx	xxx	xxx	XXX	xxx	xxx	xxx	xxx	xxx	xxx	xxx
N	Salt (5)	.0 40	1_	1	.6	.6	.4			.8	.8	.6
A	Brackish (4)	.032	1_	.8	.4	. 4	. 2			.8	.8	.4
T	Fresh (5)	.040	1	.8	.6	.6	.4		<u> </u>	.8	.8	.6
R	MINERAL (3)	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	XXX
A	Sand (4)	.030	1	1	.6	.6	-4			.8.	.8.	6
L	Muck (3)	.022	1	٠8	• 2	•2	, 2			_6	-6	4
}	Coral (3)	.022	1	1	.8	.6	.4			1	1	.8
	Limestone (5)	.037	1	1	.8	.6	.4			1	1	.8
	TRANSPORTATION (5)	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	ххх	XXX	XXX
	Airports (4)	.027	1	1	_ 1	1	1			1	1	1
	Highways (5)	.034	1	1	_1_	1	1			1		1
	Secondary Roads	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	XXX
	Concrete (5)	.009	1	.8	1	1	.8		ļ	1	1	1
	Asphalt (5)	.009	1	.8	1	1	.8	Ĺ	ļ	1	1	1
	Stone (3)	.005	1	.6	.8	.6	.2		<u></u>	1	.8	.4
}	Shell (2)	.004	1	.4	.8	.4	.0			.8	.6	.2
	Parking Areas (2)	.014	1	1	1	_1	.8			1	1	.8
	Bridges (3)	.021	1	1	1	1	.8			1	1	.8
C	Railroads (3)	.021	1	1	1	1_	1			1	1_	1
U	Docks (3)	.021	1	1	1	1	1			1_	1	1
L	Tunnels (2)	.014	1	1	1	1	.8			1	1	. 8
U	Canals (1)	.007	1	1_	1	1	.8			1	1	_1
R	STRUCTURES (5)	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx
A	Commercial (4)	.024	1	1	1	1	.8			1	1	.8
L	Industrial (5)	.030	1	1	1	1	1			1	1	1
	Agricultural (4)	.024	1_	1	1	1	1			1	1	1
	Residential (5)	.030	1_	1	1	1	.8			1	1	.8
	Harbor Facilities (4)	.024	1	1	1	1	1			1	1	1
	Pumping Station (4)	.024	1	.4	.8	.6	.2			1	1	.6
	Institutions (3)	.018	1	1	1	1	.8			1	1	. 8
	Levees/Dikes (2)	.012	1	1	1	1	.6			1	1	.6
	VEHICLES (4)	.148	1	.4	1	.8	. 2			1	1	. 6
	HUMANS (3)	.111	.8	. 2	.8	.6	0			1	.8	. 2
	VEGETATION (4)	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx	XXX	xxx	xxx
	Field (5)	.034	1	1	1	1	1			1	1	1
	Crop Type (4)	.027	.8	. 2	.8	.6	. 2			1	.8	.6
	Livestock (4)	.027	.6	. 2	.6	.4	.2		_	.8	.6	. 4
	Orchards (3)	.020	1	.8	1	1	.6			1	1	.8
	Marsh (2)	.013	1	.8	.8	.8	.6			1	1	.8
\bigsqcup	Forest (4)	.027	1	1	1	1	1	I		1	1	1
		Ejk										
		Cjk		I								
		E/C									I	

b) Now proceed to the next level in the hierarchy using the same procedure:

		<u>wi</u>
Salt	5	.040
Brackish	4	.031
Fresh	5	.040

c) Since this is the lowest level of breakdown for water, these values can be normalized so that $\Sigma w_1 = 1$ when all values of relative importance are derived. A weight of 5 was assigned to salt. The sum of numbers assigned to the first level is 27. A weight of 3 was assigned to Water. The sub-categories of Water - Salt, Brackish and Fresh - have weightings totaling 14. The w_1 for Salt, then, is calculated:

$$w_i = \frac{(5)}{(27)} \frac{(3)}{(14)} = .040$$

The remaining w_i 's are derived group by group in a similar manner and entered in column w_i of the matrix. When all entries have been made, make a final check to see that $\sum_i w_i = 1$.

Determine the sensor alternatives to be evaluated. Alternatives include:

- . Ground Survey
- . 9" format, B&W
- . 9" format, CIR
- . 70mm format, B&W
- . Radar
- . 70mm format, B&W + Radar
- . 70mm format, CIR + Radar + UV

An alternative is a set of sensors utilized to identify information elements needed for a specific analysis. To bound this evaluation to a reasonable level, the Principal Investigator must determine those sensor sets most useful for his analysis; evaluation of all possible sets would be overwhelming.

Step 2 - Evaluation of new technologies is usually accomplished by comparing the capability of the new technology with some base technology, which corresponds to the present methods of doing specific tasks. Basic data collection for geographic surveys of cultural phenomena have been accomplished by personal observation;

label this basic reference "ground survey". There are various grades (or levels) of ground survey data, low level referring to lower precision in identifying the information elements. Treat "ground survey" as a form of sensor for this study. In Table XXXVI the "resolutions" under Ground Survey are given as 10 and 1 and refer to high and low precision, respectively. Precision is a function of sampling density, and, if it is to be included in a cost effectiveness study, would have to be costed out.

Step 3 - Some frame of reference, a measurable parameter, is required to compare the effectiveness of various sensor sets. Since imagery is the principal product of remote sensors presently under evaluation, resolution or scale is suggested for the reference parameter. Therefore, for each sensor alternative, determine the effective resolutions of the imagery. The scale of the imagery may be used in place of resolution if so desired.

It is expected that resolution requirements will vary for different studies. For example, resolution requirements are more critical for a study that requires identification of litter or garbage in a yard than a study requiring only identification of dwellings. Each Principal Investigator is asked to indicate a range of resolutions that could yield data for his activities.

Step 4 - Enter the resolution or scale for each sensor set in the Cost Effectiveness Table.

In row R_{jk} , the undegraded resolution or scale, is entered in the first box under each sensor set. Alternative resolutions (j) are entered as needed. In row jk, the identifier for each alternative (resolution and sensor set) is entered, using two digits for k.

- Step 5 Calculate and enter effectiveness (e_{iik}). Some guidelines are:
 - a) Effectiveness may be derived qualitatively or quantitatively for various situations. A recommended approach is to count the number of objects (vehicles, homes, roads, etc.) that can be identified in the imagery and compare those observed data with the ground truth (or other reference) data; a good measure of effectiveness would be:

$e_{ijk} = \frac{\text{number of objects observed}}{\text{actual number of objects}}$

If time or limited data preclude performing the above analysis, a more subjective scale can be utilized. Select e according to the following table:

e _{ijk}	Description
1	100% determination of the information element
.8	can determine most of the information element
.6	can determine over half of the information element
.4	can determine less than half of the information element
.2	can determine small amount of the information element
0	cannot determine any of the information element

Continue this procedure for all columns.

- b) Check for consistency between single and multiple sensor sets. For example, one would not expect a decrease in effectiveness of a B & W camera plus an IR sensor set with respect to a B & W camera only (the B & W being at the same resolution, of course). If the added capability of IR is negligible as compared with a B & W camera alone, eijk would not be reduced because the IR data could be discarded (not used) and results would be the same as with B & W camera alone.
- e_{ijk} must reflect the capability of the sensors, not the <u>a priori</u> desires of the Principal Investigators.
- Step 6 Calculate E_{jk} and enter in row E_{jk} .
- Step 7 Determine costs and enter these values in row C_{jk}. The Principal Investigator could contribute to cost data by estimating the cost of a typical ground survey that yields information elements at the selected reference resolutions. Costs of aircraft and sensors appear to be a NASA responsibility and are not available for this study.
- Step 8 Finally, if cost data are available, E/C is calculated.

(Note: Tables XXXVII through XLIIIB are cost effectiveness forms as filled out by participants in the NASA Aircraft Program and by Autometric scientists.)

TABLE XXXVII

COST EFFECTIVENESS DATA ENTRY FORM

As Completed by Principal Investigator Data Received from NASA/MSC (Or Obtained with NASA Funds)

			1				SI	SENSORS		(Received		from NASA)	(SA)						
INFORMATION			Ground Survey	CIR	+ 15	CIR +	15	CIR + + 80B	15	CIR +	+ 15 80B	8442 + H2		ALOTS (200")	TS (")	Multi 70mm	fulti- 70mm	CIR(4F11	CIR(70mm) 4Filters
ELEMENIS (Regional Resources)	w _i	ار بد		1/60	000,09	1/20,000		1/20,000	000,	1/1	1/10,000	1/60	000,	1/1200	200	1/60	1/60,000 1/32	1/32	000
n Identification) .116		.093	9.	.070	.7 .0	.081	ø.	.093	6.	.104	9.		'n	.058	3.	.058	٤,	.035
Mineral Types Erosion Action and		9.	.042	-	.007		200			.1	.007	٠.	.007	.2	.014	ī.	.007		.007
Deposition			.056	.5	.035		949	ω.	.056	∞.	.056	5.	.035	5.	.035	4.	.028	4.	.028
			.049	7.	.028	4.	.028				.028	7.			.028		.028		.028
Solls Identification (4) Water (5)	.093		.065	4.	.037		.037		.047		•056	ຕຸ	.028	9.	.056	e.	.028	4.	.037
ea (5)	.045		.018	۲.	.005	.1.	.005		.005	.1	.005	۲.	.005	r!	.005	r.	.005	۲.	.005
	.027	٣.	.008	۲.	.003					-	.003	۲:	.003		.003	۲:	.003		.003
Ground Water (5)	.045		.009	٦.	.005	0	 I	0	ı		ı	0	1		.005	0	ı		
Vegetation (5)												ı							
(3)	.023	φ.	.018	۳.	.007	•	600	٠,	.012		.014	.2	.005		.021	.2	.005	.7	.016
\smile	.031		.025	9.	.019		.022	ω.	.025	∞.	.025	.2			.025	7.	.012	٠.	.016
Areal Extent (5)	.039	••	.023	9.	.023	•	016	7.	910.		800.				ı	7.	910.	٠.	.020
(3)	.023	۳.	.007	.2	.005	•	.005	2	.005		.005			. 2	.005	.2	.005	.2	.005
Land Use (5)	<u> </u>																		
Agricultural (5)	.023		.023	φ.	.018	•	014	٥.	.021	6.	.021	٠,	.012	∞.	.018	4.	600.	∞.	.018
Urban (5)	.023	<u>-</u>	.023	φ.	.018	9.	.014	0.	.021	∞.	.018	.7			.021	φ.	.018		.018
Open Space (5)	.023		.018	φ.	.018		714		.021		.018	.7	.016		.021	∞.	.018	∞	.018
Grazing (5)	.023	_	.018	9.	.014		.012		.016		.018	۳.			.021	4.	600.	4.	600.
(5)	.023	9.	.014	9.	.014		112	9	.014		.012	.2		ຕ	.007	٠.	.012		.021
People (5)													•						
Settlements (5)	.045	φ.	.036	.7	.032	•	027	∞.	.036	6.	.041	4.	.018	0	ı	4.	.018	∞.	.036
Distribution (5)	.045		.018	٠,	.023	. 4.	.018	7.	.018	۳.	.014	4.	.018		.005	4.	.018	٠.	.023
Character (3)	.026	.5	.013	.2	.005	•	900		.005	.2	.005	.2	.005	٠,	.013	.2	.005		.005
					_))				
E = (3	.058	<u>-:</u>	900.	٦.	900.	0	ı	0	ı	0	ı	0	ı	0	1	0	ι	0	ı
Chemistry of - (3)	.058	<u>-:</u>	900.		900.	0	ı	0	1	0	ı	0	1	0	ı	0	ι	0	ı
TOTALS	.999		.588		.384	•	378	•	644.		.458		.301		.361		.297		.348
							1												

