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INTRODUCTION

It is frequently desirable to detect small changes or shifts of

frequency in circadian biological rhythms, especially where there has been

some alteration in extrinsic factors which might influence such rhythms.

One of the more useful methods used to analyze biological data for the

detection and quantification of circadian rhythms is some form of spectrum

analysis (Frazier, Rummel, and Lipscomb, 1968). In standard forms of

spectrum analysis it is possible to resolve or discriminate between two

sinusoidal frequencies separated by Af where

Af-f ' [1]

and T is the length of time of the time series record being analyzed

(Bendat and Piersol, 1966). Among the many problems in biological data

acquisition, one of them is that of obtaining records of long duration.

This implies that for most circadian rhythm work Af, the resolution of the

analysis program, will be quite large due to short time series records.

This report is a preliminary evaluation of a spectrum analysis model

which attempts to achieve finer resolution than Af = 1/T by the use of

multiple least squares prediction models.



PURPOSE

The specific purposes of this study were to perform empirical tests

of a particular least squares multiple prediction program (Rummel, 1966),

as well as to relate this particular program to general least squares multiple

prediction theory. Empirical evaluation and test of the program involved

(1) conversion of the program to run on an IBM 360/44; and replication of

test results obtained by NASA, MSC on a Univac 1108 and (2) generation and

analysis of Monte Carlo simulated data with the objective of comparison

against results theoretically obtainable from such spectrum analysis routines

as the FFT (Cooley and Tukey, 1965).

PROCEDURES

General Spectrum Model

The general model for a time series as expressed in the frequency

domain is

J
f(t) = K + E [a.sin(uj.t) + b.cos(u.t)] , , [2]

j=l J J J J -

(Bendat and Piersol 1966), where j is the angular frequency index, 0<j<J, j

is not necessarily an integer and k is the D.C. component or the mean of the

data. The usual approach to the spectrum analysis of f(t) is analogous to

discrete Fourier analysis where the coefficients in \2\ are estimated by



T
a. = E [f(t)sin(u>.t)] [3]
J t=0 J

^ T
b. = Z [f(t)cos(u.t)] , [4]
J t=0 J

where the carat indicates an estimate. It may be shown that equations [3] and

[4] are univariate least squares estimates derived from standard regression

theory. These estimates of "real" and "imaginary" amplitude (a. and bV

respectively) are usually combined to yield

the estimated power in frequency band j or

the estimated amplitude in frequency band j (Bendat and Piersol 1966).
«*• >s.

It may be shown that two estimates, P. and P are orthogonal

(uncorrelated) if their corresponding frequencies u^ and w/^.-t \, or of

course f. and fs*+i\, are spaced such that Af = 1/T. If, in the time

series f(t) there exist two signals separated in frequency by much less than
A A

Af. then power estimates at those two frequencies P. and Pf4j.i\ can be

expressed as a continuous function called a frequency domain or spectrum

"window" the main lobe of which is shown in Figure 1. The window function

shows that for any estimate, P., if £(t) contains a signal the frequency of

which can take on values of f.± i/T then the value of P. is a function of the
A A ,

true signal frequency. Similarly if two estimates, Pj and p f ^ + i \ were made
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at f. and ff. -v as shown in Figure 1, and there were two frequencies present

in £(t) at f , and f/-+:n»
 then the two estimates would be nearly equal because

data from the signal at f. are included in P/^+i) and vice versa.

Multiple Variable Prediction

Equations [3] and [Y] are univariate prediction equations. In usual

multiple regression, least squares prediction schemes it is possible to use

several predictors simultaneously to estimate the dependent variable. In

these cases the several predictors may or may not be correlated. However,

when the predictors are highly intercorreiated, estimates of each predictor's

contribution are very inaccurate (Draper and Smith, 1966). When k non-
i

independent predictors are used to estimate a dependent variable, the

contribution of each is called the "partial regression weight". This

regression coefficient is a least squares estimate of the contribution of

a given predictor k with the effects of all the other k.-l predictors

"accounted for" or "statistically held constant" (Guilford, 1950).

