Invited Contribation to Symosium Ho. 48 of the International Astronomical Union

UV ANO RADIOFRORUENCI OBSEDVATIONS OE WOTF-RAYET STABS
Hugh M. Johnson
Lockheed Kissiles and Spece Company, Palo Alto, California

I. UV OBSERVATIONS WITH OAO-2

Very few ooservations are available. Of early rocket work on 8 Vel (Stecher and (illizan 1962, Smith 1967) the most detailed spectra are by Stecher (1968) in the range $\lambda \lambda 1200-3100 \mathrm{~A}$ and by Carruthers (1958) in the range $\lambda 1050-1216 \mathrm{~A}$. West's (1971) spectrum of γ Vel with the 090-2 spectrometer (Code et al. 1970) in the range $\lambda \lambda 1050-2000$ a appears to be somewhet different from Stecher's. Comparison must await full details.

The 0@O-2 spectrometer has scanned apoarently only one other W star, 5 50396. It is more informative than γ Vel because it is possibly a single star without contemination by a dominant 0-star seectrum. It is also one of the whs stars in a symmetric nebula (cf. section II). Smith (1971) has reported the 000-2 spectrum of 50995. Let us make a few more remaris about the sare scans. First, the measured FWHM of the strong Ye II 1640 emission is $\Delta \lambda=20 \mathrm{~A}$, or about 17 A after correction for instrumental broadening, in agreement with the ratio $\Delta \lambda / \lambda$ of fairly unblended lines at wevelengths several times larger. Thus Doppler broadening is confirmed. Second, interstellar hydrogen absorption at $\lambda 1215$ a may be estimated from the 21 -cm survey of McGee and Murrat (1951): $\underline{N}_{H}=2.0 \times 10^{21} \mathrm{H}$ atoms cm^{-2} toward HD 503\% . Eince the star is at $1=234.8$, $\mathrm{b}=-10.1$, and at the distance 1.50 kpc (Smith 1959 0), most of the hydrogen should be in front of it. Yorton's (1967) formula for the equivalent width $\operatorname{EN}(\operatorname{Ly} \alpha)=7.31 \times 10^{-10} \mathrm{Na}^{\frac{3}{2}}(1)$ due to radiction demping oi the interstellar lire, then gives Er $(\operatorname{Iy} \alpha) \leqslant 33 \mathrm{~A}$ in absorption. as estimated from Figuce 1 the net. eouivalent width of the features around $L y \mathcal{C}$ is $\leqslant 30 \mathrm{~A}$ in emission, so the ret equivalent width of the features before intersteller absorbtion should be < 60 a in emission. Presumbly the dominant emission near $\lambda 1215$ A would be He II 1215 , the second line in the series which He II 1640 heads. We estimate $\operatorname{DH}\left(\lambda_{1540}\right)=$ 140 E, a strength which angears to confirm the absence of continuum from any hot comanion star.

The 0.40-2 photometers (Code et al. 1970) have been used in the 000-2 guestinvestigator prozram to observe 5 192?63. This in 6 star was selected because it is apparently a single star ard it is in a symmetric nebula, NGC 6888 (cf. section II). In respect, to the latter it may not be norral. The four photometers are each equipped with three filters. The range of effective wavelengths $\lambda \lambda 1330-3320 \mathrm{~A}$ is covered with passbends of FWH $=240-860 \mathrm{~A}$ such that prectically no gaps are left in the observed continuum. However, the data will tell little about a lire spectrum. Figure 2 shows the observations. Figure 3 corrects them for interstellar extinction by mans of the color excess $\mathrm{E}_{-\mathrm{b}-\mathrm{c}}=$ 0.33 mag for $H D 102163$, and the ratio $E(B-\mathbb{V})=1.6 E_{-b-c}$ (Smith and Kuhi 1970), and the average ultraviolet extinction $\underline{E}(\lambda-\underline{V}) / \underline{E}(\underline{E}-\underline{V})$ given by Bless and Savage (1971). There is still a question about the calibration of some of the photometer-filter responses (Bless 1971), but it is apparent that the run of the data corrected according to this differential extirction agrees rather well with an interpolated model atmosphere of $T_{\text {eff }}=30700^{\circ} \mathrm{K}$. This is the effective temperature for 192163 which Morton (1970) derived in a completely different way.