		8442	2					SENSO	RS	Rece	(Received f	rom	from NASA)	Pag	N S	Anollo	1	haor	Į
. [70mm 70mm	7 E	B	Σ ζ	CIR	+ 15	SLK K-Band	and	u	ermaı IR	I	ermaı IR	Mic	rassive Micro- wave	Apo.	₩.	tion Spe trometer	tion Spectrometer
3H	Ä.	1/32	1/32,000	1/6,0	000,	1/6,000	000			3.	5- 5µ	8-14µ	44	19.	.3Ghz				
.116	90	۳	.035	9.	.070	7.	.081	٠.	.058	4.	.046	4.	.046	٠: -	.012	٠.	.058	00	i i
		!	5	!	·	!		٠.)))	•	3			•		:		,	
.070	0	e.	.021	• 5	.014	7.	.028	۳.	.021	۳,	.007	٦.	.007	۲.	.007	4.	.028	0	ı
.070	2 ~	4. E.	.028	4. w.	.028	7. 7.	.037	20	.035	7.7	.014	7.	.028		.000	4.4.	.028	00	1 1
				,				l •.	-										_
.045		۲,	.005	۲.	.005	٦.	.005	٠.	.005	•	.005	۲.	.005	۲.	.005	7.	600.	0	ı
770.			500.		500.	-! -	.003	-! -	.003	<u>-</u>	500.	٠.	500.		.00.		200	>	1 1
		•		>	l	>	i	- !	000.	•		7.	•	.	3	:	3	•	
.023		٦.	.002	.2	.005	٤,	.007	٦.	.002	.1	.002	۴.	.007	۴.	.007	۴,	.007	0	1
.031		• 5	900.	.2	900.	9.	.019	۳.	600.	۳.	600.	۴.	.009	۳.	· 000	7.	.012	0	1
.039		7.	.016	.2	800.	• 5	800.	٠.	0.20	. 2	.008	.2	.008	٠.	.020	6.	.020	0	ı
.023		.2	.005	0	ı	.2	.005	0	1	0	ı	0	ı	0	ı	0	1	0	ı
									-										
.023		9.	.014	.7	.016	∞.	.018	7.	600.	٠,	600.	٠.	.012	.2	.005	9.	.014	0	1
.023		٠,	.012	7.	.009	4.	600.	9.	.014	۳,	.007	ຕຸ	.007	۴.	.007	۲.	.002	0	ı
.023	_	8	.018	∞.	.018	∞.	.018	∞.	.018	•	600.	∞.	.018	.2	.005	∞.	.018	0	1
.023		4.	600.	.2	.005	• 5	.012	.2	.005	.1	.002	۲.	.002	.2	.005	• 5	.005	0	ı
.023		.2	.005	-:	.002	۳.	.007	۳.	.007	۳.	.007	.2	.005	۴.	.007	• •	.012	0	ı
.045		7	.018	٣,	.014	7	810	7	810	~	014	-	005	2	000	'	.023	0	1
.045		7.	600.	.2	600.	m	.014	. 2	600	: -:	.005	: -:	.005	. ~	.005	. 2	.009	0	1
.026		.2	.005	.2	.005	.2	.005		.005	.2	.005	.2	.005	.2	.005	.2	.005	0	1
1																			
.058		0	1	0	ı	0	ı	0	ı	۴.	.017	0	1	0	ı	0	i	4.	.023
.058		0	ı	0	1	0	ı	0	1	۳.	.017	0	ı	0	1	٠ <u>.</u>	900.	4	.023
.999			.246		.252		.329	_	.269		.217		.214		.139		.308		.046
	1																		

						SENSORS (Desired)	
INFORMATION			CIR 15 + CIR 80B 8	-4 💆 [15 +)B		
ources)	w ₁	& SLR		& The	hermal IR		
Landform Identification(5)		∞.	.093		.070		
Mineral Types (3)	.070	.2	.014	٠.	.007		
Deposition (3)		80	.056	9	.042		
		ئ. د	.035		.028		
Water (5)		?	; ;		· · ·		
e Area (5)	.045	.2	600.		.005		
Runoff (3)	.027	.2	.005		.003		
iter (5)	.045	e.	.014	. 2	600.		
Vegetation (5)		,	-				
	.023	φ	.018	9.	.014		
Types (.031	.7	.022		.022		
Areal Extent (5)	.039	o.			.031		
(3)	.023	۲.	.002	٠,	.007		
Land Use (5)							
Agricultural (5)	.023	∞.	.018	-	.016		
	.023	φ.	.018		.016		
Open Space (5)	.023	φ.	.018		.016		
	.023	9.	.014	.,	.016		
t (5)	.023	.7	.016		.016		
People (5)					<u></u>		
_	.045	.7	.032		.032		
Distribution (5)	.045	٥.	.041	Φ	.036		
(3)	.026	.2	.005	•	.003		
\mathbb{C}	.058	٦.		۳.	.017		
Chemistry of - (3)	.058	۲.	900.		900.		
TOTALS	666.		.524	•	674.		

TABLE XXXVIII

COST EFFECTIVENESS DATA ENTRY FORM As Completed by Graduate Student A

																								-
SENSORS	Gemini (Desired)	20' Res.	1 .042		1 .042 1 .125		1 .063			1 .063			1 .063	1 .063				1 .063		017	. 31.	-		-
	Imagery NASA)	1/ 1,000,000	1		.000 .000 .2 .025		.8 .050			.6 .038				.4 .025	000. 0.			.6 .038		717	, .			_
	Gemini (From	1/ 250,000	.8 .033		000. 0		1 .063	.6 .038		.6 .038			.8 .050	.6 .038	000.0			.8 .050		727				
	Survey	10		1 .042	1 .042		1 .063	1 .063		1 .063			1 .063	1 .063				1 .063		1 005	1.000	-		_
	Ground	П	.4 .017		.4 .050		.4 .025	.4 .025			.2 .013				.2 .025		1 .063	1 .063	771. 1	2 2 2	ccc.		-	
<u> </u>		E i K	.042	.042	.042		.063	.063	,	.063	.063		.063	.063	.125		.063	.063	571.	1 005	3			
	INFORMATION	(VEGETATION STUDIES)	TRANSPORTATION (5)	rts (Railroads (5)	SETTLEMENTS (5)			Non-Irrigated (5)		True Forest (3)	_	IVE	_	elds	GRAZING (5)	S		Seasonal (1) UNPRODUCTIVE (5)	S TAHOH	IOIALO			

COMMENTS: Have just received the Apollo imagery and will soon be using it in comparison with the Gemini and to update present land use maps of the southwest.

-150-

TABLE XXXIX

COST EFFECTIVENESS DATA ENTRY FORM As Completed by Graduate Student B

from NASA)								*The maxiumum level for	ground survey has been	eliminated since a 1.0	,Δ	a minimum of effort.	**This film filter combi-	nation is the one desired	with scales ranging from	1/10,000 - 1/100,000.		***Mapping according to	floristic dominants.								
	8442	1/60,000				1 .050	.025	.4 .050		090.		.2 .020	1 .100	_		.4.040	000.0		.4 .030			.2 .015		000.0		.6 .030	 .545
(Received	! }						0.75	.100		. 001.		.020	100				000.		. 090			.015		000.		.050	 .705
SENSORS	CIR + 15 + 80B**	1/16,000				٠,		.8		T. T		.2 .0				9.			8.			.2 .0		0			
SEN	+ 15	1/60,000	.050	.050	.025	.040	.025	.050		.080		.020	.100	_			-000		.030			.015	1	000.		.030	 .555
	CIR -	1/60	İ			∞,		4.		χ.		.2				7.			4.	_		.2		0		9.	
	M S	10,000	.050	.050	.025	.030	.025	.025	0	000.		.020	.100			.020	000.		.015			.015		000.		.030	.465
	щ	1/10				•	-	.2		٥		.2	Н			•	0		.2			.5		0		9.	
	Ground Survey	*	.050	.050	.025	.050	.025	.125	,	. 100		.100	.100		,	.100	.050		.075			.075	1	.025		.050	1.000
	Gre Suj	t 	Н	П	-	٠	-			⊣						_						-		_		-	
i		w_1^{R} jk	.050	.050	.025	.050	.025	.125	,	. 100		.100	.100		,	.100	.050		.075			.075	(.025		.050	 1.000
	INFORMATION	(VEGETATION STUDIES)	Forest (2)	Chaparral Brush (2)	: Woodland	OWS		Segregation of Brush (5) Types in Chaparral ***	Identification of Forest	Types in Chaparral (4)	Floristic Identification	(4)	Subalpine Forest (4)	Floristic Identification	sert and Woodl	Types (4)	Blight Identification(2)	Floristic Identification	or individual broad Leafs (3)	Floristic Identification	of Individual Conifers	(3)	icat	of Desert Brush (1)	Identification of	Riverine Vegetation(2)	TOTALS

TABLE XL

COST EFFECTIVENESS DATA ENTRY FORM AS Completed by Research Assistant C

					<pre>iy cases defined sen accomplished. cannot be</pre>		differentiation can be No definite determination 00,000) has been determined.
(Desired)	CIR + 15*** + 80B + Color	1/16,000	1.0 .263 1.0 .263 .8 .084 .6 .158 1.0 .053	.874	an generally be imaged at .8 and in many complete crop identification has not been a and deciduous categories, but citrus car		se) 1/1
SENSORS from NASA)(Desired)	CIR-9" F/L +15	1/10,000	.9 .210 .9 .210 .6 .063 .6 .158 .8 .042	.736	generally be imaged plete crop identific		urban settlement, etc. increase (1/10,000 to
Received f	1 124	1/16,000	.8 .210 .8 .210 .4 .042 .6 .158 .8 .042	.715	can generally be complete crop io		7
)	Survey	10	1.0 .263 1.0 .263 1.0 .105 1.0 .263 1.0 .053	1.000	lards c date,		•—
	Ground	1	.4 .105 .4 .105 .4 .042 .6 .158 1.0 .053	.516	es, field crops and o a specific crop, but can be broken down i as lemons, oranges, e		grea e.,
	·	w_i^{Rjk}	.263 .263 .105 .263 .053	1.000	field crecific c	7.	With scales achieved (i.
	INFORMATION ELEMENTS	(VEGETATION STUDIES)	Crops* Fields (Non-Producing) (5) Livestock (2) Orchards** (5) Rivers (1)	TOTALS	*Vegetables, field crops and orch down to a specific crop, but to to **Orchards can be broken down into defined as lemons, oranges, etc.	***9" and 12" F/L	SPACECRAFT:

