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- FOREWORD -

The work in this report was sponsored by the
George C. Marshall Space Flight Center under
NASA Contract NAS8-27331. The work was per-
formed under the technical direction of Homer
Pack, MSFC Code S&E Aero-DDS

The work on .the contract has been the collec-
tive effort of four people, all of whom share
authorship of the report: Jon D. Collins was
project manager; Gary C. Hart and R. T. Gabler
participated in the technical review, formula-
tion and development; and Bruce Kennedy was
responsible for the computer program development.
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- ABSTRACT -

This report presents the results of research in
applying statistical methods to the problem of struc-
tural dynamic system identification. The study is in
three parts: a review of previous approaches by other
researchers, a development of various linear estimators
which might find application, and the design and devel-
opment of a computer program which uses a Bayesian
estimator.

The method is tried on two models and is successful
where the predicted stiffness matrix is a proper model,
e.g. a bending beam is represented by a bending model.
Difficulties are encountered when the model concept varies
There is also evidence that nonlinearity must be handled
properly to speed the convergence.
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- NOMENCLATURE -

Structure and Eigenproperty Definitions

x^ - i eigenvector

xuj_ - u^h component of i eigenvector
equivalent to x(i,u) in computer output

Aj_ - i eigenvalue

K or [K] - stiffness matrix

k - (rs) component of the stiffness matrix
JL S

M or [M] - mass matrix

mrs - (rs)tn component of the mass matrix

Definitions Used in Estimation Theory

!

\
- £ > - vector of physical propertiesmp J

x* - statistical best estimate of x based on
acquired data and some estimation technique

(dA-j )
y = \g~.~. ? ~ vector of eigenproperties, in most cases only

' Ji) those quantities which have been measured in
a test

[A] - matrix relating changes in physical properties
of a structural system to changes in the mass
and stiffness matrix elements

[A]' = -]
[B] - matrix relating changes in eig'enproper-

ties to changes in mass and stiffness

*(*i> Xjj) 1
9 (krs, muv)J

vi



[T], T - matrix product, [B][A]

R - covariance matrix of the errors in measure-
ment (e). These correspond with the elements
of the measured eigenproperties in the
vector y.

S - covariance matrix of the uncertainty .in the
elements of the estimated vector x

W - weight matrix

E< > - expected value

P( ) - probability of an event

p ( ) - probability density function of a random
variable

e - vector of measurement errors

a - standard deviation

( )' - transpose of the vector or matrix

( ) , - least squares

( ) v - minimum variance

( )wis ~ weighted least squares

( )m-^ - maximum likelihood

( ) - combined (used in the Bayes estimator
development)

( )b ~ Bayes estimator approach

( ) . - estimate of xx*

( ) - prior estimate of xxp
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1.0 INTRODUCTION

Since December 1969, the Marshall Space Flight
Center has been sponsoring research in the area of
identification and modeling of uncertainty in struc-
tural dynamic models. In 1970 the J..H. Wiggins
Company delivered to MSFC a computer program (VIDAP)
which was able to trace identified uncertainty in
mass and stiffness through to uncertainty in the fre-
quencies and mode shapes. This program was particularly
valuable when unusual elements had large stiffness
uncertainty and this uncertainty could lead to prob-
lems in accurately predicting critical modes and
frequencies.

The successful demonstration of the statistical
method lead to other possibilities. For years there
had been the continual problem of trying to make an
analytical model match the data obtained from test.
Many methods had been tried but none had operated
successfully enough to receive general acceptance.
Consequently the door was open to try a new approach

, which identified uncertainty in the model prior to
trying to match the test data. This identified
uncertainty would then aid in identifying where the
largest changes would be applicable in the model.

This new study called "Structural Modes Accuracy
Analysis," NAS8-27331 was initiated with the intent
of using a multivariate conditional distribution to
identify the revised masses and stiffnesses as a
function of the measured modes and frequencies. Prob-
lems rose, however, in treating measurement uncertainty
and a shift was made to the use of a Bayesian estimator
which in format is very similar to a one-stage Kalman
filter. The following sections describe this develop-
ment and demonstrate the resulting computer program
(MOUSE) on two problems with varying success.