Ultraviolet spectral lines might have someffect on Figures 2 and 3, for example the strong line of $\operatorname{En}(\lambda 1640)=140 \mathrm{~A}$ such as HD 50896 exhibits. It would fall 40 a off center in the passbend with $1 / \lambda_{\text {eff }}=5.95 \mu^{-1}$ and FwED $=$ 270.A. It should therefore add close to $140 / 270 \times 100$ per cent $=52$ per cent to the light of the continum, but, in fect this point falls low in the plots. We must conclude that ae II 164:0 is not promind in rib 192163. C IV 1548-50 and N $V 1239-42$ fell in passtends with relatively high points in Figure 3, but we canrot claim the presence of these lines from the deta.

Houck (1971) has made 20) 040-2 spectiometer seans of fing at 10 a resolution in the rane $\lambda \lambda 1100-1800 \mathrm{~A}$. He has found emissions of C IV, Si IV, and "Ly $\boldsymbol{\alpha}$ " (the letter periodically shifted. from interstellar absorion Davis (1971) has presented preliminary photometry of about 500 stars observed with the Celescope on 0AO-2. Two of them are W stars, CD -45 4482 and FD D 76536. The new data are magnitudes called U1 and U2, respectively taken with passbards of $2100-3200 \mathrm{~A}$ and $1550-3200 \mathrm{~A}$. Despite the gross passbands, additional information on effective temperatures of a fer W stars should come out of the final catalog.
II. OBSERVATION OF W STARS WITH STMETRTC/L NEBULAE AROUD THEM

Johnson and Hogg (1965) used the Green Bank telescopes to detect NGC 6888 around HD 192163 at 750 MEz and 1400 MHz ; also NGC 2359 around HD 56925 at 750 , 1400 , and 3000 MHz . The W stars are included with the nebulae in the available telescope beams but it has been assumed that the rebulee account for the observed flux densities. Johnson and Hogz (1965) reported the privately communicated independent discoveries by Herbig and by Minkowski of a third nebula 351 in diameter around 50395, which may be called S 308, but it was not detected in radiofrequency until later (Johnson 1971). Smith (1967, 19683) searched Palomar Sky Survey charis and other reterial, discovered four more symmetric nebulae around W stars, and noted that all seven stars were WIS, 6 , or 8 types. Smith and Batchelor (1970) proceeded to observe three of them, we 3199, aSil 104, and Row 58 at 11 cm. Lozinskaya (1970), Terzian (1970), and Johnson (1971) observed FGC 6989 again at 8500,318 , and 7795 my , respectively. The radioirequency spectrum of NGC 6883 is shown in Fig. 1. It is apparently thermal Bremsstrahlung. \mathbb{P} These radiofrequency data, or alternatively the integrated flux of the rebula in a Balmer line, corrected for extinction, such as Parler (1963) has estimated only for NGC 6888, with a distance estimate of the 1 star, lead to the mass of the nebula and to the "excitation parareter" \mathbb{U} of the star, or to the equivalent spectral type and effective temperature. The "Zanstra temperature" of W stars is also obtained if the stellar magnitude, rather than the distance, is employed with the rebular flux density. Morton (1970) refined the Zanstra method by calculating model atmospheres in place of bleckbodies, and he found effective temperatures as a function of W-star types. By including the observed angular genefalso get the linear dimensions and a coneimation of the mess distribution (thin-wall shell appearance on photozraphs). Finslly, observations of the intemal motions of the mobula may be combined with observations of the rate of mass loss and ejection velocity from the V star, and with an eatinate of ambient interstellar
density, in order to obtain the age of the syster.
Conservation of momentum and continuous ejection were assured in the simple theory (johnson and Hogg 1965). Spherical symmetry wes also assumed, tacitly contrary to the observed ellipticity of the nebulae, eccentricity of stellar site, and correlated azimuthal asymetry of nebular perimeter (brightest nearest the ster). In apology one can only say that these nebulae are quite symmetrical in comparison with ordinary diffuse nebulae, and perturbations that are attributable to a stellar or interstellar magnetic field, or to irregularity of andbient interstellar density, appear to be negligible in the first objectives of the theory. The higher degree of central-star concentricity which prevails in planetary nebulae may be explained by their smaller radii, statisticelly higher z-distarces, and consequent lack of interaction with the armient medium. However, the non-circular projection of many planetary nebulae shows that central stars do not eject mass isotropically.

