NASACONTRACTOR RERORT

NASA CR-1955

WIND TUNNEL SIMULATION OF STORE JETTISON WITH THE AID OF MAGNETIC ARTIFICIAL GRAVITY

by Timothy Stephens and Ronald Adams

Prepared by
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, Mass. 02139
for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • FEBRUARY 1972

*For sale by the National Technical Information Service, Springfield, Virginia 22151

This work was performed at the Aerophysics Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts. The work was sponsored by the NASA-Langley Research Center, Hampton, Virginia, under Contract No. NASl-9812. This contract was monitored by Mr. Robert T. Taylor of the NASA Langley Vehicle Dynamics Section. Overall supervision of this study was provided by Professor Eugene E. Covert of the M.I.T. Aerophysics Laboratory. The authors were assisted in the reported work by Milan Vlajinac and George D: Gilliam, both staff members at the M.I.T. Aerophysics Laboratory. This report covers work performed during the period from April 1970 to March 1971.

Section	Title	Page No.
1.0	INTRODUCTION	1
2.0	SUMMARY OF PRESENT STUDY	2
3.0	SUMMARY OF SCALING LAWS FOR STORE JETTISON WITH ARTIFICIAL GRAVITY	5
4.0	MAGNETIC FORCES AND ARTIFICIAL GRAVITY	6
4.1	FORCE FIELD UNIFORMITY	12
5.0	IRON-CORE MAGNET SYSTEMS	16
6.0	SINGLE-AXIS, CONSTANT GRADIENT AIR CORE COIL SYSTEM	17
7.0	COMBINED VERTICAL AND HORIZONTAL FORCES	22
8.0	FORCE FIELD NON-UNIFORMITIES	24
9.0	STABILITY OF SATURATION MAGNETIZATION	26
10.0	FIELD AND FORCE ANALYSIS OF ARBITRARY AIR-CORE COIL CONFIGURATIONS	27
11.0	PRACTICAL COIL CONFIGURATIONS	28
11.1	ANALYSIS AND OPTIMIZATION OF COIL SYSTEMS	30
11.2	GEOMETRIC PARAMETERS AND CONSTRAINTS	31
11.3	EFFECTS OF NON-ZERO WINDING CROSSSECTIONAL AREA	34
11.4	OPTIMIZATION OF ϕ-PARAMETERS FOR UNIFORM FORCE FIELD	34
11.5	PERFORMANCE PARAMETERS OF MAGNET SYSTEM	36
11.6	COST RELATED PARAMETERS	49

(Concluded)Section
12.0 GENERAL POWER SURPLY REQUIREMENTS 51
12.1 POWER REQUIREMENTS FOR STEADY OPERATION 52
12.2 ENERGY REQUIREMENTS FOR STARTUP OR INTERMITTENT OPERATION 53
12.3 RESPONSE OF MAGNET SYSTEM TO POWER INPUT VARIATIONS 54
13.0 MULTIPLE SIMULTANEOUS STORE JETTISON TESTS 57
AppendicesA MAGNETIC FIEIDS DUE TO AN ARRAY OF STRAIGHTLINE CURRENT ELEMENTS AND CORRESPONDINGFORCES ON A FERROMAGNETIC SPHERE66
B COMPUTER PROGRAM FOR CALCULATING ANDTABULATING MAGNETIC FIELD AND FIELDGRADIENT COMPONENTS DUE TO AN ARRAY OFSTRAIGHT LINE CURRENT ELEMENTS, AND THECORRESPONDING FORCES ON A FERROMAGNETICSPHERE71
C COMPUTER PROGRAM FOR PLOTTING THE MAGNITUDEAND DIRECTION OF THE MAGNETIC FORCE ON AFERROMAGNETIC SPHERE DUE TO AN ARRAY OFSTRAIGHT LINE CURRENT ELEMENTS85
D COMPUTATION OF CURRENT ELEMENT END POINTS 103COMPUTER SIMULATION OF STORE DROP IN AMAGNETIC ARTIFICIAL GRAVITY FACILITY110
REFERENCES 143

Figure	Title	Page No.
la	Prototype Parent Aircraft and Store in EarthFixed Reference Frame	7
1 b	Model Parent Aircraft and Store in WindTunnel Reference Frame	7
2	Distribution of Vertical Field Strength for Uniform Vertical Force Along the Vertical Axis, for an Unsaturated Ferromagnetic Sphere of High Permeability	13
3	Distribution of Vertical Field Strength for Uniform Vertical Force Along the Vertical Axis, for a Saturated Ferromagnetic Sphere	15
4	Arrangement of Circular Coils to Provide a Vertical Gradient of the Vertical Field and an Ambient Vertical Field Along the Vertical Axis	18
5	Arrangement of Coils to Provide Combined Axial and Vertical Forces	23
6	Practical Arrangement for a Working TwoComponent Magnetic Artificial Gravity Facility	29
7	Generalized Dimensions of Practical Air Core Coil Configuration	32
8	Approximation of the Axial Gradient and the Vertical Gradient Coil Pairs for Estimation of the Mutual Inductance Between Each Pair of Coils	43
9	Coil Pair Geometry for Calculation of Mutual Inductance	44
10	Critical Properties of a Typical Superconducting Coil Material	47
11	Region of Maximum Field within Coil Conductor	48

(Concluded)

Figure	Title	Page No.
12	Two Iron Spheres Immersed in a Saturating Ambient Magnetic Field	58
13	Variation of Strength and Direction of Magnetic Force on a Volume Element dv Due to a Saturated Sphere and a Saturating Ambient Field, At a Given Radius.	60
14	Angle Dependent Factor $\mathrm{K}_{\mid \mathrm{dF}}{ }^{(\theta)}$ and Direction $\psi\|a F\|$ of Total Magnetic Force on a Magnetized Volume Element, Due to a Sphere Magnetized Parallel to the Element	61
A-1	Definition of Current Element and Field Point Positions	67
D-1	Generalized Dimensions of Practical Air Core Coil Configuration	107
D-2	Straight-Iine Approximation to Rounded Corner	108
D-3	Illustration of Nomenclature Used in Subdivision of Windings into Multiple Loops	109
E-1	General Flow Chart for Store	118
E-2	Aerodynamic Coefficients in Store Axis	119
E-3	Coordinate Systems and Euler Angles	120

A	Cross-sectional area of coil winding (Eq. 11.10-13)
a, b, c	Principal axes of magnetization of a body
\vec{B}	Magnetic field strength
B	Coil winding buildup (Fig. 7)
$D_{a, b, c}$	Demagnetizing factors of a body (Eqs. 4.7-9)
E	Electrical energy (Eq. 12.8)
$\overrightarrow{\mathrm{F}}_{\mathrm{mag}}$	Magnetic force (Eq. 4.5)
F_{p}	Coil winding packing factor (Eq. 1l.35)
g	Gravitational acceleration
g_{M}	Acceleration due to combined gravitational and magnetic forces acting on store model (Eq. 4.1)
$\mathrm{g}_{\mathrm{mag}}$	Acceleration of store model due to magnetic force (Eqs. 4.2.3)
I	Electrical current
J	Electrical current density (amps/unit area)
$\mathrm{K}_{\mathrm{x}, \mathrm{y}, \mathrm{z}}$	Radii of gyration of store about x, y, z axes (Eq. 3.2)
k_{t}	Conversion factor in magnetic force and moment relations (Eq. 4.19, 23)
$\mathrm{k}_{\mathrm{xx} / \mathrm{zz}}$	Coefficient of inductive coupling between axial gradient and vertical gradient coil systems (Eqs. 12.16.17)
L	Characteristic length of store (Eq. 3.2)
L	Self inductance of coil or coils (Eqs. 11.26-29)
\bar{l}	Length of coil mean turn (Eqs. 11.7-9)
ℓ	Mean length of one side of a square coil Eq. 11.49)
M	Mach number (Eq. 3.1)

LIST OF SYMBOLS

(Continued)

Magnetic moment of a magnetized body (Eq. 4.5)
Mutual inductance between axial gradient and vertical gradient coil system (Eq. 1l.30)

Magnetization (magnetic moment/unit volume) (Eq. 4.6)
Saturation magnetization of ferromagnetic material (Eq. 4.15)

Coil winding mass (Eq. 11.74)
Number of turns of conductor in a coil system
Number of turns of conductor on a single coil
Electrical power (Eq. 12.1)
Magnetic performance parameter (Eqs. 11.18-21)
Dynamic pressure (Eq. 3.3)
Electrical resistance (Eqs. 11.22-25)
Radius of iron sphere in store model (Eq. le.l)
Reynolds number (Eqs. 3.5,6)
One half of clear inside dimension of coil assembly (Fig. 7)

Coil corner radii (Fig. 7)
Radial measure in spherical coordinates (Eqs. 13.1,2)
Coil resistance parameters (Eqs. ll.22-25)
Outside length of a square coil (Eq. 11.41)
Laplace transform variable (Eqs. 12.14-25)
Absolute temperature
Self-inductance parameters (Eqs. 11.26-29)
Magnetic torque on a ferromagnetic body (Eq. 4.13)
Volume of magnetic material (Eq. 4.6)
Volume of coil windings (Eq. 11.72)

LIST OF SYMBOLS
 (Continued)

V	Coil or coil system terminal voltage (Eqs. 11.26-29)
$W_{x x / z z}$	Mutual inductance parameter-axial and vertical gradient coil system (Eq. 11.30)
w	Weight
$\mathrm{X}, \mathrm{y}, \mathrm{z}$	Principal axes of store
X, Y, Z	Tunnel-fixed coordinates (Fig. lb)
$X^{\prime}, Y^{\prime}, Z^{\prime}$	Earth-fixed coordinates (Fig. la)
$\alpha()$	Coil winding buildup ratios (Eqs. ll.1,2)
' B ()	Coil winding buildup ratios (Eqs. ll.3-6)
γ	Geometric parameter used in formula for selfinductance of a square coil (Eq. 1l.41)
δ	Ratio of mean axial spacing of square coils to near length of one side (Eq. 11.49)
η	$\sqrt{1+\alpha^{2}}$ (Eq. 11.49)
θ	Dive angle of parent aircraft (Eqs. 4.2,3)
Θ	Elevation component in spherical coordinates (Eq. 13.1)
μ_{0}	Permeability of free space
ρ_{s}	Mass density of store (Eqs. 3.3,6,7)
ρ	Electrical resistivity (Eq. 1l.35)
τ	Coil or coil system time constant (L/R) (Eqs. 12.14-17)
ϕ	Angle parameters related to coil system geometry (Fig. 7)
ϕ	Azimuthal component in spherical coordinates (Eq. 13.3)
χ	Magnetic susceptibility (Eqs. 4.7-9)
X	$\sqrt{2-\alpha^{2}}$ (Eq. 11.49)
ψ	Direction of magnetic force on a ferromagnetic sphere due to adjacent spheres, relative to direction of applied saturating field (Fig. 13, Eq. 13.13)
$\vec{\nabla}$	Vector gradient operator (Eq. 4.5)

LIST OF SYMBOLS
 (Concluded)

SUBSCRIPTS
a,b,c Principal magnetic axes of ferromagnetic body
mag Magnetic

M Conditions for model
P Conditions for prototype
S Conditions for store
$x, y, z \quad$ Measured in the x, y, z direction
$x \quad$ Quantities related to axial ambient field coil system (e.g. I_{x})

Quantities related to vertical ambient field coil system
xx Quantities related to axial gradient field coil system

Quantities related to vertical gradient field coil system

WIND TUNNEL SIMULATION OF STORE JETTISON WITH THE AID OF MAGNETIC ARTIFICIAL GRAVITY

by Timothy Stephens and Ronald Adams
Massachusetts Institute of Technology Aerophysics Laboratory

1.0 INTRODUCTION

An important component of the problem of simulation of store jettison by means of small scale drop tests in a wind tunnel arises from the appearance of gravity in the scaling relationships. Generally, for accurate reproduction of the full scale trajectory, the ratio of gravity force to aerodynamic force must be the same for the model as for the full scale store (Reference l). When other necessary conditions for simulation are imposed, it is generally found that a greater than normal gravity is required for small scale models.

A basic method of providing the required increment of body force corresponding to the "gravity" needed for such tests has been proposed by Covert (Reference 2). This method involves the use of magnet coils surrounding the wind tunnel test section which interact with ferromagnetic material imbedded in the model of the jettisonable store. In this manner, a magnetic "artificial gravity" field is provided which is approximately uniform throughout the test section. It is feasible to extend this method to provide control of the angulation of the resultant "gravity" field, thereby allowing simulation of diving or climbing attitudes.

Since a "magnetic artificial gravity" facility appears to offer a solution to the difficulties encountered in conventional store jettison test methods, a study was undertaken for the design of such a facility.

SUMMARY OF PRESENT STUDY
Included in this study were the following items:

1. Review of the scaling laws applicable to the wind tunnel simulation of.store jettison, in terms of a controllable artificial gravity field.
2. Definition of the design constraints involved in the integration of the facility with a wind tunnel.
3. Development of a detailed performance analysis procedure. The performance analysis is applicable to aircore magnet systems and provides a detailed distribution of the strength and uniformity of the artificial gravity field.
4. Establishment of a practical magnet configuration and analysis of the magnetic performance of the configuration.
5. Extension of the performance analysis procedure to include the effects of residual nonuniformities in the artificial gravity field on typical store trajectories. This therefore provides an evaluation of the facility in terms of the end use.
6. Exploration of the relative merits of iron-core and air-core magnet configurations.
7. Determination of factors involved in the choice of the mode of operation of the facility. The alternatives considered are:
(A) Continuous operation of a normal (nonsuperconducting) coil system,
(B) intermittent operation of a normal coil system, and
(C) continuous operation of a superconducting coil system.
The following are some of the factors involved:
(a) Since the store-dropping procedure is intermittent, intermittent operation of the magnets may be feasible.
(b) Intermittent operation of the magnets reduces the average power required to operate "normal" magnets. This is beneficial for two reasons:
i) Reduces the coil cooling system requirements, and
ii) reduces the cost of electrical power.
(c) In contrast to intermittent operation, it has been determined that continuous operation of a normal system would typically require approximately 10^{2} to 10^{3} megawatts for a wind tunnel facility in the 3^{\prime} to 4^{\prime} size range. This is typically at least one order of magnitude higher than the power required to run the wind tunnel itself.
(d) Intermittant operation requires relatively sophisticated intermittent power supply systems, which incorporate means of storing and controlling the release of large quantities of electrical energy.
(e) Continuous operation of the magnet system is feasible with the use of superconducting coils. In this case, power costs are relatively small and the power supplies need be of only modest capacity.
(f) Use of superconducting coils involves the use of more elaborate and expensive materials and construction techniques. The engineering of such a system is more complicated, because additional factors are involved:
i) Thermal design - The coils are immersed in a triple-walled container of complex shape designed to contain liquid helium, liquid nitrogen and thermal insulation.
ii) Structural design - The magnet system must support the self-induced magnetic stresses and gravity forces, in a manner which is compatible with the thermal design.
iii) Material selection - The superconducting material that is selected must be capable of stable and reliable superconducting operation at the maximum design magnetic field levels.
(g) A superconducting facility will require a supply of liquid helium and liquid nitrogen. This will either be provided in batches and the "boiloff" discarded, or by a closed cycle using a refrigeration system to conserve the helium and nitrogen.
8. It has been determined that under certain conditions, it is feasible to simulate multiple simultaneous store launches in a facility of this kind. The main limitations stem from errors introduced by the mutual interaction of the stores. Since these magnetic interaction forces vary inversely with the fourth power of the separation between the centers of gravity, it may be assumed that negligible perturbations to the trajectories are incurred if the separation is large enough. (Typically on the order of two store diameters.)
Under the current work, general specifications for magnetic artificial.gravity facilities are being considered for both intermittent and continuous operation. It is necessary to accumulate additional technical information, particularly in the area of current design practice involving large multicomponent superconducting magnet systems, before it is possible to make the selection between the intermittent operation (normal conductor) case and the continuous operation (superconductor) case. In view of the present uncertainty as to the mode of operation, it appears premature at this time to attempt to prepare detailed cost and time estimates for the design of a facility for a medium-sized wind tunnel.

Since the emphasis of the present work has been on the development of the basic design of the magnetic artificial gravity facility, the detailed study of additional equipment requirements has been deferred to a future time. Included in
this category are such items as cameras, timing units; stroboscopic flash units, etc., necessary to perform store jettison tests in a transonic/supersonic wind tunnel. It is considered that specification of such items at this point is premature; however, it is expected that conventional wind tunnel store jettison test techniques using such items may be employed with the artificial gravity facility, and no important restrictions on their use will be incurred because of any particular characteristics of the facility itself.

3.0 SUMMARY OF SCALING LAWS FOR STORE JETTISON WITH ARTIFICIAL GRAVITY

The following are relationships among the test conditions occurring in the simulation of store jettison and similar problems in the wind tunnel with the "free drop" method (References l-4). The value of gravity, " g_{M} ", under the test conditions is considered to be a variable to allow for a magnetic component of body force.

1. Model and prototype are geometrically similar.
2. Mach number is the same for model and prototype.

$$
\begin{equation*}
\text { i.e., } \quad M_{M}=M_{p} \tag{3.1}
\end{equation*}
$$

3. Mass distribution is the same for model and prototype.

4. Ratio of aerodynamic acceleration to "gravitational" acceleration is the same for model and prototype, at geometrically similar points in the trajectory.
i.e., $\frac{g_{M}}{g}=\frac{\left(\rho_{S}\right)_{p}}{\left(\rho_{S}\right)_{M}} \frac{(L)_{p}}{(L)_{M}} \quad \frac{(q)_{M}}{(q)_{p}}$
5. Induced angles of attack are the same for model and prototype.
i.e., $\quad \frac{g_{M}}{g}=\frac{L_{p}}{L_{M}} \frac{T_{M}}{T_{p}}$
(Assuming 2 and 4 hold)
6. Reynolds Number ratio (for air) (Reference 5):

$$
\begin{align*}
& \frac{\operatorname{Re}_{M}}{\operatorname{Re}_{p}}=\frac{L_{M}}{L_{p}} \frac{\left(\rho_{S}\right)_{M}}{\left(\rho_{S}\right)_{p}}{ }_{\left[\frac{T}{T_{M}}\right]_{M}^{1.26}}^{1.2} \tag{3.5}\\
& \text { or, with conditions } 3.1-3.5 \text { satisfied, }
\end{align*}
$$

$$
\begin{equation*}
\left.\frac{\operatorname{Re}_{M}}{\operatorname{Re}_{P}}=\frac{L_{M}}{L_{p}} \quad \frac{\left(\rho_{S}\right)_{M}}{\left(\rho_{S}\right)_{p}} \quad{ }^{T} \frac{T_{p}}{T_{M}}\right] 0.26 \tag{3.6}
\end{equation*}
$$

7. Store density ratio (from 3.4, 3.5)

$$
\begin{equation*}
\frac{\left(\rho_{s}\right)_{M}}{\left(\rho_{s}\right)_{p}}=\frac{T_{p}}{T_{M}} \quad \frac{q_{M}}{q_{p}} \tag{3.7}
\end{equation*}
$$

Limits on Reynolds Number Scaling
Equation 3.6 illustrates a fundamental limitation to Reynolds Number scaling due to the practical limits available for the store density ratio $\left(\rho_{s}\right)_{M} /\left(\rho_{s}\right)_{p}$, and the temperature ratio T_{P} / T_{M}. Since the Reynolds Number ratio is only weakly dependent on T_{p} / T_{M}, the strongest compensation for small scale factor is provided by the store density ratio. However, it is not always feasible to increase the density of the model store to such an extent as to fully compensate for the scale factor (L_{M} / L_{p}), and produce full scale Reynolds Number. In general therefore, the Reynolds Number ratio will be related most strongly to the scale factor.
4.0 MAGNETIC FORCES AND ARTIFICIAL GRAVITY

The following is a summary of the relationships governing the scaled gravity obtained by magnetic forces acting on a store model containing ferromagnetic material.

The total body force acting on the store model is the sum of the gravity and magnetic forces. In terms of the scaled gravity $\overrightarrow{\mathrm{g}}_{\mathrm{M}}$, this is:

$$
\begin{equation*}
\vec{g}_{\mathrm{M}}=\stackrel{\vec{g}}{ }+\overrightarrow{\mathrm{g}}_{\mathrm{mag}} \tag{4.1}
\end{equation*}
$$

Figure la. Prototype Parent Aircraft and Store in EarthFixed Reference Frame.

Figure lb. Model Parent Aircraft and Store in Wind-Tunnel Reference Frame.

In terms of the dive angle, θ, relative to the horizontal, the magnetic gravity components are: (See Figs. la, b)

$$
\begin{align*}
& \left(g_{\operatorname{mag}}\right)_{z}=g_{M} \cos \theta-g \tag{4.2}\\
& \left(g_{\operatorname{mag}}\right)_{x}=g_{M} \sin \theta \tag{4.3}
\end{align*}
$$

The "magnetic gravity" component, $\vec{g}_{\text {mag }}$, is given by

$$
\begin{equation*}
\vec{g}_{\text {mag }}=\frac{\overrightarrow{\mathrm{F}}_{\text {mag }}}{\left(\mathrm{w}_{\mathrm{S}}\right)_{M}} \mathrm{~g} \tag{4.4}
\end{equation*}
$$

The magnetic force component $\overrightarrow{\mathrm{F}}_{\text {mag }}$ is:

$$
\begin{equation*}
F_{\text {mag }}=(\vec{M} \cdot \vec{\nabla}) \vec{B} \tag{4.5}
\end{equation*}
$$

where \vec{M} is the total magnetic moment of the magnetized material imbedded in the store model and $\overrightarrow{\vec{V} \vec{B}}$ is the magnetic field gradient tensor.

Magnetization of Model Core (Reference 6)
The magnetic moment \vec{M} is given by

$$
\begin{equation*}
\vec{M}=\int \stackrel{V_{\text {mag }}}{\underset{m}{m}} d v \simeq \frac{\vec{m}}{m} V_{\text {mag }} \tag{4.6}
\end{equation*}
$$

The average magnetization $\frac{\vec{m}}{m}$, for "soft" magnetic materials such as iron, can be related to the applied magnetic field \vec{B} as follows:

$$
\begin{align*}
& \bar{m}_{a}=\frac{M_{a}}{V_{m a g}} \simeq\left(\frac{\chi}{1+\chi D_{a}}\right) B_{a} \tag{4.7}\\
& \bar{m}_{b}=\frac{M_{b}}{V_{\operatorname{mag}}} \simeq\left(\frac{\chi}{1+\chi D_{b}}\right) B_{b} \tag{4.8}\\
& \bar{m}_{c}=\frac{M_{c}}{V_{\operatorname{mag}}} \simeq\left(\frac{\chi}{1+\chi D_{c}}\right) B_{c} \tag{4.9}
\end{align*}
$$

Where χ is the magnetic susceptibility of the material, the factors D_{a}, D_{b}, D_{c} are the demagnetizing factors associated with the three principal magnetic axes a, b, and c of the ferromagnetic body, and depend upon the external shape of the body,
and B_{a}, B_{b}, B_{c} are the a, b, c components of \vec{B}.
The demagnetizing factors are related as follows:

$$
\begin{equation*}
D_{a}+D_{b}+D_{c}=1 \tag{4.10}
\end{equation*}
$$

If the material is magnetically saturated, the relationship between the applied field and the resultant magnetization is more complicated and the components are no longer uncoupled. For the special case of equal demagnetizing factors, however, the magnetization components reduce to:

$$
\begin{equation*}
m_{a}=\frac{B_{a}}{|B|} \cdot m_{s a t} ; m_{b}=\frac{B_{b}}{|B|} \cdot m_{s a t} ; m_{c}=\frac{B_{c}}{|B|} m_{s a t} \tag{4.11}
\end{equation*}
$$

where

$$
\begin{equation*}
|B|=\sqrt{B_{a}^{2}+B_{b}^{2}+B_{c}^{2}} \tag{4.12}
\end{equation*}
$$

The average magnetization \vec{m}, (and the magnetic moment \vec{M}) are thus parallel to the applied field \vec{B}.

Torque-Free Condition

In the particular case of interest, it is a requirement that no extraneous torques be introduced by the magnetic field. The magnetic torque $T_{\text {mag }}$ is given by:

$$
T_{\operatorname{mag}}=\vec{M} \times \vec{B}
$$

Thus for $\vec{T}_{\text {mag }}$ to be zero, it is necessary that \vec{M} be parallel to \vec{B}. For unsaturated or saturated material, this condition is satisfied if the three demagnetizing factors, D_{a}, D_{b}, and D_{C} are equal, and the material possesses low rotational hysteresis (Reference 7).
i.e., $T_{\text {mag }}=0$ if $D_{a}=D_{b}=D_{c}=1 / 3$

This condition is satisfied by a sphere, or other shapes such as a cube or a short cylinder. For this case ($D_{a}=D_{b}=D_{C}$), the average magnetization component in the tunnel fixed b frame C $\bar{m}_{x}, \bar{m}_{y}, \bar{m}_{z}$ are related directly to the field components B_{x}, B_{y}, and B_{z}, without the necessity of a transformation involving the attidude of the iron core relative to the tunnel.
i.e., for $\left(D_{a}=D_{b}=D_{c}=1 / 3\right)$
i) Unsaturated core, $3|B|<M_{\text {sat }}$

$$
\bar{m}_{x}=3 B_{x} ; \bar{m}_{y}=3 B_{y} ; \bar{m}_{z}=3 B_{z}
$$

ii) Saturated core, $3|B| \geq M_{\text {sat }}$

$$
\bar{m}_{x}=\frac{B_{x}}{|B|} \cdot m_{s a t} ; \bar{m}_{y}=\frac{B}{\left|\frac{y}{B}\right|} \cdot m_{s a t} ; \bar{m}_{z}=\frac{B_{z}}{|B|} \cdot m_{s a t}
$$

$$
(4.15 a, b, c)
$$

Magnetic Force Components

The magnetic force components in the rectangular coordinates (x, y, z), for equal demagnetizing factors ($D_{a}=D_{b}=D_{C}$), are as follows:*

$$
\begin{align*}
& \frac{F_{x}}{V_{\operatorname{mag}}}=K\left[\frac{B_{x}}{|B|} B_{x x}=\frac{B_{y}}{|B|} B_{y x}=\frac{B_{z}}{|B|} B\right. \tag{4.16}\\
& \frac{F_{y}}{V_{\operatorname{mag}}}=K\left[\frac{B_{x}}{|B|}{ }^{B_{x y}}+\frac{B_{y}}{|B|}{ }^{B} y y+\frac{B_{z}}{|B|} B_{z y}\right] \tag{4.17}\\
& \frac{F_{z}}{V_{\operatorname{mag}}}=K\left[\frac{B_{x}}{|B|} B_{z z}={ }^{\frac{B}{y}}|B| B_{y z}+\frac{B_{z}}{|B|} B_{z z}\right] \tag{4.18}
\end{align*}
$$

The coefficient k has the following values depending upon the level of magnetization: (from Eqs. 4.14, 15)
i) Unsaturated $\left(|\vec{B}|<\frac{m_{\text {sat }}}{3}\right)$

$$
\begin{equation*}
\mathrm{K}=\mathrm{k}_{\mathrm{t}} 3|\overrightarrow{\mathrm{~B}}| \tag{4.19}
\end{equation*}
$$

[^0]ii) Saturated $\quad\left(|B|>\frac{m_{\text {sat }}}{3}\right)$
\[

$$
\begin{equation*}
\mathrm{K}=\mathrm{k}_{\mathrm{t}} \overline{\mathrm{~m}}_{\mathrm{sat}} \tag{4.20}
\end{equation*}
$$

\]

Magnetic Field Gradient Interrelations
The gradient components of the steady field B in free space (or air) are related through Maxwell's Equations as follows:

$$
\begin{equation*}
B_{x x}+B_{y y}+B_{z z}=0 \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{x y}=B_{y x} ; B_{x z}=B_{z x} ; B_{y z}=B_{z y} \tag{4.22}
\end{equation*}
$$

Force Units
In order to use common units of measurement, a conversion factor " k_{t} " is required in the force equation.
i.e., $\quad \frac{F_{\text {mag }}}{V_{\text {mag }}}=k_{t} M \cdot \nabla B$

$$
\text { for } \begin{aligned}
F & =\text { pounds } \\
M & =\text { kilogauss } \\
B & =\text { kilogauss } \\
\nabla B & =\text { kilogauss/in. } \\
V_{m a g} & =(\text { in })^{3} \\
k_{t} & =1.14(\text { in }-1 b)(i n)^{-3}(\text { Kgauss })^{-2}
\end{aligned}
$$

Example
(a) Consider an iron sphere of diameter $d_{\text {mag }}=1^{\prime \prime}$ having a saturation magnetization $m_{s a t}=21$ kilogauss (typical for iron), immersed in a magnetic field $B_{z}=10$ kilogauss, with a gradient $B_{z z}=0.1$ kilogauss/in. The density $\rho_{\text {mag }}$ of the sphere is $0.280 \mathrm{lb} / \mathrm{in}^{3}$. Calculate the total magnetic force, and the force per unit weight, on the sphere.

Since $3|B|>M_{\text {sat }}$, the sphere is saturated, and

$$
\begin{aligned}
F_{z} & =V_{\operatorname{mag}} k_{t} M_{\text {sat }} B_{z z} \\
& =(\pi / 6)(1)^{3}(1.4)(21)(0.1) \\
& =1.25 \mathrm{lb}
\end{aligned}
$$

Total magnetic force $=1.25 \mathrm{lb}$.
Weight of sphere, $w_{\text {mag }}=\rho_{\text {mag }} V_{\text {mag }}$

$$
\begin{aligned}
& \left.=(0.280)(\pi / 6) 1^{3}\right) \\
\text { i.e. } \mathrm{w}_{\mathrm{mag}} & =0.148 \mathrm{lb} .
\end{aligned}
$$

Magnetic force/unit weight $=F_{z} / w_{\text {mag }}=\frac{1.25 \mathrm{~g}}{0.148}=8.45 \mathrm{~g}$
Thus, the total force (magnetic plus gravity) acting on the iron sphere is 9.45 times the weight of the sphere, and with no additional mass, the sphere would be accelerated in the z-direction (downwards) with 9.45 g 's.

For a saturated iron sphere, the acceleration due to magnetic force is

$$
\begin{equation*}
\left|g_{\text {mag }}\right| \simeq 84\left(\frac{w_{\text {mag }}}{w_{\mathrm{s}}}\right) \quad \nabla B \mathrm{~g} \tag{4.24}
\end{equation*}
$$

where $\frac{w_{\text {mag }}}{w_{s}}=$ ratio of magnetic mass to total mass of the store model.
or

$$
\begin{equation*}
\nabla B=0.019\left(\frac{g_{m}}{g}-1\right)\left(\frac{W_{s}}{W_{m a g}}\right) \tag{4.25}
\end{equation*}
$$

4.1 FORCE FIELD UNIFORMITY

It is not possible to solve the equations relating the forces and steady magnetic fields to find a magnetic field configuration which produces a uniform force field over an extended three dimensional region of space and also satisfies the equations relating the field gradients to one another.

It is possible, however, to produce a magnetic force which is uniform along a line. Two cases are discussed below:

Uniform Force on an Unsaturated Iron Sphere
Consider the F_{z} components along the z -axis, and assume that
at $\mathrm{x}=0, \mathrm{y}=0$, the gradient components $\mathrm{B}_{\mathrm{xy}}, \mathrm{B}_{\mathrm{xz}}, \mathrm{B}_{\mathrm{yz}}$ are zero. From Eqs. $(4.18,19)$ (unsaturated case)
assume

$$
\begin{equation*}
\frac{F_{z}}{V_{\text {mag }}}=k_{t} 3 B_{z} B_{z z}=\text { const. } \tag{4.26}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\mathrm{B}_{\mathrm{z}}=\mathrm{k}_{\mathrm{I}} \mathrm{z}^{\mathrm{l} / 2} \tag{4.27}
\end{equation*}
$$

It is feasible to produce a magnetic field distribution approximately according to Eq. (4.27) over a limited distance, by means of an axisymmetric coil arrangement.

This field distribution is shown in Figure 2. The maximum field strength is governed by the saturation of the sphere and the usable range is limited by the practical problem of producing the increasingly large gradient in the negative z-direction.

Figure 2. Distribution of Vertical Field Strength for Uniform Vertical Force Along the Vertical Axis, for an Unsaturated Ferromagnetic Sphere of High Permeability.