Instead of using univariate predictors such as [3]' and [4] to estimate

the contribution of a sinusoid of frequency j to f(t), a multiple prediction

scheme might be used. In a multiple prediction scheme for estimation of

a. one would not only use a sine wave of frequency j but would include sine

waves of several different frequencies in a simultaneous prediction

equation. For example if a two predictor scheme were used, then a normalized

form of a. would be estimated using

~ RdkRjk
a. =

1 - R1 R jk
ra



where the R quantities are Pearson product moment correlation coefficients

between the variables indicated in the subscripts aiid the three variables

involved are (1) the dependent variable, f(t) which is identified by the

subscript "d"; (2) the sine wave of frequency j, the one whose contribution

is estimated as a. and (3) the sine wave of frequency k, the other simultaneous

predictor, the effect of which is to be "controlled" or "accounted" for.

Examination of [7J reveals that not only is the relation of a sine wave of

frequency j to f(t) considered, R<ji» but the relations of the other predictor

wave to f(t) and the interpredictor relations are also considered. Thus if

R ± 0, as it will not be if Af<l/T, then this "overlap" will be considered
JK

in estimating a. . This multiple prediction scheme will hopefully have a

higher resolution than equations ]_3~j and [A].- A similar procedure would be

used for estimating b., the cosine components. Whdn more than two predictors

are used in a simultaneous prediction scheme, matrix methods for estimating

the contributions of each predictor must be used as shown in \8] and [9]

a -{ [sin(ut)] * [sin(ut)] }* [sin(u)t)] *f <t) IX]

b -{fcosCuOptosCuOj^QiosCwe^lfVt) [9]

where a and b are vectors of estimates called the real and imaginary

amplitude spectra respectively, sin(u)t) is a T by J matrix of sines and

cos (cot) is a T x J matrix of cosines. When more than two predictor frequencies

are used, the contribution of each frequency is made with the contribution

of all other included frequencies accounted for.



A Realization of the Multiple Model

The particular program being tested in this study was designed along the

lines of a multiple predictor least squares theme as outlined above. The

procedure of the program was as follows: (1) compute a spectrum using one

frequency at a time as in equations \3\ and [V|; (2) examine this spectrum

to locate peaks which exceeded a statistical criterion of significance;

(3) compute a new spectrum where each frequency's contribution, A., was

evaluated with the contribution of all other significant peaks held constant

by the use of multiple least squares prediction as above; (4) return to

step (2) and continue to loop through the procedure until no new peaks are

found. In addition to the above procedure, each time step (3) is executed,

the frequency value for the significant peaks is moved up and down around

the original value and the spectrum is recomputed to guard against the risk

of "leakage" from adjacent bands having shifted the original peaks.

Monte Carlo Runs

In order to evaluate the performance of the multiple predictor spectrum

analysis program it is necessary to analyze data which approximate that on

which the program will be used. Biological signals which are subject to

circadian variation can be modeled using a "source of variance" model such as

V(Total) = V (circadian) + V (unaccounted) [_10]

where V(Total) is the total variance (or power) in the wave, V(circadian) is

that portion or component of the wave which is due or correlated with diurnal



cycling and V(unaccounted) is a11 other variation in the wave. Under the

heading of V(UnaccOunted)
 are such sources of variation as short term

fluctuations due to stress, homeostatic fluctuation, and in general, any

source of variation not related to diurnal cycles. In this discussion

(̂unaccounted) will ^e referred to as either noise or error variance. The

general effect of noise in the biological signal is to "mask" the circadian

component both with respect to amplitude and frequency. This results in

unreliable estimates or variance in the power spectrum since, as with most

transformations, the Fourier transformation has as much variance in the

resultant as in the original data.

In this paper data were constructed using [lOj as a model. The

circadian component, V(circadian)» was simulated by generating a sine wave

of a particular frequency. The noise, V(Unaccounted)* was simulated by a

white Gaussian noise generated by sampling from a random number table

(Rand Corp., 1955) which was punched onto cards and loaded into a disk file.

It is fully realized that biological noise might not have a white spectrum

or have a Gaussian distribution. It is true, however, that the assumption
/

of white, Gaussian noise is usually made and it was felt that the program

should be evaluated on "fair" theoretical grounds first. Closer approximations

to real data can be constructed and tested after the theoretical performance

is better understood.

