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ABSTRACT

This thesis is concerned with the control of stochastic dynamic systems,
with particular emphasis on those which have the property that one can
influence the quality or nature of the measurements which are made to
effect control. Four main areas are discussed.

First, the meaning of stochastic optimality and the means by which dy-
namic programming may be applied to solve a combined control/mea-
surement problem is discussed. Second, a technique is described by
which it is possible to apply deterministic methods, specifically the
Minimum Principle, to the study of stochastic problems. Third, the
methods described are applied to linear systems with Gaussian dis-
turbances to study the structure of the resulting control system. A
useful separation property is shown to hold for linear systems with
quadratic cost criteria and Gaussian noise. Fourth, several'applica-
tions are considered.
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CHAPTER I

INTRODUCTION AND PROBLEM STATEMENT

1.1 General Perspective

One of the basic motivating forces behind the development of the

theory and practice of automatic control systems has been the goal of

providing acceptable system performance in the presence of uncertainty.

This uncertainty can be of two types: the designer may be ignorant of the

true nature of the system he is trying to control, or there may be in-

*
fluences on a (known) system which are of an uncertain nature. The for-

mer type of uncertainty leads to the problem of system identification; the

latter situation is generally referred to as a problem in stochastic control.

It is this second class of problems to which this thesis is devoted.

The earliest feedback control systems (for example, those used to

govern the operation of the water clocks and windmills of antiquity) were

built to reduce the undesirable effects of unknown influences on these sys-

**
terns. (M. 1) These early systems were designed using a trial and error

method inspired by physical intuition. One could usually determine which

unknown factors would influence system behavior (say, water pressure or

wind velocity and direction in the above examples) and try to design into

the system some form of compensation to make the overall behavior insen-

sitive to these factors.

*
Of course, a particular problem might be subject to both types of un-
certainty.

**
Parentheses denote references collected at the back of this work.

-8-
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Many modern control systems are also built •with the goal of making

the overall behavior insensitive to parameter fluctuations: Chemical proc-

esses must be insensitive to variations in the composition of raw materials,

moving bodies (automobiles or aircraft) must be insensitive to disturbing

forces (bumps in the road or wind gusts), and so forth. The obvious dif-

ference between the design of the control systems built before about 1940

and those built since then is the large amount of mathematical effort that

has been applied in the design of modern systems.
•

According to the most modern viewpoint, the dynamical system to

be controlled is modeled by a set of differential equations or difference
*

equations in which the uncertain quantities play the role of inputs or

drives to the equations of motion. The designer is able to manipulate cer-

tain other inputs so as to minimize in some sense the "damage" caused

by the uncertain influences. To complete the mathematical structure and

allow an analysis which determines the control commands, one must

specify how the uncertainties are to be modeled mathematically and spec-

ify the performance criterion to be used in selecting the control.

The uncertain quantities can be modeled by using the structure of

probability theory or by a set membership technique. In the probabilistic

framework, one assumes that there is an underlying probability space

(£l,\&, p) and that the uncertain quantities can be viewed as random variables

**
or random processes defined on this measure space. A suitable performance

*
In fact, even more general representations are possible, but these are
not considered here.

>k&
It is assumed that the reader is familiar with axiomatic probability
theory from the point of view of measures. The associated terminol-
ogy will be used freely with few definitions given formally. Important
results will be referenced.



-10-
criterion is then defined in such a way that it also is a random variable

on (n,t^,p), and one chooses the control in order to, say, minimize the

criterion of performance in some probabilistic sense. If, on the other

hand, one has insufficient information to establish a probabilistic frame-

work for the uncertain quantities, one might perhaps know that these

quantities are constrained to take their values in some given set. This

point of view has been recently developed, for example, by Bertsekas (B. 1),

Bertsekas and Rhodes (B.2) , and Schweppe (S. 1) , (S.Z) . The index of per-

formance in this situation typically involves minimizing the maximum

damage that can be done if the uncertain quantities actually turn out to

have "unfavorable" values — in essence, a sort of worst case design. A

situation in which the sets containing the uncertain quantities have ill-

defined boundaries has been considered by Zadeh (Z. 1).

In this thesis, the probabilistic point of view will be taken. In

*
particular, a clear and precise formulation of the stochastic optimal

control problem and the stochastic optimal control/measurement prob-

lem will be given and interpreted. Although many authors have consid-

ered stochastic control before, there has been a great lack of precision

in writings on the subject. Hopefully, one result of this thesis will be the

elimination of certain areas of confusion that will be pointed out below.

#
"Stochastic"is used in this thesis as a synonym for "probabilistic".



1.2 The Measurement Optimization Problem

**
In deterministic control problems, the concept of state plays a

central role. This is because the state summarizes the entire past

history of the behavior of the system; given the value of the state at

some time t, no explicit information regarding the inputs to the sys-

tem or its resulting behavior before time t is required to calculate

the future response. This notion is particularly useful in the case of

finite dimensional systems: those which may be characterized by a state

vector of finite dimension. It is intuitively a great simplification to be

able to describe the effects of an infinite dimensional entity (the input

time function over an interval) by giving a finite set of numbers.

There are two key ideas that follow from the idea of state: f i r s t ,

the index of performance used in selecting the control is usually a func-

tional of the state trajectory and control trajectory over the interval of

time of interest, and perhaps of the final value of the state if that in-

terval is of finite duration. The second idea is that one form of "answer"

to the control problem consists of specifying the value of the control at

time t as a function (only) of the state at time t, that function perhaps

changing with time. This "closed loop" solution approach is valid since

the state at time t summarizes all available information about the sys-

tem at that time.

**
"Deterministic" is used here to mean "involving no uncertain quantities".
Strictly speaking, there are no deterministic control problems, but
such a formulation is a useful fiction in some cases. It is up to the
designer to determine which type of formulation to use, based on his
overall goals and constraints.

-11-



In a deterministic problem, the closed loop approach may be con-

ceptually converted to an entirely equivalent open loop technique. One

might imagine "running" the system using the feedback control and record-

ing the values of the control as time evolves. If one then "runs" the system

again (starting it in the same initial state as before) and supplies the con-

trol by playing back the record rather than by feeding back the state, the

same state trajectory will result and the performance index will achieve

the same value. This is evidently true since the control input is the only

influence effecting the state trajectory. This equivalence, of course, fails

when the system is influenced by uncertain inputs which act in addition to

the specified control since the uncertain quantities may take on different

(sample) values over different runs.

Heuristically, one can argue that in the stochastic case, exact knowl-

edge of the state at time t coupled with the application of a closed-loop

control law still represents a valid solution to the control problem since

that known value of state summarizes the effects of all past system in-

fluences, uncertain or known. Unfortunately, the typical problem state-

ment in the stochastic case includes the restriction that the state cannot be

determined precisely. The designer is usually forced to use imperfect

measurements of the state as his basis for control. It makes intuitive sense

to employ these measurements to estimate the actual value of the state and

then base the value of the control on that estimate. This interplay between

state estimation and control is a crucial aspect of the theory of stochastic

control, and it will be considered in much greater detail below. At this

point, it suffices to note that imprecise measurements of the true state of

the system must be used to generate the control signals.

-12-
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In the usual formulation of the stochastic control problem, the mea-

surement equation is taken as given. Suppose, however, as is frequently the

case, that one has some influence over the quality of the measurements.

One might be able to make a particularly good measurement at some time

by making a large effort in some sense. One might be able to suspend mea-

surementsfor a period to conserve resources for later measurement and

control. One might be constrained to make a fixed number of discrete mea-

surements or less, say due to the measurement having a disruptive effect on

the system, but freedom over when to make these measurements might be

given. One might have the choice of several measurement configurations

(e.g. , measurement of one state or another) with the restriction that only

one configuration be used at a time due to resource limitations. Finally, it

might be that the measurement subsystem is time-shared among many

dynamic systems, with discrete measurements being made on a particular

dynamic system at times t = 0, n, 2n, 3n, . . . where n is a fixed integer.

Intuitively, the larger n, the more dynamic systems that can be observed

with the one measurement subsystem, although "enough" measurements

must be be carried out on each dynamic system to achieve an overall con-

trol objective. J

For the reasons above, it m,akes sense to include a measurement
»

control parameter in the equation representing the observation of the sys-

tem state. Since taking the measurement typically involves expending re-

sources, it also makes sense to include the measurement control history

in the performance index functional. One of the primary concerns of this

thesis will be the interrelation among the selection of state estimation,

dynamic control, and measurement control techniques.lt will be shown that

for certain classes of systems, a particularly simple overall control struc-

ture results.
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1 3 Mathematical System Description

In order to further descuss the issues which this thesis will consider,

it is convenient to have an established notation. To this end, let R , for

any integer i represent the i-dimensional Euclidean vector space and

let *t = (0, 1, 2, . . . . T} represent a time index set. Suppose that the

plant under consideration evolves according to the vector difference equa-

tion

x = f (x, u , £) (1 .3 .1 )
t+1 t "t "t -t

where for t e^J , x e R is the state vector, u e R is the dynamic

control vector, and £ e R is a random vector on a given probability

space ( £ 2 , s J , p ) . Thus, by definition (Loeve, (L.I) , p. 150)

£ ( . ): J2 -* R*^ is a measurable map with respect to the tr-algebra ̂  . It

will generally be assumed that the sequence of random vectors {£ > £ , . . . ,

£ } is "white", i.e., that £ is independent of £. for all i / j. The
-T-l "* "J .
function f ( ' , ' , • ) is assumed to be a Borel function (see Loeve, (L. 1),

p. 110) from R x R * R" into R . It is also assumed that the initial

state %„ is a random vector on (n,^,p) which is independent of £ for

all t e tJ • From these assumptions, it follows recursively (see (L. 1),p. 110)

j-
The term "state" is used somewhat loosely here. Exactly what constitutes
the state of a stochastic problem will be discussed in Chapter II.

£ 4f 'f" « 1

This is slightly more than is needed here. If the sequence {ut)^._Q is
fixed (open loop), all that is required is that f_ ( • , " , « ) t>e Borel from
R^R'l into Rn for all fixed u. The more restrictive hypothesis will
be needed below when closed loop controls are defined.
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and the Borel Functions Theorem, p. 154) that for any fixed sequence

{u , u , . . . ,u } of dynamic controls, the sequence of states
0 "l --r-1

{x , x , . . . ,x } is a random process on (Q,i&t p), i. e., that the x ,te 3 ,

are jointly distributed random vectors.

Suppose now that measurements are made according to the equation

Yt = gt (*t. vt, 0t); te % ( 1 . 3 . 2 )

r swhere y cR is the measurement vector, v eR is the measurement
_ t I

control, and (0 n > 6,, . . . , 0™} is a sequence of independent random vectors

on (£2,*S,p) (discrete white noise) with values in R" which is independent

T - 1of xn and { £ } , _n . The function g ( ' , ' , • ) is assumed to be a Borel-u _t t-u -£

function from R x R x R^ into R. It follows, as above, that {y.}i _o

is a random process on (£2, A , p) for any fixed sequence of measurement

controls .

For ease of notation, sequences will be specified below without in-

dicating their index sets where no confusion will result, e .g . ,

{xt} = (xt}T=0
 and {y tMVt=o-

Suppose now that the following functional of {x }, {u } , and {v.}
— t ~ t ~* i

is defined:

T-l

( 1 . 3 . 3 )

where all the functions are Borel. Then J is also a random variable on

(fi,*$,p) for any fixed {u.} and {v } and it makes sense to specify an opti-

mization problem in terms of minimizing J in some stochastic sense.

Exactly in what sense can be a complicated question which will be consid-

ered in Chapter II. At that point, the reasons for choosing the particular
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form of J displayed in equation (1. 3. 3) will also become clear.

Of course, additional restrictions must typically be placed on the

various functions that have been defined in order to insure the a-priori

existence and uniqueness of a solution to the optimization problem. These

questions, however, are beyond the scope of this thesis. It will be as-

sumed here that a solution exists, and methods of characterizing it will

be discussed. At any rate, the L and f~ functions will generally be

taken to be positive definite and perhaps convex.

Up to this point, only open loop control sequences have been con-

sidered, that is, fixed sequences {u } and (v } have been mentioned. In
*™ t ^ **

order to consider closed loop strategies, one must specify precisely what

depends on what. To this end, let the following notation be established: For

any variable z , the capital letter with subscript will refer to the entire

time history of that variable from the initial time t = 0 up to the specified

subscript:

Zt = {ZQ, zr z2, . . . , z t _ 1 , zt) (1.3.4)

In particular, Y = {y , y,» . . . , y.} will denote the set of past measure-
t —Q - 1 -t

ments. Then the functional form of the allowed control strategies will be

of the following type:

Y. , , = 4v , i{Yt) (1 .3 .6)
t T 1 _t T 1 L

4- ••• m ^
where <j> (•) and <]> , (•) are Borel functions from R " into R and R

respectively. What this says is that the value of the present dynamic

control u. and the next measurement control v . are determined by the
"• t — t T J.

measurements up to now.
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Under all the assumptions that have been made, if (1.3.5) and

(1.3 .6) are substituted into (1.3. 1) and (1 .3 .2 ) to give

(1 .3 .7)

then it again follows recursively from the fact that xn is a random variable

on (£2,J,p) that the sequences {x } and {y } are random processes. Simi-

larly, J is still a random variable which may be minimized in a sense to

be specified below by choice of the functions 4> and vk from anaong the
— t — t

class of Borel maps.

According to the above structural assumptions, one might visualize

the following scenario for the evolution of the system:

1 . Nature picks the initial state x,.

2. You pick the measurement control v~

3. Nature picks the measurement noise 6 n

4. You measure y_

Let k = 0

5. Based on the measurement set Y, , you pick dynamic control

u, and measurement control v, ,

6. Nature picks driving noise £,
— K.

7. Based on x, , £,, and u, , the plant generates x, ,

8. Nature picks measurement noise 9, , ,
~K. T J.

9. You measure y, , and increase the measurement set in size

Increase k by 1 and go to Step 5

Steps 5-9 repeat until the final state x™ has been generated and the final

measurement y,_p has been made.
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It will be convenient here to make one additional assumption in the

interest of ease of presentation. It will generally be assumed that all ran-

dom variables induce probability density functions in their range spaces.

This assumption may be relaxed with no change in results, but making it

allows two practical simplifications: first, expected values can be written

as Riemann integrals in Euclidean spaces, and second, the changes in the

probability structure as time evolves and measurements are taken can be

described by (Riemann) integral equations (see, specifically, Theorem

2. 3. 1 in Chapter II).

Without the assumption of the existence of probability density func-

tions, expected values of a function f(* ) of a random variable x must be

written J f(x) dP(x) where the integral is with respect to the measure P
Rn

induced in R by the random vector x. This offers no more conceptual

insight than the equivalent form utilizing the density if it exists, namely

J f(x)p(x) d(x), where p(x) is the density. Without the assumption of the
Rn

existence of probability density functions, the evolution of the probability

structure as measurements occur must be accounted for by considering a

family of tr- algebras Wv with respect to which the measurements are
Yt

measurable. This concept does more harm by introducing complexity than

it does good by introducing generality. For these reasons, the formulation

using densities will generally be used. The measure approach, of course,

will be used when it illustrates a point more clearly.

1.4 Previous Results

Stochastic control has been studied for some time now. Certain re-

sults have become "well known" and the topic is considered in several

textbooks, for example, those of Bryson and Ho(B.4), Aoki (A.I ) ,
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Kushner (K . I ) , (K. 2), Wong (W. 3), and Astrom (A. 2). No attempt will be

made here to give a complete bibliography on stochastic control since such

texts, with their extensive reference lists, or survey papers such as those

by Witsenhausen (W. 1) and Athans (A. 3) are available. Attention will be re-

stricted here to works dealing with the measurement optimization problem

in particular.

Several authors have obtained results for specific examples of the

measurement optimization problem introduced in the previous section. In

most cases, the index of performance is taken to be the expected value of

J given in (1 .3 .3) (further comment on what type of expectation will be

made in Chapter II). The particular case investigated is the situation in

which the dynamic and measurement systems are linear in x and u

(although not in v), the cost functional J is quadratic in x and u, and

the noises are white Gaussian, There is a certain amount of confusion in

the available derivations, however the right results are obtained. As

Witsenhausen (W. 1) states in talking of the linear-quadratic-Gaussian

problem:

Much confusion has been abetted by the incredible ro-
bustness of this case to conceptual misunderstandings:
every reasonable assertion about that case is true and,
within wide limits, no amount of confusion can give an
incorrect result. In fact, the most confusedderivations
of the correct results are also among the shortest.

Before discussing the particular contributions of individual authors, the

underlying method used by all of them will be described.

Consider as an example a linear stochastic system which has the

property that one can influence the signal-to-noise ratio of the measure-

ments:

Bu + J (1 -4 .1 )
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It= Vt?t?t + d-t (1.4.2)

Here {v } is a scalar sequence which allows the "signal" in the mea-

surement equation to be boosted with respect to the noise 9 ..For example,
*™ t

in a radar system, v might represent the fact that by sending out more

power in each radar pulse, a stronger echo will result. The initial state

vector xn is a Gaussian random vector with zero mean and covariance Sn:

E{x0} = 0; E{XOX'O} =?() (1 .4 .3)

The noise sequences are zero mean, white, Gaussian, mutually independent,

and independent of XQ:

= 0; E{|t|;> = 3t6ts (1 .4.4)

= Q; E{0t£j} = 0t6ts (1 .4 .5)

(1 .4 .6)

- - b } = ? ( 1 - 4 . 7 )

where 6 is the Kronecker delta, S is a positive semidefinite matrix for
tS •" \f

all t, and © is positive definite.

K a cost functional is given that is a slight extension of the usual

quadratic one:

T-l

J(u, v ) = x , Q x + I ( V )

t=0

(1.4.8)

where Q, are all positive semidefinite and R are positive definite, then
™" t "™" L

the optimal dynamic control sequence u = {uj. } and the optimal
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* A r *•> *measurement control sequence v = {v } must satisfy
t

E{J(ut v*)} < E{J(u,v)} (1.4.9)

for all u and v which are admissible.

Suppose now that one starts by assuming a "fixed but arbitrary" time

sequence for {v }. The solution for the best {u,} follows at once from

the well known results of Kalman and the "Separation Theorem", discussed,

for example, in Bryson and Ho (B.4):

u* = -Kt xt|t . (1.4.10)

t | t - l= A t - - l l t - l + B.t-lVl; *0|-1 = ' d.4.12)

K t= ^'Mt+1Bt+Rt]-1»tMt+1At (1.4.13)

§t = 5 t|t-ivtcit K?t?t| t-i?t +^ d'4

5t t - i = ViSt-ilt-iAt-i+St-i'^o'.r' d.4.15)

¥t= AiMt+1At - K^R^BiM^jBj Kt+ C^; MT=QT (1.4.17)

where some of these quantities may be interpreted as follows:

x . i . = estimate of x given Y,

x I = estimate of x given Y ,
"tit™ 1 t b*™ J.

E , i , = covariance of x, given Y
— tit "* t t

*
The precise meaning of this expression will be fully discussed in
Chapter II.
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Z.i . i = covariance of x given Y.
~t t*~ 1 "t t~

S = Kalman filter gain matrix

K = linear regulator feedback matrix

The average value of J using the optimal control sequence (u } is then

given by

T-l
r

E{j(u* v)} =1

t=0

T

•MvJ (1.4.18)
t=0

where tr represents the matrix trace~~bperation. Note that the expected

cost has some terms which depend on {v,} and some which do not. In

particular, reference to equations (1.4. 10) through (1.4. 17) shows that

the evolution of Z.|. is influenced by {v } but that of M and K is not.
~t[ t t ' "~"t ^t

Thus one can now define an auxiliary (deterministic) control problem in

which the covariance matrix S.i . plays the role of state and v the role
"tit t

of control. One chooses the measurement control sequence to minimize

those terms in (1. 14. 18) which it influences.

The approach outlined above is partially justified by the facts that

1. The K sequence is independent of {v }

2. The control law, i.e., the structure, thus turns out to be

independent of {v } and S, I. although v was assumed known.
t "" t t
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On the other hand, it is not clear whether the same solution will be ob-

tained if one solves simultaneously for {u } and {v }. Also, it is not
"t t

clear what effect the means of penalizing v has on the problem, spe-
s

cifically, what happens for different ^(v.) functions or if x , u and v

couple in the cost.

The measurement optimization problem as formulated here was

first motivated by the work of Athans and Schweppe (A. 4) on optimal wave-

form design.- These authors consider optimizing the modulation of a radar

signal to allow the most accurate estimation possible of a body being

tracked while not violating power and energy constraints on the radar.

The modulation signal appears in the overall system of equations for this

problem as a measurement control. The radar problem is somewhat dif-

ferent than the one formulated here, however, since no control of the body

being observed is done, only state estimation.

Several authors have considered measurement/control optimization

problems. All of these use the "a-priori v technique" outlined above as

applied to linear systems. Representative of this work are the papers of

Kushner (K. 3), Meier, Peschon and Dressier (M. 2), Aoki and Li (A. 5),

Sano and Terao (S. 5), Athans (A. 6) and Cooper and Nahi (C. 1). Kushner

(K.3) considers the optimal timing of a limited number of measurements

of the "measure-no measure" type which can be represented as equation

(1 .4 .2) if v is constrained to be either zero or one. His system is

linear and discrete in time. Meier, Peschon and Dressier (M.2) consider

a problem with a more general cost on measurement and apply dynamic

programming. As will be discussed later, there is some question as to
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precisely how to apply dynamic programming to a measurement optimiza-

tion problem, although these authors prove a theorem concerning its use

on the linear-quadratic-Gaussian problem. The work of Aoki and Li (A. 5)
\

is similar to that of Kushner. Sano and Terao (S.5) consider a continuous

time system measured discretely in time. Again the "a-priori v technique"

is applied. Cooper and Nahi (C. 1) apply dynamic programming to solve a

problem similar to that of Meier, Peschon and Dressier. Athans (A. 6)

considers a continuous time system in which the measurement control in

effect chooses one of several possible sensor outputs.

The difficulty with the approach taken by all the above authors is that

it has not been rigorously justified. As mentioned above, there is no guar-

antee that the "a-priori v technique" will give the same answer as a

method in which the designer solves simultaneously for {u,} and {v }.

Meier, Peschon and Dressier take a step toward providing such a guarantee

in certain cases but their proof, which will be discussed in Chapter IV,

is incomplete. Part of the work described here will be a careful proof

of the optimality of the "a-priori v technique" for linear-quadratic-

Gaussian systems.

1. 5 Structure of this Thesis

The work reported here will be organized in the following manner:

In Chapter II, the meaning of stochastic optimality will be discussed and

the application of dynamic programming to the solution of stochastic op-

timal control problems will be studied. The question of properly for-
r

mulating an index of performance that makes sense will be considered
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and several points of view will be discussed. Some mathematical problems

relating to the definition of stochastic control problems will be dealt with,

and the whole framework of solution techniques for stochastic control

problems will be clarified.

Chapter III will present a new technique for solving stochastic control

problems formulated around linear systems. A method will be presented

in which the designer may assume the noise sequences are fixed, allowing

the use of deterministic techniques such as the minimum principle, with

expected values being taken at the end. This new approach will be care-

fully justified and the limits of its applicability studied.

In Chapter IV, linear systems with quadratic cost criteria and

Gaussian disturbances will be considered using the techniques of Chapters

II and III. A careful proof of a two-way separation theorem will be

given, which will justify the "a—priori v technique" described above. In

Chapter V, a similar analysis will be done for linear systems with

Gaussian noise and general cost functionals.' It will be shown by example

that the two-way separation theorem which is inherent in the use of the

"a-priori v technique" does not hold in general, and an analysis will be

given to characterize those cases in which it does hold.

Chapter VI will present a problem of practical interest which in-

volves coupled measurement and control. The aim is to further the

understanding of stochastic problems of this type.

The final chapter will summarize the results given earlier and

present a unified view of the stochastic control concept. Areas of appli-

cation will be considered and topics for future research will also be

discussed.
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1.6 Contributions of this Thesis

There are essentially three main areas in which the work reported

here contributes to the field of stochastic control. First, there is value

in a clear and careful exposition of the issues which arise in defining a

stochastic control problem. These issues have often been skipped over

in other works, and it is felt that a certain amount of confusion has

resulted. Secondly, it is felt that the ideas presented in Chapter III

regarding the application of deterministic techniques to stochastic prob-

lems are a significant theoretical contribution to the field. The applica-

tion of these ideas will allow solution (or near solution) of some problems

which are simply too difficult for practical answers to be found using

conventional techniques. Finally, the particular problems analyzed in

Chapters IV-VI provide useful insight into the structure of control sys-

tems that can be used for many problems of practical interest.



CHAPTER II

STOCHASTIC OPTIMALITY AND DYNAMIC PROGRAMMING

2. 1 The Meaning of Stochastic Optimality

In a deterministic optimal control problem, there is no confusion

about the meaning of a solution. A system equation and a cost functional

of the following types are given:

!t(-t' -t
); -0 §iven (2 .1 .1 )

T-l

V-t'-t* ( 2 . 1 . 2 )
t=0

and one seeks the sequence {u } (subject perhaps to some constraints)

which causes J to achieve its minimum value. This process is concep-

tually well-defined because J is a real-valued function of the control

sequence; it can be viewed as a map from the space of sequences to the

space of real numbers, and under suitable conditions, the sequence giving

the smallest real number for an answer can be determined. That mini-

mizing sequence may be determined in an open loop manner for the partic-

ular initial state given in (2. 1. 1), or the problem may be imbedded in a

class of similar problems with fixed but arbitrary initial states and the

solution obtained in a closed loop manner via dynamic programming.

Either approach is well-defined a-priori because the map {u } — - J[{u }]

is well defined a-priori.

In the stochastic case, the situation is not so simple. Recall the sys-

tem and cost equations as defined in Section 1. 3:

-27-
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(Xt'Y-t'V (2 .1 .4 )

T-l

If the control sequences {u, }, {v.} are fixed or if they are given functions

of the measurements as described in Section 1.3, then (x } and (y } are
""™~t -mBit

random processes and J is a random variable. If, on the other hand, the

control sequences have not yet been selected or are to be selected by

applying an as yet underdetermined function to the measurements, the state

and measurement sequences are not random processes and J is not yet

a random variable because these quantities have not been described as

functions of to e £2, the underlying probability set. See, for example,

Witsenhausen (W. 1). Thus the status of the system, indeed, of the mathe-

matical formulation, is uncertain while the designer is searching for

the right control sequences. This situation will be discussed further below.

Once the problem described above is clarified, there remains an-

other: for any control sequences, the index of performance J is a ran-

dom variable, i.e. , a real-valued function of the probability variable co.

The map [{u }, (v }] -» J[{u,}, {v }] must now be viewed as a map from~*t —t —t — t

a space of sequences to an infinite dimensional space. Since there is no

natural ordering on the space of random variables, one cannot pick the in-

fluence sequences that give the "smallest" J, and one must be quite care-

ful to specify the criterion that will be used to make the choice.

The most obvious approach is to define a second map that goes from

the space of random variables to the real numbers so that the ordering of
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the reals induces a partial ordering on the random variables. Then the

concatenation of the two previous maps, denoted ft, [{u ,}, {v.}] .-* J[{u.},

(v }] —*-U[{u }, (v }] , is a map from sequences to reals again and the~
L 0 — t —' t

sequences giving the smallest J can be picked. Of course, the second map

.must be chosen in an intuitively satisfying way, a way consistent with the

original control design. The approach that is usually taken is to use the

#
expected value as the second map.

If one determines t© simply take y= E {J}, one is defeating the pur-

pose of taking measurements, however. That expression must be inter-

preted as an expectation over all underlying uncertainties, including the

uncertain measurement sequence to be observed. What one would like to

do is choose the control variables at each instant of time in such a way as

to utilize all the information available at that time. This seems to indicate

that one should take a conditional expectation of some type, but due care

must be exercised. Whenever one is attempting to select a particular

parameter in order to minimize another quantity, one must be certain that

the quantity to be minimized is a number and not a random variable. This

can be confusing if a conditional expectation is being minimized because

some conditional expectations are random variables and some are real

numbers. In particular, if x and y are random variables, the expres-

sion E{x|y = Y} represents a number if Y is a fixed number, the

Other maps from the space of random variables to the reals might be
considered. For example, Sain (S. 3) and Sain and Liberty (S. 4) consider
minimizing the variance of J subject to the constraint E{J}= fixed.
Other generalizations are a possible area for further investigation.
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expression z(Y) = E{x|y = Y} is a real-valued function of Y if Y ranges

over the real numbers, but the expression E{x|y} represents a random

variable if the outcome of the random variable y is not known to be a spec-

ific value. It depends on whether the conditioning is done on a random

variable or on a known fact.

The end result of these considerations is that the index of perfor-

mance must change as time evolves to account for the information that is

accumulated as time evolves. The precise meaning of this concept will be

the subject of the next section.

There is one more point to consider: the actions of the control gen-

erator at the present time must intuitively depend not only on the mea-

surements that have been observed up to now, but also on the actions that

will be taken in the future. This statement must be interpreted very care-

fully; it is clear that the present control variables cannot depend on the

values of future controls, since these values are not yet known. What is

meant is that the values of the present control variables must depend on

the structure that will be used to generate future controls.

The problems and solutions introduced in a heuristic way in this

section will now be considered more carefully mathematically in the next

several sections. The expected value map will be the device used to con-

vert the given stochastic problem to one which has a well-defined order on

the cost functional range space. Exactly how to apply this map will be a

chief concern of the discussion.

