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Abstract

The dynamic characteristics of a two-stage slender elastic

body is investigated. The first stage, containing a solid-fuel

rocket, posses variable mass while the second stage, envisioned

as a flexible case, contains packaged instruments of constant

mass. The mathematical formulation is in terms of vector equa-

tions of motion transformed by a variational principle into sets

of scalar differential equations in terms of generalized coor-

dinates. Solutions to the complete equations are obtained numeri-

cally by means of finite difference techniques. The problem has

been programmed in the FORTRAN IV language and solved on an IBM

360/50 computer. Results for limited cases are presented show-

ing the nature of the solutions.
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1. In tro'duc t ion

During the past decade attempts have been made to describe

the motion exhibited by a flexible missile throughout its flight

phase. In the process, a large variety of mathematical models

have been investigated. The treatment of the missile as a rigid-

body of time dependent mass has been investigated by Grubin
2 3 4and Dryer among others, and by Leitmahn and Meriam , who also

consider the effects of a relative shift in the center of gravity

of the body. The ballistic trajectories of spin-and fin-stabi-

lized rigid bodies are treated in the book by Davis, Follin, and

Blitzer5. '

Effort has also been devoted to the analysis of an elastic

body subjected to longitudinal acceleration. Seide has treated

the effect of both a compressive and a tensile force on the fre-

quencies and mode shapes of transverse vibration of a continuous

slender body. Others, such as Beal , have been concerned with the

problem of buckling instabilities of a uniform beam subjected to

an end thrust as well as the change in the natural frequencies

of such a system. These investigations regard the mass of the

body as constant in time.
8A series of reports by Miles, Young and Fowler offers a

comprehensive treatment of a wide range of subjects associated

with the dynamics of missiles, including fuel sloshing. Again

the mass variation is not accounted for.

Attempts have been made to consider simultaneously the mass

variation and missile flexural elasticity by investigators such
9 10as Birnbaum and Edelen . Both were concerned with solid-fuel

rockets and neither of them included the axial elasticity of the

missile. Price , on the other hand, concerned himself with the

internal flow in a solid-fuel rocket and ignored the vehicle motion.
12 13A study by Meirovitch and Wesley ' attempts to synthesize

the problem of rocket dynamics by accounting for mass variation,

rigid body translation and rotation, as well as axial and trans-
14verse elastic deformations. Later studies by Meirovitch and

* See publications listed in References.



Meirovitch and Bankovskis consider a variable-mass two-stage

rocket where the effects of discrete masses as well as axial

and flexural elasticity are included. The work presented here

gives a summary of the results obtained in References 14 and 15

as well as some numerical results not reported there.

This investigation is concerned with the dynamic character-

istics of a two-stage, flexible missile. Of the two stages, •

only the first one posseses variable mass as it consists of a

solid-fuel booster; the second stage consists of a flexible mis-

sile shell containing a certain number of instruments which are

approximated by discrete masses attached to the missile casing

by means of springs and dampers.



2. Mathematical Formulation

2.1 General Remarks on Systems of Changing Composition

Due to the mass decrease during powered flight, a rocket can

be looked upon as a system of changing composition. For such a

system the equations of motion can be derived by examining the change

in the identity of matter within a given volume with time, where the

shape of the control volume is assumed fixed. Since the system

composition changes it is no longer proper to equate the time-der-

ivative of the sum of momenta associated with the particles to the

sum of the time derivatives., because the summation at different times

is taken over different sets of particles.

Consider first a control volume fixed in space. This control

volume may be a certain volume of the rocket. The procedure then

is to write the force equation in the form F =p*, where the rate of

change of the momentum p is derived by a limiting process consisting

of determining p at two different instants a time interval At

apart, dividing the difference of the two values by At and letting

At -*• 0. In so doing we ensure that the same total mass is involved,

although at one time it is entirely within the volume and at the other

time part of the mass is o.utside as shown in Figure 1.

System
at tiw\et"~t

System at
time, tt^t

"2. - Figure 1

Using the above analysis the resulting force equation for an

inertial control volume has the.form (Reference 15, page 96)

(2.1)

A.wavy line under a symbol represents a vector quantity.



where F0 and F_. are the resultant surface and body forces, re-"•"D *"is
spectively, a is the acceleration of the mass elements dM relative

to the control volume, v is the velocity of that element, p is

the mass density, and dA is a vector normal to the control surface

at any given point whose magnitude is equal to the area element

dA of the control surface. If the control volume is fixed with

respect to a set of body axes, x,y,z translating and rotating relative

to the inertial system X,Y,Z, then the force equation becomes

F5 •*• FB= \ [ c»0-*-y * Zc j xv -»• cb x r +• £>x(oj x r)] dM- - . j . ^ ^ « « . * . « . — ~

"\ [a +Zcoxv +cbxr + coxU>x r)]diri-*- A\ v d^l* WpvdA
I -- V •»•» « • • * • • • » «*M •»<* -~ — V» W I — 1— J .*. ~_Jn J<* Jcs

dA) (2.2)
.*.

cs

where an is the acceleration of the origin 0 of the body axes«•» u
x'Y/z/ ir* ^s tne angular velocity vector of these axes relative

to the inertial space, and r is the position of the mass element

dM relative to the body axes. Introducing the notation

Fr = -2cox vdlM
-c " "

(2'3)

where F , F , and F_, are a set of equivalent forces referred to as*̂ v̂  **̂  u **i\
the Coriolis force, the force due to the flow unsteadiness, and

the reactive force, respectively, we can write Eq. (2.2) in the form

FD = \ LaQ^ cL>x r— r\ J ->° •»• **
•' M

(2.4)



where the expression enclosed by square brackets in the integrand

is recognized as the rigid body accleration of the mass element.