From the work done to date we have developed
confidence that the method selected is perhaps the
most consistent and accurate system identification
method found to date. However much work needs to be
done in refinement as the problems of special applica-
tions, nonlinearity, non-orthogonality, proper models,
etc. need more attention.
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2. BACKGROUND REVIEW OF DYNAMIC MODEL OPTIMIZATION TECHNIQUES

2.1 INTRODUCTION

The formulation and verification of an analytical
model which best represents the modal characteristics
of a structure has been the goal.of many engineers in
recent years. The problem in this area which has received
the most attention concerns itself with the use of
experimentally established natural frequencies and mode
shapes to estimate a structure's stiffness and/or mass
matrices. In this chapter we summarize the various
methods proposed by researchers for solution of this
problem.

The methods surveyed fall into two basic categories.
They either attempt to construct a simple low order struc-
tural model using only the measured modal characteristics
of the structure or they seek to verify or modify a pre-
established analytical model using available experiment
data. The basic argument for the former approach is
that it constructs a simple model which accurately rep-
resents the modal response over the range of the fre-
quencies surveyed in the experimental test. In the
latter approach, a considerable amount of pre-experiment
effort is placed upon the formulation of an analytical
structural model (usually a finite element model). Then,
these analytically derived models of the structure's
stiffness and mass matrices are altered by some rational
scheme until their modal characteristics correspond to
those obtained from the experimental test.

2.2 SURVEY OF METHODS

A simple direct procedure for the estimation of
structural stiffness and mass matrices is possible when
the number of structural degrees of freedom exactly
corresponds to the number of modal properties measured.
A structural model so formed from test data is said to
be. complete and in fact, it is also mathematically uni-
que. Most of the references.cited in this report
describe this procedure. While the formulation of a
unique complete structural model is most desirable it
is seldom, possible. The reason being that we seldom,
if ever, have a one-to-one relationship between struc-
tural degrees of freedom and measured -modal character-
istics .
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Considerable-research has been done by Raney and
Hewlett .(If,. Ibanez et all (2), and Hillyer (3) with
respect to the formulation of an incomplete mass and/or
stiffness .matrix.which represents a structural model
response characteristics within the frequency limits
of the measured, modal data. In particular, these efforts
use the measured experimental data to construct an
"equivalent" structural model whose number of degrees
of freedom is equivalent to the number of measured modes.
The shortcomings of the approaches are two-fold. Firstr
they do not utilize recent advances in the finite
element matrix modeling of structures and second, they
do not allow for the direct use of the subjective judg-
ment of the engineer.

Methods have been proposed by Gravitz (4), Rodden
(5), Ross (6) and Herman (7) which formulate a structural
stiffness matrix given the mass matrix and modal char-
acteristics. Gravitz formulates the inverses of the
stiffness matrix by averaging a generated stiffness
matrix (which is not symmetric) and its transpose.
This method seems to yield good results when the number
of measured modal properties is significantly less than
the order of the mass matrix and hence the number of
modeled system degrees of freedom (Rodden (5)) . However,
Ross (6) notes that Gravitz's method seems to produce
unacceptable results when the number of measured modes
increases toward the number of model degrees of freedom.
Ross suggests a method in which one calculates the .
characteristic shapes of the mass matrix and then adds
them columnwise to the measured mode shapes to obtain
a square positive definite modal matrix. Such a modal
matrix may then be inverted and the formulation of a
corresponding stiffness matrix follows directly. Alter-
nately, Herman (7) defines an incomplete stiffness
matrix by a matrix series summation. Each term in the
summation contains the structure mass matrix and a -.-
single estimated natural frequency and mode shape.

If prior analytically established structural
stiffness and mass matrices are available to the struc-
tural engineer then there exist methods where he may
use this additional information as well as the measured
modal characteristics to formulate the structural
model. Ross (6) developed an algorithm which uses
the measured modal characteristics plus as many char-
acteristic shapes of the .prior mass and/or stiffness
matrices as necessary to yield a square, positive
definite modal matrix. With this square modal matrix

*References used in Section 2 of this report are listed
on pages 2-5 and 2-6.
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the. engineer-, then solves.for.a revised structural
mass and stiffness.matrix. A. basic shortcoming of
the procedure.-is.that.it does. not categorize the
changes in the stiffness., and. mass, matrices v/ith the
uncertain elements of the structural model.