In order to make the discussion as clear as possible, the points

raised here will be considered more or less in reverse order. The
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mathematical complication of the "random-variable-to-be" status of the

system will be clarified after the approach used to change the cost func-

tional as time progresses is described. In this way, the mathematical

questions will be better motivated. Thus the techniques of the next section

will not be fully justified until later in the chapter.

2.2 Dynamic Programming and Stochastic Control

The virtue of the dynamic programming technique of solving an opti-

mization problem is that it "automatically" provides an answer in closed

loop form. At each step, the variables being determined are specified as

functions of the information available at that step. There is, however, a

problem when this technique is applied to a stochastic control problem.

Recall how dynamic programming is applied to the deterministic

problem summarized by equations (2. 1. 1) and (2. 1. 2). At a given instant

of time t, the state is known to be x and the control u is sought. It is
—™ t —™ L

assumed that regardless of the state xf , i tnat results from the choice of

# *
u , the optimal remaining control sequence u , , . . . , u _ , will be ap-

t — t T 1 ~"" J. ~ 1

plied and the resulting minimal cost-to-go from x i wiH De realized.

Let this minimal cost-to-go from x . , , be denoted by I ii(x4-j.i) :

T-l •>»

where jc . is fixed but arbitrary. Then according to the principle of

optimality (see Bellman (B.3)), the value of u is chosen to minimize

the cost-to-go from x , given by J :
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Jt = L t(x t>u t)
 + :^t+l) (2 .2 .2)

(2 .2 .3 )

Evidently, the u, that minimizes (2 .2 .3 ) is a function of x , and if this
t t

value is re- substituted into (2 .2 .3 ) , the resulting minimal value of J is

the new I^OO- This process can be started at t = T and stepped back-

wards to t = 0, finding the optimal feedback control law u*(«) along the

way. (The arguments of u, (•) are x , of course).
^~ U t

Why does this work ? How can this idea be applied to a stochastic

problem? There are two points of difficulty that can be cleared up easily,

but which are often not mentioned explicitly in treatments of stochastic

control. First: what constitutes the state in a stochastic problem and sec-

ond: what can be done about the coupling caused by present measure-

ments influencing estimates of past quantities?

If the stochastic problem is formulated by using the expected value

map to provide the ordering on the space of random variables to which the

cost functional belongs, it is relatively clear that the role of state is

#
played by the conditional probability density function, given the measure-

ments, of that quantity denoted by x in the equations of motion. The

reason is that to calculate the expected value of a function of x , it is

only necessary to integrate that function against the probability density

function (p.d.f. hereafter) of x . This was recognized by Bellman (B.3)

More generally, the conditional probability space (^y^y , pv )
t t t

induced in the basic space (fi, » , p ) by the set of measurements Y..
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when dynamic programming was first developed. The idea was more fully

investigated by Striebel (S.6). Thus, if one takes a finite dimensional de-

terministic system and adds noise, one produces an infinite dimensional

problem. The vector that was the plant state of the deterministic problem

is no longer the state of the system; its probability density function is.

In a few cases, it turns out that the stochastic problem is finite dimen-

sional also: precisely those cases in which the conditional p .d . f . maybe

completely characterized by a finite set of numbers, e .g . , the mean vec-

tor and covariance matrix in the Gaussian case. In general, however, the

stochastic problem is infinitely more difficult, so to speak.

By the abuse of nomenclature, the quantity jc will continue to be

referred to as the "plant state vector" in stochastic as well as deter-

ministic contexts. This terminology is useful and suggestive, but one must

s
bear in mind that it is somewhat imprecise: it sometimes leads to state-

ments such as "the state is the conditional p .d . f . of the plant state."

Although it has not explicitly been mentioned in the two paragraphs

above, one should note that the whiteness of the driving and measurement

noises has been used in asserting that the state of the problem is the condi-

tional p .d . f . of the plant state. If the noises are white, the statistics of

the future noises do not change as measurements are made. If the noises

are not white, this is not true and one must include into the state of the

problem the conditional densities of the future noises given the current

measurements.

In the deterministic case, it makes sense to imbed the given problem

in a class of similar problems with varying intervals of evolution and
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various initial states. This is because if the system winds up in some

state x at t= t,, the accrued cost from the starting time to t, is no
— L -I 1 A

longer affected by the state and control trajectories after t, . Present

actions influence only present (directly) and future (indirectly) values of

state. Thus although the sub-problem solved at each stage of the dynamic

programming technique ignores the previously accrued cost and deals only

with the state achieved at present, there is perfect justification for this:

the accrued cost is not influenced by the remaining optimization.

In the stochastic case, although the actual value of the accumulated

cost at time t, is not influenced by present or future actions, the ex-
J. . - - i ' -mnm

pected value of these costs is. Each measurement causes updates in the

estimates of all quantities, past (smoothing), present (filtering), or future

(predicting). The decoupling effect of time is lost in a stochastic problem.

The only way to proceed from this point is to force a structure on

the problem which allows one to neglect the effect of current measure-_

ments on the expected value of past costs while still continuing to con-

sider the effect of current actions on future costs. What must be done is

to adopt the point of view that the prime goal of the control system is to

minimize the actual values of costs as well as possible, rather than esti-

mating those costs. Since the actual value of the previously accumulated

cost is established at present, it might as well be neglected in the remain-

ing optimization. True, its value is unknown, but who cares? The un-

known value if fixed and estimating it is of very little importance with re-

gard to optimizing the rest of the trajectory.
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Notice that in an "ordinary" stochastic control problem, that is,

one without measurement optimization considerations, the fact that pre-

sent measurements effect estimates of past costs is not particularly im-

portant. The choice of the present dynamic control will not influence past

costs, even though the estimated value of those costs may change. When

there is a measurement control capability, however, it is necessary to

neglect the effect that the choice of the present measurement control has

on past costs in order to have a problem structure that may be dealt with

using dynamic programming.

2. 3 The Proper Use of Expectations

Since the expected value of a function of a random variable may be

obtained by integrating that function against the p . d . f . of the random vari-

able, the propagation of p .d . f . 's is of interest in a stochastic control

problem. The conditional p .d . f . of the state of a discrete dynamic system,

in particular, can be propagated by a Chapman-Kolmogorov type of equa-

tion whether or not a measurement is made. Specifically, from the re-

sults of Jazwinski (J. 1), p. 174, the following theorem is quoted:

Theorem 2.3. 1. Consider a dynamic system as described in Section 1. 3.

Let t e^J be fixed and let Y = {y , y , . . . , y } be a set of observa-

tions taken at times t. such that
J

*
Note that it is not required that measurements at each and every time t
to be included in the set Y,.



-36-

Let the conditional p.d.f. p(xJ X» ̂ t-i'^t^ ^e known. Then assuming

the existence of the indicated densities, if there is no measurement at

time t+1, the density propagates according to

P(2t+l| Yt+r Ut.Vm) =/ PtXfru) x^ P(*t|Yt, UM.Vt) c*t (2.3.1)
XV

where YfrK = Y, Ut = U^ \J (uj. and V^ = VtU (v^j}. The value

v , is assumed to specify "no measurement". If, however, a mea-

surement is made, the density propagates according to

R1

/"n fnP(yt+i|^tf 1^+/ P^tH-lh'^t) PNYt'Ut+l' Vt) >d^t dxt+l
'R-'-'R*

(2 .3 .2)
• t

where now

Remark 1; Equation (2.3. 1) is actually the special case of equation

(2.3.2) that results if no measurement is made. The p.d.f. thus does

not propagate in fundamentally different ways depending on whether or

not a measurement is made, in one sense. On the other hand, if one

writes equations (2.3.1) and (2.3.2) as operator equations of the follow-

ing type:

P ( * Y ' U ' V > =
t+1 t + l ' t ' t + l

and

rj (2 .3 .4)
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(here (2 .3 .3 ) represents (2 .3 .1 ) and (2. 3. 4) represents ( 2 . 3 . 2 ) ) one

sees that in the case that a measurement is taken, the a-posteriori

density p(x . Y . , U , V ,) is a random variable at time t since thet~r 1 t txl ̂  -—————•

measurement y, has not yet been made, and (2 .3 .4) depends on j_ . In

contrast to this, reference to (2. 3. 3) shows that if no measurement is

going to be made, the a-posteriori density P(X. , JY. ,,, U., V. ,,) is not

random at time t.

Remark 2: Note that the propagation of the conditional p.d.f. only re-

quires knowledge of the values of the controls u, and y_ ,, and not

knowledge of the entire control laws u , ( « ) and v , , , ( - ) . This is dis-—— ~"t —1+1

cussed extensively by Striebel (S. 6). In fact, the treatment by Striebel

(S. 6) and Jazwinski (J. 1) do not consider a situation in which measure-

ment control capability is part of the mathamatical structure; however,

their proofs go through essentially unchanged in the measurement control

case. For this reason, no separate proof is given here.

Remark 3: It is crucial to include the conditioning on U, , and V in the

conditional p.d.f. p(x Y, U , V). In fact the conditional p.d.f. of xt

given only Y (i.e., without knowledge of U and V) is not defined.
t t™ i t

This fact is often overlooked, especially in the case of linear dynamics

with Gaussian noise and with Gaussian initial state because in that case,

one can characterize the conditional p .d . f . of x given Y by its mean,
""~t \f

A
say xJf and ^s covariance matrix, say _2f|.. The conditional p.d.f.

can be written in terms of x I and _SJ. without explicit display of U '
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and V,, but one cannot actually calculate xJt
 and 2J, without knowing

U t _ j and V.

Remark 4; To see precisely how u. and v, . enter into, say, (2 .3 .2 ) ,

note that to calculate the transition density P(X., , |X , uJ> one uses the

system equation (2 .1 .3 ) and the density of £,. This involves u . To
—L . ~—"C

calculate the conditional measurement density p(y, , Jx, ,,, Xto.])' one uses

t"t*l| "^"til ""~UT 1

the measurement equation (2. 1.4) and the density of ^t+^- This involves

v, j. See Papoulis (P.I), p.llSff. for a discussion of the required cal-

culations.
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2.3. 1 Minimization of the Unconditional Expectation

Suppose one determines simply to minimize the unconditional ex-

pected value of J in (2.1.5) :

#x = EfJtU^.Yp)} ( 2 . 3 . 5 )

T-lwhere UT_A{u t> JlJ andVT = ̂  JQ.

This is the requirement usually given by other authors. The logical way

to interpret this minimization is to assume that no measurements will be

taken. This is because if measurements are made, it would only make

sense to utilize them in some way, and the expectation to be minimized

would then be conditioned on the measurements. This situation will be

considered below. For the moment, it will simply be noted that if one

means to take conditional expectation, one should say so.

Under the assumption of no measurements, the p .d . f . of x, prop-

agates according to (2 .3 . 1) where the information set Y is always the

null set and the initial condition is the given a-priori density of xn. The—(j

expected value of J is given by

^rp
~- J. .ft. *+. I J. *. J-

T-l

t=o
/n ^-t' ^t'-t

n

Note that the logical way to view the sequences {u } and (v } is as de-
~~t ^~t

terministic sequences. Since the cost is not conditioned on anything

(except the a-priori known statistics so to speak) it makes no sense to
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have the influence sequences depend on anything but the a-priori knowl-

edge, which means they are deterministic with respect to the evolution

of the system. One may view equations (2.3. 1) and (2 .3 .6) as a deter-

ministic infinite dimensional optimal control problem in which the density

plays the role of state. The measurement control y. plays a degenerate

role since it does not enter into the evolution of the density, but only into

the cost.

The control problem defined by (2.3. 1) and (2 .3 .6 ) can be solved by

applying the techniques of deterministic infinite dimensional systems,

albeit a difficult task but conceptually feasible. The result is two se-

T-1 T
quences of vectors {u,} and {v,} computed off-line so to speak

t t =0 t T—0

and applied to the system as it evolves.

Obviously the technique described above is not "the best you can do".

Since measurements are possible, it might be better to use them to reduce

uncertainty about the system state x in the hope of making J smaller on
* "•"•'C

the average than the optimal value of J,. The point to be made, however,

is that using such measurements involving redefining the stochastic cost. -

Many authors assert that they are minimizing ty. when in fact they are

minimizing something else, such as will be defined below.

In order to utilize measurements in real time, it is necessary to

force a certain structure on the system. There are several possible struc-

tures, as -will be shown below, and each leads to solutions that must be

interpreted in specific ways. On the other hand, the common goal of all

the structures given here is to reduce the stochastic problem to an
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equivalent deterministic one, just as above, where an infinite dimensional

deterministic problem was the end result.

2 . 3 . 2 Conditional Open Loop Minimization

Suppose one views the control sequences as deterministic in the

sense that they are to depend only on the a -priori statistics, but one

chooses these sequences to minimize a conditional expectation. One can

then try to formulate an optimization problem bases on the following cost:

T-l

t = ° ( 2 . 3 . 7 )

Since measurements are taken as the system evolves, the p . d . f . obeys

( 2 . 3 . 2 ) . If one is to determine {u,} and (y_ } in an open loop a-priori

manner, however, this does not lead to a well-defined optimization prob-

lem since a-priori , y is a random process and it enters into the evolu-

tion of the p .d . f . This means that the cost associated with this inter-

pretation, given in (2 .3 .7 ) , is still a random variable, the difficulty men-

tioned in Section 2. 1. Of course, a closed loop approach is desired any-

way, so the case just described is included only to point out the problem.

2.3.3 Closed Loop Approaches

What one really would like to do is base current control values on

the available observed data. Thus the desired form is

* = * ( Y ) (2 .3 .8)
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Conceptually, one may view these functions as

^t = ** (p(xt|Yf ut-r vt

since one will be choosing the values to minimize conditional expectations.

Notice, however, that there is apparently an important difference be-

tween the pair (2.3.8) , (2 .3 .9 ) and the pair (2.3. 10), (2.3.11). In the

first pair (2 .3 .8) , (2 .3 .9) , the optimal controls are expressed as func-

tions of only the past measurements Y, while in the second pair (2.3.10),

(2.3. 11), the optimal controls are expressed as functions of the past

measurements Y and the past controls U , and V^.. There is really

no difference, however. If, in the second case, the optimal value of v~

in terms of a-priori statistics, the optimal values of u~ and v, in

terms of YO and v,., the optimal values of u, and _v~ in terms of

Y, ,_un , v,, v-, etc., are all successively substituted into each other, one

can express the optimal U 1 and V, at time t in terms of Y only.

Notice that the fact that optimal U . and V, are used is important.

If one is in the "middle" of a dynamic programming solution for the

jU

optimal controls, say at time t, the optimal control laws u ( • ) , . . , ,

— 1-1^ and v*(0 » ••• • v*(«) are not yet known. One is forced to hypothe-

size "fixed but arbitrary" values for U , and V , and solve for the
t~" 1 t

optimal controls in the form indicated in (2.3. 10) and (2.3. 11). It is

possible to do this because of Theorem 2.3.1, specifically because only

values of past controls are needed to insure that the current density is .
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well- defined. See Remarks 2 and 3 associated with Theorem 2 . 3 . 1 . One

cannot put the optimal controls in the desired form (2. 3. 8) and (2. 3. 9)

until all the optimal control laws in the form of (2. 3. 10) and (2 .3 . 11)

are known. Only then can one successively substitute to eliminate ex-

plicit dependence on U, , and V,.

The eventual aim is to apply dynamic programming to the problem.

The ideas of Section 2. 2 will be used to justify neglecting the accumulated

cost at a certain step when optimizing the remaining pieces of trajectory.

One must be careful, however, to properly deal with the key idea of

dynamic programming that, regardless of present actions, the optimal

action will be taken in the future. The wrong way will first be described

to point out the problem.

Suppose the time is t= t,, somewhere in the center of the trajectory.

The actual cost to go is

T-l

J t = La;(xT) + L ( x , u , v ) (2 .3 .12)

It is necessary to convert J, , which is a random variable (under suit-

able hypotheses) into a real valued function of u and v ,. Consider
-tj_ -t^l

the following two approaches:
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T-l
.(2.3.13)t, = E<LT| Yt •

 UT-I'V + E<Lt| \ ut-r Vi j—j.t-t

T-l

= E ( L Y ' U - ' +YT'UT-1'V + !><Lt|Yt'Ut-l' V
t=tl

Notice the difference in conditioning. The expression for K. given in
t j,tj^

(2.3. 13) is a real valued function of (u } and {v }^ since Yf—t t-t^ — t t=t^+l Ll

is a known quantity. The expression in (2.3. 14), however, is a random

variable since Y for t > t, is a random variable now, at t= t,. Suppose

one tries to convert (2.3. 14) to a real valued function by applying

another expectation, i.e., by re-defining y. as the expected value of
' ' i

the quantity called (*•. in (2.3. 13):
Q 4, t,

T-l

t=tl
(2 .3 .15)

Then the following theorem is applicable:

Theorem 2.3 .2 . (See Doob(D.l), p.37 or Loeve(L.l), p.350)

If •# a.nd~&' are sub-cr-algebras of the underlying probability tr-algebra

-fe? such that •#£"(? , then for any random variable x

(2 .3 .16)

with probability one.
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In terms of jointly distributed random variables x, y, , . . . , y , the

interpretation is that

E{E{xlyi, y2, . . . , yn}|yr y2. • • • , yn_ J

= E{x]y1 , . . .yn_1} (2 .3 .17)

since the tr -field "€ induced by the random variables y, , y?, . . . , y , is

included in the cr -field TB ' induced by y. , y, ..... y ,,y . (The inverseA c* n~ A ri

image of the set {y. e A, , y7eA , . . . , y , , eA , } where A, are Borel sets
A L £ £ n~ A n~ A . ic <•

in the range space ^ of the y is identical to the inverse image of

Applying this result to 5- . as defined in (2.3. 15) shows that
«4, t j

t = §•}. (see 2 .3 . 13)) with probability one. The point is that this
, l". » j , t ,

interpretation does not account for the fact that measurements will be

made in the future. The problem as now formulated does not take into

account the manner in which u , and v, 7 will depend on Y ,, etc.
— ~t i T A ^~t -I I L* \t •, T A

What is still being neglected is the point mentioned in Section 2.1, that

in choosing optimal controls at present, one must use information con-

cerning the control structure that will be utilized in the future. The pre-

sent formulation more-or-less assumes open-loop operation in the future.

The underlying defect in the approach given above is that it incor-

rectly evaluates the optimal cost-to-go from the next stage. This "wrong"

method was described in some detail because it will be necessary to refer

to it in Section 2.4, when open loop feedback strategies are discussed.

Now, however, the correct approach will.be presented.
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Suppose the time is t = T. The data Y are available. The cost-

to-go reduces to

ty-T= E{LT(xT)|YT,UT_1,VT> (2.3. 18)

There is nothing left to optimize, so the value of JL, becomes the opti-

mal cost-to-go from T, which will be denotedul^,

Y . U _ , V ) d x (2.3.19)n

R

Note thatU^ is a function only of ,¥_, UL, ., and V_,

Now step backwards one unit of time. Let t=T-l. The cost-to go is

(2 .3 .20)

Writing this out gives

T-l(iT4*M'*r> P(-T4|YT-l'UT-2' V

(2 .3 .21)

Notice the manner in which Y™ is broken up into the known piece Y™,

and the random variable y™ in the argument of xfi . This isto be optimized

by choice of UT_. andy_™. The p.d..f. p(j jY T _ l f U_^ , VT_ ) maybe cal-

culated from the measurement equation (2. 1.4), the dynamic equation

(2 .1 .3) , the statistics of the noises ^T and ^ ,, and the density

p^-T-l|YT-rUT2'^T P (seePapoulis,(P.l),p.H8ff). So far, nothing has been done

differently here than in the "wrong" method above. The distinction comes
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when the optimal _u_, . and v_ functions are re substituted back into

( 2 . 3 . Z O ) to give the optimal cost-to-go from t=T-l , denoted by

^firp .{Y™ i>Urp 2'^r i^» ^ke difference is that the expected value of, for ex-

ample, the term L,- , (x,,, , , u_ -j.v^, .) in (2 .3 .20 ) is of a different
J. — 1 — J. — 1 JL — £ i. ~ 1

nature than the expected value of the quantity ̂ ^(x^,, jj* (Y ),I|>*(YT .))

which is obtained by substituting in the optimal feedback functions d> /.)

&

and v^T* Comparing the present approach with the "wrong" method

associated with (2.3.13) or (2.3.14), one sees that the earlier tech-

nique included no provision for specifying that optimal feedback con-

trols would be used in the future, while the present approach does.

Consider now an arbitrary time t, e ^J. The cost-to-go is of the

form

' ( 2 > 3 - 2 2 )

By using the optimal return function Xj in this cost, one includes the
1

fact that optimal feedback controls will be used in the future. The dif-

ference between this and the "wrong" approach is that although in

neither case are the values of future optimal controls known at t=t,

(because they depend on measurements not yet made), the functions that

will be used to generate those controls are assumed known in the correct

stochastic dynamic programming technique. While those future control

values are random variables at time = t,, the minimal expected cost-

to-go as a function of Y. U ,, and V, assuming optimal control func-
*1 V1 T. "

tions in the future is a well-defined, real- valued function of a real vari-

able. Equation ( 2 . 3 . 2 2 ) will thus be taken as the basic recursion rela-

tion of stochastic dynamic programming.
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2.4 Some Mathematical Questions

In this section three mathematical ideas will be considered. First,

the question of whether or not the entire stochastic optimization problem

is well-defined before the control laws are specified will be discussed.

This issue is quickly resolved once the dynamic programming framework

of the previous section is used as the basis for the problem formulation.

Second, the dynamic programming technique itself will be reconsidered

in a slightly different light. Finally, the notion of open loop feedback opti-

mal controls will be introduced and discussed.

2.4.1 Why Stochastic Dynamic Programming is Well-Defined
Mathematically

Consider the stochastic system specified by ( 2 . 1 . 3 ) - (2 .1 .4) . As

a result of the hypotheses made in Section 1.3, the plant state x , the

measurements y and the cost J are all well-defined random vari-
^•"U

ables on (£2 ,^ ,p ) for any fixed control sequences {u} and {v }, or
"X ™~*t

indeed for any specified set of Borel feedback functions (u (Y )},

(_v (Y ,)} as defined in equations (1 .3 .5 ) and (1.3.6) . In contrast to

this complete structure, however, if some of these feedback functions are

not specified while searching for a certain optimal control at a certain

time, then the formulation breaks down, since the entire set of states

(x } and measurements {y .̂} is not then a well-defined random process.

By viewing the solution procedure as in the previous section, how-

ever, this difficulty is eliminated. At each step of the solution, one is

considering a problem which is well-defined for two reasons: First, the

control functions in the future have already been specified, and second,
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the entire control problem in the past is being neglected. In other

A A-

words, when one is choosing u. and ^t+l as functi°ns °f P(.*JY, ,U , , V )

by minimizing

the cost-to-go Or . - , , is a well-defined random variable since {u ,(•),...,

u „ i(-)} and {Xfj_?(*)» '"> ZT^"^ have already been specified. By as-

suming fixed-but-arbitrary U, , and V,, and using Theorem 3.3.1

to generate p(x,|Y ,U, i.V,), one ignores the fact that {o,,( « ) , . . . , u i ( * ) }

and {_v_0( • ) » • • • . Xt( •)} are n°t specified.

2.4 .2 A Slightly Different Means to the Same End

In a paper soon to appear, Meier, Larson, and Tether (M.3) con-

sider dynamic programming as a solution technique for linear- quadratic -

Gaussian problems. Their paper takes essentially the same point of view

as that presented in the previous section, arriving at it from a somewhat

different direction. It is instructive to compare the approaches.

First, one must note that in the Meier, Larson, and Tether paper,

no measurement control capability is included in the problem formula-

tion. Thus, as discussed in Section 2.1 of this thesis, it is quite natural

to neglect the accrued cost at time t when optimizing the remainder of



-50-

the trajectory since present and future controls will not influence past

costs, although estimates of those costs may change. In the Meier paper,

this point is not mentioned, as indeed it really need not be. It is impor-

tant, however, in applying dynamic programming to a problem that does

include measurement control to realize that one is forcing a certain struc-

ture on the problem.

In the Meier paper, the optimal return function is defined by (in the

notation of this thesis)

^ f(x.) = . ,min . . E{LT(xT)

T-l

k=t

*
where the state x is assumed known exactly and the u, (• ) functions

have their respective arguments X.. Notice that by forcing this partic-

ular structure into the definition of d| , use is made of the fact that opti-

mal closed loop controls will be used in the future, the point that was

so important in the presentation of the previous section.

Meier, et. al. , consider the problem with imprecisely known state by
using a transformation technique that will be discussed in the sequel.
At present, the difference in their formulation is not important to the
discussion.
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Meier, et al. , next prove the following theorem in order to arrive

at the dynamic programming recursion relation:

Theorem 2.4. 1. Let x be a random vector. Then

min E{f[x,u(x)]} =E{min f(x,u)} (2 .4 .3 )
u(. ) u

Whenever both sides are defined (i.e. , both expectations exist ).

Remark 1: Note carefully the meaning of (2.4.3) . The left-hand side is

a functional minimization: One is required to select the entire function,

say uu(x), which when plugged into the expectation gives its minimum

value. The right-hand side of (2 .4 .3) , in contrast, is a pointwise mini-

mization: for each x» select the value u that minimizes f(x, u). As x

varies, call the resulting (minimizing) collection of optimal vi's the func-

•JL.

tion _u^(x)« Note that on the right hand side, the expectation plays no role

at all until the function u (•) has already been specified.

Remark 2: The theorem does not say that u® (x) = u (x), but only that

the expected returns are the same.

Proof of Theorem 2.4. 1. As in the remarks, let ijO(x) be the minimizing

function of 3£ according to the left-hand side interpretation and let u*(x)

be the function of x that minimizes f(x, u). Then by definition of u^(x)

#
A proof of this theorem (essentially the same as that of Meier, et.al.) is
included here since some of the steps in their proof are not justified, al-
though they are correct, and because similar arguments will be used
again later in this thesis.
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as the function which minimizes E{f(_x, _u(j£))}, it follows that

E{f(x,uO(x))} <_ E{f(x,u(x))> (2 .4 .4)

for any choice of ti(x) for which the right-hand side of (2 .4 .4 ) exists. In

particular, if one chooses u(x) = _u*(x)>

E{f(x),u°(x))} < E{f(x,u*(x))} (2 .4 .5)

The inequality will now be proved in reverse. By definition of u (x)

as the function of x which minimizes f(x, u), it follows that

f(x,u*(x)) < f(x,u(x)) (2 .4 .6)
i

for any other function u(x), and for all x. In particular,

f (x ,u*(x))< f(x,u°(x)) ( 2 . 4 . 7 )

holds for all x. Multiplying inequality (2 .4 .7 ) by the positive p . d . f . of

x and integrating over x_ preserves the sense of that inequality, giving

E{f(x,u*(x))> < E{f(x,u°(x))} (2 .4 .8)

Inequalities (2 .4 .8) and (2 .4 .4 ) together prove the theorem.

Q.E.D.

This theorem is used in developing the dynamic programming re-

cursion relation as follows:

From (2.4 .2) ,
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T-l

k=t

T-l

min ~

(2.4. 10)

T-l

(2.4.11)

or, using the theorem above to interchange min and expectation over x ., ,,

which is still a random variable,

(x ) = min L(x u )
l t-t-tu t(.)

T-l

k=t+l

which in turn may be written

^t (xt)= u^M \Lt(xt-ut)+

*Since x. is given, L (x , u ) can be taken out of the expectation in going
^™t I L \r

from (2.4. 10) to (2 .4 . 11).
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This recursion is exactly analogous to (2.3.21) , but for the differences in

formulation.

Suppose now that one tries to apply this approach to precisely the

problem formulated in Section 1. 3, that is, to a measurement/control

problem with imprecisely known state. There are difficulties. If one

starts with the definition

T-l
mn E Y.U, ..Yl

HtJ
- rr

. . T T

-k k = f k k=t + l k=t

(2.4.14)

one would like to proceed as above and write

min min .^.

T-l

+ ^[1 L , ( x , , u,,v, JlY.U V} (2.4 .15)
k=t+l

If one now tries to pull the terms involving 3£.,u., and v , through mini-

mization on future quantities, one finds that this step is impossible since,

for a measurement control problem, future measurements influence esti-

mates of present costs. The method cannot be continued. (Note, by the

way, that even if this problem were eliminated, there would remain the

necessity of proving a theorem analogous to 2.4. 1 where u was not

allowed to depend on the plant state x, but only on a jointly distributed

(output) random variable, say _^, and with expectations taken over both

quantities x and y. Such a theorem is not yet available.) Thus the
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technique outlined in Section 2.3 is a reasonable definition

of stochastic optimality, consistent with intuition, which is

identical to analytic approaches applicable to less general

problems.

One should note, by the way, that using the definition

of dynamic programming given in the previous section, there

is no need to worry about interchanging expectation operations

with minimizations. The cost to be minimized at step t, given

in (2.4.1), is a well-defined quantity. One does not have to

put it in any other form to determine the optimal control'

laws.
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2.4.3 Open Loop Feedback Optimal Controls

To conclude this section, the concept of open loop feed-

back optimal controls (abbreviated O.L.F.O.) will be intro-

duced and discussed. This is not a new concept, (see Dreyfus

(D.2), Tse and Athans (T.2), Spang (S.7), and Curry (C. 2)) but

the discussion of subsection 2.3.3 leads naturally to this

idea.