2.2 Equations of Motion for Case Element and Discrete Masses.

To derive the equations of motion of a flexible, solid-fuel

missile it will prove convenient to work with a vehicle element

of unit length comprising the missile casing/ the unburned fuel,

and the hot gases flowing relative to the first two, as shown in

Figure 2. We shall assume that every point of the casing and un-

burned fuel element has the same motion and the same is true for the

corresponding gas element. Hence, denoting quantities relating to

the casing and unburned fuel by the subscript c and the quantities

pertaining to the gas flow by f, we can use the analogy with Eq.

(2.2), and write for the element of Figure 2b

b.

Figure 2

0
•%* «̂ »

txr, + tox <*>x r
«ta» •».» MM, •*- .̂*

(2.5)



where m and m.p are the corresponding mass elements. But the
C I - •

mass centers of the case and gas elements coincide, so that

rf = r . Moreover, denoting by v the velocity of flow relative
** X ""C . • •••
to the case, we have v, = v + v, from which it follows that

««^ £ — • c *^

fe •*• f R - m fa,*- vt + 2c^Jxv, + cL>xr. v u> x CcJ x rc3̂ D w »• U **̂ » •*- *»w •*•• i»i» «** **̂  **

^ v nn. •»• 2 co x v m£ (2.6)
w» -^ «^ *» Y • . _

where m = m + m, is .the combined mass. By analogy with the pre-c ±.
ceding results, Eq. (2.6) can be written in the, form

Is • * ' f B * f c 4 ' f u * i R = »^Sc ( 2 - 7 )

in which

= "U dt f V (2 .8 )

are the corresponding equivalent distributed forces,, where the

latter assumes one-dimensional flow. Moreover . _

D — 4- * *? •+• " f \ (29)

is the absolute acceleration of the case element.

It is assumed that the gas flow takes place along the missile

longitudinal axis

t - - v*, (2.10)

with the possible' exception of the nozzle, which implies that the

flow is not affected by any transverse elastic deformations.

Equation (2.7) is valid for a rocket element in the first stage,

namely in the interval O^x $ L,, inside which there is mass flow

present. The validity of the equation can be extended to the entire

length of the missile, including the segment L, £ x £ L, by writing

it in the form



* m Rc (2>

where h(x - x_) is a spatial unit step function applied at x = x. .

We recall that m is time-dependent in the interval 0 5 x - LI and

constant for L, £ x 5: L.

Newton's second law for the discrete masses M., contained in

the second stage, yields simply

:C (2.12)

where F . anf F^. are surface and body forces, respectively, and

R. is the acceleration of mass M..

The gas flow must satisfy the continuity equation

• L,
(2.13)f

= -
J

where m is the rate of mass decrease per unit length due to burning

and ? is a dummy variable of integration.
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3 . Differential Equations in Terms of Generalized Coordinates

3.1 Coordinates Defining the Motion of the Missile

Equations (2.11) and (2.12) necessitate the calculation of the
• • • •

accelerations R and R.. Actually, we shall work with Lagrange
** C *̂ 1

type equations of motion instead of Eqs. (2.11) and (2.12) and, to

this end, we must calculate the system kinetic energy which is a
• •

function of the velocities R and R. rather than the accelerations.-c -i . .. .
In the following we shall derive expressions for R and R..

The motion.R of a missile element, as shown in Figure 2a, is
^ C

composed of the rigid-body motion, as'defined by the motion of the

body axes x,yvz, and the motion of the element relative to the body-

axes. The motion of the system x,y,z is defined by the velocity vec-
•

tor R- of the origin 0 and the angular velocity <*? of these axes with

n, Y_, Z-. Assuming planar motion,.respect to the inertial space Xn, Yft, Z

we can let the z-axis be parallel to Z_ at all times, choose the

origin 0 to coincide with the aft end of the missile, and denote

by X(t) and Y(t) the two components of R~ along the body axes x and

y, respectively. The third rigid body coordinate 9(t) represents-

the inclination of the body longitudinal axis x relative to the

inertial axis X_, as shown in Figure 3. The elastic motion

Figure 3



of a case element relative to axes x,y is assumed to take the form

of the axial displacement u(x,t) and the transverse displacement

w(x,t). The displacement components of the discrete masses M.

along the same directions are u. (t) and w. (t) , respectively. The

case element and the discrete masses, when at rest, have the positions

x, y = y (x) and x. , y. = y(x.), respectively, with respect to the body

axes which implies that the center of the case element or the discrete

masses may be offset relative to the x-axis. Hence the position of

the case element relative to the inertial space can be written

X + uK •*• (Y* Y+'w) ] (3.1)
*^ . «^ <J - \ t

whereas the positions of masses M. have the form

CY+ y^wOj' l=<,2,— ,n (3.2)

where i and j are unit vectors rotating together with the body axes.