An alternate procedure which utilizes analy-
tically derived mass and stiffness matrices has been
proposed by Hall, Calkin and Sholar (8). The pro-
cedure uses a steepest decent gradient search algo-
rithm to solve the problem in a minimization format.
In particular, the authors form a special weighted
least squares penalty function which they then mini-
mize. The magnitude of the penalty function is a
function of the difference between the measured and
theoretical natural frequencies and mode shapes. In
order to carefully classify the unknown parameters
in the stiffness matrix, the procedure expresses the
stiffness matrix as a matrix sum of a constant matrix
and a series of unknown scalar variables times square
position matrices. It is these scalar variables
which are used to minimize the penalty function in
the optimization routine. The basic disadvantage of
this method is expense. In particular, one eigen-
value problem must be solved for each iteration and
hence if the order of the matrices involved becomes
large, so does the cost.

The methods previously discussed only utilize
estimates of the structural modal characteristics to
formulate the structure mass and/or stiffness matrices.
There also exists several procedures which utilize
special force-response measurements to estimate the
structures mass and stiffness matrices. Kozin and
Kozin (9, 10, 11) have proposed a method which uses
statistical temporal averages. In their procedure
they formulate as many equations in terms of temporal
statistical moments as mass, damping or stiffness
coefficients. The method seems particularly inter-
esting and one can see where the least squares part
of the procedure could be improved to include prior
uncertainty in the parameters. However, the method
seems to be particularly expensive for large struc-
tural systems. Also, it is necessary to obtain an
extremely large number of.time dependent measurements
in order to define the structural parameters.

Other special force-response methods which have been
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proposed.-are ...in ...the tr.ans.fer..;. function category. Such
methods., include.. Herman and-Flannelly (12), and Raney
and .Hewlett (1) .

Also of notice is a paper presented by Berg (13)
which uses a least squares.estimation procedure to
develop tables and guides for special classes of
simple coupled systems.
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3. DEVELOPMENT OF A STATISTICAL MODEL FOR ANALYTICAL MODEL
OPTIMIZATION

3.1 General

The statistical model used in this program development
operates on a base that was laid by Gauss 176 years ago.^1)*
It was at that time (1795) that the 18 year old Gauss formu-
lated a least squares method to estimate the parameters
necessary to characterize the motion of heavenly bodies from
measurement data. His work, followed by Legendre, formed
the basis for the generalized least squares. 120 years
later Fisher conceived the maximum likelihood method of
determining parameters, and more recently (1955 to the
present) a series of authors have contributed to least-
square estimation. The discussion in this section surveys
each of the major estimation approaches and then presents the
particular method which best fits the structural dynamic
problem. .

3.2 Linear Relationships

The objective of linear estimation theory is to make
an estimate of the value of a set of numbers (defined by
a vector) based on a set of observations. In the structural
dynamic problem we want to revise the elements of the mass
and stiffness matrix based on a set of observations of
frequencies and mode shapes. In previous work(2) it has
been established that small changes in the mass and stiff-
ness elements of a structure can be related to changes in
eigenvalues and eigenvectors by the equation:

dX

dX

\ _

dx
i i

dx
2 1

S'A '-•
•i

3k

•\ 3 A 3A

i i
3k

1 2
3k

1 3
8mnn

3X 3A 3A 3A

3k
i i 3k'

1 2
9k

1 3

3x
i i

3x
i i 3x 3x

i i
3k 3k

i i 1 2
3k

1 3
8mnn

3x
2 1

3x 3x
2 1

3x
2 1

3k 1 1 3k
1 2

3k"
1 3

3mnn

/ \

<

dk
i i

dk
1 2

*

dmnn\ /

*Re£erences used in Section 3 of this- report are listed
on page 3-21
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or

= [B] {..«]
din )

(3-1)

rs

The changes in the mass and stiffness matrix elements are
linearly related to physical properties and to independent mass
and stiffness elements. Consider the spring mass chain
drawn below:

n

m

m

m
n

[K]-

k +k -k 0
1 2 2

-k, k +k -k2 2 3 ;

0 -k k +k
3 3 i

0 0
n

Changes in the elements of [K] and [M] can be expressed as
linear functions of k , k f...,m ',..etc., as follows:
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<

t ^
dk

i i

dk
1 2

dk
2 1

dk
2 2

dk :
2 3

dk
3 2

•

- dm
i i

•

^ • '