If it is assumed that the maximum practical gradient is twice that corresponding to the peak (saturation limited) field, B_{z} (max), then it can be shown that the usable range is given by

$$
z_{\max }-z_{\min }=\frac{1}{8} \frac{m_{s a t}}{\mathrm{~B}_{z z}\left(z_{\max }\right)}
$$

Example

The usable range of unsaturated operation for a typical situation is calculated here. If $\mathrm{m}_{\text {sat }}=21$ kilogauss, gravity scale factor $g_{M} / g=20$, length scale factor $L_{M} / L_{P}=1 / 20$, mass ratio $\left(\mathrm{w}_{\mathrm{s}} / \mathrm{w}_{\text {mag }}\right)=2$, prototype store length $\mathrm{L}_{\mathrm{p}}=100^{\prime \prime}$, then from Eq. (4.25)

$$
\begin{aligned}
\mathrm{B}_{\mathrm{zz}} & =(0.0119)(20-1)(2) \\
& =0.452 \text { kilogauss } / \mathrm{in} \\
\circ \circ \mathrm{z}_{\max }-\mathrm{z}_{\min } & =(1 / 8) \frac{(21)}{(0.452)} \\
& =5.8 \text { inches }
\end{aligned}
$$

but, model length $I_{m}=5.0$ inches. Therefore, in this example, the maximum useful length of uniformforce region is only slightly greater than the length of the store model. Note that if all factors remain the same other than the gravity and length scale factors, the ratio of the useful range to store length is approximately constant.

Due to the severe limitations on the useful range of uniform force inherent in this method (unsaturated core), this approach was not pursued further. The following approach, which is based upon a saturated core, was found to be more suitable.

Uniform Force on a Saturated Iron Sphere

Consider the F_{z} component at locations along the z-axis and assume that at $x=0, y=0$ the gradient components $B_{x y}, B_{x z}$, $B_{y z}$ are zero, and B_{y}, B_{z} are also zero.

From Eqs. (4.18,20) (saturated case)

$$
\begin{equation*}
\frac{F_{z}}{V_{\text {mag }}}=k_{t} m_{s a t} B_{z z} \tag{4.28}
\end{equation*}
$$

$$
\begin{equation*}
\circ \circ_{z}=a_{0}+a_{1} z \tag{4.29}
\end{equation*}
$$

and $B_{z}>\frac{m_{s a t}}{3}$
Thus, the vertical magnetic field strength varies linearly with vertical distance, and in the region of uniform force must be greater than that required to saturate the sphere. This field distribution is shown in Figure 3.

Figure 3. Distribution of Vertical Field Strength for Uniform Vertical Force Along the Vertical Axis, for a Saturated Ferromagnetic Sphere.

Example

The field requirements for saturated operation in a typical situation are calculated here.

$$
\begin{aligned}
& m_{\text {sat }}=21 \text { kilogauss; } \frac{L_{M}}{L_{P}}=1 / 20 \\
& \frac{g_{M}}{g}=20 ;\left(\frac{w_{S}}{w_{\text {mag }}}\right)=2
\end{aligned}
$$

Tunnel test section height $(\Delta z)_{t}=48^{\prime \prime}$
Useful range of $z,(\Delta z)_{u}=.75(\Delta z)_{t}=36^{\prime \prime}$

From Eq. (4.25)

$$
\begin{aligned}
B_{z Z}= & 0.452 \text { kilogauss } / \text { in. } \\
B_{z}= & 7.0 \text { kilogauss @ } z=-12^{\prime \prime} \\
B_{z}= & 7.0+(36)(0.452)=23.3 \text { kilogauss @ } z=+24 " \\
& \text { (floor of tunnel) }
\end{aligned}
$$

5.0 IRON-CORE MAGNET SYSTEMS

In the course of the preliminary layout and analysis of possible magnet configurations, a decision was made to exclude from further consideration systems employing iron or other ferromagnetic material in the magnetic circuit. This decision was based upon the following factors:
a) "Material effects,". namely variations in magnetic properties of the ferromagnetic material, would make prediction and control of the magnetic force field extremely difficult, since the material would be partly or wholly saturated.
b) Since the required magnetic fields are well above the saturation level of the best magnetic materials, and the effective air gaps would be large, the use of iron offers only marginal reduction in magnet power (or ampturn) requirements.
c) Geometrical considerations for this particular application
(for example, requirements of model visibility and space for the wind tunnel test section) prevent the iron from being used to advantage.
The performance of iron-core magnet systems with large air gaps is difficult to analyze with accuracy; it is usually necessary to build preliminary small-scale models and measure in detail the magnetic field configurations for a range of magnet currents.

Since it is possible, on the other hand, to analyze air-core magnet systems in a straightforward manner by using methods of linear superposition to obtain very accurate estimates of magnetic performance of arbitrary coil configurations, there appeared to be no advantage in building small scale working models of coil systems in the preliminary design evaluation phase. In fact, the process of design optimization may be performed quite readily for air-core systems using purely analytical methods.

For the reasons outlined above, no small scale working coil system models were constructed.
6.0 SINGLE-AXIS, CONSTANT GRADIENT AIR-CORE COIL SYSTEM

The field configuration shown in Figure 3 can be produced approximately by superposition of the field contributions from four coaxial coils. (See Fig. 4.) The basic approach is as follows:
(i) Two identical circular coils, coaxial with the z-axis, are arranged symmetrically above and below the $x-y$ plane and spaced a distance $2 z_{*}$ apart. Each coil has $N_{z_{0}}$ turns, and both coils are in series electrically and connected such that the current I_{z} passes through the coils in the same sense so as to produce a net vertical field $B_{z}(0,0,0)$ at the center of symmetry. If $2 z_{*}=R_{z}$, such an arrangement is known as a "Helmholtz pair," and by virtue of the particular choice of spacing, will produce a uniform B_{z} field over a large volume of space surrounding the center of symmetry.

Figure 4. Arrangement of Circular Coils to Provide a Vertical Gradient of the Vertical Field and an Ambient Vertical Field Along the Vertical Axis.
(ii) Added to the Helmholtz pair is a pair of "gradient coils," of radius $R_{z z}$, coaxial with the z-axis, and arranged symmetrically above and below the $x-y$ plane. These coils are spaced a distance $2 z_{\text {t* }}$ apart. Each coil has $N_{z z_{0}}$ turns and both coils are in series electrically, and are connected such that the upper coil produces a negative B_{z}, and the lower coil produces a positive B_{z}. The net effect of these two
coils is a magnetic field which is zero at the center of symmetry, and which has a gradient $B_{z z}$ along the z-axis. If $z_{* *}=\frac{\sqrt{3}}{2} \mathrm{R}_{\mathrm{zz}}$, this gradient is constant over an appreciable distance.
Thus, the Helmholtz coils produce a uniform ambient vertical field, and the gradient coils produce a uniform gradient of the vertical field. This arrangement is analyzed quantitatively below.
Analysis

1. Circular Coils

The vertical field B_{z} on the z-axis due to the coil arrangement shown in Figure 4 is:

$$
\begin{align*}
& B_{z}(0, O, z)=\frac{\mu_{0}}{2}\left\{\frac{N_{z_{0}}^{I_{z}}}{R_{z}}\left[\left(1+\left(\frac{z_{*}-z}{R_{z}}\right)^{2}\right)^{-3 / 2}+\left(1+\left(\frac{z_{*}+z}{R_{z}}\right)^{2}\right)^{-3 / 2}\right]\right. \\
& \left.+\frac{\mathrm{N}_{\mathrm{zz}}{ }_{\mathrm{O}}^{\mathrm{I}}}{\mathrm{R}_{\mathrm{zz}}}\left[\left(1+\left(\frac{\mathrm{z}_{* *}-\mathrm{z}}{\mathrm{R}_{\mathrm{zz}}}\right)^{2}\right)^{-3 / 2}-\left(1+\left(\frac{\mathrm{Z}_{* *}+\mathrm{z}}{\mathrm{R}_{z z}}\right)^{2}\right)^{-3 / 2}\right]\right\} \tag{6.1}\\
& B_{z Z}(0,0, z)=\frac{3}{2} \mu_{0} \frac{\mathrm{~N}_{z_{0}} I_{z}}{R_{z}}\left[\left(1+\left(\frac{z_{*}-z}{R_{z}}\right)^{2}\right)^{-5 / 2}\left(\frac{z_{*}-z}{R_{z}}\right)-\left(1+\left(\frac{z_{*}+z}{R_{z}}\right)^{2}\right)^{-5 / 2}\left(\frac{{ }^{7} \star^{+}+z}{R_{z}}\right)\right] \\
& +\frac{3}{2} \mu_{0} \frac{N_{z z_{o}}{ }^{I_{z}}}{R_{z z}}\left[\left(1+\left(\frac{z_{\star *^{-z}}}{R_{z z}}\right)^{2}\right)^{-5 / 2}\left(\frac{z_{* *}-z}{R_{z z}}\right)+\left(1+\left(\frac{z_{* *}+z}{R_{z z}}\right)^{2}\right)^{-5 / 2}\left(\frac{z_{* *}+z}{R_{z z}}\right)\right] \tag{6.2}
\end{align*}
$$

where μ_{0} is the permeability of free space.
For the Helmholtz pair:

$$
\begin{equation*}
\text { if } \quad \frac{\partial^{2} B_{z}}{\partial z^{2}}=0 @ z=0 ; z_{*}=\mathrm{Rz} \tag{6.3}
\end{equation*}
$$

For the gradient coils,

$$
\begin{equation*}
\text { if } \quad \frac{\partial^{3} B}{\partial_{z^{3}}}=0 @ z=0 ; z_{* *}=\frac{\sqrt{3}}{2} R_{z} \tag{6.4}
\end{equation*}
$$

2. Square Coils

If the circular coils are replaced by square coils of dimension $2 R_{z}$ and $2 R_{z z}$ on a side, the field equations are:

$$
u_{1}=\frac{z_{*}^{-z}}{R_{z}} ; u_{2}=\frac{z_{\star}^{-z}}{R_{z}} ; u_{3}=\frac{z_{\star t}-z}{R_{z z}} ; u_{4}=\frac{z_{* *}+z}{R_{z z}}
$$

$$
\frac{\partial B_{z}}{\partial z}=\sum_{i, j=1}^{4} \frac{\sqrt{2}}{\pi} \mu_{0}\left(\frac{N_{0} I}{R}\right)_{i} \frac{\partial\left(B u_{j}\right)}{\partial z}
$$

$$
\begin{equation*}
\frac{\partial B u_{j}}{\partial z}=-\left[2\left(1+\frac{1}{2} u_{j}^{2}\right)^{-1 / 2}\left(1+u_{j}^{2}\right)^{-2}+\frac{1}{2}\left(1+\frac{1}{2} u_{j}{ }^{2}\right)^{-3 / 2}\left(1+u_{j}^{2}\right)^{-1}\right] u_{j} \frac{\partial u_{j}}{\partial z} \tag{6.9}
\end{equation*}
$$

For $\frac{\partial^{2} B z}{\partial z^{2}}=0 @ x, y, z=0 ; \frac{z_{x}}{R_{z}}=0.55$
and $\quad\left(\frac{B_{z}}{\mathbb{N}_{z} I_{z} / R_{z}}\right)=\frac{\mu_{0}}{\pi}$
where $\mathrm{N}_{\mathrm{Z}} \mathrm{I}_{\mathrm{z}}=$ total ampturns in z -coils
and for $\frac{\partial^{3} B_{z}}{\partial z^{3}}=0 @ x, y, z=0 ; \frac{Z_{\star *}}{R_{x x}}=0.94$
and $\left(\frac{\mathrm{B}_{\mathrm{zz}^{R_{z z}}}}{\mathrm{~N}_{\mathrm{zz}^{\mathrm{I}}} / \mathrm{R}_{\mathrm{zz}}}\right)=0.81 \frac{\mu_{\mathrm{o}}}{\pi}$
where $N_{z z_{z z}} I_{z o t a l}$ ampturns in $z z$-coils.

$$
\begin{align*}
& B_{z}=\frac{\sqrt{2}}{\pi} \mu_{0} \sum_{i, j=1}^{4}\left(\frac{N_{0} I}{R}\right)_{i}\left[\left(1+\frac{1}{2} u_{j}^{2}\right)^{-1 / 2}\left(1+u_{j}^{2}\right)^{-1}\right] \\
& \text { (i=z,z,zz,zz) } \\
& \text { Let } B\left(u_{j}\right)=\left[\left(1+\frac{1}{2} u_{j}^{2}\right)^{-1 / 2}\left(1+u_{j}^{2}\right)^{-1}\right] \tag{6.6}
\end{align*}
$$

Example:

As an example of the magnitudes involved, consider the following case, which is an extension of the example on page 17.

Square coils:

$$
\begin{aligned}
& Z_{*}=30^{\prime \prime} \quad R_{z}=54.6^{\prime \prime} \\
& Z_{* *}=42^{\prime \prime} \quad R_{z z}=44.7^{\prime \prime} \\
& B_{z}=13.42 \text { kilogauss }\left(@_{3} y r^{z}=0\right) \\
& B_{z z}(0,0,0)=0.452 \text { k.gauss/in. }
\end{aligned}
$$

From 6.11.

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{z}}(0,0,0)=\frac{\mu_{0}}{\Pi} N_{z} I_{z} / R_{z} \\
& \mathrm{~N}_{z} I_{z}=\frac{(12.42)(54.6)(\Pi)}{(39.4 \mathrm{in} / \mathrm{m})\left(4 \Pi \times 10^{-6}\right)} \\
&=4.31 \times 10^{6} \text { (total ampturns in Helmholtz coils.) }
\end{aligned}
$$

And from Equation 6.13,

$$
\begin{aligned}
& B_{z Z}(0,0,0)=0.81 \frac{\mu_{0}}{\Pi} \frac{N_{z z}^{I} z_{z Z}}{R_{z Z}} \\
& \text { i.e. } \mathbb{N}_{z Z} I_{z Z}=\frac{B_{z Z}(0,0,0) R_{z Z}^{2}}{0.81^{\mu} 0 / \pi} \\
&=\frac{(0.452)(54.6)^{2}}{\left(0.81 \times 4 \Pi \times 10^{-6} / \Pi\right)(39.4)} \\
&=10.5 \times 10^{6} \text { (total ampturns in gradient coils.) }
\end{aligned}
$$

7.0 COMBINED VERTICAL AND HORIZONTAL FORCES

In order to simulate store jettison from a diving climbing aircraft, it is necessary to provide a magnetic force component along the tunnel axis in addition to the vertical component, as defined by Equations 24, 26. The axial force component F_{x} can be provided by a set of four coils coaxial with the x-axis and spaced symmetrically about the center of symmetry of the z-coils. Thus, at the center of symmetry, for a saturated iron sphere,

$$
\begin{equation*}
\frac{F_{x}}{\bar{V}_{\text {mag }}}=k_{t} m_{\text {sat }} \frac{B_{x}}{|B|} B_{x x} \tag{7.1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{F_{z}}{\bar{V}_{\text {mag }}}=k_{t^{m}}{ }_{\text {sat }} \frac{B_{z}}{|B|} B_{z z} \tag{7.2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{F_{x}(0,0,0)}{V_{\operatorname{mag}}}=k_{t} m_{s a t} \frac{K_{x} I_{x}}{\left(\left(K_{x} I_{x}\right)^{2}+\left(K_{z} I_{z}\right)^{2}\right)^{I / 2}}\left(K_{x x} I_{x x}-\frac{1}{2} K_{z z} I_{z z}\right) \tag{7.6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{F_{z}(0,0,0)}{V_{\operatorname{mag}}}=k_{t} m_{\text {sat }} \frac{K_{z} I_{z}}{\left(\left(K_{x} I_{x}\right)^{2}+\left(K_{z} I_{z}\right)^{2}\right)^{1 / 2}}\left(K_{z z_{z z}} I_{z-\frac{1}{2}} K_{x x_{x x}}\right) \tag{7.8}
\end{equation*}
$$

From Equations (5.6, 5.7), it is seen that the maximum combined magnetic force, $F_{\text {mag' }}$ is obtained if the direction of the

Figure 5. Arrangement of Coils to Provide Combined Axial and Vertical Forces.
x- currents is opposite in sign to the direction of the z currents.

$$
\frac{\begin{array}{l}
\text { i.e., } \\
I_{x} \tag{7.9,10}\\
\left|I_{x}\right|
\end{array}=-\frac{I_{z}}{T I_{z} \mid} ; \quad \frac{I_{x x}}{T I_{x x} \mid}=-\frac{I_{z z}}{T I_{z z} \mid}}{\frac{I_{z}}{}}
$$

This situation is shown schematically in Figure 5, in which the x-currents have been chosen to be negative (i.e., the $x-f i e l d$ and x-field gradient coil in the positive x half-space produce negative B_{x} along the x -axis).

In addition to enhancing the strength of the resultant force, it can be shown that the gradient component $B_{y y}$ is reduced, as are the corresponding y-directed forces at locations outside the $\mathrm{y}=0$ plane.
8.0 FORCE FIELD NONUNIFORMITIES

Consider the force field ©ue to a uniform vertical gradient of the vertical field superimposed on a uniform ambient vertical field, acting on a saturated iron sphere.

Assume that $B_{x y}, B_{x z}, B_{y z}$ are negligible.
Note that:

$$
\begin{align*}
& B_{x x}=-\frac{1}{2} B_{z z}=\text { const } ; \\
& B_{x}=-\frac{1}{2} B_{z z} \cdot x \tag{8.3,4}\\
& B_{Y y}=-\frac{1}{2} B_{z z}=\text { const } ; \tag{8.5}\\
& B_{y}=-\frac{1}{2} B_{z z} \cdot y \\
& B_{z}=B_{z O}+B_{z z} \cdot z .
\end{align*}
$$

Then

$$
\begin{equation*}
\frac{F_{x}}{\bar{V}_{\text {mag }}}=k_{t} m_{\text {sat }} \frac{B_{x}}{|B|} \cdot B_{x x} \tag{7.1}
\end{equation*}
$$

or

$$
\begin{align*}
& \frac{F_{x}}{V_{\text {mag }}}=\left(k_{t} m_{s a t}{ }^{B_{z z}}\right) \frac{B_{z z} \cdot x}{4 B_{z o}}\left[\left(1+\frac{B_{z z} \cdot z^{\prime}}{B_{z o}}\right)^{2}+\frac{B_{z z}\left(x^{2}+y^{2}\right)^{1 / 2}}{2 B_{z o}}\right]^{-1 / 2} \tag{8.6}\\
& \frac{F_{y}}{V_{\text {mag }}}=\left(k_{t} m_{s a t} B_{z z}\right) \frac{B_{z z} \cdot y}{4 B_{z O}}\left[\left(1+\frac{B_{z z} \cdot z}{B_{z O}}\right)^{2}+\frac{B_{z Z}\left(x^{2}+y^{2}\right)^{1 / 2}}{2 B_{z O}}\right]^{-1 / 2} \tag{8.7}\\
& \frac{F_{z}}{V_{\text {mag }}}=\left(k_{t^{m}}{ }_{s a t}{ }^{B_{z Z}}\right)\left[1+\left(\frac{\frac{B_{z Z}\left(x^{2}+y^{2}\right)^{1 / 2}}{B_{z O}}}{1+\frac{B_{z Z} \cdot z}{B_{z O}}}\right)^{2}\right] \tag{8.8}
\end{align*}
$$

The z-force is uniform along the z-axis. The x and y force components are approximately proportional to the product of the z-force and the x or y displacements. These forces thus appear to be repulsive, away from the z-axis, and increasing in strength with distance from the z-axis. Also, for a given displacement from the z-axis, the x and y forces vary approximately inversely with z displacement, and likewise, they vary approximately with the ambient field level, B_{z}. Thus, specifications of the desired degree of uniformity Of_{f} the force field will be directly reflected in the required level of the ambient field.

TABLE - Example of Off-Axis Forces, for $B_{z}=12.42$ kilogauss $B_{z Z}=0.452$ kilogauss/in. NormaliZed with Respect to the Force at the Center of Symmetry, $\mathrm{F}_{\mathrm{z}_{\mathrm{o}}}$

x	Y	2	$\mathrm{F}_{\mathrm{x}} / \mathrm{F}_{\mathrm{z}_{\mathrm{O}}}(\%)$	$\mathrm{F}_{\mathrm{y}} / \mathrm{F}_{z_{0}}{ }^{(\%)}$	$\left.-\mathrm{F}_{\mathrm{z}} / \mathrm{F}_{\mathrm{z}_{\mathrm{O}}}\right)(\%)$
0	0	0	0\%	0\%	0\%
12"	0	0	+10.65\%	0\%	+2.4\%
12"	12"	-12"	+18.5\%	+18.5\%	+12.2\%
12"	12"	0	+10.17\%	+10.17\%	+4.7\%
12"	12"	+12"	+7.4\%	+7.4\%	+2.3\%
12"	12"	+24"	+5.8\%	+5.8\%	+1.4\%

9.0 STABILITY OF SATURATION MAGNETIZATION

The magnetic force on a saturated body is proportional to the saturation magnetization of the body. Thus, it is of interest to examine the accuracy with which this quantity can be estimated, and also the variation of this quantity under the conditions experienced in the wind tunnel environment.

The most important effect on $\mathrm{m}_{\text {sat }}$ is due to changes in temperature. If $\mathrm{m}_{\text {sat }}\left(\mathrm{T}_{\text {ref }}\right)$ is the saturation magnetization measured at a reference temperature $T_{r e f}$, the saturation magnetization $m_{s a t}(T)$ for iron at another temperature T is related to the Curie temperature T_{C} approximately as follows: (Reference 7)

$$
\begin{equation*}
\frac{m_{s a t}(T)}{m_{s a t}\left(T_{r e f}\right)}=\frac{1-k\left(\frac{T}{T_{c}}\right)}{1-k\left(\frac{T_{r e f}}{T_{c}}\right)} 3 / 2 \tag{9.1}
\end{equation*}
$$

where $T, T_{r e f} T_{C}=$ absolute temperature
$k=0.11$ (empirical, for iron)
$T_{C}=1870^{\circ} \mathrm{R}$ for iron

The temperature coefficient of magnetization can be written

$$
\begin{gather*}
\frac{\partial\left(m_{s a t}\right)}{\partial T}=-m_{s a t}\left(T_{r e f}\right) \frac{1}{T_{c}} \frac{3}{2}\left[\frac{k\left(\frac{T}{T_{C}}\right)^{1 / 2}}{1-k\left(\frac{T_{r e f}}{T_{C}}\right)^{3 / 2}}\right] \quad \text { (9.2) } \tag{9.2}\\
\text { e.g. } \frac{\partial m_{\text {sat }}}{m_{s a t}} / T_{\partial}=48 \mathrm{ppm} /{ }^{\circ} \mathrm{F} @ T_{r e f}=530^{\circ} \mathrm{R}\left(70^{\circ} \mathrm{F} .\right) \quad \text { for iron. }
\end{gather*}
$$

10.0 FIELD AND FORCE ANALYSIS OF ARBITRARY AIR-CORE COIL
CONFIGURATIONS.

In the cases described above, each magnet coil has been represented by a concentrated current element. This leads to great simplification in the initial design and allows promising configurations to be readily conceived and evaluated approximately. However, in order to evaluate the force field due to a magnet system composed of coils having large winding buildup, over a large region of space, greater detail is required in the analysis. In this case, it is most convenient to use a digital computer, since the number of computation steps in the evaluation procedure becomes very large.

In the analysis that has been developed for this application, the magnet coils have been approximated by a series of straight-line current elements. This choice was made since it appeared at the outset that the most probable configuration, to be compatible with a typical wind tunnel test section, would involve square or rectangular coils.

The total magnetic field and field gradient components at a point in space due to an array of current carrying elements surrounded by a medium of uniform magnetic susceptibility
can be evaluated by linear superposition of the effects of each individual current element.

The magnetic force field on a ferromagnetic sphere is calculated from the total field and field gradient components using Equations (4.16-18).

The relations used in the computation of the magnetic field, field gradient components, and the magnetic forces, are outlined in Appendix A.

A computer program has been developed to provide a tabulation of the magnetic field components, component derivatives, and magnetic force components for a set of field positions. This program is called "TABLE" and is described in detail in Appendix B.

A computer program has been developed as an extension of TABLE which provides a qualitative graphical display of the distribution of the magnetic force field. This program is called "PLOT" and is described in detail in Appendix C.

11.0 PRACTICAL COIL CONFIGURATIONS

A family of practical coil configurations has been developed from the basic arrangement of Figure 5. An example showing the basic elements and the proportions that are expected to be typical of a magnetic artificial gravity facility is outlined in Figure 6.

In general, the wind tunnel test section structure will most probably be of closed jet design. In the case of a porouswall transonic test'section, designed to operate over a range of Mach Number, the clearance between the inner and outer walls must be larger than required for purely structural reasons, since plenum volume must be provided, and provision must be made for controlled mass removal from the plenum in order to control the test section Mach Number.

Figure 6. Practical Arrangement for a Working Two-Component Magnetic Artificial Gravity Facility.

The acquisition of store jettison data will most probably be by photographic means. This requires at least one large viewing window in the test section wall.

Access to the test section can be provided a short distance from the center of the test section.

The parent model support structure is supported itself by the test section, and means must be provided for remote control of the release of the store models, as in conventional facilities.

Operations may call for sharing of the tunnel circuit with other types of facilities, for example conventional force and moment balance. This may dictate that the magnetic system be removable without major disassembly. This would in turn require that the test section be removable along with the magnet system, as indicated in Figure 6.

11.1 ANALYSIS AND OPTIMIZATION OF COIL SYSTEMS

In order to analyze the coil geometry shown in Figure 6 in a systematic way, the configuration is defined in terms of parameters and constraints. Such parameters and constraints can be categorized as follows:
(a) Geometric parameters

These apply to a particular configuration, and are dimensionless "shape factors" or length ratios sufficient to define the shape of the configuration.
(b) Geometric constraints

These apply to a particular configuration, and define limits to the geometric parameters imposed by mechanical interference.
(c) Performance parameters

These apply to a particular configuration, and define the relevant performance characteristics of the configuration in terms of the geometric parameters, material
parameters, and a characteristic linear dimension of the configuration.
(d) Material parameters

These are related to the material and operating temperature chosen for the coil conductor, and may be contained in the performance parameters.
(3) Cost-related parameters

Approximate cost factors can be estimated from the geometric, performance, and material parameters, for some parts of the system.

11. 2 GEOMETRIC PARAMETERS AND CONSTRAINTS

The coil geometry outlined in Figure 6 is shown in greater detail in Figure 7 in which all relevant dimensions are identified by symbols. The geometric parameters relating these dimensions are defined below. Geometric Parameters: (Square coils)
(a) Angles to winding centroids (in vertical plane through x-axis)

$$
\begin{equation*}
\phi_{\mathrm{x}}, \phi_{\mathrm{xx}}, \phi_{\mathrm{z}}, \phi_{\mathrm{zz}} \tag{11.1.2}
\end{equation*}
$$

(b) Buildup factors $\quad \alpha_{1}=\frac{\mathrm{B}_{1}}{\mathrm{R}_{\mathrm{o}}} ; \alpha_{2}=\frac{\mathrm{B}_{2}}{\mathrm{R}_{\mathrm{o}}}$

$$
\begin{equation*}
\beta_{x}=\frac{W_{x}}{B_{1}} ; \beta_{x x}=\frac{W_{x x}}{B_{1}} \tag{11.3,4}
\end{equation*}
$$

$\beta_{x}=\frac{w_{z}}{B_{1}} \quad ; \quad \beta_{z \bar{z}}=\frac{w_{z z}}{B_{2}}$
(c) Internal radius ratios

$$
\left.\left(\frac{r_{x_{1}}}{R_{0}}\right) ; \frac{{ }^{r_{z_{1}}}}{R_{0}}\right) ; \quad\left(\frac{{ }_{z z_{1}}}{R_{0}}\right)
$$

Figure 7. Generalized Dimensions of Practical Air Core Coil Configuration.
(d) Mean-turn length parameters

$$
\text { Define } \bar{l}_{\text {jo }} \text { as the length of the mean turn (located }
$$ at the winding centroid) of a single j-coil.

Then,

$$
\begin{align*}
& \frac{\bar{\ell}_{z_{0}}}{\mathrm{R}_{0}}=8\left[\left(1+\frac{\alpha_{1}}{2}\right) \tan \phi_{z}-\left(1-\frac{\pi}{4}\right)\left(\frac{r_{z_{1}}}{R_{0}}+\frac{\alpha_{1} \beta_{z}}{2}\right)\right] \tag{11.8}\\
& \frac{\bar{\ell}_{z z}}{R_{o}}=8\left[\left(1+\alpha_{1}+\frac{\alpha_{2}}{2}\right) \tan \phi_{z z}-\left(1-\frac{\pi}{4}\right)\left(\frac{r_{z z} 1}{R_{o}}+\frac{\alpha_{2} \beta_{z z}}{2}\right)\right] \tag{11.9}\\
& \text { (e) Winding area parameters } \\
& \text { Define } A_{j o} \text { as the area of a single j-coil. }
\end{align*}
$$

Then

$$
\begin{equation*}
\frac{A_{x_{0}}}{{\frac{R_{0}}{}}^{2}}=\alpha_{1}{ }^{2} \beta_{x} \tag{11.10}
\end{equation*}
$$

$$
\begin{equation*}
\frac{A_{x x_{o}}}{R_{0}^{2}}=\alpha_{1}^{2} \beta_{x x} \tag{11.11}
\end{equation*}
$$

$$
\begin{equation*}
\frac{A_{z_{0}}}{R_{0}^{2}}=\alpha_{1}{ }^{2} \beta_{z} \tag{11.12}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{A}_{\mathrm{zz}}}{R_{o}{ }^{2}}=\alpha_{2}{ }^{2} \beta_{z z} \tag{11.13}
\end{equation*}
$$

(a) $\frac{\alpha_{1}}{2\left(1+\frac{\alpha_{1}}{2}\right)}\left(\beta_{x}+\beta_{x x}\right) \leq \tan \phi_{x x}-\tan \phi_{x}$ (Interference of x-coil and $x x$ coil)
(b) $\frac{\alpha_{1}\left(\beta_{z}+\beta_{z z}\right)+\sqrt{2}\left(\frac{r_{z_{I}}}{R_{O}}\right)}{2\left(1+\frac{\alpha_{1}}{2}\right)}<\tan \phi_{z}-\tan \phi_{z z}$
(Interference of z -coil and xx -coil)
11.3 EFFECTS OF NON-ZERO WINDING CROSS-SECTIONAL AREA The magnetic field distribution from a system of coils of non-zero cross sectional area is different from that due to a similar system of concentrated current elements located at the winding cross section centroids of the former system. The analysis of the fields due to a system of coils of nonzero cross-sectional area may be carried out by dividing each coil cross-section. into zones and representing the current flowing through each zone by a concentrated current element located at the centroid of the zone. With the coil geometry specified in terms of the parameters shown in Figure 7, it is most convenient to determine the end-points of the current elements using a computer program, since the number of elements can become quite large. A program to accomplish this is outlined in Appendix D. In this program, the rounded coil corners are approximated in the field computations by fortyfive degree bevels.

Il. 4 OPTIMIZATION OF ϕ-PARAMETERS FOR UNIFORM FORCE FIELD

 A force-field-uniformity maximization procedure based upon the analysis outlined above proceeds as follows: First,a set of buildup factors (α^{\prime} s and $\beta^{\prime} s$) are selected compatible with a set of initial values of the ϕ^{\prime} s chosen to provide approximately uniform fields and gradients (i.e., $\phi_{\mathrm{x}}=29^{\circ}$, $\phi_{\mathrm{xx}}=43^{\circ}, \phi_{\mathrm{z}}=61^{\circ}, \phi_{\mathrm{zz}}=47^{\circ}$) based upon single-currentelement square loops. The field property B_{x} is computed at the center of symmetry of the coil system, and at two points on the x-axis $(+\Delta x)$ and ($-\Delta x$) from the center of symmetry, due to currents flowing only in the xmcoils. The angle, ϕ_{x}, is adjusted as follows:

$$
\begin{equation*}
\phi_{x}\left(\alpha_{I}, \beta_{x}\right) \text { opt } I_{\text {mum }} B_{x}\left(+\Delta x, 0,0, I_{x}\right)+B_{x}\left(-\Delta x, 0,0, I_{x}\right)=2 B_{x}\left(0,0,0, I_{x}\right) \tag{11.14}
\end{equation*}
$$

Similarly, the other angles $\phi_{X x} r \phi_{z}, \phi_{z z}$ are optimized as follows:
$\phi_{x x}\left(\alpha_{1}, \beta_{x x}\right)$ opt $\rightarrow B_{x x}\left(+\Delta x, 0,0, I_{x x}\right)+B_{x x}\left(-\Delta x, 0,0, I_{x x}\right)=2 B_{x x}\left(0,0,0, I_{x x}\right)$
$\phi_{z}\left(\alpha_{1}, \beta_{z}\right)_{\text {opt }} \rightarrow B_{z}\left(0,0,+\Delta z, I_{z}\right)+B_{z}\left(0,0,-\Delta z, I_{z}\right)=2 B_{z}\left(0,0,0, I_{z}\right)$
$\phi_{z Z}\left(\alpha_{2}, \beta_{z z}\right)_{o p t} \rightarrow B_{z Z}\left(0,0,+\Delta z, I_{z Z}\right)+B_{z Z}\left(0,0,-\Delta z, I_{z Z}\right)=2 B_{z Z}\left(0,0,0, I_{z Z}\right)$
So far, this adjustment procedure has been performed by trial and error (not directly by the computer program); however, it is evidently a simple matter to implement this step automatically by iteration. The variations in the values of the optimum ϕ 's are typically small, of the order of two or three degrees, to achieve the maximum force field uniformity.