Because the motion is planar, there is only one component of

rotation

<£? = 6 U (3.3)

which is also the angular velocity of the unit vectors i and j. it

follows that i • . . i . »
=co x j =- Bi . ( 3 i 4 )

Since R and R. are expressed in terms of components along the body
mt ̂ t J,

axes, the velocity vector of the case element becomes

•

where R , denotes the time derivative of R assuming that the-crel — c
unit vectors i and j are fixed. In a similar way, the velocity

vectors for the masses M. have the form

,— ,n . (3.6).
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3.2 The Variational Principle

Equation (2.11) represents the force equation of motion of a

missile element and Eqs. (2.12) are the force equations for the

discrete masses contained in the second stage. These equations

can be used to derive the moment equations of motion about any de-

sired point. Certain manipulations can lead to all the system dif-

ferential equations. Instead of following this route, however, we

shall derive all the system differential equations by means of; a

variational principle akin to Hamilton's principle . To this end,

let us write Eq. (2.11) in the form

c (3.7)
which is merely an expression of dynamic .equilibrium for the missile

element. Some of the components of the surface force fc are present
^ O

only over the segment 0 - x i L, , but this fact will be accounted

for later. The equations of motion for the discrete masses can be
")

given a similar treatment by writing Eqs. (2.12) as follows

0.8)
where the spatial Dirac delta function ^(x - x.) imparts to
A 1

E(x. ,t) units of distributed force so as to make it compatible with
A ^-

E(x,t). We note that Eq. (3.8) contains no forces associated with

the gas flow.

The virtual work density associated with the missile element

has the expression

c (3.9)

whereas the one associated with the discrete masses can be written

where SR and 8R- are arbitrary virtual displacements associated
•» ̂ ^ J.

with R and R. , respectively, satisfying

S R = S R ; - 0 at t=t0)t (3.11)
^^ W «» V . 91
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The variational principle then can be stated in the form
' -t, r L

[SWcC«,t)'+SW(*i,t)] dx at = 0. (3>12)

Equation (3.12) will be used to derive the Lagrange equations of

motion of the system.
/s. A

We note that the terms &W (x,t) and &W(x.,t) do not imply the
* c /\ i •

existence of functions W (x,t) and W(x.,.t) so that these terms should
/\

not be interpreted as representing the variations of W (x,t) and
+. ' . c • •" •
W(x.,t) , respectively, but mere infinitesimal expressions. In the

1 A.

case of the potential energy density function PE and the kinetic
/•» 'e /\ . A

energy density function KE the symbols oPE and bKE do imply the

variations of these functions.

3.3 The Lagrange - Type Equations of Motion

To derive the equations of motion of the system, it will prove

convenient to consider the various terms entering into expressions.

(3.9) and (3.10) individually. This will also provide us with the

opportunity to examine the nature of the surface and body forces.

The distributed surface force fc on the rocket element generally*~o
consists of forces external to the vehicle, such as the aerodynamic

forces, and internal forces. The latter are due to stresses within

the casing material throughout the entire length of the vehicle as

well as gas pressure throughout the first stage, including the

nozzle. The surface forces Fc. on the mass M. consist of restoring•̂ol 1
forces due to the spring action of the supports. Although forces

resulting from viscous damping are also surface forces exerted on

the discrete masses, we will find it convenient to treat them se-

parately, namely by means of the Rayleigh's dissipation function.

In view of this, _we can write

fs\^Bc+fslS^-^S8c---SPt^SW^^SWpUhW-h^-L,^ (3.13)

yv
where SPE is the variation of the potential energy density associated

with internal stresses in the casing material and the spring, support-
A /v

ing the discrete masses, whereas &W and ̂ W are virtual work

densities associated with the aerodynamic forces and gas pressure,

respectively.
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The body forces are simply due to the Earth's gravitational

field. Their effect can be written in the form

A

where &WR is the corresponding virtual work density.

The forces f_, fn, and f are all associated with the gas flow
"*L» •••• u *"*x\

in the first stage. The expression

(fc*VWtVi<x)-h(*-OKR0=(o (3.

represents the virtual work densities due to the Coriolis force,

the force due to the flow unsteadiness, and the reactive force,

respectively. , •-•:••••

Finally the terms involving the acceleration lead to

ML?iS(*̂

A- • ' ol • " A
dt -C ^C Jt L,> t _ (^16)

A
where KE is the kinetic energy density.

Introducing the Lagrangian density

L= KE-PE . (3.17)

substituting Eqs. (3.13) through (3.17) into Eq. (3.12), and using

conditions (3.11), we obtain
t, 'r

/\
" =0

which can be used to derive all the equations of motion.
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To perform the operations specified by Eq. (3.18), we assume

that the Lagrangian density has the functional form

/* A ...

L=L(X,Y,0,wiw>X,Y) 6,w ,w)M
l
)w',w",ui.7wi,)u-u,wc ̂  (3.19)

where primes denote differentiations with respect to x and the

subscript i takes on values 1,2, --- , n. Moreover, the Lagrangian

is simply

r
=

J

l A
L d* (3>20)

o
The variation of the Lagrangian density can be written

L n

and a similar expression can be written for the variation of L.

The virtual work density due to aerodynamic forces has the

form • ^

(3.22)
where. f p^ and fA are force components per wetted unit length of

missile in the axial and transverse directions, respectively. The

minus sign indicates that the forces oppose the motion.