,

> -

•

1 1 0 - 0

0 -1 ' 0 • 0

0-1 0- • 0

O i l - 0

0 0 -1 • 0

0 0 - 1 - 0 •

• » • o • •

* » • o • »

0 0 0 - 1

9 • • » « •

• • • o • »

( dki \

dk2

J dk3

•

dm

\ " /

( dk ) ( dkr, )
_.« = [A] __? (3-2)

( d m r s ) I dmp)

ning (3-1) and (3-2) we obtain

dXi } =. r B U A l f ' M = H'lN (3-3)
dx ) J ( d m p j L J ( d m p )
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where [T] E [B] [A]

Therefore,.we can express changes in a vector of modal
properties as a linear function of changes in basic
physical properties of the system. There is no dimensional
requirement in (3-3), the matrix [T] is rectangular with
dimension n1 x n2 where nt is the number of elements (rows)

in and n2 is the number of elements (rows) in
dm

No constrant is placed on the relative magnitude of ni and n2.

When we optimize a structure analytical model using
measured modal data, we are estimating

din
based on measured

dAj

dx-
Henceforth we denote

the measured variables by the vector y, i.e. y = and
dx.±

let the variables to be estimated, be represented by the

dk,.
vector x, i.e. x =

dm.

Hence y = BAx

or y = Tx (3-4)

3.3 Least Squares Estimation

In the preceeding section, the linear relation y = Tx
was developed where y is a vector of observed data, T is a
matrix of partial derivatives, and x is a vector to be
estimated. Our objective is to develop the equation

x* = Wy (3-5)

where W is called the weight matrix and the superscript
( )* represents an estimate of the quantity.

Considering the fact that the vector of observations, y,
can have errors, we rewrite (3-4) to include this as

tNote material in this and subsequent sections is based on
derivations found in Reference (3). .
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y = Tx + e (3-6)

where e is the error vector of the observed data y. We
assumed that the elements of e are random variables with
mean zero.

. Substituting (3-6) into (3-5) we obtain

x* •= WTx + We (3-7)

If an estimate x* is unbiased, its expected value is
equal to its true value, i.e. E<x*> = x. Therefore, this
places a requirement on the development of W. Taking the
expected value of. (3-7) and setting equal to x so as to
have an unbiased estimate it follows that

x = E<x*> = E<WTx> + E<We>

•= WTE<x> + WE<£>

= WTx .

Therefore, if x* is an unbiased estimate of x we must have
a W which satisfies the criteria

WT = ' I

This constraint on W is referred to as the "exactness
constraint". :

We note that for the special case where T is a
square positive definite matrix the solution for W is
trivial. However, such a case implies that when we are
estimating n unknowns we must have n data points. Such
a case will seldom exist.

The least squares principle states that x* should
be chosen so that the sum of the squared components of
the residual vector is minimized. If we define

. A'* = y - Tx* (3-9)

as the residual vector (true observation minus simulated
observations based on that estimate), then the objective
is to minimize 8* where

&* = (A*) ' (A*) '..

= (Tx* - y)'(Tx* - y) (3-10)

We minimize 6* by taking its derivative with
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respect to x* and setting it equal to zerot, i.e.

36*_
= o = 2T' (Tx* - y)

= T'Tx* - T'y

T'Tx* = T'y

and x* = (T'T)~T'y = x

(3-11)

(3-12)

Note that we denote the estimate using the least squares
technique as x« to distinguish it from the estimates
obtained in the following sections.

Equation (3-12) is the classical least squares for-
mula. The weight matrix W, Equation (3-5), is therefore

W = (T'T) 1TI = W (3-13)

where the notation W«s is used to distinguish it from the
weight matrixes developed in the remaining sections of
this text. Now, .if we let R£ be the diagonal covariance
matrix of the independent measurement errors, i.e.,

e

tNormally in least squares developments, the derivative is
taken with respect to the parameters .which in this case
would be elements of T. However, the vector x can be
treated as a parameter in the minimization process of 6*
and the manipulation is easier. The proof of the equivalence
of the two approaches and the vector differentiation are
available in Reference (3).
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then it follows that the covariance matrix for the
estimate of x* is:

)L S

= (TIT)~1TIR£T(T
IT)~1 . (3-14)

3 . 4 Minimum Variance Estimation

Although the weight matrix given by (3-13) for the
least squares case satisfied the "exactness constraint"
it is possible to find other weight matrices which also
satisfy the constraint. In particular, it would be
desirable to find a weight matrix which, besides satisfying
the constraint, also minimized the covariance matrix of x* ,
i.e.