The full application of these ideas has been rede only to NGC 6989 , the f star rebula in winch large nebular velocities are observed (Courtè 1960, Lozinskeya and Esipov 1968, Lozinskava 1970, a rd eeoreelin ard Monnet 1970). The result is a self-consistent picture of a single wn star with the efective terioeratire of ajout $31000^{\circ} \mathrm{K}$, wich for unknown reasons ejects mass at a velocity of $1400 \mathrm{~km} / \mathrm{sec}$ and rate of $10^{-5}-10^{-6} \mathrm{~K} / \mathrm{year}$ into collision with an ellipsoidal nebuler shell of projected dimensions 12' x 181. If the distance is 1.2 lope the mean racius of the shell is 2.6 pe, which is considerably larger than the shells of planetary mebulee. Smith (19630) finds the distance to be 2.29 kpc, but this sumary is based on the smaller distance. The mean line $\begin{gathered}\text { r thickress of the }\end{gathered}$ nebula is only 10^{-2} pc (shell walls); its electron density is $400 \mathrm{~cm}^{-3}$ and electron temperature is $15-19 \times 10^{3} 0$. The shell is expandine $50-80 \mathrm{k} /$ हec and sweeping up interstellar natter with a density of about $1-2 \mathrm{~cm}^{-3}$. The age is about $2 \times 10^{\prime}$ years if the ejection ard transier of monentun has been steady.

The shell mass is about 4 M of which only 3 per cent has been contributed by the ejecta of the W star. Thus the element abundances inferred from the stellar scectrum of $H D 102163$ need not agree with those inferred from the nebular spectrum (normal). The excitation of the shell appears to be radiative, not collisional. Before these investigations NSC 6888 was classified as a supernova remnant (e.g. Pikelner 1959, Lozinskaya and Esipov 1968) or as a "giant planetary nebula" (e.g. Parker 1964). Minkowski (1965) has sugsested also trat S 308, the shell around FD 50896, is possibly a planetary nebula. Lozinskaya and Esipov (19ó8) and Goorgelin and Monnet (1970) agree that the mean radial velocity of NGC 6883 is $-50 \mathrm{~km} / \mathrm{sec}$; no rms error is given. (Lozinskaya and Esipov also estimated the radial velocity of HI 192163 equal to $-120 \pm 20 \mathrm{~km} / \mathrm{sec}$, despite the difinculty of the broed spectral lines.) The galactic coordinates are $1=75.5, b=+2 \%$, the component of differential galactic rotation is $+7 \mathrm{~km} \mathrm{sec}^{-1} \mathrm{kpc}^{-1}$, and the component of solar motion with rescect to the lecal stardard of rest is $13 \mathrm{~km} / \mathrm{sec}$ toward 192153. Hence one component of the velocity of the rebuis with respect to its local standard of rest is probably -41 to $-49 \mathrm{~km} / \mathrm{sec}$ at distences of 1.2 -2.3 kpc . Of course, the near side of the rebula may contain most of the observed filaments. If not so, the mean velocity is appropriate to a "runaway". O star or a planetary nebula.

In vieh of the hish dispersion of velocities in NGC 6838, it is interesting that three other examoles do not shor it. They are given in fable 1 end their velocity dispersions do not differ significantly from those in ordinary nebulae. Successive colums give the nebula, its radius in arc minutes and in po accordine to the spectroscopic distance, its mass (Smith and Batchelor 1970), the rms σ of n velocities in the nebulf (Eeorgelin and Ceorgelin 1970), the included ster, its spectral type, its seectroscopic distence e(sp)(Smith 19690), and the kine-
 theory wich ras been apolied usefully to NGC 6883 is apolied to the objects of

Table 1 , one must conclude that these nebulae have become massive and the velocities of the shells have slowed down to ordinary internal motions in nebulae, because they are older than NGS 6888. For conventional values of the parameters, e.g. rate of mass loss $=10^{-5} \mathrm{M} /$ year, velocity of ejection $=10^{3} \mathrm{~km} / \mathrm{sec}$, and interstellar density $=1$ hydrogen atom cm^{-3}, the derived ages are $2-20 \times 10^{5}$ years, or $10-100 x$ the age of NGC 6898. The difficulty is that WN stars apparentily survive 2×10^{6} years if $H D 192163$ and HD 147419 are equal members of the class WNG. But the total mass loss is 20 No at this age, and the mass of WN5-6 stars in binary systems is about 11 M 0 (Smith 1969a). A reduction in rate of mass loss by a factor of 10 increases age by about $\sqrt{10}$ so that the total mass loss is then 6 Me rather than $20 \mathrm{Mo}$. . An increase of ambient density outside the shell by a factor of 10 also increases age by about $\sqrt{10}$.