The performance of the magnet system can be defined in terms of parameters relating the magnetic and electrical properties of the system. Of interest are the following items:
(a) Magnetic performance parameters (Q)

These parameters relate the magnetic field properties
at the center of symmetry to the ampere-turns in each coil subsystem and are computed from the geometric parameters, as defined below:
define:

$$
\begin{array}{lll}
Q_{x}=\left[\frac{B_{x}(0,0,0)}{\left(N_{x} I_{x} / R_{0}\right)}\right] & (11.18) & Q_{x x}=\left[\frac{B_{x x}(0,0,0) R_{o}}{\left(N_{x x} I_{x x} / R_{o}\right)}\right] \\
Q_{z}=\left[\frac{B_{z}(0,0,0)}{N_{z} I_{z} / R_{0}}\right] & (11.20) & Q_{z z}=\left[\frac{B_{z z}(0,0,0) R_{o}}{\left(N_{z z} I_{z z} / R_{o}\right)}\right]
\end{array}
$$

(b) Electrical performance parameters.

These parameters relate the electrical properties of the coil.system to the geometric parameters, and the material parameters. Included in this category are the electrical resistance and self-inductance of each coil subsystem, and the mutual inductance of coil subsystems which are magnetically coupled.
(i) Resistance parameters. (s_{j})

$$
\begin{array}{lll}
S_{x}=\frac{R_{0} R_{x}}{N_{x}^{2}} & (11.22) & S_{x x}=\frac{R_{0} R_{x x}}{N_{x x}^{2}} \\
S_{z}=\frac{R_{0} R_{z}}{N_{z}^{2}} & (11.24) & S_{z z}=\frac{R_{0} R_{z z}}{N_{z z}^{2}}
\end{array}
$$

where $R_{x}, R_{x x}$ ' etc. are the resistances of the $x, x x$, etc. coil subsystem respectively, as described below,
(ii) Self-inductance parameters. (T_{xi})
$T_{x}=\frac{L_{x}}{R_{0} N_{x}^{2}}$
(11, 26)
$T_{x x}=\frac{I_{x x}}{R_{0} N_{x x}^{2}}$
$T_{z}=\frac{L_{z}}{R_{0} N_{z}^{2}}$
$(11,28)$

$$
\begin{equation*}
T_{Z Z}=\frac{L_{z Z}}{R_{0} N_{Z Z}^{2}} \tag{11.29}
\end{equation*}
$$

where $L_{x}, I_{x x}$ r etc. are the selfrinductances of the $x, x x$, etc. coil subsystems respectively, as described below.
(iii) Mutual-inductance parameter $\left(W_{x x / z z}\right)$

$$
\begin{equation*}
W_{x x / z z}=\frac{M_{x x / z z}}{R_{0} N_{x x} N_{z z}} \tag{11.30}
\end{equation*}
$$

where $M_{x x / z z}$ is the mutual inductance between the $x x$ coil subsystem and the $z z$ coil subsystem, as described below. Due to the summetry of this particular coil configuration, the $x x$ and $z z$ subsystems are the only pair with non-zero net magnetic coupling.

Magnetic Performance Parameters

(i) Approximate Values

These may be estimated from the mean-turn geometry, with acceptable accuracy for the purposes of preliminary analysis, from Equations 6.11,13, as follows:

$$
\begin{align*}
& Q_{x} \simeq \frac{B_{x}(0,0,0)}{N_{x}^{I} / R_{0}}=\frac{\mu_{0}}{\Pi}\left[\frac{1}{1+\frac{\alpha_{1}}{2}}\right] \tag{11.31}\\
& Q_{x x} \simeq \frac{B_{x x}(0,0,0) R_{0}}{N_{x x} I_{x x} / R_{0}}=\frac{0.81 \mu_{0}}{\Pi}\left[\frac{1}{1+\frac{\alpha_{1}}{2}}\right] \tag{11.32}
\end{align*}
$$

$$
\begin{align*}
& Q_{z} \simeq \frac{B_{z}(0,0,0)}{N_{z} I_{z} / R_{0}}=\frac{0.551]_{0}}{\Pi}\left[\frac{1}{1+\frac{\alpha_{1}}{2}}\right] \tag{11.33}\\
& Q_{z z} \simeq \frac{B_{z z}\left(0,0,0\left[R_{0}\right.\right.}{N_{z z}^{I_{z z}} / R_{0}}=\frac{0.81 \mu_{0}}{I}\left[\frac{1}{1+\alpha_{1}+\frac{\alpha_{2}}{2}}\right] \tag{11.34}
\end{align*}
$$

(ii) Accurate Values

These may be calculated using the field analysis computer program described in detail in Appendix B, in conjunction with the current element location program detailed in Appendix D.

Resistance Parameters

The resistance parameter $S_{j o}$ of a single coil "jo" of constant current density, of the configuration defined in Figure 7, can be estimated as follows:

$$
\begin{equation*}
S_{j 0}=\frac{R_{j o} R_{0}}{n_{j 0}^{2}}=\frac{\rho_{j}}{\left(F_{p}\right)_{j 0}}\left(\frac{R_{0}^{2}}{A_{j 0}}\right)\left(\frac{\bar{\ell}}{R_{0}}\right) \tag{11.35}
\end{equation*}
$$

```
where \(R_{j o}=\) resistance of jo coil
    \(\dot{p}_{j}=\) average resistivity of \(j\)-coil conductor material
    \(\bar{x}_{j 0}=\) length of mean turn of single coil (or controid
        filament)
    \(\bar{A}_{j o}=\) total cross sectional area of single j-coil
\(\left(\bar{F}_{p}\right)_{j o}=\) average packing area factor of conductor (ratio of
        conductor cross section to total winding cross
        section)
    \(n_{j o}=\) number of turns in single \(j\) coil
```

The resistivity ρ_{j} depends upon the conductor material and the operating temperature, the packing factor F_{p} depends
upon the construction used, and the number of turns depends upon the desired impedance level. The remaining factors are seen to be the reciprocal of the winding area parameter, and the mean length parameter. (See Eqs. 11.7-131.

For the particular configuration, $N_{j}=2 n_{j o}$, and the total resistance parameters are:

$$
\begin{align*}
& s_{j}=2 s_{j 0} \\
& S_{j}=\frac{R_{o} R_{j}}{N_{j}{ }^{2}}=\frac{1}{2} \frac{R_{o} R_{j}}{n_{j o}{ }^{2}} \tag{11.36}\\
& \text { i.e. } \quad S_{x}=\frac{R_{0} R_{x}}{N_{x}{ }^{2}}=\frac{1}{2} \frac{\rho_{x}}{\left(F_{p}\right)_{x}}\left(\frac{\bar{l}_{x o}}{R_{0}}\right)\left(\frac{R_{0}{ }^{2}}{A_{x O}}\right) \tag{11.37}\\
& S_{x x}=\frac{R_{0} R_{x x}}{N_{x x}{ }^{2}}=\frac{1}{2} \frac{\rho_{x x}}{\left(F_{p}{ }_{p x}\right.}\left(\frac{\bar{l}_{x x o}}{R_{0}}\right)\left(\frac{R_{0}^{2}}{A_{x x 0}}\right) \\
& S_{z}=\frac{R_{o} R_{z}}{N_{z}{ }^{2}}=\frac{1}{2} \frac{\rho_{z}}{\left(F_{p}\right)_{z Z}}\left(\frac{\bar{l}}{R_{0}}\right)\left(\frac{R_{o}{ }^{2}}{A_{z}}\right) \tag{11.39}\\
& S_{z Z}=\frac{R_{0} R_{z z}}{N_{z z}{ }^{2}}=\frac{1}{2} \frac{\rho_{z z}}{\left(F_{p}\right)_{z z}}\left(\frac{\bar{\ell}_{z z}}{R_{0}}\right)\left(\frac{R_{0}{ }^{2}}{A_{z z}}\right) \tag{11.40}
\end{align*}
$$

Self-Inductance Parameters

The self-inductance of a symmetric pair of coils comprising one of the coil subsystems is found from the selfinductance of an isolated coil and the mutual inductance between the two coils.
(i) Self-inductance of individual coils. (Reference 8)

The self-inductance $L_{j o}$ of an isolated square coil is given by the formula:

$$
\begin{equation*}
\frac{L_{j 0}}{R_{0} n_{j}^{2}}=\left[1.475 \times 10^{-2}\left[C_{R_{0}}^{R_{j}}\left[I 1+\frac{3.0 .23}{r_{j}}+7.30 \ell_{n \gamma_{j}}\right]\right.\right. \tag{11.41}
\end{equation*}
$$ (microhenries/inch turn ${ }^{2}$)

where: $s_{j}=$ outside length of one side of j-coil (inches)

$$
\begin{aligned}
r_{j} & =\frac{s_{j}}{t_{j}+v_{j}} \\
t_{j} & =\text { radial thickness of } j \text {-coil } \\
v_{j} & =\text { axial thickness of } j \text {-coil } \\
n_{j} & =\text { number of turns in } j \text {-coil }
\end{aligned}
$$

For the particular coil configuration:

$$
\begin{align*}
& \frac{s_{x}}{R_{0}}=\frac{s_{x x}}{R_{0}}=2\left(1+\alpha_{1}\right) \\
& \frac{s_{z}}{R}=2\left[\left(1+\frac{\alpha_{1}}{2}\right) \tan \phi_{z}+\frac{\alpha_{1} z_{z}}{2}\right] \\
& \frac{s_{z}}{R_{0}}=2\left[\left(1+\alpha_{1}+\frac{\alpha_{2}}{2}\right) \tan \phi_{z z}+\frac{\alpha_{2} \beta_{z z}}{2}\right] \\
& \gamma_{x}=\left(\frac{S_{x}}{R_{0}}\right)\left(\frac{1}{\alpha_{1}\left(1+\beta_{x}\right)^{2}}\right) \quad \gamma_{x x}=\left(\frac{s_{x x}}{R_{0}}\right)\left(\frac{1}{\alpha_{1}\left(1+\beta_{x x}\right)}\right) \\
& \text { (11.45) } \\
& \gamma_{z}=\left(\frac{s}{R_{0}}\right)\left(\frac{1}{\alpha_{1}\left(1+\beta_{z}\right)}\right) \\
& \text { (11.47) } \tag{11.48}\\
& \gamma_{z z}=\left(\frac{S_{z z}}{R_{0}}\right)\left(\frac{1}{\alpha_{2}\left(1+\beta_{z z}\right)}\right)
\end{align*}
$$

(iiil Mutual inductance between two identical parallel, square, coaxial coils. (Reference 8)

The mutual inductance $M_{j / j}$ between the two identical

$$
\frac{M_{j / j}}{R_{0} n_{j}}=\left(10.77 \times 1 \sigma^{-2}\left[\frac { l _ { j } } { R _ { 0 } } \left[I \ln _{\ln _{f}}^{\frac{n_{j}}{f_{j}}\left[1+n_{j} x_{j}\right)}+0.1886\left(\delta_{j}+x_{j}^{\left.\left.-n_{j}\right)\right]}\right.\right.\right.\right.
$$

(microhenries/inch turn ${ }^{2}$)
where: $l_{j}=$ mean length of one side of j-coil

$$
\begin{aligned}
n_{j}= & \text { number of turns in } j \text {-coil } \\
\delta_{j}= & \text { ratio of mean axial spacing of coils to } \\
& \text { mean length " } \ell_{j} " \\
n_{j}= & \sqrt{1+\delta_{j}} \\
x_{j}= & \sqrt{2+\delta_{j}}
\end{aligned}
$$

For the particular coil configuration:

$$
\begin{align*}
& \frac{\ell_{0}}{R_{0}}=\frac{\ell_{x}}{R_{0}}=2\left(1+\frac{\alpha_{1}}{2}\right) \tag{11.50}\\
& \frac{\ell_{z}}{R_{0}}=2\left(1+\frac{\alpha_{1}}{2}\right) \tan \phi_{z} \tag{11.51}
\end{align*}
$$

$$
\begin{equation*}
\frac{\ell_{z z}}{R_{0}}=2\left(1+\alpha_{i}+\frac{\alpha_{2}}{2}\right) \tan \phi_{z z} \tag{11.52}
\end{equation*}
$$

$$
\begin{array}{lll}
\delta_{x}=\tan \phi_{x} & ; & \delta_{x x}=\tan \phi_{x x} \\
\delta_{z}=\cot \phi_{z} & ; & \delta_{z z}=\cot \phi_{z z}
\end{array}
$$

(iii) Total self-inductance parameters

The total self-inductance L_{j} of each coil pair is given by:

$$
\begin{equation*}
L_{j}=2\left[L_{j 0} \pm M_{j / j}\right] \tag{11.53}
\end{equation*}
$$

for the particular coil configuration, $n_{j}=\frac{N_{j}}{2}$
$T_{x}=\frac{I_{x}}{R_{0} N_{x}{ }^{2}}=\frac{1}{2} I\left(\frac{I_{x o}}{R_{0}\left(N_{x} / 2\right)^{2}}\right)^{2}+\left(\frac{M_{x / x}}{R_{0}\left(N_{x} / 2 I^{2}\right.} \Gamma^{2}\right]$
$T_{x x}=\frac{I_{x x}}{R_{0} N_{x x}{ }^{2}}=\frac{1}{2}\left[\left(\frac{I_{x x o}}{R_{0}\left(N_{x x} / 2\right)^{2}}\right)-\left(\frac{M_{x x / x x}}{R_{0}\left(N_{x x} / 2\right)^{2}}\right]\right.$
$T_{z}=\frac{L_{z}}{R_{0} N_{z}{ }^{2}}=\frac{1}{2}\left[\left(\frac{L_{z O}}{R_{0}\left(N_{z} / 2\right)^{2}}\right)+\left(\frac{M_{z / z}}{R_{0}\left(N_{z} / 2\right)^{2}}\right]\right.$
$T_{z Z}=\frac{L_{z Z}}{R_{0} N_{z Z}{ }^{2}}=\frac{1}{2}\left[\left(\frac{L_{z z O}}{R_{0}\left(N_{z Z} / 2\right)^{2}}\right)-\left(\frac{M_{z z / z z}}{R_{0}\left(N_{z Z} / 2\right)^{2}}\right]\right.$

Mutual Inductance Parameter (Gradient Coils) (Ref. 8)
The axial gradient coil pair is magnetically coupled with the vertical gradient coil pair due to the way in which the terminals of these coils are necessarily connected. As a result, changes in current through one pair of coils will result in net induced voltages in the other pair. This effect must be considered since it influences the specifications of the power supplies required to regulate the currents in the two systems.

The particular gradient coil configuration can be approximated by the arrangement shown in Figure 8 .below.

Figure 8. Approximation of the Axial Gradient and the Vertical Gradient Coil Pairs for Estimation of the Mutual Inductance Between Each Pair of Coils.

From the symmetry of the figure, further simplification of the analysis can be made by observing that the mutual inductance, $M_{A C}$, between coils A and C is equal to the
mutual inductances $M_{A D}{ }^{\prime} M_{B C}$, $M_{B D}$. Therefore, it is necessary only to find an expression for $M_{A C}$, as shown in Figure 9.

Figure 9. Coil Pair Geometry for Calculation of Mutual Inductance.

$$
\begin{aligned}
& M_{A C}=M_{15}+M_{37}-M_{17}-M_{35} \\
& M=0.00508 n_{1} n_{2}{ }_{1}\left[2 \ln A+\left(1+\frac{\ell_{2}}{1}\right) \ell n B+C-E\right] \\
& \quad(\text { Ref. } 8)
\end{aligned}
$$

where:

$$
\begin{equation*}
A=\left(\frac{\ell_{1}}{D}\right)\left[\left(1+\frac{\ell_{2}}{\ell_{1}}\right)+\sqrt{\left(1+\frac{\ell_{2}}{\ell_{1}}\right)^{2}}+\left(\frac{D}{\ell_{1}}\right)^{2}\right] \tag{11.60}
\end{equation*}
$$

$$
\begin{equation*}
B=\frac{\left(1+\frac{\ell_{2}}{\ell_{1}}\right)+\sqrt{\left.11+\frac{\ell_{2}}{\ell_{1}}\right)^{2}+\left(\frac{\cdot D}{\ell_{1}}\right)^{2}}}{-\left(1-\frac{\ell_{2}}{\ell_{1}}\right)+\sqrt{\left(1-\frac{l_{2}}{l_{1}}\right)^{2}+\left(\frac{D}{\ell_{1}}\right)^{2}}}=\frac{\left(1+\frac{\ell_{2}}{\ell_{1}}\right)+E}{-\left(1-\frac{l_{2}}{\ell_{1}}\right)+C} \tag{11.61}
\end{equation*}
$$

$$
\begin{equation*}
M=\sum_{j=1}^{4} a_{j} M_{j}\left(\ell_{1}, \frac{\ell_{1}}{D_{j}} \cdot \frac{\ell_{2}}{\ell_{1}}\right) \tag{11.63}
\end{equation*}
$$

where:

$$
\begin{array}{ll}
a_{1}=+1, & \sqrt{D_{1}=\left(d-\ell_{1}\right)^{2}+\left(c-\ell_{2}\right)^{2}} \\
a_{2}=-1, & \sqrt{D_{2}=\left(d-\ell_{1}\right)^{2}+\left(c+\ell_{2}\right)^{2}} \\
a_{3}=-1, \quad \sqrt{D_{3}=\left(d+\ell_{1}\right)^{2}+\left(c-\ell_{2}\right)^{2}} \\
a_{4}=+1, \quad \sqrt{D_{4}=\left(d+\ell_{1}\right)^{2}+\left(c+\ell_{2}\right)^{2}} \\
\ell_{1}=R_{0}\left(1+\frac{\alpha_{1}}{2}\right) \\
\ell_{2}=R_{0}\left(1+\alpha_{1}+\frac{\alpha_{2}}{2}\right) \tan \phi_{z Z} \\
c=R_{0}\left(1+\frac{\alpha_{1}}{2}\right) \tan \phi_{x x} \\
d=R_{0}\left(1+\alpha_{1}+\frac{\alpha_{2}}{2}\right)
\end{array}
$$

$$
W_{x x / z z}=\left(\frac{M_{x x / z z}}{R_{0} N_{x x^{N}}^{N}}\right)=0.00508\left(1+\frac{\alpha}{2}\right) \sum_{j=1}^{4}\left(2 \rho_{n} A_{j}+\left(I+\frac{\ell}{\ell}\right) \ln B_{j}+\rho_{l}-E_{j}\right)
$$

$$
(11.64)
$$

(microhenries/inch turn ${ }^{2}$)

Current Density
The current density is of interest, particularly with superconductors.
(i) The overall current density $J_{j o}$ in each winding
core is related to the performance parameters as follows:

$$
\begin{align*}
& \left(\frac{N_{j} I_{j}}{R_{0}} I=J_{j 0}\left[2 R_{0} \frac{A_{j O}}{R_{0}^{2}} L I\right.\right. \tag{11.65}\\
& =\frac{B_{j}}{Q_{j}} \tag{11.66}\\
& \text { i.e. } J_{j 0}=\frac{B_{j}}{R_{0}}\left[\frac{1}{2 Q_{j}\left(\frac{A_{j o}}{R_{0}^{2}}\right)}\right] \tag{11.67}\\
& \text { where } B_{j}=B_{x} ; R_{o} B_{x x} ; B_{z} ; R_{o} B_{z z}
\end{align*}
$$

(ii) The current density J_{C} in the conductor itself is related to the overall current density $J_{j o}$ by the packing factor $\left(F_{p}\right)_{j}$:

$$
\begin{equation*}
J_{c}=\frac{J_{j o}}{\left(F_{p}\right)_{j}} \tag{11.68}
\end{equation*}
$$

Peak Magnetic Field Strength Inside Coil Conductor (Ref.9)
In the case of superconducting coil material, the current density is constrained by the properties of the particular material and the local magnetic field strength. The properties of typical superconducting materials are shown in Figure 10 below.

Figure 10. Critical Properties of Typical Superconducting Coil Material.

For discussion purposes, the properties of a typical superconducting material can be approximated by the relation:

$$
\begin{equation*}
J<J_{\text {crit }}=J_{r e f}+\frac{d J_{\text {crit }}}{d B_{\text {crit }}}\left(B_{r e f}-B\right) \tag{11.69}
\end{equation*}
$$

If superconducting material is used, it is necessary to find the maximum value of B within the coil winding ($B_{\max }$) cond. and the corresponding current density $J\left(B=B_{\max }\right)_{\text {cond.' }}$ in order
to assume that the critical current density is not exceeded. The constraint can be stated alternately as follows:

$$
\begin{equation*}
\frac{\left.{ }_{\left(\mathrm{B}=\mathrm{B}_{\text {max }}\right)_{\text {cond }}}^{J_{\text {crit }}}=\frac{J\left(\mathrm{~B}=\mathrm{B}_{\text {max }}{ }^{I}{ }_{\text {cond }}\right.}{J_{\text {ref }}{ }^{+} \frac{\mathrm{dJ}_{\text {crit }}}{}\left(\mathrm{B}_{\text {max }}\right)}\right)_{\text {cond }}}{1} \tag{11.70}
\end{equation*}
$$

For the coil geometry under consideration, it has been found that the location of the maximum field point is in the positive-z, negative-x quadrant of the system, in the $y=0$ plane. This condition is shown in Figure 11.

Figure ll. Region of Maximum Field Within Coil Conductor.

This field strength can be estimated with satisfactory accuracy (5\% by assuming that the windings are equiyalent to infinite filaments located at the winding centroids, and carrying the corresponding currents. The effect of other quadrants is ignored.

The net magnetic field $\left(B_{\max }\right)_{\text {cond. }}$ at the point of interest is:

$$
\begin{equation*}
\left(B_{\max }\right)_{\text {cond }}=\frac{\mu_{o}}{2 \pi} \sqrt{a^{2}+b^{2}+2 a b \cos \theta_{z z}} \tag{11.71}
\end{equation*}
$$

where

$$
\begin{aligned}
& a=\left(\frac{\left|J_{x}\right| \alpha_{1}{ }^{2} \beta_{x} R_{o}{ }^{2}}{r_{x}}+\frac{\left|J_{x x}\right| \alpha_{1}{ }^{2} \beta_{x x}{ }^{R}{ }_{o}{ }^{2}}{r_{x x}}+\frac{\left|J_{z}\right| \alpha_{1}{ }^{2} \beta_{z} R_{o}{ }^{2}}{r_{z}}\right) \\
& b=\left(\frac{\left|J_{Z Z}\right| \alpha_{2}{ }^{2} \beta_{z Z} R_{o}{ }^{2}}{r_{z Z}}\right) \\
& r_{x}=R_{0} \frac{\alpha_{1} \beta_{x}}{2} \quad ; \quad r_{x x}=R_{0} \frac{\alpha_{1}{ }^{\beta} x x}{2} \\
& r_{z}=R_{0}\left(1+\frac{\alpha_{1}}{2}\right)\left(\tan \phi_{z}-\tan \phi_{x x}\right)+\frac{\alpha_{1} \beta_{x x}}{2} \\
& r_{z z}=R_{o} \sqrt{\left(\left(1+\alpha_{1}+\frac{\alpha_{2}}{2}\right) \tan \phi_{z z}-\left(1-\frac{\alpha_{1}}{2}\right) \tan \phi_{z}+\frac{\alpha_{1} \beta_{x x}}{2}\right)^{2}+\left(\frac{\alpha_{1}}{2}+\frac{\alpha_{2}}{2}\right)^{2}} \\
& \text { Several parameters which may be expected to be closely } \\
& \text { related to the cost of the facility can be evaluated from the } \\
& \text { geometric, material, and performance parameters of the coil } \\
& \text { system. Included among these are the following: }
\end{aligned}
$$

(a) Winding yolume parameters $\left(V_{j} / R_{o}{ }^{3}\right)$

The total volume $y_{\text {w }}$ of coil windings is

$$
\begin{gather*}
\frac{\left(V_{w}\right)_{t o t a l}}{R_{o}^{3}}=\sum_{j=1}^{4} \frac{V_{j}}{R_{o}^{3}} \tag{11.72}\\
\frac{V_{w}}{R_{O}^{3}} \text { total }=\sum_{j=1}^{4} 2\left(\frac{A_{j o}}{R_{o}^{2}}\right)\left(\frac{\bar{l}}{R_{o}}\right) \tag{11.73}
\end{gather*}
$$

(b) Winding mass (weight) parameters ($\mathrm{m}_{\mathrm{j}} / \mathrm{R}_{\mathrm{o}}{ }^{3}$)

The mass of conductor (exclusive of structural systems) included in each coil pair is:

$$
\begin{equation*}
\frac{m_{j}}{R_{o}^{3}}=\left(\frac{m}{V}\right)_{j}\left(F_{p}\right)_{j}\left(\frac{V_{j}}{R_{o}^{3}}\right) \tag{11.74}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left(\frac{m}{\bar{V}}\right)_{j}=\text { density of conductor in } j \text {-coils. } \\
& \left(F_{p}\right)_{j}=\text { winding packing factor }-j \text {-coils. }
\end{aligned}
$$

(c) Current-length product

The cost of superconducting material is often quoted in terms of (price)/(unit current x unit length) (eg., dollars/kiloamp. foot). Thus, it is desirable to derive a parameter in terms of this quantity.

The total length $\ell_{j_{\text {tot }}}$ of conductor in the $j-c o i l$ pair is

$$
\begin{equation*}
\ell_{j_{\text {tot }}}=R_{o} N_{j}\left(\frac{\overline{\ell_{j}}}{R_{0}}\right) \tag{11.75}
\end{equation*}
$$

The current-length product $\ell_{j_{\text {tot }}} I_{j}$, for the j-coils can be related to the performance tot parameter R_{j} as follows:

$$
\begin{equation*}
\Sigma l_{j} I_{j}=B_{j} R_{o}^{2}\left(\frac{\bar{l}_{j O}}{R_{o}}\right)\left(\frac{1}{Q_{j}}\right) \tag{11.76}
\end{equation*}
$$

where

$$
B_{j}=B_{x}, R_{o} B_{x x}, B_{z}, R_{0} B_{z z}
$$

12.0 GENERAL POWER SUPPLY REQUIREMENTS

Electrical power supplies are required to provide controlled currents through each of the four coil pairs.

The fields (B_{xo}, B_{zo}) may be controlled independently of the gradients ($B_{x x 0}, B_{z z o}$) by use of four separate power supplies, one for each of $B_{x}, B_{x x}, B_{z}$, and $B_{z z}$. Considerations that are involved are as follows:
(a) Control of force amplitude while maintaining saturation. The operation of the system requires that the spherical iron core of the store model be saturated at all points within the useful volume of the tunnel test section. This in turn places a lower limit on the net magnetic field strength at any point. With the combined axial and vertical ambient field strength held at a level adequate to saturate the sphere, the magnetic force may then be varied by adjustment of the axial and vertical field gradient coil currents.
(b) Minimization of force field nonuniformities. It has been demonstrated that the nonuniformities in the force field due to the gradient fields can be re-
duced by increases in the uniform ambient field level (Sect. 8I. Thus, there is an advantage in operating the ambient field at the maximum level, independent of the force required. Alternately stated, the maximum installed power available for the ambient field $\left(B_{x}, B_{z}\right)$ coil should be used at all times (in a ratio consistent with the required force field inclination, of course).

The alternative would be to have only two independent power supplies, with the $B_{x x}$ coils connected in series with the B_{x} coils to one power supply, and the $B_{z z}$ and B_{z} connected in series to the other power supply. Adjustment in the force level can be accomplished to some degree by adjustment of the currents, variation of the size of the spherical core relative to the store model, or choice of magnetic material having different saturation magnetization level.