(Sx*mv>ii ̂
 (Sx*>ii (3-15)

where ( )•. signifies that we are only considering the
diagonal elements of the covariance matrix in the development.

In effect we are trying to find Wmv such that the
diagonals of the matrix

Sx*. .= WmvR£W'mv (3-16)
mv

are a minimum, where

and

= w vm v w - *

WmvT =

The solution for this weight matrix is obtained
using Lagrange's method of undetermined multipliers.
To demonstrate this, let us consider the special case
where R is a 3 x 3 and T is a 3 x 2. Let us denote
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w =
"w ~0

i _^

—
wo

W
1 0

W"o i

W i i

WV V 0 2

W
1 2

(3-17)

and

rp _T - 1 o 1 i

t

(3-18)

then the covariance matrix Sx* becomes

?„*•= WR W'x e

w.

W R W'vv o e o
(3-19)

We are trying to minimize the diagonal elements of
Sx*; i.e.: W0R£W

?
0 and WjRg-W j . Using the subject to the

matrix constraint equation WT = I or the four sealer
equations:

WoTo =

.= o

W0T1 = 0

where .to minimize WQR W'0 we use WQT0 = 1 and

and to- minimize WR W1 we use = 0 and
^ = 0,
= 1.
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Now, define a matrix of undetermined Lagrangian multipliers

A= [*.!*,] -
X A
00 01 (3-20)

and form the Lagrangian function

' - (WT-1)2X0 0 0 0 (3-21)

Next differentiate with respect to each of the components
of W and set equal to zero

0 = 2 {1 0 0} R W" - ({1 0 0} T -1) 2X
> 0 0 00

- {1 0 0} T 2X
i 10

0 = 2 {0 1 0} R W -' ({0 1 0} T -rl) 2X
£ 0 . 0 00

-•' {0 1 0} T 2X
1 J O

0 = 2 {0 0 1} R W - ({0 0 1} T -1) 2X
e 0 0 0 0

- {0 0 1} T 2X
J. -10

(3-22)

Combining v/e have the vector equation

= 2 R W ' - 2 T X - 2 T X
£ 0 0 0 0 1 1 0

Then

(3-23)

R W =
£ o

T ! T "1 |^o

. °i U I A,
o o

0
(3-24)
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Next repeat the procedure for W R W
^ • " . i e i

L --=: W R W1' - (W T -0)2A - (W T -l)2A
i i e i 1 0 0 1 1 1 1 1

(3-25)

which yields

R W = 0 1.

i i

(3-26)

These equations combine to give

ReW = TA

or

WR£ = A'T' (R symmetric)

It then follows that

W -• A'T'Rg.""1

and

WT = AIT'R£~
1T

Now reintroducing the exactness constraint

WT = I

we find that

and

I = A'1"Re
 1T

A1 = (T'R

Upon substituting A ' into (3-27) we obtain W

' ~ 1 - 1 I ~ 1

mv1

= (T'R£~T)-T
IRe

(3-27)

(3-28)

(3-29)

(3-30)

and
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S v * = W R Wmv wmv e mv

= ( T ' R _ 1T)~1TIRc.~
1Rc. (T 'R ,

&• £ £ l_ t

= (T I R £ ~ 1 T)~ 1 (3-31)

Our minimum variance estimate for x* then becomes

x*mv = wmvY

3.5 Weighted Least Squares

In Section 3.3 the least squares procedure was
developed based on minimizing the equation

6* = (Tx* - y) ' (Tx* - y) (3-33)

This equation can be modified by a symmetrical least
squares weighting matrix P which is introduced as shown

; 6* = (Tx* _ y)'p(Tx* - y) (3-34)

One possible form of this least squares weighting
matrix is related to the measurement accuracies of y.
Naturally more weight should be given to those observations
in y where the measurement error is small and less weight
where the error is large. The covariance matrix R£ expresses
the accuracies of the measurements in terms of the variances
of the observations. Hence the weighting of the observa-

. tions should be the inverse of the observation accuracies
and thus it is logical to let P = Rg-"-1-. Equation (3-34)
now becomes

6* = (TX* - y)'R£~
1(Tx* - y) (3-35)

To minimize (3-35) we take its derivative with respect
to x* and set it equal to zero, i.e.
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= 0 = 2TIR£ -1- (Tx* - y)

0 = T'R£~
1Tx* - T'R£~

1y

x* = (T1Re~
1T)~1TIR£~

1y (3-36)

which means that

T»7 A C \ •^ "^ / •'*• \ *•* """ "3 * Jw y o c* c* .

because

x*,TOc = WWJlsy (3-38)

Therefore, if we compare (3-37) with (3-30) we see
that this weighted least squares estimate is, in fact,
the minimum variance estimate.

