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SEQUENTIAL CONTROL CHART METHODOLOGY4

•*
James M. Lucas

A modification of the "V" mask sequential control chart is proposed.

In this modified scheme, a parabolic section is included in the -mask to

provide better performance when the process undergoes a large change in

the mean from goal conditions. It is shown that the modified "V" mask

can be implemented either in conventional graphic form, or in an

algorithmic form suitable for a digital computer. Average run lengths

are given for a typical range of circumstances. It also is shown

that the conventional Shewhart chart is better than a sequential chart

for the specific purpose of promptly detecting very large shifts of the

mean from goal conditions.

Early Control Chart Methods

The earliest control charts were due to Shewhart (1931). He

provided a method for controlling both the mean and the variability

of a process. His basic idea is very simple. For the process mean

a goal value is chosen. Limits at -fK units around this goal value
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are specified. These limits are chosen wide enough so that when the

process is in control, it is unlikely that an observation occurs outside

of these limits. These are called the control limits for the process.

For controlling the mean, Shewhart recommended using control limits at

-1-3 standard deviations of the sample mean from the goal value. These

"three sigma" limits were found to work well for most industrial

processes. When a process whose mean follows a normal distribution

is in control, only about one reading in kdO will be outside of the

3 sigma (3<?) limits. Another way of saying this is to state that

the Average Run Length (ARL) between false out-of-control signals when

the process is in control is about 0̂0. When an observation is outside

these limits, the process is presumed to have gone out of control.

This method works well for detecting large shifts, but smaller

shifts often go undetected. For example, there would be, on the

average, about Ml samples taken before a persistent shift of 1 standard

deviation (la) away from the goal would be detected.

For Shewhart charts, the limits are not always set at +3<?. For

example., when it is very inexpensive to check whether the process is

out of control, it is often desirable to set limits tighter than +3®-

Whenever a reading is out of these tighter control limits, the process

is examined to see whether or not the process is really out of control.

This scheme is recommended if frequent checking of an in-control process

is much less expensive than the costs incurred by missing an out-of-

control situation.



The main advantages of Shewhart control charts are their simplicity

and their speed in detecting large deviations from goal. In Appendix A,

we prove that when the mean is distributed normally Shewhart charts will

detect large shifts in the mean faster than any other type of control

chart. The primary disadvantage of Shewhart charts is that they do not

detect moderate changes in the process quickly. .The prime reason for

this is that they use only the information from the last data point.

To modify the Shewhart charts, additional criteria are often added to

signal that the process is out of .control. Examples of such modified

criteria are:

1. 2 points in succession outside of 2(7 limits;

2. K of the last N points outside 2cr limits;

3. ^ or 5 points in succession outside of la limit;

k. A run of 8 or more points. This run might be a consistent

upward trend or a downward trend, or it might simply be a

run above ,or below the goal value.

With these modifications, the Shewhart chart begins to act

very much like a sequential control chart. By the time these additional

criteria are added to the Shewhart chart, it has lost its advantage of

simplicity. The sequential methods that are discussed in this paper are

easier to use than a Shewhart chart with multiple criteria.



The "V" Mask Sequential Control Procedure

The "V" mask scheme became popular after Barnard's (1959) article,

though Page (195̂ -) suggested essentially the same scheme earlier.

Figure 1 illustrates a "V" mask. The successive sample numbers are

plotted on the abscissa and the cumulative sums of deviations from goal

are plotted on the ordinate. Early proponents of the "V" mask suggested

that it should be drawn on a clear plastic sheet which is placed on a

plot of the cumulative sums (cusums) of deviations from goal. The point

on the "V" mask indicated by the arrow on Figure. 1 is moved with every

successive observation. The arrow is placed at the final cusum value.

If any earlier reading lies outside the arms of the "V'F mask, the

process is taken to be out of control.

In practice, it may be tedious to construct a "V" mask and to

move it with each successive observation. There are, however, computational

methods that are easy to implement which are equivalent to the "V1* mask.