12.1 POWER REQUIREMENTS FOR STEADY OPERATION

The d.c. power required for steady operation of the system can be found from the performance parameters as follows :

Total d.c. power $P_{\text {(d.c. }}^{\text {total }}=\Sigma P_{j}(d c)$

$$
P_{j(d . c .)}=I_{j}{ }^{2} R_{j}
$$

(12.3)

$$
\begin{array}{r}
P_{z(\text { d.c. })}=R_{o} B_{Z O}{ }^{2}\left(\frac{S_{z}}{Q_{z}{ }^{2}}\right) ; \quad P_{z Z(\text { d.c. })}=R_{0}\left(B_{Z Z O} R_{0}\right)^{2}\left(\frac{S_{z Z}}{Q_{Z Z}{ }^{2}}\right. \\
(12.5) \tag{12.6}
\end{array}
$$

or

Discussion
Several assumptions may be justified concerning the probable values of the parameters in the expression 12.7 above.
(i) $\quad\left(B_{x_{0}}\right)_{\max }^{\prime}=$ const.

$$
\left.\left(B_{z_{0}}\right)_{\max }=\text { const. }\right\} \begin{aligned}
& \text { (depend upon saturation magneti- } \\
& \text { zation of spherical core in } \\
& \text { store model) }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{R_{0}\left(B_{x x o}\right)^{\prime} \max }{\left(B_{x o}\right)_{\max }}=\text { const. } \\
& \frac{R_{0}\left(B_{z z o}\right) \max }{\left(B_{z o}\right)}=\text { const. }
\end{aligned}
$$

(gradients (and forces) inversely proportional to scale factor, due to aerodynamic scaling requirements)

Note that the other. factors $\left(\frac{S_{j}}{Q_{j}}\right)$ are related to shape, material, and construction

On the basis of the assumptions and observations above, note that the maximum d.c. power required for the coil system scales as the first power of the linear dimension.
12.2 ENERGY REQUIREMENTS FOR STARTUP OR INTERMITTENT OPERATION The magnet system not only dissipates energy due to ohmic losses, but also stores energy by way of the magnetic fields which are produced. Thus, the electrical energy required to produce change in the field level will be a function of the

$$
\begin{align*}
& \left.+B_{z O}{ }^{2}\left[\left(\frac{S_{z}}{Q_{z}{ }^{2}}\right)+\left(\frac{B_{z O^{R} O}}{B_{z O}}\right)^{2}\left(\frac{S_{z z}}{Q_{z z}{ }^{2}}\right)\right]\right\} \tag{12.7}
\end{align*}
$$

time taken to effect the desired change, in addition to the difference in stored energy between the two leyels.
(aissipation) Cstoragel

$$
\begin{equation*}
\text { i.e. } \Delta E_{j}=\int_{t_{l}}^{t_{2}} I_{j}{ }^{2} R_{j} d t+\frac{1}{2} I_{j}\left(I_{2}{ }^{2}-I_{1}{ }^{2}\right) \tag{12.8}
\end{equation*}
$$

In particular,

$$
\begin{align*}
& \Delta E_{x}=R_{0} \frac{1}{Q_{x}} \int_{t_{1}}^{t_{2}} S_{x} B_{x o}{ }^{2} d t+\frac{1}{2} R_{o}{ }^{3}\left(\frac{T}{Q_{x}}{ }^{2}\right)\left(B_{x o^{2}}\left(t_{2}\right)-B_{x O}{ }^{2}\left(t_{1}\right)\right) \\
& \Delta E_{x x}=R_{o} \frac{1}{Q_{x x}}{ }^{2} \int_{t_{1}}^{t_{2}} S_{x x}\left(R_{o} B_{x x O}\right)^{2} d t+\frac{1}{2} R_{o}{ }^{3}\left(\frac{T}{Q_{x x}}\right)\left(\left(R_{o} B_{x x O}\right)_{2}^{2}-\left(R_{o} B_{x x O}\right)_{1}^{2}\right) \tag{12.10}\\
& \Delta E_{z}=R_{O} \frac{l^{t_{2}}}{Q_{z}} \int_{L_{1}} S_{z O}\left(B_{z O}\right)^{2} d t+\frac{1}{2} R_{o}{ }^{3}\left(\frac{T}{Q_{z}^{2}}\right)\left(\left(B_{z O}\right)_{2}^{2}-\left(B_{z O}\right)_{1}^{2}\right)
\end{align*}
$$

Note that the resistance parameters $\left(S_{j}\right)$ are included under the integral sign. Recall that S_{j} is proportional to the resistivity ρ_{j} of the conductor material which in general may be affected by changes in temperature of the conductor, due in turn to the dissipation itself. The exception to this of course is the case of superconducting material, in which the dissipative term may be negligible.
12.3 RESPONSE OF MAGNET SYSTEM TO POWER INPUT VARIATIONS If it is assumed that the resistance parameters are constant, the four coil systems respond to voltage inputs as follows below:
(a) Four independent power supplies $V_{x}, V_{X X}, V_{z}, V_{z z}$
(i) Non-superconducting coils

$$
\begin{align*}
& I_{x}(s)=\left(\frac{1}{R_{x}}\right)\left(\frac{1}{1+\tau_{x}^{s}}\right) \cdot V_{x}(s) \tag{12.13}\\
& I_{z}(s)=\left(\frac{1}{R_{z}}\right)\left(\frac{1}{\left(1+\tau_{z} s\right)}\right) V_{z}(s) \tag{12.14}\\
& I_{x x}(s)=\left(\frac{1}{R_{x x}}\right)\left(\frac{1+\tau_{z z^{s}}}{D}\right) V_{x x}(s)+\left(\frac{1}{R_{x x^{R} z}}\right)^{\frac{1}{2}}\left(\frac{-k x x / z z^{\sqrt{\tau}} x x^{\tau} z z}{D}\right) V_{z z}(s) \\
& \text { (12.15) } \\
& I_{z z}(s)=\left(\frac{1}{R_{x x^{R} z_{z}}^{\frac{1}{2}}}\right)\left(\frac{-k}{x x / z z^{\sqrt{\tau}} x x^{\tau} z z}\right) v_{x x}(s)+\left(\frac{1}{R_{z z}}\right)\left(\frac{1+\tau_{x x^{s}}}{D}\right) v_{z z}(s) \\
& \text { (12.16) }
\end{align*}
$$

where:

$$
\begin{align*}
& D=1+\left(\tau_{x x}+\tau_{z z}\right) s+\left(1-k_{x x / z z}^{2}\right) \tau_{x x} \tau_{z z} s^{2} \\
& \tau_{j}=\binom{L_{\dot{j}}}{R_{j}}=R_{o}^{2} \frac{T_{j}}{S_{j}} \\
& k_{x x / z z}=\frac{M_{x x / z z}}{\sqrt{E_{x x^{L}{ }_{z z}}}=\frac{W_{x x / z z}}{\sqrt{T} x x^{T} z_{z}}} \\
& \text { s = Laplace transform operator. } \\
& \text { (ii) Superconducting coils }\left(R_{j}=0\right) \\
& I_{X}(s)=\left[\frac{1}{L_{x} s}\right] \quad V_{x}(s) \tag{12.17}\\
& I_{z}(s)=\left[\frac{1}{L_{z} s}\right] V_{z}(s) \tag{12.18}
\end{align*}
$$

$$
I_{x x}(s)=\left[\frac{1}{\left(1-k_{x x / z z}^{2}\right) \dot{L}_{x x} s}\right] V_{x x}(s)+\left[\frac{-k_{x x / z z}}{\left(1-k_{x x / z z}^{2}\right) \sqrt{I_{x x} L_{z z}}}\right] V_{z z}(s)
$$

$$
\begin{equation*}
I_{z z}(s)=\left[\frac{-k_{x x / z z}}{\left(1-k_{x x / z z}^{2}\right) \sqrt{I_{x x} L_{z z}}}\right] V_{x x}(s)+\left[\frac{1}{\left(1-k_{x x / z z}^{2}\right) L_{z z} s}\right] V_{z z}(s) \tag{12.19}
\end{equation*}
$$

(b) Two independent power supplies $\left(\mathrm{V}_{\mathrm{x}}+\mathrm{V}_{\mathrm{xx}}\right),\left(\mathrm{V}_{\mathrm{z}}+\mathrm{V}_{\mathrm{zz}}\right)$ with x and $x x$ coils in series ($I_{x}=I_{x x}$) and z and $z z$ coils in series $\left(I_{z}=I_{z z}\right)$.
(i) Non-superconducting coils.

$$
\begin{aligned}
I_{x}= & I_{x x}(s)=\left[\frac{I}{R_{x}+R_{x x}}\right]\left[\frac{1+\tau_{z}{ }^{s}}{D_{*}}\right]\left(V_{x}+V_{x x}\right)(s) \\
& +\left(\sqrt{\left.{ }^{R_{x}+R_{x x}}\right)\left(R_{z}+R_{z z}\right)}\right) \cdot\left[\frac{-k_{x x / z z}}{D_{*}} \sqrt{\frac{{ }^{\tau} x x^{\tau} z z}{\left(1+\frac{L_{x}}{L_{x x}}\right)\left(1+\frac{\bar{L}_{z}}{L_{z z}}\right)}} s\right]\left(V_{z}+V_{z z}\right)(s)
\end{aligned}
$$

$$
\begin{align*}
I_{z}= & I_{z z}(s)=\left[\frac{1}{R_{z}+R_{z z}}\right]\left[\frac{1+\tau x^{*} s}{D_{*}}\right]\left(V_{z}+V_{z z}\right)(s) \tag{12.21}\\
& +\frac{1}{\left.\sqrt{\left(R_{x}+R_{x x}\right)\left(R_{z}+R_{z z}\right.}\right)}\left[\frac{-k_{x x / z z}}{D_{*}} \sqrt{\frac{{ }^{\tau} x x^{\tau} z z}{L_{x}}}\left(1+\frac{L_{z}}{L_{x x}}\right)\left(1+\frac{L_{z}}{L_{z z}}\right)\right. \tag{12.22}\\
&
\end{align*}
$$

where

$$
\begin{aligned}
\tau_{x *} & =\frac{L_{x}+L_{x x}}{R_{x}+R_{x x}} ; \tau_{z *}=\frac{L_{z}+L_{z z}}{R_{z}+R_{z z}} \\
\dot{D}_{*} & =1+\left(\tau_{x *}{ }^{+\tau_{z *}}\right) \cdot s+\frac{\left(1-k_{x x / z z}^{2}\right)}{\left(1+\frac{L_{x}}{L_{x x}}\right)\left(1+\frac{L_{z}}{L_{z z}}\right)} \tau_{x *}{ }^{\tau} z_{z *} s^{2}
\end{aligned}
$$

(ii) Superconducting coils $\left(R_{j}=0\right)$

$$
\begin{align*}
& I_{x}(s)=I_{x x}(s)=\left[\frac{1}{\left(L_{x}+I_{x x}\right)\left(1-\frac{k_{x x / z z}^{2}}{\left(1+\frac{L_{x}}{L_{x x}}\right)\left(1+\frac{L_{z}}{L_{z z}}\right)}\right) s}\left(V_{x}+V_{x x}\right)(s)\right. \\
& +\left[\frac{-k_{x x / z z}}{\sqrt{L_{x x} L_{z z}}\left(\left(1+\frac{\bar{L}_{x}}{L_{x x}}\right)\left(1+\frac{I_{z}}{L_{z z}}\right)-k_{x x / z z}^{2}\right.}\right) s\left(v_{z}+V_{z z}\right)(s) \tag{12.23}\\
& I_{z}(s)=I_{z z}(s)=\left[\frac{1}{\left(L_{z}+I_{z z}\right)\left(1-\frac{k_{x x / z z}^{2}}{\left(1+\frac{L_{x}}{L_{x x}}\right)\left(I+\frac{L_{z}}{L_{z z}}\right)}\right) s}\right]\left(V_{z}+V_{z z}\right)(s) \\
& +\left[\frac{-k_{x x / z z}}{\sqrt{L_{x x} L_{z z}}\left(\left(1+\frac{L_{x}}{L_{x x}}\right)\left(1+\frac{L_{z}}{L_{z z}}\right)-k_{x x / z z}^{2}\right) s}\right]\left(V_{x}+V_{x x}\right)(s) \text { (12.24) }
\end{align*}
$$

I3.0 MULTIPLE SIMULTANEOUS STORE JETTISON TESTS
When two or more stores are jettisoned simultaneously in the magnetic artificial gravity facility, perturbations to the trajectories will be experienced due to mutual magnetic attraction or repulsion between the store models. Consequently, it is of interest to estimate the magnitude of these interaction forces and their variation with the spacing and relative orientation of the store models in the ambient magnetic fields. Analysis
a) "Two-body problem."

The problem can be illustrated by analyzing the forces between two spherical iron bodies immersed in a saturating
magnetic field. The situation is shown in Figure 12.

Ambient Field
$B_{X}\left(>\frac{m_{\text {sat }}}{3}\right)$

Figure 12. Two Iron Spheres Immersed in a Saturating Ambient Magnetic Field.

Sphere 1 is magnetically saturated, and the magnetization is assumed to be parallel to the ambient field B_{x}. (i.e. The perturbation to the magnetization of sphere 1 , due to sphere 2 , is neglected.)

The external field due to sphere 1 , in spherical coordinates, is

$$
\begin{align*}
& B_{r^{2}(1)}=2\left[\frac{\left(m_{\operatorname{sat}}{ }^{2}(1)^{R_{1}^{3}}\right.}{3}\right] \frac{\cos \theta}{r^{3}} \tag{13.1}\\
& B_{\theta}^{\prime}(I)=\left[\frac{m^{\prime} \operatorname{sat}(1)^{R_{1}^{3}}}{3}\right] \frac{\sin \theta}{r^{3}} \tag{13.2}
\end{align*}
$$

$$
\begin{equation*}
\left.B_{\phi}\right\}_{11}=0 \tag{13.3}
\end{equation*}
$$

$\left.\frac{d F_{r}}{d V}\right)_{(2)}=\frac{\left.-k_{t}\left(m_{s a t}\right\}_{1)}\left(m_{s a t}\right\}_{2}\right)^{R_{1}^{3}}}{r^{4}}\left[2-3 \sin ^{2} \theta\right]$

$$
\begin{equation*}
\frac{d F_{\theta}}{d v}\left\{(2)=\frac{-k_{t}\left(m_{s a t}{ }^{\prime}(1){ }^{\left(m_{s a t} \nmid 2\right)^{R_{1}^{3}}}\left[\sin 2 \theta\left(3-5 \sin ^{2} \theta\right)\right]\right.}{r^{4}}\right. \tag{13.6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d F_{\phi}}{d V} q_{2)}=0 \tag{13.7}
\end{equation*}
$$

or, for $z=0$,

$$
\begin{align*}
& \frac{d F_{x}}{d V}=\frac{-k_{t}\left(m_{s a t}\right)_{(1)}^{\left.\left(m_{s a t}\right)_{2}\right)^{R_{1}^{3}}}}{r^{4}}\left[\cos \theta\left(2-5 \sin ^{2} \theta\right)\right] \text { (13.8) } \\
& \frac{d F_{y}}{d V}=\frac{\left.-k_{t}\left(m_{\operatorname{sat}}\right)_{1}\right)^{\left(m_{\operatorname{sat}}\{2)^{R_{1}^{3}}\right.}}{r^{4}}\left[\sin \theta\left(4-5 \sin ^{2} \theta\right)\right] \tag{13.9}
\end{align*}
$$

The magnitude of the total force $\left|\frac{d F}{d V}\right|$ on an element is:

$$
\begin{equation*}
\left|\frac{d F}{d V}\right|=\sqrt{\left(\frac{d F_{x}}{d V}\right)^{2}\left(\frac{d F}{d V}\right)^{2}+\left(o r=\sqrt{\left(\frac{d F_{r}}{d V}\right)^{2}+\left(\frac{d F_{\theta}}{d V}\right)^{2}}\right)} \tag{13.10}
\end{equation*}
$$

ie.

$$
\left|\frac{d F}{d v}\right|=\frac{k_{t}\left(m_{s a t}\right)^{\prime}(1)^{\left(m_{s a t}\{2)^{R_{1}^{3}}\right.}}{r^{4}}\left[\cos \theta \sqrt{\left.\left(2-5 \sin ^{2} \theta\right)^{2}+\left(4-5 \sin ^{2} \theta\right)^{2}\right]}\right.
$$

Define

$$
\begin{equation*}
K_{|d F|}(\theta)=\left[\cos \theta \sqrt{\left(2-5 \sin ^{2} \theta\right)^{2}+\left(4-5 \sin ^{2} \theta\right)}\right] \tag{13.12}
\end{equation*}
$$

The direction $\psi|d F|$ of the total elemental force is

$$
\begin{equation*}
\psi_{\mathrm{dF}}=\tan ^{-1}\left[\tan \theta\left[\frac{4-5 \sin ^{2} \theta}{2-5 \sin ^{2} \theta}\right]\right]-\pi \tag{13.13}
\end{equation*}
$$

The angle-dependent terms $K_{|d F|}(\theta)$ and $\psi|d F|$ are plotted in Figures 13 and 14.

Figure 13. Variation of Strength and Direction of Magnetic Force on a Volume Element dV Due to a Saturated Sphere and a Saturating Ambient Field, at a Given Radius.

Figure 14. Angle Dependent Factor $K_{|d F|}(\theta)$ and Direction $\psi|d F|$ of Total
Magnetic Force on a Magnetized Volume Element, Due to a Sphere Magnetized Parallel to the Element.

The force components on a volume element $\left(\mathrm{dV}_{2}\right)$ thus vary inversely with the fourth power of the distance from the center of sphere l, are functions of the angle to the volume element from the center of sphere 1 , relative to the ambient field, and are proportional to the product of the saturation magnetization of sphere 1 and that of the volume element.

The total forces F_{r} ! F_{θ} exerted on sphere 2 due to the gradients of the field from sphere 1 are found by integrating the elemental forces over the volume of sphere 2. i.e.,

$$
\begin{align*}
& F_{r(2)}=\int^{V}(2)\left(\frac{d F_{r}}{d V}\right)_{(2)} d V \\
& F_{\theta(2)}=\int^{V}(2)\left(\frac{d F_{\theta}}{d V}\right)_{(2)} d V \tag{2}\\
& F_{\phi(2)}=0 \tag{13.16}
\end{align*}
$$

The integrations indicated in 13.14,15, for the general case, are not evaluated here in their exact form. Instead, a conservative approximate form is presented which illustrates the situation in a relatively simple way. The following assumptions are made:
(i) The direction of the total force corresponds to that of the elemental force calculated for $\theta=\theta_{12}$.
(ii) The magnitude of the total force is estimated by integration of a volume force which varies with $\left(1 / s^{4}\right)$ over the volume of sphere 2 , where s is a distance in a rectangular coordinate system.
The results are as follows:

$$
|F|_{(2)} \approx \frac{k_{t}\left(m_{s a t}\right)_{(1)}\left(m_{s a t}\right)_{(2)} R_{1}^{3}\left(\frac{4}{3} \Pi R_{2}^{3}\right)}{r_{12}^{4}}\left[\frac{1}{\left(1-\left(\frac{R_{2}}{r_{12}}\right)^{2}\right)^{2}}\right]\left(k_{d F}\left(\theta_{12}\right)\right)
$$

and, angle of $F_{12}=\psi_{12}$

$$
\begin{equation*}
\psi_{12} \simeq \tan ^{-1}\left[\tan \theta_{12}\left[\frac{4-5 \sin ^{2} \theta_{12}}{2-5 \sin ^{2} \theta_{12}}\right]-\pi\right. \tag{13.18}
\end{equation*}
$$

The total force is thus identical to the elemental force at the center of sphere 2 multiplied by the volume of sphere 2 , and weighted by a function of ($\mathrm{R}_{2} / \mathrm{r}_{12}$) which approaches unity as ($\left.R_{2} / r_{12}\right)$ approaches zero, as is expected.

If it is assumed that the two spheres are identical, of radius R, and saturation magnetization $m_{\text {sat }}$, and their centers separated by a distance r,
i.e.,

$$
\begin{aligned}
& R_{1}=R_{2}=R \\
& m_{s^{\prime} t_{1}}=m_{s a t}=m_{s a t} \\
& r_{12}=r
\end{aligned}
$$

then:

$$
\begin{array}{r}
|F| \simeq \frac{k}{R}\left(\frac{4}{3} \Pi R^{3}\right)\left(m_{\text {sat }}\right)^{2}\left[\left(\frac{R}{r}\right)^{4}\left(\frac{1}{1-\left(\frac{R}{r}\right)^{2}}\right)^{2}\right]\left(k_{d F}(\theta)\right) \tag{13.19}\\
\text { Observe that }\left(\frac{R}{r}\right)_{\text {max }}=0.5 \text { (contact) }
\end{array}
$$

Values of the weighting function of ($\frac{R}{r}$) in Eq. 13.19 are tabulated below.

$\left(\frac{r}{R}\right)$	$\left[\left(\frac{R}{r}\right)^{4} \frac{1}{\left(1-\left(\frac{R}{r}\right)^{2}\right)^{2}}\right]$	$\left(\frac{r}{R}\right)$	$\left[\left(\frac{R}{r}\right)^{4} \frac{1}{\left(1-\left(\frac{R}{r}\right)^{2}\right)^{2}}\right]$
2	1.11×10^{-1}	7	4.33×10^{-4}
3	1.57×10^{-2}	8	2.52×10^{-4}
4	4.45×10^{-3}	9	1.58×10^{-4}
5	8.03×10^{-4}	10	1.01×10^{-4}

The acceleration $\left(a_{s}\right)_{M}$ of the store model due to the perturbing force estimated above is as follows:

$$
\begin{align*}
\left(a_{S}\right)_{M} & =\frac{|F|}{\left(w_{S}\right)_{M}} g \tag{13.20}\\
& =\left(\frac{w_{\text {mag }}}{w_{S}}\right) \frac{F}{w_{\text {mag }}} g \tag{1.3.21}
\end{align*}
$$

but $\quad w_{\text {mag }}=\frac{4}{3} \Pi R^{3} \rho_{\text {mag }}$
$:\left(a_{s}\right)_{M}=\left(\frac{w_{\text {mag }}}{w_{s}}\right) \frac{k_{t} t_{s a t}^{2}}{\operatorname{R\rho }_{\operatorname{mag}}}\left[f\left(\frac{R}{r}\right)\right]\left[K_{d F}(\theta)\right] g$

Example:
Let $\left(\frac{\mathrm{w}_{\text {mag }}}{\mathrm{w}_{\mathrm{s}}}\right)=0.5$

$$
\begin{aligned}
m_{\text {sat }} & =21 \text { kilogauss } \\
\rho_{\text {mag }} & =0.283 \mathrm{lb} / \text { in }^{3}
\end{aligned}
$$

$$
\text { and } k_{t}=1.14(i n .1 b)(i n)^{-3}(\text { K. gauss })^{-2}
$$

$$
\begin{aligned}
A\left(a_{s}\right)_{m} & =\frac{(0.5)(1.14)(21)^{2}}{R(0.283)}\left[f\left(\frac{R}{r}\right)\right]\left[K_{d F}(\theta)\right] g \\
& =\frac{\left(8.9 \times 10^{2}\right)}{R}\left[f\left(\frac{R}{r}\right)\right]\left[K_{d F}(\theta)\right] g
\end{aligned}
$$

Let $\quad R=0.5^{\prime \prime} ;\left(\frac{r}{R}\right)=6 ; \theta=0$,
then

$$
\begin{aligned}
\left(\mathrm{a}_{\mathrm{s}}\right)_{\mathrm{m}} & =\frac{\left(8.9 \times 10^{2}\right)}{(0.5)}\left[8.03 \times 10^{-4}\right][2.0) \mathrm{g} \\
& =2.9 \mathrm{~g}
\end{aligned}
$$

i.e., For two store models, each containing l" diameter iron spheres, with a separation $3^{\prime \prime}$ between centers of gravity, the mutual perturbing acceleration is of the order of 1.5 to 3 g 's, depending upon the orientation of the line between the centers relative to the applied field.

For greater separation, the perturbation is less. For example, by increasing the separation from $(r / R)=6$ to $(r / R)=8$, the perturbing acceleration diminishes from 2.9 g's to 0.88 g .

For this example, the probable gravity scale factor would be of the order of 20. Thus, the perturbation acceleration is a significant fraction of the "normal" acceleration at short separation distances, but diminishes rapidly with separation.

Note the effect of scale: the ratio of perturbation acceleration to "normal" acceleration is independent of scale to a first approximation, due to the reduced normal acceleration required with increasing model size.
(b) Multi-body problem.

The total force on a single sphere is the vector sum of the forces produced by all surrounding spheres as calculated for the two-body problem. That is, the forces add linearly.

APPENDIX A
 MAGNETIC FIELDS DUE TO AN ARRAY OF. STRAIGHT LINE CURRENT ELEMENTS AND CORRESPONDING FORCES ON A FERROMAGNETIC SPHERE

The following is an outline of the relations required to compute the magnetic field strength and gradient components and the corresponding forces on a ferromagnetic sphere, produced by an array of straight-line current elements, and by extension, by an assembly of square or rectangular magnet coils. These relations apply for regions of constant permeability, and therefore do not allow for ferromagnetic material in the vicinity, as would be the case if iron cores were to be used in association with the coil assembly.

The relationships are based upon the principle of linear superposition. That is, the field strength at a particular point in space is found by adding the effects of individual current elements.

Field and Gradient Components from a Single Current Element

The field strength at a point in space due to a straightline current element is found by application of the Biot-Savart Law, viz.

$$
\begin{equation*}
\vec{B}=\frac{\mu_{0} I}{4 I I} \oint \frac{d \vec{\ell} \times \vec{r}}{r^{3}} \tag{A-1}
\end{equation*}
$$

In terms of rectangular coordinates and the quantities illustrated in Figure $A-1$, the field components are as follows:

Figure A-1. Definition of Current Element and Field Point Positions.

$$
\begin{align*}
& B_{x_{n}}=\frac{\mu_{0} I_{n}}{4 \Pi} G_{n} U_{n} \tag{A-2}\\
& B_{Y_{n}}=\frac{\mu_{0} I_{n}}{4 \Pi} G_{n} V_{n} \tag{A-3}\\
& B_{z_{n}}=\frac{\mu_{0} I_{n}}{4 \Pi} G_{n} W_{n} \tag{A-4}
\end{align*}
$$

where:

$$
\begin{align*}
& u_{n}=\left[\left(y_{1}-y_{0}\right)\left(z_{2}-z_{0}\right)-\left(y_{2}-y_{0}\right)\left(z_{1}-z_{0}\right)\right] \tag{A-5}\\
& v_{n}=\left[\left(z_{1}-z_{0}\right)\left(x_{2}-x_{0}\right)-\left(z_{2}-z_{0}\right)\left(x_{1}-x_{0}\right)\right] \tag{A-6}\\
& w_{n}=\left[\left(x_{1}-x_{0}\right)\left(y_{2}-y_{0}\right)-\left(x_{2}-x_{0}\right)\left(y_{1}-y_{0}\right)\right] \tag{A-7}
\end{align*}
$$

$$
\begin{align*}
& \text { let } \quad H_{n}=1+\frac{\vec{\rho}_{1} \cdot \vec{\rho}_{2}}{\rho_{1} \rho_{2}} \\
& \text { if } H_{n} \geq 10^{-2} \text {, let } G_{n}=\left[\frac{\left(\rho_{1}+\rho_{2}\right)}{\rho_{1} \rho_{2}}\left(\frac{1}{\rho_{1} \rho_{2} \vec{\rho}_{1} \cdot \vec{\rho}_{2}}\right)\right] \\
& \text { if } H_{n}<10^{-2} \text {, let } G_{n}=\left[\frac{\left(\rho_{1}+\rho_{2}\right)}{\rho_{1} \rho_{2}} \frac{\left(\rho_{1} \rho_{2}-\vec{\rho}_{1} \cdot \vec{\rho}_{2}\right)}{\vec{\rho}_{1} \times \vec{\rho}_{2}}\right] \\
& \rho_{1}=\left[\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}+\left(z_{1}-z_{0}\right)^{2}\right]^{1 / 2} \\
& \rho_{2}=\left[\left(x_{2}-x_{0}\right)^{2}+\left(y_{2}-y_{0}\right)^{2}+\left(z_{2}-z_{0}\right)^{2}\right]^{1 / 2} \\
& \vec{\rho}_{1} \cdot \vec{\rho}_{2}=\left[\left(x_{1}-x_{0}\right)\left(x_{2}-x_{0}\right)+\left(y_{1}-y_{0}\right)\left(y_{2}-y_{0}\right)+\left(z_{1}-z_{0}\right)\left(z_{2}-z_{0}\right)\right](A-13) \\
& \rho_{1} \times \rho_{2}=U+V+W \tag{A-14}\\
& \text { by letting } \mathrm{Y}_{1}=\mathrm{U}, \mathrm{Y}_{2}=\mathrm{V}, \mathrm{Y}_{3}=\mathrm{W}, . \tag{A-15}
\end{align*}
$$

Equations ($A-2,4,6$) can be reduced by index notation to the form

$$
\begin{equation*}
\left(B_{x i}\right)_{n}=\frac{\mu_{0} I_{n}}{4 \Pi} G_{n} Y_{i} \quad i=1,2,3 \tag{A-16}
\end{equation*}
$$

The gradient components are thus,

$$
\begin{equation*}
\left(\frac{\partial B_{x i}}{\partial \partial_{x j}}\right)_{n}=\frac{\mu_{0} I_{n}}{4 \Pi}\left[G_{n} \frac{\partial Y_{i}}{\partial_{x j}}+Y_{i} \frac{\partial G_{n}}{\partial x j}\right]_{j=i, 2,3} \tag{A-17}
\end{equation*}
$$

for $H \geq 10^{-2}, \frac{\alpha_{n}}{\alpha_{x j}}=\frac{\alpha}{\alpha_{x j}}\left\{\frac{\left(\rho_{1}+\rho_{2}\right)}{\rho_{1} \rho_{2}} \frac{1}{\left(\rho_{1} \rho_{2} \cdot \vec{\rho}_{1} \cdot \vec{\rho}_{2}\right)}\right\}$

$$
\text { let } \begin{aligned}
\rho_{1}+\rho_{2} & =P \\
\rho_{1} \rho_{2} & =Q \\
\rho_{1} \cdot \rho_{2} & =R \\
{\left[\vec{\rho}_{1} \times \vec{\rho}_{2}\right] } & =S
\end{aligned}
$$

expanding (A-18),
$\frac{\partial G}{\partial x j}=\left[\frac{1}{Q(Q+R)}\right] \frac{\partial P}{\partial x j}+\left[\frac{-P(2 Q+R)}{Q^{2}(Q+R)^{2}}\right] \frac{\partial Q}{\partial j}+\left[\frac{P}{Q(Q+R)^{2}}\right] \frac{\partial R}{\partial x j}$
for $H<10^{-2}, \frac{\partial G}{\partial_{x j}}=\frac{\partial}{\partial_{x j}}\left[\frac{\left(\rho_{1}+\rho_{2}\right)\left(\rho_{1} \rho_{2}-\rho_{1} \cdot \rho_{2}\right)}{\rho_{1} \rho_{2}\left(\vec{\rho}_{1} \times \vec{\rho}_{2}\right)^{2}}\right]$
Expanding ($\mathrm{A}-20$)

$$
\begin{align*}
\frac{\partial G}{\partial x j} & =\left[\frac{Q-R}{Q S^{2}}\right\} \frac{\partial P}{\partial x j}+\left[\frac{P(Q-S(Q-R))}{Q^{2} S^{3}}\right] \frac{\partial Q}{\partial x j} \\
& +\left[\frac{P}{Q S^{3}}\right] \frac{\partial R}{\partial x j}+\left[\frac{-2 P(Q-R)}{Q S^{3}}\right] \frac{\partial S}{\partial x j} \tag{A-21}
\end{align*}
$$

The total field properties at a point (x_{0}, y_{0}, z_{0}) due to N current elements are thus given by the following:

$$
\begin{equation*}
\left(B_{x i}\right)=\frac{\mu 0}{4 \pi} \sum_{n=1}^{N}\left(I G Y_{i}\right)_{n} \quad i=1,2,3 \tag{A-22}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\partial B_{x i}}{\partial{ }_{x j}}\right)=\frac{\mu_{0}}{4 I} \sum_{n=1}^{N} I_{n}\left(G_{\partial Y_{i j}}^{\partial Y_{x j}}+Y_{1} \frac{\partial G}{\partial_{x j}}\right)_{n} \quad i=1,2,3 \tag{A-23}
\end{equation*}
$$

Magnetic Forces

The magnetic force components can be written in index notation as follows:

$$
\begin{equation*}
\frac{F_{x j}}{v_{\text {mag }}}=k_{t} k \sum_{i=1}^{3}\left[\frac{B_{x i}}{\left.\left\lvert\, \frac{B_{i}}{} \frac{\partial B_{x i}}{\partial}\right.\right] \quad j=1,2,3}\right. \tag{A-24}
\end{equation*}
$$

where $\quad K=3|B|$, if $3|B|<m_{\text {sat }}$

$$
\text { or } K=m_{\text {sat }}, \quad \text { if } 3|B|>m_{\text {sat. }}
$$

Abstract

APPENDIX B COMPUTER PROGRAM FOR CALCULATING AND TABULATING MAGNETIC FIELD AND FIELD GRADIENT COMPONENTS DUE TO AN ARRAY OF STRAIGHT LINE CURRENT ELEMENTS, AND THE CORRESPONDING FORCES ON A FERROMAGNETIC SPHERE

The following is a brief description of a computer program "TABLE" written in Fortran IV language which is used to compute and tabulate the magnetic field properties and the magnetic force components on a ferromagnetic sphere; using the relations outlined in Appendix A.

Tabulating Program ("TABLE")
TABLE was developed to provide a tabulation of the magnetic field components, component derivatives, and magnetic force components for a set of field positions.

The input data for this program includes the end points of the current elements as defined in Figure $A-1$, the current flowing in each element, and the saturation magnetization of the sphere material. Variable names associated with the input data can be found in the "Input Variable List" of the Program Listing on page 72.