TABLE XLI

COST EFFECTIVENESS DATA ENTRY FORM As Completed by Graduate Student D

1	9		<u>_</u>			~	$\overline{}$	_		~	<u>.</u>		0	<u>_</u>		_		_	7		9	0	6	6	_	9		0			
IR	00,00		.01	.010	00.	.01,	.01(.00.	.00	00.	00.		.01(.01		00		00	00.	i	.04(.07	.01	.01	.03	.04(.07			
T			9.	œ.	.7	7	φ.	9.	.2	.7	.7		7.	9.		7.	•	7.	4.	<u> </u>	4.	9.	7.	4.	7.	7.		9.			
SLR	000,000		.014	.007	.001	.010	.007	.007	.001	i	ı		.009	.014		.007		.007	.007	ſ	.046	.070	.019	.019	.037	.023		.070			
	1/1		9.	9.	.2	φ.	9.	9	.7	0	0		7.	9.		4.		7.	7.	0	7.	9.	4.	7.	7.	.2		9.			
Σ. κ.	,000		.024	.012	.005	.012	.012	.012	.004	.012	.018		.014	.024		.018		.014	.011	.005	.070	.093	.047	.038	.074	.070		.070			
g g	1/6		1	7	∞.	Н	Н	-	9.	Н	Н		9.	Н		Н		∞.	9.	7.	9.	œ	_	∞.	φ.	9.		9.			
142	0,000,000,000		.019	.012	.002	.012	.012	.007	.002	.007	.014		.014	.014		.011		.011	.011	.002	970.	.046	.038	.028	.056	.070		.070			
8	1/2(œ	П	7.	-	٦	9.	7.	9.	œ		9.	9.		9.		9.	9.	.2	7.	7.	φ.	9	9	9.		9.			
.R - 80B			.019	.012	.002	.012	.010	.007	.002	.005	.011		.014	.019		.014		.011	.011	.002	970.	.070	.038	.028	.056	.070		.070			
15 +	1/60		φ.	П	4.	Н	∞.	9	4.	٠,	9.		9.	∞.		φ.		9.	9.	.2	7.	9.	φ.	9	9.	9.		∞.			
(+ 15	000,		.024	.012	.005	.012	.012	.012	.005	.012	.018		.024	.024		.018		.018	.018	.010	.116	.116	.047	.047	.093	.093		.093			
CIF	1/6		-1	T	φ.	7	ı		φ.	Н	7		Н			٦		-	Н	∞.	_	-1	٦	Н	Н	∞.		φ.			
CIR	0,000		.024	.012	.005	.012	.012	.010	.004	.012	.018		.019	.019		.018		.018	.014	.007	.093	.093	.038	.038	.074	.070		.070			
	1/1		н	Н	∞.	Н	٦	∞.	9.	Н	П		φ.	φ.		П		-	∞.	9.	∞.	∞.	∞.	φ.	∞.	9.		9.			
rvey	10		.024	.012	900.	.012	.012	.012	900.	.012	.018		.024	.024	-	.018		.018	.018	.012	.116	.116	.047	.047	.093	.116		.116			
ns			•	•	•	•	•	0	0	0	•		0.	0		0.1		•	•	•	•	•	•	•	•	•		0.1			
pun													. 009			.007	· · · · ·														
Gro	1		.2	∞	9.	ω.			. 5		7.		7.			7.		7.	7.	.2	7.	7.	4.	7.	7.	.2		.2			
	r i jk	116			900	012	012	015			018	116	024					018	018	012	116	116	047	047		116		116			
	/3		•	•	_	•		<u>.</u>	<u>.</u>	•									_												_
INFORMATION ELEMENTS	(URBAN STUDIES)	ion	Railroads (4)	_			(2)	Roads	Depots (1)	Vehicles (2)	3)	Structures (5	Commercial (4)	CBD (4)	Regional Shopping Ctrs.	(3)	Secondary Shopping Ctrs.	(3)	ents	es (2)			Schools (2	Institutions (2	Park Buildings (4		Single Family Unit Resi-	_			
	Ground Survey CIR CIR + 15 15 + 80B 8442 B &	Ground Survey CIR CIR + 15 15 + 80B 8442 B & W SLR 1/20,000 1/20,000 1/60,000 1/60,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100	ES) Wilk 1 10 1/10,000 1/60,000 1/60,000 1/60,000 1/60,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,0	ES) (5) .116 (5) .116 (6) .024 .2 .005 1.0 .024 1 .024 1 .024	ES) w ₁ R ₁ k 1 10.024 1.024 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012 1.012	ES) wilder (5) .116 .024 .2 .005 1.0 .024 1.0 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .0	ES) $\frac{k_1}{k_1}$ Ground Survey CIR CIR + 15 15 + 80B 8442 B & W SLR (170,000 1/6,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,0	ES) Wilk (5) .116 .024 .2 .005 1.0 .024 1 .024 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1 .012 1	ES) $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ES)	ES) $\mathbf{w}_{\mathbf{i}}^{\mathbf{R}}\mathbf{j}$ Ground Survey CIR CIR + 15 $15 + 80B$ 8442 B & W SLR (5). 116	ES) $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ENTS TUDIES) Wildle 1 Ground Survey CIR CIR + 15 $15 + 80B$ 8442 B & W SIR FIND TUDIES) Wildle 1 10 1/10,000 1/6,000 1/60,000 1/6,000 1/6,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000	TUDIES) Will Ground Survey CIR + 15 15 + 80B 8442 B & W SLR TUDIES) Will 1	THOMES) WILLIAN Ground Survey CIR CIR + 15 $15 + 80B$ 8442 B & W SLR ENTS THOMES) WILLIAN CONTROL OF THOMS OF	TUDIES) wild in the control of the	TUDIES) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TUDIES) $\frac{\sqrt{R}}{1}$ I 10 1/10,000 1/6,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/60,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1	HILLES) WHEN WIRTON Cound Survey CIR CIR + 15 15 + 80B 8442 B & W SIR CID CIR CIR + 15 15 + 80B 8442 B & W SIR CID CID	ES) $\frac{N_1}{v_1}$ Ground Survey CIR CIR + 15 $15 + 80B$ 8442 B & W SIR ES) $\frac{V_1}{v_1}$ 1 10 1/10,000 1/6,000 1/60,000 1/60,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,000 1/100,	HATION FENTS TUDIES) WAR A CHANCES TUDIES) Ground Survey CIR + 15 15 + 80B Reads TUDIES) TUDIES TUDIES TUDIES WAR A TUDIES TUDIES WAR A TUDIES TU	ES) We have the control of the cont	ES) wilding (5) 116 (5) 116 (6) 100 1 1/10,000 1/6,000 1/60,000 1/60,000 1/100,000 1/100,000 es (2) 116 (5) 116 (6) 110 10 10 10 10 10 10 10 10 10 10 10 10	ES) WRAIT (5) 116 (6) 2.116 (7) 1.000 WILLIA 1. W	ES) $ \begin{array}{c} w_1^{\rm R} k_1 \\ w_2^{\rm R} k_1 \\ \end{array}{} \begin{array}{c} \text{ES} \end{array} \hspace{0.5cm} \begin{array}{c} w_1^{\rm R} k_1 \\ w_2^{\rm R} k_1 \\ \end{array}{} \begin{array}{c} \text{1} \end{array} \hspace{0.5cm} \begin{array}{c} \text{Ctound} \end{array} \hspace{0.5cm} \begin{array}{c} \text{Survey} \end{array} \hspace{0.5cm} \begin{array}{c} \text{CIR} + 15 15 4 80B \end{array} \hspace{0.5cm} \begin{array}{c} 8442 \\ 1/20,000 \\ 1/20,000 \\ \end{array}{} \begin{array}{c} 1/100,000 \\ 1/20,000 \\ \end{array}{} \begin{array}{c} 1/20,000	(5) 116 (100 md Survey CIR CIR + 15 15 + 80B 8442 B & W SIR (5) 116 (100 md 1/10,000 1/6,000 1/60,000 1/60,000 1/100,000 1/100,000 (5) 116 (100 md 100 md 100 md 100 md 1/100,000 1/100,000 1/100,000 (6) 110 (100 md 100 md 100 md 100 md 1/100,000 1/100,000 1/100,000 (7) 110 (100 md 100 md 100 md 100 md 1/100,000 1/100,000 1/100,000 (8) 1012 (100 md 100 md 100 md 100 md 1/100,000 1/100,000 (9) 10 10 10 10 10 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/10 md (100 md 1/10 md 1/10 md 1/	(5) 116 (100 cm) (2) 1170,000 (1/6,000 (1/60,000 (1/60,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,000 (1/100,	(5) .116	(5) .116 Cround Survey CIR CIR + 15 15 + 80B 8442 B & W SLR (7) .116 1 10 1/10,000 1/6,000 1/60,000 1/60,000 1/100,000 1/100,000 (8) .116 1 10 1/10,000 1/6,000 1/60,000 1/60,000 1/100,000 1/100,000 (9) .116 1 10 1/10,000 1/6,000 1/60,000 1/60,000 1/100,000 (1024 .2 0.05 1.0 0.012 1 0.012 1 0.012 1 0.012 1 0.012 1 (1012 .8 0.09 1.0 0.012 1 0.012 1 0.012 1 0.012 1 0.012 1 (1012 .4 0.05 1.0 0.012 1 0.012 1 0.012 1 0.012 1 0.012 1 (1012 .4 0.05 1.0 0.012 1 0.012 1 0.012 1 0.012 1 0.012 1 (1012 .4 0.05 1.0 0.012 1 0.012 1 0.012 1 0.012 1 0.012 1 (1012 .2 0.001 1.0 0.005 6 0.004 8 0.010 1 0.012 6 0.007 (1013 .2 0.001 1.0 0.012 1 0.012 1 0.012 1 0.012 6 0.007 (1014 .4 0.007 1.0 0.018 1 0.018 1 0.014 6 0.014 1 0.014 6 0.014 (1015 .4 0.007 1.0 0.018 1 0.018 1 0.024 8 0.019 1 0.024 1 0.018 1 (1015 .4 0.007 1.0 0.018 1 0.018 1 0.018 6 0.014 6 0.014 4 0.007 (1015 .4 0.007 1.0 0.018 1 0.018 6 0.014 6 0.014 4 0.007 (1015 .4 0.007 1.0 0.018 1 0.018 6 0.014 6 0.014 4 0.007 (1015 0.002 1.0 0.012 6 0.007 8 0.018 6 0.018 6 0.014 4 0.007 (1015 0.002 1.0 0.012 6 0.007 8 0.018 6 0.014 6 0.014 4 0.007 (1015 0.002 1.0 0.012 6 0.007 8 0.018 6 0.017 6 0.018 8 0.019 0.017 6 0.015 6 0.007 6 0.007 (1016 0.002 1.0 0.012 6 0.007 8 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6 0.018 6	(5) .116	

SENSORS	UV (Desired)	k 1/6,000 and 1/30,000			1 0	0 - 1.0	0 - I	1 0	0 - 1.0	0 - 1.0	- - 0		0 - 1.0		0 - 1.0 .018	0 - 1.0	0 - 1.0	- 0	0 - 1.0	0 - 1.0	0 - 1.0	0 - 1.0	0 - 1.0	- 0		0 - 1.0 .116		
	CIR + 15 (Desired)	1/6,000 and 1/30,000				0			0.	_		.8 .019	1.0 .024		0.	0.			0.							•		
	ΔŊ	jk	9		0	0 () C	0	0		0	0								0	0	0	0	0				
	INFORMATION ELEMENTS	(URBAN STUDIES)	ton (5)	Railroads (4) .(\((2)	ads (2)		\$ (2)	3)	(5)	ial (4)		•	(3) (3) Secondary Shopping Ctrs.	(3)	ents (3)	es (2)	(5)	ndustry (5)		(2)	(4)	2)	Resi-	dences (5) .1		

							SENSORS		(Received		from N	NASA)							
INFORMATION ELEMENTS		Gro	Ground	Survey	vey	C	CIR	CIR 4	+ 15	CIR +	+ 15 80B	8442 Color	42 or	y &	3	SLR	a,	TIR	. ~
(URBAN STUDIES)	w_1 K_jk	7		10		1/10,000	,000	1/6,	000*	1/60,000		1/20 1/60	/20,000 /60,000	1/6,000	000	1/100	1/100,000	1/100	1/100,000
Residential Environment Evaluation (5)	.116													! :					
(5)	.007	.2	.001	1.0	.007	9.	.004	ω.	900.		.004		.004		.004	7.	.003	4.	003
tion (5)	.007	7.	.003	1.0	.007	œ	900.	•	-000		900.		.003		.001	0	ı	0	ı
Litter & Rubbish (5)	.007	7.	.003	1.0	.007	9.	.004	•	.007	0	1		1	7.	.001	0	1	_	1
Vacant (5) Land Hep (4)	700.	4. 4	.003	1.0	.007	1.0 ¤	.007	0.1	.007	φ α	.006	ب ب	004		001	4. 4	003	•	003
	.004	. 2	.001	1.0	.004	1.0	004		007				.003		007	. 0	1		1
	.003	.2	.001	•	.003	1.0	.003	1.0	.003	∞.		∞.	.002	0.	.003	0	1	0	1
Shape	.003	7.	.001	1.0	.003	1.0		•	.003	9.	.002		.001	0.	.003	0	ı	0	ı
Roof Type (2)	.003	.2	.001	ထ	.002	1.0		•	.003	2			.001		.002	0	1	0	ı
Pools (5)	.007	0	ı	φ.	900.	1.0		1.0	-000	φ.			•000		.004	0	ı	0	1
	.007	0	ı	œ	900.	œ.		٠	-000	9.	• 004		.003	7.	.003	0	1	0	1
	.007	0	1	φ.	900.	1.0	.007	1.0	- 000	0	ı		1		003	0	ı	0	ı
rea (Cement	.004	0	1	œ	.003	1.0	•004	φ	.003	.2	.001		.001		.001	0	1	.2	001
	900.	7.	.002	1.0	900.	9.	.004	•	.005		.001		.001		004		1	0	1
Width (2	.003	7.	.001	1.0	.003	1.0	.003		.003	1.0		0.	.003	0.1	.003		.001	•	001
Pattern (900.	۰.	.004	0.1	•000	1.0		•	900.	1.0	9		900.	•	900.	و د	-004	•	_
Street Lighting (2)	500.	4.	.001	•	.003			•	.003	o 、	1 6	۰ د	1 6	ر د د	200.	-	1	>	ı
11110	200.	7.0	100.	•	200.	T.0	.003	٠	500.	٥٠	700.	٥	700.	•		> 0	!	o o	1
Sidewalks (3)	400.	7.	.001	•	.004	χ, ·	.003	1.0	.004	o (ı	-	ı	۰.	200.	> (1	> (ı
curbs (3)	• 00¢	7.	100.	0.6	.004	و د	.002	× 0	.003	o	1 6		1 6	4.0	200.	> <	1 5)	١٤
rains (2)	200.	. .	100.	•) · ·	500.		500.	•	200.	٥	200.	•	700	• •	700	•	200
Commission to the Commission of the Commission o		. .	200.		000	D•1	900.	, , ,	900.	0 0	000		500.	•	3 5	• •	5	•	3
	700.	.	100.	•	.002	•	100.	0	700.	7.	3	7.	000.	•	700.	>	1	>)
TOTALS	.985		.328		986		977.	-	.937		.581		.551		.724		.393	•	434
									-		=								
																		ļ	

*The investigation realized the problem of rating a variable scale system

SENSORS	CION Desired UV CIR + 15	$M_{1}^{R} = M_{1}^{R} = M_{1$	Nironment (5) 116	8 0 700. (5)	(5) .007 0 - 1.007 cibish (5) .007 0 - 1.007	.007 0 - 1	.006 08 .005	.003 0 - 1	.003 0 - 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0	1 - 0 200.	. 004	.003 0 - 1	(4) .006 0 - 1	(2) 0.003 $0 - 1$. 1 - 0 600.	- 0	.003 0 - 1.	.006 0 - 1	(1) .002	TOTALS .985 000 .955	
	INFORMATION	ES)	Residential Environment	(5)	Vegetation (5) Litter & Rubbish (5)	Vacant (5)	Land USe (4) Lot Size (3)	٥	au Ì	Roof Type (2) Pools (5)	Patios (5)				Pattern (Street Lighting (2)		Curbs (3)	Parks (2)	Golf Courses (4)	Community Facilities (1)	TOTALS	