When random noise is involved in data to be analyzed, it is the long-

range, average results which are of interest as well as the variation around

these averages. The variation around average results is sometimes expressed

as variance, error, confidence intervals, failure rates, etc. In order to

8



assess the program's average performance and variance about these averages,

a series of records were generated according to [lO"|. For each of 100

records the noise was obtained by sampling from a unique section of random

number table. Each record had a length of 100 observations; the sinusoids

which were used as the signals (sine waves) were at period lengths of 23,

24, 26, 27, and 30 samples per cycle. Several SNR.(signal to noise ratio)

levels were used. Performance on single as well as multiple signal waves

was expressed.

Criteria of Performance

These aspects of the performance of the spectrum analysis program were

evaluated as follows: (1) finding the correct frequency, (2) finding the

correct amplitudes of the components and (3) program failure to £ind too

few or too many peaks. The average performance as well as the variability

about the averages was described for (1) and (2) above and a failure

probability was computed for (3).

On any given wave the program generated a spectrum which showed

significant amplitude peak(s). Due to the noise component there was

frequently some error in the frequency of a peak. This error (variability)

was described in terms of the relative number of times that the program

made various degrees of error. This is the probability of error for a

particular degree of error and a graph of error probability vs degrees of

error constitutes the probability distribution of frequency errors. Optimally

one would want this distribution to be peaked around a mean of zero (high

probability of zero error) and to have a narrow width (lower probability



of error the greater the degree of error). This probability distribution

of frequency errors is analogous to a frequency domain window except that

it refers to errors in narrow peaks rather than amplitudes.

On any given analysis, the amplitude of any peak hopefully approximates

the correct amplitude of the signal but will frequently be greater or less

due to noise. In order to evaluate the variability around the correct

amplitude the probability of an amplitude estimate falling into a certain

amplitude range or category can be computed. Here a distribution of

probabilities can be graphed and it would be desirable for this distribution

to be peaked around the correct amplitudes (high probability of finding the

correct amplitude) and have a narrow width (lower probabilities of finding

amplitudes, the farther the amplitude deviates from the correct amplitude).

This is essentially the sampling distribution of amplitudes from which

confidence limits would be computed.

RESULTS

Single Frequency Performance

Having verified the fact that the spectrum analysis program was in fact

yielding the same results on both the Univac 1108 at NASA/MSC and the IBM

360/44 at Trinity University, the next step of the project was undertaken.

This consisted of characterizing the output from the spectrum analysis program

for various levels of Gaussian noise, using a single sinusoid as the signal.

Statistical criteria of performance were devised and empirically related to SNR.

Three levels of SNR were used as follows: 1/0.5, 1/1 and 1/2. Each time

10



series was 100 points long, having a signal composed of a sine wave, Period=24,

and an independently sampled noise. These 100 time series were analyzed using

the spectrum analysis subroutine. The spectra resulting from each analysis

were stored on disk and an index card for each record was punched so that

future access was facilitated.

Two spectrum outputs were stored on disk. The first consisted of the

variable called SPER in the program, the t-ratios computed by subroutine

PERIOD. The other spectrum was constructed as follows. SPER was tested at

each spectral estimate for equal or excess the value of CHEK, the "significance"

or reject level. When a value of SPER equalled or exceeded CHEK, the

corresponding value of the variable called AMP, the amplitude was stored

into the output array. The second output array then consisted of all zeroes

except for those spectral estimates whose t-ratio exceeded or equalled CHEK.

The first file will be referred to as the t-ratios, the second as the

significant amplitudes. These spectra were stored on disk for each of the

100 time series and for each of the three SNRs, thus making a total of 600

spectra. The value of CHEK was 1.96.

The general result of each analysis was as shown in Figure 2.

The average baseline level was a function of SNR; the curvature of the

baseline was a function of the particular noise sample. Over 100 spectra,

the average baseline was virtually flat for all SNRs. The single peak in

the spectrum is the estimate of the line element in the time series (the

sine wave). The amplitude of this peak varies across spectra and the extent

of this variation is a function of SNR. Similarly the single peak occurs at

11



FIGURE 2

1

Periods

TYPICAL SPECTRAL DISTRIBUTION OF T-RATIOS COMPUTED
THROUGH SUBROUTINE PERIOD IN THE ANALYSIS OF A SINUSOIDAL
SIGNAL WITH A 24,0 PERIOD SUPERIMPOSED ON A GAUSSIAN NOISE

12



various periods across spectra, not always at Period-24. The extent of this

variation is a function of SNR as discussed previously.