Sample input and output data are shown on pages 81 and 82.

```
C
a ccoe to calculate tre magnetic forces on a eudy in a fielo produced
BY COILS CUNSISTING OF STRAIGHT LINE CURRENT ELEMENTS. . THE FORCES
C AND FIELD CHARACTERISTICS ARE TABULATED AT CORRESFONDING PUINTS IN
THREE DIMENSIGNAL SPACE.
C CURRENT ELEMENTS ARE COUNTED COUNTER-CLCCKWISE ARCLT THE CGRRESPGNDING
C CODRDINATE CIRECTIUNS. ALL CURRENTS ARE POSITIVE COUNTEK-CLOCKWISE.
C
C
C
variagle name
    [A
    AMS
    XKT
    XMU
    INM
    INPOPT
    CONFG
    IM
    JN
    KM
    LN
    LX
    DY
    CZ
    X(1)
    Y(1)
    y CGURDINATE OF STARTING POINT FOR INCREMENTING.
    Z COCRDINATE OF STARTING FCINT FOR INCREMENTING.
    Xi,Yl,zl CuORDinates of the end points uF the straight line
    X2,Y2,Z2 CURRENT ELEMENTS MAKING UP THE COILS.
    CUR
    CURT
    CURX1
    CUR\times2
INPUT VARIAELE LIST
    demagnetizing ccnstant for the mgcel.
    saturaticn magnetilzaticN FOR the mCDEL.
    magnetic fCRCE cCASTANT.
    MAGNETIC PERMEABILITY CF FREE SPACE.
    the number cF cata sets.
    INPUT CPTICN.
    DESCRIPTIUN OF ARTIFICIAL GRAVITY CONFIGURATICN.
    NUMBER OF INCREMENTS IN THE X-DIRECTION.
    NUMBER OF INCREMENTS IN THE Y-DIRECTICN.
    NUMBER OF INCREMENTS IN TIE Z-DIRECTION.
    tutal number of current elements
    - DELTA' X.
    -delta' Y.
    -dElTA' Z.
    x CGuroinate uF Starting piInt fCR INCREMENTING
    MAGNITLDE GF THE CURRENT IN AMFERES,+ FRCM 1 TO 2.
    CURRENT FLOWING IN A LOCP OF FUUR CURRENT ELEMENTS.
    the tutal clrrent in the +x fiell ccil.
    the tutal clurent in the +x gracient coil.
```

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\({ }_{C}^{C}\)} & \multicolumn{9}{|l|}{C Curx3 the total clrrent in the -x fielo ccion} \\
\hline & CURX4 & THE & total & CURRENT & IN & THE - X & GRadie & NT & COIL. \\
\hline c & CURL2 & THE & tutal & Clirrent & IN & THE + 2 & FIELC & COI & L. \\
\hline C & CURL2 & the & rotal & Clirkent & IN & THE +2 & GRACIE & - \(\begin{array}{r}\text { t }\end{array}\) & CCIL. \\
\hline C & CURZ3 & THE & TUTAL & CURRENT & IN & THE -2 & FiELD & COI & \\
\hline C & CURZ4 & The & total & ClRRENT & IN & THE -z & GRACI & Ent & COIL. \\
\hline
\end{tabular}
            DIMENSICN X(100),Y(100),Z(IC)),S(3),T(3),CP(3),DS(3),DO(3),DC(3),
            10G(3),X1(50.3),Y1(500),21(500),X2(500),Y2(500),22(500),CUR(500),CCN
            2FG(I8),CURT(500)
    100 FCRMAT(4I4,5F8.4)
    110 FORMAT(6F8.4,F1J.0)
    111 FURMAT(3F6.1,9F8.1,3F8.31
    112 FORMAT(F5.3,F9.2,2F12.11,215)
```



```
        1,GHCBX/OY, 2X,6HCBX/OL, 2X,6HCBY/OY, 2X,6HCBY/DZ,2X,GHCEZ/[CZ,4X,2HFX,
    26X,2HFY,6X,2HFZI
    FCRMAT(//)
    115 FURMAT(///)
    116 FORMAT(6X,6HINCFES,16X,5HGAUSS,2Sx,9HGALSS/IN0,27X,1OHLBF/CU.IN.I
    118 FORMAT(IH1)
    127 FORMAT(24X, LUHINPUT DATAI
    128 FORMAT(2X,GHXI(IN),2X,6HY1(INI,2X,GHZL(IN), 2X,6HX2(IN),2X,6HY2(IN)
        1,2X,6HZ2(IN),1X,1OHCURRENT(A))
    FGRMAT(1X,6FB.4,F1U.O)
    FORMAT(4F10.0)
    FORMATI'3X,32HTOTAL CURRENT IN +X FIELD COIL = ,F10.0,6H AMPS., 3X,35
    IHTGTAL CURRENT IN +X GRACIENT COIL= ,F10.0.6H AMPS.I
    152 FORMATI 3X,32HTOTAL CURRENT [N -X FIELD COIL= ,FIO.O,GH AMPS.,3X,35
    IHTOTAL CURRENT IN -X GRACIENT COIL= ,F1O.0,6H AMPS.)
    153 FGRMAT( 3X,32HTOTAL CURRENT IN +Z FIELD COIL= ,F10.O,6H AMPS., 3X, 35
    IHTOTAL CURRENT IN +Z GRADIENT COILL=,F10.O.GH AMPS.)
    154 FORMATI 3X,32HTOTAL CURREAT IN -2 FIELO COIL= ,FIO.U,6H AMPS., 3X, 35
    1HTOTAL CURRENT IN -Z GRACIENT CCIL= ,F10.0,6H AMFS.)
    155
        FOGMAT(18A4)
```

```
    159 FORMAT(24X,18A4)
    l6.5 FCRMAT(F10.0)
    106 FCFMAT (6F8.4)
    C infut the magnetizaticn ccnstant for the gecmetry gf the bcoy, the
    C magnituce jf the saturaticn magnetizaticN fur the material, the
    C magnetic furce constant,the permeability cf the mecium, the number
    C DATA SETS, ANO THE INPUT CPTIUN.
    C INPIJPT=I CORRESPONDS TU INPUTING THE CURRENT IN EACH ELEMENT. INPOPT
    C =2 CURRESFUNDS TO INPUTING THE CURRENT IN EACH LCCF OF FOUR ELEMENTS.
        KEAL(5,112) CA,AMS,XKT,XML,INM, INFCPT
        XMF=XML/(4.*3.1416)
        IF(INPUPT.EQ&I) GO TO 171
    C INPOPT=2
    C INPUT THE DESCRIPTION OF THE CCNFIGÜRÄTION (L'E.'72 CHARACTERS).
        REAC(5,155) (CONFG(IC),IC=1,18)
    C input the maximum number of x increments, the maximlm number of y
\triangleC INCREMENTS, thE mAXIMUM NUMEER CF Z INCREMENTS, THE NUMBER OF CURRENT
    C ELEMENTS, DELTA X, Y, AND Z, aND THE CCRNER POINT OF THE PLOT (MAXIMUM
    C value of X,minimum value of Z, and y feSIticNI.
    C NUTE THAT [X IS NEGATIVE AND [Z IS PCSITIVE.
        READ(5,100) IM,JM,KM,LM,OX,OY,DZ,X(1),Y(1),Z(1)
    C INPUT THE END POINTS OF THE CURRENT ELEMENTS.
        REAC(5,166) (XI(NI),YI(NI),Z1(NI),X2(NI),Y2(NI),L2(NI),NI=1,LM)
        NTM=LM/4
    C INPOPT=1
        171 DÚ 20C INP=1,INM
        IF(INPOPT.EQ.2) GO TO }17
    C INPUT THE CESCRIPTICN OF THE CCNFIGURATION (LE. 7E CHARACTERSI.
            READ(5,155) (CONFG(IC),IC=1,18)
    C INPUT the maximum number of x increments, the maxinum number CF y
    C INCREMENTS, THE MAXIMUM NUMEER [F Z INCREMENTS, THE NUMBER OF CURRENT
    C ELEMENTS, DELTA }X,Y, AND Z, ANO THE CCRNER FCINT CF THE PLOT (MAXIMUM
    C value of X,minimum value of Z, and y foSiticN).
    C NOTE THAT CX IS NEGATIVE ANC CZ IS PCSITIVE.
        READ(5,1GC) IM,JM,KM,LM,OX,DY,DZ,X(1),Y(1),Z(1)
    C INPUT THE ENU PJINTS UF THE CURRENT ELEmENTS ANd the current flowing
```

```
    C IN EACH ELEMENT.
    REAC(5,110) (X1(N),Y1(N),ZI(N),XZ(N),Y2(N),Z2(N), CUR(N),N=1,LM)
    GO TO }17
    C INPOPT=2
    C INPUT THE CURRENT FLCWING IA EACH lCCF OF FOUR CURRENT ELEMENTS.
        174 REAC(5,1E5) (CURT(NT),NT=1,NTM)
            KL=-3
            KLI=0
    C ASSIGN CurRent magNitudes to each CurRent element.
            DO 17U JT=1,NTM
            KL=KL+4
            KLI=KLI+4
            DO 170 NTI=KL,KLI
            CUR(NTI)=CURT(JT)
        170 ClNTINUE
    c Input the total current in ecth gracient anc fiele coilsitctal
    C AMPERE TURNSI.
| 173 REAC(5,150) CURX1,CURX2,CURX3,CURX4
        READ(5,15C) CURZ1,CLRZ2,CURZ3,CUR24
        WRITE(0,118)
    C OUTPUT THE CHARACTERISTICS LF THE CURRENT ELEMENTS IN THIS CALCULATION
    WRITE(6,159) (CONFG(IOC),IUC=1,18)
    WRITE(6,115)
    WRITE(6,127)
    WRITE(6,128)
    WRITE(6,129) (X1(N1),Y1(N1),Z1(N1),X2(N1),Y2(N1), 22(N1),CUR(N1),
    1NI=1,LM)
    WRITE(6,118)
    WRITE(6,159) (CONFG(IOC),IOC=1,18)
    WRITE(6.115)
    WRITE(6,151) CURX1,CURX2
    WRITE(6,152) CURX3,CURX4
    WRITE(6,153) CURZ1,CURZ2
    WRITE(6,154) CURZ3,CURZ4
    WRITE (6,114)
    WRITE(0,113)
```

```
            WRITE(t,116)
            I P=0
    c calculate and sture the spacial cccrcinates for iris calculatign.
                ITLM= IM-I
            JTLN=JM-1
            KTLM=KM-1
            00 2C02 ITL=1,ITLM
    2002 x(ITL+1)=x(ITL)+CX
            00 2OOS JTL=1,JTLM
        2000 Y(JTL+1)=Y(JTL)+CY
            00 20C1 KTL=1,KTLM
        2CU1 Z(KTL+1)=Z(KTL)+DZ
    C begin the magnetic force calculaticn.
            00 200 J=1,JM
            DO 300 I=1,[M
            IF(I-1) 25,25,26
` 20 wRITt(E,114)
\sigma 25 CO 30G K=1,KM
    C Initualize the valués to be slmmed.
        BX=0.0
        BY=0.
        BZ=0.0
        BXX=0.
        BXY=0.
        exZ=0.
        BYX=0.
        BYY=0.
        BYZ=0.
        EZX=0.
        BZY=0.
        EZZ=0.
        DU 210 L=1,LM
    C CALCULATE A,B,C,C,E,ANU F
    A=(XI(L)-X(I) )/39.37
    B=(XZ(L)-X(I))/39.37
    C=(YI(L)-Y(J))/39.37
```

```
        D=(Y2(L)-Y(J))/39.37
        E=(Z1(L)-Z(K))/39.37
        F={Z2(L)-Z(K))/39.37
    C SUBSCRIPT A,C,E,B,D,F FER LATER USE
        S(1)=A
        S(2)=C
        S(3)=E
        T(1)=E
        T(2)=C
        T(3)=F
    C CALCUALTE U, v, AND W.
        U=C*F-O*E
        V=E*B-F*A
        W=A*O-B*C
    C CALCULATE RHOL AND RHOZ.
        RL=(A*A+C*C*E*E)**0.5
        R2=(B*B+D*D+F*F)**0.5
\ C CALCULATE THE SUM, PRODUCT, CCT PRODUCT, ANO CROSS PRCOUCT OF RHUL
    C AND RHC2.
        RS=R1+R2
        RN=R1*R2
        RDR=A*B+C*D+E*F
        RXR=u+V+W
    C CALCULATE THE DERIVITIVES OF THE SUM, ETC. OF RHOI AND RHOZ.
        DC }220\textrm{M}=1,
        DP(M)=-(S(M)*R2/R1+T(M)*R1/R2)
        DS(M)=-(S(M)/R1+T(M)/R2)
        C[(M)=-(S(M)+T(M))
    220 CGNTINUE
        CC(1)=F-E+C-D
        CC(2)=E-F+E-A
        DC(3) =D-C+A-B
    C CALCULATE AND TEST H TO DETERMINE ECUATION FCR G TO BE USED.
        H=(RM+RCR)/RM
        IF(H-0.01) 2,1,1
    1G=RS/(RM*(RM+RDR))
```

```
    C CALCULATE G AND ITS DERIVITIVES IN THE X,Y,Z DIRECTIONS.
                DC 23C MI=1,3
                DGA=RM*(AM+RDR)*DS(MI)
                DGB=RS* (RM*(CP(MI)+OO(M1))+DP(M1)*(RM*RCR))
                DG(M1)=(CGA-DGB)/(RM*(RM+RDR))*##2
    230 CCNTINUE
            GO TC 3
    2 G=((RS)*(RM-RDR))/(RM*RXR*RXR)
        DO 240 N2=1,3
        DGA=(RS*(DP(M2)-DD(M2))+DS(M2)*(RM-RCR))*RM*R\timesR**2
        DGB=RS*(RM-RDR)*(RM*2.*RXR*DC(M2) +UP(M2)*RXR**2)
        DG(M2)=(DGA-UGB)/(RM*RXR**2)**2
    240 CCNTINUE
    C calcualte the field cCNTributicNS df each Current element.
    O DCX=DG(1)
        DGY=LG(2)
        DGZ=CG(3)
        CURP=XMP*CUR(L)*10000.135.37
        CURM=XMP*CUR(L)*G*10000.
        8\times1=CLRM*U
        BYI=CURM*V
        B2l=CURM*W
    C CALCULATE THE GRACIENT CCNTRIBUTICNS OF EACH CURRENT ELEMENT.
        BXX1=CLRP*U*DGX
        BXY1=CURP*(G*(E-F) +U*OGY)
        BX21=CURP*(G*(D-C)+U*CGZ)
        BYY1=CURP*V*DGY
        BYZ1=CURP*(G*(A-B)+V*DGZ)
        BZLI=CURP*DGZ*W
C SUM the indivual Cuntributions to the field and gradient tC get the
C TOTAL fielC and gradients.
    BX=8X+8X1
    BY=BY+BY1
    BZ=BZ+BZI
    BXX=EXX+BXXI
    BXY=BXY B BXY1
```

```
        BXZ=EXI+BXZI
        BYY=EYY+BYYY1
        BYZ=eY L+EYZL
        EZZ=EZZ+EZZZ1
        210
        CONTINLE
    C calculate and test the magnetizaticn cf the body for saturation.
        XDK=XKT/OA
            RE=(EX**2+BY:*2+BZ**2)**C.5
            AM=(1/CA)*RB
            IF(AN-AMS) 1U,10,11
    C calculate the forces produced cN the eccy.
    10 FX=XDK*(BX*BXX +BY*BXY+BZ*BXZ)
            FZ=XDK*(BX*EXZ+BY*BYZ +EZ*EZZ)
            FY=XDK*(BX*BXYY+BY*BYYY+BZ*BYZ )
            GC TO 12
        C calculate the ccmpunents gF the magnetizaticn at saturaticn.
    11 BMY=(EY/RB)*AMS
            BMX=(EX/RB)*AMS
            EMZ=(EL/RE)*AMS
    C CALCULATE thE FURCES PRODUCEC CN THE ECDY.
            FX=XKT江(BMX*BXX (BMY*BXY+BMZ **BXZ)
            FZ=XKT*(BMX*BXZ+EMY*EYZ+ENZ*BZZ)
            FY=XKT*(BMX*BXY+BMY*BYY+BMZZ*BYZ)
    12 CONTINUE
    <O IP=IP+1
C If at the buttom of the page, skip tC next page anc write
C the reading for the numerical tabulaticN.
            IF(IP-40) 50,51,51
    51 WRITE (6,118)
        WRITE(t,159) (CONFG(IOC),IOC=1,18)
        WRITE(6,115)
        HRITE(6,151) CURX1,CURX2
        WRITE(5,152) CURX3,CURX4
        WRITE(6,153) CURZ1,CURZ2
        WRITE(6,i54) CURZ3,CURZ4
        WRITE(6,114)
```

```
            WRITE(6,113)
            WRITE(6,116)
            IP=0
        50 CCNTINUE
C OUTPUT THE TABLE OF NumERICAL valutS OF fIELD CHARACTERISTICS AND
C FORCE MAGNITUCES.
    300 WRITE(O,111) X(I),Y(J),Z(K), EX,BY,BZ,BXX,BXY,EXZ,BYY,EYZ,BZZ,FX
        1,FY,FZ
    200 cCATINUE
        CALL EXIT
        END
```

INPIT DATA

TABLE Sample Input - Current Element End Points and Currents.

	Cirr	IN	,	co	66	Aup	Tal	CIPRRENT	IN	+ \times	TRADIENT	cont =		
total	CJRRFNT	IN	FIfl?	COIL=	669970	AMPS.	total	CURRENT	IN	-	GRADIFNT	COTL $=$	-5^7	
Tot	CJRREVT	IN +	FISLO	C才ILx	-4550r.n	AMPS.	total	EIRRENT	IN	+2	GRADI $=$ NT	C.) IL =	-41	
total	CURREHT		FIF	COIL	455000	AMPS.	TOTAL	CJRRENT	IN	-2	GRADIENT	c.IL=	4155	AMOS.

$\begin{array}{cc} \mathbf{x} & \begin{array}{c} \mathrm{Y} \\ \\ \text { TNES } \end{array} \end{array}$		2	RX			B7	DEX/DX	OBX/DY	DRX/DZ	DBY/Dy	DRY/DZ	DBZ/DZ	FX	FY	F2
				gaus					GAUSS	S/IN.					
3n.0		-49. $!$	56994.7		n. 0	8260.9	120. 1	n.?	43.9	-18.9	7.0	-1277.2	21.973		-2.399
3n. n		-38.0	56994.?		O.r	5765.5	1259.4	$? .0$	-45.1	-25.8	?. 5	-1225.6	21.212		-2.9RO
$30 . n$	0.	-36.r.	56719.2		n.r	3396. 3	1182.5	5.0	-128.6	-3?.5	?.?	-115?.r	27. 255		-3.367
30.0		-34.0	56990.9			1174.9	1096.5	$\therefore .0$	-195.4	-39.1	3.0	-1757.5	19.678	\bigcirc	-3.719
30.0		-37.0	55040.9			-830. 7	1 Cr3.9	$\because 0$	-242.1	-45.7	?. ${ }^{\circ}$	-958.6	17.227		-3.904
30.0		-3n.r	55435.2		n. ${ }^{\circ}$	-2659.6	912.2	$r \cdot 0$	-269.7	-51.?	?.!	-961.1	15.933		-7.901
30.0		-38.0	54981.9		¢. 0	-4>RR. 2	876.5	$n \cdot n$	-291.2	-56.7	?.7	-760.8	14.466		-3.769
30.0		-28. ${ }^{\text {a }}$	54318.5			-5744.	749.4	\cdots	-28n. 3	-51.8	?.3	-687.5	13.247	n.	-3.530
30.0	0.	-24.0	5376 A . 0			-7C45. ${ }^{\circ}$	681.7	n. 9	--770.?	-66. 5	$? \cdot{ }^{\circ}$	-615.2	12.159	9 .	-7. 214
39.0	\bigcirc.	-22.n	53242.1			-8211.5	623.7	$? .1$	-253.6	-72.9	7.9	-552.9	11.271	?	-2.845
30.0	c.	-2.n. n	52755.2			-9267.8	574.6	$r . n$	-232.8	-74.5	3.9	-499.9	14.366		- 2.442
30.0	n.	$-1 \mathrm{P}_{\text {, }} n$	52312.8		ค.n	-10217.0	533.7	n.0	-209.2	-7R.?	$3 . r$	-455.7	9.543		-2.718
$30 . n$?.	-13.0	51919.7		A. C	$-1109 \% .7$	5 cr .7	?. 9	-184.1	-91."	9.7	-410.?	9.922	n.	-1.582
70.0		-14.0	51576.7		C.n	-11898.7	473.1	$? .7$	-159.3	-83. 5	2.7	-389. 5	9.491	n.	-1.14
30.0	n	-12.0	51286.2		nor	-12652.8	451.5	$9 . ?$	-132.3	-85.7	?."	-365.9	9.44 .	n.	-7.697
3 n .0	C.	-10.n	51.47 .5		n.n	-13365.7	435.?	$\bigcirc .0$	-106.4	-97.4	7.n	-347.8	7.350		-9. 254
3 n .0	3.	-8.0	50960.3		C.C	-14n47.n	423.1	9.7	-87.9	-38.8	7.	-334.3	7.34?		?. 1.88
$3 n . c$	0.	-6.0	50723.5		O.c	-14795. 8	415.0	\cdots	-55.9	-89.8	?.n	-325.?	7.282		?.63r
30.0	n.	-4.n	$5 C 636.2$		n.	-1535n.3	415.4	-. 0	-31.5	-93.4	7.0	-319.9	5.872	?.	1. ? $^{1} 1$
3 n . 0	n.	-2.0.	5 C 597.1		$n \cdot r$	-15988.?	400.4	$\bigcirc \cdot 0$	-7.7	-92.9	7.1	-312.3	3.799		1.515
$30 . ?$	c.	n.n	50×125.1		n.f.	-16625.6	$41^{1} .8$	\cdots	15.6	-9n.0	$7 . n$	-32..r	h.501		1.762
39.0	n.	$2 . n$	50659.?		$n \cdot \mathrm{C}$	-17769.0	415.6	n.n	3 R .4	$-9^{2} .5$	$9 \cdot 2$	-324.0	5.514		7.414
30.0	0.		50758.4			-17927.4	423.3	r.n	$66^{3} 7$	-77.?	2.7	-333.1	6.479	,	2.976
$30 . ?$	0.	$6 . n$	$5 \mathrm{5c} 901.8$		C.C	-186n4.5	434.n		A2.6	-89. 5	9.?	-344.5	5.494	$?$	3.349
$30 . ?$	0.	8.0	51 C 8.4		C. n	-19317.8	448.-	9.9	104.7	-88. 5	7.?	-359.4	S. 537	n.	7. 836
30.7	2.	1r.?	51317.4		n. n	-20344.4	465.4		125.n	-37.5	3.9	-377.9	5.536	\cdots	4.341
$3 n^{3 n} \cdot n$	n.	$12 . n$	51587.8		n.c	-20821.0	$4 \mathrm{RG}$.	n. 1	145.4	-86. 3	?. 0	$-4 C^{2} .4$	6.787	ค.	4.968
30.0	2.	14.7	51998.4		C.C	-21649.9	517.7	9.0	155.1	-94.7	7.	-477.3	6.907		5.418
30.0	n.	16.n	52247.4		n. n	-22534.6	54?.6	9.9	183.7	-82. 3	7.9	-450.3	7.775		5.995
$30 . ?$	9.	18.n	52632.4		O.r	-23480.8	579.5	2.9	2 n..a	-81.6	$2 . n$	-495.9	7.634		6.601
3 n .7	n.	$29 . n$	$53 \sim 49.7$		n.r	-24526.5	670.9		215.9	-79.9	7.1	-54. 9	R.7AS		7.233
3 C .0	r.	$22 . n$	53493.0		$n \cdot r$	-2565R.3	G7r.l	$\because \mathrm{C}$	227.7	-77.9	7.7	-50).1	3.547	?	7.989
30.1	n.	24.n	53957.3		$r \cdot n$	-26arn.?	727.?	$\because \cdot 9$	234.7	-76.0	9.0	-551.?	9. 337		9. 561
30.0	n.	26.0	54428.4		$n \cdot r$	-2925R. 6	797.5	9.9	235.1	-72.0	$7{ }^{-1}$	-719.6	17.174		9. 231
30.0	\bigcirc	28.n	54R91.4		n.r	-2978r. 3	P6K. 1	n. ${ }^{\text {a }}$	226.1	-71.9	7. 1	-794.3	11.174		9.977
30.0	0.	3n.?	55324.7		$n \cdot r$	-3145r.9	045.9	9.9	294.8	-57.6	7 ?	-977.3	12.345		10.458
3.9 .5	0.	$32 . r$	55790.9		n. $($	-3320?.4	1-32.?	9. 3	167.6	-67.4	7.7	-964.8	13.892		19.975
3n.n	C.	$34 . n$	55992.9		r.r	-3535 20	1117.?	9	$111 . \mathrm{R}$	-65.7	7.7	-175?.n	15.139		11.214
3n.C	n.	36.C	5613*.7		ก.f	-37-05.1	1194.2	- 9	35.5	-63. ${ }^{\text {- }}$	9.7	-1131.?	16.434		11.262

Abstract

APPENDIX C COMPUTER PROGRAM FOR PLOTTING THE MAGNITUDE AND DIRECTION OF THE MAGNETIC FORCE ON A FERROMAGNETIC SPHERE DUE TO AN ARRAY OF STRAIGHT LINE CURRENT ELEMENTS

The following is a brief description of a computer program "PLOT" written in Fortran IV language which is used to plot the magnitude and direction of magnetic force on a ferromagnetic sphere using the relations outlined in Appendix A.

Plotting Program ("PLOT")
PLOT was developed to provide a qualitative graphical display of the distribution of the magnetic force field on a ferromagnetic sphere due to an array of straight-line current elements.

Each display is in two parts, consisting of:
a) A plot of the magnitude of the magnetic force, and
b) A plot of the angle of the magnetic forces for an array of field points in $a y=$ const. plane.

The magnetic forces to be plotted are calculated as described in Appendix B, for TABLE. A symbol representing the force range in which the magnetic force lies is then matched to the force. This symbol is placed in the $J^{\text {th }}$ and $K^{\text {th }}$ spacial position (corresponding to $J x$ increments and Kz increments from a starting point) of the force display, and the entire display array is then printed. In this way, the magnetic force at discrete points in the $x z$ plane is represented by a symbol in the output field. Detailed examples of the use of this technique can be found in Ref. 10.

Since the range of force magnitude is generally large, and a multitude of symbols would be required to represent a
typical range of constant force increments, a logarithmic increment has been used instead. Thus, each force range represents a constant percentage of the value of the upper (or lower) limit of the range.

By this method, the force magnitude is first reduced to an exponent of a base number, i.e.,

$$
\begin{align*}
& \mathrm{F}=\mathrm{A}^{\mathrm{n}} \tag{C-1}\\
& \mathrm{n}=\frac{\log \mathrm{F}}{\log A} \tag{C-2}
\end{align*}
$$

Then, the exponent is reduced to a positive integer

$$
n \rightarrow N \quad N \text { is an integer greater than zero }
$$

Now, the symbol representing F will be that symbol in the array having subscript N, i.e.,

$$
\begin{equation*}
F(K, J)=\text { FSymbol }(N) \tag{c-3}
\end{equation*}
$$

where FSymbol (N) is the $N^{\text {th }}$ symbol in the array $r \ldots i n g$ force magnitudes.

Reducing n to a positive integer can be accomplished in several ways. In PLOT, n was reduced by adding 1 and truncating in the case of positive exponents or adding 1 plus the magnitude of the largest negative exponent to be considered in the case of negative exponents.

$$
\begin{array}{ll}
\text { for } n>0, & N=\operatorname{truncated}(n+1) \\
\text { for } n<0, & N=\operatorname{truncated}(n+1+|a|) \tag{C-5}
\end{array}
$$

$a=$ magnitude of largest negative exponent

$$
\text { (i.e., } F=0 \text { when } n<-a \text {) }
$$

Thus, the force represented by FSymbol(N) has a magnitude between $A^{n+\varepsilon}$ and $A^{N+1-\varepsilon}$, where ε is small. (See the sample output for PLOT, page 102 for an example.)

The array representing angle magnitudes is similarly
constructed. In this case, a constant angle increment is used so that the symbol subscript is calculated by dividing the angle by the increment, adding one, and truncating, i.e.,

$$
\begin{align*}
\theta & =\tan ^{-1} \frac{F_{\mathbf{x}}}{\mathrm{F}_{\mathbf{z}}} \tag{C-6}\\
M & =\text { truncated }\left(\frac{\theta}{\Delta \theta}+1\right) \tag{c-7}\\
\theta(\mathrm{K}, \mathrm{~J}) & =\text { Symbol }(M) \tag{C-8}
\end{align*}
$$

Again, the θ array is printed so that a symbol is associated with the angle at each point in the $x z$ plane.

19

```
C
C
C a code tu calculate the force cN a magnetic eody in a field produced
C BY COILS CONSISTING OF STRAIGHT LINE CURRENT ELEMENTS. THE MAGNETIC
C force anc angle are fielu plctted in the xz plane.
C CurRent elements are ccunted cCunter-ClCCKwise abcut the correspunding
C COORDINATE DIRECTIONS. ALL CURRENTS ARE POSITIVE CCUNTER-CLOCKWISE.
C
C
C
variable name
FMT1 FORMAT STATEMENTS FCR INPUT AND CUTPUT OPERATIONS
\circ
FMT2
FNT3
FMT4
ANLG
ANMX ABSCLUTE VALUE CF THE LARGEST NEGATIVE pCWER
OF ANLG TO BE LSED IN FORCE PLOTS, PLLS I.
LBAMX THE NUMBER OF PLOTTING SYMBOLS REPRESENTING FORCES
of magnitude greater than 1.
SYMB1 PLOTTING SYMBOLS FCR FORCE PLUTS.
SYMB2
SYMB3
SYMB4
DCT,ASTER
CTHETA
AANG
ASYMB1
ASYMB2
DA
AMS
XKT
XMU
INPUT VARIAELE LIST
```

c variable name
C
O

```
    X1,Y1,21
    X2,Y2,Z2
    CUR
    CURT
        CURXI
    CURX2
        CURX3
        CURX4
        CURZ1
        CURZ2
        CUR23
        CURZ4
```

INM INPOPT CONFG IM JM KN LM EX CY CZ $\times(1)$ Y(I) Z(I)

```
NUMBER CF cATA SETS FOR THIS RUN.
    INPGT OPTICN.
    A DESCRIPTICN UF THE MAGNET CUNFIGURATION.
    NUMBER OF INCREMENTS IN THE X-DIRECTICN.
    NUMBER OF INCREMENTS IN THE Y-DIRECTICN.
    NUMRER OF INCREMENTS IN THE Z-DIRECTICN.
    TOTAL NUMEER OF CURRENT ELEMENTS
    - DElTA" X.
    'DELTA' Y.
    -DELTA' Z.
    X COURDINATE OF STARTING PCINT FOR INCREMENTING
    Y COUROINATE OF STARTING POINT FOR INCREMENTING.
Z COORDINATE OF STARTING PGINT FOR INCREMENTING.
COORDINATES OF THE ENC POIATS OF THE STRAIGHT LINE
CuRRENT ELEMENTS MAKING UP THE COILS.
MAGNITUCE GF THE CURRENT IN AMPERES;+ FRCM 1 TO 2.
CURRENT FLCWING IN A LOOP CF FOUR CURRENT ELEMENTS.
tre total clrRent in the +X fiEld cCIL.
the tutal current in the +x gracient coil.
THE total current in the -x field ccil.
THE TOTAL CURRENT IN THE -X GRACIENT COIL.
THE tOTAL CURRENT IA THE +2 FIELL CCIL.
THE TOTAL CURRENT IN THE +Z GRACIENT COIL.
the total current in the -2 fiElC coil.
the total current in the -2 gracient coil.
DIMENSICN CONFG(18), ANGL(200,200), FCRCE(1C0,1CO), ASYMB1(50), ASYMB2 1(50), ANG1(50), ANG2(5U), X(100),Y(100), Z(10C),S(3),1(3),DP(3),DS(3), 20C(3), DG(3),X1(500),Y1(500),Z1(500),X2(500),Y2(500),22(500),CUR(50 301, CURT (400), SYMB1(20), SYMB2(80), SYMB3(80), SYMB4(80), FMIN1(12),FMA 4X1(12), FMIN2(80), FMAX2(80), FORCY(1C0,100), DO(3),FMT1(3),FMT2(2),FM 5T3(3), FMT4(2)
100 FORMAT(4I4,6F8.4)
110 FGRMAT (6F8.4,FlU.0)
112 FORMAT(F5.3,F9.2,2F12.11,215)
114 FCRMAT(//)
```

```
    115 FURMAT(///)
    116 FURMAT(6X,6HINCHES,16X,5HGALSS,25x,GHGALSS/IN.,27X,ICHLEF/CU.IN.I
    118 FCRMAT(IH1)
    119 FURMAT(3A4,2A3,3A4,2A3)
    127 FORMAT(24X,lUHINPUT [ATA)
    128 FORMAT(2X,GHXI(IN),2X,6HY1(IN),2X,OHZ1(IN),2X,6HX2(IN),2X,6HY2(IN)
    1,2X,6HZZ(IN),1X,1OHCURRENT(A))
    FCRMAT(IX,6F8.4,F10.0)
    FORMAT(2F1O.0)
    FGRMAT(3X,6HSYMBOL,5X,24HFJRCE RANGE (LBF/CU.IN.)I
    FjRMAT(5X,1AZ,7X,F9.3,2X,2HTC,1X,F9.3)
        FORMAT(3X,29HPLCT OF FX IN X-Z PLANE AT Y=,FE.1,1X,3HIN.I
    FORMAT(3X,27HHURIZONTAL COCRDINATE IS X ,F5.1,1X,3HIN.,4H TO ,F5.1
    1,1X,3HIN.)
    FORMAT(3X,25HVERTICAL CGGRDINATE IS Z ,F5.1,1X,3HIN.,4H TO ,F5.1,1
    1X,3HIN.1
\infty
14
    1.;
143 FORMAT(2F8.4,15)
144 FCRMAT(2A2)
145 FORMAT(3X,25H* DENCTES SATURATICN LINE)
150 FORMAT(4F10.0)
151. FURMAT(3X,32HTUTAL CURRENT IN +X FIELD CGIL= ,F1O.0,6H AMPS.,3X,35
    IHTUTAL CURRENT IN +X GRACIENT COIL= ,FIU.O.6H AMFS.)
    FORMATI3X,32HTOTAL CURRENT IN -X FIELD COIL= ,FIU.O,6H AMPS., 3X,35
    IHTCTAL CURRENT IN -X GRACIENT COIL= ,FIO.O.6H AMPS.I
153 FJRMATI 3X,32HTOTAL CURRENT IN +2 FIELO CCIL= ,FIO.O.6H AMPS.,3X,35
    IHTOTAL CURRENT IN +Z GKALIENT COIL= ,F1O.O,6H AMPS.I
154 FORMATI 3X,32HTOTAL CURRENT IN -Z FIELD CCIL = ,F1O.00,6H AMPS., 3X,35
    IHTCTAL CURRENT IN -2 GRACIENT COIL= ,FIO.0,oH AMPS.I
    FGRMAT(18A4)
    FCFMAT(24X,18A4)
    FORMAT(F6.3,[5)
l\in2 FURMAT(3X,6HSYMBCL,9X,l&HANGLE RAAGE (DEG.))
```