The gas pressure leads to the virtual work density

1C (3.23)

which accounts for the fact that across the two ends of the combus-

tion chamber there are abrupt changes in the pressure force. In an

analogous way, the virtual work due to the reactive forces has the

form
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C. (3>24)

Equations (3.23) and (3.24) can be combined to yield the virtual

work density due to the engine thrust

^ t+^vyJfhW-H^-LS+AfpAjL+m^yXSW^SCx-L^'SRc- <3• 25>
From the first of Eqs. (2.8), we obtain the virtual work den-

sity due to the Coriolis force
.A

C ** —• f v -.C- (3.26)

and from the second of Eqs. (2.8) follows the one due to the flow

unsteadiness

(3

Finally, the virtual work density due to the body forces is

simply

i. . (3.28)

where g is the acceleration due to gravity.

The operations indicated by Eq. (3.18) necessitate expressions

for 1>R and $R- in terms of the system generalized coordinates.

Noting that Si =S9 j and Sj = -%0i, we obtain from Eqs. (3.1) and

(3.2)

(3>29)

and

SR-rsx^Su-seCY^.+w^Lt-^Y^Sw^^ecx^^u^j (3 30)

Equations (3.22) and (3.29) enable us to write

S W A d x = - C ( f A X l + f A , j ) -SR ccbc
o Jo

(3.31)
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where

(3.32)

- fA* 5 - f
are generalized aerodynamic forces. Similarly, the victual work

due to the engine thrust has the form
L ' •r

J

TX

in which

(3.33)

v v
\.r

-v- L)
Lr

= (pe~pa )Ae-*-

= »n f Co) Yg s i n

L,*'
i.34)

Ot

[ (-»u(L,,t) J

, <
•*" ~ — o-

fTw= -

0-

- Cmf vy -j
ot
S(-x)

o-
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.where the subscript e denotes quantities evaluated at the nozzle

exit, If is the angle the engine makes with the positive direction

of the x-axis, L,+ indicates a position immediately inside the

second stage and L.- a position immediately inside the first stage

both in the vicinity of x = L, , etc. The virtual work due to the

Coriolis force is simply

where

In an anlogous way, we obtain the virtual work performed by the

forces resulting from the flow unsteadiness

,3.37)

= 0

The virtual work due to body forces has the form

.L

1=1
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where

" (3.40)

in which MQ is the total mass of the missile shell and

,3.41)
13 I

is the total mass of the missile including the discrete masses.

Finally, the last term in Eq.(3.18) leads to
L .

- - - - C

r .
] m RclhW-h(-x-L,)]- SR

= FMxsx+Fm^FMese+
-'

(3.42)

where the expressions

(3.43)

are equivalent forces due to the mass rate of change in the first

stage.
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At this point, we assume that the damping forces can be

derived from the Rayleigh dissipation density function

M,W, *,,U2> --- ,n,Wi,Wx,--~.> (3.44)

by writing

(3.45)

where

• r~
off

r
- \

J '0
 (3.46)

is the Rayleigh dissipation function.

Introducing Eq. (3.21), as well as Eqs. (3.31) through (3.46),

into Eq. (3.18), we obtain the Lagrange-type equations of motion

,.
/ x - r - ^ r x
V-'b^''*" "*" *" B " 1 " ^Wi^Oc/t -'b̂ i.' i " " Bwt"

where the equations for :u and w are subject to the boundary conditions

L|=0 .-at x = 0,L (3>48)

and

*f . >st* > , *r \ ~:O at x = 0,L . (3.49)
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3 .4 The Equations of Motion in Explicit Form

The equations of motion, Eqs. (3.47), can be written in an

explicit form in terms of the system generalized coordinates.

This necessitates explicit expressions for the Lagrangian density
A £*
L and Rayleigh's dissipation density function <n, as well as the

functions themselves, L and ?r.

The Lagrangian density can be shown to have the expression

L= KE-PE - k mR- R * f c - * i > R R - I EK w ") 2

E AuOPCw 1)" ] - k,.[u;(t)-u6<,tyl«- (<w.[wLCt) - w(*,t)]

(3>50)
*

Where R and R. are given by Eqs. (3.5) and (3.6), respectively,
** C , ^ 1 ;

p _ c: A ~du -K~ b Ac "^ (3.51)

is the axial force at any point x on the vehicle longitudinal axes,

k and k are the springs connecting mass M. to the vehicle shell,

and k and k are the springs between masses M. and M. , .
Ui+l/2 wi+l/2 i i + l

We note that terms corresponding to subscripts larger than n must

be ignored. Integrating Eq. (3.50), we obtain the Lagrangian

S i.
{mRc-Rc-[EI(w

Il)% EAc(u')
Z + P(w')Z]

° n "**

(3.52)

Next introduce the operator TT1 defined by

(3.53,
o 1=1

where f = f(x,t) and f. = f(x.,t) denote any of the variables

associated with the position of the case element and mass M.,

respectively. Introducing Eqs. (3.50) and (3.53) into Eqs. (3.47),

and recalling the expressions for the generalized forces derived in

the preceding section we obtain the equations corresponding to the
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rigid body motion in the explicit form

-M(X-eY-29Y-e*XKlTl{^
r«- '

"J ̂ d^ +~o

-n(Y+ex+ZQx-eNo-7n{wV9^^
rL - rLl

J ^A^d x < 4"m4 ( o^ veZSinY +20] mfvd* -Mgcos6 =0

(3.54)

^

0* L|* 'y-j) [ L^u
- . — *L-

f ">u(0,t) -*-?T]C^w)sin0-C5(-*-u)cose5 = 0

The remaining equations of motion necessitate the definition

of the Rayleigh dissipation density function, which is assumed to

have the form

-w(x,t)] JŜ -xĴ ĉ ûrû .r̂ ĉ Wi-ŵ ^̂ ^ (3>(3>55)

with the function' itself having the expressionL '
r

=j[ (cu

Z ^__ l>uif,Â L «c»»J ^Wt+'4vwt vvCt.,/ j (3.56)
Lr» *•
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This enables us to derive the equations for the discrete masses

-02(X*xt+til)'l -MiSsin9

(3>57)

— ,n

where terms with subscripts smaller than cfne and larger than n

must be omitted.