Figure 3 shows the plots of the period probabilities for three levels

of SNR. Inspection of the figure shows that as proportion of noise increases,

so does the variability of the results. Essentially, the more noise, the

more widely the period estimates are scattered. The heavy black line shows

the shape of the theoretical window for univariate spectrum analysis. It

is seen that seven for SNR of 1/2, the most widely deviant result still falls

well within the resolution-limits of the univariate spectrum window.

Figure 4 shows probability data for the amplitudes of the peak in the

spectrum. Again the stability of the estimate decreases as SNR increases.

Here, however, the mean also increases. The latter finding is consistent with

the notion that the amplitude at the peak is the sum of the sinusoid's amplitude

and the amplitude of the noise at that period. There is also noticeable

skewness in the amplitude probability distributions.

While the probability distributions of the estimates varied in the

expected direction, it is not in practical cases known what the SNR figure's

value ,is. An attempt was therefore made to predict the standard deviation of

the estimates from the standard error as computed by the spectrum analysis

program. Using mean SE values and standard deviations, the curves in Figure 5

were plotted. Lower SE values and lower standard deviation values correspond

to lower noise cases. While the relationships are in the expected directions,

it is not clear why the "curvature" exists, especially for the standard

deviation of the amplitude estimates. The skewness of the probability

distributions of amplitudes makes the straight computation of standard

13



FIGURE 3

.6

t
JQ
O

.5

.4

2 3
0. *

9 S/N-I/.5

S/N-l/l
S/N-l/2

Theoretical
Window

10 -. 10 10 in
CM

in o>
in in
ca CJ

ro N
to <o
evj M

Period —>
PERIOD PROBABILITIES FOR THREE LEVELS OF SNR



FIGURE

.3

.2

O
JQ
O

.1

••• S/IVM/.5
— - S/N-I/I
— S/N=l/2

<t & CD
«n to N O — ;

CD CO O CM
CM K) If) tf>

(0
00

00

CM CM

10
•

CM

Amplitude

PROBABILITY DISTRIBUTION OF PEAK AMPLITUDES AT THREE SNRs

15



1.2

t 1.0

•2 .8

c
o

0)
•p

o
•o
o

.6

.4

.2

FIGURE 5

.3

t
<n
Q>

.2 -
Q.
E

o

.. I
o
•o
c
o

.2 .3 .4

SE

RELATIONSHIPS BETWEEN STANDARD DEVIATION ESTIMATES OF PERIOD
AND AMPLITUDE AND THE PROGRAM S STANDARD ERROR ESTIMATES

16



deviations somewhat inappropriate. Transformations on the amplitude data

could be investigated to clarify the relationship.

The probability of program failure was calculated for 1/1 signal to

noise ratios and for 1/0.5 signal to noise ratios. Table 1 shows the failure

probability for various period frequency separations with the 1/1 signal

to noise ratio. The left column represents the period separations between

the two simulated sinusoids. The middle column represents the frequency

separation equivalents of the period separations. The probability of failure

at the 1/1 signal to noise ratio is shown in the right column.
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TABLE 1. Probabilities of failure using a 1/1 signal to noise ratio.

* This is the theoretically resolvable separation.

P (Failure) = Probability of failure.

The theoretically maximal resolution for the data analyzed would

correspond to a period separation of 7 units. A separation of 3 period units

is twice the expected maximal resolution. It was observed that 11 errors but

of 100 estimates were made at the maximal predicted resolution. At twice the

expected resolution, the failure rate approached 50 per cent, a prohibitive

level.
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Most of the errors were of the nature that the output indicated only

one frequency peak, usually lying at a position somewhere between the

two true frequencies.

At a signal to noise level of 1/0.5, the failure probability was

only .05, or five times per hundred at a period separation of 4 units.

Probability of Peak Detection. Probability distributions were computed

to study the distribution of peaks across the various periods comprising the

spectrum. Figure 6 shows plots of the obtained results, the two plots

shown in this figure refer to period separations of 4 units (not quite twice

resolution) with a SNR of 1/0.5 and 1/1.