3.6 Principle of Maximum Likelihood

The maximum likelihood function can be expressed
as the joint probability density function of all the
measurement errors, e. If we assume that the errors are
normally distributed, than the likelihood function is
given by

= f

(3-39)
( 2 n ) n / 2 | R e |

where n is the total number of measurements.

The errors, e, can be written as a function of y
and x*, i.e.

e = y - Tx*

and using this it follows from (3-39) that

'1 i- i i
= exp _^ (y-Tx*) 'Re~ (y-Tx*) (3-40)
(2n)n/2|R£|
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When the peak value of this distribution is maximized,
its variance is minimized. Maximization can be made on the
basis of x* since we are seeking an x* in our solution
which minimizes e.

To obtain a maximum on x* we first take the logarithm
of both sides of (3-40) and then differentiate with respect
to the optimizing parameter x*.

So doing, it follows that

ln(Lm £) = -ln[(2n)n/2 |R£ |] - h (y-Tx*) 'R^1 (y-Tx*) (3-41)

and

*- n ^ =0 = 0 + T'R £~ 1 (Tx* - y)

It then follows that

x* = (T1Re~
1T)"1T'R£~

1y . (3-42)

and finally that

Wmo = (T'R ~1T)~1T'R "-1 (3-43)
lU/v t- c.

because

x* = w py (3-44)

.(3-43) is identical to (3-30) and (3-37) . Hence
the maximum likelihood estimate is also the minimum
variance estimate and equivalent to the weighted least
squares estimate in the situation where the errors e are
assumed to be normally distributed.

3.7 Incorporation of Prior Information

In the methods described in the preceeding sections, .
no consideration was given to the fact that the analyst
may have useful prior information which could be used in
obtaining an optimum x* (in our case optimum revised stiff-
ness and mass matrix elements). Consequently, all data were
weighted either equally or by the inverse of the measurement
error and no attempt was made to acknowledge the fact that
some estimated stiffnesses are more certain than others and
should be less subject to change. It is desirable to give
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consideration to prior predictability of the stiffness
and mass characteristics of the structure.

To use prior information, we can make use of the
principle of Bayes rule which can be expressed as follows

P(A|B) -

where P(B|A)

P(A|B)

P (A)

P (B)

probability of the occurrence of B
given that A' has occurred

probability of the occurrence of A
given that B has occurred

probability that A will occur.

probability that B will occur.

Translated into the language of our problem, this
becomes :

P (k & m | test eigenvalues and eigenvectors)

P (test eigenvalues and eigenvectors I k&m) P (k&m) -, „,->
= - : - ' - (j— 45)

P (test eigenvalues and eigenvectors)

P (test eigenvalues and eigenvectors | k&m) is the
probability distribution for A and x developed in the
computer program called VIDAP; P (k & m) is the probability
distribution describing expected means and variances for
k & m; P (k & m | test eigenvalues and eigenvectors) is
the probability distribution which contains the revised
mean values and covariances of the stiffnesses and masses
in light of the test information.

If, (1) the observation errors are assumed to be
normally distributed, (2) the prior distribution is assumed
to be normally distributed, and (3) the prior distribution
and the measurement errors are independent, the conditional
probability density function . can be written as

p(xjy) = p(y|x)p(y) (3-46)

and at this point substitutions can be made for y and x,

3-14



multivariate density functions can be constructed, and
the means and variance can be obtained for the estimate
x*. (Note p(x) is a probability density function whereas
P(A) is a probability of an event).

A rather direct approach which produces the same
results and is computationally easier can be used in place
of the Bayes formulation. This second formulation utilizes
the minimum variance principle to find a W which minimizes
the variance of x* around both the observation errors and
the prior estimate.