Finally, the equations for the elastic motion can be shown to

have the form . . .

0*". S

^ -x )= 0

' ' -I0*"^+m.f v.v -I )\ S(x)-vng sin G

(3.58)

-mgcosB •+• k^^fw — w) S («-x c)

* Cwl(wL-'w) SCx-'Xt) = 0

which are subject to the boundary conditions

E A C L / - 0 at x = 0,L (3.59)
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and

" = (El.W1') ~ 0w = ̂  .W ~ at x = 0,L (3.60)

where in the second of boundary conditions (3.60) we took into

account that P = O a t x = 0 , L .
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4. Calculation of the Engine Thrust and Internal Gas Flow

The purpose of a nozzle is twofold. First it restricts the

rate of escape of the gas from the combustion chamber to a rate

suitable for the reaction of the propellant, and second it changes

the energy of the propellant gas. from internal energy to kinetic

energy. A convergent-divergent nozzle is used to convert all of

the available enthalpy into kinetic energy. In the portion before

the throat the flow is subsonic whereas after the throat the flow

is supersonic, with sonic conditions occurring at the throat. Al-

though losses may exist in the nozzle we assume that they are neg-

ligible and regard the flow as one-dimensional isentropic steady

flow.

Consider the flow of Figure 4 and assume that the stagnation

Figure 4

conditions denoted by the subscript 0, are known. We may then

write the governi-ng physical equations as follows.

First the flow must satisfy the first law of thermodynamics.

Considering the control volume of Figure 4 and denoting the enthalpy

per unit mass by h, this law may be stated as

(4.1)



24

Assuming no friction or heat transfer, the second law of

thermodynamics reduces to

S0
=S,= S2- Constant (4.2)

where S is the entropy.

Furthermore, since no mass is added within the nozzle the flow

must satisfy the continuity equation which may be written as

J3. A,v t =• j>g A 2 v l = constant (4 .3)

where JD, (p-) is the density at station. 1 (2) .

If we denote the force exerted by the nozzle wall on the gas

FT, the momentum equation can be written as

Fr + pA- P2 V~,PJL
A2V2 -J°A V,2 (4.4)

Equations (4.1) through (4.4) must be supplemented by the

equation of state which for a perfect gas has the form

-(4.5)

in which R is the universal gas constant and T the temperature.

On introducing the definition of the speed of sound for a

perfect gas

c =• I kRTl* ( 4- 6 )

where

U = C p / C v . ( 4 . 7 )

in which c and c are the specific heats, we may, after some

manipulations of the above equations, arrive at the following

expressions

To/T- I -f ̂  M* (4.8)

' Po/P = M (4.9,
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where M = v/c is the Mach number. Finally, the cross-sectional

area A at any point is related to the cross-sectional area AA at

the throat by

<«•">
where

Gl = PV (4.12)j ^

and

r *= i KP6 i ̂ r-L-^UK-i) (4.13)
vJ! at ) '̂ -̂" 1 I k-fl

are the mass flow rates per unit area at an arbitrary point and
i

the throat, respectively.

The above expressions suffice to describe the flow in terms

of the parameters of the nozzle. Since the interest lies in the

conditions at the nozzle exit aiM> because in the analysis presented

here the nozzle exit area is usually given, we may find the Mach

number at the exit from Eq. (4.11), where k is assumed known.

Using Eqs . (4.8) through (4.13), the other parameters at the exit

section may then be found. This enables us to determine the rocket

thrust as

(4.14)

Eq. (4.14) only considers thrust due to the internal gas flow

and if conditions other than in vacuum are considered, then the

thrust due to atmospheric pressure acting on A must be subtracted

from the above equation.

So far it has been assumed that the stagnation conditions are

available for evaluating the flow parameters at the exit section.

This assumption must next be considered. The stagnation conditions

are determined by events occurring upstream of the nozzle. In our

case there is a propellant charge ablating, thus producing heat and

gas. This gas enters the nozzle only after proceeding along the

propellant grain and the nozzle plenum chamber.
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The processes occurring upstream, therefore, are not isentropic

and the stagnation conditions are not constant, but decrease as

the nozzle is approached. The stagnation conditions, however, may

be obtained in terms of conditions at the forward end of the pro-

pellant charge by an analysis similar to that done above for the

nozzle. In Reference we can find a plot of the stagnation

pressure ratio as a function of a reduced mass flux ratio

which indicates that for a Mach number of less than 0.4 the drop

in stagnation pressure may not be significant. Therefore, we

assume that the stagnation pressure as well as the other stagnation

conditions, occurring at the forward end of the propulsion stage,

are constant and apply also to the nozzle. These assumptions may

have to be reconsidered if a more precise model is desired.
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5. Numerical Solutions •

5.1 General Remarks

In seeking numerical solutions of differential equations, it is

frequently more advantageous to work with first-order rather than

second-order equations. With this in mind, we introduce a set of

5 + 2n new variables defined by

« 5 = a
(5.1)

which can be regarded as a set of 5 + 2n first-order differential

equations. Another 5 + 2n first-order differential equations in

time can be obtained by introducing the variables defined by Eqs.