TABLE XLII COST EFFECTIVENESS DATA ENTRY FORM SHIP ROUTING IN ARCTIC AREAS

		,							S	SENSORS	SUSED	Q								
				B	×		The	Thermal		SLR	~			Color	or		Ima	Imaging	PPI	
				Camera	ra		1	IR									Laser	er	Radar	H
INFORMATION		Rjk	10,		100,	000	40,	1 40,000	100,000	000	400	1 400,000	10,000	200	100,000	18	3,000		1 2,000,000	000
ELEMENTS	V	w_1^{jk}	Ā	101	20	11		102	-	103	203	3		104	204	4	-	105	106	9
WATER																				
Ice Free		.048	1	.048	П	.048	П	.048	-	.048	-1	.048	Н	.048	Н	.048	Н	.048	 	048
Open		.048	П	.048		.048	_	.048	Н	.048		.048	Н	.048	٦	.048	1	.048	П	.048
Lead		.048	_	.048	œ	.038	ထ္	.038	œ	.038	∞.	.038	1	.048	Н	.048	~. ~!	.048	. 4.	019
Lane	(4)	.038		.038		.030	∞.	.030	œ.	.030		.030	H	.038		.038		.038		015
Polynya		.028	∞.	.022		.016	∞.	.022	9.	.016	4.	.011	7	.028	∞.	.022		.022	0	000
Crack	(†	.038	∞.	.030	9.	.022	φ.	.030	9.	.022		.022		.038		.030	8.	.030		200
ICE DEVELOPMENT			- 	-						,										
New	(T)	.014	9.	.008	7.	.005	4.	.005	.2	.002	7	.002	∞.	011	9	.008	9	008	0	000
Nilas	(T)	.014	9.	.008	7.	.005	7.	.005	.2	.002	.2	.002		.011		800.		800.		000
Pancake	$\overline{}$.014	9.	.008	٠,	.005	7.	.005	.2	.002	.2	.002	80.	.011	9.	.008	9.	800.	0	000
Young	$\overline{}$.029	9.	.017	4.	.011	7.	.011	7.	.011	4.	.011		.023		.023		.017		000
First Year	$\overline{}$.044	∞.	.035	φ.	.035	9.	.026	9.	.026	9.	.026		.035		.035		.035		800
01d Ice	(2)	.073	œ.	.058	œ	.058	9.	.043	9.	.043		.043	٠	,058		.058		.058		014
Second Year	$\overline{}$.036	œ	.028		.021	٠,	.014	4.	.014		.014		.028		.028		.028		000
Multi-Year	_	.036	∞.	.028		.021	7.	.014	7.	.014	7.	.014		.028		.028		.028		000
Fast Ice	(*)	.058	1	.058	-	.058	٦.	.058	-	.058		.058		.058		.058		.058		.023

		ar	000	9		.018	400.	.004	.002	000	900.	900	900	024	000	000	200			250.	.020	015	.010	367
	PPI	Radar	$\frac{1}{2,000,000}$	106		9.9		• •	4.0			•	•	•	•	0		•		» ×				 •
	Imaging	Laser	$\frac{1}{3,000}$	105	ı	1 .031	1 .007	1 .007	1 .005	3 .004						1.031		•		200. 1	1 .052	1,039		.917
	-F																	·						
	or		100,000	204	! !	1 .031	1 .007	1 .007	1 .005	8.004				1.031		•	1 006	•			1 .052			. 904
	Color		1 10,000	104		.031				. 004						•	810.	•			. 052			.937
																			_					
S USED			1400,000	203		3 .005		•		200.						•		•			3.041		•	.688
SENSORS	SLR		<u> </u>					· · · · · ·	9,4	• •						9.							<u>.</u>	 <u> </u>
S			000,000	103		8 .024	1 .007			5,003				•	•	•	,000	•			3 .041			.703
			100			<u>.</u>											4. 4				· «			9
	Thermal	IR	140,000	102		.024	.007	.007	.004	.00.	.012	.024	.031	.031	.015	.018	4TO.	•		.065	.052	.039	.026	.0796
	LI.		4			<u> </u>	1		∞ 0							9.0								
			1,000	01		.024	.007	.007	.004	.000	.024	.031	.031	.031	.01	.018	900		Š	.00.	.052	.03	.026	.833
	M 3	era	100,	20		∞. -			<u></u> ∞. ∘								⊣							
	В	Camera	18	101		.031	.007	.007	.005	.009	.031	.031	.031	.031	.020	.024	000	•	2 9 0	.065	.052	.039	.026	.899
			10,000	1(Н		-1-	٠ ه	. –	-	-	-	<u>φ</u>	φ,	-	1		- ·	-	-	٦	
			R Jk	w_{j} jk		.031	.007	.007	.005	.012	.031	.031	.031	.031	.025	.031	900.			590	.052	.039	.026	.988
						(5)	(2)	(2)	3.6	33	(2)	(2)	(2)	(2)	(†)	(2)	33		(6)	3		(3)	(2)	
			INFORMATION ET EMENTS		OF ICE	loe Giant >10km	Vast 2-10km	Big 500-2000m Medium 100 -	2	~	erg	erg	Ice Field	Jam	୍ଷ ପ	ocks	ue	CONCENTRATION	act/	Verv Close Pack		Open Pack	Open Pack	TOTALS
			INI	,	FORM OF	Floe Giar	Vasi	Big 50 Medium	Small	Cake	Floeberg	Iceberg	Ice }	Ice Jam	Ridges	Hummocks	Rotten	CONCE	Compact	Verv	Close	0pen	Very	

TABLE XLII (Cont'd)

			SENSORS DESI	SENSORS DESIRED FOR SCIENTIFIC STUDIES	C STUDIES
			SCATTERO-	B & W CAMERA	COLOR
TNFORMATION		Rjk		2,000,000	1 2,000,000
ELEMENTS		w_1 jk	107	108	109
WATER					
Ice Free	2	870.	•	1 .048	·
Open	ν	.048	•		•
Lead	٠	.048	•		•
Lane	4 0	.038		.6 .022	•
Crack	14	.038	000.	.6 .022	.6 .022
ICE DEVELOPMENT					
New	-	.014	000.0	.2 .002	.2 .002
Nilas	1	.014	000.0	.2 .002	.2 .002
Pancake	1	.014		.2 .002	.2 .002
Young	7	.029	.4 .011		
First Year	ر ا	.044			-
01d Ice	י עו	.073		.6 .043	
Second Year	٠, ١	.036			.2 .007
Multi-Year	Λ·	.036		.2 .007	-
Fast Ice	4	.058		970.8.	970. 8.

TABLE XLII (Cont'd)

			SENSORS DE	DESIRED FOR SCIENTIFIC	FIC STUDIES
			SCATTERO-	B&W	COLOR
			METER	CAMERA	
INFORMATION		Rjk		$\frac{1}{2,000,000}$	$\frac{1}{2,000,000}$
ELEMENTS		w_1 jk	107	108	109
FORM OF ICE	,				
Floe	ر ر د	.031			
Giant >10km	יט ה	.007	000 0	1 .007	1 .007
Nast 2-10km	ט ג	.00.			
Medium 500-	`	<u> </u>			
2000in	4	.005		1 .005	1 .005
Small 20-100m	3	.004	000 0	.8 .003	•
Cake	7	.012			
Floeberg	2	.031			
Iceberg	Ŋ	.031			
Ice Field	ν.	.031	.6 .018	.8 .024	
Ice Jam	Ŋ	.031			
Ridges	4	.025			·
Hummocks	Ω.	.031		•	•
Pudiles	m ،	.018		•	•
Kotten Ice CONCINTRATION	4	900.	.4 .002	%. %.	.8.
Compact/					
Consolidated	2	.065	.6 .039	1 .065	1 .065
Very Close Pack	5	.065	.6 .039	1 .065	
Close Pack	4	.052	.6 .031		
Open Pack	e	.039		1 .039	1 .039
Very Open Pack	7	.026	.6 .015		
		866.	.466	069.	.702

Notes to Table XLII:

In compiling Table XLII. the following qualifications were observed:

- 1) The relatively high values (E_{jk}) for black & white camera, thermal IR, color and imaging laser, must be tempered with the knowledge that the presence of clouds is not considered in the evaluations. However, in an Arctic environment, where cloud cover is present approximately 70% of the time, the most effective sensor in terms of actual usable imagery would, in most cases, be side-looking airborne radar.
- 2) The slightly higher effectiveness of color to supply the Elements of Information is due to the blue tones associated with certain ice types and the ability to see these tones as other than shades of grey.

In addition, black & white and color are daytime limited. In extended periods of darkness, their utilities would be negligible, whereas the capability of side-looking airborne radar would remain unimpared, as would those of the imaging laser and thermal IR.

- 3) PPI radar has been included simply because the PPI is utilized as a navigation aid in most military aircraft expected to fly over an Arctic area. If cloud affected sensors were being flown and knowledge of the ice/water configuration was mandatory, the PPI would be useful as the only available acquisition medium.
- 4) The scales of the black & white and color film types, under Sensors Desired for Scientific Studies, are based on results of the Spacecraft Feasibility Study, Section 2.5. The sensor effectiveness values are based upon the following: extrapolations from small-scale photography viewed in the past, and inferences as to the resolution that can be expected from the sensors in a spacecraft mode.

TABLE XLIIIA

COST EFFECTIVENESS DATA ENTRY FORM IRRIGATION CANAL ROUTE LOCATION & COST ESTIMATION (Preliminary or Feasibility)

					SENSORS	ts used					
INFORMATION FI FMFNTS		Ground	Survey	Black	k & White		Color	or		AN-APQ S SLR	26
	W ₁ jk	R*	Rp*	1,	10,	50'	1,	10'	50'		7
Topography (5) Landforms (4) Contours (5)	.161 .071 .089	.6 .043 1 .089	1 .071 1 .089	1.071 1.089	1 .071 1 .089	.6 .043	1 .071 1 .089	1 .071 1 .089	.6 .043	.4 .028	
Planimetry (5)	.161	1 ,161	1 .161	ľ .161	1 .161	760. 9.	1 .161	1 .161	760. 9.	.2 .032	
	.035	.6 .021		1 .035						4.	·
Stream Density (4) Stream Volume (4) Surface Water (5)	.029	.4 .012 .8 .024 .6 .021	1 .029 1 .029 1 .035	1 .029 1 .029 1 .035	1 .029 1 .029 1 .035	.6 .017 .4 .012 .8 .028	1 .029 1 .029 1 .035	1 .029 1 .029 1 .035	.6 .017 .4 .012 .8 .028	.4 .012 .2 .006 .2 .007	
Surficial Material (4) Material Type (5) Permeability (3) Predominant Grain	.129 .023 .014	.6 .014 .6 .008	1 .023 1 .014	1 .023 1 .014	1 .023 1 .014	.6 .014	1 .023 1 .014	1 .023 1 .014	.8 .018 .6 .008	.2 .005	
	.014	.6 .008 .4 .00 9	1.014 1.023	.8 .011 1 .023	.8 .011 1 .023	.4 .006	.8 .011 1 .023	.8 .011 1 .023	4 .006	.2 .003	
Location (3) Foundation Con-	.014	800. 9.	1 .014	1 .014	1 .014	900.9.	1 .014	1 .014	800. 9.	.2 .003	
ditions (4) Landslide Potential	.019	.4 .008	1 .019	1 .019	1 .019	.4 .008	1 .019	1 .019	.4 .008	.2 .004	
(4)	.019	.4 .008	1 .019	1 .019	1 .019	.4 .008	1 .019	1 .019	.6 .011	.2 .004	
							1				1

*R = Reconnaissance - no existing imagery

*Rp = Reconnaissance - 1:20,000 scale B & W imagery available

IRRIGATION CANAL ROUTE & COST ESTIMATION (Preliminary or Feasibility) TABLE XLIIIA (Cont'd)

									SENS	ORS	SENSORS USED								
INFORMATION ELEMENTS		Ğr.	Ground S	Survey			B	Black	& White	te			5	Color				AN-APQ SLR	0 56
	w ₁ kik	*	٠	pb*	*	-		10,	_	5	50,		_	101		50,	_		
Geology (4) Rock Type (4)	.129	∞.	.018	1.0			012	Ì	600		004		.012	4.	600.		.004		.004
Structure (3) Permability (2)	.017	٠ 8	.010	99		ص م	.014			4. 2.	.007	ထ ဖ	.014	∞ 4	.014	7 7	.007	~ ~	.003
Rippability (4)	.022	φ. «	.018	1.0	.022		.009	4. ∞	.009		.004		.012	4. 8.	.009		.004		.004
Hd/Soft Class. (5)	.028	, ω,	.022	1.0			.017				900.		.017	4.	.011		900.		900.
Vegetation (3) Crops (5) Forest (4) Other (3)	.096 .040 .032 .024	ထဲထဲထဲ	.032	0.00	.040	999	.024	444	.016	222	.008 .006 .005	α α α	.032	9.9.9	.024 .019	444	.016 .013	444	.008
Sedimentation (2) Erosion Areas (5) Deposition Areas (5)	.032	∞.∞.	.026	1.0	.032	9.	.019	4.4	.013	2.2	900.	တ် ဆ	.026	4, 9.	.013	2.2	900.	2.2	900.
Land Use (Compre- hensive) (4)	.129	φ.	.103	1 .1	.129	9.	.077	9.	.077	.2	.026	φ.	.103	9.	.077		.026		.026
	866.		.845	6.	866.		.768		.548	•	.260		.830		675.		.280		.217

* D = Detailed - no existing imagery

*Dp = Detailed - 1:20,000 scale B & W imagery available

NOTES TO TABLE XLIIIA:

In compiling Table XLIIIA, the following assumptions were made:

GENERAL ASSUMPTIONS:

- 1) An existing source of water.
- 2) An area where an irrigation project is feasible.
- 3) 1 & 2 are more than 10 miles apart.
- 4) A corridor connecting 1 & 2 has not been selected.
- 5) 1:250,000 scale topographic maps are currently available.
- 6) Strip topographic maps with 10' contour interval and 1" 2000' scale will be prepared from existing 1:20,000 scale imagery after a corridor has been selected.
- 7) No field check for photo-interpreted data.
- 8) No stream gauging records available.
- 9) Landforms include, but are not limited to, such features as alluvial fans, terrace level, eskers, rapids, river bars, moraines, and sand dunes.