Recall that in defining the correct dynamic programming

recursion relation

(2.4.16)

the following definition was proposed first:

2D + 2 V̂ k'Hk'WlVVl'V (2'4-17>
JC— t

(see equation (2.3.13)). The quantity ^~ was rejected as a

candidate for a basis of dynamic programming because it pro-

vided no means for reflecting the fact that optimal controls

would be used in the future (i.e., after time t) . The

formulation finally established, (2.4.16), did allow this

fact to be utilized.

In many actual problems of interest, in fact, for any

problem involving non-linear plant dynamics or non-linear

measurement equations (that is, non-linear in the plant state)

the solution for the true stochastic
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optimal feedback controls is completely impractical from a computational

point of view. Although,, the concept of obtaining the solution via stochastic

dynamic programming is well defined, it is generally impossible to carry

out the indicated procedures, either analytically or with currently avail-

able digital computers and numerical techniques. For this reason, the

study of sub-optimal techniques is of great practical importance.

The O.L.F.O. approach is one such technique. It may generally be

described as follows: At each time t in the interval of interest!

1. Determine the statistics of the plant state x based on

the available observations Y .

2. ASSUME THAT NO MEASUREMENTS WILL BE MADE

IN THE FUTURE (i.e., at any time in the index set

jfe «••- f̂

3. Determine the optimal control sequence (u., vi?" ,,..., u.T .}

based upon the currently available data Y .

4. At some time t" greater than t, an additional measure-

4f
ment will be made" although the contrary hypothesis was

made at Step 2. Apply the optimal control sequence deter-

mined at Step 3, only up to time t', i.e., apply {u , u , .....

ut,}.

5. Redefine the set of available data to include the new measure-

ment. Go to Step 1.

*
It is perfectly possible that t1 may be t + 1, that is, one step later than
present.
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Note why the description "open loop feedback optimal control"

strategy is appropriate. The method is open loop, because each time a

measurement is made, the entire future control time function is deter-

mined as though there will be no future measurements. The method is a

feedback method because each time the control history is determined, it

is as a function of the current data. The dual nature of the method is per-

haps most apparent when, for each iteration of Steps 1-5 above, t' = t+ 1.

This would have the result that for every t, the entire open loop optimal

control sequence from time t to time T-l is computed, but only u* is
~^

applied. Thus for each t, u*(Y.) is generated, but the star in this con-
"~ I t

text means O.L.F.O. rather than "optimal assuming future closed loop

optimal controls."

Two questions arise: What is the advantage of this (sub-optimal)

technique, and how would measurement control capability be incorporated

into such a problem?

The advantage is basically that the computations involved in finding

an O.L.F.O. control sequence are simpler than those required to find a

true closed loop optimal. The assumption of no measurements in the

future allows one to propagate the statistics of the plant state from time

t to time T using equation (2 .3 . 1) (deterministic) rather than ( 2 . 3 . 2 )

(stochastic). The appropriate cost functional assuming no future mea-

surements is (2 .4 .17 ) (with the v , j , influence deleted) since in the

O.L.F.O. framework, {u. }Tl:f is assumed deterministic given Y. Thus

the O.L.F.O. approach requires the solution of a sequence of infinite di-

mentional deterministic problems rather than a truly stochastic infinite

dimensional problem.
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The role of measurement controls in an O.L.F.O. problem is some-

what different than in a true closed loop stochastic formulation. Since at

each step in an O.L.F.O. solution, the assumption of no future measure-

ments is made to determine the dynamic controls, it is not natural to

couple to this determination an evaluation of optimal measurement con-

trols. One must define a subsidiary problem which will allow the deter-

mination of when the next measurement should be taken (i. e., when is

time t' in Step 4 above) and "how much" measuring to do at time t'

(if one has more than only yes-no control over the measurement system).

This subsidiary problem might, for example, involve the (deterministic)

quantity p(x, |Y): the p.d.f. of future states given the measurements

already taken and given an O.L.F.O. approach to propagation of that

density. One might, for example, determine to measure again if (p(x , |Y )

gets too "broad" (high variance). The important point is that if one adopts

an O.L.F.O. philosophy, one automatically gets a "one-way separation

property" in the optimal measurement/control solution: at each stage of

the O.L.F.O. solution procedure, one determines the optimal dynamic con-

trol independently of the specification of the measurement control.

2. 5 Summary

In this chapter, the basic structure of stochastic dynamic program-

ming was discussed. The meaning of stochastic optimality was studied.

The notion was developed that the designer must formulate an overall

mathematical structure having the property that the map relating the

control sequences to the cost is real valued rather than random. It was

emphasized that in applying dynamic programming, two points must be
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considered: first, one must neglect that part of the problem extending

from time zero to time t when one is optimizing the trajectory from

time t to the terminal time T, and second, one must be careful to in-

clude in the dynamic programming structure a provision for utilizing the

fact that regardless of present actions, optimal actions will be carried out

in the future. The result of these considerations was the basic dynamic

recursion equation (2 .3 .22 ) .

In Section 2.4, some mathematical issues were considered. The

potential problem of leaving the mathematical structure of the problem in-

complete while searching for control laws was eliminated. The technique

used to formulate dynamic programming in Section 2. 3 was compared to

more conventional approaches, with particular emphasis on the issues in-

troduced by including measurement control capability in the problem.

Finally, the notion of open loop feedback optimal control was discussed.



CHAPTER III

DETERMINISTIC TECHNIQUES APPLIED TO
STOCHASTIC PROBLEMS

Athans' Axiom

Every problem can be reformulated
so that the Minimum Principle is the
key to obtaining the solution.

3. 1 General Perspective

The study of deterministic optimal control problems has.led to the

development of a number of powerful analytic tools, notably the Minimum

Principle, (see (P. 2), (A. 7), (K. 5), (A. 8)) which are not directly applicable

to the solution of stochastic problems. Some techniques, for example,

dynamic programming, are applicable to both classes of problems, but it

is somehow unfortunate that Minimum Principle ideas cannot be used to

gain further insight into the nature of stochastic systems. In this chapter,

certain circumstances will be described under which it is possible to use

deterministic techniques to approach stochastic problems.

The obvious difficulty with using the Minimum Principle to solve a

stochastic problem is that it is basically an open loop technique. When

using the Maximum Principle, one assumes a fixed initial state for the

system, and one then constructs a two-point boundary value problem in-

volving the plant state of the given dynamic system and the so-called

costate dynamic system, which is of the same dimension as the state.

The solution of this two-point boundary value problem then gives the

optimal control as a function of the state and costate trajectories.

Practically speaking, it is not possible, in general, to obtain this solution
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analytically, and numerical techniques must be used. The result is that

one can find the open loop optimal control time function corresponding to

*
any initial state, but not a closed loop solution, and closed loop solutions

are required in stochastic problems. Even if analytic solutions of the

two point boundary value problem are obtained, it is generally not possible

to eliminate the dependence of the optimal control on the costate, and thus

achieve a solution in terms of state (only) feedback. Even if it was pos-

sible to express the solution in terms of state feedback, it is not conve-

ient to introduce the concept of an inexactly known state. This, in fact,

is the main difficulty in a sense. Deterministic techniques in general and

the Minimum Principle in particular assume exact knowledge of all quan-

tities of interest.

It will be shown in this chapter that if one is dealing with a linear

system influenced by noises having Gaussian distributions, it is possible

to reformulate the stochastic control problem in such a way that the Mi-

nimum Principle can be used as a starting point in the solution. The

problem of inexact knowledge of the system state is circumvented by

reformulating the problem in terms of the conditional mean and condi-

tional covariance of the state, both of which are exactly know quantities

which can be generated by a Kalman filter. The problem of inexact a-

priori knowledge of what the actual noises will be (i. e. , what sample

It is sometimes possible to generate feedback solutions using the Mini-
mum Principle as a starting point. See the treatment of the linear
regulator problem in Athans (A. 7), and below.
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values will occur over a particular run) is circumvented by assuming the

noises are deterministic and taking the expected value at the end.

Both of these devices must be carefully justified. Let it be noted

here, however, that the reasons for that assuming the noises are Gaussian

are to preserve the simple filter structure and to allow reformulation

only in terms of means and covariances, parameters which are necessary

and sufficient to completely characterize a Gaussian process but not a

general random process. The reasons for assuming the system is

linear are to preserve the filter structure and to allow proof of a theorem

which justifies "taking the expected value at the end".

The transformation approach to be introduced in this chapter appears

in the paper of Meier, Laison and Tether (M.3) , although it is not carefully

justified. In particular, those authors "leave to the reader" the proof of

Theorem 3 ,3 .1 below, which is crucial to the technique. The idea is closely

related to the work of Kailath and Frost (K.6) , (K .7) , (F. 1). Theorem 3.3.2,

however, is novel.

3.2 Mathematical Formulation: Linear System with Gaussian Noise

Let the plant state evolve according to the difference equation

= Ax + Bu + | ( 3 . 2 . 1 )

where t is an integer in the index set *3 = {0» 1. 2, . . . , T), x e Rn, u e R ,

_§_ e R , A is an nxn matrix, and R is an n x m matrix. The sequence
if L L

{jSn, J, , • • • , ̂ T ,} is a random process on (Q,T& , p) such that ^. is in-

dependent of ^., i 4 j, and ^. has a Gaussian distribution with mean zero
J

and covariance matrix v which is positive semidefinite :
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E{j;t) = 0 ( 3 . 2 . 2 )

E{iti's} = St«ts . ( 3 .2 .3 )

where 6^ is the Kronecker delta. The initial state x~ has a Gaussian
ts —0

distribution with mean xn and covariance S •
— U (J

Q} = 0 (3 .2 .4)

O - X O ) ( X O - X O ) ' } = SQ ( 3 . 2 . 5 )

The driving noise _£_ is assumed to be independent of x~ for all t.

Several possible measurement equations make sense in the linear

case. Since the measurement is not required to be linear in the measure-

ment control v , the most general form is
L

Y.t = £t
(^t)x-t + ^t(-t^t (3 .2 .6 )

where the matrices C and D , which are functions of v , are respectively
— t t t

r x n and r x p with D (v ) of full rank for all v . The sequence {0^,— t t t — U

Q _ ] > • • • »^T) is composed of independent, zero mean, Gaussian random

vectors independent of {£,} and xn, with covariance matrices © of full
— t U ""t

rank

E{0t) = 0 ( 3 . 2 . 7 )

( 3 . 2 . 8 )

The case where 0 and/or D ,are not full rank can be treated with a
t —t

certain amount of additional care. See Tse (T. 1). In that case, some
matrix inverses that appear below may not exist, and certain com-
plications result.
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Several special cases of equation (3 .2 .6 ) are of particular interest.

Consider for example,

v = v C IT + « n ? Q ^
-H: t t —t —t ' '

or alternatively

Jt = v t[C_ tx t + 9t] ; vte{0, 1} ( 3 . 2 . 1 0 )

In both cases, the control v is a scalar. The situation represented by

equation (3 .2 .9 ) can be interpreted more or less as signal-to-noise ratio

control: when v, is large, the "signal" ^T,x is boosted with respect to
t U L

the noise o . In equation (3 .2 .10) , the measurement is of the measure-

nomeasure type: if v = 1, a measurement of fixed "quality" is obtained;

if v = 0, no measurement is made. Another special case of (3.2. 6) which

is a useful model of certain physical situation is

Jt_4- *- 1 4- _ "I 4- "} • 4- __*y 4- \f 4- __ \r- 4- •* -J.-4- ^4- » '
^^L i • L " ~~ •* * L t*« L £rf* L IVj l> l\. I, ^^L C

w^here each v. is constrained to be either zero or one and the additional

constraint

k

V v. = 1 ( 3 . 2 . 1 2 )

i=l

is imposed. This represents a situation in which the measurement control

selects one out of k possible measurement configurations. See Athans

(A. 6).
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3. 3 _ An Alternative Approach to Stochastic Control of Linear Systems

j. 3. 1 _ Transformation of the System

A fundemental question in stochastic control might be phrased:

"How much information is required to solve the problem at hand? " .

This question is related to the notion of sufficient statistics as discussed

by Striebel (S. 6) and to the notion of what constitutes the state in a sto-

chastic controT problem, as discussed in Chapter II of this thesis.

Given that the state of a stochastic problem at some time t is a

conditional p .d.f . , the question of how to properly propagate this state

arises. Striebel (S.6) showed that the density can be propagated as in

equations (Z .3 . 1) or (2.3.2) (she has the analogous measure-theoretic

equations) using only the values of dynamic controls u , i.e. , without

requiring knowledge of complete control laws u (• ) . It follows from

this idea (see (S.6) and (W.2)) that if one considers a linear system with

Gaussian initial state and Gaussian noises as defined in Section 3.2, the

conditional p .d . f . of x given the measurements Y will be Gaussian
r L L

regardless of the form of the feedback (linear or nonlinear) if one

knows the values of past controls. Thus at any time t, the density of x

for the system (3. 2. 1 ), (3. 2. 6) is completely characterized by its con-

ditional mean x i and conditional covariance Si:
— 1 1 — 1 1 1

(3 .3 .2)
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Note now that it is possible to generate x i and 2 i using a

Kalman filter so long as the system is linear and the noises Gaussian.

The equations take the form

*t+1|t+l = A t* t t + B^ + lt , (3 .3 .3 )

A ' 4 H t ) 0 .3 .4)

where

it = (A t2 t | tA;+H t)c;+1[c t+1(A ts t l tA1+H. t)c;+1 .

+ »t+1®t+lV[+ir
l(zt+1 - C i+1(A£ t l t + Btut)] ( 3 . 3 . 5 )

A
The quantity^ is the so-called residual or innovation in the Kalman filter.

A

An important property of the filter is that the sequence {^.} is zero mean

and "white", with Gaussian statistics, (see Bryson Ho (B.4)) . In fact,
£

from (3. 3. 5), one may calculate the covariance matrix of _| and thereby

specify its density exactly:

-f H.t)

(3 .3 .6 )

\vhere

(3 .3 .7 )



-68-

What has been done up to now is to take the original stochastic

system (3 . 2 . 1) - (3 . 2. 6) and formulate the appropriate equations for

propagating the conditional p. d. f. of x given in the data. The original n-

dimensional system has been replaced by the n + n dimensional system

(3. 3. 3) - (3. 3.4) (actually n +-=-+-=- since 2 i is symmetric for all t).
<- <£ t J t

Note that (3 .3 .3) and (3.3.4) still represent a stochastic system since
A

the mean equation (3. 3. 3) is driven by the white noise £ . However the re

is now no measurement equation. The mean x i is known exactly at

time t. The measurement aspects of the pro'blem are contained in the

dependence of (I and JD. on v , which in turn influences the propagation
A

of the covariance and the statistics of {^.}.

The original plant state vector x, has thus been supressed in the

equations of motion, and inexact knowledge of the "state" in the dynamic

equations has been eliminated as a difficulty. It remains to transform

the cost functional into a form involving only x i i 2. , u and v . This
L I L L i t . L L

may be done by noting that if x is a Gaussian random vector with mean

x and covariance Z_, and if u is deterministic, then one can express the

expected value of any function L(x,u) for which the expectation exists

in terms of x» 2_, and u. Let script f. functions be defined by

E{L(x,u)} = jC(x,S ,u) (3 .3 .6 )

Suppose that the given cost functional is the random variable

T-l

J = LT(xT) + ^(v0) + ^ L t ( - t . u t , v ) (3 .3 .7 )

t=0
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The expected value of this random variable is to be minimized by gen-

erating {u } and { v } using feedback as discussed in Chapter II. The

claim is that one can equivalently consider the random variable

T-l

t=0 -

(3 .3 .8 )

where this new quantity (a random variable because {x i } is a- random

process a-priori, i.e. , at time t = 0) is to be minimized in thev same

sense, that is, as described in Chapter II. More formally, the following

theorem may be stated:

Theorem 3.3 .1 Let the following control problem be specified:

Dynamics: xt+1 = At2Et
 + ^t-t

 + ^t

Measurements: _y_ = .C,(v )x + _D t(v)j} ( (3 .3 .9 )

T-l
Cost: J = LT(XT) + JQ(v0) + 2 L t(x t»-u t,v t+1)

w^here the variables have the meanings given in Section 3.2 and where the

optimal controls are to be determined by stochastic dynamic programming

as defined in Chapter II. Then the optimal dynamic control functions

( u ^ ( - ) } and (v,T(- )} for the system (3 .3 .9 ) are identical to those obtained

for the following system, also treated by stochastic dynamic programming:

Dynamics: ;lt+1t+1 = 4*t 1 1 + ̂  u,. + ^

Dt+ A+l ^+1
]" ' t + 1 } (^t I tAl + Et)
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Measurements: x
ti f known exactly

Cost: J = £T(xT |T ,S_ t | t) + ^Q(VO) (3 .3 .10)

T-l

t= o

where J ? , Z > u ) v ) = E d , u v ) 1 = N ( t ) }

Proof (by induction): At step T, x is Gaussian with mean x i and co-

variance 2_ i . Thus the cost-to-go associated with system (3 .3 .9 ) is

= N ( X , S ) } (3 .3 .12)

w^hich is exactly the cost-to-go associated with system (3 .3 .10) .

At step t, assume that the costs-to-go associated with (3. 3. 9) and

(3.3.10) from step t+1 are identical functions of x i . and 2 | t , i .

saytV ,(x , J 4 - . i »5 .4 . . ] U i ) - Then the cost-to-go from step t associated

with system ( 3 . 3 . 9 ) is

(3 .3 .15)

The notation x = N(x, 2^) will be used to indicate that x is a Gaussian
(normal) random vector with mean x and covariance 2.
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By the innovations theorem of Kailath (K. 6), expectations with respect

to the noises and measurements in (3 .3 .9 ) are equivalent to expectations

with respect to the innovations process {jL} in (3.3.10) , so (3.3. 15) is

identical to the cost-to-go associated with system (3. 3.10). Since the

systems (3. 3. 9) and (3. 3. 10) have identical costs-to-go, they have iden-

tical optimal control laws. They also have identical optimal costs-to-

go at step t, showing that the induction holds and proving the theorem.

Q.E.D.

3 .3 .2 JJsing the Transformed System

The previous subsection justified the notion that the original given

system with inexact knowledge of the state can be reformulated in terms

of the Kalman filter equations involving the conditional mean and condi-

tional covariance of the state, both of which are known. It was noted,

however, that the filter equations are still stochastic in nature since the
A

mean equation ( 3 . 3 . 3 ) is driven by the white noise process {_§.}. As such,

the transformed system still cannot be analyzed using the Minimum Prin-

ciple since that technique requires full a-priori knowledge of all the
A

drives in the equations of motion, i.e. , in the present context, of {_§,}.

The following theorem allows the elimination of this last difficulty:

Theorem 3 .3 .2 Let the sequence of functions {l_, (x, u )} be convex
L L L ~~

Borel functions from R into R. Let x be the plant state of a sto-

chastic system
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where {^ } is a white noise process and where at step t, x is known

exactly. Let *fi (x ) be defined
t t

T-l

min ElL^) + ^Lk^v,uk)|xt} (3.3.16)
O.....^.! k=t

/^

and letvfl (x ) be defined as follows:

{u.(x , £ , . . . , £ _ ,)} = deterministic optimal control
—t —t —t — l-i

functions assuming {_§.} fixed,

known. Assume these are I

Borel functions.

{u (x )} = E{U(X , £ , . . . , £ _ , )|x } (expected value ., , . _.
—t —t —t —L —L — 1-1 —I \J, J . 1 Of

over

I (x ,£, . . . ,^ .) = cost incurred by using the control
/* / uT-1 (3.3. 19)sequence i u ( x ) l =

x t ,i t , . . . , |T_1)|x t} (3 .3 .20 )

then

^t(xt) - ̂ ^ (3 .3 .21)

Remark 1 : What this theorem does is compare the costs resulting from

two methods of computing a sequence of controls. Equation (3.3. 16)

defines X* (x ) as the minimal cost-to-go using stochastic dynamic pro-
A

gramming as in Chapter II. Equation (3 .3 .20 ) defines «,(x.) through
L ~" L

the following sequence of steps:
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T 1
(1) Assume {£. } , _ is fixed but arbitary

K K—t

(2) Solve the resulting deterministic control problem

in feed back form, obtaining optimal controls

u, = u. (x. ,£. , . . . , £ _ .) (Equation (3 .3 .17) )
i Ir- I— * , I-- •* l-f ' _^L r — I * * T. * ' *

(3) Take the expected value of the {u, } sequence

over the quantities (|, } which are actually

random variables (Equation (3.3. 18)). The

result is {u, (x, )}

(4) Apply the control laws {u, ( X j ) } . Express the

resulting cost as a function of {£, }, again

assumed fixed but arbitrary, and x . Call the
A

result I (x , £ , . . . , £ ) (Equation (3 .3 .19) )
K t "~\. — J. — 1

(5) Take the expected value of that cost:

The theorem says that two things are equal: the cost-to-go using true

stochastic dynamic programming and the expected value of the cost-to-go

obtained by applying controls which are themselves the expected values

of the optimal control laws obtained by assuming the noise is fixed but

arbitrary.

*
Remark 2: Note carefully that the theorem does not state that u (x ) =

U4.(X4.)> i. e. , that the optimal stochastic control equals the average of—t —t

the optimal deterministic control assuming the noise fixed. Only the

resulting costs are equal, on the average.



-74-

Remark 3: A point that must be stressed for future reference is that

the theorem stated here has no explicit measurement control features.

This theorem will be applied below to systems of the type described by

(3.3.10) (Kalman filter systems with transformed costs representing

linear stochastic systems of the form of (3.3. 9)). The noise j|_ of this

theorem will then have statistics which are influenced by the measure-

ment control in combined measurement/dynamic control problems.

This fact will be supressed during the deterministic part of the analysis,

i.e. , when the noise {jL) is assumed fixed to determine u (x , £_ , . . . ,

j; ,). However the manner in which the measurement control influences

the problem will re-appear when the two expected values of steps 3 and

5 in Remark 1 are taken.

Remark 4: One will note below that the assumption that the noise se-

quence {.§.} is white is not used explicitly in the proof of the theorem.

In fact, this assumption is not necessary to prove the theorem as it

stands. This is because the theorem makes a statement concerning

the optimal cost-to-go from time t to the end of the interval, a quantity

that is well defined whether or not the noise is white.

Consider, however what would occur if the noise was not white and

one were to apply this theorem at two different times t, and t~ . Let

t? be greater than t, . If the noises are not white, then the statistics

of the .sequence {£ , £. .1» • • • >l/r i^ assuming x known will in-t2. t2-f-J. i-i t2

general be different than the statistics of the same sequence viewed as

a subsequence of {£, , £. . ,, . . . , £, , . . . , £„- , } with x known. If the
^ —tj — t , + l —tp — I - i —t.
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noises are white, the statistics of the shorter sequence will be the same

in both cases.

Suppose now that one uses this theorem in the solution of .a stochastic

optimal control problem with non-white noise. One starts at time t, and deter-

rA
mines (u (•)} . One applies this control law sequence until t = t?. One dis-

L L — 11 t-
— rp -I

cards the old solution and resolves for (uJ-jh.Jl starting at t = t7. This
t t-t2 *-

new solution will in general be different from the "unused" part of the old

solution since the statistics of the future noises have changed.

This situation is not a violation of the Principle of Optimality (see Bellman,

(B. 3)). It is merely a result of the fact that the quantity x is not the entire state

of the system. As pointed out in Section 2.2, if the noise is non-white, one must

include in the state of the system the statistics of the future noises given the pre-

sent measurements. Since this information is different at times t\ and t? in the

above analysis, which in effect neglects part of the state, it is not unex-

pected that different control laws will result from analyses at t, and.t" .

Remark 5:; How will this theorem be useful? Because of this theorem, it

becomes possible to use the Minimum Principle or other deterministic

techniques to gain insight into stochastic problems. One first converts

to the filter system as described in subsection 3.3. 1. Next, one assumes

a fixed but arbitrary innovations sequence (_£t) and analyzes the resulting

deterministic system. According to Theorem 3.3 .2 , the expected cost

that would be obtained by using the expected value of the feedback controls

derived from deterministic techniques is the same as that obtained
i

using stochastic dynamic programming. Note again that it does not

necessarily follow that the stochastic feedback law and the expected
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value of the deterministic feedback law are identical. The result only

says that the expected costs are the same. In the absence of a theorem

regarding the uniqueness of stochastic optimal feedback control laws

this is the best that can be hoped for. It does, however, allow one to

use deterministic control laws to study a solution at least as good as

the true stochastic one.

Remark 6: Consider the implications of Theorem 3.3.2 when the

Maximum Principle cannot be manipulated in such a way as to provide

the optimal feedback control laws u{x.,jLi . . . , _£_ ,) called for in the

theorem statement. Suppose that one can only determine an optimal

open loop time sequence {u , u ,, . . . , u , } given x and the (fixed)
C C- —t —L+i —1-1 1

T 1
noise sequence {£. }. _ . What can be said about the applicability of

_a •— K R—t

the theorem?

The theorem still holds. One can view the process of constructing

the two-point boundary value problem called for by the Minimum Prin-

ciple for any initial state x and any noise sequence (j| } as a feedback

solution: even though one gets a time function for an answer to the

optimal control problem, one gets a particular time function for every

initial state and every noise sequence. As discussed in Section 1.2,

there is an equivalence between open loop and closed loop optimal

controls in the deterministic case. One can average over this process.

It will be shown in the next chapter that these two feedback laws are
identical in the linear-Gaussian-quadratic case.
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There is a technical difficulty with using this approach, however.

If one takes the average over time functions obtained by considering

optimal two-point boundary value problems and applies the average

control at time t, u , there is no guarantee that the average optimal

next state x , = A,x , + JB^u^ + .§. will occur. When one observes at

time t+1 that one is not in the "right" state after applying u , one must

completely resolve the problem, because the optimal controls are not

in explicit feedback form.

Proof of Theorem 3. 3.2:

I. Definition; A function 0(- ):R —- R is convex if for all u. , u,,eR

and for all a,pe[ 0, 1] , a+|3 = 1

(Kauj + P U Z ) < a c O f U j ) + (3 «fr(u 2) . (3 .3 .22)

a.

II. Lemma 3.3 .1; (Loeve, (L. 1), p. 1 59) If < & ( • ' ) is a convex function

and u is a random variable such that E {_u\ is finite,

E{<D(u)} > *(E{u}) (3 .3 .23)

III. Lemma 3. 3.2; Let *(• ) be a convex function on R and let

!|f(u):R —• R be affine, i .e . , i|r(u) = £(u) + £

where £(' ) is linear. Then the composition

$Oi)r is convex

Proof:

It also is stated on p. 159 of Loeve that any convex function is either
continuous or not Borel, by the way.
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. ) + c]
^~J. " t̂« "~~

(u2) Ma-HP )c]

Since a+p = 1.. Then

by the convexity of $. This gives

U +u a

Q.E. D. Lemma 3. 3. 2

IV. Lemma 3 . 3 . 3 : Let d>,<- ),'*,(vl» •• -.. "> (' ) i>e convex. Then

4(u) •= .*, ;(u.) 4 <ju(u)-f . .. . +<t> (u) is convex

Proof: n

.-(QUj HI-

i= 1

.Since 0.(au. +p_u_) <^ a<l)-(Uj) -f p<j>.{u_) for each I

Q.E.D. Lemma 3. 3. 3

V. Le mma 3.3.4: Consider the deterministic system x. = A,x +—————— ̂ — — — -- — ~ —

fixed. The map {uu} -» {x,,} is affine from
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Proof : Immediate from the solution formula

t-1

8= 0

where .§, = A. • A,. . - . ' . . • A—t, s —t —t-1 —s

Q. E. D. Lemma 3. 3.4

Proof of Main Theorem 3 .3 .2 : By definition, y< (x ) is the minimal cost-

*•'•* T" 1

to-go using stochastic dynamic programming. Let {u, (. )} , _ represent
BC tC — L

the optimal control laws obtained in that manner. Then

T-1

<& t(x t) = E{LT(xT) + ^T Lk(xk,u*(xk))|x t} ( 3 . 3 . 2 4 )

k= t

T-1

< E{LT(xT) + 2 ^-k'-k^k^l-^ ( 3 . 3 . 2 5 )
k= t

for any other sequence of feedback controls {u, (• )} by the optimality of

{u. ( • ) } • In particular, for the control laws {u, ( • ) } ,
K K

T-1

E{LT(xT) + Lfc^k 'k^k^ l^ ( 3 . 3 . 2 6 )

k= t

• • • , t r _ ) \ x } ( 3 . 3 . 2 7 )

So

A

( x ) (3 .3 .28)

(x ) ^.vO^fx^.)- The inequality will now be proved in reverse.
L t ^~* L L
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To clarify notation, let E {•} represent expectation with respectx

to the random variable x. Then

T-l

= E{LT(XT) + ^L
k(xk>Uk(xk))l2£ t} (3 .3 .29)

k = t

T-l

2 V^k^^t'V'-^T-l^t1

k = t
(3.3.30)

by properties of conditional expectation (see Loeve, (L. 1 ), p. 341 ). But

T" — 1
given {£. }, _ , the innermost quantity in the expectations in (3 .3 .30) is

K. K — L

minimized for all {J.) if (u, } = {u, (x, , J, , . . . » A T _ i )) • Thus

T-l

k = t

(3 .3 .31)

Now the u, (• ) functions are well-defined as the feedback solution of a
K

certain deterministic optimal control problem. If {j;, } are taken to be
K

random variables, then given x. , u. (x. , £. , . . . , | , ) will also be
— K — K — K — K — J. - 1

random variables if the u, (•) are Borel functions. It has been assumed
*^K

that thev are. If the {u, } are now considered random variables in their
' — k

own right f o r k > t , (3 .3 .31) may be written

T-l

t(*t) > E{ }{E{A }{LT(xT) + 2 ^(x^u^lxj^}}^} (3 .3 .32 )

~k k k=t
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Since the L, functions are convex and the system is linear, the map
T-lA /^

(u, } — • L (XT) + T"| L,(x ,u ) is convex, by Lemmas 3 . 3 . 2 - 3 . 3 . 4 .
k= t

Thus by Lemma 3.3.1

T-l

k = t
T-l

k= t
A

= "^t^-t* (3 .3 .33)

A
Thus, ^-» (x,) ^.^t(x,)> and the inequality holds both ways, giving

L t L L

A-

•J t(xt) = xJ t(x t) . (3 .3.34)

Q.E .D

3.4 Summary

In this chapter, circumstances under which it is possible to approach

a stochastic control problem by using deterministic techniques were

described. The special case of a linear system driven by Gaussian noise

was introduced as a basis for the analysis.