(5.1) into Eqs. (3.54), (3.57), and (3.58) with the result

- Ml R -T Y - 2T5 - T

(5.2)

oU - v • L

.

04

0-

u(0,t) -0
<s»
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?<cy=. 0 (5.5)

0+

- mg GOS& + kw.(wt-w)
<b(x-Xi)+ c

(5.6)

I.Z,— ,n (5.7)

/ = .l,z,— ,n {5.8)

The boundary conditions, Eqs. (3.59) and (3. 60) , retain their form.

In light of the complexity of the differential equations of

motion/ no closed-form solution can be expected. Hence, we shall

attempt a numerical solution based on the finite-difference approach

It will prove advantageous to consider unequal time increments but

equal spatial increments. With this in mind, we introduce the idea

of unequal segments for the purpose of evaluating derivatives of

any arbitrary function f = f(x,t). From Figure 5 and the definition

of the central differences, we obtain the derivative of f at the
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Figure 5

jth time increment for the ith station in the form

' i.j»/z. 'ioJ-Vi. (5.9)

However, since the interest lies in integer values of the subscript,

we average the. function with noninteger subscripts as follows

*t>j*'/t" z £po>i'1" c-i

,i_i/^~ "z \ 'T'L,]'*" U,j-i )

(5.10)

so that expression (5.9) becomes

(5.11)

Assuming equal increments for the spatial variables, in

analogy with expression (5.11) we conclude that

•P 41
=
 TL+-i>j - Tl-i,j

(5.12)
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where h is the spatial increment.

Since Eqs. (5.2) through (5.4) contain integrals, we approx-

imate them by the simple trapazoidal rule/ which for an arbitrary

function f = f(x,t) has the form

L

f(x,t)d*«££(fV|f̂ \ (5.13)
O i.e»

where r is the number of segments of the missile (one less than

the number of stations, rh = L) . Using expression (5.1-3) we con-

clude that the operator TH of Eq. (3.53) has the form

where F. . represents any of the variables describing the ith mass
1/:I -i-~

at time t = ^-^K-
k«i

Next we consider the real and equivalent forces appearing in Eqs,

(5.2) through (5.6). Assuming that the flight of the missile takes

place in vacuum, the generalized aerodynamic forces vanish

FAXS FAY" FAe
 = ^AU - **w-0.. • (s.is)

The generalized forces due to the engine thrust are calculated

under the assumption of complete expansion of the nozzle to vacuum,

so that p = p =0. Under these conditions Eqs. (3.34) becomee a ,

F = ™Co}v cos* , F= mCO'iYj' sinTX

(5.16)
FTw= pAf SCx-UVlm^WvecosY-pAfCOl *(*)
FTw = «n^(o^v^ sinX SW

The Coriolis forces are given by Eqs. (3.36). Moreover, since

-the internal flow can safely be assumed to be steady, Eqs. (3.38)

become

= 0. (5.17)
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It is still necessary to find expressions for m_v and v .

The first is found by considering the continuity equation, which,

for uniform burning over the entire length of the combustion chamber,

takes the form

However, since we assumed that p = 0 Eq. (5.19) reduces to

(5.18)

The expression for the exhaust velocity, v may be obtained

by making use of Eq. (4.1) as well as certain definitions introduced

in Section 4, with the result

e* V-.L -tl^2-
(5.19)

.5-20,

5.2 Finite-Difference Equations

To avoid any possible confusion, we introduce the following

notation: Subscripts i generally refer to position and subscripts

j to time. For example/ U. . refers to the ith mass at time t = Z/
1 f J J H=\

while X. refers to the rigid body translation at time t = lE^n,
J . KTSI

Similarily u. . refers to the element in the position x = x. at
i_ Ir3 1

time t = ̂ _^K . With this in mind and recalling Eq. (5.11) we«=i
write Eqs. (5.1) in the form
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Next we consider the equation for axial motion of the case

element, Eq. (5.5), and use the thrust terms defined in Section

5.1 to write the equation in the form

(5.22)

Using expressions (5.11) and (5.12), Eq. (5.22) takes the finite

difference form

W. w LtTl rl r + f ' I r * ' »t

' "^(Puj-puJS^t = 0 (5.23)

where the subscript m refers to the station corresponding to x = L

and c>Cj is the Kronecker delta. The subscript i, refers to the

kth discrete mass. Upon rearranging, Eq. (5.23) becomes

- Pc.j., - C Rj,r

.