FOR GROUND SURVEY - Assume:

- Photos used mainly for geologic & soil mapping, vegetation, and land use inventories.
- 2) No subsurface investigations will be conducted.
- Rp will satisfy all requirements, therefore all elements assigned a value of one.

AN/APQ-56 SLR resolution is: range - 50' at 18 nautical miles. azimuth - 223' at 18 nautical miles.

Notations: 1) 0 value assigned because 10' contour interval required (Gen'1. assumption #6 cannot be realized).

- 1 100% determination of the information element.
- .8 can determine most of the information element.
- .6 can determine over half of the information element.
- .4 can determine less than half of the information element.
- .2 can determine a small amount of the information element.
- 0 cannot determine any of the information element.

TABLE XLIIIB

COST EFFECTIVENESS DATA ENTRY FORM
IRRIGATION CANAL ROUTE LOCATION & COST ESTIMATION (Detailed)

	PQ 56 R		.028	.032	.014	.017	.005	.003	.003	.004	.004
	AN-APQ SLR		4.0	.2	4.4.0	4.	2.5	7.7	.2	.2	.2
	•	50'	.043	.032	.021	.021	.009	.003	.003	.004	.008
			٠,٥	.2	• •	•	4. 2.	.2.2	.5	.5	4.
		10,	.171	.097	.035	.035	.014	.006	.008	.008	.015
	Color		10	9.	н н с		9.4	4.9.	9.	4.	9.
	Co	1,	.071	.161	.035	.035	.018	.006	.011	.011	.015
				7	пп4.	7	8. 9.	4.	∞.	9.	8.
		50'	.043	.032	.021	.021	.009	.003	.003	.004	.008
USED	White		9.0	.2	9.90	9.	4.2	2.2	.2	.2	4.
SENSORS	رى ا	10,	.071	.097	.035	.028	.014	.006	800.	800.	.015
S	Black		0 1	9.	142	∞.	9. 4.	4.0	9	• 4	9.
		1,	.089	.161	.035	.035	.014	.006	.011	.011	.015
				-		-	9. 4.	7.9.	φ.	9.	φ.
	vey	Dp*	.071	.161	.035	.035	.023	.014	.014	.019	.019
	Sur			~					-	Н	
	Ground Survey	*0	.057	.161	.028	.028	.018	.011	.011	.015	.015
			∞ ∺		œ. œ. ط. و	×.	∞ ∞	∞ ∞	∞.	∞.	9.
		w ₁ Rik	.161	.161	.035	.129	.023	.014	.014	.019	.019
	INFORMATION	ELEMENTS	Topography (5) Landforms (4) Contours (5)	Planimetry (5)	Drainage (4) Stream Pattern (5) Stream Density (4) Stream Volume (4)	Surficial Material	(4) Material Type (5) Permeability (3) Predominant Grain	Size (3) Depth to Bedrock (5) Construction Mat'l	Location (3) Foundation Con-	ditions (4) Landslide Potential	(4)

* D = Detailed - no existing imagery *Dp = Detailed - 1:20,000 scale B & W imagery available

TABLE XLIIIB (Cont'd)

COST EFFECTIVENESS DATA ENTRY FORM
IRRIGATION CANAL ROUTE LOCATION & COST ESTIMATION (Detailed)

	AN-APQ 56 SLR		2 .004 4 .007		.2 .008 .2 .006	.2 .006 .2 .0 06	.2 .026	.212
	AN							
			.013	013	.032 .026 .019	.026	.103	909.
		50'	9.80		∞ ∞ ∞	∞ ∞	φ.	
			.022	.022	.040	.032	.129	.993
	Color	10					· -	•
	Co.]		.022	.022 .028 .028	.040 .032 .024	.032	.129	993
	 	1,			0.0.0	0.0.	۲.	6.
				<u> </u>	464	<u> </u>		6
l B		_	.013	.013	.024 .019	.019	.077	.529
USED	a)	501	9.8	999	999	9.9.	٠,	
SENSORS	Black & White		22 17	022 028 028	40 32 24	32	129	993
SEN	کد ت	10'	.022		.032	.032	•	96.
	Blac	-	— — α	<u> </u>			H	
	7		.022	.022	.040	.032	.129	.993
		1					H	•
	b		22 17 11	.022 .028 .028	.040	.032	129	.992
	Survey	Rp*	0.00		0.0.0	0.0.	1 .1	6.
	Ng Pi	<u> </u>						
	Ground	٠.	013	.006	.024 .019	.026	.077	.673
		*	0.44	9 7 9	9.9.	8. 9.	9.	ů.
<u> </u>		ž,	2 2 7	1000				∞
	, 	¥/ *	.022	.022	.096 .040 .032	.032	.129	866.
						(5)	l,	
			[2]	. 5 5		(5)	ehen (4)	
			(4)	y (4) 5) ass.	3	n (; eas Are	mpr(e)	
	TION		ology (4) Rock Type (4) Structure (3) Permeability (2	Rippability (4 Outcrops (5) Hd/Soft Class.	3) (5) (4)	dimentation (2) Erosion Areas (5) Deposition Areas	(Comp sive)	
	FORMATION ELEMENTS		gy k k Ty uctu	pab: crop Soft	getation (Crops (5) Forest (4) Other (3)	ent: slor os1t	Use	
į	INFORMATION ELEMENTS		Geology (4) Rock Type Structure	Rip Out Hd/	Vegetation (3) Crops (5) Forest (4) Other (3)	Sedimentation (2) Erosion Areas (Deposition Area	Land Use (Comprehensive) (4)	
			Ū		Ď	<u>~~~~~</u>	i i	

R = Reconnaissance - no existing imagery \mbox{Rp} = Reconnaissance - 1:20,000, scale B & W imagery available

NOTES TO TABLE XLIIIB:

In compiling Table XLIIIB, the following assumption were made:

GENERAL ASSUMPTIONS

- 1) An existing source of surface water.
- 2) An area where an irrigation project is feasible.
- 3) 1 & 2 are more than 10 miles apart.
- 4) A corridor connecting 1 & 2 has been selected.
- 5) 1:250,000 scale topographic maps are currently available.
- 6) 2' contour interval and 1" = 200' scale topographic information necessary to satisfy engineering accuracy requirements for final location and cost estimates.
- 7) Landforms include, but are not limited to, such features as alluvial fans, terrace levels, eskers, rapids, river bars, moraines, and sand dunes.
- 8) No stream gauging records available.

FOR GROUND SURVEY - Assume:

- 1) Topographic maps with 2' contour interval and 1" 200' scale will be prepared as necessary by ground survey methods.
- 2) 1:20,000 scale imagery can produce topographic maps with 10' contour intervals.
- 3) Photos used mainly for geologic and soil mapping, vegetation, and land use inventories.
- 4) Detailed survey w/o imagery will <u>not</u> survey vegetation and land use on an acre by acre or unit by unit basis, even though this level of detail could be realized.
- 5) Subsurface investigations will be conducted as necessary to provide detailed information.
- 6) Dp will satisfy all requirements, therefore all elements assigned a value of one.

Notations (superscripts)

- 1) It is possible to achieve the same level of detail on an areal basis as Dp, but it is not generally done. (Demonstrates utility of photos.)
- 2) 0 value assigned because 2' contour interval required. (Gen'l. assumption #6 cannot be realized).

AN/APQ-56 SLR resolution is: range - 50' at 18 nautical miles. azimuth - 223' at 18 nautical miles.

- 1 100% determination of the information element.
- .8 can determine most of the information element.
- .6 can determine over half of the information element.
- .4 can determine less than half of the information element.
- .2 can determine a small amount of the information element.
- 0 cannot determine any of the information element.

2.8 Radar Scatterometer Data Analysis 12

2.8.1 Introduction

Included among several remote sensors employed in Mission 73 was a Ryan Redop 2.25 cm wavelength radar scatterometer. Previous experiments with this sensor have confirmed its applicability to determination of sea state 13 and differentiation of Arctic ice types 14. Earlier NASA/MSC missions have employed the Ryan system to record backscatter energy from terrain; however, these data have not been analyzed. The research described in this report essentially constitutes an engineering experiment and, hence, is presented from that viewpoint. The objective of the analysis was to determine the geoscience application areas of this sensor by evaluating its performance over specific, documented regions.

This work is the first detailed analysis of the NASA/MSC scatterometer data of agricultural sites, but radar measurements of soils, crops, natural vegetation, etc., have been recorded for many years. The programs of Ohio State University, 15 Waterways Experiment Station, 16 Naval Research Laboratory, 17 and others have produced a "catalog" of backscatter characteristics. 18 However, most of these measurements were produced as information for radar system design specifications or were in other ways unsuitable for determination of general geoscience potential. Consequently, the Mission 73 radar measurements, due to the unique advantages of the particular scatterometer employed, offered the opportunity to considerably improve the "catalog" of backscatter data from natural terrain.

This section was written by Dr. John W. Rouse, Jr., Remote Sensing Center, Texas A & M University.

Rouse, J. W., Jr., MacDonald, H. C., and Waite, W. P., "Geoscience Applications of Radar Sensors", <u>IEEE Trans. on Geoscience Electronics</u>, Vol. GE-7, No. 1, pp. 2-19, January 1969.

Rouse, J. W., Jr., "Arctic Ice Type Identification by Radar," <u>Proceedings</u> of the IEEE, Vol. 57, No. 4, April 1969.

Cosgriff, R. L., Peake, W. H., and Taylor, R. C., "Terrain Scattering Properties for Sensor System Design," Ohio State University, Eng. Expt. Sta. Bull. 29 (3), May 1960.

Lundien, J. R., "Terrain Analysis by Electromagnetic Means", U.S. Army Engineer Waterways Experiment Station Technical Report No. 3-693, September 1966.

Ament, W. S., MacDonald, F. C., and Schewbridge, R. D., "Radar Terrain Reflections for Several Polarizations and Frequencies", Naval Research Laboratory, Unpublished Report, 1959.

Earing, Dianne, "Target Signature Analysis Center: Data Compilation",
Institute of Science and Technology, University of Michigan, July
1967.

The analysis of the radar scatterometer data from Mission 73, Site 130 was conducted at the Remote Sensing Center, Texas A & M University. It established that the radar return was sufficiently well correlated to crop type or field conditions, and that sufficient samples were recorded within each field type, to make possible the alignment of the return amplitudes from each individual field. The relative amplitude of the backscatter energy at each of several incidence angles exhibited field-type categorization potential. Unfortunately, this potential could not be fully realized in this analysis program. The initial data contained several apparent processing errors that seriously affected their reliability. Although some corrected results were available just prior to the conclusion of this work, the data were incomplete. Consequently, the full merits of the research cannot be fully determined; however, several significant features of the data were documented.

2.8.2 Radar Scatterometer

Radar scatterometers measure variation of the scattering coefficient with incidence angle. Some instruments employ as additional variables the frequency and polarization of the transmitted energy. Scatterometer measurements permit a detailed observation of radar scattering behavior, although the resolution and areal coverage are generally poorer than radar images. The NASA scatterometer used for these measurements was a 2.25 cm wavelength Ryan Redop system. This radar transmits a vertically polarized CW signal in a "fan-beam" antenna pattern. The illuminated area is 120° (+ 60°) fore-aft along the aircraft line and 3° (+ 1.5°) port-starboard.