The first step in the analysis was to consider the Kalman filter

equations, which characterize the propagation of the p . d . f . of the plant

state given the measurements, in place of the given system equations.

The cost functional was expressed in terms of the conditional mean and

conditional covariance of the plant state. The fact that these transform

actions do not change the solution of the control problem was expressed

in Theorem 3.3 .1 .
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The rest of the analysis revolved around Theorem 3.3 .2 , the main

result of this chapter. This theorem states that the average cost in-

curred by using the expected value of the control law determined by

assuming the noises are fixed is equal to the true stochastic optimal cost.

As result of this theorem, one can apply deterministic optimal control

techniques in solving a stochastic problem, and one is guaranteed that the

control law derived using those techniques will result in performance

which is as good on the average as that which the true stochastic optimal

control will produce.



CHAPTER IV

STRUCTURE OF DYNAMIC AND
MEASUREMENT CONTROL SYSTEMS

FOR LINEAR-QUADRATIC-GAUSS IAN PROBLEMS

4; 1 General Perspective

As was pointed out in Section 1.4, several authors have considered

combined measurement/control optimization problems for the special

situation in which the dynamic equation is linear in state and control, the

measurement equation is linear in state (although not necessarily in mea-

surement control), the noises are white and described by Gaussian statis-

tics, and the cost functional is quadratic in state and dynamic control. The

typical approach is to assume a fixed but arbitrary sequence for (v },
^~t

apply the well known separation theorem and linear regulator techniques

(B.4) to the resulting "ordinary" control problem involving {u.}, collect

the terms in the expected cost which depend on {^.}, and finally solve for

the sequence (v } which minimizes those terms. This approach has not
~~t

been carefully justified; it is not immediately apparent whether the same

solution results if one solves simultaneously for {u,} and {_v,}. Meier,

Peschon and Dressier (M. 2) have a theorem stating that indeed the same

answer results regardless of the approach. Their proof, however, while

basically correct, does not carefully point out what quantities depend on

what controls, so that the exact reasons why the "a-priori v technique"

is optimal are somewhat obscure. They do not consider at all the point

discussed in subsection 2 .4 .2 of this thesis: that one is defining the

neglecting of past costs to be optimal. For these reasons, a complete

proof will be given below.

-83-



-84-

A widely applied technique in problem solving is to break a big,

complicated problem up into a sequence of smaller, simpler problems.

This is the basic motivation for the dynamic programming technique in

which a large, multistep optimization is reduced to a sequence of single

step problems. In the context of stochastic control problems, another

complexity reduction procedure can be used in certain circumstances by

applying the Separation Theorem or Certainty Equivalence Principle (W.I) .

This principle allows the designer to break the overall stochastic control

problem into two pieces: an estimation problem involving the determina-

nt'
tion of the system state and a control problem which is deterministic. The

designer then plugs the "answer" to the estimation problem, i.e., the ex-

pected plant state, into the feedback control law of the deterministic con-

trol problem and the overall solution is optimal for the overall system.

It is obvious that it is desirable to be able to apply the technique out-

lined above to a given problem: the overall hard problem is replaced by

two-easier problems. Considerable effort has been expended in trying to

determine precisely when this separation approach is valid. Witsenhausen

(W. 1) summarizes these efforts. Basically, the easiest solution results

in the linear system-quadratic cost-Guassian noise case because the

separation property holds, the estimation problem is more-or-less easy

to solve using a Kalman Filter (K.4), and the deterministic problem that

results is a linear regulator problem, also relatively easy to solve (B.5).

It has been shown that in certain other cases, separation techniques can

be used, but the resulting two problems may not be so easy. For example,

*r
Not necessarily the obvious one obtained by simply "throwing" away the
noise.
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Wonham (W.2) considers linear Gaussian systems with a generally non-

quadratic cost and the resulting deterministic control problem is not easy,

although estimation remains tractable.

The nomenclature attached to the study of stochastic control prob-

lems is somewhat confusing with regard to the question of separation

theorems. Under the assumption of white noises, Striebel (S.6) showed

that the optimal control depends on the data only through the conditional

p .d . f . of the plant state given the data. This holds for any system, linear

or nonlinear. This itself constitutes a separation theorem since it breaks

the overall stochastic control problem into two parts: 1) an estimation

problem (calculate the pdf and 2) a control problem (find the feed-

back function into which the pdf must be substituted).

What is usually called The Separation Theorem (with capitals) is

the particular result for linear-Gaussian-quadratic problems that the opti-

mal stochastic control results from plugging the conditional mean of the

plant state (output of the Kalman filter) into the feedback law for the same

problem with noises set to zero. In addition to this particularly simple

structure for the optimal stochastic control, The Separation Theorem

states that the solution to the filtering problem (i.e. , the equations for

determining the conditional mean and conditional covariance) are com-

pletely independent of the state and control wieghting matrices which

appear in the cost functional. Conversely, the determination of the con-

trol law is completely independent of the means and covariance matrices

of the stochastic part of the problem.
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In this thesis, it becomes necessary to be more precise about the

meaning of separation because there is an additional facet of the problem

that might separate out: the determination of the optimal measurement

control. The various circumstances that can occur are illustrated in

Figure 4. 1 through 4.4.

Figure 4. 1 illustrates the situation which applies to the linear-

Gaussian-quadratic case with no measurement control capability. The cal-

culations required to specify the filter (state estimator) are completely in-

dependent of those required to specify the dynamic control law. The cal-

culation of the control law and filter parameters are, in turn, independent

of the measured data and may be completed a-priori (off-line). This situa-

tion will be referred to as complete two-way separation: complete be-

cause the filter and control laws are independent of the data, and two-way

because the filter and control law calculations are independent.

Figure 4.2 illustrates the structure of the control system for a

linear-Gaussian-quadratic problem with measurement control capability.

The dynamic control law calculations are independent of the filter and mea-

surement control law calculations and also of the measured data. The fil-

ter parameter calculations are coupled back and forth to the measurement

control law calculations, but these are both independent of the measured

data: the optimal measurement control time sequence can be calculated

a-priori (off-line). Th& separation can still be called complete because

all of the control law and filter parameter calculations may be done a-priori

(off line). The dynamic control law is still completely independent of the

filter calculations (a two-way separation) and of the measurement control
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calculations (another two-way separation). The filter calculations and

the measurement control calculations are tightly coupled, however.

Figure 4.3 illustrates the situation for the linear-Gaussian-non-

quadratic case. Separation is still complete: all filter parameters and

control law parameters are calculated a-priori. However, the control

law which specifies the optimal measurement control _v' , now has the

state estimate at time t, * \ , as an argument; it no longer depends only

on the covariance matrix. It is thus impossile to calculate the optimal

measurement control off-line. In addition, the dynamic controls-filter sepa-

ration is now one-way only: the control law depends on the filter but the

filter calculations are independent of the control law. The dynamic and

measurement control calculations are still decoupled (two-way separation)

except, of course, as the measurements influence the filter and the filter

the dynamic control law. This will not be considered a direct coupling.

For comparison, the general case is illustrated in Figure 4.4.

Everything must be done on line and no separation occurs.

5};

This may require clarification. If the control laws take as their argu-
ments the entire conditional p.d.f. of the plant state, the control law

maybe calculated off-line. If, however, as is often the case, the argu-
ment of the control law is constrained to be only the current state esti-
mate xi, then the control law must be calculated on-line. See—1| t
Kushner (K.2).
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Separation: Linear-Gaussian Non-Quadratic Case.
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The present chapter will be devoted to showing that Figure 4.2 in-

deed describes linear-Gaussian-quadratic systems . Both dynamic .pro-

gramming and deterministic techniques will be used. The next chapter

will repeat the analysis for linear-Gaussian-non-quadratic systems to

confirm the implications of Figure 4.3.

The equations describing a linear-Gaussian problem with quadratic

cost will now be collected here for convenience. Recall from Section 3.2

the equations describing a linear -Gaussian system:

A tx t + B t u t + | t (4 .1 .1 )

It = C t(v t)x t + D^)^ (4 .1 .2 )

The variables have the same meaning as in Section 3.2. The cost func-

tional will be

T-l

t = 0

(4 .1 .3)

where Q, is a symmetric and positive semi-definite matrix and R, is a
— t — t

symmetric and positive definite matrix. The 1 (•) functions will be as-

sumed to be scalar positive definite, and convex.

4.2 Results Using Dynamic Programming

Theorem 4.2. 1. (Complete, Two-way Separation Theorem)

If the dynamic system is described by equation (4. 1.1) with mea-

surement equation (4. 1.2) and cost functional (4.1 .3), under the assumption
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that optimal dynamic and measurement control sequences exist, the

following properties hold.

A. The optimal measurement control sequence {y_ } may be

pre-computed. It is applied open loop and depends only on

the system parameters and noise statistics.

B. The optimal dynamic control sequence {u } is generated by feed-

back in real time by u* = -K x I, where K, is a pre-computable
' —t —t -tit —t

gain matrix independent of {.v?}, anc* ^tlt ^s ^e best linear esti-

mate of jc , generated by a Kalman Filter which is "matched" to

the measurement profile {v*}.

C. The gain matrix K is identical to that obtained in the deter-

ministic problem which results if £ is identically zero in

(4. 1.1) and the measurement aspects of the problem are deleted.

Proof; The method of proof will be dynamic programming, applied as

discussed in Chapter II. To make the proof as compact as possible, the

explicit dependence of C and I> on v will be supressed in the nota-
~™t t L

tion: C and D will appear instead of C (v ) and D (v ). However,
^™t L ^™ L ^™l t ~"™t

one must bear in mind that these quantities are influenced by the mea-

surement control. In addition, the symbol Y. will be used to de-
note the entire data set at time t, i.e., let Y = Y . U U . ,U V
Terminal Step: Let the time be t= T. The terminal cost-to-go, analogous

to equation (2.3.18) is
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where Y_, is the fixed, known data base. There is nothing to opti-
- A *»*»

mize, and the value of 0_, to be interpreted asUl,-, (Y-,) in the next step,

may be evaluated as follows:

= E{tr[QTxTx'^|YT} (4.2.2)

= tr[QT
E{*T*T|YT}] (4.2.3)

Equation (4. 2. 3) may be expressed only in terms of the mean vector and
S/N

covariance matrix of jc,. When conditioned on Y_,, let

xT|T = E{xT|YT) (4 .2 .4)

A <s>
2 = E{x-x i ) (x-x i )' Y \ (42 5)

be the conditional mean and covariance of x™, respectively. Then

manipulating (4. 2. 3) gives

= trjQ,.,. E{x_,x' |Yq
L~T -T-1| T

(4 .2 .6)

(4.2.7)

(4.2.8)

(4.2.9)
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Arbitrary Step t: In order to analyze an arbitrary step at time t, an

\s\
expression for^ ,= min E{{1 • . Y. ,,} must be available to plug into

(2.3 .22) . Using some foresight, a suitable form for *0. . will be sug-

gested and then proved correct by induction.
<*\ */\

In (4. 2. 9), v3T(Y ) depends on YT through the sufficient statistics

XrJrp and SrJrp. d)T is quadratic in the conditional mean. Since the sys-

tem is linear and the underlying cost is quadratic, at least in state and

dynamic control, this seems a reasonable form in general. It will, of course,

be necessary to include a term to represent the contribution of i terms.
*/\ i

It will be shown that such a term depends on Y only through Z. , • Then,

as a start, assume that

where M is symmetric. The terminal values are

MT = QT (4.2.11)

mT = Oi (4.2. 12)

IT = hT= 0 (4.2.13)

The data Y are available. The controls u and y_ , must be

chosen to minimize

V
(4 .2 .14)

*
This is slightly more general than the form assumed by Meier, etal.(M..2)
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or using (4. 2.10)

< 4 - 2 -

To evaluate (4.2. 15), notice that assuming Y is given, jc is a Gaussian

random variable with mean x f and covariance 2j just as at Step T.

Since x+4-i *s linearly related to x and a linear measurement is made,

there is no loss in generality in assuming that x ,1. , , is generated from

A y^

— tft ^y using a Kalman Filter. At Step "t, 2St+llt+l ^S a ranc^orn variable,

since y is involved in calculating XT i , . The form, however, is

known. It then follows at once that the propagation equations are:

(4 .2 .16)

(4 '2-17)

B ) ] ( 4 . 2 . 1 8 )

Kalman Gain = S_ .

A{ + 3 t) G;+I ct+1[At St|t Al + 2t] CJ

(4.2.19)

(A? A' + S) (4 .2 .20)

To reduce notational confusion, let

= At^|t + Btut = E[xt+1|?t> (4 .2 .21)

= A^A^ -f § = cov(xt+1,xt+1|Yt) (4 .2 .22 )
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The filter equations become

+1

£t+1 2it+1t

The expression for becomes

xt + u't R f cu t+

Each term in (4.2. 26) will now be considered in turn

= tr

= tr

X'-t

Q.

(4 .2 .23 )

(4.2.24)

(4 .2 .25)

t«

(4 .2 .26)

(4 .2 .27)

( 4 - 2 - 2 8 )

(4 .2 .29)

The terms u'R u and -^ t+1(v t,,) come out of the expectation unchanged
w>

since u. and _v, , are taken to be deterministic given Y . The next

term in (4.2.26) is
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*t+1ft
 + St+1(Dt+10t+1+ Ct+1 (x t+1- t+l f t»] |yt> (4 .2 .30)

Mt+1st+1Dt+1<9t +

(4.2.31)

where the cross terms in Q . , - , are zero by the whiteness and zero mean of

the {§_.} process. The last term in (4. 2. 31) is zero since x I is de-t t t - i - 1 L
vo

deterministic given Y and it is an unbiased estimate. Continuing from

(4.2.31) then gives

1 Yt> = 2

(4 .2 .32)

(4.2.33)

D- +1 +C - +]S 't ^

(4 .2 .34)
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The next term in (4. 2. 26) is

( 4-2-3 6 )

Collecting all the terms in the expansion of V now gives

(4 .2 .37)

Reference to the propagation equations (4.2. 16) - (4 .2 .25) shows that the

only terms in (4. 2. 37) which depend on u are those which display _u ex-

plicitly. In particular, S , and S. . , L are independent of u although
""~" ~~ I

y_ . influences these quantities. Thus to minimize V- with respect to

u,, one can collect terms in u and obtain— t — t

,
(u, terms)

(4.2.38)

which is minimized by choosing

t

(4 .2 .39)
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Notice that v does not influence the above equation in any way, and the
— 1+1

simultaneous minimization of U- with respect to 11 and v separates

into two parts that may be done in sequence.

Collecting terms in (4 .2 .37) which involve y_ . is somewhat more

confusing since v, , influences S, ... S.. , ! - , , , C. , , and D . . The result is° — — — tl — —

terms)

t+12t+1|t] (4 .2 .40)

Manipulating the trace operation using tr [ABC \ = trlCA_B I yields:

(y_t+1 terms)

(4.2 .41)

Substituting the expression for ^.,1 from (4 .2 .24) into (4 .2 .21) gives

SH JtlJ
10t+1D;+1+ ct+1z;t+1|tc;+1) (Dt+1et+1D^

( 4- 2- 4 2 )



-101-

which simplifies to

(y_t+1terms)

(4.2.43)*

In order to minimize this expression with respect to y_ i, specific forms

of J ? t , i and I , must be known. Rather than assuming such forms, the

general case will be considered.

In order to complete the inductive proof that (4 .2 . 10) is a correct ex-

pression for the optimal cost-to-go from Step "t , one must substitute the

optimal values of _u and v_ i into (4 .2 .37) and show that the appropriate

form results. Since no specific form for I . , , is suggested, let v* re-
tTl t+1

present the general optimal value obtained by minimizing (4 .2 .43) . By in-

spection of (4.2.43), this value will depend on 2, |. but will be indepen-
— t |u •— " ~

* j£c i
dent of xJt. Then, substituting _v . and u' (as given in (4 .2 .39 ) into

(4 .2 .37) , one obtains

(Cont'd.on next page)

The St . factor is intentionally left in the argument of I^j. It would do

no good to substitute in J>t+1 since the precise form of It+1 is not known

at this point.
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1* * *

(4 .2 .44)

0.

The term V represents the corresponding term in ( 4 . Z . 3 9 ) with v
T i l

substituted in; similarly, S* is (4 .2 .24) with substituted in. The

f ,. _

matrices C • . and DT, , represent c
t+i(v

t.i)
 and Dt+l^vt+l^* ^he 6X~

pression given in (4.2.44) may be reduced to the following, after a con-

siderable amount of algebra:

t t t t + 1

- | -'t+l^t

(4.2 .45)

This is of the form

<V*;|tMt*t|t + -Ut|t + It(§t|t, + ht (4.2.46)

where

+ B ' M ^ B M (4 .2 .47)

(4.2.48)

!t(^tL) = remaining terms depending on _S I (4 .2 .49)

h = remaining constant terms (4.2.50)
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Note that h cannot be expressed in closed form in terms of h . since

there are typically constant terms in the group "terms in 2,1," in (4 .2 .45) .t|t

Similarly, the exact nature of I cannot be determined until specific t

functions are specified. Note, however, that since mT = Q and m is

linearly related to m ., it follows that m = ̂  for t = 0, 1, ... ,T. Thus

the optimal dynamic control can be expressed

u* =-K tx t | t (4.2.51)

where K= (Rt + B^Mt+1B_t)'
1 B^M^Aj.. This completes the induction

and proves the theorem, because inspection of equations (4. 2. 51) ,(4.2. 43)

and (4.2.50) shows that the optimization of v_.., is independent of u. and

is influenced only by a-priori knowledge, while the gain matrix used to

obtain uf from x+U *s identical to that which appears in the deterministic

case.

Q..E.D.

The equations representing the "answers" in Theorem 4.2.1 are

hidden in among others used in the derivation. To facilitate later discus-

sion, the actual solution of the measurement/control optimization prob-

lem will be summarized as a second theorem:

Theorem 4.2 .2: For the measurement/control optimization problem

given by equations (4. 1. 1) through (4. 1. 3), the optimal controls may be

obtained as follows:

First: Determine off-line the sequences of matrices {M } and {K } accord-

ing to

Mt = Qt + AJ [Mt+1-Mt+1Bt (Rt + BJ Mt+1Bt)-^t M^] A,; MT= QT

(4 .2 .52)
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(4.2.53)

Second: Determine the optimal measurement control sequence {y_* } by

solving off-line the following optimal control problem: minimize J

given by

T-l T

< J =tr Ni 2fi 4" / IvI (2 4 B K 2 | - A . ! j 4 - / . ? ( v ) (4.2.54)
v ~0~~'-' * i —t~H ~t —t—H;—tit—if •••* t —t

t=o t=o
subject to

^ZQ (4.2.55)

v;t)] S1 (4 .2 .56)

D^v^r1 ( 4 .2 .57 )

The first and second steps are completed a-priori.

Third: While the system evolves, compute on-line the optimal control se-

quence {11.} by feedback according to

( 4 . 2 . 5 8 )

XQ (4.2.59)

) (4.2.60)

Proof: The propagation equations for M. and K are taken from

(4.2.11), (4.2.47) and (4.2.51). These are independent of {v } and

(u }. Consideration of (4.2.43) shows that these define the optimization

of {v,} independently of that of {u.}» and reference to any standard work,

for example, Bryson and Ho (B.4), shows that (4.2.54) summarizes the
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cost resulting from the choice of {v,}. Equations ( 4 . 2 . 5 5 ) - ( 4 . 2 . 5 7 )

and (4 .2 .59) - (4 .2 .60) are the Kalman Filter equations, the use of which

was justified in the proof of Theorem 4.2. 1.

Q.E.D.

Several of the special cases of measurement equation (4. 1.3) which

were introduced in Section 3.2 will now be considered as corollaries.

Corollary 4.2.3. (Signal-to-Noise Ratio Control). For the measure-

ment/dynamic control problem specified by equations (4. 1. 1) -(4. 1. 3),

if the measurement equation takes the form

I t=v tC tx t + 0 t ( 4 . 2 . 6 1 )

Then the deterministic control problem that one must solve to determine

the optimal measurement control takes the following form:

State Equations :

st+1|t = Atj? + ! ^ - = ^ ( 4 '2 '62)

- t+ilt +1 =

(4 .2 .63)

1 (4 '2 '64)

Cost Equation;

Jv= tr
T-l , T

MO £ O + 2, ¥t+1(St + B^Z^AJ) U 2,
1 t=o ) t=o

(4 .2 .65)

where Mt and Kt satisfy (4 .2 .52) and (4 .2 .53) .
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Corollary 4.2.4. (Measure-No Measure Control). For the measure-

ment/dynamic control problem specified by equations (4. 1.1)- (4. 1.3),

if the measurement equation takes the form

; vte{(U> (4.2.66)

Then the deterministic control problem that one must solve to determine

the optimal measurement control takes the following form:

State Equations:

S (4 .2 .67)

(4.2.68)

st+1 = 2t+1t

(4 .2 .69)

Cost Equation;

Same as (4 .2 .65)

Corollary 4.2.5. (Sensor Selection). For the measurement/dynamic

control problem specified by equations (4. 1 . 1 ) - (4. 1. 3), if the mea-

surement equation takes the form(where each v. is either 0 or 1)!

lVi'4^i^' < 4-2 '7 0 1
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Then the deterministic control problem that one must solve to determine

the optimal measurement control takes the following form:

State Equations ;

k

Let £ A V v. .C. . ( 4 . 2 . 7 1 )— t = Z-» i, t —i, t v '
i=l

Then

5t+l|t = AtSt|t A; +^12^ = 2Q ( 4 . 2 . 7 2 )

(4 .2 .73)

(4.2.74)

Cost Equation :

Same as (4 .2 .65)

Proofs of Corollaries; All are special cases of Theorem 4 . 2 . 2 and are

proved by specializing the appropriate equations in that Theorem.



-108-

4.3 Results Using the Transformation Approach

In the previous section, a double separation property was shown to

hold in the solution of a measurement/control optimization problem for a

linear systems influenced by Gaussian noise and penalized by a cost crite-

rion which is quadratic in the plant state and the dynamic control. The

technique of stochastic dynamic programming was used in the proof. In

this section, the same result will be proved using the discrete-time

Minimum Principle (K.5) in a manner justified by the result of Chapter III

of this thesis. Thus, this section will serve as a detailed example of the

application of the results of Chapter III.

The analysis of this section will proceed as follows:

1. The given system consisting of linear dynamics (equations (4. 1.1),

(4. 1.2)) and quadratic cost (equation (4. 1.3)) will be replaced

by the Kalman filter equations and transformed cost equation,

as described in Chapter III.

2. The innovation process driving the Kalman filter will be as-

sumed deterministic: fixed but arbitrary.

3. The discrete Minimum Principle will be applied to the re-

^ suiting deterministic optimal control problem and the re-

sults will be manipulated to give a feedback solution for the

dynamic control: u* = u* (xt|t> _|t , _|t+1tt . . -

4. The expected value of u, will then be taken over the sequence

ft \ T'1ljj>, / , _, and it will be shown that the same solution is ob-

tained in this manner as was obtained by dynamic programming.
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5. Finally, the complete, two-way separation property will be

shown to hold.

The reader is assumed to be familiar with the Minimum Principle

and its application. Since this section amounts to a re-proof of

Theorem 4.2.2, no formal theorem statement will be given here.

4. 3. 1 Transformation of the System Equations

Let the linear system with Gaussian noise (equations (4. 1. 1),(4. 1.2))

be replaced by the Kalman Filter equations

it (4.3.1)

as described in subsection 3.3. 1. Note that the initial condition for

equation (4.3. 1) is 2£/-Jn> the initial estimate of the plant state given the

measurement at time zero. This is related to the a-priori estimate of

the initial state, denoted 3£n» by the usual Kalman filter equation (see

A A
(1 .4 .11)) where KO is interpreted as x / J , -

( 4 - 3 - 2 )

where S~ is the Kalman gain at time zero (see equation 4 . 3 . 7 ) below).

For uniformity of notation it will be convenient to define the term
A A

—n^D ~—n ^—n^—r>) ^° ̂ e ' 1' so *na*- equation ( 4 . 3 . 2 ) may be written

A
(4.3.3)

Associated with the plant state estimate equation (4.3. 1) is the con-

ditional covariance equation (see (1.4.14) - (1.4.16))
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-3. 4)*

Similarly to the case of equation (4 .3 .2 ) , the initial condition for (4.3.4)

is 2n |Q> the conditional covariance given the measurement at t=0. This

is related to the a-priori covariance Zn by

020 (4.3.5)

Note now that the measurement control sequence {v, } has an in-
•™"t

fluence on the statistics of the innovations process {£ , } . From equa-

tion (3.3.5),

A

! (4.3.6)

*>vhere ^ 1 is the Kalman gain given by

s) C ' + D 0 D (4.3.7)

^As in the previous section, the dependence of C, . and D . on v, .

have been supressed in the notation to simplify.

** The correct expression for ^ o is
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It has already been observed in Chapter III that the innovations process

*• _K *s zero rnean and white, with covariance matrix given by

cov(|t,|t) = E{|t I',}

(4. 3.8)

To simplify notation in this section, the t|t subscript denoting a

quantity at time t conditioned on data up to time t will be supressed

during the analysis and only the subscript t will be used. This should

generally cause no confusion, because no "offset" conditioning of the .

type t|t-l will be needed. One point, however, may not be clear in the

simplified notation: which initial mean and which initial covariance are

being indicated by a given symbol .

Since xn and jCn have already been used to denote the a-priori

mean and covariance, respectively, it would be confusing to abbreviate

the notation for Xnlr) and linlo 8^ven ^n equations (4 .3 .2) and (4.3.5).

Accordingly the 0|0 subscript will be retained for the initial values.

The system equations thus become:

A • * • " " • - £ . ; initial value = xn|n (4 .3 .9 )

-t-^t -t + St

(A-t^t-t +?ft); initial value = S0|0 (4 .3 .10)

To apply the discrete Minimum Principle below, it is necessary to

have the state equations in the form _z.. ,-z. t
 = L&t'—J where _z is the
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state. To obtain this form, x, and 2, will be subtracted from both
•— • t t

sides of (4 .3 .9 ) and (4.3. 10) respectively to give the final equations

(4.3.11)

^t = -t ^t -t " ̂

(4.3.12)

which are of the form

(4.3.13)

(4.3.14)

Let equations (4.3.11) - (4.3.14) define the f_ and F functions.

A
• To convert the original cost function to the x - 2. formulation, note— t — t

A
that if x is a random vector with mean x and covariance 2, then

= x'Qx + trrbzl (4.3.15)

where tr denotes matrix trace. Thus, according to the methods of

Chapter III, the cost to be associated with system (4. 3 .9)- (4. 3. 14),

*
which is obtained by transforming (4. 1.3) is

A.

T QT2£T + tr

T-l
^% ^^ i Vij, 5C, i UXi y/. s i. \ "t" VI . -tv, li .^ T 3L , IV. I » I i • O • ADI

t = 0

r 1rThe factor of — is for algebraic convenience and does not change the

problem in any way.
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A
Remark: For the moment, let the cost J be expressed as follows

A N A
J = J + J (4.3. 17)u v * '

where

T-l

t=0

T-l

^ + 2 tr[^t-?t\+ 'tW J
Jv =

One might suppose at this point that the separation of the {u,} problem
A

from the { .̂} problem has been established, since for fixed {£ },

(4.3.11) and (4.3.18) are independent of {v.} and are controlled only

by {u.,}, while (4.3.12) and (4. 3. 19) are independent of (_u } and are

controlled only by {v,} . The situation is not that simple, however.

Recall Remark 3 associated with Theorem 3.3.2. There were no

measurement control considerations in that theorem. The covariance

equation (4.3. 12) was not even considered in the proof, since it was not

needed. The remark pointed out that the measurement control aspects of

a problem would enter into the solution when two expected values were

taken after the deterministic feedback control law was found: the ex-
A

pected value of the deterministic feedback control law over its ^ argu-

ments and the expected value of the cost resulting from the use of that

average control. Since each of these two expected values is taken over
A

the sequence of £, drives in equation (4.3. 11), and since the covariance
A.

of £, is controlled by v . , , (see equation (4 .3 .8) ) , the true and complete
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nature of the influence which v. ., has on the overall cost will not be ex-

posed until those two expected values are taken. It will be seen that the
A

expected value of J given in (4. 3. 18) evaluated when the expected

value of the deterministic feedback control law is applied contains terms
A

involving js . Thus J given in (4.3. 19) is not the entire cost due to

{v_+} and the complete two-way separation has not yet been established.