In a similar manner, using Eq. (5.6), the finite-difference

expression for the transverse motion becomes
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- 2 T ^t'Oî f 4wUlji+ 6w4-4ww.it

, , . > El

(5-25)

Using (5.14), the rigid body equations can be written in

finite-difference form

in 0 ] (5.26)

= si- - IV ^mk

(5.27)
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sin 0j - Tfl ̂ ^u^cose-jl (5.28)

Finally the equations for the discrete masses lead to the

finite-difference relations

( D . 30)
The boundary conditions, Eqs. (3.59) a,nd (3.60), become

(5.31)

•and

(5.32)
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Eqs. (5.24) through (5.30) may be written in compact matrix

notation as follows

(5.33)

where [A]- ^s a square matrix of order 10 + 4r + 4n whose elements

are real, x . . and X . _ , are (10+4r+4n) -dimensional state vectors,

and {c j • is a (10+4r+4n) -dimensional vector corresponding to forcing

functions of various kinds. The subscripts indicate the time at

which the components are evaluated. A recursive formula could be

devised by simply premultiplying both sides of Eq. (5.33) by LAJ . .

It turns out, however, that the matrix [A^ • is singular so that its

inverse does not exist. The reason lies in the fact that the equations

of motion are not independent. In fact Eqs. (5.26) through (5.28)

represent certain integrals of the remaining equations. Hence a

procedure is advised whereby the problem of calculating the inverse of

[A] . is circumvented.

Let us write Eq. (5.33) in terms of partitioned matrices as

follows

I
12

1

/

•<

x,

A
, —

ij_.

i -

Au ' A,,
1

A ' AAt» j ^ii
-

(

• ™

X,

/2

' •*• *

t

r -\

c,

^Z

A,, I A
i jj "_L — 1_ "' Ir \ ' — ~ . ~ (5.34)

J-i

where the 6-dimens.ional vectors and. .-, , ._, correspond

to the rigid-body motion and the (4+4r+4n) ̂dimensional vectors
and x ^ - n to the elastic motion. Equation (5.34) can

be separated into one for the rigid-body and one for the elastic

motion in the form

and

[A,,], {X,

(5.35,

i <5'36)

The assumption that the elastic motion does not affect the rigid-

body motion is equivalent to
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<5.37,

which can be interpreted as the statement that the weighted average

of the elastic motion is zero, where the weighting matrix is \A, _"} ..
•" D

This enables .us to solve Eq. (5.35) for the rigid-body motion

On the other hand, the rigid body does affect the elastic motion.

Indeed, introducing Eq. (5.38) into (5.36), we obtain

(5.39)

It turns out that [A223 • is the unit matrix, denoted by [l] , so

that Eq. (5.39) reduces to

(5'40)

Equations (5.38) and (5.40) can be solved recursively for the

rigid-body and elastic motions.

A question of particular importance is the stability of the

finite-difference solution. Inherent in the finite-difference

approximation to differential equations is the introduction of

extraneous solutions which may be unstable. The problem of finding

the conditions under which the finite-difference approximation

gives the true solution and not a divergent one is in itself a dif-

ficult problem and will not be pursued here. However, in order

to insure some semblance of stability, we invoke the analogy with

a uniform, constant mass beam. It is indicated in Reference 13 that

to ensure the stability of the resulting incremental expressions

for the longitudinal vibration of a uniform beam, the following

conditions must be met
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r- A (5.41)
E Ac

while for transverse vibration

where c" is the time increment and h is the spatial increment,

m is the mass per unit length and EA and El are the longitudinalc
and transverse stiffnesses of the beam respectively. But in the

system under consideration we do not have a uniform beam. We

do, however have uniform segments so that we may write Eqs. (5.41)

and (5.42) for each segment as

(5.43)
- EAc,

and

U4 w-v-i • •
^ m«"J<r' (5.44)

where the first subscript refers to the spatial increment and

the second to the time increment. Equations (5.43) and (5.44)

give two values of <5T . . for each spatial increment. If these
i / D+-»"

are compared to those corresponding to all the spatial increments

and the smallest among them retained, then the inequalities (5.43)

and (5.44) are satisfied. This value, denoted by /£~T -, , is then

used as the time increment. Mathematically we seek

-- m'n .jVi (5.45)
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and note that this value may change from one increment of time to

the next because the mass is tinted-dependent, m = m(t). Expression

(5.45) does not ensure stability but it does give a reasonable

estimate for the time increment, corresponding to known values of

mass and stiffness distribution and assumed values for the spatial

increments.

It is of some interest to determine the error introduced by

approximating the differential equations of motion by the finite-

difference expressions. Since the change in mass is small for the

time increments used, we assume for simplicity that the time incre

ments are constant 'C. = ̂ -j.1 = *£"•' With this in mind, we consider

each term of Eq. (5.24) as a continuous function of x and t. For

example, consider u. . , as denoting u(x,t+£). Expanding each
i / 3 "•"•!-

term of Eq. (5.24) in a Taylor series about the point (x,t) we

obtain

R .W *L-R-'Hl* _ + ' j_
* *- ~* +

m

3 —

m

.
rn --Xi.) = 0 (5.46)

Comparing Eq. (5.46) and (5.5) we find that the truncation error,
eT, is

ol*T
e" ' '-

r .
T" L 'd*3

_ J. f ^fm L --

or

(5.48)
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under the assumption that the terms in the brackets are <T1. The

notation O(C2) indicates that a term is of the order of t . Using

expression (5.41) we finally conclude that

eT=r Q( T*') - (5.49)

Similar conclusions may be reached by considering the other finite-

difference expressions.

5.3 Results

A computer program to solve Eqs. (5.24) through (5.30) in

the form of Eqs. (5.38) and (5.40) was written in the FORTRAN IV

language and evaluated numerically on an IBM 360/50 computer.