The mass of RCifis estimated to be small, 5.7 Mo (Smith and Eatchelor 1970), and likewise the mass of $S 308$ to be only $3 M_{0}$ (Johnson 1971). They are candidates for large expansion velocities but they have not been ooserved with the interferometer. Neither has any symmetric nebula around a W star been reported in the radiofrequency H recombination lines. It is reasonable to consider measuring proper-motion excansions in NGC 6988 and $S 303$, but ROV 58 mey be too small for the scale of available plates. At present we tentatively conclude that the less massive nebulae of the class we heve discussed are the younger, and that the best-studicd memer of the class, NCC 6883, may be peculiar as well as yourg.

If we accept the theory of ejected stellar mas sweeping out a volume of ambient intersteilar gas around some W stars, and note the result that the star contributes only a fer per cont of the total mass in each case, we may derive the ambient interstellar density \sum_{H} of the smept volume. Thes is, first, a check on self-censistency of the theory for which Johnson and Hoss (1965) originally had to estimate Mir independently in order to estaclish the theory;
and, second, it makes possible some comparisons with the rival sugestion that the gas in a symnetric nebula has been ejected from the star at some earlier stage of evolution (e.g. red giant) and said gas might have no dependence on current mass-loss in the W star. The four nobulae of Table 2 are the only ones for which the symmetric-nebular mass M has been derived from the spectroscopic distance \underline{R}, the observed flux density, and the observed nebular gas density N_{e} via the method of the $[0$ II $]$ 3726-29 dcublet-ratio. If the gas is non-uniform, N_{e} is overestimated and M and N_{H} are underestimated. We draw the following conclusions from the table: First, the re is an apparent dependence of \mathbb{N}_{H} on the z-distance from the galactic plane, in the sense expected of swept interstellar gas rather than of a mass entirely derived from the star durirg stellar evolution. Second, N_{H} is a factor of 10 greater than mean interstellar densities, so that an association of W stars with denser clouds is implied. Alternatively, we could say that N_{H} decreases from type WN5 to type Wh6, and the absolute density is govermed by factors other than ambient interstellar mean density to make it greater than the mean. At present the interstellar density near speciific W stars is not well independently enouzh known to decide.

It is interesting to ask about the visibility of the ejecta of W stars before any effects of collision with ambient interstellar matter. If the velocity of the mass lost at radii $\underline{\underline{Y}} \geqslant 30 \underline{R}_{0}=7 \times 10^{-7}$ pc is constant, then electron density $\underline{N}_{e}(\underline{r}) \propto \underline{r}^{-2}$. If $\underline{N}_{e}=10^{12} \mathrm{~cm}^{-3}$ at $\underline{r}=30 \underline{R}_{0}$ the hydrogen emission measure $E M=\int \sum_{e}(\underline{s}) \sum_{H}(\underline{s}) d s$ my be comptied blong lines of sight which pass p pe from W stars. In the approximation that ρ is sme compared with the distance of the star, $E M=0.12 \pi \rho^{-3} \mathrm{pc} \mathrm{cm}^{-6}$. For ex=mple, at $\underline{R}=1200 \mathrm{oc}, 5 \mathrm{M}=1.9 \times 10^{6} \mathrm{pcm}^{-6}$ at $l^{\prime \prime}$ arc from the star, or $1.9 \times 10^{3} \mathrm{pcm} \mathrm{cm}^{-6}$ at $10^{\prime \prime}$ arc. Nebulae for wich Ev $\geqslant 400 \mathrm{pe} \mathrm{cm}^{-6}$ are com:only visible on 4α photosraphs. Hovever, the star image would be competitive on ordinary photogranhs, and the hodrogen emission measure would not be aporopriate for hyjrogen-deficient stars. According to