The radar return was recorded on magnetic tape and subsequently processed through a set of Doppler filters. Each filter represented a discrete incidence angle within the 0° to 60° (fore and aft) beam, e.g., 5° , 10° , 15° , 20° , etc. The filter frequencies correspond to the incidence angle according to the relation:

 $f_d = \frac{2v\sin\theta}{\lambda}$

where: $f_d = Doppler frequency$

v = relative velocity of radar

 θ = incidence angle

 λ = wavelength

Since the entire 120° x 3° region is continuously illuminated, the scattering coefficient versus incidence angle curve fore and aft was recorded during a single overflight. By suitable processing of the return signal, a scattering coefficient versus incidence angle plot was obtained which shows the scattering coefficient variation for particular terrain "cells" along the flight line.

This is done by delaying in time the signal outputs of each Doppler filter. By appropriate choice of each time delay, the effect of viewing one spot on the terrain from several angles simultaneously is obtained. The data shown in this report are the scattering coefficient for adjacent "cells" about 30m square. Since the radar returns are recorded in quadrature, the fore- and aft-beam data are separated. The results shown in this report are from fore-beam measurements only.

2.8.3 Mission 73 - Scatterometer Experiment

Within a week of the aircraft flights during the spring of 1968, a preliminary analysis was conducted on radar scatterometer data from the geography test site in the Salton Sea area (Site 130, line 2a). The preliminary analysis employed only the analog output of the Doppler filters. These data were uncorrected for aircraft parameters. This analysis resulted in determining that the radar return has sufficient character to allow correlation of the return with the terrain features. The resolution relative to the field sizes was sufficient to provide several samples of each crop or field type. The angle dependence of the uncorrected scattering coefficient appeared to be sufficiently distinct for cataloging of certain crop types or field conditions. The "signature" of date palms was quite different than that of any other crop type, and identification of this crop could be made with a high degree of reliability. It was anticipated that subsequent n-dimensional analysis of these data would lead to disjoint categorization of many of the crop types.

Based on the preliminary analysis, a detailed study of the data from Test Site 130, line 1, 2, 2a, 5, 5a, and 5b was undertaken. In preparation for this study, NASA/MSC performed a data reduction and correction processing on the Mission 73, Site 130 measurements.

2.8.4 Measurements

The Mission 73 results used in this analysis consisted of 9 x 9 inch black-and-white aerial photography and the processed radar measurements for six lines of Site 130. The radar measurements were in three forms: 1) scattering coefficient versus incidence angle graphs for each "cell" along the flight; 2) uncorrected scattering coefficient versus time along the flight line for five incidence angles (approximately 5° , 20° , 50° , 55° , and 60°); and 3) tabulated scattering coefficient values for nine incidence angles in each "cell" along the flight line.

The photography was obtained with an approximate 10% overlap and was of good quality. The photos were examined to determine the conditions of the flight relative to the utility of the radar data. The specific findings of this review are detailed under Section 2.8.6. In general, it was discovered that excessive drift angles (greater than 4°) during parts of the overflight necessitated elimination of several terrain segments. Excessive drift angle causes the subsequent scattering coefficient versus incidence angle plots to be in error, since they do not represent a distinct "cell" on the terrain. In addition,

several sections of the lines were flown so near roadways that the radar return was unrepresentative of field conditions but instead contained a composite of both the roads and the fields. Efforts to obtain "signatures" of urban regions were also hampered due to excessive drift or to the unrepresentative natures of the few usable sites.

The majority of the lines selected were flown at 1500 or 2000 feet altitude. One run of line 2 was flown at 6000 feet and was found unusable since the increased resolution size reduced the number of samples per field to less than five and the alignment was poor.

The preliminary review of the radar data indicated some problems which are described in Section 2.8.5 and 2.8.6. However, the format of the scattering coefficient versus time plots was excellent for obtaining data alignment with the 9 x 9 inch photos. In each case the alignment was obtained using only the 5° and 20° incidence angle readings. The other angles available were greater than 40° and were unusable for alignment due to excessive deviations. It was subsequently determined that the sampling rate of data obtained above approximately 40° was apparently too low to handle the Doppler frequencies in this region, and hence, a low confidence level was placed on these data.

2.8.5 Analysis Approach

Scatterometer data are optimally suited to defining the radar scattering coefficient. This parameter can be expressed as a function of several variables in the following form:

 $\sigma^{\circ} = f (\varepsilon, \Gamma, \lambda, \theta, P)$

where:

 σ° = scattering coefficient

 λ = wavelength of incident signal

 θ = angle of incidence

P = polarization of incident signal

= dielectric property of the terrain

Γ denotes surface roughness

The complex dielectric constant, ϵ , and the surface roughness factor, Γ , are the fixed terrain parameters which are to be determined. The system parameters, λ , θ , and P, are the variables employed to define the terrain parameters.

The Mission 73 data consists of constant wavelength and polarization with a variable incidence angle. Therefore, the analysis approach used with these data was to attempt to determine a terrain "signature" unique to each crop field type using σ° versus θ curves. This approach was previously employed using backscatter from Arctic ice and distinct "signatures" were obtained

for different ice types. In the Arctic analysis an individual surface roughness parameter was obtained to describe each ice-type "signature" by fitting the data to a scattering theory based on the Kirchhoff-Huygens Principle. The Mission 73 analysis was established to follow the same procedure.

The procedure was to determine the segments of the flight line for which the flight conditions, instrument conditions, and terrain conditions were such to warrant analysis. The segments on the air photo were aligned with the uncorrected scattering coefficient versus time plots to establish the exact data time correspondence with the terrain features. This alignment was considered satisfactory when the data from at least two incidence angles showed correct feature correspondence. This procedure is critical since the corrected scattering coefficient tabulations are related exclusively to the time record. For example, the alignment procedure establishes that field A is illuminated from time 18:40:05 to time 18:40:32. The tabulated scattering coefficient values for all "cells" occuring between these time bounds are therefore representative of the backscatter from field A. The average of these values is then the scattering coefficient versus incidence angle curve identifying field A. These data are then further analyzed in an attempt to identify a "signature" for field A.

Several difficulties were encountered in employing this procedure. Data released by NASA/MSC contained discrepancies which were not detectable prior to conducting relatively detailed analysis. The most serious of these apparent errors are the following: 1) time error in tabulated values of scattering coefficients; 2) absolute amplitude error for scattering coefficient values at θ_1 through θ_4 (5° to 20° incidence); and 3) sampling rate error for calculations of scattering coefficient at θ_7 through θ_9 (greater than 45° incidence). The exact cause and full extent of the latter two problems are still unknown. The third error did not seriously hamper the analysis. However, the second error was critical.

The time error in the tabulated values of the scattering coefficient was due to processing of fore-beam data as though it were aft-beam data and vice-versa. This problem was discovered during the data alignment stage of the analysis and was corrected by employing a procedure developed by Eppes.²⁰ In a second

Rouse, J. W., Jr., "Arctic Ice Types Identification by Radar," <u>Proceedings</u> of the IEEE, Vol. 57, No. 4, April 1969.

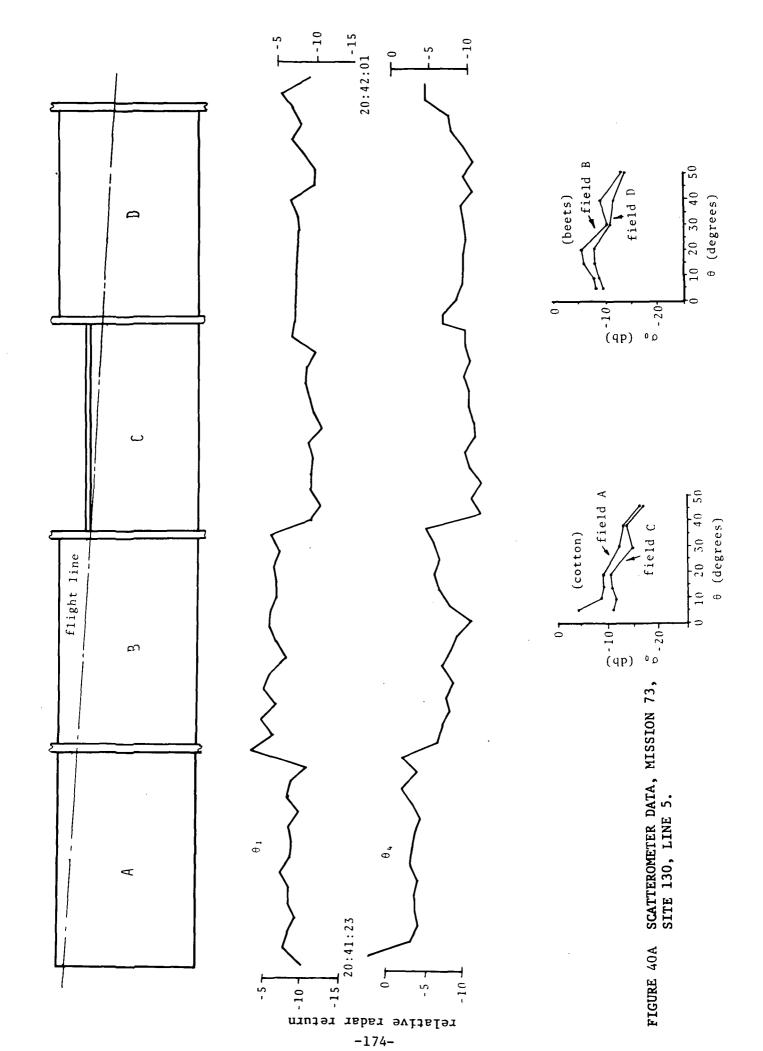
Eppes, T. A., "Spatial Adjustment Discrepancies in Scatterometer Data from Mission 73", Tech. Memo DAL-001, Remote Sensing Center, February 1969.

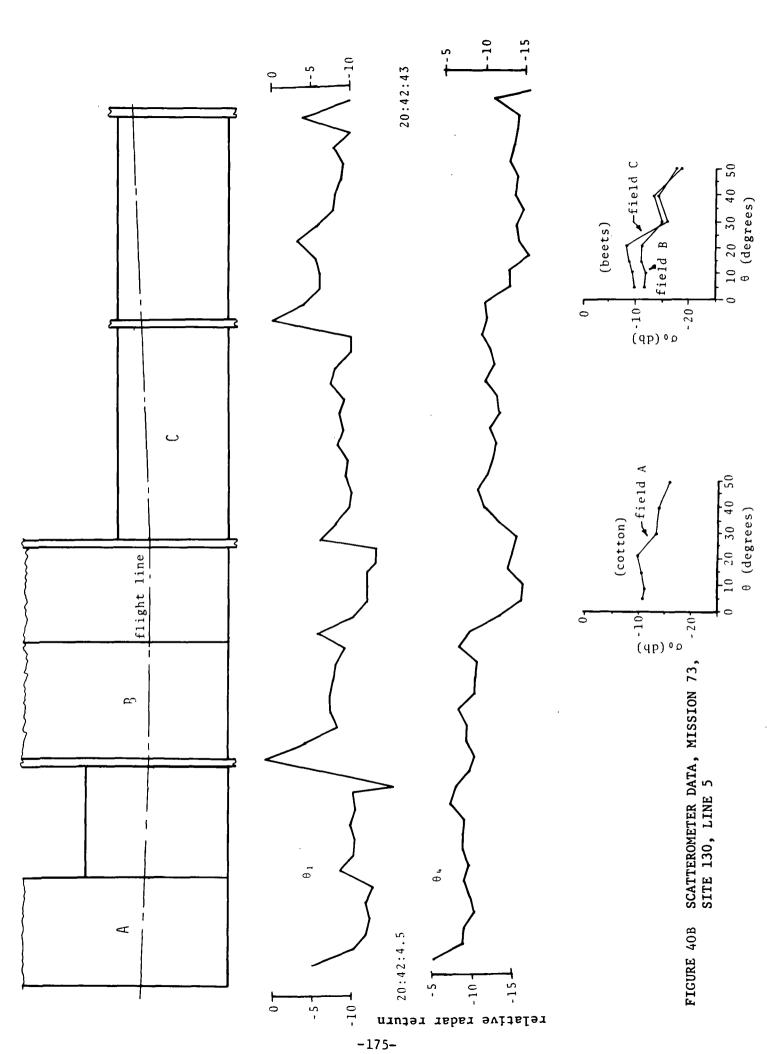
release of parts of the Mission 73 processed scatterometer data by NASA/MSC in late April 1969, the time error was corrected. The new results agreed with manually adjusted values; however, the new data disagreed with the previously released results in magnitude of the radar return.

The apparent error in the absolute values of the original tabulated scattering coefficients was discovered by comparing the resultant scattering coefficient plots to similar terrain return measured by Ohio State University and others. The scattering coefficient plots exhibit the characteristic that the value of the scattering coefficient monotonically increased as the incidence angle increased from 5° to 20°. This characteristic was previously noted in the uncorrected analog scattering coefficient plots, but was known to be unrepresentative of actual behavior due to the stage of the computer program at which these data are read out. The persistence of this characteristic of supposedly corrected data was unexplainable. The later processing of the data improved this characteristic as will be shown in Section 2.8.6.

The sampling rate error was apparently caused by failure to meet the rate required by the Sampling Theorem in the high Doppler frequency range. Reprocessing of the data did effect the data values for incidence angles above 40°, but the significance of this change is unknown.