Define x = x + e (3-47)

where x is a vector of random variables describing the
estimated mean values and covariances of x (stiffness and
mass elements), x is the . true value of the stiffness and
mass elements (unknown) and ep is the vector representing
errors in the estimate of x.

Now if we let y = Tx + e as first described in
Equation (3-6) then equations (3-6) and (3-47) can be
combined into a single matrix equation

Define

x
_ T.

= Tcx (3-48)

Denote
S, - 0

0 I Rc
(3-49)

where Sx is the covariance matrix of the prior distri-
bution of x. From a user's standpoint Sx is the covariance
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matrix that must be developed to define uncertainty in
estimated mass and stiffness properties.

It then follows from the minimum variance formul-
ation, Equation (3-30),

and

Sxb*"= (TclRc"

where

R, -1

Noting that -1

0 I R -1
e -i

(3-50)

(3-51)

(3-52)

and
I.

T

+ T'

we obtain

Similarly, noting that

-1v -y -

(3-53)

(3-54)

(3-55)

= SXP~
IXP (3-56)
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it follows that

* =xb =

+

T'R£;~
1Tx - T'Re~

1Tx

- Tx]

!] T'R£~
1{y - Txp>

= Xp.+ S^b* T'R£-
1 {y - Txp} (3-57)

Note that the primary shortcoming in (3-57) is
the computation of Sx, A which involves the inversion
of a large matrix (see (3-55) ) . However, a convenient
identity, sometimes attributed to Householder (5) , eli-
minates most of the inversion problem. The identity
is

[Sx ~
1 + TIR£~

1T]~1 = Sx - Sx T
1 [R£ + TSX T

1]"1^^ (3-58)

which substituted into (3-55) and 3-57) yields

= xp + fsxp -
 Sxp

T' (Re
 + TSXP

T| )"lTSxp]T'Re-
1{y - TXp}

= xp + [SxpT'R^
1 - SXpT'(R£ + TSxpT'J-^SxpT'Rg-

1]

xp

(Re +TSXT' - R£)R£-l]{y - TX}p
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«r, + tsx^T'Rr 1 - s* T'p xp e xp

h Sx T
1 (R_ + TSV T')~1RC.R

TS T' +TSXpT')R£-1

X e £ - Txp>

-1 _ Sv T'RF -1 + S,, T1 (Ro + TSV T')~ 1
X t, -̂p b -̂ .p

P
TS T'x (3-59)

Finally we obtain that

xb* = xp (3-60)

where = S x TSV T')X

the posterior covariance matrix of the estimates is then

TS (3-61)

Equations (3-59), (3-60), and (3-61) form the
basis for the MOUSE computer program developed under
this contract. The matrix T is the product BA in
Equation (3-3), Sx is the covariance matrix describing

(dkthe uncertainty in estimates of the vector \—P_ x is
jdlUp

the initial estimate of the physical properties

y is the vector of observed eigenvalues and eigenvectors,

, and R£ is the diagonal matrix of variances of the

observations.
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3.8 Summary of Estimation Techniques

Table 3-1 summarizes the estimation formulas developed
in the preceeding sections. The methods can be divided
easily into three groups:

(1) estimation without statistical consideration,

(2) estimation with consideration of observation error,

(3) estimation with consideration of observation error
and prior information.
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4. DEVELOPMENT OF THE MOUSE PROGRAM

4.1 Approach

The Bayes estimator described in the previous
section was selected for use in MOUSE. This estimator
permits the user to make a judgment on the quality of
various parts of his model. Although he may be wrong,
the method provides the opportunity for preferential
treatment so that stiffnesses that are easily estimated
are weighted over stiffnesses that are not.

The basic equations used in MOUSE are all derived
in Section 3. The equations for the Bayes estimator are
shown in Table 3-1, page 3-20. The operations in MOUSE
are described by the flow diagram in Figure 4-1.

4.2 Inputs

Other than options and certain special instructions the
inputs to MOUSE are described by those boxes in Figure
4-1 having identification starting with I- . A dis-
cussion of these inputs follows.

1-1 - .

The first inputs are the stiffness and mass matrices.
The mass matrix is restricted in this case to a diagonal
matrix. There are no special restrictions, the system
can have rigid body motion.