These are discussed in a later section of this paper.

A "V" mask is defined by two parameters; these are indicated by

h and k in Figure 1. Other authors have defined the "V" mask in terms

of the parameters d and 6 where:

d - distance in sample units that the vertex of the "V" mask is

ahead of the current cusum value;

9 - the angle between each of the arms of the "V" mask and the

horizontal.



When one unit on the horizontal axis is equivalent to 2a on the vertical

axis, then:

k = 2a tan 6;

h = 20d tan 6.

This scaling has been recommended for visual plotting. With this

scaling, a 2.Q shift in the mean gives a 4̂-5 trend on the cusum plot.

Goldsmith and Whitfield (1961) used this convention for their graphs

of ARL's. Note that the parameters d and 9 are scale dependent while

h and k can be conveniently defined as a multiple'of the standard

deviation of the measured variable. The h, k notation was used by

Kemp (1961) who proved the computational method which we discuss later

in this paper is equivalent to a "V" mask.

A Modified "V" Mask

The "V" mask sometimes takes too long to detect large changes

in the process. Note that the first observation must be h-fk units

away from the goal value for it to be outside the arms of the "V"

mask.

An anomaly of a Wald sequential likelihood ratio test for comparing

a null hypothesis with a specific alternative hypothesis suggests an

alternative shape for the mask. In the Wald procedure, an observation

could cause the acceptance of an alternative hypothesis that was far

from the null hypothesis value; while if the alternative hypothesis



was closer to the null hypothesis value, it would not be accepted.

For example compare the 'rejection region for a null hypothesis that

the mean is at .zero vs. the alternative hypothesis that the mean is

at A for A = 1 and A = 3, and the observations are normally distributed

with known standard deviation. Let a = p - .01 and O - 1.0.

To reject the hypothesis that a normally distributed mean is

equal to zero, the sequential likelihood ratio test requires a single

observation to be higher than

when A = 1, this formula gives

while for A = 3, this formula gives

Consider an observation at 3-5? when A is 3? the likelihood ratio

indicates that a shift has occurred; while when A = 1, no shift is

detected.

This anomaly occurred because the observation at 3-5 was very

unlikely both under the hypothesis that the mean was at zero and the

alternative hypothesis that the mean was at A = 1. With the alternative

hypothesis that the mean was at A = 33 the observation at 3-5 became
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much more likely for the alternative hypothesis. The hypothesis that

the mean was at 0 was, therefore, rejected. This shows that the •

procedure is not uniform with respect to all alternatives, therefore

we will change the alternative as more samples become available.

It seems reasonable to. seek the smallest A that can be rejected

at a given critical level for various sample numbers. For a given

sample number n and given values of a and (3, the value of the cusum

needed for rejection of the null hypothesis is:

To find the smallest A that can be detected, for a given n, differentiate

this cusum with respect to A, set it equal to zero, and solve, obtaining

the following:

c

where

S = (- 2.a2n In ar/l-p)1/2. = P/n

P = (- 2cT In -—-
.L—p

The preceding indicates that a parabolic-shape mask would work better

than a "V" mask for detecting large changes quickly. While both types

of masks would eventually indicate an out of control situation since

they will have finite run lengths, a parabolic mask would tend to

detect very small changes after a process had been running near its

goal for some time, more often than a "V" mask. Therefore, we wish
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to modify the purely parabolic mask. When the slope of the parabola is

sufficiently small (this will be determined by the smallest deviations

that we wish to detect), we no longer follow the parabolic curve.

Rather we follow the "V" mask that is tangent to the parabolic curve.

Suggestions of different shapes for sequential masks are not

new. Barnard (1959) noted that some of his colleagues suggested using

a purely parabolic mask. However, this point was not pursued further

in his paper.