```
    163 FCRMATI3X,47HPLOT OF TOTAL MAGNETIC FCRCE IN X-Z PLANE AT Y=,FG.i,
    11X,3HIN.)
    164 FORMAT(3X,47HPLCT OF NAGNETIC FGRCE ANGLE IN }x-2\mathrm{ PLANE AT Y=,F6.1,
        1IX,3HIN.)
    165 FERMAT(F10.0)
    166 FOFMAT(OF8.4)
    C INPUT THE FURMAT CODES FOR variable fCRMatted statements.
    C FMTI SPECIFIES THE SIZE UF THE FORCE FIELD PLOT. FOR EXAMPLE,
    C FMTI=(IH .,31AZ) CORRESPONDS TO A PLOTTING REGICN X= 30. TO X=+30.
    C WITH AN INCREMENT (I.E. DXI CF 2. INCHES.
    C FMT2 IS THE [NPUT CODE FLR PLOTT ING SYMBCLS REPRESENTING FORCES LESS
    C THAN 1. AND FMT3 IS FGR SYMBCLS REPRESENTING FORCES GREATER THAN l.
    C EXAMPLES ARE FMT2=(12A2) AND FMT 3=(3€A2/22A2) FOR 12 AND 5E SYMBOLS
    C RESPECTIVIELY. FMT4 IS FOR ANGLE SYNBCLS, FMT4=(NANGMAZ).
    READ(5,119) FMTI,FMT2,FMT3,FMT4
\inftyC input the base for force plctting añ absolüte valle of the largest
O C NEGATIVE POWER JF THE BASE, PlUS I, ANC THE NUMBER OF SYMbCLS FOR
    C GREATER THAN CNE.
            REAC(5,143) ANLG,ANMX,LENHX
            LANMX=ANMX-1.
C INPUT LETTER VALUES FOR TrE FCRCE AN& ANGLE MAGNITUDES fOR PLOTTING.
C SYMBl AND SYMB2 ARE SYMBOLS FCR POSITIVE FORCE MACNITUDES LESS THAN
C AND GREATER THAN I RESPECTIVELY.
            READ(5,FMT2) (SYMB1(N1),N1=1,LANMX)
            REAC(5,FMT3) (SYMB2(N2),N2=1,LBNNX)
C SYMB3 AND SYMB4 ARE SYMBCLS FCR nEGATIVE fORCE MAENITUDES LESS than
C ANL GREATER THAN ONE RESPECTIVELY.
            REAC(5,FMT2) (SYMB3(N3),N3=1,LANMX)
            REAC(5,FMT3) (SYMB4(N4),N4=1,LENMX)
            REAC(5,144) DOT,ASTER
C input tre magnitude uf tre angle incRement änc tre number of angle
C INCREMENTS.
            REAC(5,160) DTHETA,NANGM
C ASYMBI ANC ASYMB2 ARE SYMBOLS fCR POSITIVE ANC NEGATIVE ANGLE
C MAGNITUOES RESPECTIVELY.
            READ(5,FMT4) (ASYMB1(NTH1),NTH1=1,NANGM)
```

REAC(5,FMT4) (ASYMB2(NTH2),NTH2=1,NANGM)
C INPUT THE MAGNETIZATICN CCNSTANT fOR THE GECMETRY CF THE body, the C magnitude of the saturation magnetization for the material, the C magnitic fcrce ccastant, tre permeability of free space, the number of C DATA SETS, AND THE INPLT CPTICN.
C INPOPT=1 CORRESPCNOS TU INPUTING THE CURRENT IN EACH ELEMEAT. INPOPT $C=2$ CORRESPONDS TO INPUTING THE CURRENT IN EACH LCGP CF FCUR ELEMENTS. READ 5,1121 DA, AMS, XKT, XMU, INM, INAPCPT $X M P=X M U /(4 . * 3.1416)$
C calculate the logarithm of the ease fer force pluts. XLG=ALCG(ANLG)
$A M 1=1.05 * A M S$
C calculate the magnituces cf force ranees for force plcts. DO 4UC JO=1, LANMX
$J 1=J 0-(\operatorname{LANMX}+1)$
$\mathrm{J} 2=\mathrm{Jl}+1$
$\bigcirc \quad$ FMIN1(JU)=ANLG**J1
FMAX1(JO)=ANLG**J2
4CO CCATINUE
DO 900 KO $=1$, LBNMX
$K 1=K O-1$
$K 2=K 0$
FMIN2(KO) =ANLG**K1
FMAX2 $(K O)=A N L G * * K 2$
sco CCNTINUE
FNINI(1)=0.
FMIN2(1) $=1.0$
C calculate the angle ranges fcr angle flcting.
ANG1(1)=0.
ANG2(1)=DTHETA
NANGN=NANGM-1
DC 504 NANG $=1$, NANEN
ANGI (NANG+1) =ANGI (NANG) +CTHETA
ANG2 (NAIVG+1) =ANG2 (NANG) + DTRETA
504 CENTINUE
IFIINPOPT.EQ.I) GC TC 171

C INPOPT=2
C INPUT THE EESCRIPTICN GF THE CCNFIGURATIUN (LE. 72 CHARACTERS).
REAC(5,155) (CONFG(IC),IC=1,18)
C Input the maximum number gF x increments, the maximum number cf y
C InCREMENTS, THE MAXIMUM NUMBER LF Z IACREMENTS, THE NUMBER OF CURRENT
C ELEMENTS, DELTA X, Y, AND Z, AND THE CGRNER FCINT OF THE fLOT (MAXIMUM
C value of X, minimum value of Z, and y positionl.
C NOTE That cx IS NEGATIVE AND CZ IS PCSITIVE.
READ 5,100 I $[M, J M, K M, L M, D X, U Y, D Z, X(1), Y(1), Z(1)$
C Input the end puints cf tre clirrent elements.
READ(5,166) (XI(NI), Y1(NI),Z1(NI), X2(NI), Y2(NI), Z2(NI),NI=1,LH)
NTH $=L N / 4$
C INPOPT=1
171 DC 200 INP $=1$, INM
IF(INFOPT.EQ.2) GO TC 174
C INPUT THE DESCRIPTION OF THE CCNFIGURATION (LE. 72 CHARACTERSI.
$6 \quad \operatorname{READ}(5,155)$ (CONFG(IC),IC=1,18)
C INPUT the maximum number cf x increments, trie maximum number of y
C INCREMENTS, THE MAXIMUM NUMBEF CF 2 InCREMENTS, THE NUMBER OF CURRENT
C ELEMENTS, DELTA X, Y, ANO 2 , AND THE CORNER PCINT Cf THE PLOT (MAXIMUM

C nute that cx is negative and cz is pcsitive.
READ (5,100) IM, JM,KN,LM,CX,DY, CZ,X(1),Y(1),Z(1)
C INPUT THE END POINTS OF THE CURRENT ELEMENTS AND THE CURRENT FLCWING
C IN EACH ELENENT.
$\operatorname{READ}(5,110)(X 1(N), Y 1(N), 21(N), X 2(N), Y 2(N), Z 2(N), C U R(N), N=1, L M)$
GOTO 173
C INPCPT=2
C Input the current fluwing in each lccf cf felir current elements.
$174 \operatorname{REAC}(5,165)$ (CURT $(N T), N T=1, N T M)$
$K L=-2$
$K L i=0$
C ASSIGN CURRENT MAGNITUDES TC EACH CURRENT ELEMENT.
DO 170 JT $=1$, NTM
$K L=K L+4$
$K L 1=K L 1+4$

```
                CO 170 NTl=KL,KL1
                CUR(NT1)=CURT(JT)
    170 CGNTINUE
    C INPUT ThE tCTAL CURRENT IN bCTH GRADIENT AND FIELC COILS(total
    C AMPERE TURNSI.
    173 REA[(5,150) CURX1,CURX2,CLRX3,CURX4
        READ(5,150) CUR21,CURZ2,CURZ3,CUR24
        WRITE(6,118).
    C OUTPUT THE CHARACTERISTICS OF THE.CURRENT ELEMENTS IN THIS CALCULATICN
        WRITE(6,159) (CCNFG(IOC),IOC=1,18)
        WRITE{E,115)
        hRITE(E,127)
        WRITE (6,128)
        WRITE(6,129) (X1(N1),Y1(N1),Z1(N1),X2(N1),Y2(A1),Z2(N1),CUR(N1),
        LNi=1,LM)
    C OUTPUT THE SYMBOL AND CORRESPGNDING FCRCE RANGE FCR PLCTTING.
        WRITE(6,118)
        WRITE(6,132)
        WRITE(6,133) (SYMBI(IO),FMINI(IO),FMAXI(IC),IC=1,LANMX)
        WRITE(G,I33) (SYMB2(IN),FMIN2(IN),FMAX2(IN),IN=1,LBNMX)
    C EUTPUT THE SYMBOL ANO CCRRESFCNDING ANGLE RANGE FCR ANGLE PLOTTING.
        WRITE(6,115)
        WRITE(6,162)
        WRITE(6,133) (ASYMB1(NANGO), ANG1(NANGO), ANG2(NANGC),NANGO=1,NANGM)
    C Calculate and Store tre spacial coordinates for this calculation.
        ITLN=IM-1
        JTLM=JM-1
        KTLM=KM-1
        DC 2002 ITL=1,ITLM
    2002 X(ITL+1)=X(ITL)+DX
        CC 2000 JTL=1,JTLM
    2000 Y(JTL+1)=Y(JTL)+DY
        DC 2001 KTL=1,KTLMM
    2001 Z(KTL+1)=Z(KTL)+DZ
C begin tre magnetic force calcllation.
            DC 200 J=1,JM
```

```
DC 30C I=1,IM
Du }300\textrm{K}=1,\textrm{KM
    c claculate the magnetic furces cue to each current element.
    c initualize the values to be slmmed.
            BX=0.0
            BY=0.
            BZ=0.0
            Exx=0.
            BXY=0.
            BXZ=0.
            BYX=0.
            BYY=0.
            EY Z=0.
            E ZX=0.
            EZY=0.
            BZZ=0.
DO 210 L=1,LM
    C CalCulate a,B,C,D,E,AND F
        A=(XI(L)-X(I))/39.37
        B=(X2(L)-X(I))/39.37
        C=(YI(L)-Y(J))/39.37
        C=(Y2(L)-Y(J))/39.37
        E=(21(L)-2(K))/39.37
        F=(Z2(L)-Z(K))/39.37
    C SUBSCRIPT A,C,E,B,D,F FCR LATER USE
            S(1)=A
            S(2)=C
            S(3)=E
            T(1)=B
            T(2)=0
            T(3)=F
    C CALCUALTE U, V, AND W.
        U=C*F-D*E
        V=E*B-F*A
        W=A*D-B*C
    C CALCULATE RHOL AND RHC2.
```

```
    RI=(A*A+C*C+E*E)**0.5
    R2=( U*B+C*D+F*F)**0.5
    C CALCULATE THE SUF, PRCDUCT, CCT FRCEUCT, ANC CROSS PRCDUCT UF RHOL
    C AND RHC2.
            RS=R1+R2
            RM=R1*R2
            RDR=A*B+C*D+E*F
            R\timesR=U+V+W
    C CALCULATE THE DERIVITIVES OF THE SUM, ETC. OF RHUI AND RHOZ.
            DO 220 M=1,3
            DP(M)=-(S(M)*R2/R1+T(M)*R1/R2)
            DS(M)=-(S(M)/R1+T(M)/R2)
            OD(M)=-(S(M)+T(M))
    220 CONTINUE
            CC(1)=F-E+C-D
            DC(2) =E-F+B-A
    DC(3)=D-C+A-B
C CALCULATE AND TEST H TO DETERMINE EQUATIGN FOR G TC BE LSED.
            H=(RM+RDR)/RM
            If(H-0.01) 2,1,1
    1 G=RS/(RM*(RM+RDR))
C CALCULATE G ANO ITS DERIVITIVES IN THE X,Y,Z CIRECTICAS.
                    OC 230 Ml=1.3
            DGA=RM*(RM+RDR)*CS(M1)
            DGB=RS*(RM*(OP(M1)+OD(M1))+DP(M1)*(RM+RDR))
            CG(MI)=(DCA-DGB)/(RM*(RM+RCR))**2
    230 CCNTINUE
            GO TO 3
2 G=((RS)*(RM-RDR))/(RM*RXR*RXR)
    DC 240 M2=1,3
            CGA=(RS*(DP(M2)-UD(M2))+LS(M2)*(RM-RDR))*RM*R *R**2
            OGB=RS*(RM-RDR)*(RM*2**RXR*DC(M2) *DP(M2)*FXR**2)
            DG(M2)=(DCA-DGB)/(KM*RXR**2)**2
    240 CCNTINUE
C CALClALTE THE FIELD CCNTRIBLJICNS UF EACH CURRENT ELEMENT.
    O DGX=CE(1)
```

```
            OGY=OG(2)
            DGZ=CG(3)
            CURP=XNP*CUR(L)*100J0./35.37
            CURM= XMP*CUR(L)*G*10\cup00.
            BX1=CLRM*U
            BY1 =CURM*V
            BZ1=CURM*W
    C CALCULATE THE GRACIENT CONTRIEUTICNS OF EACH CURRENT ELEMENT.
            BXX1=CLRP*U*DGX
            BXY1=CURP;(G*(E-F)+U*DGY)
            BXZ1=CURP*(G*(D-C) +U*DGZ)
            BYY1=CURP*V*DGY
            BYZ1=CURP*(G*(A-B)+V*DGZ)
            EZZ1=CURP*DGZ*W
    C sum the indivual cuntributions to tre field and gradient to get the
    C TOTAL FIELC AND GRADIENTS.
            BX=BX+BXI
            BY=BY+EYl
            EZ=EZ2+EZl
            BXX=BXX+BXX1
            BXY=BXY+BXY1
            EXZ=EXZ+BXZI
            BYY=8YY+BYYL
            EYZ=EYZ+BYZI
            BZZ=EZZ+eZZZ1
    210 CCNTINUE
C Calculate and test the magnetization cF the body for saturation.
            XDK=XKT/CA
            RB=(EX**2+BY**2+BZ**2)**C.5
            AN=(I/CA)*RB
            IF(AM-AMS) 10,10,11
C calculate the forces producec cn the eody.
    10 FX=XDK*(BX*BXXX+BY*BXY+BZ*BXZ)
            FZ=XDK*(BX*BXZ +BY*EYZ +BZ*EZZ)
            FY=XDK*(BX*BXY+BY*EYY+EZ*EYZ)
            GO TO 12
```

```
    C Calculate the components of the magnetizaticn at saturaticN.
    11 BMY=(EY/RB)*AMS
        BMX=(BX/RB)*AMS
        EMZ=(EZ/RE)*AMS
    C CALCULATE THE FORCES PRODUCEC CN THE' BCDY.
        FX=XKT*(BMX*BXX+BMY*BXY+BNZ*BXZ)
        FZ=XKT*(BMX*BXZ +BMY*BYZ +BMZ*EZZ)
        FY=XKT*(BMX*BXY+BMY*EYY +EMZ*BYZ)
    C DEFINE THE SATURATION LINE BY ASSIGNING ASTER (*) TC THE FGRCES AND
    C angles alcng the saturaticn line.
        IF(AM-AN1) 71C,710,12
    710 FORCE(K,I)=ASTER
        FCRCY(K,I)=ASTER
        ANGL(K,I)=ASTER
        GC TO 300
    12 CCNTINUE
OC dEFINE the x and z axES ey asSIGNING cot l.l to tre ferces and angles
C ALCNG }X=0\mathrm{ . ANC Z=O.
            IF(Z(K).EQ.U..OR.X(I).EG.O.) GC TC }1
            GO TO 15
    14 FCRCE(K,I)=DLT
        FORCY(K,I)=DOT
        ANGL(K,I)=DOT
        GC TO 300
    C calculate the total mabnetic fcrce anc angle in tre x-z plane.
        15 FT=(FX*FX+FZ*FZ)**0.5
        ETA=FX/FZ
        THETA=ATAN(ETA)*180.13.1410
    C MATCH A SYMbOL WITH THE CORRESPONDING fORCE aND ANGLE MAGNITUDES.
    C FORCE MATCHING IS ACCCMPlIShED BY FIRST CALCULATINE THE EXPCNENT OF
    C THE bASE NUMBER, THEN THE EXFCNENT IS TRUNCATED TC AN INTEGER
    C CORRESPCNLING TU A POSITICN IN SYMBOL ARRAY. ANGLE MATCHING IS
    C ACCOMPlISHED by truncating tre cividend of the angle anc tre angle
    C INCREMENT TO CETERMINE the ARRAY poSITION.
        IF(THETA) 501,50゙,5C2
    501 NGA2=1,-(THETA/DTHETA)
```

```
        ANGL(K,I)=ASYMB2(NJA2)
        GO Tu 5C3
    502 NCAl=ThETA/DTHETA+1.
        ANGL(K,I)=ASYMBI (NLAI)
    5C3 CONTINUE
    72 IF(FY) 73,74,74
    73 IF(FY+U.GO1) 75,75,76
    75 YN=ALCG(-FYI/XLG
    IF(YN) 77,77,78
    77 NUY1=YN+ANMX
        IF(NLYi) 76,76.79
        NUYl=1
        FORCY(K,I)=5YMB3(NUY1)
        GO TO 5C5
        NLY2=YN+1.
        FGFCY(K,I)=SYMB4(NUY2)
        GO TO 505
    74 IF(FY-U.001) 80,81,81
    81 YP=ALOG(FY)/XLG
    IF(YP) 82,82,83
    NUY1 = YP+ANMX
    IF{NUYI) 8C,80,84
    NUY1=1
    FORCY(K,1)=SYMB1(NUY1)
    GC TO 505
    NUY2=YP+1.
    FORCY(K,I)=SYMB2(NLY2)
    5C5 IF(FT) 506,507,507
    506 IF(FT+0.001) 508,508,509
    5C8 FN=ALOG(-FT)/XLG
        IF(FN) =10,510,5:1
    510 NLF1=FN+ANMX
        IF(NUF1) 50S,509,513
    5C9 NUFI=1
    513 FDRCE(K,I)=SYMB3(NUF1)
    Gu TC 3uj
```

```
    511 NUF2=FN+1.
    FORCE(K,I)=SYMB4(NUF2)
    GO TO 300
    5C7 IF(FT-U.001) 514,515,515
    515 FP=ALCG(FT)/XLG
        IF(FP) 516,516,517
    516 NUF1=FP+ANMX
        IF(NUFI) 514,514;518
    514 NUFL=1
    518 FORCE(K,1)=SYMB1(NLF1)
        GO TO 300
    517 NUF2=FP+1.
        FORCE(K,I)=SYMB2(NUF2)
    300 CCNTINUE
        WRITE(6,118)
    C write heacings fur total furce plct.
        WRITE(E,159) (CCNFG(IOC),IOC=1,18)
        WRITE(0,115)
        WRITE(\epsilon,l&3) Y(J)
        WRITE(E,136) X(1),X(IM)
        WRITE(6,137) Z(1),Z(KN)
        WRITE(6,151) CURX1,CLRX2
        WRITE(6,152) CURX3,CURX4
        WRITE(6,153) CURZ1,CURZ2
        WRITE(E,154) CURZ3,CURZ4
        WRITE(6,114)
        WRITE(6,142)
    C Plot tCtal force in x-z plane.
        WRITE(G,FNTI) ((FORCE(KT,IT),IT=I,IM),KT=1,KM)
        WRITE(t,118)
C write heacings for angle plct.
        WRITE(0,159) (CCNFG(IOC),ICC=1,18)
        WRITE(6,115)
        WRITE(0,164) Y(J)
        WKITE(G,136) X(1),X(IN)
        WRITE(6,137) Z(1),Z(KN)
```

```
    WRITE(0,151) CURX1,CURX2
    WRITE(6,152) CURX3,CURX4
    WRITE(6,153) CURZ1,CURZ2
    WRITE(t,154) CURZ3,CURZ4
        WRITE (6,114)
        WRITE(6,142)
    C plot furce angle in x-l plane.
        WRITE(6,FMTI) ((ANGL(KA,IA),IA=1,IM),KA=1,KM)
        WRITE(E,I18)
    C Write heacings for the fy plct.
        WRITE(E,159) (CCNFG(ICC),IOC=1,18)
        WRITE(0,115)
        WRITE(6,138) Y(J)
        WRITE(6,130) X(1),X(IM)
        WRITE(6,137) Z(1),Z(KM)
        WRITE(t,145)
        WRITE(6,151) CURX1,CURX2
        WRITE(6,i52) CURX3,CLRX4
        HRITE(6,153) CURZ1,CURZ2
        WRITE(t,154) CURZ3,CURZ4
        WRITE(6,114)
        WRITE(6,142)
    C PLOT fY IN THE X-Z PLANE.
        WRITE(6,FMT 1) ((FORCY(KY,IY),IY=1,IM),KY=1,KK)
    200 CGNTINUE
C END OF PROGRAM.
    CALL EXIT
    ENC
```

	SYMBOI.	FORCE RANGE ILRF/CU.IN.)						
		ก.0	TO	0.350				
	A	ค. 350	TO	0.386	P	6.116	T	6.727
		0.396	T0	n. 424		6.727	Tn	7.430
	A	n. 424	TO	0.467	0	$7.40 n$	Tn	8.140
		0.467	TO	0.513		$8.14 n$	T0	8.954
	r.	n. 513	TO	0.564	R	8.954	T0	9.850
		C. 564	T0	0.621		9.850	TO	10.834
	0	0.671	TO	0.683	S	1n.834	T	11.918
		0.683	T0	7.751		11.918	T	13.119
	E	O. 751	Tn	ก. 826	T	13.110	T0	14.421
		0.876	T0	ก.909		14.421	17	15.863
	F	ก.909	T0	1.0n0	(J)	15.863	Tח	17.449
		$1.00 n$	T0	1.100		17.449	13	19.194
-	G	1.100	Tn	1.210	v	19.194	TO	21.113
		1.210	T	1.331		21.113	T\%	73. 224
	H			1.464	W	23.224	T	25.547
		1.464	Tn	1.611		75.547	TT	28.102
	1		то	1.772	x	28.17?	Tin	$3 C_{0} 912$
		1.777	T	1.949		30.912	Tn	34.073
	\checkmark	1.949	$T 7$	7.144	Y	34.003	T\%	$37.4: 73$
		7.144	T0	2.358		37.473	TO	41.143
	K	2.358	TJ	2. 594	2	41.143	10	45.758
		2.594	T0	2.853		45.258	T	49.783
	L	2. 853	TO	3.138	1	49.782	T	54.76?
		3.138	T0	3.452		54.76?	Tn	6r. 238
	\cdots	3.452	Tn	3.797	?	67.238	T7	66. 261
		3.797	Tn	4.177		66.261	Tn	72.888
	N	4.177	T0	4.595	3	72.888	F	87.176
		4.595	Tn	5.054		8r. 176	T	88.194
	n	5.254	Tin	5.56C	4	88.104	T	c7. 1.12
		5. 56%	T7	6.116		O7.n13	T	1.6.714

PLOT Sample Output, Force Angle.

PLOT Sample Output, Force Magnitude.

APPENDIX D COMPUTATION OF CURRENT ELEMENT END POINTS

```
        THIS SUBPROGRAM WILL DETERMINF THE COOROINATES OF THE
        FND POINTS DF AN ARRAY OF LINE FLEMENTS DESIGNED SO THAT
        THF. FIELDS PQONUCFD HY THIS ARQAY OF ELEMENTS mDDELS
        THF FIEIDS OF AN ACTUAL ELECTROMAGNETIC COIL CONFIGURATION
```



```
\begin{tabular}{|c|c|c|c|c|}
\hline ALPHAT(1)= & PHIZ & * & ALPHAZ \((2)=\) & PHIZZ \\
\hline RUTLロ(1) \(=\) & B1/RO & * & RUTLD(2) \(=\) & R2PRO \\
\hline ( & ALPHAI & * & = & ALPHAZ \\
\hline RCIIRX(I) & Rxi/Ro & * & RCIIPX(2) & RXXI/R0 \\
\hline C.IJR7 (1) & R71/Rn & & RCUPZ (2) & R271/R0 \\
\hline
\end{tabular}
ALPHAC = ALPHAC 
                                CONFIGURATION AND THE SCALE FACTOR
                                AMPDX(1) = THE CIORRENT DENSITY FOR THE AXIAL FIELO COILS
                        (AMP/SOIIARE INCH)
        AMDDX(>) = THE CIIRRFNT DENSITY FOR THE AXIAL GRADIENT
                        COILS (AMP/SQUARE INCH)
        AMPDI(1) = THE CIJRRENT DFNSITY FOP THE VERTICAL FIELD
        COILS (AMP/GOUARE INCH)
        AMPOT(?) = THE CURPENT DENSITY FOR THE VERTICAL GRADIENT
                        COILS (AMP/SOUARE INCH)
    SUAOIVIGION INTO MULTIPLE LOOPS
```



```
NUTPJT PARAMETER DEFINTTION
    D(T.J.K,L,M,N) = THE COORDINATES OF THE END POINTS OF
    THE LTNF FLEMENTS
    CID(I..J.K.L) = THF CUPRENT FLOWING IN THE PARTICULAR
                        ELEMENT
WHFGF THE DUMMY VARIARLES MEAN,
    I - nfgtgnateg thf vFRtical or axial fielo coils
    J - nESIGNATEG THF COIL NIMMRER
    K - DESIGNATES THF IOOP NIJMBER
    L - nfgignates thf flement numbed
```

```
C M - DFSIGNATES THF GTARTING OR END POINT
C N = DESIGNATES THF COORDINATE DIRECTION
C
    RIMFNSION WIDTX(?),WIOTZ(?),ALPHAX(?),RUIIO(2),RADIUS(2),ALPHAZ(?)
    T -AMDS(>),RFTAX(2), RETA7(?),QCURX(2),RCIJR7(2), CONF(20),
    > O(P.4.3P.9.?.3),C(JR(P.4.3P,R)
    2OnI FORMAT (GFR.1/1OFB.]/20A4/RII/FIn.1)
C
C. FIINCTION DEFINITIONS
C
    TANG(A)=SIN(A#N.017453)/COS(A*0.0174533)
    YRPC(K,L)=ARS(FL\capAT (( }K+L-(K/5)*4)/R)-2
    YRRC(K,1.)=ARS(XPRC(K,L)-1.0)
    YFLM(K,L)=FI_OAT (1-( (K+L-9* ((K+L)/9);/5)*#?)
    XFLM(K,L)=YFLM(K+2,L)
    DCQ(N,K)=FL\capAT(N+1-2#K)/FL\capAT(P#N)
    IN\capFX(K)=1+IAHC((K/Z)-1)
    IRFP(.I,K)=,J-K*((.J-1)/K)
    JRFP(J,K)=1+((.I-1)/K)
C TMOIJT PARAMFTEQS ALREADY DEFINFD AND A CONFIGURATION
                                    DFSCRIPTION
    _RFAD (5, 2ONI) (WIOTX(IN), ALPHAX(IN),AMPOX(IN),RCURX(IN),WIDTZ(IN),
    i (CONF(TN),IN=1,2O),(NXX(IN),NXZ(IN),N7X(IN),NZZ(IN),IN=1, 2),R0
C
C COAVFRSTON OF IPIOT PARAMETERS TO QUANTIES USED BY THE
    Dn 1000 I=1.?
    RUTI.D(I)=R!IILD(I)#R0
        RC!|RX(I) =RC(IRX(I)*R0
        RC\IP7(I)=RC!JR7(I)*RO
        WTOTX(I)=WTOTX(I) #BUILD(I)
        WT\capT7.(I)=WIחT>(I)*BUILD(I)
        RFTAX(I) =ALPHAC
        RETAT (I) = ALPHAC,
    100N cOvT [NUF.
        PAOTUS(1)=PN+(R1)IID(1)/2.0)
        PA\capT(IS(?) =QN+RUIILD(l)+(RUILO(?)/2.n)
C
C
C
C
C.
    no innl }J=1.
    NL OOD=NXX(TAMFX(.)) #NX7(INOFX(J))
    nก l^nnl k=1.NI_n@D
    \cap\cap inOl L=1.9
    nก innl u=1.?
C
    _P(1.J.K.L.M.1)= RAD[US(1) #TANG(ALPHAX(INNEX(J))) +WIOTX(INDEX(J))
    \overline{1}*\capCR(VXX<IMIFFX(J)),IRFO(NLOOP,NXX(INDFX(J))I)
r
```