4. 3.2 Application of the Minimum Principle

The analysis of system (4. 3.11) - (4. 3. 14) with cost (4. 3. 16) will

now proceed using Theorem 3.3.2. Accordingly, suppose that the inno-
A

vations process {JL.} is fixed and known. The Minimum Principle will
t ' ' '

be applied to the deterministic optimization problem defined by equations

(4.3.11), (4.3.12), and (4.3.16). Let {p.} be a sequence of n-vectors,

to be called the mean costates. Let {P_o.} be a sequence of nxn ma-

trices, to be called the covariance costates.

Define the Hamiltonian Function as follows:

i Q t * 1
 + Hj StHt + tr Qt St

+ tr P^F t(S t, vt+1) (4 .3 .20)

where Jt and F_t are defined by (4. 3. 1 1) - (4. 3. 14). Then according

to the discrete Minimum Principle if fu*} is the sequence of dynamic

controls and (v } is the sequence of measurement controls which

together minimize (4.3.16) subject to (4.3.11) and (4. 3. 12), and if

(HI-}' { .̂4.} > anc* (Sf- ) are the resulting optimal trajectories of
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the states and costates, then the following conditions hold:

I. Canonical Equations:

A* A* 9H A* * *

4+1-2* = *H- = F^z*. v*+1) (4 .3 .22)
-t+1

(4.3.23,

P* - P*= - 9H

-t _

II. Mininnization of Hamiltonian

H^f. S*,4+1,Pt+1, uj. v*+1)< H^.Z

(4.3.25)

III. Transversality Condition

£*=QTx*T ( 4 . 3 .26 )

P* = QT ( 4 . 3 .27 )

These conditions will now be considered more carefully.

A & 3fc
The canonical equations for x and p take the following form

when the indicated derivatives in (4.3.21) and (4. 3. 23) are taken:

(4 .3 .29 )
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$ $
The detailed equations for 2 and P will not be needed, but note that

the _Z* equation is precisely (4 .3 .12) with asterisks added, and it

involves only S, and v . . Similarly the P equation involves only
— t — tTl —

4- and 4+r
Since H is a differentiable function of _u and v ,, the minimi-

L

zation condition means that

— = 0; 9H = 0 (4.3.30)
8^t ~ 9^t+l ~

along optimal trajectories. Evaluating the u-derivative gives

(4.3.31)

* -1 TJ *u t =-R t B^ £t + i (4 .3 .32)

Note that the matrix of second partials of H with respect to u is

R , a positive definite matrix, indicating a minimum. Evaluating the

v , derivative gives
—tTl

Expression involving only 2 , v ,, P, , , = 0 (4.3.33)
—t — tT 1 —1+1 —

Since the f_ (v.) functions are not specifically given, equation (4.3.33)

cannot be given in detail. It s form, however, is the important part of

the analysis.

Notice that the two-point boundary value problem that results from

the application of the Minimum Principle separates into two subproblems

one involving x. , p. and u. and the other involving 2., P, , and
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This is because equations (4.3.28), (4 .3 .29 ) and (4. 3. 32) relate only

x5^ » P^ and ut while the canonical equations and minimization for S,
— t •*-1 — t i

P* and v* , equations (4 .3 .22) , (4 .3 .24) , and (4.3.33), are in-

dependent of those quantities. As was remarked in the previous sub-

section, however, this separation of two-point boundary value prob-

lems is not sufficient to prove the complete two-way separation

theorem of Section 4.2.
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4 .3 .3 Derivation of Optimal Deterministic Dynamic Control Law

The next step in the analysis is to manipulate the conditions given

by the Minimum Principle to obtain a feedback control law which expresses

* A * , £ £
the present optimal dynamic control u in terms of x and {£,, | , , . . . ,

— t — t — t — 1+1
A
j|_ ,}. To accomplish this, first substitute (4 .3 .32) back into (4.3.28)

and (4.3.29) to give the following two-point boundary value problem for

the mean and mean costate:

A * A * A * - 1 * ^
5t+1 - k = (At - Dxt - BtRt

 lB[Ei+l +it (4. 3. 34)

-£t*= -Qt^-tet-W&i ( 4 ' 3- 3 5 )

XQ given ; £* ^ QTX* (4 .3 .36)

s'c

This system, together w^ith (4 .3 .32) , specifies the optimal sequence {u } .

The solution for the optimal dynamic control given in equations

(4. 3. 32) and (4. 3. 34) - (4.3. 36) will now be converted to feedback form

using -well established techniques. See, for example, Kleinman and

Athans (K. 5). One assumes that _p7 is related to x? by an affine trans-

formation:

£* = Mtx* +ht (4 .3 .37)

A
The term h is needed because of the drive 6^ in (4.3.34). Using (4.3.34)

(4.3 .37) and considerable algebra, one can derive equations for M and

h in a straightforward manner. The details are given in Appendix A,

and the results are:

(4.3.38)
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' (4 .3 .39)

t (4 .3 .40)

hT = 0 (4 .3 .41)

Note at once that the matrix equations (4.3.38) and (4.3.39) are identical

to (4.2. 52); therefore, the M matrices are identical. If one now plugs

the results of (4. 3. 34) - (4. 3 . 41) into the expression for the optimal con-

trol (4. 3. 32), and if some algebra is done (see Appendix A), the result is

t + 1 t t ) + ht+1] (4.3.42)

4 .3 .4 Calculation of Expectation of Deterministic Optimal Dynamic
Dynamic Control

The first expected value mentioned in the Remark in Subsection

4.3.1 will now be taken. Let the innovations, sequence {.§.} again be

considered random. Using the expression (4.3.42) for the optimal feed-

back dynamic control as a function of the present state and future in-

novations, take its expected value to give

(4. 3. 43)

^ -K t£* (4 .3 .44)

This result is correct because the only terms in (4 .3 .42 ) which depend on
A A, A

(^ } are £ itself and h , . Since _§_ is zero mean and enters into (4 .3 .42)
H L t ~i A L

A

linearly, and since h. enters linearly and is linearly related to {^,
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A A
i j . - - - ' , i T ,} (see equations (4. 3.40) and (4. 3.41)) , both of these

quantities simply vanish when the expected value of (4. 3 .42) is taken.

Note that (4. 3. 43) and (4. 3. 44) are identical to (4. 2. 58) and

(4 .2 .53) . This means that the optimal feedback dynamic control obtained

by assuming the noises fixed and then taking the average at the end is

identical to that obtained by finding the optimal by stochastic dynamic

programming. This property, as discussed in Remark 5 to Theorem

3.3 .2 , does not hold in general.

4. 3. 5 Evaluation of Average Cost-to-Go Using Average of
Deterministic Optimal Dynamic Control

The second expected value mentioned in the Remark of Subsection

4 .3 .1 must now be calculated. One again assumes that the innovations
A A

{§_ } are fixed and calculates the dynamic oost-to-go (i.e. , J of equation

(4.3. 18) is evaluated) assuming that control law (4 .3 .43) is applied. One

then considers the innovations random again and averages over them.

A
Let the value of J which is realized when the control (4 .3 .43) isu v '

A A A A

applied and {J_ } is fixed be denoted IQ(x i |_ .., ^ ):

A A A i A .
T (•* , £ £ 1 = — £' n d
Ov-0 | 0' -0' ' ' ' ' -T-1' 2 -T—T-T

T-l

t=0

w^here

; x , fixed (4.3 .46)

K t = - ( R ^ B B ' M (4 .3 .47)
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and where {M,} satisfies (4. 3 .38)- (4. 3. 39). The evaluation of !„ will~ t U

be summarized as a lemma:

Lemma 4.3 .1 The value of In given by (4.3.45) is

where xnuis the initial state and where

(4. 3. 49)

(4.3. 50)

(4 .3 .51)

= 0 (4 .3 .52)

T-l

co =

t= 0

Proof: Given in Appendix B.

A
It will now be convenient to substitute the value of x« I n in terms of

the a-priori estimate x-., as given in equation (4. 3. 3), into the expression

for I- given in Lemma 4.3.1. The result is

( x 4 ) + ( + i ) I ^ + c } ( 4- 3- 5 4 )

Having expressed the cost-to -go using the average control law
A

(4 .3 .43) and assuming the innovations (JL) fixed, the only remaining step

is to once more view the innovations sequence as random and take the

A
expected value of 1^ over the _| vectors. Carrying this out gives
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(4 .3 .55)

A
•where the expected value of the cross term in x_ and _£ is zero by the

A A

zero mean of £ ,, the cross term in x_ and mn is zero because mn is
1 —U U U

A
zero on the average because of the zero average of {_§.} (see (4. 5. 51) and

A
(4. 5. 52)), and the cross term in j; . and rn. is zero because they are in-

dependent and zero mean (again see (4. 5. 51)). Continuing from (4. 3. 56),

note that
T

A A. ^ A A. A

t=o

T

= "2 t rlM t '
cov(i t_i'i t i I ^ Q ) ] (4.3.58)

t= 0

A

where the n ^ i i terms again are zero since jn,., is independent of _£_ .
A A

Now substituting the value of cov(£ , ^ ) from equation (4. 3. 8) and

using the fact that the whiteness of the noise makes the conditioning on

xn superfluous, one obtains
U T-l

A. A 1 A A 1

t= -1

Dt+1®t+1D;+1]S1+1} (4 .3 .59)

Note the lower limit of the summation is minus one.
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The form of this expression is important. Notice that there is one

term (the f irst) which depends on the initial state and is independent of

the sequence {y } and one term (the summation) which is independent of

the plant state and dynamic control, but which is influenced by the mea-

surement control sequence {v }. In other words, in the expected value
L

of the dynamic cost resulting from using the average of the optimal

deterministic control law (equation (4 .3 .43)) there are terms which are

influenced by the measurement control. Thus equation (4. 3. 19) does

not represent the entire contribution of the measurement control to the

overall cost; one must consider the sum of equation (4. 3.19) and the

summation term in (4.3. 59).

»

4 .3 .6 Consideration of Measurement Control Optimization

What has been done up to now in this section? In subsection 4.3. 1,

the stochastic linear system with quadratic cost was transformed to the

Kalman filter system. In subsection 4.3.2, the innovations were con-

sidered fixed and the Minimum Principle was applied. In doing this, the

measurement optimization aspects of the problem were supressed. In

subsections 4 .3 .3 and 4.3.4, the optimal deterministic feedback dynamic
^

control law was derived and its expected value was taken after re-

introducing the random character of the innovations. This did not re-

introduce the influence of the measurement control. The measurement

control was finally re-introduced in subsection 4. 3. 5, in which the average

dynamic cost-to-go using the expectation of the deterministic optimal

dynamic control law was evaluated. The collection of terms in the total

stochastic cost-to-go which are influenced by the measurement control
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A
were shown to be the sum of J given in (4. 3. 19) and certain terms in

(4.3 .18) when the expected value is taken.. Let this total cost influenced
A

by the measurement control sequence {v,} be denoted by J . , ,:
' M —t ' v, total

T-l

= A Z tr<Mt+1St+1[Ct+1(A^+Ht)C;+1

t= -1

(4.3.60)

Consideration of equation (4. 3. 60) and the analysis of the previous

five subsections finally shows that the complete two-way separation property

holds:

1. the calculation of the optimal dynamic control law

(equation (4.3.43)) is independent of the measure-*

ment control, and

2. the covariance equations, and the minimization of

J , , , in (4.3.60), subiect to the covariance
v,total J

equation (4. 3. 10), is independent of the evolution

of the conditional mean x and can be done a-priori.

There remains only one task to complete in order to demonstrate

the consistency of the analysis in this section using the results of

Chapter III and the analysis of the previous section using the results of

Chapter II: One must show that the subproblem which must be solved to

determine the optimal measurement control sequence is the same re-

gardless of the analysis -which led to that subproblem. More specifically,

one must show that subject to the equations given here (re-introducing

the tit notation)
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l

(4 .3 .61 )

(4 .3 .62)

( 4 - 3 . 6 3 )

K t = -(*t + B ; M B ) - B M A (4. 3. 64)

= Q t + A;Mt+1At - A;M B; M = Q (4.3. 65)

The following tv/o quantities are equal: the cost influenced by {v } as

derived by dynamic programming and the cost influenced by {v; } as de-
°C

rived by deterministic methods. These quantities are

T-l T

Jv = triM^ + M t+1(H t + B tK t+12 t | tA;)} + ̂  ^ (4 .3 .66)

t= 0 t= 0

and

T T-l T-l

Jv, total = 2 ' tfet> + tr^T^T|T + "2 ^t|t + Zl + Mt+lSt+l
= 0 t= 0 t= -

(4 .3 .67)

where the quantity obtained by dynamic programming, J , is taken from

Theorem 4 .2 .2 , equation (4. 2. 54) and the quantity obtained by deter-
A

ministic methods, J ., is taken from equation (4 .3 .60) .

1 ^
The factor of -~- has been deleted from J ,. This changes

2 v,total 6

nothing.



-126-

A
It is not obvious that J and J , are equal, but a certain

amount of algebra shows that indeed they are. The details are given

in Appendix C.

This completes the analysis of the linear-Gaussian-quadratic

problem with measurement control capability using the Minimum Prin-

ciple. The results have been shown to be identical to those obtained

by dynamic programming.

4.4 Results Using the Open Loop Feedback Optimal Strategy

In the two previous sections, the linear-Gaussian-quadratic prob-

lem with measurement control capability was analyzed and the optimal

cost realized using a true stochastic optimal control was derived. In

this section, the open loop feedback optimal (O. L. F. O. ) control strategy

introduced in subsection 2 .4 . 3 will be applied to the same problem.

This will serve the purpose of clearly illustrating exactly what one gains,

in terms of a smaller cost, as a result of taking measurements.

As was pointed out in subsection 2. 4. 3, theO.L. F.O. approach is

not new. This section is included, however, to provide a useful com-

parison to the results of the previous two.

Theorem 4.4. 1 : If the linear-Gaussian-quadratic system (4. 1 . 1 ) - (4. 1 . 3)

is analyzed using the O.L.F.O. control strategy of subsection 2 .4 .3 , the

following properties hold:

(1) If j is a time point in the time index set

3= (0, 1, . . . , T}, and if the O.L.F.O.

strategy is applied from time j to the

terminal time T using the assumption
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that no further measurements will be added to

the current measurement set Y., then for all

t > j, the O. L. F. O. dynamic control, denoted

by ut> is given by u^ = -K^ i . (4.4.1)

where K is a gain matrix identical to that which
t

appears in the true stochastic solution and where
A
xi. is the conditional mean of x, given Y. , U . _ , , and V. .

^(2) The expected cost-to-go » . from step j to Step T

using the O. L. F. O. control (4. 4.1) is given by

v/\

Q,. = x. i.M.x. i. + tr{M.S. i.
03 J l j—J-JU —J-J IJ

T-l

Mt+1[Et + B tK tZ t | .A;]} (4 .4 .2)

t = j

whe re:

A

- J l J
x. i . = estimate of x. given the data Y . , U . - ,V j(4.4.3)

~J D D-1 D

S ^ . i . = covariance of x- given the data Y . , U . .,
JIJ J D D--L(4.4.4)

(4 .4 .5)

and where {^M,} satisfies

(4 .4 .6)

MT = QT (4 .4.7)

Remark 1: As a result of property (1) above and the analysis of the

previous two sections, one can say that for a linear-Gaussian-quadratic

problem, the optimal dynamic control at time t is always given by the
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gain matrix K times the best estimate of the plant state x at time t,
—t —t

whether or not measurements have been made up to time t.

Remark 2: Comparison of equations (4 .4 .2) - (4.4. 5) with the results

of Theorem 4. 2. 2 shows that the form of the terms in the cost-to-go

which involve the covariance matrix (assuming the use of the optimal

dynamic control) is the same whether measurements are made or not.

The difference is entirely in the propagation equation for the covariance

(compare (4. 4. 5) and (4. 2. 55), (4. 2. 56)). Since the covariance equation

is nonlinear if measurements are made, one cannot conveniently derive

an expression in closed form for the benefit derived from measuring.

Proof of Theorem 4.4. 1; Let j be a fixed integer in the time index set.

Suppose the measurement set Y. is available along with all the control
J

values that have been applied up to time j so that x. is a Gaussian random

A . Vl
vector. Let x. i . represent the conditional mean of x. given Y. and S. i .

' - J IJ -J J -J |J

the conditional covariance. Assume that no measurements will be made

beyond time j. Then the cost-to-go from time j to the terminal time T,

on the average, is given by*

^ ' T-l

^ = E{x^.QTxT + 2 x t̂*t + u^l Y.} . (4 .4 .7)

t=j

A *^
Let x. i . represent the conditional mean of x. given Y. and S, i . represent
. -t I J ^ -t & J -t | j p

the conditional covariance. Then using (4. 3. 15) and considering u to be

There are no &. (v_) terms in the cost because there are no measure-
ments.
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deterministic for all t greater than or equal to j in equation (4 .4 .7 )

allows one to evaluate U.:
03

T-J

.} (4 .4 .8)

The conditional mean x.i • propagates according to
J t)

= A x - + B u (4 .4 .9 )

and the conditional covariance U i . according to
I J

2 , 1 . = A S - - A ' + H - (4 .4 .10)— 1+1 I j — fc — 1 1 J — t =t x

Equations (4 .4 .9 ) and (4.4,10) may be viewed as the Kalman Filter

equations in the case that _C = J) (no measurements).

At this point, it is clear that in order to pick the O. L.F.O. dynamic

control, it is only necessary to minimize those terms in (4.4.8) which

u influences, namely

terms T T

u must be deterministic because Y. has been observed and is no
longer random, and no other measurements will be made, by as-
sumption.
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This is to be minimized subject to (4 .4 .9) . The combination of (4 .4 .9 )

and (4.4. 11) is nothing more or less than the usual linear-quadratic

optimal regulator, the solution of which is widely known (see Bryson

and Ho (B. 4)) . TheO.L .F .O. control is given by

"t = -Kt^t l j (4 .4.12)

where

Kt = £t - B^B-B^ At (4.4.1 3)

(4. 4. 14)

MT = QT (4.4.15)

^In addition, the value of *•. , which is achieved as a result of controla j, u te rms

(4.4. 12) is
ICV

= x l i . M . x . i . (4 .4 .16)
- J I J — J - J l J

IS\

Thus the O.L.F.O. value of J,. given in (4 .4 .8) is

T-l

Using (4.4. 14) to express Q in terms of M and Mt+i • anc^ using (4. 4.15)

results in

^ T-l

i.. + Y[M - A'M _A
lj Z-il— t — t— 1+1— t

t = j

(4.4.18)
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Using (4.4.10) this can be expressed

T-l

t=

T-l T-l

tZ t ! j + A'M t+1B tK tS t | .} (4.4. 19)

t = j t = j

which simplifies to
T-l

V* _

(L. = x l i .M.x . .'. + tr{M.S.i. +-"T M . - . t B . K . Z . i . A ! + •=•.)}
0 J ~J I J— J -J I J — J— J I J ^-> — 1+1 — t— t— 1 1 j— t =t';

t = J
(4 .4 .20)

This is exactly the expression that was hypothesized in equation ( 4 . 4 . 2 )

Q .E .D .

As mentioned above in Remark Z, the nonlinearity of the covariance

equation when measurements are taken prevents one from deriving a closed
' WA

form expression for the difference between U- , the O.L.F.O. cost-to-go

from time zero, and the true stochastic optimal. Note, however, that if

the measurement control v operates in such a that no measurements are

made if v = Q, then the true stochastic optimal solution of the previous

two sections includes O.L.F.O. as a special case: in carrying out the

a~priori determination of {v } as described in the second part of

Theorem 4 .2 .2 , one may find that open loop operation is optimal over

some interval. In fact, the proof of Theorem 4.4. 1 above is in a sense

redudant since the expression for J given in Theorem 4 . 2 . 2 , which
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»̂̂

turns out to be tf-Q . in Theorem 4.4.1, is correct for

any measurement policy, including no measurements.

4.5 Summary

The results of Chapters II and III have been applied to

linear-Gaussian-quadratic stochastic optimal control problems

in this chapter. In particular, the optimal controls were

found using dynamic programming (the Chapter II method) in

Section 4.2 and using the Minimum Principle (the Chapter III

method) in Section 4.3. These analyses demonstrated that:

(1) The optimal measurement control

sequence can be computed off-line

and is simply applied open-loop to

the system as time evolves.

(2) The optimal dynamic control sequence

is computed on-line by multiplying

the plant state estimate by a pre-

computed gain matrix.

These structual properties of the optimal control laws were

illustrated in Figure 4.2. In showing this structure to be

optimal, the so-called a-priori-v technique for determining

the measurement control sequence (introduced in Section 1.4)

was shown to be optimal. This was shown both by dynamic

programming and by use of the Minimum Principle.

Finally, the open loop feedback optimal control tech-

nique was applied to linear-Gaussian-quadratic systems, and it
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was shown that the O.L.F.O. dynamic control at each time t

could be computed by multiplying the same gain matrix

described in (2) above by the estimate of the plant state at

time t given whatever measurements have been made.



CHAPTER V

STRUCTURE OF DYNAMIC AND MEASUREMENT CONTROL
SYSTEMS FOR LINEAR-GAUSSIAN PROBLEMS

WITH GENERAL COSTS

5_._1 General Perspective

Having considered linear-Gaus sian-quadratic problems in the

previous chapter, the natural extension is to next consider problems in

which the linearity of the system and Gaussian statistics of the noise are

maintained, but in which the cost functional is non-quadratic. By keep-

ing the linear system and Gaussian noise assumptions, one preserves

the ability to generate state estimates by use of the Kalman filter. In

other words, the estimation problem is still relatively simple. The

control part of the problem becomes more difficult, however.

In the previous chapter, it was shown that for a linear-Gaus sian-

quadratic problem, two separation properties hold: The optimal measure-

ment control sequence {yT} may be determined off-line by solving a

certain deterministic control problem, and the optimal dynamic control

sequence (uf } may be determined on-line by multiplying the best esti-

mate of the state by a pre-computable gain matrix obtained by solving a

second deterministic problem. One might conjecture that the same struc-

ture describes the solution to a linear-Gaussian-non-quadratic problem:

a reasonable argument would be that the nature of the cost functional does

not influence the optimal estimation of the state so the measurement pro-

gram should be insensitive to the form of the cost on state and dynamic

control. It will be demonstrated by counterexample that the analysis

-134-
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above is false, and a more complete discussion will then be given. The

analysis will show that it is difficult to specify conditions which guarantee

the double separation property in a useful form, i. e. , in terms of the

nature of the given cost functional. Sufficient conditions for double sep-

aration will be discussed, but the conditions given turn out not to be

especially useful in applications to practical problems.

With regard to "ordinary" stochastic control problems, that is,

those with no measurement control capability, the standard result is that

a one-way separation theorem does hold: the optimal control is obtained

by first estimating the state using a Kalman filter and then plugging the

estimate into the feedback solution of a deterministic problem related to

the given stochastic one. See Wonham ( W . 2 ) , where this property is

discussed with regard to continuous-time systems. The separation is

one-way because the filter equations influence the nature of the control

law. Thus the related problem that one must solve to determine the

dynamic control is not the one obtained by simply discarding the noises

in the original problem. The nature of the related problem that one

must solve in this context will be clarified below as a byproduct of the

discussion of the optimal measurement problem.

It should be stressed that for linear-Gaussian-non-quadratic

optimal control problems, either with or without measurement control

capability, the following structural property holds : the stochastic param-

eters (e.g. , the covariances of the noises) influence the control laws,

both dynamic and measurement, if any, while the control problem param-

eters (i .e. , the functions appearing in the non-quadratic cost functional)
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do not affect the structure or parameters of the plant state estimator.

4. 2 Two Numerical Examples

Consider the following linear system, in which all quantities

are scalars.

XQ = N(£0,Z0) (5 .2 .1)

x'j = XQ + UQ + §Q ; SQ = N ( 0 , l ) ( 5 . 2 . 2 )

yl = v lx l + 61 ' 6l = N f 0 ' 1 ) (5 .2 .3 )

1) ( 5 . 2 . 4 )

l) (5 .2 .5 )

where z = N(a ,b) means z is a Gaussian (normal) random variable

with mean a and covariance b . Note that no measurement is made at

time zero. This is merely for convenience in one of the examples to be

considered below: it allows complete solution in that example, which

would be impossible if one had to determine an optimal measurement at

t = 0.

Two cost functionals will be considered in connection with the

system (5. 2 . 1 ) - (5. 2. 5): a linear cost and an exponential cost. The

optimal controls will be determined by stochastic dynamic programming,

and it will be seen that the complete two-way separation property with

measurement/dynamic control separation'1" that was found to hold for

Recall Fig. 4. 2 of Section 4. 1 and the related discussion.
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linear-Gaussian -quadratic problems might or might not hold for other

problems. In particular, it will be shown that for the linear cost prob-

lem, both the optimal dynamic controls and the optimal measurement

controls may be determined a-priori, independent of the state estimate

generated on line and independent of each other. In contrast to this, for

the exponential cost problem, both the optimal dynamic controls and the

optimal measurement controls depend ori the on-line state estimate and

its covariance. Thus for the exponential cost, the optimal measurement

program cannot be determined a-priori, nor are the measurement and

dynamic controls independent of each other. As in Chapter IV, let

Yt denote the entire data set Y VjU i lJV.^.

5. 2. 1 Linear Cost

Suppose the cost associated with the system ( 5 . 2 . 1 ) - ( 5 . 2 . 5 ) i s

linear in the state:

2 2 2 2
J = x_ + x . + x? + u~ + u , + v , + V-, ( 5 . 2 . 6 )

The optimal controls {u^.u?} and {v*,v.?} will be found by dynamic

programming applied as described in Chapter II.

Step 2: The terminal cost-to-go is

= E { x | Y } ( 5 . 2 . 7 )

= -2/2
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Since there is nothing left to optimize, this is

Step 1: The cost-to-go is

(5 .2 .9 )

(5 .2 .10)

The Kalman filter equations are

x2/2 = X2/l + S2((?2 + V 2 ( X 2- X 2/1 ) ) (5 .2 .11)

X2/l = Xl/l + Ul ^' 2* 12^

S = - Z Z/1 ( 5 . 2 . 1 3 )

Substitution into (5.2. 10) and taking the expected value yields

2 2 0 (5 .2 .15 )

since E^ lYj} = 0 a n d E{XZ - x 2 / j | Y j } = 0 .

Minimizing (5.2. 15) with respect to v? and u1 by taking derivatives

-.
= 0 = 2u, + 1 ; uT = -I (6 .2 . 16)

1 1 f.

- = 0 = 2v2 ; v* = 0 (5 .2 .17 )
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Note that the values of both u^ and v^f are independent of x. /, and

~L i . Substituting these back into *i gives x (Y ):

t S j f Y j ) = Zx1 / l - | (5 .2 .18)

Step 0; The cost-to-go is

8-0 = E<X0 + U02 + V12 + ^1^)1 V (5.2 .19)

YQ} ( 5 . 2 . 2 0 )

The Kalman filter equations are

( 5 . 2 . 2 1 )

S = - -,1/0 ( 5 . 2 . 2 2 )
1+V1S1/0

2i/o = so/o + l

Substituting into equation (5.2.20) and taking expected values:

2 2 2 u o - ( 5 '2 '2 4 )

Minimizing yields

v* = 0 (5 .2 .25)

uj = -1 (5 .2 .26 )

- 5/4 ( 5 - 2 ' 2 7 )
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Since y is constrained to be zero, the measurement set Y- is null

and (5. 2. 27) is the overall a-priori minimum cost-to-go. Of course,

xn/n = xn = a-priori mean. The optimal control sequences are

{u*,u*} = {-1,-y} and (v* v*} = { 0 , 0 } . Nothing depends on the
\J 1 L* L Li

conditional mean or covariance. It therefore makes sense to take no

measurements, as it turned out anyway. Note that optimal measure-

ment sequence can be determined a-priori. It turns out that the optimal

dynamic controls are degenerate functions of the conditional mean and

covariance, viz. , constant functions, but that is within the framework

being considered.

5 .2 .2 Exponential Cost

Suppose now that the system (5. 2 .1) -(5. 2. 5) has associated

with it the cost

x _ x1 _ x_ _ p
J = e U + U g + e H u j + e ^ V j + v ^ ' ( 5 . 2 . 2 8 )

This measurement/control problem will also be analyzed using dynamic

programming as described in Section 2. 3 to demonstrate that the optimal

sequence {v^v-J5} cannot be determined a-priori.

The following theorem is needed:

Theorem 5. 2. 1 If x = N(a,b) , then

a+yb
E{ex} = e * ( 5 . 2 . 2 9 )
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Proof If x = N(a,b), then p(x) = c exp {(-—(x-aj/b} is the probability

density function of x , where c is a constant. Then

CO

E{ex} = f ex p(x)dx

-co

CO

= c

-co

v^\^

/ exp {x} • exp (-y(x-a) /b} dx

CO

= c f exp{-y(-2bx)/b> • exp{-y (x-a)Tb} dx

-GO

CO

= C

-CO

\*J

f exp {--i-[-2bx + (x-a)2]/b} dx

CO

/

I r 2 2-i /
exp{--r:Lx -(2ax+2bx) + a ]/b} dx

-co

Completing the square yields

CO

,2
E{ex} = c f exp{-|[(x-a-b)2-(a+b)

-co

CO

£ (a+b)2 -i a2]/b> -c • J exp{--|[x-a-b] /b}d
2 ' 1 ^ 1x

-co
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Now the constant c times the integral in the previous line is equal to

one, so

E{ex} = exp{[y(a2 + 2ab + b2) -ya2]/b}2

a+ib
= e

Q.E.D.