The Construction of the Modified "V" Mask

The "V" mask is composed of a line with intercept h and slope k,

and a second line which is the reflection of the first line. The formula

for the upper line for a "V" mask is:

Y = h + (n) (k)

where Y is the distance of the upper arm from the centerline

h is the intercept
i

k is the slope

n is the distance from the last sample taken.

The formula for the upper half of a parabolic mask is

P/n

where P is a size constant.

To design a modified "V" mask, the values of P and k that give

the desired operating characteristic (e.g., the desired ARL) are



specified. The plots of ARL's (figures 3-7) are used in this step;

this will be discussed later.

The modified "V" mask consists of a parabolic-shaped mask

having parameter size constant P which is tangent to a "V" mask having
p

slope k. The slope of the parabola is -^j- . Where the parabola and

the "V" mask meet, they must have the same slope. Therefore, they

will meet at

n1 =

Choosing h so the heights will be equal -at this point gives:,

P2
h = ¥k '

Note that if n' is < 1.0, the parabolic section will not actually

change the control limits for the "V" mask at any observed point; the

two schemes are equivalent. This occurs when the slope of the "V"

mask is greater or equal to one-half the P value.

As a typical example, consider a modified "V" mask with P - 3

and k - — . The parabola will meet the "V" mask at n' = 9 and- h will

be U.5. .Figure 2 illustrates this mask.

Specific needs will determine the values of P and k that will

be used. Suppose it is desired to detect a departure of A units from

the goal value and to have a specific Average Run Length when the

process is in control. Calculations of Average Run Lengths for "V"



10

masks and comparisons with likelihood ratio tests indicate that for a

given ARL when the process is in control, the smallest ARL's (the quickest

detections) when the process is running at A units from goal are obtained

when k is approximately A/2. As a rule of thumb, a k value of A/2 is

recommended. For k = A/2, a P value giving the desired ARL when the

process is in control can be chosen using figures 3"7 which plot the

"Average Run Length" as a function of deviation of the mean from goal

conditions for values of P and k that are usually met in practice.

Average Run Lengths for the Modified "V" Mask

The ARL's used in drawing figures 3-7 were first obtained by simulation

on the 1108 Univac computer in DuPont's Engineering Department. An

error in the computer program was discovered and the ARL's were rerun

at Texas A&M University. Pseudo-random numbers were generated using

a multiplicative congruence procedure. These were transformed to

random normal deviates using the Box-Muller procedure (Muller 1959)-

A computer program used these generated random normal deviates, with the

appropriate deviation from goal added, and the formulas for implementing

a modified "V" mask, (Kemp 1961) to find run lengths for repeated trials

using various parameter values and various deviations from goal conditions.

For parameter values having a run length greater than 500 , a "V" mask

having approximately the same run length as the modified "V" mask being ..

simulated was used as a control variable (Fieller and Hartley,
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The "V" mask ARL values were obtained by solving the integral equation

given by Page (195^-). The solution was obtained by replacing the .

integral equation by a system of linear equations using Gaussian

quadrature as the numerical integration scheme. The "V" mask ARL

was double checked by recalculating the ARL following the iterative

method suggested by Kemp (1958).

Table I is a table of the ARL's which were obtained. Note that

occasionally a mask having larger parameter values had smaller ARL's

than a mask having smaller parameter values. This is due to random

error in the simulation method. The coefficient of variation of

the computed ARL's is less than 5$ for the entries in Table I. At

least ko Run Lengths were calculated at each deviation for each set

of parameter values.

Table II illustrates a comparison between a "V" mask, a modified

"V" mask, and a Shewhart control -scheme. - These three schemes were

chosen to have nearly the same run lengths when there is no deviation

from goal. For small deviations, on the order of ICT, the run length

for the cusum schemes is much lower than for the Shewhart scheme.

For large deviations, greater than 3°j 'the Shewhart scheme gives a

somewhat smaller ARL than the "V" mask schemes.