2.8.6 Analysis Results


The analysis results of primary interest are from lines 5, 5a, and 5b. Line 1 was barren terrain of little interest. Line 2 and 2a contained a wide range of terrain types; however, the field sizes were small, and the alignment of the NASA/MSC digital filter output data was not accomplished with sufficient confidence to warrant advancing conclusions based upon these data. The alignment of the measurements of lines 5, 5a, and 5b was excellent.


Line 5

Line 5 extended from Niland, California to Brawley, California. The scatterometer data record was 3 minutes 25 seconds in length. The line initiates in an arid region, crosses a sparsely settled residential section, and covers a well-defined agricultural segment. The aircraft experienced excessive drift during the first 1 minute 5 seconds of the flight. This restricted the analysis to the agricultural segment only.

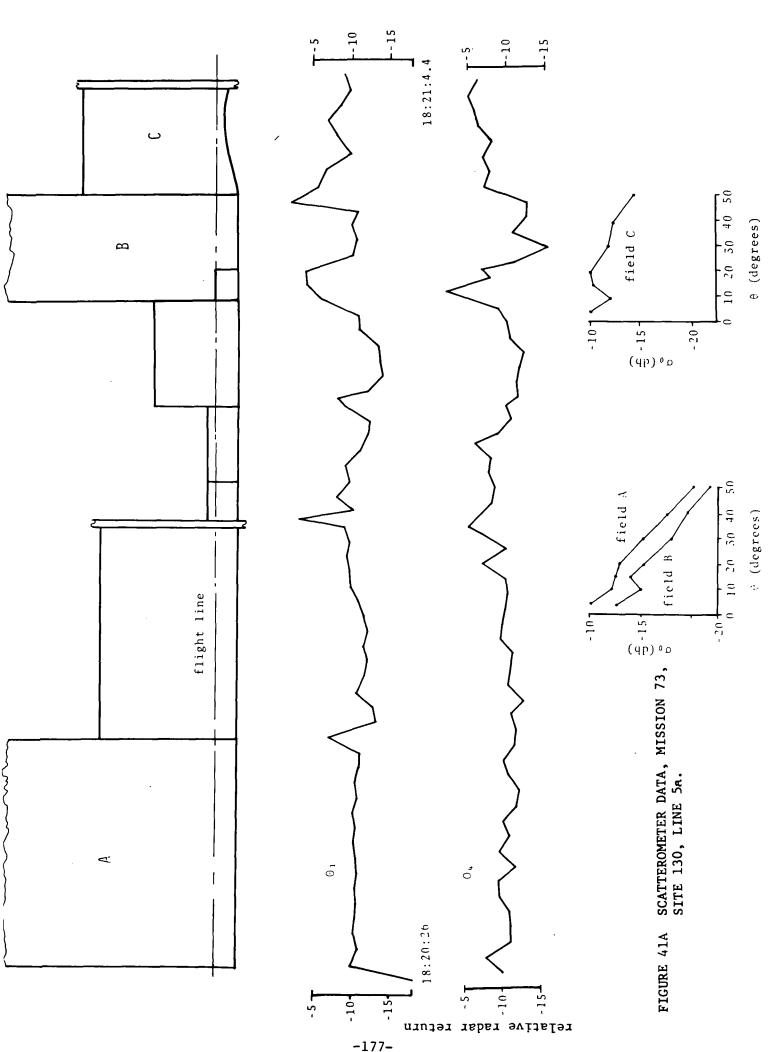
The alignment of the time history plots with the fields was excellent. This alignment is shown in Figure 33a and 33b. Throughout the line all fields were plowed perpendicular to the flight direction. Several roads located perpendicular to the line exhibited very distinctive radar return.

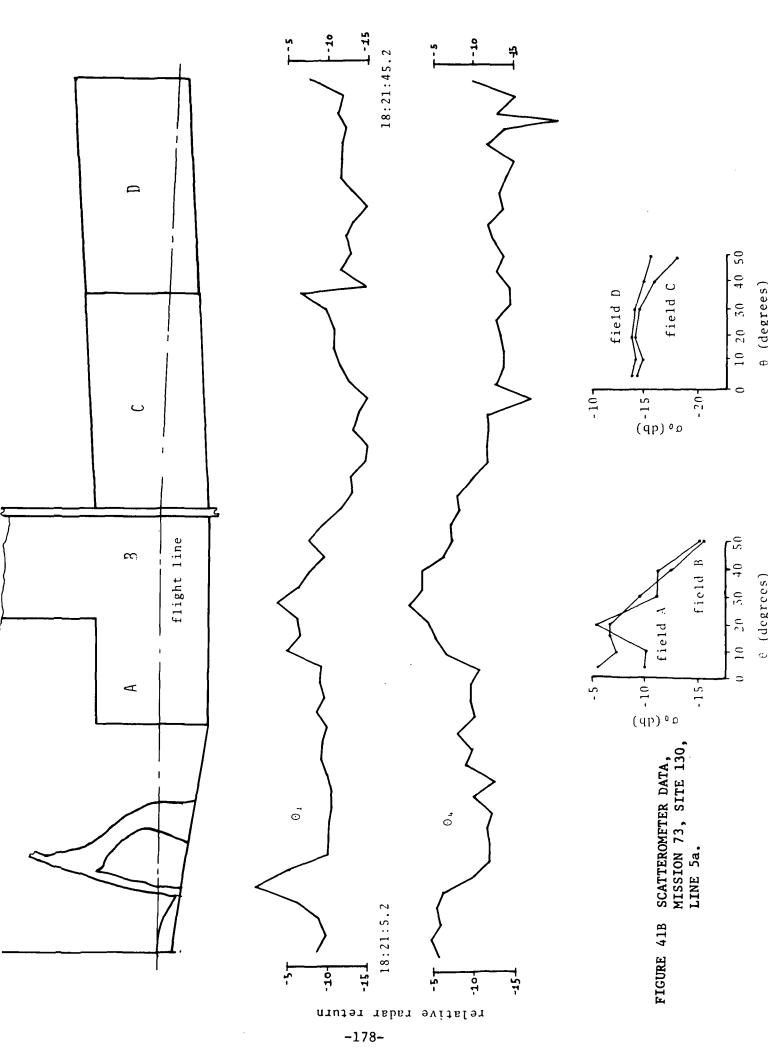
The only tabulated scattering coefficient values available for line 5 were those supplied during the initial NASA/MSC data processing. The reprocessing did not include line 5. The "signatures" of several fields are also shown in Figure 40A and 40B. Although fields of similar crop type or conditions are readily identifiable on the time history graphs, the average scattering

coefficient plots show unexpected characteristics that do not confirm a crop categorization potential and raise doubt as to their validity.

Line 5a

Line 5a extended from Niland, California to Brawley, California parallel to line 5. The scatterometer data covered approximately 14 n.m. in a period of 5 minutes, 25 seconds. The region is predominately agricultural in nature with several large, well-defined fields.


The flight records show that for a 22 second interval at 1 minute, 28 seconds into the line the aircraft drift angle was excessive, i.e., greater than 4°. Likewise the last 39 seconds of the run were recorded under excessive drift angle conditions. Reviewing the air photos revealed that during the first 1 minute, 20 seconds of the run the aircraft was sufficiently close to a road paralleling the flight line that the radar return would be influenced by its presence. This problem also occurred in the second of the two major agriculture segments of line 5a. In general, it is questionable that the "signatures" of any specified field in the line would be completely free of the influence of the road return.


Although the presence of the road is believed to restrict the value of these data, it was noted that very distinctive field character was present in the radar data. That is, fields of one crop type were readily distinguished from fields of other crop types. This is evident in the signature shown in Figure 41A.

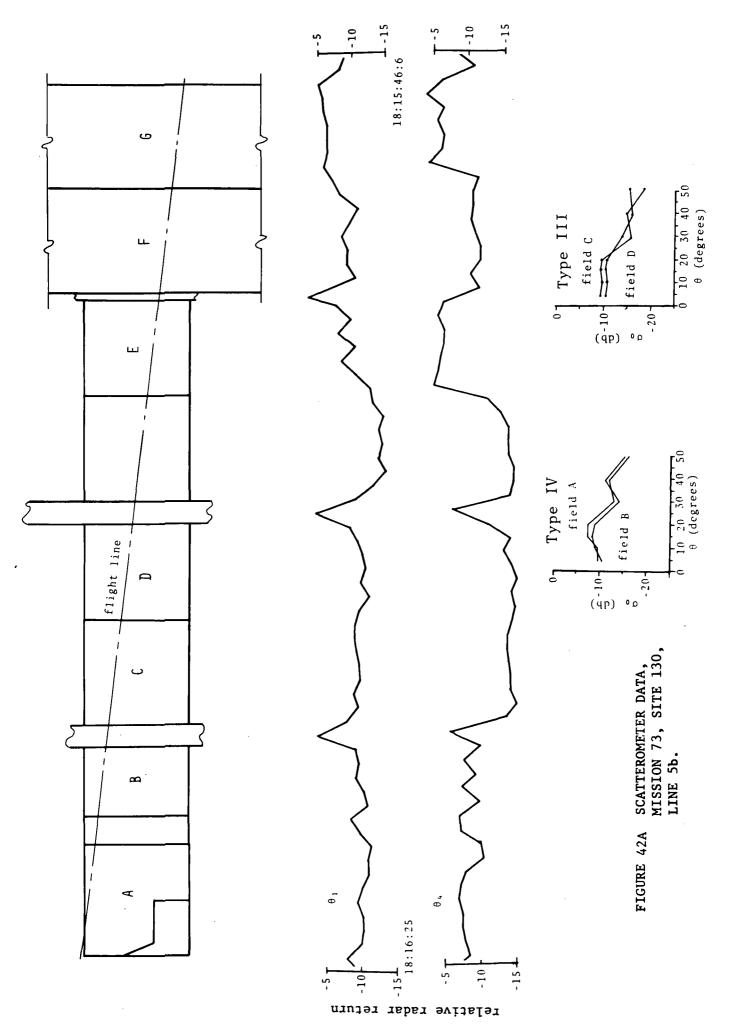
Three adjacent fields in the line were found to have been illuminated sufficiently far from the road that some confidence could be placed in these data points. Although the ground truth was not available for these particular fields, each field appears to be of a different crop type or field condition.

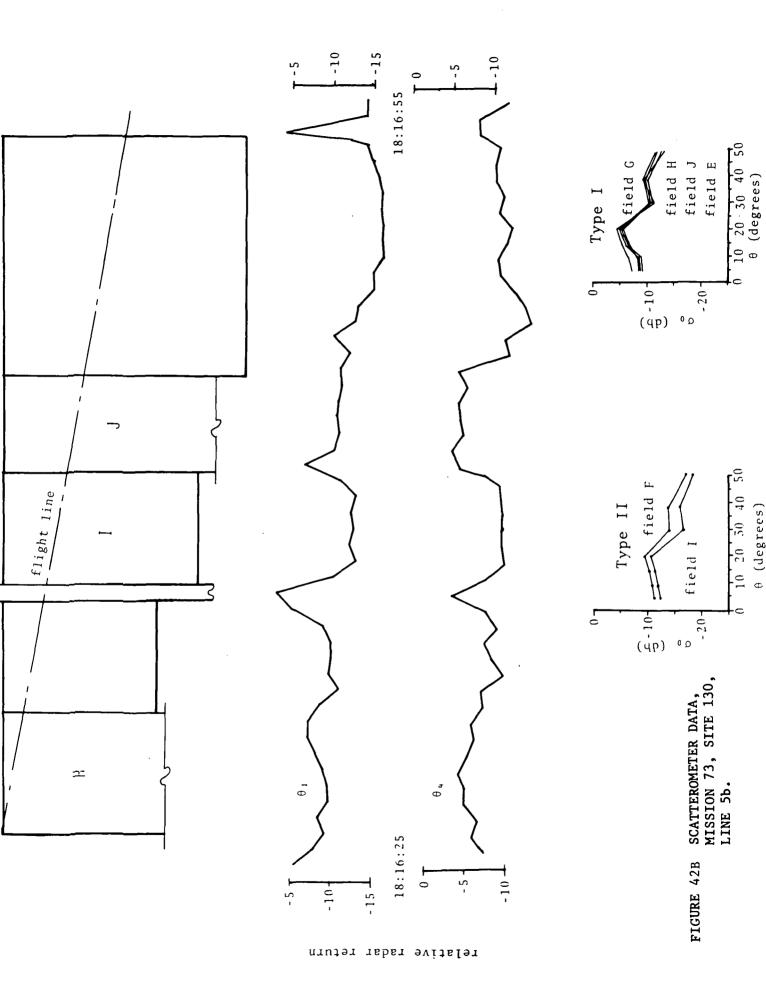
Field A-B in Figure 41B is a homogeneous crop type, but half of the field is either under water or has recently been under water. The crop in this half is markedly retarded relative to the other half of the field. The distinction between the two halves is clearly shown by scatterometer data as shown in the illustrations, although the validity of the field A data is questionable. The second two fields (field C and D) have remarkable similar backscatter characteristics, yet based solely on the photographic data they are dissimilar field types. The similarity in the "signatures" is shown in the illustrations. This characteristic is not unexpected for certain crops. A study of radar images of Western Kansas crops showed little distinction between certain crops such as grains. 21

Simonett, D. S., Eagleman, J. E., Erhart, A. B., Rhodes, D. C., and Schwarz, D.E., "The Potential of Radar As a Remote Sensor in Agriculture, 1. A Study with K-Band Imagery in Western Kansas". University of Kansas, Lawrence, CRES Report 61-21, 1967.