```
    > 2r(IPX(TAIDFY(,J))*YPPC(I_, U)*(TANG(HFTAX(TNDFX(J)))-1•0))#
```

```
C
    3 YFLM(L.M)
    P(1:`,J,K,L,M,3)=((RADIUS(1) + RUILD(I)*DCR(NXZ(INDEX(J)) &JREP(NLOOP,
    i NXX(INNFX(J)))))=(1.0+XRRC(L,M)*(TANG(BETAX(INDEX(J)I)-1.0):-
    ? RCURX(TNDEX(J))*XRRC(L,4)*(TANG(RETAX(INDEX(J)))-1.0))*
    3 XFLM(L.M)
C
        _IF (J.NE,4) CUR(1,J,K,L)=AMPNX(INDEX(J))*WIDTX(INDEX(J))*BUILD(1)/
        j FLOAT(NLOOP)
        _IF(J.EO.4i CURR(1;J.K.L)=(-AMPDX(INDEX(J)i*WIDTX(INDEX(J))*
    7 RUILD(1)/FLOAT(NLOOP))
    1001 CONTINUE
C
                    VFQTICAL FIELD COILS
        DO 1002 J=1.4
        NLOMP=NZX(TNDEX(J))*NZZ.(INDEX(J))
        DO ION? K=1.NLOOP
        no 1002 L=1.&
        DO 10n? M=1.?
C
        P(?,J.K,L,M,1)=((RADIUS(INREX(J))*TANG(ALPHAZ(INDEX(J))) +WIDTZ(
        i
        ? XRRC(L.M)*(TANG(RETAT(INNEX(J)!)-1.0))-RCURZ(INDEX(J))*
    3 XRRC(L.M)#(TANG(RETAZ(INDEX(J);)-1.0);#XELM(L,M)
C
        P(7.J.K.L.M.?i=((RADIJS(INDEX(J))#TANG(ALPHAZ(INDEX(J))) &WIDTZ(
        j INDEX(.l))##CR(NZX(INDFX(,));IREP(NLOOD,NZX(INDEX(J)))))*(1.0*
        ? YRRC(L.M)*(TANG(RETAT(INDEX(J)))-1.0);-RCURZ(INDEX(J)i*
        3 YRRC(L.M)#(TANG(RETAT(INDEX(J)))-1.0)i#YELM(L,M)
C
        -P(P.J.K.L.M.3)= RADIUS(INDFX(J)) +RUILD(INDEX(J))*
        i OCR(V77(INNEX(J)),JREP(NLOOQ,NTX(INNEX(J))))
C
            IF (J.NE.4) CIS(P.J.K.L)=AMPIT(INNEX(J))*WIOTT(INDEX(J))*
            if RIILD(INDFX(J))/FLOAT(NLOODP)
            IF (J.FO.4) CUR(D.J.K.L)=(-AMPD7(INDFX(J);*WIOTZ(INDEX(J))*
            IT R|ILD(INDFX(N)/FLOAT(NILOND):
            inod continue
C
C THIS IS THE END OF thE FURPROGRAM
C
```


Figure D-1. Generalized Dimensions of Jractical Air Core Coil Configuration.

Figure D-2. Straight-Line Approximation to Rounded Corner.

Figure D-3. Illustration of Nomenclature Used in Subdivision of Windings into Multiple Loops.

APPENDIX E

COMPUTER SIMULATION OF STORE DROP IN A MAGNETIC ARTIFICIAL GRAVITY FACILITY

A computer code has been developed for use in the evaluation of coil configurations considered in the artificial gravity program. This code, designated STORE, provides a measure of the correlation of non-uniformities in the artificial gravity field with trajectory errors by calculating ideal or constant gravity trajectories and comparing with the trajectories calculated for a store released in the artificial gravity field. All aerodynamic.forces and moments are considered. The code itself consists of a main controlling program (MAIN), and the following four subroutines: INPl (for input), ARGRAV (calculates the artificial gravity components), TRAJ (provides the trajectory coordinates), and OUTPUT (controls the output). A general flow chart depicting the interrelation of these four routines and MAIN appears in Figure E-l. Input for STORE includes characteristics of the artificial gravity coil system as well as dynamic and aerodynamic characteristics of the store model used in the evaluation. A complete listing of input variables can be found in the "Input Variable List" of the input subroutine (INPI) listed on page 125. A sample output sheet is on page 141.

LIST OF SYMBOLS

D	Store diameter
$\mathrm{I}_{\mathrm{L}}{ }^{\prime} \mathrm{I}_{Y^{\prime}} \mathrm{I}_{z}$	Moments of inertia about principle axes of store Store length
m	Mass of store
q	Dynamic pressure
r	Relative distance between store and aircraft
S	Reference area of store
t	Time
Δt	Time increment
α	Angle of attack
B	Angle of side slip
$\left(_{x},{ }^{()_{Y}}\right.$	
$)^{2}$	Coordinate components
()$_{S}$	Referred to store coordinate system
${ }^{()} \mathrm{E}$	Referred to earth coordinate system

Theory

The store trajectories are calculated by determining the linear and angular accelerations through application of Newton's Second Law for a rotating frame (the store coordinate system of Figure E-3I, then integrating twice by Simpson's Rule. From Ref. ll, the vector equations of motion are,

$$
\begin{align*}
\vec{a}_{s} & =\frac{\vec{c}_{f} q_{S}}{m}-\vec{\omega}_{s} \times \vec{v}_{s}+[C]^{T} \vec{A}_{g} \tag{E-1}\\
\vec{\omega} & =[I / I]\left\{\vec{C}_{m} q_{s}-\vec{k}\right\} \tag{E-2}
\end{align*}
$$

where a_{s} and $\stackrel{\rightharpoonup}{\dot{\omega}}_{s}$ are the linear and angular accelerations in a frame fixed to the principle axes of the store and [C] ${ }^{T}$ is the transpose of the rotation matrix defined below. (See Appendices $A, B, C)$.

In this convenient vector form, the aerodynamic force coefficients are:

$$
\left.\stackrel{c}{F}=\begin{array}{c}
C_{x} \tag{E-3}\\
C_{y}^{P} \\
C_{z}
\end{array}\right\}
$$

The aerodynamic moment coefficients, as defined in Fig. E-2, are:

$$
\begin{equation*}
\stackrel{C}{m}^{c}=\left\{c_{p}^{C_{q}^{D}}{ }_{T}^{D}\right. \tag{E-4}
\end{equation*}
$$

The moments of inertia about the principle axes are:

$$
[1 / I]=\left[\begin{array}{ccc}
1 / I_{x} & 0 & 0 \\
0 & 1 / I_{Y} & 0 \tag{E-5}\\
0 & 0 & 1 / I_{z}
\end{array}\right]
$$

The vector \vec{K} arising from the rotating frame is:

$$
\begin{align*}
& \omega_{y} \omega_{z}\left(I_{z}-I_{y}\right) \tag{E-6}\\
& \dot{k}=\left\{\omega_{x} \omega_{z}\left(I_{x}-I_{z}\right)\right\} \\
& \omega_{x} \omega_{y}\left(I_{y}-I_{x}\right)
\end{align*}
$$

The aerodynamic force coefficients are calculated by first calculating lift, drag, and side force coefficients by the conventional definitions (i.e., perpendicular and parallel to the wind vector), then the angles of attack and side slip are used to determine the resulting forces in the store coordinate system (see Fig. E-2). Thus,

$$
\begin{align*}
& C_{x}=\left(C_{L} \sin \alpha-C_{D} \cos \alpha\right) \cos \beta+C_{s} \sin \beta \tag{E-7}\\
& C_{y}=\left(C_{D} \cos \alpha \sin \beta+C_{S} \cos \beta\right) \tag{E-8}\\
& C_{z}=-\left(C_{D} \sin \alpha+C_{L} \cos \alpha\right) \tag{E-9}
\end{align*}
$$

where,

$$
\begin{align*}
& C_{L}=C_{L O}+C_{L_{\alpha}^{\alpha}}^{\alpha} \tag{E-10}\\
& C_{D}=C_{D O}+C_{D_{\alpha^{2}}}^{\alpha^{2}+C_{D_{\beta^{2}}}^{\beta^{2}}} \tag{E-11}\\
& C_{S}=C_{S O}+C_{s_{\beta}}^{\beta} \tag{E-12}
\end{align*}
$$

The moment coefficients are calculated from the static and dynamic derivatives as,

$$
\begin{equation*}
c_{p}=0 \tag{E-13}
\end{equation*}
$$

$$
\begin{align*}
& C_{r}=C_{r_{0}}+C_{r_{\beta}}{ }^{\beta+C_{r_{\dot{\beta}}}} \dot{\beta}^{\dot{\beta}} C_{r_{\omega_{z}}} \omega_{z} \tag{E-15}
\end{align*}
$$

At this point, the static and dynamic derivatives for moment coefficients and the derivatives for force coefficients $C_{L \alpha}, C_{S \beta}$,etc.) form part of the input for the calculation and must be either estimated or determined from experimental data. The 'subzero' factors $\left(C_{L_{O}}, C_{q_{O}}, C_{r_{O}}, C_{S_{O}}\right)$ are generally a result of aerodynamic interference from the releasing body (i.e., aircraft model) since the stores are otherwise symmetric. For simplicity, these are approximated by a power series in $1 / r$, i.e.,

$$
\begin{equation*}
\mathrm{c}_{\xi_{0}}=\mathrm{a}_{\xi}+\frac{\mathrm{b}_{\xi}}{\mathrm{r}}+\frac{\mathrm{c}_{\xi}}{\mathrm{r}^{2}}+\frac{\mathrm{d}_{\xi}}{\mathrm{r}^{3}} \quad \xi=\mathrm{L}, \mathrm{~s}, \mathrm{q}, \mathrm{r} \tag{E-16}
\end{equation*}
$$

where, again, a, b, c, and d can be determined from a 'curve fit' of experimental data, or estimated. The series can be extended to higher order terms with minor modifications to the input and trajectory subroutines. It is noted that the goal of the calculation is a reasonable evaluation of the coil system so that a set of coefficients which produces a representative trajectory is sufficient.

The first integration of the dynamical equations is performed in the store coordinate system. Using Simpson's Rule based on half the time increment, the store velocity is

$$
\begin{equation*}
\vec{V}_{s_{n+1}}=\vec{V}_{s_{n}}+\frac{\Delta_{t}}{6}\left(a_{s_{n}}+4 a_{s_{n+\frac{1}{2}}}+a_{s_{n+1}}\right) \tag{E-17}
\end{equation*}
$$

where $a_{s_{n+\frac{1}{2}}}=a_{s}\left(t_{n}+\Delta t / 2\right)$. In order to determine both the
acceleration and velocity (for the next integration) at the half interval point, $t_{n}+\Delta t / 2$, the velocity is approximated as a quadratic in time between t_{n} and t_{n+1},

$$
\begin{align*}
& \vec{v}_{s_{n}}=c_{1} t_{n}^{2}+c_{2} t_{n}+c_{3} \tag{E-18}\\
& \vec{a}_{s_{n}}=\frac{d \vec{V}_{s_{n}}}{d t}=2 c_{1} t_{n}+c_{2} \tag{E-19}
\end{align*}
$$

where the coefficients are

$$
\begin{align*}
& c_{1}=\left(\vec{a}_{s_{n+1}}-\vec{a}_{s_{n}}\right) / 2 \Delta t \tag{E-20}\\
& c_{2}=\vec{a}_{s_{n}}-2 c_{1} t_{n} \tag{E-21}\\
& c_{3}=\vec{v}_{s_{n}}-\left(c_{1} t_{n}^{2}+c_{2} t_{n}\right) \tag{E-22}
\end{align*}
$$

so that

$$
\begin{aligned}
& \overrightarrow{\mathrm{a}}_{s_{n+\frac{1}{2}}}=2 c_{1}\left(t_{n}+\Delta t / 2\right)+c_{2} \\
& \overrightarrow{\mathrm{v}}_{s_{n+\frac{1}{2}}}=c_{1}\left(t_{n}+\Delta t / 2\right)^{2}+c_{2}\left(t_{n}+\Delta t / 2\right)+c_{3}
\end{aligned}
$$

The angular acceleration is integrated in the same manner. Next, the linear and angular velocities are transferred to the nonrotating earth axis (see Figure E-3) by application of the proper rotation matrices, i.e.,

$$
\begin{align*}
& \overrightarrow{\mathrm{V}}_{E_{n+1}}=[C]_{n} \overrightarrow{\mathrm{~V}}_{s_{n+1}} \tag{E-25}\\
& \dot{\vec{\theta}}_{n+1}=[D]_{n} \stackrel{\rightharpoonup}{\omega}_{s_{n+1}} \tag{E-26}
\end{align*}
$$

where $[C]_{n}$ and $[D]_{n}$ are as follows:
$[C]_{n}=\left[\begin{array}{lll}\cos \theta_{n} \cos \psi_{n} & \sin \phi_{n} \sin \theta_{n} \cos \psi_{n} \\ -\cos \phi_{n} \sin \psi_{n} & \cos \phi_{n} \sin \theta_{n} \cos \psi_{n} \\ \cos \theta_{n} \sin \psi_{n} & \sin \phi_{n} \sin \theta_{n} \sin \psi_{n} \\ +\cos \phi_{n} \cos \psi_{n} & \cos \phi_{n} \sin \theta_{n} \sin \psi_{n} \\ -\sin \theta_{n} & \sin \phi_{n} \cos \theta_{n} & \\ & \cos \phi_{n} \cos \theta_{n}\end{array}\right]$
$[D]_{n}=\left[\begin{array}{lll}1 & \sin \phi_{n} \tan \theta_{n} & \cos \phi_{n} \tan \theta_{n} \\ 0 & \cos \phi_{n} & -\sin \phi_{n} \\ 0 & \sin \phi_{n} \sec _{n} & \cos \phi_{n} \sec \theta_{n}\end{array}\right]$
and ϕ, θ, and ψ are the Euler angles defined in Figure $E-3$.
Now, the linear velocities and Euler rates are integrated, again by Simpson's Rule, to determine the next coordinates of the store c.g. and the Euler angles locating the store principal axes, i.e.

$$
\begin{align*}
\overrightarrow{\mathrm{X}}_{E_{n+1}} & =\overrightarrow{\mathrm{X}}_{E_{n}}+\frac{\Delta t}{6}\left(\vec{v}_{E_{n}}+4 \overrightarrow{\mathrm{~V}}_{E_{n+\frac{1}{2}}}+\overrightarrow{\mathrm{V}}_{E_{n+1}}\right) \tag{E-29}\\
\theta_{n+1} & =\underset{\psi}{\{ } \dot{\theta}_{\psi}^{\phi}=\vec{\theta}_{n}+\frac{\Delta t}{6}\left(\dot{\theta}_{n}+4 \dot{\theta}_{n+\frac{1}{2}}+\dot{\theta}_{n+1}\right) \tag{E-30}
\end{align*}
$$

where

$$
\begin{align*}
& \overrightarrow{\mathrm{V}}_{E_{n+\frac{1}{2}}}=[C]_{n} \overrightarrow{\mathrm{~V}}_{s}\left(t_{n}+\Delta t / 2\right) \tag{E-31}\\
& \overrightarrow{\dot{\theta}}_{n+\frac{1}{2}}=[C]_{n} \vec{\omega}_{s}\left(t_{n}+\Delta t / 2\right) \tag{E-32}
\end{align*}
$$

The computer code developed for the trajectory calculation has been tested for the cases of a non-rotating sphere with constant acceleration and for a purely rotating sphere. Under these conditions, the dynamical equations reduce to

$$
\begin{equation*}
\vec{x}_{E_{n}}=\frac{1}{2} \vec{a} t_{n^{\prime}}^{2} \quad \vec{a}=\text { const } \tag{E-33}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{\theta}_{n+1}=\theta_{n}+\left(\dot{\theta}_{n} \Delta t+\overrightarrow{\dot{\theta}}_{n} \frac{(\Delta t)^{2}}{2}\right) \tag{E-34}
\end{equation*}
$$

respectively, where

$$
\dot{\theta}_{n}=[D] \vec{b} t_{n}, \quad \ddot{\theta}_{n}=[D] \vec{b} \quad \vec{b}=\text { const. }(E-35)
$$

Figure E-l. General Flow Chart for Store.

Figure E-2. Aerodynamic Coefficients in Store Axis.

Figure E-3. Coordinate Systems and Euler Angles.

```
    C
                    ARTIFICIAL GRAVITY-STURE
    C
    C
    C A CODE TO CALCULATE THE FORCES UN A MAGNETIC BODY IN A FIELD PRODUCED
    C BY CJILS CUNSISTING DF STRAIGHT LINE CURRENT ELEMENTS.
    C
    C THE MAGNETIC ACCELERATIONS ARE USED TO PREDICT STORE TRAJEGTORIES AND
    C TRAJECTORY ERRORS RESULTING FROM THE NON-UNIFORMITY OF THE ARTIFICIAL
    C GRAVITY FIELD。
    C
            DIMENSIUN XTR(10r)0,3),XR(1000,3),AX(1000), AY(1000), AZ(1000),X(1000
            1),ERRX(1f00, 3),CGNFG(18),X1(50C),Y1(500), Z1(500),X2(500),Y2(50U),Z
        22(500), CUR(500), CONFS(18),GES1(1000),GES2(1070), ZETA2(1000), XRN(10
        3(10,3), XTRN(1000,3),ALPHA(1000), ALPHAR(1000), ALPHAI(1000), ERRAL(100
        40), ZETAI(10)U), XE(3),THETA(3),XAC(3),VAC(3),XM(2,3),CF(2,3),AG(2,3
        5),6(2,3,3),WXV(2,3),TIME(10)0),CS(3),SN(3),GS(2,3),ACS(1000,2,3),C
N
        6I(2,3),C2(2,3),VSH(2,3),ACSH(2,3),VS(1000,2,3),VE(1000,2,3),VEH(2,
        73), BETA(10), ), XREL(1(03,3),XNE(1000,3),CFO(4),AF(4,4),C 3(2,3),XE1(
        83):THETA1(3),XAC1(3)
    C
C INPUT THE CHARACTERISTICS OF THE STURE AND ARTIFICIAL GRAVITY
C CONFIGURATIONS FOR THIS CALCULATIONO
    CALL INPLIDA,AMS,XKT,XMU,RHOI,X1,Y1,Z1,X2,Y2,Z2,CUR,LM,CONFG
        1,CURX1,CURX2,CURX3,CURX4,CURZ1,CURZ2,CUR23,CURZ4,CONFS,XE1,THETA1,
        2XACI,VAC,XM,XNS,DELT,RHOZE,BD,BL, XMIN,XMAX,ZMIN,ZMAX,VS,VE,AF,CELA
        3,CESB,CDU,COA2,CMA,CMAD,CMTD,CNB,CNBD,CNPSID,BSTL,ASTL,BETSTL,ALPS
        4TL,G)
C
C CALCULATE CUNSTANT VARIABLESo
    CIN=120*BL
    SR=0 3927%RHUZExBD**2
    DELTO=DELT/O
    TVEL=VAC(1)
C
C UEFINE STARTING CONDITIONSo
    TIME(I)=U.
```

```
            ITR=1
            ITRA=0
            ITRB=0
            VMAG=(VS(1,1,1)*VS(1,1,1)+VS(1,1,2)*VS(1,1,2)+VS(1,2,3)*VS(1,1,3))
        1V*。5
            IF(VMAGaEQoD.) GO TO 961
            ALPHA(1)=ARSIN(VS (1,1,3)/VMAG)
            BETA(1)=ARSIN(VS(1,1,2)/VMAG)
            GO TO }96
    961 ALPHA(1)=0.
            BETA(1)=0.
962 ALPHAI(1)=ALPHA(1)*57:3
            ALPHAR(1)=ALPHAI(1)
    C calculate the inItIal rotatiun matrix.
            CALL ROTA(THETAL,C)
            OO 941 NI=1,3
& AG(2,NI)=O。
N XTR(I,NI)=-12.*(XACI(NI)-XEI(NI))
                            XTRN(1,NI)=XTR(1,NI)+12**C(1,NI,1)*XNS
            XR(1,NI)=XTR(1,NI)
            XRN(1,NI)=XTRN(1,NI)
            THETA(NI)=THETAI(NI)
            XAC(NI)= XACI(NI)
    941 XE(NI)=XEL(NI)
C
C Calculate the magnetic force at the store release point.
            CALL ARGRAV(DA,AMS,XKT,XMU,XTR,X1,Y1,Z1,X2,Y2,Z2,CUR,LY,RHOI,AX,AY
            1,AZ,ITR)
            GESI(1)=((AX(1)**2+(AZ(1)+G)**2)***5)/G
            ZETAl(1)=ATAN(AX(1)/(AZ(1)+G))$57.3
            AG(1,1)=AX(ITR)
            AG(1,2)=AY(ITR)
            AG(1,3)=AZ(ITR)+G
C
C calculate the iveal or constant gravity trajectoryo
92i CALL TRAJ(XTR,XTRN,XE,THETA,XAC,VAC,XM,XNS,DELT,SR,DELTG,ALP
```

```
        IHA,BETA,C,AG,VS,VE,TIME,AF,CELA,CESB,CDO,CDAZ,CMA,CMAD,CMTD,CNB,CN
        2BD,CNPSID,ITR,ITRA,ITRB,BETSTL,ALPSTL,BSTL,ASTL,BL,VMAGI
    C
        ALPHAI(ITR)=ALPHA(ITR)*57.3
        TIME(ITR)=TIME(ITR-1)+DELT
    C
    C calculate the local g angle and magnitude.
        GESI(ITR)=GESI(I)
        LETA1(ITR)=ZETA1(1)
    C
    C IS THE STORE UUTSIDE OF THE LIMITS OF THE REGION OF. INTEREST.
        IF(XTR(ITR,I).GE,XMAX.UROXTRIITR,I).LEOXMIN,OR.XTR(ITR,3).GE.ZMAX.
        IUR"XTR(ITR,3).LE&ZMIN) GO TO 940
            GU TU 921
    C
    940 IMAX=ITR
\mu:C
N゙: C CALGULATE THE ACTUAL TRAJECTORYO
C DEFINE STARTING CUNDITIONS。
            DU 950 NM=1,3
            THETA(NM)=THETAI(NM)
        XAC (NM) = XACI (NM)
    950 XE(NM)=XEI(NM)
        ITRA=0
        ITRB=0
        ITR=1
        CALL ROTA(theta,C)
C
926 CALL ARGRAVIDA,AMS,XKT,XMU,XR,X1,Y1,Z1,X2,Y2,Z2,CUR,LM,RHOI,AX,AY,
        1AZ,ITRI
            AG(I,1)=AX(ITR)
            AG(1,2)=AY(ITR)
            AG(1,3)=AZ(ITR)+G
C
C CALCULATE THE LUCAL G ANGLE AND MAGNITUDE.
            GES2(ITR)=((AX(ITR)**2+(AZ(ITR)+G)**2)***5)/G
```

```
LETA2(ITR)=ATAN(AX(ITR)/(AZ(ITR)+G))*57.3
    C
        CALL
                                TRAJIXR,XRN, XE,THETA,XAC,VAC, XM, XNS,DELT,SR,DELTG,ALP
        IHA,BETA,C,AG,VS,VE,TIME,AF,CELA,CESB,COD,CDA2,CMA,CMAD,CMTD,CNB,CN
        2BD,CNPSID,ITR,ITRA,ITRB,BETSTL,ALPSTL,BSTL,,ASTL,BL,VMAGI
    C
    AL.PHAR(ITR)=ALPHA(ITR)*57.3
    IF(ITROEQ.IMAX) GO TO }92
    GO TO 926
    C
    924 CALL ARGRAV(DA,AMS,XKT,XMU,XR,XL,Y1,Z1,X2,Y2, Z2,CUR,LM,RHOI,AX,AY,
        IAZ,IMAXI
    C
        GES2(IMAX)=((AX(IMAX)**2+(AZ (IMAX)+G)**2)***。5)/G
        ZETAZ(IMAX)=ATAN(AX(IMAX)/(AZ(IMAX) +G) ) #57.3
    C
N
    C calculate the trajectory errors based on ideal conditions.
            DO 925 JL=1, IMAX
            OO 943 IL=1,3
    943 ERRX(JL,IL)=((XTR(JL,IL)-XR(JL,IL))/CIN)*1030
            IF(ALPHAI(JLIOEQ.O.) GU TO 936
            ERRAL(JL)=((ALPHAI(JL)-ALPHAR(JL))/ALPHAI(JL))*1000
            GO TO 925
    936 IF(ALPHAR(JL).EQ。ALPHAI(JL)) GO TO 937
            ERRAL(JL)=((ALPHAR(JL)-ALPHAI|JL))/ALPHAR(JL))*100.
            GO TO 925
    937 ERRAL (JL)=02
    925 CONTINUE
C
C OUTPUT THE TRAJECTORIES AND TRAJECTORY ERRORS.
                            CALL JUPUT(CONFG,X1,Y1,Z1,X2,Y2,Z2,CUR,LM,CONFS,CURX1,CURXZ,
        1CURX3,CURX4,CURZI, CURZ2,CURZ3,CURZ4,TIME,XTR,XR,ERRX,IMAX,GES1,GES
        22,ZETA1,ZETAZ,TVEL,ALPHAR,XRN, ALPHAI, XTRN,ERRAL)
            CALL EXIT
            END
```

```
            SUBROUTINE INPI(DA,AMS,XKT,XMU,RHOI,X1,Y1,Z1,X2,Y2,Z2,CUR,LM,CONFG
                1,CURX1,CURX2,CURX3,CURX4,CURZ1,CURZ2,CURZ3,CURZ4,CONFS,XE1,THETA1,
                2XACI,VAC,XM, XNS,DELT,RHOZE,BD,BL,XMIN,XMAX,ZMIN,ZMAX,VS,VE,AF,CELA
                3,CESB,CDU,COA2,CMA,CMAD,CMTD,CNB,CNBD,CNPSID,BSTL,ASTL,BETSTL,ALPS
                4TL,G)
        THETAI
        XACI
        VAC
        XM
        AF
        CELA
        CESB
        CDD
        cDAZ
        CMA
        CMAD
        CMTO
        CNB
        CNBD
```


INPUT SUBROUTINE

```
INPUT VARIABLE LIST
```

```
                                    DEFINITION
```

 DEFINITION
 DESCRIPTION OF STORE CONFIGURATION.
DESCRIPTION OF STORE CONFIGURATION.
INITIAL STCRE POSITION IN THE EARTH SYSTEM (X,Y,Z)。
INITIAL STCRE POSITION IN THE EARTH SYSTEM (X,Y,Z)。
INITIAL EULER ANGLES (PHI,THETA,PSI),
INITIAL EULER ANGLES (PHI,THETA,PSI),
INITIAL POSITION OF AIRCRAFT (X,Y,Z)。
INITIAL POSITION OF AIRCRAFT (X,Y,Z)。
VELOCITY COMPONENTS OF TUNNEL WIND (VX,VY,VZ).
VELOCITY COMPONENTS OF TUNNEL WIND (VX,VY,VZ).
STORE MASS AND MOMENTS OF INERTIA. XM(1,1)=XM(1,2)=
STORE MASS AND MOMENTS OF INERTIA. XM(1,1)=XM(1,2)=
XM(1,3)=MASS, XM(2,1)=IX, XM(2,2)=IY, AND XM(2,3)=IZ
XM(1,3)=MASS, XM(2,1)=IX, XM(2,2)=IY, AND XM(2,3)=IZ
CONSTANTS FOR DETERMINIG AERODYNAMIC INTERFERENCE
CONSTANTS FOR DETERMINIG AERODYNAMIC INTERFERENCE
FIELD. AF(1,1),AF(1,2),AF(1,3) AND AF(1,4) ARE FOR
FIELD. AF(1,1),AF(1,2),AF(1,3) AND AF(1,4) ARE FOR
SIDE FORCE, AF(2,1),AF(2,2),AF(2,3), AND AF(2,4) ARE
SIDE FORCE, AF(2,1),AF(2,2),AF(2,3), AND AF(2,4) ARE
FDR NURMAL FORCE, AF(3,I) FOR PITCHING MOMENT, AND
FDR NURMAL FORCE, AF(3,I) FOR PITCHING MOMENT, AND
AF(4,I) FOR YAWING MDMENT.
AF(4,I) FOR YAWING MDMENT.
LIFT CURVE CLOPE (DCL/DALPHA)
LIFT CURVE CLOPE (DCL/DALPHA)
SIDE FORCE DIRIVITIVE (DCS/DBETAI.
SIDE FORCE DIRIVITIVE (DCS/DBETAI.
BASE DRAG.
BASE DRAG.
DCO/DALPHA**2
DCO/DALPHA**2
DCM/DALPHA (PITCHING MOMENT)
DCM/DALPHA (PITCHING MOMENT)
DCM/DALPHADOT ". '!
DCM/DALPHADOT ". '!
DCM/DWYDOT "' "'
DCM/DWYDOT "' "'
DCN/DBETA (YAWING MOMENT)
DCN/DBETA (YAWING MOMENT)
DCN/DBETADOT !' !'
DCN/DBETADOT !' !'
DIMENSION CONFG(18),X1(500),Y1(500), Z1(500), X2(500),Y2(500),Z2(500
1),CUR(50)), CONFS(18), XE1(3),THETA1(3),XAC1(3),VAC(3),XM(2,3),VS(10

```
```

200,2,3),VE(1000,2,3),AF(4,4),CURT(100)
vuvuvuvu\u\uvuvu(u)
164 FORMAT(18A4)

```

```

DA
AMS
XKT
XMU
RHOI
LM
INPOPT
CONFG
X1,Y1,21
X2,Y2,Z2
CURT
CUR

```
```

DCN/DWZDUT "' '!

```
DCN/DWZDUT "' '!
    DISTANCE FROM STORE COG. TO NOSE.
    DISTANCE FROM STORE COG. TO NOSE.
    TIME INCREMENT FOR TRAJECTORY CALCULATIONS.
    TIME INCREMENT FOR TRAJECTORY CALCULATIONS.
    DENSITY DF TUNNEL ATMOSPHERE.
    DENSITY DF TUNNEL ATMOSPHERE.
    STORE DIAMETER.
    STORE DIAMETER.
    STORE LENGTH.
    STORE LENGTH.
    X LIMITS OF REGION OF INTEREST.
    X LIMITS OF REGION OF INTEREST.
    Z LIMITS DF REGION OF INTEREST,
    Z LIMITS DF REGION OF INTEREST,
    CONSTANT FOR SIDE FORCE COEFFICIENT CALCULATION PAST
    CONSTANT FOR SIDE FORCE COEFFICIENT CALCULATION PAST
    STALL。
    STALL。
    CONSTANT FOR LIFT COEFFICIENT CALCULATION PAST STALL
    CONSTANT FOR LIFT COEFFICIENT CALCULATION PAST STALL
    STALLING ANGLE OF SIDE SLIP.
    STALLING ANGLE OF SIDE SLIP.
    STALLING ANGLE OF ATTACK.
    STALLING ANGLE OF ATTACK.
    ACCELERATION DUE TO GRAVITY.
    ACCELERATION DUE TO GRAVITY.
    INITIAL VELOCITY COMPONENTS. AND ROTATION RATES Ür
    INITIAL VELOCITY COMPONENTS. AND ROTATION RATES Ür
    STORE RELATIVE TU STORE CoS@ VSII,I) CORRESPONDS
    STORE RELATIVE TU STORE CoS@ VSII,I) CORRESPONDS
    TO VELOCITIES AND VS(2,I) TD ROTATION RATES.
    TO VELOCITIES AND VS(2,I) TD ROTATION RATES.
    CORRESPONDING VELOCITIES AND ROTATION RATES IN
    CORRESPONDING VELOCITIES AND ROTATION RATES IN
    EARTH AXIS.
    EARTH AXIS.
    DEMAGNETIZING CONSTANT FOR THE MODEL.
    SATURATION MAGNETIZATION FOR THE MODEL.
    MAGNETIC FORGE CONSTANT.
    mAGNETIC PERMEABILITY UF FREE SPACE.
    DENSITY OF MAGNETIC MATERIAL OF SPHERE。
    TOTAL NUMBER OF CURRENT ELEMENTS
    INPUT OPTION.
    A DESCRIPTION OF THE MAGNET CUNFIGURATION.
    COORDINATES OF THE END POINTS OF THE STRAIGHT LINE
    CURRENT ELEMENTS MAKING UP THE COILS.
    CURRENT FLOWING IN A LODP OF FOUR CURRENT ELEMENTS。
    MAGNITUDE OF THE CURRENT IN AMPERES,+ FRJM 1 TO 20
```



```
C NOTE THAT DOUBLE SUBSCRIPTED VARIABLES SUCH AS XM(I,J) ARE READ IN the
C ORDER XM(1,1),XM(2,1),XM(3,1),000,XM(1,2),XM(2,2),0.0, ETC. UNLESS
C SPECIFIED AS IV STATEMENT READ(5,162).
C
        READ(5,164) CONFS
        READ(5,160) XE1,THETA1,XAC1,VAC,XM,AF
    160 FORMAT(3F14.8/3F14.8/3F14.8/3F14.8/6F12.6/8F9.5/8F9.5)
    READ (5,161) CELA,CESB,CDO,CDA2,CMA
    READ(5,101): CMAD,CMTD,CNB,CNBD,CNPSID
    READ(5,161) XNS,DELT,RHOZE,BD,BL
    READ(5,161) XMIN,XMAX,ZMIN,ZMAX,BSTL
    FORMAT(5F14.8)
    READ(5,163) ASTL,BETSTL,ALPSTL,G
    163 FORMAT(4F14,8)
    READ(5,162) (IVS(1,IN,IM),IM=1,3),IN=1,2)
    READ(5,162) ((VE(1,JN,KM),KM=1,3),JN=1,2)
    162 FORMAT(6F12,6)
C
    READ(5,112) DA,AMS,XKT,XMU,RHOI,LM,INPOPT
    112 FORMAT(F5.3,F9.2,2F12.11,F6.5,215)
    READ(5,164) CONFG
C INPOPT=I CORRESPONDS TO INPUTING THE CURRENT IN EACH ELEMENT. INPOPT
C =2 CORRESPONDS TO INPUTING THE CURRENT IN EACH LOOP OF FOUR ELEMENTS.
    IF(INPOPT.EQ,I) GO TO 171
    REAO(5,166) (XI(NI),Y1(NI),ZI(NI),X2(NI),Y2(NI),Z2(NI),NI=1,LM)
166 FORMAT(6F804)
    NTM=LM/4
```

$\operatorname{READ}(5,165)$ (CURT (NT),NT=1,NTM)
165 FORMAT(F10.0)
C ASSIGN CURRENT MAGNITUDES TO EACH CURRENT ELEMENT.
$K L=-3$
$K L I=0$
DO $170 \mathrm{JT}=1, \mathrm{NTM}$
$K L=K L+4$
$K L 1=K L 1+4$
DO 170 NT1 $=K L, K L 1$
$170 \operatorname{CUR}(N T 1)=\operatorname{CURT}(J T)$
GOTJ 173
$171 \operatorname{READ}(5,910)(X 1(V), Y 1(N), Z 1(N), X 2(N), Y Z(N), Z 2(N), C U R(N), N=1, L M)$
910 FORMAT (6F8.4,F10.0)
$173 \operatorname{READ}(5,950)$ CURX1,CURX2,CURX3,CURX4
READ (5,950) CURZ1,CURZ2, CURZ3,CURZ4
950 FORMAT(4F10.0)
RETURN
END