The modified "V" mask has larger ARL's for very small deviations

and smaller ARL's for large deviations. In this way, it performs

better than the "V" mask. Following the rule of thumb that the k

value is approximately half the deviation that we wish to detect, we
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TABLE II

An ARL Comparison for Three Control Schemes

Control Scheme

Shewhart
Modified "V" Mask
"V" Mask

Deviation from Goal

0

320
320
319

Shewhart

Modified
"V" Mask

a/2

-137
5^.2
^2.3

Control

"V" Mask

Q

39.
10.
9.

2CT 30

5
6
23

Limits

5.
3.
3.

at

k =
k =

89
37
50

-12.

.7

.7

1.92
1.73
2.09

96 a

P =
h =

he

1.17
1.29
1.59

3.31
3.5

5a

1.02
1.08
1.21

(The Shewhart and "V" mask numbers are from Goldsmith and Whitfield (1961)),

see that these schemes are designed to detect deviations of about 1.̂ 0".

In the range between la and 2er, both "V" masks have significantly smaller

ARL's than the Shewhart chart; to detect deviations in this range, both

"V" masks are superior to the Shewhart chart.

Note that a Shewhart chart is a special case of both the "V"

mask and the modified "V" mask. A "V" mask with h = 0 and k - 3a

is equivalent to a modified "V" mask with P = 0 and k = 30. Both

are equivalent to a Shewhart chart with control limits at -t-3a. A

"V" mask or modified "V" mask designed to detect large deviations

quickly is very similar to a Shewhart chart; and <if only very large

deviations are to be detected^ a Shewhart chart is best.



Implementing the "V" Mask or the Modified "V" Mask

When the data from the process comes slowly, a graphical procedure

is adequate. Simply drawing the mask on a clear transparency and placing

it on a cusum plot is not difficult or time-consuming. When many processes

are examined simultaneously or when the data arrives rapidly, graphical

procedures are not adequate. A computational procedure is much more

efficient. The following method has not received much publicity

considering its usefulness.

Using figures 3-7 choose the desired values of P and k (or for

a "V" mask choose values of h and k). The computational method equivalent

to the "V" mask or the "V" mask section of the modified "V" mask takes

three columns to implement. The first column records the individual

readings. The second column calculates:

SH(i)

The third column calculates:

SL(i)

where

x. - -is the individual reading

k - is the slope of the "V" mask

Goal - is the goal value

max[a,,b] - is the maximum of a and b

SH(0) = SL(0) = ° '
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Both the second and third columns cumulate deviations greater than k

units away from the goal value, with the cumulation starting anew

(being reset to zero) whenever it becomes negative.

Whenever either of columns 2 or 3 becomes greater than h, the

process is considered to be put of control. The observations would

then be outside the arms of the "V" mask.

For the parabolic section of the modified "V" mask calculate :

i

(x.. - Goal)

j=i-n-KL

for n = 1, 2, ... up to the maximum integer less than n1. If any

of these values are greater than P/n, an out- of- control situation

is indicated by the parabolic section of the mask.

Table III illustrates the. computational procedure for a "V"

mask. It is helpful to define two more columns , column k and column

5, that record the number of successive readings that the cusum

has been greater than 0. With these, it is possible to obtain an

estimate of the process average. An easily-calculated estimate of

the process average is:

where the (+) is used with STT/.\, the (-) is used with ST / . \ , andH(.i; ii\i)

N is obtained from column h or 5 as appropriate. When both cusums

are 0(N = 0), the goal is used as the estimate of process average.
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TABLE III

The Computational Form of the

Column 1 2 3
Individual

' Reading

"V"

k

x. H L HIGH
i

102 0 0
101 0 0
10^ 1 0

98 o o
96 o i
91 0 7
9 5 0 9
9k o 12

101 o ' 8
93 0 12
93 0 16*

x. = Individual Reading Values

* = Out- of -Control Point

100 = Goal Value

0
0
1
0
0
0
0
0
0
0
0

3 = k = Slope of "V" Mask (allowable

lU = h = Intercept of the "V" Mask

N „„, N . = No. of Readings the Cusum has

Estimated Pro- ,, , rr, „, N x k 4- max[STT/ . , , S_ ,
cess Average _ , H(i) L(

Mask

5

N
LOW

0
0
0
0
1
2
3
Ij.