The average scattering coefficient plots obtained for line 5a from the initial NASA released scatterometer data suffered from the errors affecting the line 5 plots. The new data do not exhibit the pronounced uniform characteristic of the former results in which the return increased monotonically for the near vertical angles. (Field A in Figure 41B is an exception.) The tendency of these data to remain nearly constant out to 20° incidence angle is in agreement with some of the Ohio State measurements and is explainable as being due to the high frequency of incident signal and the very rough nature of the illuminated crops.

Line 5b


Line 5b extends from Brawley, California to El Centro, California in the Imperial Valley. The data recording time was 4 minutes 36 seconds. The line initiates in an urban region, passes over a well-defined agricultural region, extends through broken terrain near the center of the line, continues over another region of well-defined agricultural sites, and concludes in an urban region.


The aircraft drift angle at the beginning of the run was in excess of +5°. This excessive drift angle existed over the urban area. The scatterometer results were considered of little value over this section. Excessive drift angles were again experienced near the center of the line over the region of poorly defined agriculture sites. The drift angle was again satisfactory after this region and was less than +2° for the remainder of the run. The agricultural section of the latter half of the run was recorded under good aircraft conditions; however, a road intersected the flight line in this region and degraded the scatterometer results. Consequently, the analysis was restricted to the flight time interval 18:15:40 to 18:17:05. The time interval contained agricultural sites exclusively. The field sizes were sufficiently large that approximately 10 "cells" were available for averaging within the field.

The scatterometer data time histories for the analyzed segment showed excellent correlation with the ground photos. Since roads crossed the flight line at a rate of approximately 1 road per 10 seconds, the alignment of the time history was readily accomplished. The alignment is shown in Figures 42A and 42B.

Within the segment were approximately 15 well-defined fields. Four of these fields, denoted field type I, contain the same crop type at about the same stage of growth. The crop type was believed to be alfalfa. Two fields, denoted field type II, appear to be recently planted and were both at the same state. Two recently plowed fields (plow direction approximately 20° to the flight line) adjacent to one another were labeled field type III. Two other fields, also in a state of recent plowing, were denoted field type IV. These two fields differ from the category III type.

The classifications were made by visual inspection of the black and white aerial photography accompanying the mission. The scatterometer data time history information θ_{Λ} (approximately 25°) gives a clear indication of the

-181-

category I field. A return from these fields is approximately 5 db higher than any other fields in the 15-field segment. The category II fields are distinct from the category III or IV fields. Return from the category II fields varies from 3-5 db lower than the latter categories. The category III and IV fields are not distinguishable from each other on either the θ_1 or θ_4 time histories.

Figure 42A and 42B show the field type categorization from the time history graphs based on θ_1 (5°) and θ_4 (20°) returns. The subsequent transformation of these data to scattering coefficient plots does not support the expected unique "signature" classification. However, these data are from the initial data processing and are of questionable validity. Only a short segment of line 5b was included in the later reprocessing of the Mission 73 data.

Figure 43 is a comparison of the data from the first and second NASA data processing operations. The plots are from field B, line 5b (Figure 43A). The new data appear to be free of many of the characteristics which caused the original data to be questionable.

FIGURE 43 SCATTEROMETER DATA, MISSION 73, SITE 130, LINE 5b.

3. CONCLUSIONS AND RECOMMENDATIONS

3.1 Sensor Capability in Land Use Identification and Urban Problems Analysis

This part of the study demonstrated, with few surprises, that the capability of sensors to identify the elements of information needed for land use identification and urban problems analysis is, from best to poorest: 1) color-infrared; 2) color; 3) black-and-white; 4) laser; 5) television; 6) thermal infrared; 7) side-looking radar; and 8) ultraviolet (scanner).

The high ratings assigned to the laser and television systems are attributable to the scales at which they were studied - 1:2,000 and 1:1,000 respectively. These scales were used because they approximate the optimal scales for systems used. If used at the scales considered for the photographic sensors - 1:10,000 - their ratings would fall to approximately that of the ultraviolet. However, even at the larger scales by which they were rated, these two sensors would be of minimal value in any but the most detailed land use studies because of their small areal coverage. (It should be remembered that the television system here described is the Sony DVC 2400 camera, a small hand-held model used by East Tennessee State University. The laser, although not a sensor used in the NASA Aircraft Program, was evaluated on the basis of its possible potential utilization.)

Therefore, when these two are eliminated, along with the ultraviolet scanner, which can identify only the grossest land usages, the sensors having a practical capability for land use analysis are, in order of capability: 1) color infrared; 2) color; 3) black-and-white; 4) thermal infrared; and 5) side-looking radar. The first three can be used for both local and regional studies; the last two for regional studies only. By consulting the sensor capability matrix, a user can determine, for each sensor, at the scales given, the level of detail at which he can conduct a land use study.

Since the ultimate goal of the Earth Resources Program is to study the earth from an orbital vantage point, it is recommended that simulations be made of orbital scales and resolution. This can easily be done using the Aircraft Program's high altitude RB-57 and a camera or cameras having very short focal lengths. Scales of about 1:250,000 could be acquired in this way, and above fifty thousand feet, more than 90% of the affects of the atmosphere would be felt. Detailed analyses of such photography for the purpose of determining its utility in identifying the elements of information needed for land use and urban studies would be invaluable. Not only would analyses of this kind provide a much clearer idea of the capabilities and limitations to be expected from future ERTS imagery, but they would serve as a vehicle for establishing a base of experience in interpreting from small-scale records.

Only the photographic sensors are referred to here. It is felt that the other two sensors having application - thermal IR and SLR - have little to offer these studies from orbital altitudes in their present state of development.

3.2 Surface Energy Budget and Soil Mositure

In this case the only valid conclusions to be drawn relate not to the results of the study, but rather to the constraints under which it was performed, since the results rest on two bases of dubious validity: 1) that of having to measure photographic density by visual comparison with a calibrated gray scale step wedge; and 2) that of having inadequate positional documentation of the soil testing stations (see Section 2.4.2.2). These results, therefore, indicating very low correlations among temperature, moisture, and photographic density, can be regarded, at best, as suggestive rather than conclusive.

The most immediately apparent conclusion, then, to emerge from this portion of the study is that it is absolutely necessary that film transparencies be available for those kinds of analyses involving densitometric measurements. Ideally the original negative should be supplied for such work, but, where this is inadvisable or inadmissible, good quality transparencies with pertinent sensitometry data would be sufficient.

A second conclusion, of equal importance with the first, is that, in addition to fairly accurate planimetric locations of the sampling stations, it is necessary to have positional data in relation to micro-topography; i.e., the locations of the station in respect to the top and bottom of furrows or gulleys must be known.

The importance of research in surface energy and soil moisture detection, coupled with the inconclusive results of the present study, are the bases for recommending continuing work in this area. The sensors to be used would be thermal IR and color IR. (Although the passive microwave imager will almost certainly prove a valuable sensor for studies of this kind, there is no basis on the findings of this report to recommend it.)

The initial image acquisition flights should be conducted over areas overlain by a near-homogeneous soil mantle and having a sparse vegetation cover, such as an agricultural area before planting or after harvest. As experience is obtained, areas of increasing complexity could be attempted.

The location of the ground sampling stations should be surveyed, the accuracy of the survey varying directly as the inhomogeneity or complexity of the area. The object of accuracy is to know in what soil type a sample lies; i. e., where the point sample lies in relation to the soil demarcation line. For example, if there is a plus-or-minus error of five feet in location, all samples within five feet of a soil boundary will have to be discarded. The less the error in location, the fewer the useless samples. Also necessary is a description of the sample's position relative to the micro-topography of furrows, hummocks or other small features affecting moisture content.

Finally, it is essential to the analysis that an early-generation transparency, with detailed sensitometric data, be available.

3.3 Feasibility From Spacecraft

Under certain assumed conditions, the resolutions obtainable from the RC-8 at 150 nautical miles were computed to be 289 feet, 253 feet, and 50.6 feet. These figures result from the use of a lens having a nominal resolution of 50 lines per mm, the film response of film number 5424, a Rayleigh atmosphere, and one-foot and three-foot focal lengths, with and without image motion compensation. A scheme was provided for computing a resolution whereby values other than the ones assumed may be substituted.

The effect of color upon resolution was studied, and it was found that the high contrast (and consequently greater resolution) recorded by the cyanforming (IR) layer of 8443 film is due to the fact that the upscattered luminance is predominantly blue.

The recommendations to provide the actual measurement of sensor resolution are as follows:

- 1) Determining the MTF of the sensor lens for various positions on and off the axis.
- Conducting an investigation into the MTF of each dye layer of 8443.
- 3) Computerize the method described in Section 2.5 to allow rapid substitution of parameters.
- 4) Evaluate the effect of real targets on resolution by taking into account spectral contrast.

3.4 Quantitative Analysis of Film Quality

No conclusive results could be generated from the data and imagery provided. The MTFs for various lens positions as determined by edge gradient analysis are reasonable for a third generation transparency. The densities of ground targets and reflectance values, as given in Section 2.6, show some correlation.

It is recommended that in the future, sensitometric data (D log E curves or a gray step wedge exposed along with the film) for both original and duplicate imagery be provided.

3.5 Cost Effectiveness

The cost effectiveness format developed in the course of this study has been used, to date, only as a sensor effectiveness format. Employed in this mode, the completed format provides an excellent picture of the investigator's program, its components, and its requirements. But primarily it serves to accurately identify the capability that the investigator believes a sensor has, at a particular scale, for a particular study. "Believes" is a critical word here, because the three-digit

number by which a sensor's capability is expressed in this format is the summation of the products of one-digit numbers representing only the investigator's estimate of capability. It follows, therefore, that the validity of the sensor effectiveness number is a function of the investigator's experience with that sensor. If his experience is limited to one or two examples of very good or very poor quality, the credence that his estimate commands will suffer accordingly. Conversely, if his experience with a sensor is sufficiently broad, the credibility of his estimate becomes, then, the best measure of sensor utility available.

In order to convert the sensor effectiveness data into cost effectiveness, it is necessary that costs of two types of data acquisition be known: 1) the cost of ground surveys yielding levels of detail at levels of accuracy similar to those of the sensor surveys with which they will be compared, which information could probably best be supplied by professionals in the field; and 2) the costs of data acquisition by means of the sensors or sensor sets, to include such items as the pro-rated costs of the sensors themselves and the encumbrances incurred by the aircraft, the crew, the photographic or electronic processing of the data, and any other costs incidental to acquisition. Although these figures are more difficult to obtain, they could probably be provided by NASA should NASA feel it would be cost/beneficial to perform a cost/benefit study.

As a result of the work with the cost effectiveness formats designed during this study, it is suggested that all Investigators complete the resulting forms and that they then be used for planning and evaluation purposes. It is also suggested that they be periodically updated so as to keep them current with the state-of-the-art developments pertaining to the Aircraft, Apollo, and ERTS Programs.

3.6 Scatterometer Data

The Mission 73 radar scatterometer experiment produced strong indications that backscatter from agricultural sections directly relates to the illuminated crop type or field condition, and that several types may be uniquely identified. However, the analysis was sufficiently hampered by poor data quality and/or by unsatisfactory flight parameters that complete confirmation of these indications was not possible. In general, the degree of crop type differentiation capability of the radar scatterometer was not obtained from these data; however, evidence was found that supported the contention that such capability does exist.

The analysis established factors relative to proposed future use of radar scatterometry from earth orbit altitudes. The higher altitude flights conducted during Mission 73 showed that the consequential increase in radar resolution size degraded the use of these data for crop type identification. In addition the conglomerate terrain segments averaged at these altitudes obstructed possible conclusions about soil type or moisture content. However, the 2.25 cm wavelength system employed was not expected

to produce results regarding these terrain parameters. The separation of urban and rural segments was clearly accomplished even at high altitudes; however, classification of urban composition was not found to be feasible.

The study should not be interpreted as conclusive regarding the applicability of radar scatterometry to the subject disciplines. The single-frequency, single-polarization sensor employed, the questionable and incomplete data, and other factors restrict any attempt at generalization based on these findings. The added NASA capability for multi-frequency, multi-polarization measurements and the improved understanding of the data processing procedure, gained in part through this analysis program, should soon enable more positive determination of the utility of radar scatterometry in rural and urban studies.