Pengelly (1964) the intensity of recombination He II 6560 is $0.6 \times$ the intensity of $\mathrm{r} \alpha$ in the limit of a low electron density and at $\mathrm{I}_{\mathrm{e}}=10^{\mathrm{L}} \mathrm{o}_{\mathrm{K}}$. Likerise the intensity of He II 4686 is 4.4 x the intensity of $H \alpha$. We should probably find $\mathrm{N}_{e}=2 \mathrm{~N}_{\mathrm{He}}{ }^{2+}$ rather than $\underline{W}_{e}=\mathrm{N}_{\mathrm{H}}+$ in the envelopes of sore W stars. Note also thet; accordir₹ to the adopted density law, $\underline{N}_{e} \leqslant 10^{10} \mathrm{~cm}^{-3}$ at $\mathrm{r} \geqslant 300$ 路, and forbidden lines can be emitted. They may compete with He II lines in intensity as in planetary nebulae.

But one more question remains about the expandirg envelope of a W star regarded as a special H II resion. Is the Stromgren radius rs significently larger than the star? C?n the continuum photons of the core belondg12 A escape to photoionize the symetric nebulae?. If the envelope density $\mathrm{N}_{\mathrm{e}}=10^{12} \mathrm{~cm}^{-3}$ is constant inward from $r=30$ Ro to the photosphere of a star of radius $\underline{r}=$ $6 \underline{R_{0}}$ and effective temperature of $30000^{\circ} \mathrm{K}, r_{s}=29 \mathrm{~N}_{-}^{-2 / 3} \mathrm{pc}=2.9 \times 10^{-7} \mathrm{pc}=$ 13 Re, as given by Spitzer (1968) for a standard 03 star. The actul radius r_{s} will be larger if the W-star core is larger or hotter or if Ne is less. However, N_{e} may be greater since the possible range is $10^{10}-10^{14} \mathrm{~cm}^{-3}$ (Undernill 1968), and the density may follow the \underline{r}^{-2} law for constant-relocity eiection down to the photosphere. Doubly-ionized le regions a re smeller than ionized H regions. Detailed models are in order, but an inmediate conclusion is that some W envelores may smother the stellar uv radiation, unless the envelores are confined to the equatorial plane or some other non-isotropic configuration. We should be tempted to explain in this way the absence of symetric nebulae or other rebulas around some iv stars excent for the complication thet they may be doubles rith companions that are independently able to photoionize surrourding nebulae.

Are u stars or their expendire envelopes detectable as redio sompes? Davies et al. (196́7) revorted 16523 and m 193793 at 2695 miz in a beam of 15: HP3n. Honever, the former source is probably identiniable with LC55. ol
rather than the W star (Johnson 1971), and no W star has been detected in a search with the Green Bank interferometer (Mjellming 1971). Johnson (1971) looked at TD 9974, HD 168206, HD 177230, HD 197282, HD 190918, HD 191765, HD 193793, 4 D 211853, and HD 214 l , at 7795 MHz in a beam of $4: 4$ HPRH. One source was found in the beam at iD 211853, but this is probably part of a (non-symmetric) nebula in the area. The answer to the question appears to be no at present.

III. ACMORLEDEENTS

This report has been supported partially by the Lockheed Independent Research Program and partially by the NASA under contract NASil-1977. The OAO-2/AEP imestigators have provided primary data under the guest-coserfer program. The Argentine Consejo Nacional de Investigaciones Cientificas y Técnicas defrayed much of the cost of travel to the symposium. The hospitality oin Dr. J. Sahade and his colleazues in the Instituto de Astronomia y Fisice del Espacio is very much appreciated.

REFEFENCES

Bless, R. C. 1971, private communication.
Bless, R. C., and Savage, B. D. 1.971, in Symposium on Scientific Results from 0AO-2 (Anherst).

Bradley, P. T., and Morton, D. C. 1969, AD.J., $156,687$.
Carruthers, G. R. 1968, Ap.J., 151, 269.
Code, A. D., Houck, T. E., McNall, J. F., Bless, R. C., and Lillie, C. F. 1970, AD.F., 161, 377.

Courtes, G. 1960, Ann. diap., 23, 115 (Table IX).
Davies, J. G., Ferriday, R. J., Heslem, C. G. T., Moran, M., and Thomesson, P. 1967, M.N.R.A.S., 135, 139.