Now consider the application of the dynamic programming algo-

rithm.

Step 2: Assume all of the following quantities are fixed: u_, u ,

v , v , y., y2- Then the cost-to-go is

} (5.2.30)

(5.2.31)

since x? is a Gaussian random variable with mean x., /? and covariance

S7 /? given the data up to t = 2 . Since there is nothing left to optimize,

h = ^2-

Step 1 : Assume un, v, , y, are fixed. Then the cost-to-go is

( 5 . 2 . 3 2 )

i
x i /1 t ̂  1/1 ~> ~>l/ I i / i . ^, £ _ f t. / t, £, £./ t. i ,, -i / c - > - J 7 ^= e ' •' + u, + v, + E { e ' YI/ ( 5 . 2 . 3 3 )

1 <i
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One must choose u, and v? to minimize this expression.

With regard to the optimal choice of v~ , one can prove the

following general result:

Lemma 5 .2 .1 For an arbitrary measurement control/dynamic control

optimization problem of the type formulated in Section 1.3, if the cost

term

E{ L T _ I ( X T _ I , U T _ I , V T ) | Y T _ I ) ( 5 . 2 . 3 4 )

is minimized with respect to v^ by the choice v = 0, regardless of
JL -L

x_ and UT , then the optimal value of VT is zero regardless of the

function L,_(x ) .

Proof: The optimal cost-to-go from step T is

^T = E{LT(xT) | YT} (5 .2 .35)

The cost-to-go from step T-l is

(5 .2 .36 )

+ E{E{LT(xT)| YT}| YT_ 1} ( 5 . 2 . 3 7 )

or, applying Theorem 2 .3 .2 to the last term in (5. 2. 37)

J'T-l =

E{LT(xT)| YT_ 1} (5 .2 .38)
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The only term in (5 .2 . 38) which depends on y_ is the first, which by

hypothesis is minimized if y_T = 0 . Q. E. D.

Remark: This result makes intuitive sense. Since nothing is "done"

with the last measurement, (i.e. , no u_ is generated using it) one should

not make a last measurement if it "costs something" to do so.

Applying this result now to the exponential cost example means

that v? = 0 , and x? /., and 2->/? may be obtained from x, /. and

S1 /1 by prediction:

A A
= X j V j + Uj ( 5 .2 .39 )

V — 'V* _t_ 1
22/2 - Zl/l + l

Substituting these into (5. 2. 33) gives:

--z x +u +-:
2 lx /1+ u2 + e */* l Z ' * ' * " ( 5 . 2 . 4 1 ) -

To find the optimal u. , one sets the derivative of y with respect to

u, equal to zero giving

A 1 1
X1/1+U1+IS1/1 + 20 •= 2u, + e i/l l *• V1 ^ (5 .2 .42 )

, . ^ ,, u , + x , / 1 + - = - S , / . + • = •
u* = - |e 1 !/! 2 i/1 2 (5 .2 .43)

Equation (5 .2 .43) expresses u* (implicitly) as a function of x , / , and

S, /, . Examination of the second derivative of 0" shows that (5 .2 .43)

does indeed represent a minimizing value of u, . Unfortunately,
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(5. 2.43) cannot be solved in closed form. If it could be, one could sub-

stitute the result into (5 .2 .41) to obtain

A 1
tO 1/1 2- 1/1 , r * ,A .-i2 _ #," „ ,
^ = e + t u l< x l / l ' Z l / l ) ] -^l^l / l '^ l / l*

(5.2 .44)

Step 0 It only remains to determine u_ and v, .

The cost-to-go is

|Y0> (5.2.45)

A 1
X 0 + 2 " S 0 , 2 , 2 ,

+ U + V +

(5 .2 .46)

where the propagation equations are

*1/1 = "0
 + U0 + S l [ y l - V l ( "o + U0)] ( 5 .2 .47 )

( 5-2 '4 8 )

( 5 '2 '4 9 )

= ( 5 > 2 5Q)

It is impossible to evaluate (5. 2.46) in closed form as a function

of u_ and v. since one cannot evaluate the expectation. For this reason,
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a computer program •was written to do a numerical evaluation. The

procedure was as follows:

1) ^1/1 wa!^ (analytically) expressed in terms of S_

using (5 .2 .48) - (5 .2 .50) .

2) A set of possible values for x, /, was generated

by taking equation (5 .2 .47) and allowing the innova-

tion S ^ t y , -v^x. + u-)] to vary plus and minus five

standard deviations from its mean of zero. While

doing this, u_ and v, were held at fixed values.

A
3) For each value of x /. determined in step 2,

equation (5. 2. 43) was solved numerically for
o, A

u, (x, /, , 2, /, ). The technique used to do this was

a logarithmic search: the value of u''~ was bracketed

into successive intervals whose length decreased by

a factor of 1/2 at each iteration until uj'~ was deter-

mined to within an additive error of plus or minus

0.0005.

4) Using the results of steps 2 and 3, ** , given in

(5.2. 44) was determined.

5) Finally, the expected value J_ indicated in (5 .2 .45)

was numerically evaluated by a rectangular integration

against the Gaussian probability density function. The
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variable of integration was the innovation used in

step 2 to generate the set of possible x, /. values.

A listing of the programs used is given in Appendix D. The APL,

language was used.

Sources of error in the integration -were two: the true expecta-

tion is an integral -which has limits of ±co while the numerical integral

was taken between plus and minus 5 standard deviations from the mean,

and the numerical integration was done with a step size of one-tenth

standard deviation using a rectangular integration algorithm. A few ex-

periments with step size and limits, however, indicated that the essen-

tial nature of the results is not affected by numerical inaccuracy.

The results of the numerical evaluation of }(•» are shown in the

figures below. Figure 5. 1 shows a plot of values of ^ 0 ( u _ , v , ) at various

points in the u - v, plane when x_ is -5 and 2,. is 1 . The plot is

symmetric about the un axis and the values increase to the right of the

v1 axis. Figures 5.2, 5.3, and 5.4 give plots of j n ( u n > v i ) when x

is 1 ,5, and 10 respectively. In all cases Z- is held at one. Notice

that the optimal pairs (u*,v*) are (0 ,0 ) , ( -1 .5 ,0) , ( -4 ,0 .5) , and

(-8 .5 ,0 .75) as x increases from -5 to 10. This shows that

•>>'' ^^ ^

vj^(x n ,S n) is not independent of x_ , which in turn shows that the optimal

measurement control cannot in general be determined a-priori as was the

o-

case for quadratic cost problems.""

"*" *J A.
To be more precise, although V}^ depends on XQ which is known a-priori
in this two-time-step problem, the analysis shows that in an N step
problem, v£ j -_ j depends on xN_2Aj-2 ' which *s not known a-priori.
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Figure 5.7
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Figures 5.5 -5 .7 and 5 .8 -5 .10 show plots of rn(u
n> v, ) when

_ = 5 and 2_ = 0 . 2 for various values of x.. . Note that for

2-. = 5, v,' seems to depend on x~ and for 2,. = 0 .2 , it does not,

over the range of x~ tested.

The two examples presented in this section have demonstrated

the following fact: stochastic optimal control problems with Gaussian

noise, non-quadratic costs, and measurement control capability might

or might not have a solution with the property that the optimal measure-

ment control sequence can be completely precomputed. The next two

sections will consist of analytic consideration of necessary and sufficient

conditions which specify when this property does hold.

5. 3 An Analysis Using Dynamic Programming

A general linear-Gaussian-non-quadratic stochastic optimal

control problem can be formulated around the following equations :

u lt (5.3.1)

*~+ i \ | -i-̂ k / \ fl / C "2 "5 \

T - 1 T

J = L (x ) + ^S L (x u ) + \ * S. (v ) (5 .3 .3)

t =0 t = 0

where the variables in these expressions have the same meaning and

properties as the corresponding ones in Section 3.2. The most general

cost functional (see (1 .3 .3) ) is not considered for reasons that will be

discussed later in this section.
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The question to be considered is: under what circumstances

does a measurement optimization separation properly hold for the

stochastic control problem described by (5. 3 .1) - (5. 3. 3)? Equivently,

when is it possible to precompute the optimal measurement profile

{vT} ? The examples in the previous section show that one cannot do

so in general for non-quadratic costs. Conditions under which such

a procedure is optimal will be considered in this section, although

necessary and sufficient conditions in a useful form have not yet been

discovered.

• Suppose that one carefully examines the proof of Theorem

4.2. 1 (the complete two-way separation theorem for linear-Gaussian-

quadratic systems) in order to determine precisely what character-

istics of that special problem result in the optimality of the a-priori

v technique. The apparent reason is that the optimal choice of {v,}

for the quadratic cost problem depends only upon the evolution of the

conditional covariance of the plant state, which may be computed

a-priori, and not upon the conditional mean, which may only be deter-

mined on-line. Looking more closely shows that the reason why this

property holds is that the expected value of a quadratic function of a

random vector is the sunn of a mean term and a covariance term.

Specifically, if 3t is a random vector, then

E { x ' Q x } = x ' Q x + trfosl (5.3.4)

where x. is the mean of x and ^ is its covariance. Since both the

"instantaneous" cost terms L ( x , u ) and the optimal cost-to-go
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from, time t to the terminal time T are quadratic in the plant state

for the problem analyzed in Chapter IV, at each step in the dynamic

programming, the cost-to-go is expressed as the sum of terms involv-

ing x,./t and u and terms involving S / and v. . Thus the opti-

mization of v. .-I depends only on S / and the optimization of u

depends only on x^ / •

For the linear-Gaussian-non-quadratic problem, the condi-

tional covariance still propagates according to a deterministic equation,

in fact, precisely the same equation as that used in the quadratic cost

problem. One is therefore tempted to make the following conjecture

regarding the circumstances under which the a-priori v technique

would be optimal for a non-quadratic cost problem:

Conjecture 5. 3. !_: A necessary and sufficient con-

dition for the a-priori v technique to be optimal for

the optimal measurement/control problem specified by

equations (5. 3. 1) - (5. 3. 3) is that under the assumption

that x is N(x / ,S / ) , one may express

1 .

2
(5 .3 .5 )

t - ' - •

The analysis below will show that this conjecture is false.
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R emark 1 : If the two examples considered in Section 5. 2 are ex-

amined, one sees that the linear cost example, for which the a-priori

v technique is optimal, indeed satisfies the hypotheses of Conjecture
«*•

5.3. 1, while the exponential cost example, for which a-priori v is

not optimal, does not. Of course, this coincidence is not conclusive.

Remark 2 : It is not clear that there are any cost functions besides

quadratic (and linear, which may be viewed as degenerate quadratics)

which satisfy the hypothesis of Conjecture 5.3. 1. Power series cost

functions of degree higher than two do not.

Examining the hypothesis of Conjecture 5. 3. 1 and comparing

again to the quadratic cost case shows that not all of the features of

the quadratic cost problem are included. One is led to the following

more restrictiv e hypothesis :

Conjecture 5.3.2: Necessary and sufficient condi-

tions for the a-priori v technique to be optimal for the

problem specified by (5. 3.1)- (5. 3. 3) are that the fol-

lowing two conditions be satisfied:

(1) Under the assumption that

and

(2) For each t, the optimal cost-to-go from the

0 ^next step t+1 , M . (Y .) , satisfies
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( 5 . 3 . 6 )

The hypotheses of Conjecture 5.3.2 are quite strong and may indeed rule

out all but quadratic cost problems. On the other hand, it is only possible

at present to pro"ve that the conditions of Conjecture 5 . 3 . 2 are sufficient,

but not necessary. In addition, it is nearly impossible to test the hypoth-

esis of Conjecture 5.3.2 for any practical problem other than one with

quadratic cost. Thus the questions surrounding the linear -Gaussian-

non-quadratic problem are not yet fully resolved.

The hypotheses of Conjectures 5.3.1 and 5 .3 .2 will now be

analyzed to illustrate the difficulties one faces in finding true necessary

and sufficient conditions. First, the non-sufficiency of the hypothesis of

Conjecture 5.3.1 will be shown.

Non -Sufficiency of Conjecture 5. 3. 1:

It will be shown that even if the hypothesis of Conjecture 5.3.1

holds, it does not follow in general that the optimal measurement con-

trol is independent of the on-line plant state estimate. An inductive

argument will be made.
&

Step T: The cost-to-go may be written as

= E{LT(xT) |YT} " (5 .3 .7 )

which by the hypothesis may be expressed in the form
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y2
+ 0(T (Z?T /T) (5.3.8)

Since there is nothing to optimize, this is tj/ (Y_,) .

Step T-lJ^ The cost-to-go is given by

Using Lemma 5.2. 1 and assximing -^T(VT) is positive -definite implies

that y_T = 0 , and 0- may be expressed

T.I

+ E{o^ (XT/T) +

(5.3.10)

Since no measurement is made at time t = T, XT-,/T
 anc^ 5rr/rr are

are obtained from XT , /_ , . and ET ./„ , by prediction.

Furthermore,
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= E{E{LT (XT ) |YT}|YT_ I} (5.3.11)

= E{LT(xT)| Y T _ 1 > . (5 .3 .12)

Y1 '*> 2
= Q£ (x / ) + OC (S )

(5.3.13)
1 2

where oC and n^ in (5. 3. 13) have precisely the same form as
T ^ T

in (5.3.8). Thus

1 2

T -1 T — 1 —T •

1
A

Suppose the feedback control function which minimizes

(5.3.15)

It is clear that the optimal value of UT , depends only on XT ,/_ ,

since those terms which are influenced by UT 1 in (5. 3. 14) are

independent of S_ ,/„, . .

When (5. 3. 15) is substituted into (5. 3. 14) to give the optimal

return function from time T-l , one obtains
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< 5 - 3 ' 1 6 >

where

1 Xf^ *fe e

(5 .3 .17)

O 2 (2 ) = 0? 2 (Z ) + of 2(A A' + S ,

(5.3.18)

Step T-Z: The cost-to-go from step T-Z is

(5 .3 .19)

(5 .3 .20)

A
Now XT , /_ , and 2™ , /_ . are generated from, x™ 2/T 7

ST ? /„ ? by the usual Kalman filter equations:

iT-l/T-2 = ^ T - 2 ^ T - + ^ ^ (5 .3 .21)
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A _ A A.

—T-l/T-l = -T-l/T-2 + ST-r^T-l "-T-1-T-1/T-2"'

( 5 . 3 . 2 2 )

-T-l/T-2 = -T-2-T-2/T-2-T-2 + ?T-2 (5 .3 .23)

-T-l/T-l = -T-l/T-2 "

(5.3 .24)

-T-l = -T-l/T-2-T-l^T-l-T-l/T-2-T-l + -T-l~T-l-T-li

(5 .3 .25)

Recall that CT l and DT l depend on V Thus the term

2 ^
E ( \$ T I^T 1/T 1^ YT ?) in ( 5 - 3 ' 2°) may be expressed in terms of

-T-l

in general depends on x ^/ , u 2'— T 2 and ^T 2/T 2' T°

see exactly ho\v this results, note that the expected value in (5. 3. 20) is

over the random variables J?™ , and (XT . - x_ . /_, 2 ) , as can be

seen from the expression

(5.3 .26)
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The random variables _§T_, and (x - ££-j--l/T-2^ are both zero

w> /n
mean (given Y_ ,) with covariance matrices fir T , and

2™ /~ 7 respectively. Thus, these statistics do not depend on v— .

•j*

or Urp ., , but because the general nature of <(>™ , produces a general

nature for sj) _, , (see (5. 3. 17) ), and since C T _ I > DT , and S^_^

depend on y^T , , the form of (5 .3 .26) is

1 A A A 1

•^i Vj/ •j'_]_(^.'j'_]_/X-l ' T-2 ~ T-l —T-2/T-2'—T-2/T-2'—T-2'—T-l

(5 .3 .27)

If one defines"1"

one can write, using (5 .3 .20)

1

0 T-2 = °VT-2(-T-2/T-2'-T-2) +

+ ** T-l(-T-2/T-2' -T-2/T-2'-T-2'-T-l)

2

tO 2
>*T , (2™ , /„ ,) is actually a deterministic quantity but its expected

value is the form which appears in 5-„ 2 in (5.3.20).
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Because of the coupling of x_, ^ / r p ?' —T 2/T 2 ' —T 2 ' anc* —T 1 *n

the fourth term of (5 .3 .29 ) , it follows that the general optimal feedback

functions must take the form

2 ) ( 5 . 3 . 3 0 )

) (5 .3 .31)

Equation (5 .3 .31) disproves the conjecture. The fact that (5 .3 .5 ) holds

does not guarantee (i .e. , is not sufficient for) the optimality of the

a-priori v technique.

Remark 3 : Note that the difficulty in showing that the optimal (y_ }

depends only on (Z / } under the hypothesis of Conjecture 5.3. 1

results from the general nature of the dynamic control feedback function

£* 1 . Since the structure of this function is general, so is Ol _ . (see

A
(5.3..17)), and this prevents the separation of v~ , from x~, -,/„ ? at

step t = T-2. This situation will be further clarified in Section 5.4, in

which the transformation approach and the Minimum Principle will be

applied to the study of Conjecture 5". 3. 1.

Proof of Sufficiency Part of Conjecture 5.3. 1

The hypotheses of Conjecture 5.3. 1 are so strong that the suffi-

ciency part of the statement is nearly self-evident, while it is not-totally

clear that these restrictive conditions are necessary for the conclusion

to hold. To see the s*ufficiency, note that at step t of a dynamic pro-

gramming solution for the optimal controls, the cost-to-go is
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V ( 5 - 3 . 3 2 )

which by the conjecture hypothesis may be written as follows:

( 5 - 3 - 3 3 )

Since the terms in » which depend upon u^ are the first and fourth,

it is clear that the optimal u^ may be expressed

A

t/t>
C = *:(x./J (5 .3 .34)

Since the terms in y which depend on v , are the third and the last

in (5 .3 .33) , the optimal v . , , maybe expressed

(5 -3 .35)

Since the covariance 2, /, satisfies a deterministic equation of motion

and may be calculated a-priori, the optimal measurement sequence

{yT} may be calculated a-priori . This shows the sufficiency of the

hypotheses of Conjecture 5 .3 .2 .

Remark 4: Although the hypothesis that (5 .3 .6) holds for all _t_

makes it unnecessary to consider what occurs when (5.3. 34) and

(3. 3.35) are substituted back to V , consider what happens if this iis

done. The value of o( is then
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(5 .3 .36 )

As in the investigation of the sufficiency part of Conjecture 5.3. 1, the

terms that "cause trouble" at time step t-1 are

1 A 1
terms = E{^ t £ ^,4* (x^)) + <j? t+1(£ t/t,±*(x t/t)) | Y^}

( 5 . 3 . 3 7 )

By hypothesis in Conjecture 5 . 3 . 2 , these terms are not troublesome

because they evaluate to a mean part plus a covariance part. One can

see, however, that whether or not the hypothesis (2) of Conjecture 5 . 3 . 2

is satisfied at time t-1 given that it is satisfied at time t depends only
1 A 1

on the nature of the f j > T ( - ) , the o( , (• > •) and the \Jl ,,, (• , •) functions.

In particular, the j^t.i (•) function specifying the optimal measurement
2 A 2

control plays no role, nor do the Q( (• ) or \$ , , ( • ) functions, which

display the influence of the covariance on the problem. This situation

will be studied from a different point of view in the next section, using

deterministic techniques, as was mentioned in Remark 3 above.
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K emark 5: Although the hypotheses of Conjecture 5 .3 .2 are so strong

as to perhaps rule out any cost functionals but quadratic,"1 a- slightly

different formulation suggests itself. Up to now, the oj^ and 0Q ,
I* L

functions have been specified by taking the expected value of L (x ,_u )

terms in costs. (See (5 .3 .5) ) . Thus oC and <xf , are not com-

pletely arbitrary. What would happen if the original problem formulation

started not with a cost of the type given in ( 5 . 3 . 2 ) , but with a cost made
1 2 A

up of general oC f
 and oC t terms depending on x f / . > u , and ,

S. /, ? It is not clear what the effect on overall system behavior would

be, or what analytic benefits would result. This is a good area for future

work.

Remark 6 : It was mentioned after equation (5 .3 .3) that the most

general cost-term-form L. (x , u , v^ . - i ) would not be considered, but
t t I L T L

rather the more restrictive form L (x , u ) + $. , * ( v _ . , - , ) • It is now
L L C t i 1. ~ ~

obvious that this was done because the more general form would

typically prevent the v , -optimization f:
— LTl

which is the result that was being sought.

typically prevent the y_, ,, -optimization from being independent of x_ /

Remark 7: It has been shown that the conditions of Conjecture 5 .3 .1

are not sufficient to guarantee that the a-priori y^ technique is optimal,

while those of Conjecture 5 .3 .2 are sufficient. Nothing has been said

No others have yet been found, although no proof that none exist is yet
available.
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about necessity. It is obvious, however, from the analysis of the
«•»»

sufficiency conditions that the separation of E { L (x , u ) | Y } into two

Ny5 ! A y 2

terms oC (x / , u ) + C?C +. ( S , / , ) , while itself not sufficient, is indeedt — t/1 — t t — t/1

necessary. If this separation does not occur at time t , then it is clear

that the optimal v determined at step t -1 will in general depend on

A

-t-i|t-r

5. 4 An Analysis Using the Transformation Approach

In this section, the effect of the hypothesis of Conjecture 5. 2. 1

as applied to a linear-Gaussian-non-quadratic control problem will be

studied using the deterministic approach of Chapter III. This will serve

to clarify the reasons why that conjecture was not true, and as a sub-

sidiary result, the nature of linear-Gaussian-non-quadratic control

problems without measurement control capability will be clarified as

well. The structure of this section is very similar to that of Section

4.3.

'5.4. 1 Transformation of the System Equations

Since the form of the cost functional has no effect on the filter

which is used to estimate the state, the equations of motion for the trans

formed system with non-quadratic cost are identical to those of Section

4.3. As in that section, the t/t subscript will be suppressed to give

the following system:
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* - (A- l )^ + B H (5 .4 .1)

( 5 . 4 . 2 )

The initial values are

A A
= Initial value of x (5 .4 .3 )

= *o + i-i ( 5 - 4 - 5 )

EO /0 = Initial value of S,

(5.4.6)

where, as in Section 4.3, the 0/0 subscript is retained for the initial

values and a single zero subscript refers to the a-priori mean and
A

covariance. Recall that | , is given by (see equations (4. 3 . 6)-(4. 3 . 8)

(5 .4 .7 )

where {£t} is a white noise process with covariance

cov U t , | _ t ) =

s (5 .4.8)
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with

(5 .4 .9 )

Equations (5. 4. 1) - (5. 4. 9) come directly from Section 4. 3. As in that

section, it will sometimes be convenient to abbreviate the equations of

motion as

(5.4 .10)

(5 .4 .11)

where i_ and F are defined as the right-hand-sides of (5.4. 1) and
~ t t

( 5 . 4 . 2 ) respectively.

To transform the cost functional (5 .3 .3 ) , let

} ( 5 - 4 - 1 2 )

Then according to Theorem 3.3. 1, the cost to be associated with the

transformed system is

T = l T

J= ^T(iT.Sr) + i; ^t^t'^t^t^Z't^ ( 5-4 '1 3 )

t = o t = o

Since this section is investigating Conjecture 5.3. 1, the following

assumption will also be made:

1
(5 .4 .14)
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5.4.2 Application of the Minimum Principle

Let the innovations sequence {£f} be considered fixed. Let

the Hamiltonian function be defined as follows :

< < * ' > +

+ tr P' .F,(S,,v_) (5.4.15)

where, as in Section 4.3, P ^ . i and P^.i are an n-vector and an

nxn matrix respectively \vhich serve as the costates for the optimal

control problem. Then according to the Minimum Principle, if {uT}

and {v_*} are optimal controls and if {xH- .{Sn"} , (pT) , and (P'f}c t t ___ t t

are the resulting optimal trajectories, then the following conditions

hold:
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I. Canonical Equations

. . * > . .A.

;)*t+B t^t + £-t (5.4.16)

= -(A t- l)£ t + 1

1 A

(xt ,u*) (5 .4 .17)

II. Minimization of the Hamiltonian

III. Transversality Condition:

9 <^ (XT)

<£>
9 ™

~T

(5 .4 .18)

(5 .4 .19)

£T = - - — ( 5 . 4 . 2 1 )

p =
 X1 -1 ( 5 . 4 . 2 2 )

— T a v
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Assume the Hamiltonian is a differentiable function of u and v , so

that equation (5 .4 .20) can be expressed

Q f-T «••* *"- .A.

- - =0 = expression involving ^ 1 ,sT » Y.T , i (5.4.24)
a *• L *• ^ L

As sinning that these stationarity conditions may be shown to yield a

(unique) pair of minimizing values for the controls, it is clear that the

functional forms are

* *]£ = ± * * t •£«.!> (5 .4 .25)

When these are substituted into (5.4. 16) - ( 5 . 4 . 1 9 ) , it is clear that two

separate two-point boundary value problems will result — one involving

{x } and {p.} and one involving {j£.} and {P.} •
i

This, however, does not prove that a complete two-way separa-

tion holds and that the a-priori y_ technique is optimal. Recall that in

,Chapter IV, the separation of the two-point boundary value problems was

not sufficient. One had to take the two-point boundary value problem in

x and p_ and convert it to a feedback form to obtain
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then take the expected value of this control over the noises to obtain

u* = E{u*(x t,^ t, ...,iT_1)||t} (5 .4 .28)

and finally evaluate the cost-to-go from time t = 0 using (u''"} , viz. ,
~~" t

A A A

-ir/— t-'£.4.' "• '£-T i^ *n orcler to determine what the stochastic effects

A A *
were. In taking the expected value of I _ n ( x . n > £ , _ n > ••• > £_T ,) to deter-

mine the stochastic cost, one found that two properties were true in the

quadratic cost case: uT did not involve {vT} or {Z/T} and the
~~ t ~~ t ~~"" t

expected cost _I f )(^n) = E {_! (x , ^ , ... , ^™ , ) |3C- .} had a term in

x adding to terms in {2?} . These facts showed the separation of the
U t —~"—""~ "̂—

y_-problem.

Of course, for the general problem being considered here, such

a procedure cannot be carried out analytically. One can not make gen-

eral statements about the nature of <£'(• , - , . . . , • ) in (5.4. 21) or about

its expected value over the noises or about the cost-to-go using that

expected value for a control. As was found to be the case in the previous

section, in which the analysis was carried out by dynamic programming,

the fact that equation (5.4. 14) holds is not, in general, sufficient to

guarantee that the a-priori v technique is optimal, and the reason why

it is not sufficient is the general nature of the optimal dynamic control

feedback function.
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5.4.3 Application to Problems Without Measurement Control

An important aspect of the deterministic approach to a stochastic

problem is that the full stochastic effect is not seen until the two expected

values discussed in the Remark of subsection 4. 3. 1 are taken: the ex-

pected value of the deterministic optimal dynamic feedback control law

and the expected value of the resulting cost. If the problem under con-

sideration contains linear dynamics and a fixed linear measurement

equation (no measurement control), then it is not necessary to go so far

as to take both expected values. If one does not need to know the stochastic

cost in order to determine the full effect of the measurement control, one

can stop with taking the expected value of the deterministic optimal dynamic

feedback control. Thus, for a problem with only dynamic control, nearly

the entire analysis can be carried out using deterministic methods:

everything except an expected value at the beginning (equation (5.4. 1Z) to

transform the cost) and an expected value at the end (to average the future

innovations out of the deterministic control law).

It has already been pointed out in this thesis* that a separation

theorem is known to hold for "ordinary" (i.e. , without measurement

control) linear-Gaussian-non-quadratic control problems. The result is

that the optimal dynamic control is obtained by plugging the state estimate

XA. into the control law derived as the solution of a different optimal con-

trol problem than the original one with the noises set to zero. Using the

See Section 4. 1 and Wonham (W. 2).
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transformation approach, one can see precisely what this different prob-

lem is : precisely equations (5 .4 .1) , (5 .4 .2) , and (5.4. 13).

Examination of these equations shows that there are basically

two reasons why the problem one solves for the optimal dynamic control

is different than the original problem with the noises discarded. The

original dynamic equation with the noise discarded becomes

= A tx t + B tH t (5 .4 .29)

while the equation that one must consider is

= A t* t + B tu t + £_ (5.4.30)

The original cost equation is

T -1

J = L t(xT) + "2 L
t
(-t'-t) (5.4.31)

t = 0

while the transformed cost that one must consider is

T -1

T - rZ? (v V \ + ~^' VJ (v T 11 \ l^i 4 ~ ^ ? \~ ^NT —T' ^.rr> f * g^ f\_4. '±;f '_t ' (y. '±. j£)

t = 0

The differences between "the original problem without noise", (5 .4 .29)

and (5.4. 31), and the actual problem one must consider using determin-
A

istic techniques (5.4.30) and (5 .4 .32) , are the influence of £^ in the

equation of motion and the influence of S. (which, by the way, is now a

completely precomputable sequence of matrices satisfying ( 5 . 4 . 2 ) ) in

the cost equation. In addition, the covariance S. will typically influence
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the final result further when the expected value indicated in (5.4. 28) is

taken.