```
                    SUBROUTINE ARGRAV (DA,AMS,XKT,XMU,X,X1,Y1,Z1,X2,Y2,Z2,CUR,LM,RHOI,A
        IX,AY,AZ, [TR)
    C
    C ARTIFICIAL GRAVITY SUBROUTINE
        DIMENSIDN X(10:1),3),SGR(3),TGR(3),DP(3),DS(3),DD(3),DC(3),DG(3),X1
        1(500),Y1(500),Z1(500),X2(500),Y2(500),Z2(505),CUR(500),AX(1000),AY
        2(1000),AZ(1000)
    C
        XMP =XMU/(40*3.1416)
    C
    C initualize the values to be summedo
        BX=300
        BY=\。
        BZ=0,0
N
        BXX=?.
        BXY=0.
        BXZ=0.
        BYX=0.
        BYY=!.
        BYZ=0.
        BZX=0.
        BZY=0.
        BZZ=0.
    C
        DO 210 L=1,LM
    C CALCULATE A,B,C,D,E,AND F
        AGR=(XI(L)-X(ITR,1))/39.37
        BGR=(X2(L)-X(1TR,1))/39.37
        CGR=(Y1(L)-X(ITR,2))/39。37
        OGR=(Y2(L)-X(ITR,2))/39037
        EGR=(Z1(L)-X(1TR,3))/39.37
        FGR=(22(L)-X(ITR,3))/39。37
    C SUBSCRIPT A,C,E,B,D,F FOR LATER USE
        SGR(1)=AGR
        SGR(2)=CGR
```

```
                            SGR(3)=EGR
TGR(1)=BGR
TGR (2)=DGR
TGR(3)=FGR
C CALCUALTE U, V, AND W.
                    UGR=C GRッFFGR-DGR*EGR
                    VGR=EGR^BGR-FGR*AGR
                            WGR=AGR%UGR-BGR*CGR
C CALCULATE RHUI AND RHU2.
            RG1 = (AGR*AGR+CGR*CGR+EGR泣EGR)**。5
            RG2=(BGR*BGR+DGR*DGR+FGR*FGR)***。5
C CALCULATE THE SUM, PRODUCT, dOT PRODUCT, AND CROSS PRODUCT OF RHOI
C AND RHO2.
                            RS=RG1+RG2
                            RM=RG1*RG2
                            RDR=AGR*BGR+CGR*OGR +EGR*FGR
\stackrel{~}{0}
    RXR =UGR+VGR+WGR
C Calculate the derivitives of the sum, etc. uF rhul and rhozo
            DD 220 M=1,3
    UP(M)=-(SGR(M)*RG2/RG1+TGR(M)*RG1/RG2)
    DS(M)=-(SGR(M)/RG1+TGR(M)/RG2)
    DD(M)=-(SGR(M)+TGR(M))
22% CONTINUE
    DC(1)=FGR-EGR+CGR-DGR
    DC(2)=EGR-FGR+BGR-AGR
    DC (3)=OGR-CGR+AGR-BGR
C CAlGulate and test h to determine equation for g to be uSEDo
    H=(RM+RDR)/RM
    IF(H-0.01) 2,1,1
C CALCULATE G ANO ITS DERIVITIVES IN THE X,Y,Z DIRECTIUNS。
    1GGR=RS/(RM* (RM*RDR))
        DO 230 Ml=1,3
        DGA=RMF(RM+RDR)\approxDS(M1)
        DGB=RS*(RM*(DP(M1)+DD(M1))+DP(M1)*(RM+RDR))
        DG(M1)=(DGA-DGB)/(RM*(RM+RDR) )**2
230
        CONTINUE
```

```
            GO TO 3
    2 GGR=((RS)*(RM-ROR))/{RM*RXR*RXR)
        DO 240 M 2=1,3
        OGA= (RS\dot{*}(DP(M2)-DD(M2))+DS(M2)*(RM-RDR))*RM*RXR**2
        DGB=RS*(RM-RDR)*(RM*2**RXR*DOC(M2) +DP(M2)*RXR**2)
        DG(M2)=(UGA-DGB)/(RM*RXR**2)**2
        24J CONTINUE
    C CALCUALTE THE FIeLD CONTRIBUTIUNS OF EACH CURRENT ELEMENT.
        UGX=DG(1)
        DGY=DG(2)
        DGZ=OG(3)
        CURP=XMP*CUR(L)*10000.139.37
        CURM=XMP:*CUR(L)*GGR*10000.
        BXI=CURM*UGR
        BZI=CURM*:WGR
        BY1 =CURM* VGR
    C CALCULATE THE GRADIENT CONTRIBUTIONS OF EACH CURRENT ELEMENT.
    BXXI=CURP *UGR*UGX
    BXY1=CURP*(GGR*(EGR-FGR)+UGR*DGY)
    BXZ1=CURP*(GGR*(DGR-CGR)+UGR*DGZ)
    BYY1=CURP**VGR*DGY
    BYZ1=CURP**(GGR*(AGR-BGR)+VGR*DGZ)
    BZZ1=CURP*DGZ*WGR
C SUM tHE INDIVUAL CONTRIBUTIONS TO THE FIELD ANO GRADIENT TO GET THE
C TOTAL FIELD AND GRADIENTS.
    BX=BX+BX1
    BY=BYY+BY1
    BZ=BZ +BZ1
    BXX=BXX+BXX1
    BXY=BXY+BXY1
    BXZ = BXZ +BXZ1
    BYY=BYY+BYYI
    BYZ=BYZ+BYZZ1
    BZZ=BZZ+BZZ1
    210 CONTINUE
c CALCULATE AND TEST THE MAGNETIZATION OF THE BODY FOR SATURATION。
```

```
                    RB=(BX**2+BY**2+BZ**2)**(0.5
            XDK=XKT/DA
            AM=(1/DA)*RB
            IF(AM-AMS) 10,10,11
    C calculate the forces producev on the body.
    10 FX=XDK%(BX心BXX+BY*BXY+BZ*BXZ)
            FY=XDK*(BX*BXY+BY*BYY +BZ*BYZ )
            FZ=XDK*(BX*BXZ+BY*BYZ *BZ*BZZ)
            GO TO 12
    C calculate the components of the magnetization at saturationo
    11 BMY=(BY/RB)*AMS
            BMX=(BX/RB)*AMS
            BMZ=(BZ/RB)*AMS
    C calculate the forces produced un the body.
            FX=XKT** (BMX**BXX+BMY**BXY + BMZ** BXZ)
            FY= XK T*(BMX** XY B BMY *BYY+BMZZ*BYZ)
\mapsto
N }12\mathrm{ CONTINUE
    C
            AX(ITR)=FX/RHOI
            AY(ITR)=FY/RHOI
            AZ(ITR)=FZ/RHOI
    C
            RETURN
            END
```

```
SUBROUTINE TRAJ(XREL,XNE,XE,THETA,XAC,VAC,XM,XNS,DELT,SR,DELTG,ALP 1 HA, BETA,C,AG,VS,VE,TIME,AF,CELA,CESB,CDO,CDAZ,CMA,CMAD,CMTD,CNB,CN 2BD,CNPSID,ITR,ITRA,ITRB,BETSTL,ALPSTL,BSTL,ASTL,BL,VMAGI
            DIMENSION XE(3),THETA(3),XAC(3),VAC(3),XM(2,3),CF(2,3),AG(2,3),C(2
                1,3,3),CS(3),SN(3),WXV(2,3),TIME(10,0),GS(2,3),ACS(1000,2,3),C1(2,3
                2),C2(2,3),C3(2,3),VSH(2,3),ACSH(2,3),VS(1000,2,3),VE(1000,2,3),VEH
                3(2,3), ALPHA(10,0), BETA(1000), XREL (1000,3), XNE (1600,3),CFO(4), AF14,
                441
    C
    C calculate the dynamic pressure and the rates of angle of attack and
    C SIDE SLIP.
            QS=SR*VMAG**2
            IF(ITR.EQ.1) GO TO 210
H}\quadALPHAD=(ALPHAIITR)-ALPHAIITR-1)I/DELT
\omega
    GO TO 211
    210 ALPHAD=0%
            BETAD=0.
C
C CALCULATE THE INTERFERENCE FORCE AND MDMENT COEFFICIENTS。
    2I1 RV=(XREL(ITR,1)*XREL(ITR,1)+XREL(ITR,2)*:XREL(ITR,2) +XREL(ITR,3)*XR
        1EL(ITR,3))**0.5
            IF(RV.EQ, O.) KRM=1
            IF(RVONEODO) KRM=4
            DO 300 JR=1,4
            CFD(JR)=0.
            DO 300 KR=1,KRM
            IF(KR.EQ.1) RK=1.
            1F(KR.NEO1) RK=RV**(KR-1)
    300 CFO(JR)=CFO(JR)+AF(JR,KR)/RK
C
C CALCULATE THE LIFT, ORAG, AND SIDE FORDE COEFFICIENTSo
            CDE=CDO*(10+CDA2*(BETA(ITR)*&ETA(ITR)+ALPHA(ITR)*ALPHA(ITR)|)
```

```
    CES=CFO(1)+BETA(ITR)*CESB
    CEL=CFO(2)+CELA*ALPHA(ITR)
    C
    C TEST for STALL AND CALCULATE THE LIFT AND SIDE forCE AT STALL.
            IF(BETAIITR)。GE.BETSTLI GO TO 200
            GO TO 201
    200 I TRB=I TRB+1
            IF(ITRBoEQ.1) CESSTL=CES
            CES=CESSTL-BSTL*(BETA(ITR)-BETSTL)**2
    201 IF(ALPHA(ITR).GE.ALPSTL) GO TO 202
    GO TO 203
    202 ITRA=ITRA+1
        - IF(ITRA.EQ&1) CELSTL=CEL
        CEL=CELSTL-ASTL*(ALPHA(ITR)-ALPSTL)**2
    C
    C Calculate the force coefficients relative to the store coso
~
    203 CF(1,1)=(CEL*SIN(ALPHA(ITR))-CDE*COS(ALPHA(ITR)))*COS(BETA(ITR))+C
        1ES*SIN(BETA(ITR))
        CF(1,2)=CDE*COS(ALPHA(ITR))*SIN(BETA(ITR))+CES*COS(BETA(ITR))
        CF(1,3)=-(CDE*S IN(ALPHA(ITR))+CEL*COS(ALPHA(ITR)))
C
C CALCULATE THE MOMENT COEFFICIENTS.
    CF(2,1)=0.
    CF(2,3)=(CFO(4)+CNB*BETA(ITR) +CNBD*BETAD+CNPSID*VS(ITR,2,3))*BL
    CF(2,2)=(CFO(3)+CMA*ALPHA(ITR)+CMAD*ALPHAD+CMTD*VS(ITR,2,2))*BL
C
C
C Calculate the accelerations due to the rutating store CoSo
    WXV(1,1)=VS(ITR,2,2)*VS(ITR,1,3)-VS(ITR,2,3)*VS(ITR,1,2)
    WXV(1,2I=VS(ITR,2,3)*VS(ITR,1,1)-VS(ITR,2,1)&VS(ITR,1,3)
    WXV(1,3)=VS(ITR,2,1)*VS(ITR,1,2)-VS(ITR,2,2)*VS(ITR,1,1)
C
    WXV(2,1)=VS(ITR,2,2)*VS(ITR,2,3):* (XM( 2,3)-XM(2,2))/XM(2,1)
    WXV(2,2)=VS{ITR,2,1)*VS(ITR,2,3)*(XM(2,1)-XM(2,3))/XM(2,2)
    WXV(2,3)=VS(ITR,2,2)太VSIITR,2,1)*(XM(2,2)-XM(2,1))/XM(2,3)
C
```

```
    TIMH=TIME(ITR)+DELT/Z.
    C
        00 120 NF=1,2
        DO 14% MF=1,3
        GS(NF,MF)=O.
        DO 130 LF=1,3
    C TRANSFER THE MAGNETIC AND GRAVITY FORCES TO THE STORE C.S.
    130 GS(NF,MF)=GS(NF,MF)+C(NF,LF,MF)FAG(NF,LF)
    C calculate the acceleration of the store in the store cos.
    ACS(ITR+1,NF,MF)=CF(NF,MF)*QS/XM(NF,MF)-WXV(NF,MF)+GS(NF,MF)
            IF(ITR,EQOI) ACS(I,NF,MF)=ACS(2,NF,MF)
    C CALCULATE THE CONSTANTS FOR THE POWER SERIES EXPANSION IN TIME FOR
    C VELOCITY. (IOE. V=C1*T**2+C2*T+C3 )。
            Cl(NF,MF)=(ACS(ITR+1,NF,MF)-ACS(ITR,NF,MF)I/(DELT*2.)
            C2(NF,MF)=ACS(ITR,NF,MF)-2.*CL(NF,MF)*TIME(ITR)
            C3(NF,MF)=VS(ITR,NF,MF)-(CI(NF,MF)*TIME(ITR)**2+C2(NF,MF)*TIME(ITR
            1)
\stackrel{~}{\omega}
    C calculate the acceleratiun and velocity at the center of the interval
            VSH(NF,MF)=Cl(NF,MF)*TIMH**2+C2(NF,MF)*TIMH+C3(NF,MF)
            ACSH(NF,MF)=2.*C1 (NF,MF)*TIMH+C2(NF,MF)
    C USE SIMPSON'S RULE TO CALCULATE THE STORE VELOCITY AND ROTATION RATES.
    140 VS(ITR+1,NF,MF)=VS(ITR,NF,MF)+(ACS(ITR,NF,MF)+40*ACSH(NF,MF) +ACS(I
        1TR+1,NF,MF))*DELT6
            DO 120 NE=1,3
            VE(ITR+1,NF,NE)=0.
            VEH(NF,NE)=U.
            DO 150 ME=1,3
    C TRANSFER VELOCITIES AND ROTATIJN RATES TO THE EARTH COORDINATE SYSTEM
            VE(ITR+1,NF,NE)=VE(ITR+1,NF,NE) +C(NF,NE,ME)*VS(ITR+1,NF,ME)
    150 VEH(NF,NE)=VEH(NF,NE)+C (NF,NE,ME)*VSH(NF,ME)
    C USE SIMPSON'S RULE TO CALCULATE STORE POSITION ISPACIAL COORDINATES
    C AND EULER ANGLESI.
        IF(NF.EQO1) XE(NE)=XE(NE)+(VE(ITR,1,NE)+4**VEH(1,NE)+VE(ITR+I,1,NE
        1|*DELT6
    IF(NF.EQ,2) THETA(NE)=THETA(NE)+(VE(ITR,2,NE)+40*VEH(2,NE)+VE(ITR+
    11,2,NE))*DELT6
```

```
        120 CONTINUE
    C CALCULATE THE ROTATION MATRIX FOR AXIS ROTATION.
            CALL ROTA(THETA,C)
            DO 180 LE=1,3
    C calculate the relative pusition of store Cog. and nose in the earth
    C COORDINATE SYSTEM.
            XAC(LE) =XAC(LE)+VAC(LE)*DELT
            XREL(ITR+1,LE)=-120*(XAC(LE)-XE(LE))
            180 XNE(ITR+1,LE)=XREL(ITR+1,LE)+12%*C(1,LE,1)*XNS
    C
        ITR=ITR+1
    C
    C calculate the magnitude of the store velocity, store angle of attack,
    C AND ANGLE OF SIDE SLIP.
            VMAG=(VS(ITR,1,1)**2+VS(ITR,1,2)**2+VS(ITR,1,3)**2)**.5
            IF(VMAG,EQOOO) GO TO 220
& BETA(ITR)=ARSIN(VS(ITR,1,2I/VMAG)
    ALPHA(ITR)=ARS[N(VS(ITR,1;3)/VMAG)
    GO TO 221
    20 BETA(ITR)=0.
    ALPHA(ITR)=0.
221 RETURN
    END
```

```
            SUBROUTINE ROTA(THETA,C)
    C
                    ROTATION MATRIX SUBRCUTINE
            DIMENSION C(2,3,3),THETA(3),CS(3),SN(3)
    C
    C CALCULATE TRIGO FUNCTIONS UF THE EULER ANGLES.
            DO 100 KT=1,3
            SN(KT)=SIN(THETA(KT))
            100 CS(KT)=COS(THETA(KT))
    C
    c calculate the matrix for linear velocity transfer.
            C(1,1,1)=CS(2)*CS(3)
            C(1,1,2)=SN(1)*SN(2)*CS(3)-\operatorname{CS}(1)*SN(3)
            C(1,1,3)=CS(1)*SN(2)*CS(3)+SN(1)*SN(3)
    C
~
    C(1,2,1)=CS(2)*SN(3)
    C(1,2,2)=SN(1)*SN(2)*SN(3)+CS(1)*\operatorname{CS}(3)
    C(1,2,3)=CS(1)*SN(2)*SN(3)-SN(1)xCS(3)
    C
        C(1,3,1)=-SN(2)
        C(1,3,2)=SN(1)*CS(2)
        C(1,3,3)=CS(1)*CS(2)
    C
    C CALCULATE THE MATRIX FOR aNGULAR VELUCity tranSFER.
    C(z,1,1)=1。
    C(2,1,2)=SN(1)*(SN{2)/CS(2))
    C(2,1,3)=CS(1)*(SN(2)/CS(2))
C
    C(2,2,1)=0.
    C(2,2,2)=cs(1)
    C(2,2,3)=-SN(1)
    C
    C(2,3,1)=0.
    C(2,3,2)=SN(1)/CS(2)
    C(2,3,3)=CS(1)/CS(2)
```

C RETURN
END
$\underset{\infty}{\omega}$

```
            SUBROUTINE OUPUT (CONFG,X1,Y1,Z1,X2,Y2,Z2,CUR,LM,CONFS,CURX1,CURX2,
        ICURX3,CURX4,CURZ1,CURZ2,CURZ3,CURZ4,TIME,XTR,XR,ERRX,IMAX,GESI,GES
        22,ZETA1,ZETA2,TVEL,ALPHAR,XRN, ALPHAI, XTRN,ERRAL)
    C
    C
        OUTPUT SUBROUTINE
        DIMENSION TIME(1000), XTR(10U0.,3),XR(1000,3),ERRX(100N,3),GES1(1000
        1),GES2(1000),ZETA1(1003), ZETA2(1000), ALPHAI(1000), XTRN(1000,3),ALP
        2HAR(1000), XRN(1000,3), ERRAL(1000),X1(50N),Y1(500),21(5)0),X2(500),
        3Y2(500),22(500),CUR(5001,CONFG(18),CONFS(18)
    C
    814 FORMAT(//)
    C
        815 FORMAT (///)
        818 FORMAT(1HI)
        827 FORMAT (24X,1OHINPUT DATA)
        828 FORMAT(2X,6HXI(IN),2X,6HY1(IN), 2X,6HZI(IN),2X,6HX2(IN), 2X,6HY2(IN)
        1,2X,6HZ2(IN),1X,1OHCURRENT(A))
    829 FORMAT(1X,6F8.4,F10.0)
    851 FORMAT(3X,32HTOTAL CURRENT IN +X FIELD COIL= ,F1O.O,6H AMPS.,3X,35
        IHTOTAL CURRENT IN +X GRAUIENT COIL=,F10.0,6H AMPS.I
    852 FORMAT(3X,32HTOTAL CURRENT IN -X FIELD COIL = ,F10.0,6H AMPS., 3X,35
        IHTOTAL CURRENT IN -X GRAOIENT COIL= ,F10.0.6H AMPS.I
    853 FORMAT(3X,32HTOTAL CURRENT IN +2 FIELD COIL= ,FIO.0,6H AMPSO, 3X,35
        1HTOTAL CURRENT IN '+Z GRADIENT COIL=,F10.D,6H AMPS.)
    84 FORMAT ( 3X,32HTUTAL CURRENT IN -Z FIELD COIL= ,FIC.0,6H AMPS.,3X,35
        IHTOTAL CURRENT IN -Z GRADIENT COIL = ,FIO,0,6H AMPS&)
    859 FORMAT(24X,18A4)
    951 FORMAT(17X,91HCONSTANT GRAVITY AND ACTUAL TRAJECTORIES FOR WIND TU
        INNEL STORE DROP WITH ARTIFICIAL GRAVITY)
    952 FORMAT(17X,34HARTIFICIAL GRAVITY CONFIGURATION: ,18A4)
    953 FORMAT(17X,2OHSTORE CONFIGURATION:,18A4)
    960 FORMAT(4X,F6,3,10F8,4,3F1n,4)
970 FORMAT(4X,7HTIME(S), 2X,5HX(IN), 3X,5HY(IN), 3X,5HZ(IN),1X,7HG`S(XZ),
        11X,7HG ANGLE,3X,5HX(IN),3X,5HY(IN),3X,5HZ(IN),1X,7HG:S(XZ),1X,7HG
        2ANGLE, 3X,7H%ERROKX,3X,7H%ERRORY, 3X,7H&ERRORZI
```

```
971 FORMAT(20X,21HCONSTANT ACGELERATION,27X,6HACTUAL,23X,18H% TRAJECTO
IRY ERRORI
972 FORMAT(10F12.4)
973 FURMAT(1X,7HTIME(S),7X,13HANG OF ATTACK, 3X,5HX(IN),7X,5HY(IN),7X,5
        IHZ(IN),4X,13HANG OF ATTACK,2X,5HX(IN),7X,5HY(IN),7X,5HZ(IN),I2H%ER
        2ROR ALPHA)
    974 FORMAT(12X,4UHCONSTANT ACCELERATION NOSE/TAIL POSITION,24X,25HACTU
        IAL NUSE/TAIL PUSITION)
    980 FORMAT(3X,22HTUNNEL WIND VELOCITY=,F9.4,4H FPS)
    981 FORMAT(17X,38H% ERROR IS NJRMALIZED TO STORE LENGTH.)
    C
    C OUTPUT THE CHARACTERISTICS OF THE ARTIFICIAL GRAVITY CÜNFIGURATIONo
            WRITE(6,859) (CONFG(IOC),IOC=1,18)
            WRITE (6,815)
            WRITE(6,814)
            WRITE(6,827)
            WRITE(0.828)
& WRITE(6,829) (X1(N1),Y1(NL),Z1(NI), X2(NI),Y2(NI),Z2(N1),CUR(NL),
                1N1=1, LM)
C
C OUTPUT THE ACTUAL AND IDEAL TRAJECTORIES AND TRAJECTORY ERRORS.
    WRITE (6,818)
    WRITE(0,951)
    WRITE (6,815)
    WRITE(6,952) (CONFG(JO),JO=1,18)
    WRITE(6,953) (CONFS(KO),KO=1,18)
    WRITE{0,814)
    WRITE(6,851) CURX1,CURX2
    WRITE(6,852) CURX3,CURX4
    WRITE(6,853) CURL1,CURZ2
    WRITE(6,854) CURL3,CURZ4
    WRITE(6,980) TVEL
    WRITE (6,981)
    WRITE(6,815)
    WRITE (6,971)
    WRITE(6,979)
```

WRITE(6,96.) (TIME(IO),XTR(IO,1),XTR(IO,2),XTR(IO, 3), GESI(IU), ZETA 11(10), XR(IJ,1), XR(10,2), XR(IO,3), GES2(IO),ZETA2(IO), ERRX(IO,1), ERR $2 \times(10,2), E R R X(10,3), 10=1, I M A X)$
WRITE $(6,818)$
WRITE $(6,974)$
WRITE (6.973)
WRITE(6,972) (TIME(IN), ALPHAI(IN),XTRN(IN,1),XTRN(IN,2),XTRN(IN,3)
1, ALPHAR(IN), XRN(IN,1),XRN(IN,2),XRN(IN,3),ERRAL(IN),IN=1,IMAX) RETURN
END

* ERRDR IS NQRMALILED to StORE LENGTH.

ME(S) XIIN)	CONSTANT Y(IN)	ACCELERATION z(IN) Gos(xZ)	G ANGLE	$\times 1$	$Y(1 N)$	ACTUAL			\% trajectory error		
0.0 O.C	0.5	1.50 j3 10.4805	0.0	0.0	0.0	1.5000	10.4805	G angle	terrorx	serrory	
3.001-3. 0002	3. 2040	1.502 J 10.4865	0.0	-0.0002	0.0003	1.5020	10.4805	-0.0000	0.0	0.0000	0.0
0.002 -0.rcut	ט. 300	1.518110 .4805	0.0	-0.0007	0.0005	1.5081	10.4805	-0.0001	-0.0000	0.0000	0.0
3.003-3. 0.015	0.0001	1.5181 10.4805	0.19	-0.0015	0.0001	1.5181	10.4806	-C.0002	0.0	0.0000	-0.0000
$0.004-4.0026$	0.3053	105322 10.480.5	0.0	-9.0026	0.0002	1.5322	10.4807	-0.0003	0.0	0.0000	-2. 2000
$0.005-3.0041$	J. 2004	1.550310 .4805	0.0	-9.0041	0.0004	1.5503	10.4808	-C.00C5	0.0	0.3000	-0.0000
$0.606-0.1058$	0.0006	1.572410 .4805	0.0	-0.005	0.6006	1.5724	12.4808	-c.0006	0.0	0.0000	-0.0000
$0.007-0.00807$	0.2009	1.5985 1.J.4805	0.0	-9.0080	0.0009	1.5985	10.4809	-0.0309	0.0	0.0000	-0.0000
$0.038-\mathrm{Cc} 0104$	0.2011	1.628610 .4805	3.0	-0.0104	0.0012	1.6286	10.4811	-0.0011	0.0	0.0000	-0.0000
0.009-0.0132	0.2015	1.662710 .4805	0.0	-0.0132	0.0015	1.6627	10.4813	-0.0014	0.0	0.0000	-0.0900
2.010-0.0163	6.0026	1.7008 10.4805	0.0	-.).0163	0.0018	1.7008	$1 C .4814$	-0.0018	0.0	0.0000	-0.0000
$0.011-0.0197$	0.0022	1.743510 .4805	9.0	-0.0197	0.0022	1.7430	10.4816	-0.0021	0.0	0.0000	-0.0000
J.012-0.6234	0.0026	1.789110 .4805	0.0	-9.0234	0.0025	2.7891	10.4818	-6. 3025	0.0	0.0000	-0.0000
2.013 -0.0275	0.0031	1. 839210.48 CS	0.0	-0.0275	0.0031	1. 8392	10.4820	-0.0030	0.0	0.0000	-0.0001
0.014 -. 2.0 .319	0. 2036	2.8933 10.4805	O. 6	-0.0319	0.0036	1.8933	1 C .4823	-0.0035	0.0	0.0000	-0.0001
$0.015-0.0366$	0.0041	1. 751410.4805	j. 0	-... 0366	0.0041	1.9514	12.4823	-0.004c	0.0	0.0000	-0.0001
$0.016-6.8 .417$	0.0047	2.013510 .4805	0.0	-J.0417	0.0047	2.0135	10.4828	-0.0045	0.0	0.0000	-0.0001
0.017-0.0470	0.3052	2.079612 .4805	0.0	-0.0470	1.0052	2.0796	10.4831	- 0.3051	0.0	0.0000	-0.0001
2.018-9.0527	0.1005 8	2.149710 .4805	0.0	-0.0527	0.0058	2.1497	10.4835	-0.0057	0.0	0.0000	-0.0002
0.019-0.6588	0.0065	2.223710 .4845	0.0	-D. 2588	0.0065	2.2238	10.4838	-0.0064	0.0	0.0000	-0.0002
$0.020-0.0651$	U. 0071	2.301814 .4805	0.0	-.j. 0651	0.10071	2.3018	10.4841	-0.0070	0.0	0.0000	-0.0003
$0.021-6.0718$	0.3078	2.38381104805	0.0	-3.0718	4.0078	2.3838	10.4845	-L.0078	0.0	0.0000	-0.0003
$0.022-0.0785$	U. 0484	2.469810 .4805	0.0	-0.0788	U. 3084	2.4698	10.4849	-0.0085	0.0	0.0000	-9.0n04
2.023-0.08861	0.3091	2.559710 .4805	0.0	-0.0861	0.0091	2.5598	10.4853	-c.0093	0.0	0.0000	-0. 1004
0.024-0.0937	0.3098	2.653710 .4805	0.0	-0.0937	0.0098	2.6538	10.4857	-c.0101	0.0	0.0000	-9.0095
0.025-0.1017	0.0105	2.751617 .4805	0.0	-0.1017	0.0105	2.7517	10.4862	-0.0110	0.0001	0.0000	-0.0006
$0.026-0.1165$	C. 0113	2. 853510.4805	0.0	-0.1100	0.0113	2.8536	10.4866	-0.0.119	0.0001	.0900	-0.0007
$0.027-0.1186$	0.3120	2.959313 .4805	0.0	-0.1186	0.0120	2.9595	10.4870	-C.0126	c.coc 1	ก. 0000	-0.0008
$3.028-0.1275$	6.0127	3.0691 10.4805	0.0	-0.1276	0.0127	3.0693	10.4875	-0.0138	6.0091	0.0000	-0.0009
$0.029-0.1308$	0.9135	$3.142910 .48 \mathrm{C5}$	0.0	-6.1368	0.0134	3.1831	10.4880		0.0001	0.0000	-0.0011
2.030-0.1464	0.3142	3.300010 .4805	0.0	-i.1464	0.0142	3.3009	10.4885	-0.0159	0.0001	9. 2000	-0.0012
$0.031-0.1563$	0.0149	3.422319 .4865	3.0	-0.1563	0.0149	3.4226	10.4893	-0.0169	c.0002	0.0000	-0.0014
$0.032-0.1666$	J. 0256	3.5489 2U.4805	0.0	-J. 1666	0.0156	3.5482	10.4894	-C.C. 181	C.0002	0.0009	-0.0016
$0.033-0.1772$	0.0164	3.67751048055	c. 0	-0.1772	c. 0164	3.6779	10.4900	-c. 0192	0.0	0.0000	-9.0018
$0.034-0.1880$	0.0171	3.811110 .4805	0.0	-0.1880	0.1.171	3.8114	1C. 4905	-n.0204	C. 0	0.0005	-9.0020
J. $035-0.1992$	0.0178	3.7486 15.4805	3.0	-3.1992	$\bigcirc 0.2179$	3.9490	10.4910	-0.0216	0.5	-0.0000	-9.0022
$0.036-$-i. 2106	0.0184	4.090 10.4885	0.0	-3. 2106	U.C18*	4.6904	10.4915	-6.0229	0.0010	-0.0050	-0.0025
0.037-5. 2223	0.0191	4.23531	0.0	-0.2225	0.0192	4.2358	10.4921	-0.0243	0.5010	-0.905	-0.0028
9.038 -0. 2344	0.0198	4.384613 .4845	0.0	-0.2346	$0 . \mathrm{Cl} 198$	4.3852	10.4526	-C.0256	0.0010	-6.2000	-0.0r31
-039. $=0.2468$	U.0204.	4.5373 .10 .4805	0.0	-6. 247	0.0204	4.5385	. 10.4931	-0.0.6270.	c.0010	-0.0.090	-.0.0n34.

STORE Sample Output-Trajectories

REFERENCES

1. Sandahl, Carl A. and Faget, Maxime A.: Similitude Relations for Free-Model Wind-Tunnel Studies of Store-Dropping Problems, NACA TN-3907, 1957.
2. Covert, E. E.: Wind Tunnel Simulation of Store Jettison with the Aid of Artificial Gravity Generated by Magnetic Fields, J. Aircraft, Vol. 4, No. I, pp. 48-51 (Jan.-Feb. 1967).
3. Scherberg, Max and Rhode, R. V.: Mass Distribution and Performance of Free Flight Models, NACA TN-268 (1927).
4. Neihouse, Anshal I. and Pepoon, Philip W.: Dynamic Similitude Between a Model and a Full-Scale Body for Model Investigation at Full-Scale Mach Number, NACA TN-2062 (1950).
5. Ames Research Staff: Equations, Tables, and Charts for Compressible Flow, NACA Rept. 1135 (1953) (p. 19; Eq. Al)
6. Slater, John C., Frank, Nathaniel H.: Electromagnetism, McGraw-Hill Book Company, Inc., 1947, pp. 69-74.
7. Bozorth, Richard M.: Ferromagnetism, Bell Laboratories Series, D. Van Nostrand Company, Inc. (1951).
8. Terman, Frederick Emmons: Radio Engineers Handbook, McGraw-Hill Book Company, Inc. (1943).
9. Montgomery, D. Bruce: Solenoid Magnet Design, WileyInterscience (1969).
10. MCCracken, Daniel D.: A Guide to Fortran IV Programming, John Wiley and Sons, Inc. (1965).
11. Etkin, Bernard: Dynamics of Flight - Stability and Control, John Wiley and Sons, Inc. (1959).

[^0]: *The following notation is used to represent the gradient components:

 $$
 B_{x x}=\frac{\partial B_{x}}{\partial x}, B_{x y}=\frac{\partial^{B} x}{\partial y} \text {, etc. }
 $$