Due to the exceedingly small time increments necessary for

a stable solution (T of the order of 10~ ), a large number of

steps must be taken to obtain even a small burn time. As a result

of the large number of steps, the problem of accumulation of round-

off error is prevalent. For relatively small burn times, however,

the round-off errors should be small and an indication of the

system behavior should be obtainable.

The numerical values used in the computation were

E, = E9 = 30 x 10 psi, L, = 100 in., L = 150 in., h = 2 in.,
2

A.p(0) = 36.4 in. , p = 2000 psi, m g = 1.57 Ibs/in./sec. ,
O O A A

A , = 7.53 in. , A 2 = 5.0 in. , I, = 93 in. , I2 = 50 in. ,

m g = 4.25 Ibs/in., m g = 3.0 Ibs/in.

where the subscripts 1 and 2 refer to the first and second stage

characteristics respectively. The numerical values used to describe

the three discrete masses were

X, = 125 in., X2 =130 in., X~ = 135 in., M,g = M~g = M^g = 6 Ibs.,

k = k =k =k =k = k =106 lbs/ft.,
ul U2 U3 Wl W2 W3

ku = ku = kw = kw = 10 ŝ/ft.,Ul/2 3/2 wl/2 w3/2
C ~~ G —- C — C — G —"C — C —- C — 0
ul U2 U3 Wl W2 W3 Ul/2 U3/2

= Of Y, f Y,, Y,, variable.
1/2 3/2 J. / J
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The initial conditions were

w(x,0) = 10"5(sin rrx/L-2/rr)+0.5xlO~5(3/n"-6x/rrJL-sin2TTx/L) ft.

X(0) = 0, R(0) = 0, Y(0) = 0, S(0) = 0, T(0) = 0, u(x,0) = 0

U±(0) = Wi(0) = Pi(0) = Qi(0) = 0 i = 1,2,3

while the launch angle, 0Q, was varied by inputs to the program.

The axial and transverse translation of the missile as a

function of time with @0 as a parameter is shown in Figure 6 and

7. The axial and transverse elastic displacements for several

time increments are shown in Figure 8 for the following conditions:

(I) the system parameters have the numerical values listed above,

and (II) all the parameters are as in the first case with the

exception of k and k which are zero, k = k =0. Figure 9u2 w2 u2 w2

shows the axial and transverse displacements of the discrete masses

as a function of time for Case I while Figure 10 shows the motion

for Case II.

The more rapid change occurring in the axial elastic dis-

placements shown in Figure 8 is caused by the sudden increase in

pressure following ignition. The subsequent motion in the axial

direction is more rapid because disturbances in this direction are

propagated more rapidly than in the transverse direction.

When the discrete masses are attached to the case as well as

to one another, the axial displacements consist of synchronous

motions lagging behind the motion of the rocket shell, as shown

by the dashed line in Figure 9. On the other hand, the transverse

displacements do not exhibit such lag and the discrete masses

move so that their mean motion coincides with the motion of the

case. The effect of setting k = k =0 becomes apparent by
2 W2

comparing Figures 9 and 10. Since in this case the second discrete

mass is not attached to the rocket case, the forces producing its

motion are transmitted only through the springs connecting it to

the adjacent masses. Whereas the cyclic time is seen to increase

substantially from Figure 8 we conclude that the motion differs

only by a small amount from the one in which all masses are

attached to the case.
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Within the limited cases considered and the relatively short

burning time allowed, the launch angle GQ and the offsets of the

discrete masses produced no noticeable effects. However, this is

not to be interpreted as an implication that no significant ef-

fects of these parameters on the elastic motion of the case and

the discrete masses should be expected when less limited cases are

explored.
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6. Summary and Conclusions

This investigation is concerned with the dynamic characteris-

tics 'of a slender elastic body of variable mass. The analysis is

applicable to a two-stage solid-fuel missile envisioned as a slender

cylindrical body capable of both rigid-body motion as well as axial

and transverse elastic deformations. The first stage contains

the solid-fuel motor and posseses variable mass, whereas the second

stage contains packaged instruments simulated by discrete masses.

The equations of motion were first written in vector form and

then transformed by means of a variational principle into simul-

taneous equations of motion in terms of generalized coordinates.

Because no closed form solution of the equations is possible,

a numerical solution based on finite difference relations had been

pursued. A computer solution of a limited number of cases has been

obtained. For the relatively small burning times used, the effect

of the elastic motion on the rigid body motion was not noticeable.

The motion of the discrete masses was different for different cases,

depending on the manner in which they were attached to the case. If

all masses were attached to the case as well as to each other by

springs, the motion was synchronous. If a mass is disconnected

from the case but remains attached to other masses through springs,

the cyclic time increases.

Due to the nature of the finite difference method of solving

the equations of motion, a very small time increment is necessary

to obtain a stable solution and the resulting large computing time

necessary to obtain any desired results makes this form of solu-

tion undesirable.

Several alternative methods to solve the equations of motion

deserve investigation. One such method is to express the elastic

displacements of the rocket case in terms of sets of eigenfunctions

corresponding to" the associated constant-mass system thereby con-

verting the partial differential equations into ordinary differen-

tial equations. Methods of solving sets of ordinary differential

equations are more adequate and the question of stability of the

solution may prove less bothersome. This method should be attemp-

ted with the expectation that longer burn times will be possible.
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