What characteristics of the linear -Gaussian -quadratic problem

result in its control law being precisely the same as that for the "same

problem without the noise"? First, equation (5.3.4), which gives the

result that

= E{L t(x t ,u t) |x t = N(x t,S t)} (5.4.33)

= E{24Q tx t
 + H t £ t u t | x t

 =N(^t'5t)} (5.4.34)

= x' Q x + u ' R u + tr [O.S ] (5 .4 .35)
— c — c — t — i — t — t — c — c

= L.(x , u . ) + t r [Q.sJ (5 .4 .36)
L — I — t — L — t

Thus , for the quadratic problem, the transformed cost is identical in

form to the original cost, with the addition of a term independent of the

dynamic control. Second, as was derived in subsection 4 .3 .3 , in the

quadratic cost case, the optimal deterministic dynamic control is linear

in the future innovations, so that its expected value is independent of

future innovations . These two special circumstances do not in general

hold for non-quadratic-cost problems.
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5.5 Summary

In this chapter, linear systems corrupted by Gaussian noise and

penalized by general (i. e. , non-quadratic) cost functionals were con-

sidered. It was shown both by example and by an analytic argument that

the optimal measurement control at time t can be a function of the plant

state estimate at time t -1 . As a result, it may be impossible to com-

pute the optimal measurement control time sequence off-line.

Both dynamic programming and the Minimum Principle were

used in the analysis. By comparing the general cost case to the qua-

dratic case, several conjectures were made concerning conditions which

would be necessary and sufficient to allow one to precompute the optimal

measurement control. Sufficient conditions were found, but necessary

and sufficient conditions in a convenient form for applications have not

yet been derived.

As a byproduct of the analysis of combined dynamic control/

measurement control problems, the nature of "ordinary" dynamic con-

trol problems with no measurement control capability was clarified.



CHAPTER VI

A PROBLEM WITH COUPLED MEASUREMENT
AND CONTROL

6. 1 General Perspective

In this chapter, a particular class of problems will be introduced

in which the dynamic control and state measurement functions are in-

extricably coupled. Although problems of this type have not been pre-

viously considered, they are of great practical importance, and this

importance will increase as control technology advances. This is

because control structures involving a large, powerful central computer

which controls many remote dynamic systems fall into the class of prob-

lems to be described in this chapter. As control algorithms and tech-

niques become more and more complex, structures of this type will

inevitably become common.

Consider a situation in which the dynamic system being controlled

is at some distance from the location at which the control commands are

generated. Evidently, in order to transmit a control command or make

a measurement of the state of the dynamic system, a communications

link must be established. Frequently, if the communications facilities

are limited or time shared, one might decide to conserve effort by

insisting that measurements can only be taken while control commands

are being sent, or vice-versa. In other words, communications will

only be established when it is advantageous to both measure and to

control.

Asa practical example, consider a spacecraft being guided by a

ground based facility on the basis of tracking information obtained from

-184-
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a radar. When the radar pulse is sent out for tracking, it is shaped in

such a way as to also convey guidance information to the spacecraft.

Thus a single transmitter is employed for both tracking and guidance.

The mathematical description of such a system must include a provision

that control commands will be received at some time t if and only if a

measurement is made at time t.

What does the system do if no control command is received at a

given time? One assumes that there is a relatively simple device on

board the spacecraft which receives the guidance signals from the ground

and translates them into appropriate signals sent to reaction jets, control

surfaces etc. This on-board device remains in control of the spacecraft

if no guidance command is received from the ground. Thus, a whole

hierarchy of overall control structures can be represented in this form,

depending on how sophisticated the on-board guidance system is. For

example, if the on-board device is a very simple computer, it might

merely store and continue executing the most recent control command

until a new one is received. If the on-board guidance computer is more

complex, it might be capable of determining the spacecraft state itself

and then function as the major control component with only parameter

updating ("gain tuning") from the ground.

In addition to these considerations, slightly different problems will

result from the adoption of different stochastic structures that may be

justified intuitively. Specifically, one might assume that while the

ground makes noisy measurements of the spacecraft state, the trans-
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*L.

mission of control commands from ground to on-board is noise-free. """

Alternatively, these transmissions may be noisy. Either structure might

be appropriate, depending on the sophistication of the communications

link.

Notivated by such problems, a relatively simple mathematical

model will be analyzed below; the method of extension to more com-

plicated situations should be evident.

6.2 Mathematical System Description

Let the dynamic system be represented by

hjL ; t = 0, 1, . . . , T ( 6 . 2 . 1 )

where all the variables have the same meaning as in Section 3.2, and

we R is the output of the on-board computer. Suppose that measure-

ments are made according to "* '

£t
 = v

t^t-t+^t] ; v
t
e^°'1} ( 6 . 2 . 2 )

(identical to (3 .2 .10)) . The on-board computer obeys the difference

equation

( 6 . 2 . 3 )

Thus, if no measurement is made at time t (v = 0), the computer simply

remembers its old state (w , = w ) and if a measurement is made

This is not to say that the dynamic system is free of driving noise,
but only that the control command is received exactly as sent. Such
an assumption can be justified by the fact that the ground-based trans-
mitter can be made very powerful.
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(v = 1), the new value of control, u , is "loaded" into the computer
L • L

(w , = u , ) . A diagram of this structure is shown in Figure 6.1.

Because of the special structure of this system, the timing con-

siderations are somewhat different than those assumed in previous

chapters. In particular, since the control command u is already being

sent simultaneously with the tracking pulse associated with v , it is

clear that u cannot depend on y_ since y_ has not yet been received at

the time when u is being computed. Thus, the type of dynamic control

and measurement control dependcies that will be considered in this

chapter are

u t = u t ( Y t _ j ) (6 .2 .4)

v t = v t ( Y t _ j ) - ( 6 . 2 . 5 )

Compare these to (1 .3 .5 ) and (1.3. 6).

Examination of equations (6. 2. 1) and ( 6 . 2 . 3 ) will show that when a

control command u is sent to the spacecraft, it does not get applied to

the dynamics (equation (6 .2 . 1)) until time t+1 since there is a unit delay

in processing it through the on-board computer. This is to be expected

in a practical system, however. If a control command u is just being

received at time t, it obviously cannot be influencing the dynamics at

time t. There is always a delay for reception and decoding of the

message.

An appropriate cost functional for this system is

T-l
J = x^,QTxT + ̂ TvT + 2H x{.Qt2£t

 + -t—t-t + V vt ( 6 .2 .6 )
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The terms are grouped slightly differently than in the analogous equation

(4. 1. 3) in Section 4. 1 because of the different timing considerations here.

The parameters 0 are constants which multiply v , which itself is either

zero or one.

Obviously, the system described so far in this section represents

only one of many possible structures. For example, should the penalty

for dynamic control in the cost functional depend on u or w ? If u is—t —t —t

used, cost is only accumulated once if u is non-zero once and then zero

over an interval. If w is used in the penalty function, cost will continue

to be built up even if no further controls are sent after "loading" a non-

zero value into the on-board computer, (see equation (6 .2 .3 ) ) . As

another example, there is no noise in the w-equation (6. 2. 3), as was

discussed in Section 6. 1, while in some circumstances noise might

occur there.

In this chapter, the specific problem structure introduced in

equations (6. 2. 1) - (6. 2 . 6) will be analyzed. Other equally justifiable

structures will be left for future work.

6. 3 Solution Techniques

Evidently, the state of the spacecraft at time t is composed of

two parts: the "real" state x and the "computational" state composed

of the data w stored in the computer. If an overall state z_ is defined:
L \f

(6 .3 .1 )
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the overall system may be described by an equation of the form

where

0

0

0

; o

(6 .3 .3)

(6 .3 .4)

(6 .3 .5)

(6 .3 .6 )

(6 .3 .7 )

This reflects the fact that different .A and ̂  matrices are appropriate

depending on v . Such a formulation allows more-or-less arbitrary on-

board computer actions to be considered so long as they are linear. The

problem is reduced to "ordinary" form except that now the matrices in

the jiynamic equation depend on v .
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*,

This general structure does not lead to convenient analysis. One

does not expect a separation property for {v } to hold since it directly

influences the state. On the other hand, if the particular structure

outlined in Section 6.2 is maintained, the essentially different natures

of x and w parts of the state can be exploited to give interesting inter-

pretations to the results.

Thus, the solution of the following optimal control problem will

be obtained: Subject to

(6.3.8)

(6 .3 .9)

- (6 .3 .10)

select the dynamic controls {_un, • • • , u_ ,} and the measurement controls

{vn, . . . , v_) to minimize

T-l

Qx - f uRu + v (6.3.11)

t=0

where feedback control laws of the type

u* = ^(Y^j) (6.3.12)

v * = ( Y ) (6.3 .13)

are admissible and where the random variable J is to be minimized in the

sense of Chapter II. The solution will be found via dynamic programming.

Because of the different timing considerations in this Chapter,
w<»

the data set Y now represents Y A J U VJV •
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Step T: The terminal cost-to-go is

_ ) (6.3.14)

= XT |T- I— T-T|T-I + t r ^— T-T|T-iJ + £TVT (6.3.15)

Note the conditioning, which is appropriate for the type of closed-loop

control laws represented in (6. 3. 12) and (6. 3. 13). Since £„. is pre-

sumably positive, the optimal choice of v_ is

v* - 0 (6 .3 .16)

which makes sense since a final measurement would be useless from the

point-of-view of control. Thus the optimal cost-to-go is

Evidently, to continue the dynamic programming, the form of the

Kalman filter which generates x . i from x. i, 1 will be needed. The

appropriate equations are (see Rhodes ( R . I ) ) :

(6.3.18)

(6.3.19)

^.Ql-1 = — 0 = given ; -ol-l = -0 = 8iven (6 .3 .20)

Note that in (3.5.13) , w is taken to be deterministic. In fact, throughout

this derivation it will be assumed that the ground computer knows the
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state of the on-board computer exactly. This is a reasonable assumption

in many circumstances. Also note that the form of the Kalman filter

equations given in (6 .3 .18)- (6. 3. 20) utilizes the fact that v is con-

strained to be zero or one. Specifically, v -factors would appear in

several other places in these equations, but for the fact that one times

one equals one and zero times zero equals zero.

Step T-l: The cost-to-go is

(6.3.21)

T2T |T_1] | Y T _ 2 > (6 .3 .22 )

Substituting (6. 3. 18) and (6. 3. 19) into the expected value in (6. 3.22) and

continuing with a considerable amount of algebra results in

(6 .3 .23)
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The optimal choice of v_ , and u . are

U T-1 =

(6.3.24)

(6 .3 .25)

which again makes sense: A control command sent at time t = T-l will

not reach the dynamics until t = T, when it would be usless. Similarly

it is useless to measure at time T-l since nothing can be done at t = T.

The optimal cost-to-go is given by

tr (6.3.26)

This form is suggestive, and one might try to derive a recursive form

for the optimal cost-to-go. In fact, one can prove the following theorem:

Theorem 6.3.1; If at step t+1, the optimal oost-to-go for the problem

defined by equations (6. 3. 8) - (6. 3. 13) is of the form

r*

• + I
t+lv t i

(6 .3 .27)

Where Mf+i ^s a deterministic matrix which is positive semi-definite

and which may be partitioned as follows:
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11

21

M12

M22

(6.3.28)

)1. and where !(•)

is a deterministic real value function on the set of nxn matrices, then

it follows that:

(1) The optimal measurement control v may be

determined as follows:

(1 .1) Calculate ^)t
vr°

, given by

(6 .3 .29 )

(1 .2) Calculate

**..
vt=1

V1

given by

11

AUM^ -

( A-
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where Pt M + M

(1.3)
v = o v = l

, set v = 0

If
V0

*, set v, = 1

(2) The optimal dynamic control uj is equal to

(3) The optimal cost-to-go from step t is given by

A

2t|t-l

w.

\vhere

Mt
21

_
=

.22.-1..21

H + « t < " '

(6 .3 .30)

(6.3.31)

(6 .3 .32)

(6 .3 .33)

(6.3.34)

t t t -

(6. 3.'35)

(6 .3 .36)

(6.3.37)

(6.3.38)

(6 .3 .39)
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^ ^ t t t t _ 1

It+1(Ht + £l£t| t_iAt - vjA^j^C-

( C - ^ + f i J ' - ( 6 '3-4 0 )

Proof: Given in Appendix E.

Remark 1 : If««j).
~ ~ ~ L ' t

v t=0 V1
inequality (6. 3. 32), the cost resulting

from choosing v = 0 equals the cost resulting from the choice v = 1, and

either alternative may be selected.

5fc
Remark 2: Note the particular form of optimal dynamic controlu

*
which results if v = 1. It is a gain matrix times the expected value of

x . given the data up to t-1. Since there is a unit delay in processing

*
the control command u through the on-board computer, this means that

the current optimal dynamic control is a gain times the value of the state

expected at the time when the current control will influence the dynamics.

This is consistent with the results obtained in previous chapters.
•

Remark 3: It is interesting to note the manner in which the state esti-

mate x I 1 and the covariance "% i , influence the decision rule for v

given in conclusion (1) of the theorem. One can argue loosely that if the

state estimate is "large", the term -x ' i iP .x i i in the cost'resulting
—t I t — 1 1 L | t - 1

*from v = 1 will get large and negative, and as a result, the optimal

__

Note that P is a positive semidefinite matrix.
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*
choice of v will be v = 1 . This can be interpreted as indicating that if

the state estimate is far away from zero, it is advantageous to set v = 1

in order to send a control command. Similarly, if 2_ t | t i is "large" one
^ .A.

can also argue that the resulting choice of v will be v^ = 1 because of

the influence of S i , on the argumentof the !(• ) function. This can be
—t i t ' 1 t+1

interpreted as indicating that if the covariance matrix is large indicating

a poor estimate of the state, it is advantageous to set v =1 to obtain a

measurement. Of course, these arguments are very heuristic: the

other terms in and vD
v t=0 v t=l

must be considered. The interpre-

tation is, however, consistent with intuition.

Although Theorem 6.3. 1 displays the optimal controls and cost-to-

to at any time t assuming a certain form for the cost-to-go from step

t+1, this does not complete the analysis of the problem under consider-

ation. This is the case even though the terminal cost-to-go (6 .3 .17)

takes the hypothesized form (set M .̂1 = QT, IT = tr[ Q^X^ , T_ ^ M^2 =

Q, M = 0). The reason is that given data Y ,, the matrix M in

Theorem 6 .3 .1 is not deterministic. That assumption was made in
•

Theorem 6 .3 .1 and it was used extensively in the proof in order to

evaluate expected values involving the matrix M . A similar as-

sumption was made for the !(• ) function.
t+1

To see why M , , for example, is not deterministic in general
«w\ ft

given Y ,, consider the expression for <J J__ , given in (6 .3 .26) . This

is of the form of (6. 3. 27) if one identifies
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l (6 .3 .41)

(6 .3 .42)

_ T - i ) r (6 .3 .43)

(QT + A ! r _ 1 Q T _ 1 A T _ 1 ) Z T _ 1 | T _ 2 ] (6 .3.44)

These are deterministic quantities. The optimal value of v^ 7, however,
i. ~" Cf

depends on x_ ?i _ ,, as specified by Theorem 6.3. 1, and as a result,

the values of M_ .,, IvC, _, and M_. 9 and the form of !,_ 9 which resulti ~ Lt J. — c* — J. ~ ̂  J. — Ci

from the evaluation of equations (3. 3. 34) - (3. 3. 40) depend on x ? i _ _.

Thus, when the dynamic programming is "stepped backwards" to time

*^ A
T-3, when YT . is the known data, the conditional mean XT 2|T ^

becomes a random variable and through it the matrix M_. 9 and the func-
i - L,

tion I become random. The overall conclusion, then, is that at any
J. "" Lf

time t less than T-l , the matrix M is a random variable because the
~ " t

propagation of the matrices (M , M . . . . . .^T} backwards from time T

to time t depends on the future conditional means, which are random

variables at time t. Similarly, the I function has random parameters

in it.

This does not mean, how^ever, that the results of Theorem 6. 3. 1

cannot be used to solve the problem at hand. It merely indicates that

one must be careful to include the effects of the random character of

the variables used. To see how this can be done, the dynamic pro-

gramming solution that was carried to step t = T-l (see equation (6 .3 .26) )

will now be continued farther forward in time.
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Step T-2: Reference to equations (6. 3. 26) and (6. 3.41) through (6. 3. 44)

shows that the cost-to-go from step T-l to the end is of the form

-T-l T-2

(6.3.45)

where given Y _ _ o , M_ , and I_ , are deterministic. Thus Theorem

6.3.1 is directly applicable, and it follows that one can evaluate v
*
T-2

and using that theorem:

(1) Calculate
VT-2= 0

fT-2
VT-2=1

according

to (6 .3 .29 ) - (6 .3 .31)
~~'<

(2) Choose vl, 2 according to (6 .3 .32)

^
(3) Choose u_ 7 accordint to (6 .3 .33)

(4) Calculate d)T 2 according to (6. 3. 34) - (6. 3. 40)

Step T-3: The cost-to-go is

+

= x-T-3

T-2 T-4 J

T-4
tr[Q r

(6 .3 .46)

-3 |T -4 J

%-3'vT-3

(6 .3 .47)
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. The complicated step in the analysis is the evaluation of the last term

in (6 .3 .47) :

<T-2

w%

Y,
PA

-T -Z lT-3

+ I T _ 2 ( 2 T _ 2 , T _ 3 ) | Y T _ 4 } (6.3.48)

As in the proof of Theorem 6. 3. 1 which is given in Appendix E, it is con-

venient to consider separately the two cases v_ , = 0 and v_ , = 1.

Case 1; If v _ = 0, the propagation equations for x^ 7 \ r T ->, w^ 7»
i -J I -L \ 1 -O I -L

'.t —, 0 i._ 0 are

A A
-T-2JT-3 ~ -T-3-T-3|T-4 -T-3^T-3

-T-2T-3 T-

(6.3 .49)

(6 .3 .50)

(6 .3 .51)

If these equations are substituted into (6 .3 .47) , it is clear that only M. _

and I_ _ are random (check equations (6.3.35) through (6 .3 .40) which
"f"

express M,— 9 and I 9 in terms of v^
—~~ L ~ £• J. ~ ̂  J.

). Thus, one obtains

VT-3=0

-3 |T-4+

(6 .3 .52)
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Now M _ and I_ -> have bi- valued random properties. They take on one_- 1 — L 1 - £.

pair of values if vl. 2
 = ^ an<^ a second pair if v™ 2 = 1 • This means

w%
that the expected value of, say, M _ given Y_ . may be expressed

( M T _ 2 | v * _ 2 = l ) x p ( v * _ 2 = l | Y T _ 4 ) (6 .3 .53)

'f I v/» ;?
where p(vrr 9 = z| Y_ A) represents "the probability that v_ 7 equals z

X * " ^ i ~ T r i ~ £

*** f \ '** \given Y_ .". A similar expression holds for Eil^. 2 I Y ./.

It is possible to evaluate the probabilities required to find

E{l_ 7 I Y .} and E\M 7 | Y_ .). Since x _i _ is a Gaussian random
X ~ L* J. — rr —— J_ — ̂  X~r r J . ~ £ | J _ ~ - 3

**% <U A

vector given Y^ ., and since v,l _ is expressed in terms of x _| _,J . — 4 i~i- J . ~ ^ | x ~ j

(see conclusion (1) of Theorem 6. 3. 1), the task can be carried out

(numerically). Once this is done and the result is substituted into

equation (6.3.52), then (6 .3 .52) into (6.3.47), one has evaluated the

cost-to-go v_ 0 under the assumption that v_ _, is zero. Notice that

(1) If v_ , is zero, the only term in

that depends on u , in (6.3.45) is the

term u' _,,R_T ,UT _. Thus the optimal value

of ^T_3 , given vT_3 = 0, is uT_3 = _0.

(2) The resulting cost-to-go is quadratic in the

mean x_ ,IT . and the state w_ , with

additive terms involving the covariance

— T-3|T-4'

It is now necessary to consider the case VT -, = 1 .
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Case 2: v , = 1: If v ? = 1 > the propagation equations for x _i ,

I) 2| _, and w _ are the full Kalman filter equations (6 .3 .18) and

(6. 3. 19), and the w-equation becomes

wT_2 = uT_3 (6 .3.54)

*,s\
the term E{^y_ 9 | Y^ .} which appears in (6.3.46) is now somewhat moreJ. — L. J. ~ 4

difficult to evaluate, because x 9 i „. ,, M^_ 7, and I _ 9 are all random
J_ ~ £ I -L — J J. — ̂  J. "• Lt

I

variables. However, one can use the fundamental property of expections

(see Loeve (L. 1) p. 341) that E{f(a, g)} = E{E{f(a, b) | a}> to write

as

\s\ w* v^

j. — Lt 1 —4 J. "^ J. ~4 i — L* J. —4

The inner expectation in (6. 3. 53) can be evaluated in closed form using the

methods of Appendix E. This is becuase given v_ 9, only x _ i _ _ is

random in the expression ford?_ 2; M ~ and I_ _ are deterministic.

In particular, Eftfi^ -j | Y_ A ,v_ 7} can be evaluated for v^ 7 = 0 and
X ~ " " - L ' ~ A J . " ~ « J- ~ "

for v_ 9 = 1 , and then the entire expression (6.3. 55) can be evaluated by
J. — L*

adding the results for v_ 9 = 0 and v_ 7 = 1 weighted by the respective
JL ~ dt J. ~ L,

probabilities of these two cases. One can see that again the cost-to-go

will be quadratic in x_ ., i _ . and w_ _ with addative terms in 2 . .^ — T - 3 | T - 4 —T-J —l-j|T-4

The calculations will not be carried out here for two reasons: the

evaluation of the inner expectation E{d?_ 2 | Y_ 4 »v_ 2) is exactly like

the proof of Theorem 6.3.1, which is given in detail in Appendix E, and

i *" i *"the evaluation of the probabilities p(v_ 2= 1 | Y_ .) and p(v_ 2=0^,,. .)

cannot be done analytically. This completes the consideration of the

case v~ 0 = 1.
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Once one has evaluated (6 .3 .47) for the two cases VT .,= 0 and

v_ 0 = 1, the remaining step is simple: For each case choose the optimal

value of u , (easily done since the cost is quadratic in u ) and see

whether the resulting cost J)_ , or '

'T-3
= 0

T-3
is smaller.

'T-3
= 1

Choose the appropriate value of VT , and UT , on this basis.

This completes the analysis of step T-3 of the dynamic programming.

A situation has been reached in which the results cannot be determined

analytically, but the procedure to follow at an arbitrary time step in

clear: In order to optimize U> given by

Y _ } (6 .3 .56)

carry out the following steps:

(1) Evaluate the first three terms of v analytically:

= Ax; | t.1Q tx t t_1

+ SjRtSt + ̂  vt (6 .3 .57)

(2) Express E{vQt+1 | Y t _ j ) as follows:

(3) Evaluate E{^)t+1 | Y t _ 1 , v j, . . . , vt) using Theorem 6.3.1

for every possible future measurement control sequence

(v , , , . . . , vrj-} • This is possible because the matrices

M , , . . . , JM and the functions I . , . . . ,! are deter-

ministic given {v , . . . , VT) .
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(4) Evaluate the probability that each future mea-

surement control sequence will occur, given Y

(5) Evaluate E{tJ)t+1 IY j} using (3) and (4).

(6) Finally optimize Y over u and v , which can be

done once the expected value has been evaluated.

Obviously, the step in this procedure which is difficult is (4). Although

it can be carried out in principle, it would be very time consuming to do so

on-line in practice. Conceptually, however, the problem originally

stated has been solved.

Since the solution to the problem under consideration may not be

practically found for actual problems, it would make sense to investigate

possible sub-optimal control schemes based on the analysis presented

here. This, together with the investigation of the many possible variatious

of the problem defined by equations (6. 3 . 8) - (6. 3 . 11), constitute s a po-

tentially fruitful area for future research.



CHAPTER VII

CONCLUSIONS, APPLICATIONS AND AREAS
FOR FUTURE RESEARCH

7. 1 An Overview

The subject of this thesis has been the optimal control of sto-

chastic systems, and this topic has been treated from several points of

view. The purpose of this chapter is to attempt to unify the results

presented earlier, to comment on some areas of application, and to

suggest possible topics for future research.

The first question to be raised in this thesis concerned the
x

definition of a stochastic optimal control problem. How does one con-

struct a mathematical formulation that is consistent, that is satisfying

to physical intuition, and that leads to a well-defined optimization pro-

cedure? The issue was discussed in Section 1.3, which presented a

problem formulation, and in Chapter II, which dealt with defining sto-

chastic dynamic programming. While it is true that much of the math-

ematical structure built up in Section 1. 3, viz. , the measure theoretic

foundation of probability theory, was not used explicitly in the sequel,

this material was none the less included in the introductory chapter

because it was implicitly used.

One of the issues discussed was the difficulty of leaving the

stochastic structure of the problem undefined while searching for con-

trol laws . The apparent problem could be succinctly phrased: no

control law, no random variables; no random variables, no formula-

tion. This issue would not have been clear without reference to axio-

matic probability.
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In subsection 2. 4. 1, this difficulty was resolved by noting that

when using the dynamic programming formulation, the fact that at time

t , one assumes that the future control laws have already been selected

and the past control values are fixed but arbitrary assures that all the

quantities of interest are well-defined random variables. This fact is

not novel; no doubt, those who are well versed in the field of stochastic

control are aware of it. On the other hand, this point is often ignored

completely, and a discussion of the issue is not to be found in most

published works dealing with stochastic control. For this reason, such

a discussion was included here.

The nature of dynamic programming as applied to the solution

of control problems involving measurement control capability was dis-

cussed. One main point of this part of Chapter II was a sort of reverse-

causality argument: the optimal measurement control at time t had to

be selected in such a way as to optimize the cost-to-go from time t to

time T , the terminal time, with no regard to optimizing the estimate of

costs that have already been incurred. This allowed the dynamic pro-

gramming structure to be applied more-or-less in the usual way. The

same sort of thing was done in^previous works dealing with optimal

measurement control, e .g . , Meier, et al (M. 3), but no justification

or discussion was included. Previous authors have done the correct

thing without saying why. This can probably be attributed to the fact

that primarily linear-Gaussian-quadratic problems have been considered

by other authors, and the optimality of the a-priori-v technique described

in Section 1.4 for such problems tends to submerge the issues involved
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in defining the true stochastic cost. Since the a-priori-v technique im-

mediately reduces the given problem to one which has been solved before

(the determination of {uT}) and one which can be solved by deterministic

techniques without the use of dynamic programming (the determination of

{v*}), one need not worry about these deep issues: they have been swept

under the rug.

The second main issue considered in the defining of stochastic

optimality and dynamic programming -was the need to include in each

optimization a provision for utilizing the information that optimal con-

trols will be used in the future regardless of present actions. This is,

of course, the entire basis of dynamic programming, either stochastic

or deterministic. On the other hand, many authors are not precise in

their statements of what is being optimized in a particular problem: a

frequently made statement is that "the expected value of J given in equa-
•

tion (2. 1.5) will be minimized". As was discussed in Section 2.3, there

are many types of expectations one can take, and one should be careful

to specify what one means to do. If one is minimizing, at each step t ,

the conditional expected value of the cost-to-go from step t to step T

given the data up to time t and given the fact that optimal controls will

be applied in the future, one should say precisely that.

After considering the dynamic programming approach to stochas-

tic control, attention was turned to the possibility of using deterministic

techniques. In Chapter III it was demonstrated that under certain circum-

stances, one could suppress the stochastic nature of the problem while

optimizing and re-introduce it simply by taking two expected values at the



-209-

end. This, in the opinion of the author, is a novel approach to stochastic

control.

The idea of considering the Kalman filter equations rather than

the given system equations as the basic plant is neither new nor supris-

ing. What one is actually doing when adopting this point of view is con-

sidering the propagation of the conditional p .d . f . of the plant state ?c
w\

given the data Y , which, as was discussed in Chapters II and III, con-

stitutes the true state of the system anyway. The "lucky" thing is that

in the linear-Gaussian case, the p .d . f . is finite dimensional, so one can

proceed with relatively simple methods once one has built the filter,

which itself is simple.

The novel part of Chapter III was Theorem 3 .3 .2 . It is perhaps

not surprising that for linear-Gaussian systems, it (loosely) doesn't

matter when one takes expected values. After all, so many nice things

are true about linear-Gaussian systems, why not this, too. Practically

speaking, however, the benefit derived from being able to use this type

of analysis, i.e. , mainly deterministic, may be considerable in solving

actual problems. The most significant benefit will result in the study of

linear -Gaus s ian -non -quadratic problems .

In Chapters IV and V, linear-Gaussian-quadratic and linear-

Gauss ian-non-quadratic control problems were considered. It is felt

that two distinct benefits result from a careful reading of Chapter IV:

First, the reasons why the complete-two-way separation Theorem holds

(Theorem 4.2. 1) become clear, and second, the use of deterministic

techniques is clarified.



-210-

It was mentioned in Chapter IV that the paper by Meir, et al

(M. 3), indeed contains a result that is essentially equivalent to Theorem

4.2. 1. However, in their proof, the authors did not clearly indicate why

everything "worked" and did not consider the question of whether their

dynamic programming was well defined. Hence, these points were cleared

up. In addition, the deterministic analysis of Section 4.3 provides addi-

tional insight.