Examination of Figure 6 shows that there is clearly apparent separation

of peaks for the two sinusoid frequencies where the SNR was set at 1/0.5.

The degree of separation was clearly less pronounced when signal to noise

ratio was changed to 1/1. Probability distributions for separations of

twice the expected resolution (3 units) showed even less separated peaks.

Even at signal to noise ratios of 1/0.5, the separation between peaks is

somewhat "smeared" by error variance across the frequency bands. At ratios

of 1/1, the probability of error due to large variability becomes rather

large. It would therefore appear that the program has limited utility for

signal to noise ratios of poorer than 1/0.5, and even at this value if

separation is poor.

The probability distributions for amplitude are not worthy of discussion

beyond the mention of the fact that they tended to approximate a chi-square

as before. This finding is not unexpected on the basis of distribution

theory and previous results.
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FIGURE 6
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Discussion and Conclusions. The single-frequency window performance of

the analysis program was sufficiently good that the two-frequency performance

was expected to be better than the results revealed. Some factors which

are not related to the single frequency window shape are apparently responsible

for the "confusion" of adjacent bands. Three possible factors may be implicated

as contributors to this problem: (1) problems with the least squares theory

as applied to frequency domain data; (2) the statistical method of selecting

significant peaks: (3) the algorithm used in sliding periods for best fit;

and (4) programming problems which might as yet be undetected. Another

possible problem might relate to the fact that when interpredictor

correlation is very high, estimation of the contribution of any one predictor

becomes less accurate (Draper and Smith, 1966). Inasmuch as one or more of these

factors may be involved, questions can be raised as to the generalizability

of the analyses reported here with respect to the idea of testing multiple

regression analysis as a spectral analysis tool.

If a least squares multiple predictor program were to be created, using

all sinusoids in a spectrum as predictors, certain problems such as "signifi-

cance" and use of peak values as criteria could be eliminated. The procedure

of "sliding" periods for optimum fit could also become unnecessary, since all

frequencies would be estimated simultaneously. If a "canned" program for

multiple regression analysis were to be adapted for testing of the theory,

detection of programming errors would be facilitated and all of the standard

statistics of regression analysis would be made available. Moreover,

techniques such as stepwise regression could be employed for the automatic

elimination of predictors (periods).
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The procedure of using equally spaced periods to construct a spectrum

rather, than equally spaced frequencies presents a problem of possible

correlation between adjacent frequency/period band estimates. The amount

of correlation between adjacent period bands would-not be the same at the

lower end of the spectrum as at the upper end, since theoretical resolution

using estimators equally spaced in frequency is 1/T, where T is the length

of the series obtained from measurement. Thus, it would be somewhat easier

to interpret broad peaks (high values in more than one adjacent band), when

spacing was expressed in constant frequency increments.

Suggestions for Further Research. Considering the various areas of

assessment of the least squares analysis over the course of this project,

it should be pointed out that the sensitivity of the technique in describing

single frequencies clearly exceeded expectations based on time series

mathematical theorems. It should also be pointed out that the limitations

discovered in its two-frequency discrimination performance should be viewed

in the context of its performance with respect to that of other alternative

approaches. It is therefore recommended that another series of studies be

performed to compare the results obtainable with this least squares analysis

program to results obtainable on the same data from alternatives such as

general least square multiple regression, standard power spectra computed by

the FFT and Halberg's least squares analysis program. Since the assumptions

on which much of time series mathematics is based assume "flat" spectral

shape, and ultradian spectral distributions are usually not very flat,

empirical studies such as those described must be undertaken. Comparisons

across the alternative procedures for specifying period, amplitude, and phase

21
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information should be made to construct criteria for informed selection among

these available alternatives.

It is also suggested that estimates be made of the relative signal to

noise ratios to be expected of physiological and behavioral data with respect

to the circadian rhythm and other rhythms of interest in the ultradian period

range. Since the signal to noise ratio is considered a critical parameter

with respect to two-frequency discrimination, the possibility is raised that

for some response measures, (with better signal to noise ratios) multiple

least squares estimates would be perfectly adequate for unimodal and bimodal

spectral distributions.

This same line of research is now seen as basic to the construction of

empirical mathematical models of physiological and behavioral functioning,

an area in which continuing efforts could yield new knowledge of consider-

able practical and theoretical significance.
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