5
6
7

slack in the

Reading
No.

1
2
3

5̂
6
7
8
9

10
11

process)

been Positive

D ]
= TOO - ?X 3 + 16 0, 5

Control Point
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APPENDIX

When Shewhart Charts are Best

A Shewhart Chart having a given average run length when the

process is running at goal conditions will have its single-observation

control limits closer to the goal value than any other control scheme

having the same average run length. For detecting large shifts in the

mean from goal conditions, the single-observation control limits are

the important ones. This section compares the average run length of

control schemes having different single-observation control limits.

It proves- that for detecting large shifts in the mean of a normal

population the control scheme that has its single-observation control

limit closest to goal has the shortest average.run length. Thus the

Shewhart Chart is optimal for detecting large shifts in the mean.

Theorem: Given two control schemes for controlling the mean

of a normal population with single-observation control limits respectively

at +• Z and -f (Z + 6) away from the goal, there exists a deviation A

such that for all deviations A' > A> the average run length of the

control scheme with single-observation control limits at -f Z is smaller

than the average run length of the control scheme with single-observation

control limits at -f (Z -f 6), [regardless of what other control criteria

may apply to later observations].
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Proof (in two steps)

Step 1: We prove that if the population mean makes a shift of

A > Z, the probability contained in the interval from Z to Z + 6 is

greater than the probability contained in the interval from -°° to Z.

Formally, we prove (after a translation that places the mean at zero,

thereby placing the goal at -A and making Z < 0) that:

Z+6 • t ,2 Z , , , 2.
dt =• ~ " " - - dt = F ( z> •

The left-hand side is greater than

exp (- ) 6 .
V2TT

Mills ratio R(Z) is the ratio of the tail area to the bounding ordinate

(Kendall and Stuart (1963))

• R(Z) = F(z)/-i- exp (- ^-)
/2TT

where

1 1 1.3 / ,xd 1 • 3 • 5 ... (2j - 1)
- - - -

In this series, the remainder is less in absolute value than the last

term taken into account. We need only consider the first term to obtain;
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j — exp (- ip) dt > (— exp (-

V2TT

2
> R ( Z ) (— exp ( - — ) } = F(Z)

•The inequality holds when:

Thus, for all A greater than Z +• -r , -the probability contained in the

interval from Z to Z + 6 is greater than the probability contained in

the interval from -°° to Z. . '

Step 2: We show that the condition of step 1 is sufficient to

prove the theorem.

When previous conditions hold, there is a probability, say Q5

of not detecting a shift with a single observation with the tighter

single-observation limits and a probability > 2Q with the looser single-

observation control limits. If the scheme with looser limits always

detects an out-of-control situation on the second observation, the

best it can do, its ARL is slightly greater than:

1(1-2Q) + 2(2Q) = 1 + 2Q .

While the ARL for the scheme with tighter limits is no greater than:
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l(l-Q) -f 2(1-Q)Q 4 3(1-Q)Q2 + ... + n(l-Q)Qn"1 + ...

= 1 4 Q + Q2 -t- Q3 + . .. -8- Qn + .. .

This is a geometric series. Its sum is l/(l--Q).

1 + 2Q > t-̂ -' when Q < 1/2 .
J--ti

Since Z and Z + 6 are on the same side of the goal value, Q is < 1/2. Q.E.D.

The proof depends on the speed with which the tails approach the

axis. The proof extends immediately to any distribution having a finite

range, i.e. for any "real" distribution. ' •

Note that this proof indicates the optimum sampling pi an for processes

which make only large shifts in the mean when they go out of control. The

optimum plan is to take a single sample as often as possible.
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