Section 4. 3 contains many remarks regarding the use of deter-

ministic techniques which will not be repeated here. It must be pointed

out, however, that in using the deterministic techniques, one is almost,

but not quite, forcing an a-priori-v structure on the solution. This is

because during the parts of the analysis in which the innovations process

is considered fixed, all information about the influence of the measure-

ment control is suppressed from the problem. This, in turn, is because

the measurement control influences primarily the statistics of the innova-

tions , which are not used during the deterministic analysis. However,

one does not really force an a-priori-v structure on the problem. The

reason is that in finding the optimal feedback dynamic control as a func-

tion of the future innovations, one implicitly includes the effect of the

measurement control. This effect becomes explicit when the expected

value is taken. It may turn out for non-quadratic cost problems that after

taking this expected value, one will find that the optimal dynamic control

depends on the optimal measurement control, and the optimal measure-

ment control on the mean and covariance of the state estimate given the

data. Thus everything eventually requires a minimization in terms of
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the current conditional mean and covariance.

Chapter V considered the linear-Gaussian-non-quadratic case

in detail. It should be noted thattll the issues associated with such sys-

tems have not been fully resolved; necessary and sufficient conditions

for an open-loop measurement program to be optimal have not yet been

discovered. On the other hand, it is felt that significant insight into the

nature of linear-Gaussian-non-quadratic problems can be gained by

examining the analysis of Chapter V. In particular, the influence which

the filtering part of the problem exerts on the control part of the prob-

lem is clarified by that analysis. Although there are many allusions in

the literature to this one-way coupling effect (recall the discussion of

Fig. 4.3), essentially nothing concrete has been written about it up to
/

now.

The class of problems defined in Chapter VI represents a fertile

field for possible future research, and further comments in this vein

will be made in the next section. Let it be noted here, however, that

problems of this type, in which there is a fundamental interaction

between the concepts of control and communications, are certain to

become increasingly important in practical applications. This must be

the case as more and more complex control strategies are developed

and as more and more ambitious systems are designed. It is inconceiv-

able that as the state of the control art progresses, each dynamic

system in the world will have its own computer to control it. Such a

situation is absurd economically. It will become increasingly impor-

tant for big supercomputers to communicate with remotely located
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dynamic systems in order to control them. Such systems can be formu-

lated in the framework of Chapter VI, as has been previously discussed.

To conclude this section, the folio-wing idea should be stressed

since this part of the thesis is titled "An Overview": There are many

potential areas of application for the results developed here or for

straightforward extensions which do not fit into the classical category

of control systems. One might consider, for examples, the following

possibilities :

1) Communications Systems : Recent work has been

done on communications systems with two-way

transmission links. This results in a so-called

feedback communications system in which the re-

ceiver can try to tell the transmitter what it

"thinks" it received. See, for example, Schalkwijk

and Kailath (S.8), Schalkwijk (S.9), Omura (0. 1),

and Cruise (C.3) . Problems of this type can be

formulated as measurement optimization problems

since the feedback link from receiver to trans-

mitter is not unlike a controllable measurement

equation.

2) Economic and Societal Systems: In this class of

systems, the concept of measurement having a dis-

ruptive effect on the system is easy to visualize.

Do polls influence public opinion, for example?

One might try to formulate a measurement optimi-

zation with some sort of constraint that a certain

minimum amount of information actually be

obtained.
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3) Physical systems actually subject to the Heisenberg

effect: Although the author is not personally ac-
-•*quainted with such systems, he has been advised'1"

that there are actual practical physical systems in

which the Heisenberg Uncertainty Principle of

physics plays an important role in that the more

one measures, the more one disrupts the system.

Optical communications systems were mentioned

as an example. In designing such systems, one

must select the best (in some sense) quantum

operator to extract the modulation from a light beam

Evidently, other examples are possible.

7.2 Areas of Future Research

In this section, several topics for future research that are sug-

gested by the work reported -will be discussed.

7 .2 .1 Making the Cost Functional Deterministic

In Chapter II, an important point in the discussion was the re-

quirement that the overall problem formulation result in a situation in

which the control sequences {v_*.} and {u.} are mapped into the real

numbers through the cost functional. The quantity J given in equation

(2. 1. 5), which would ordinarily function as the cost functional in a

deterministic control problem, is a random variable in a stochastic

control problem, and it was necessary to map J into a real number xt-

By Prof. A. Baggeroer, one of the readers of this thesis.
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in order to have a well-defined optimization. The main concern of

Chapter II was determining the correct way in which to take the expected

value of J to yield

Early in the discussion it was noted that other devices besides

taking the expected value of J to produce U^ could be used. The work

of Sain (S. 3) and Sain and Liberty (S.4) was mentioned as an example.

These authors consider minimizing the variance of J subject to a con-

straint on its mean value.

In a problem with measurement control capability, devices

other than taking the expected value of J might be very useful. One

might heuristically argue that controlling the "quality" of the measure-

ments has a more direct effect on the variance and higher order

moments of the p.d.f . of the plant state than on its mean. The true

nature of this effect, and means of exploiting the results in order to

produce certain types of closed-loop system responses, are potential

topics for future study.

7 . 2 . 2 Extending the Applicability of Deterministic Techniques

In Chapter III, the assumption was made that the plant under

consideration was linear. This hypothesis was used in the proof of

Theorem 3.3.2 in order to argue that the map from the dynamic control

sequence to the cost was convex, which was in turn used to show that a

certain inequality held. Theorem 3.3 .2 , when proved, justified the use

of deterministic techniques by stating that the control derived by deter-

ministic optimization techniques would result in performance which was
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no worse on the average than that produced by the stochastic optimal

control.

In addition to its use in the proof of Theorem 3 . 3 . 2 , the assump-

tion of a linear system was used, along with the assumption of Gaussian

statistics, to allow the propagation of the p.d.f . of the state to be formu-

lated as a finite dimensional system: the Kalman filter. This made the

transformation of the system described in subsection 3 .3 .1 useful in that

the finite dimensional plant equations could be replaced by finite dimen-

sional filter equations.

It would be very useful if these ideas could be extended to non-

linear systems. Doing so would involve two areas of study: extending

Theorem 3.3. 1 and extending Theorem 3 .3 .2 . These two extension tasks

seem to be independent at present, but they might turn out to be related.

There is a certain amount of theoretical justification for hoping

that Theorems 3 .3 .1 and 3 .3 .2 can indeed be extended to include non-

linear systems if due care is exercised: primarily in the work of Kailath

and Frost that stresses the innovations point of view in nonlinear filtering

(F. 1), (K.8). Their results indicate that even in the nonlinear case, the

filter may be formulated in such a way that it is driven by a white innova-

tions process, and this could perhaps be treated in a manner analogous

to that of Chapter III; the innovations could be considered fixed until after

a deterministic feedback control law was derived. Exactly how to deal

with the infinite dimensionality of the filter, however, remains a challeng-

ing question.
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The whole area of extension of the philosophy employed in

Chapter III to nonlinear systems is, perhaps, the most pressing area

for future work. This topic is discussed further from a different point

of view in subsection 7 .2 .6 below.

7 .2 .3 Costs Explicitly Depending on Stochastic Parameters
N

In Remark 5 of Section 5.3, (following equation (5.3. 37) ) the

fact was noted that the transformed cost obtained prior to applying

deterministic techniques was not of a completely arbitrary nature. In

particular, for linear-Gaussian systems, the types of transformed

cost terms o?°f(
x.f | f > 2 , i ,u ,v .) that one can obtain are specified as

^^x U t [ L " L I t ' t *~™ t I i.

all possible forms obtainable by taking the expected value of terms of

the form L (x ,u , y. ,) . The following question was raised: What

types of system performance would result if the basic problem formu-

lation involved a cost functional depending on x i and 2, i, (or the

entire p.d.f . in non-Gaussian cases)? In other words, what happens if

the p .d . f . which constitutes the true state of the stochastic problem is

explicitly penalized in the cost functional in a way not directly obtainable

as an expected value? This area is completely open for future work.

7 .2 .4 Linear-Gaussian-Non-Quadratic Problems

The status of linear-Gaussian-non-quadratic problems is not

yet quite satisfactory even though more information than previously

available has been supplied by the analysis of Chapter IV. It would be

helpful if easily verifiable necessary and sufficient conditions could be
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obtained which would catagorize circumstances under -which the optimal

measurement control sequence could be computed off-line. It might be

useful if several special cases of non-quadratic costs were completely

analyzed, for example, "fuel optimal" type costs involving the absolute

value of u . (See Athans and Falb (A. 7) for background. ) This area

would tie in nicely with the questions raised in subsection 7 . 2 . 3 concern-

ing different types of cost functionals.

7 .2 .5 Extensions of Chapter VI

In several places in Chapter VI, it was pointed out that the

particular problem being studied was just one special case of a whole

class of potentially interesting problems which would be left for future

study. It was mentioned that problems of this type would become in-

creasingly important as control systems built around large central

computers sending commands to remotely located dynamic systems

become common. This structure is already being seen, for example,

in the control of industrial processes: central computer installations

are being used to control remotely located unit processes. Such a

structure is also being used in aerospace and guide4missile applications.

The types of variations of the problem studied in Chapter VI

that might be considered include the following: What are the effects of

varying degrees of sophistication of the "on-board" controller? What

are the effects of noise corrupting the transmissions assumed noise-

free in Chapter VI? What are the effects of various cost functionals

which penalize quantities other than those appearing in J given in
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equation (6 .2 .6 )? Do different mathematical problem formulations make

sense? Are there more efficient procedures for calculating optimal con-

trols than those described in Chapter VI? Are there any convenient sub-

optimal control schemes which perform well in practice?

7 .2 .6 Applications to Nonlinear Systems

The type of problem that this subsection recommends for future

study is the general formulation introduced in Section 1.3, but used very

little in this thesis beyond the general discussion of dynamic program-

ming given in Chapter II: systems with generally nonlinear dynamics

and nonlinear measurement equations.

There has , of course, been a great deal of work done on non-

linear filtering, that is, on the study of equations of the type of (2.3. 1)

and (2. 3. 2) which propagate the conditional p.d.f . of the plant state, and

on the continuous time analog of these equations, which is typically given

in (partial) differential form. See Jazwinski (J. 1). It is unfortunately

the case that the true equations for the propagation of the conditional

p.d. f . of the plant state are quite difficult if not impossible to solve in

practical cases of interest (See Jazwinski (J. 1), Kushner (K. 1), (K. 2),

and Wong (W. 3) as particular examples of many works dealing with the

problem. See also the monograph "Stochastic Problems in Control"

published by the American Automatic Control Conference and issued at

the 1968 Joint Automatic Control Conference. )
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Two approaches to simplify the propagation of the p . d . f . are

in common use. One may approximate the p .d . f . by series expansion

with the retention of only "low order" terms (see Wishner, Tabaczynski,

and Athans (W.4) and Athans, Wishner, and Bertolini (A. 9) as specific

examples, and see Jazwinski (J. 1) for an extensive discussion with many

more references). Alternatively, one can approximate the propagation

equations (see Bucy and Senne (B .6 ) ) . The former technique has been

used for some time (see the many references cited by Jazwinski (J. 1) ),

while the latter technique is relatively new. With regard to these tech-

niques, the following question arises concerning the issues addressed in

this thesis: What is the effect of measurement control capability and

how can optimal measurement controls be determined?

Consider a typical "extended Kalman filter" used to approxi-

mate the propagation of the conditional p .d . f . of the plant state of a

nonlinear system corrupted by additive white Gaussian noise. (See

Wishner, et al, ( W . 4 ) ) . To use such a device, one first specifies a

nominal plant state trajectory and a nominal dynamic control trajectory.

One then expands the plant and measurement equations in a Taylor series

*',-

about these nominals and keeps only linear terms.'1' One then expands

the cost functional about the nominal, keeping terms up to quadratic.

The result is an approximation to the original system which has linear

dynamics and quadratic cost.

Higher order terms can also be kept, resulting in more complex
filters. See Wishner, et al (W.4) .
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Consider now the effect of a measurement control. Suppose that

the following scheme is suggested: One does not assume a nominal mea-

surement control; this parameter remains in the linearized equations in

its original form. The result of linearizing about the plant state and the

dynamic control, however, is to produce a set of approximating equations

which fall into the special case considered in Chapter IV. One can thus

determine an optimal open loop measurement control for the linearized

equations. This open-loop measurement sequence can be used until a

new linearization is made.

The following sub-optimal control technique thus suggests itself
/

for use with nonlinear systems:

(1) Select a nominal dynamic control sequence

denoted (u } . Using this control, obtain the

nominal plant state trajectory {5? } which is

the solution of the dynamic equations with

noises discarded:

t+i = l t t .

(Compare to (1.3. 1). It is assumed that the

driving noise sequence {_£.} has zero mean

and simply adds to the dynamic equation. )

(2) Expand the state equation, the measurement

equation, and the cost functional about these

nominals . Thus , if x and u are the true

plant state and dynamic controls,
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( 7 . 2 . 2 )

9f

+ higher order terms (7 .2 .3 )

( 7 . 2 . 4 )

9x
— t

—t

_ , + higher order terms ( 7 . 2 . 5 )

J = J ( x , ) +
«<i< . 9J / »^x(u-u)

x,u

-. / *"\' 9 J2(x-x )

+ (x-x) '

9u

+ higher order terms

where x = (x } , and u = {u^}

( 7 . 2 . 6 )
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If one defines 6x = x_ ~2£t
"~^^ \f - I, - L

to

be the deviations of plant state and dynamic control

from nominal, one can retain linear terms in

(7. 2. 3) and (7. 2. 5) and quadratic terms in ( 7 . 2 . 6 )

to obtain a linear-quadratic problem in 5x and

5u :

6xt+l = At 6xt + Bt 6u

J = quadratic

where

A
-t ~

X t ' U t

B ~

Vut

( 7 . 2 . 7 )

(7 .2 .8 )

( 7 . 2 . 9 )

( 7 . 2 . 1 0 )

(7 .2 .11 )

(7 .2 . 12)

Note that no nominal measurement control has

been hypothesized. If the noises are Gaussian,

equations (7. 2. 7) - (7. 2. 9) represent precisely

the class of problems analyzed in Chapter IV.
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(3) Use the results of Chapter IV to generate an

optimal measurement control sequence and an

optimal dynamic control deviation-from-

nominal for the linear-quadratic system.

(4) When appropriate, update the nominal and

return to Step 1.

Of course, an important issue is when to update the nominal.

This, together with specific results for different types of linearizations,

represents a prime area to be considered in extending the results of this

thesis to nonlinear systems. It is also important to consider techniques

that cannot be formulated according to the structure given above, for

example, approximations such as those suggested by Bucy and Senne

(B.6).
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VERIFICATION OF EQUATIONS (4. 3. 38) - (4 .3 .42)

Two matrix identities will be useful for the purposes of this ap-

pendix. The first is

(I^ + XY 1 ) " 1 = i^ - X(I_ r + J 'Xf^Y' ( A . I )

where X and Y are nxr matrices, I is the nxn identity, and I is the— —~ n • • r

rxr identity. The other identity is

X) (A. 2)

These identities are both taken from Kleinman and Athans (K. 5) and may

be verified by algebra.

It will now be shown that (4. 3. 38) - (4. 3 . 42) hold. Starting with the

two point boundary value problem

- xt = (At - i_)xt - B^B;^ 4t (A. 3)

£t+1 -Pt = -Qt*t - (A t-i) '£ t+1 (A. 4)

suppose

2 = Q - ^ ' 2£ given (A- 5)

£ = M5 +* (A. 6)

Putting (A. 6) into (A. 3) and (A. 4) gives

*t+1 - ^ = (Ak - I)xt - •BtRt-
1B;M

(A. 7)

1xt+I - (At-I)'ht+1

(A. 8)

-224-



-225-

Collecting terms gives

-1 A A _ _ _ i A

t-t+1 +-^t ( A > 9 )

= 0 (A. 10)

Assumming the indicated inverse exists, (A. 9) gives

A _ 1 A _ 1 A-

fitl (A. H)

Now using (A. 1) and identifying X = B , JY1 = JR" _B! M
t "~ L t L i X

(A. 12)

(A. 13)

Substituting (A. 13) into (A. 11) gives

(A. 14)

Substituting (A. 14) into (A. 10) gives

(A. 1 5)

Collecting terms:

{-Mt + A;[Mt+1 -M t+1B t

-ht = 0 (A. 16)
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One now makes the usual argument (see Kleinman and Athans (K. 5)) that
A A

(A. 16) must hold for all initial states x and for all {£ } , so that the

coefficient of x must itself be zero as well as the sum of the remaining

terms. Setting the coefficient of x equal to zero in (A. 16) gives

(A. 17)

which proves (4. 3. 38). The terminal values M_ = Q™. and h_. = 0 followl J. l

from (A. 5) and (A. 6). The equation for h is obtained by taking the non-

x terms in (A. 16) and setting them equal to zero, giving

B- M^B

h t + 1(A.is)

(A. 19)

Examining the last two terms in (A. 19) gives

t+1^ (A. 20)

B; (A. 21)

B (A.22)
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Now identifying X = M ,JB and _Y' = R J3! and using (A. 1), continuing

from (A. 22) gives

left hand side = A[ I_ - M J R " 1 ] ^ M J R . " (A. 23)

Identifying I_ = X, _Y = Mt+i^tJ5.t — t and using (A- 2) gives

lefthandside = A|U - (I + Mt+1^t5:t"^)" ] (A. 24)

Substituting (A. 24) into (A. 19) and collecting terms gives

t

(A. 25)

v^hich proves (4. 3. 40).

It only remains to show that (4.3.42) is correct. Starting from

(4. 3. 32) one obtains

(A. 26)

. (A. 27)

+ 1 ( A . 2 8 )

using (A. 14). Continuing

(A- 29)
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Using (A. 2) gives

- tl - (St + B;Mt+1 B^^ M.t+1Bt] RB; ht+1 (A. 30)

having used (A. 2). This proves (4 .3 .42) .
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PROOF OF LEMMA 4. 3. 1

It will be shown that the value of !„ given by

T-l

t= 0

subject to ^

(B .2 )

(B.3)

^ (B.4)

(B.5)

^x0 +
t= o

whe re

BJ M t+] Bt)- B^

(B.7)

mT = 0 (B.8)

The proof is inductive: a general form for the 03 st-to-go from time t

is derived and this result is then specialized to give the cost to go from

time t = 0.

The general fact that will be proved is that the cost-to-go from time

t is of the form

-229-
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(B.9)

where W. = W'—t —t

Step T: The cost-to-go from the terminal step T is given by

which is of the form given in (B.9) if one sets

WT = QT ( B . l l )

WT = 0 (B. 12)

CT = 0 (B.13)

Induction: Assume that (B .9 ) is the correct form at time t+1, i .e . , that

Then the cost-to-go from step t is

Substituting (B.14) and (B .2 ) into (B . I 5) gives

Collecting terms gives
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which is of the form of (B. 9) if the following identifications are made:

W t = Q t +K^R tK t + (A t - B t K t ) ' W ( A - B) (B . 18)

(B. 19)

/ (B .20 )

This completes the inductive proof that (B.9) is the correct cost-to-to

from time t. It is possible to simplify (B.18), however, as follows:

- B ) ( B . 2 1 )

- 2K! B! W. ., A^ (B.22)— ^ — — ^ — t

Substituting (B. 3) into (B.22) gives

(R t + B ^ + A ) ^ A t

(B.23)

If one compares (B.23) and the propagation equation for M , (B.4), one

sees that M and W will be identical if M ^ - _W . . Since both M_ and

W_. equal Q_ (see (B. 5) and (B. 11)), it follows that M_ , . This equality
JL — 1 J. ~ i

proceeds forward in time iductively, giving

Wt = Mj. for all t (B.24)

where M satisfies (B.5).

Using (B. 24) and comparing (B. 19), (B. 7), (B. 8), and (B. 12) gives
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(B.25)

and (B.20) becomes

(B.26)

It only remains to evaluate I0(xn), the cost-to-go from time t = 0.

From the general form (B. 9), it follows that

The constant c_ can be evaluated in terms of {^.}, { .̂) and { rn } by

using (B.26) . The result is

T-l

C'0 ~
t= 0

Thus

T-l
A A

i;Mtit + m-l t] (B.29)

t= 0

which is exactly (B.6) .
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Let {s I ,} be a sequence of symmetric n x n matrices satisfying

the following set of equations for t = 0, 1, . . . , T

= A S A ' + H ( C . I )

(C .2 )

—o = given (C-3 )

Let M^ be a set of symmetric n x n matrices satisfying the following set

of equations :

(C.5)

M = ^Q = given

and let K be defined

Kt = (Rt + B;Mt+1 ̂ f B- Mt+1 At (C . 6)

The object of this appendix is to show that the following two expressions,
A A
E, and E?, are equal:

T-l T
A A f i "I ^—i1~ 7^ M, , . (~ , + B.K, S. I ,A!H + / AAv.) (C.7)Z .—1+1 —t —t—t—111—t I *—' t —t

t=0 J t=0
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T T-l

t= 0 t= 0

T-l

t= 0
(C.8)

A A
First note that the ^ (v ) terms in E, and E_ are equal. Thus if E.. and

t t \. & J.
A A

E, are obtained from E, and E9 respectively by deleting the ^ (v ) terms,
— £• — 1 ^ t — t

A A
it will follow that E. = EZ if and only if Ej = EZ.

Consider E :

T-l

/ 4-_Ll

t= 0

+ Qt-t[t 5 ( c-9 )

Using (C.2) and ( C . I ) , calculate

The analogous expression for t + 1 = 0 is

(see equation (4 .3 .5 ) of Chapter IV).
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Substituting ( C . l l ) and (C. 1Z) into (C.9) gives

T-l

+ Z
t=0

Using the identity

tr[A.BC:] = tr[£A.B] (C . I 4)

gives

E2 = tr{QTST,T + M 0 S 0 -M 0 S o ) ( )

T-l
+ Z^t It + Mt+1Ht + AJ^^A^i t - Mt+12t+1 ( t+1]

t=0
(C.15)

Now use equation (C. 5) to eliminate Q :

(C.16)

= M - A A + A M B K ( C . 1 7 )

Putting this into (C. 15) gives
T-l

t= 0

- M t+12 t+l | t+1) (C. I 8)
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T-l

t=o

T-l

t= 0

T-l T-l

t= 0 t= 0

Using the fact that Q, = M , (C.20) reduces to

T-l.

t= o

This is exactly the same as E, , as may be seen by comparing to
A T

equation ( C . 7 ) and recalling that E, = EI - S £.(v_.) .1 i t=o r *

Q.E.D.



APPENDIX D

LISTING OF PROGRAMS USED TO
EVALUATE EQUATION (5 .2 .44 )

7 Z+GAVSS X
[1] Z + * - ( ( X - M E A N ) * 2 ) i 2 * C O V

V U JOE V;H' , INOV-,STDiSIGlQ -.MEAN \ C O V \ U U \ \ H O L D ;Jl
[1] A N S + ( U * 2 ) + * X H A T Q O + S I G Q O i 2
[2] SIC10<-SI<700-H
C O T O T f* 1 "1 ^- C1 T /"* 1 ^ * 1 ^ 0 7 " /"* 1 rt v T^ * O "O I Ox Lr X <L^^O x Lr A Li ~ i TO J. ^ X V/ " » •* ̂  •'

[4] MEAN+HOLD+O
[5] CO V+SIG11x51(71 Ox 7*2

[7] INOV+MEAN-SX.STD

[9] LOOP:+(INOV>MEAN+5*STD)/DONE
[10]
[11]
[12]
[13] HOLD*-HOLD + H*Ilx(GAUSS INOV)
[14] INOV+INOV+H
[15] ->L00P
[16] DONE:HOLD+HOLD*STD*(02)**2
[17] ANS+ANS+HOLD
[18]
[19]
[20] DETERM:XHAT11+-XHATOO+U
[21] UU1+U1
[22] 4/75^>lff5+(*^ffyiriH-5J(;ilv2
[23]

7
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V Z+01;J7
[i] c+~o.s
I 2 ] N+HIGH+0
[3] LOW+~1Q

[5] LOW+LOW-1Q
[6] HIGH+HIGH-1Q
[7] -+(N>2Q) /CHOKE
[8]
[9]
[10] CHOKE -.UNDEFINED
[11] L00P2 :-»•( 0. 001>HIGH-LOW)/DONE
[12]
[13] H
[14] -»(MID>N)/DOWN
[15] LOW+MID
[16] -+LOOP2
[17] DOWN:HIGH+MID
[18] +LOOP2
[19] DONE:Z+MID



APPENDIX E

PROOF OF THEOREM 6. 3. 1

Suppose that the optimal cost-to-go from time step t+1 to time

step T for the problem defined by equations ( 6 . 3 . 8 ) - ( 6 . 3 . 1 3 ) ii

given by

t+1

where M is a deterministic (n+m) x (n+m) matrix, and I t , i ( - ) is a

deterministic function. Then the cost-to-go from time step t is

given by

(E.2)

The two cases v = 0 and v - 1 will be considered separately, and

will be evaluated and optimized over u for each case.

Case I: v = 0

If v = 0, the Kalman filter equations (6. 3. 18) and (6 .3 .19) take the

simple form

t + l ) t t t
(E.3)

(E.4)

and the w - equation (6. 3. 9) becomes

(E.5)
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Substituting (E. 3) - (E. 5) into (E. 1) and then (E. 1) into (E. 2), and using

the partitioned form of M . , one obtains

u -f

(E. 5)

Nothing inside the expectation is random except the term xIQ. x,, the

conditional expected value of which is x' i ,Q, x i , + t r lQ -Si I .
L | L ~ 1 - L — t | t ~ 1 \^ — t T | L ~ 1 \

Thus
v t=0

may be expressed as follows:

(E.6)

The only term in (E. 6) which depend;

matrix, y, is

term in

is a positive definite

s on u is the last one, and since I*

by the choice

— L

is minimized over u

= 0iC = _0 if v = 0

and the resulting value of v , denoted by tfi , is given by

S=o

(E.7)

v0

^t

(E.8)
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where

11 11
i* (E. 9)

(Mt
12)' (E . i i )

(E. 12)

< E - 1 3 )

Case II: v =' 1

I f v t = 1, the Kalman filter equations (6. 3. 1 8) - (6. 3. 19) take the

form

5t+1|t = Ml-t-1 + ̂ t + ̂ t -^tlt-l) <E

_ C . + f i ) - 1 - (E.I 5 )

. (E.I 6)

and the w -equation (6. 3. 9) is

Using the partitioned form of M ^ , the cost-to-go U

equation (E.2) may be expressed as follows:

v t=l
given in
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rll A

V

The individual terms in (E. 18) will now be evaluated using equations

(E. 14) - (E. 17). The first three terms are

+ £ (E. 19)

This is correct because u is deterministic given Y , . The fourth term

in (E. 18) is

(E.20)

The cross terms in (E.20) vanish in going to (E.21) because the random

A ***
variable y - _C x i T has zero mean given Y . . The last term in (E.21)

I, u C I L "" X L "~ J,

may be written
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(E.22)

(E.23)

where the cross terms in (E. 22) vanish because _e and (x - x i ) are

independent zero mean random vectors.

Substituting (E. 1 5) into (E.23) and (E. 23) into (E. 21 ) yields

- x- , 1. 1 A

tr [

(E.24)

The fifth term in (E. 18) is

(E.25)

The sixth term in (E.8) is the transpose of the fifth. Since these terms are scalars, this

meansthat the sixth term equals the fifth. The last two terms in (E. 18) are not

random and hence they may be removed from the expectation operation

and expressed in terms of u. and S^ i , using equations (E.16) and (E.17).
L L I L ^ A

Carrying this out and collecting all the terms in (E. 18), one finally obtains
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t_ l A'

+ :t+l(^t +-' .

Collecting the terms in this expression which depend on u gives
t

<L ' " 22flt.u terms , = u!(R
t v

t-
1 "* -t

~ .A.

(E.27)

(E.28)

The value of _u which minimizes this expression is given by

{E '29)

12 21
where the fact that (M . )' = M . has been used. Substituting this value

back into (E.27) to obtain the minimal value of r when v = 1, denoted

, results in,
1

I t+1fe t + A^tlt-l^t - StG
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This may be expressed in the form

'A

2t l t - l

(E.30)

(E.31)

where the following equations hold for the partioned sections of M and
111 •' t

(E.32)

(E.33)

(E.34)

(E.35)

(E.36)

This completes the analysis of the case v, = 1 .

The technique for determining the values of v and u to minimize

fft» given by (E. 2), subject to (E. 1) may thus be summarized as follows

(1) Calculate

V°

given by equations (E. 8)

through (E. 13).
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(2) Calculate V

V1
given by equations

(E. 31) through (E. 36).

(3)

V°

set v = 1.

set vj = 0. If *Q

V1 vt=0

(4) Calculate u as follows:

U* = -

(5) Express the cost-to-go from step t as follows:

A .

w

Where M and J_ are specified by:

11 11 ^r
M = Q -f A'M A - v A'P A

2?
Mf
— t

* *
. - v.B!P.B. + (1-v. )t t — t — t — t t

.22 .-1..21

i t =

(E.37)

(E.38)

(E.39)

(E.40)

(E.41)

(E.42)

(E.43)

(E.44)
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Equations (E. 38) through (E.44) were obtained by collecting the

sets of equations (E. 8) - (E. 13) and ( E . 3 1 ) - ( E . 3 6 ) and including certain

*
factors of v (which are either zero or one) which serve to specialize

the all-inclusive set of equations (E.38) - (E.44) as appropriate.
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