Davis, R. J. I971, Preliminary Catalog of Celescope Ultraviolet Observations
(Cambridge: Smithsonian Institution Ap. Obs.).
Georgelin, Y. ?., and Georgelin, Y. M. 1970, Astron. and Ap, 6, 349.
Georgelin, Y. P., and Monnet, G. 1970, Astrophys. Iet., 5; 239.
Hjellming, ?. M. 1971, privete commication.
Houck, T. E. 1971, in Symposium on Scientific Besults from 090-2 (Amherst).
Johnson, H. ․ 1971, AD.J., 157, 491.
Johnson, H. M., and Hoge, D. E. 1965, Ap.J., 1h2, 1033.
Lozinskaya, T. A. 1970, Astron. Zh., 47, 122.
Lozinskaya, T.A., and Esipov, T. F. 1968, Astron. 2h., 45, 1153.
McGee, R. X., and Kumay, U. D. 2951, Austral. J. Phys., Ih, 260.
Minkowski, R. 2955, in golactic Structure, ed. A. Blaeun and N. Schmidt (Chicaso and Lordon: University of Chicaso Press), 0. 337.

Morton, D. C. 1957, AD.J.; J117, 1017.
-----------. 1970, ibid., $160,215$.
Partar, R. A. R. 196), thesis, California Insitute of Technolory.

Parker, R. A. R. 1964, Ap.J., 139, 493.
Pengelly, R. M. 1964, M.N.R.A.S., 127, 145.
Pikelner, S. V. 1959, Physics of the Interstellar Yedium (Moscow: Asad. Sci. U.S.S.R.), Fig. 30.

Spitzer, Jr., L. 1968, Diffuse Natter in Space (New York: Interscience Pub.), Table 4.5.

Smith, A. M. 1967, Ap.J., 147, 158.
Smith, L. F. 1967, A.さ., 72; 829.
1958a, in Wolf-Fayet Stars, ed. K. B. Geobie and R. N. Thomas (Washington: Nat. Bureau Standards), p. 21.
…-........ 19680, M.N.R.A.S., $141,317$.
.-.-.....-.. 1971, in this Symposium; and in Symoosim on Scientific Result. from 000-2 (Amherst).

Smith, L. F., and Kuhi, L. V. 1970, 4p.J., $162,535$.
Smith, L. F., and Batchelor, R. A. 1970, Austral. J. Phys., 23, 203.
Stecher, T. P. 1968, in Wolf-Rayet Stars, ed. K. B. Gebbie and R. N. Thomas (Mashington: Nat. Bureau Standards), p. 65.

Stecher, T. P., and Milligan, J. E. 1962, AD.J., 136. 1.
Terzian, Y. 1970, A.J., 75, 1155.
Underhill, A. 3. 1968, in Mass Loss from Stars, ed. H. Hack (Dordrecht-rolland: D. Reide] Fú. Co.), p. 1 ?.

West, D. K. 1971, in Symposium on Scientific Result from OfO-2 (Amerst).

TABLE 1
SYMETRIC NEBULAE WITH SMAL DISPBSIONS OF VELOCTTY

TABLE 2
INTERSTELLAR DE:SITIES NEAR W STARS

*Pertains to the sharp inner ring of the nebula.

CAPTIONS

Figure 1.--Scanned spectrum of the in5 star HD 50396.
Figure 2.--Photometered spectrum of the NW star $\operatorname{ID} 192163$, with intensity per unit wavelength I_{λ} normalized to an arbitrary zero-point at $\lambda 3320 \mathrm{~A}$. The firsi set of data has 12 solid points; the second has 9 open circles.

Figure 3.--Mean data of 192163 (points) in Figure 2 reduced to intensity per unit frequency, corrected for interstellar extinction, and compared with two model O-type atmospheres (labeled curves) by Bradley and Mortor (1969). Dr. Yorton suggested the comprison with these models. The zero-point of observed intensity is fitted arbitrarily to the scale $£_{\nu}$ of the curves:
Figure 4.--Fadiofrequency snectrum of NGC 6888. Unit flux density (f.u.) $=$ $10^{-26} \mathrm{Wm}^{-2} \mathrm{~Hz}^{-1}$. The observed data are by Jchnson and Hozs (1955) J-H, Lozinskeya (1970) L, Terzian (1970) T, and Johneon (1971) J.

Fis. 1

Fig. 2

Fig. ${ }^{3}$

$$
F_{i j}: 4
$$