3>2

Matrix [A] must be entered to identify the relationships
between the elements of the mass and stiffness matrices
with the independent mass and stiffness properties. The
development of the [A] matrix- for a spring-mass chain
is shown in Section 3-2. The [A] matrix is equivalent to

(i)
3(k)
3(P)

in VIDAP.

1-3

[Skn, ] is the prior estimate of the covariance of the

independent mass and stiffness properties. In the case
of a spring-mass chain this matrix would contain along
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the diagonal the variances (a2) of each of the masses
and stiffnesses of the chain. If mass and stiffness
elements are statistically correlated [Skm ] will have

off-diagonal elements representing the covariances, other-
wise [S]cm ] is diagonal. The development of [S]cm ] is

identical to [̂ Z,-] in

1-4

All of the test measurements of interest form a
vector

co

1 1

X21

X'

The frequencies are immediately transformed to
eigenvalues and are used in that form throughout.
Only eigenvectors of interest need to be input and
then only parts of the eigenvectors if the test
measurements are restricted. There is no minimum
to the number of measurements, a single frequency or
eigenvector component can be entered and the program
will optimize on the data.

1-5

The accuracies of the measurements must be entered
to establish the quality of the data. Since the
accuracies will generally be uncorrelated, variances
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are estimated for each measurement and the variances
form the elements of the diagonal matrix [R£]. The
sequential order of the variances must match the
sequential order of the measurements in 1-4.

4.3 Operations

Operations in Figure 4-1 are those boxes having
identifications starting with 0-_. Solid lines in
the flow diagram represent movement to one activity
or another and dashed lines represent flow of infor-
mation.

0-1. Eigenvalue/vector Computation

The mass and stiffness matrices are entered into a
Givens-Householder eigenvalue routine and eigen-
values and eigenvectors are computed which corres-
pond with those measured in the test.

0-2 Convergence Test

Confidence intervals are developed from the measure-
ment accuracies to test convergence. The standard
deviation of the measurement accuracy is multiplied
by the factor corresponding to the 90, 95, or 99
percentage levels of the normal distribution

area = .95

a La—95

Next the difference is computed between the measured
and predicted eigenvalues and eigenvectors.
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AX,

AX,

> _

Ax 21

meas.

• i i

x2 i

predicted

The column of delta values a~re then compared with the
z. 95a's

AX

> vs <

AX

z.95aA

If 95% confidence limits have been chosen, v/e can expect
one in twenty AX or Ax to exceed its corresponding z 950.
However, if more than one in twenty exceed z 950 we
can conclude then the answers have not properly.converged
and the program must pass through another convergence.
The convergence test is therefore a ratioing of exceedences
to non-exceedences to determine if too many lie outside
the confidence interval.

0-3 Convergence Test .

This block directs the program to recycle or to perform
final computations depending upon the results from O-2.
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0-4 Compute [B]

The matrix [B] = 9 k'*) I
 is comPuted using the tech-

niques developed for VIDAP. These partial derivatives
correspond to the measured values of the eigenvectors and
eigenvalues and the particular estimated values of mass
and stiffness properties. The number of partial deriv-
atives computed is not contingent upon the number of
degrees of freedom in the problem but rather on the
number of measurements and the number of elements
allowed to vary in the structure.

O-5 Compute [T]

The linear transformation matrix, [T], relating eigen-
properties to stiffness and mass is formed from the
product [B][A].

O-6 Compute [W]

The Bayes estimator [W] is computed using the formula

W = Skm T'(Re
 + T1

0-7 Compute k
m"

The original mean values of the independent mass and
stiffness properties having estimated uncertainty are
now revised using the formula

_k
m «(H

m

O-8 Resolution of

*

The -m-

,*
using m

*

computed in O-7 replaces
k
m to permit a

cycling through 0-7 several times.

O-9 Compute Changes in Mass and Stiffness Matrix Elements
*

After O-7 and 0-8, the new --m
is used to revise the

mass and stiffness matrices. The revisions are computed
using the [A] matrix
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ki i

•1 2

m

m

i i

2 2

= [A] m

0-10 Revise the Mass and Stiffness Matrices

The revisions computed in the prior step are incorporated
into the mass and stiffness matrices prior to recompu-
tation of the eigenproperties .

O— 11 Compute Sĵ *

Once the program has converged the covariance matrix of
the values of the independent mass and stiffness proper-
ties can be recomputed based on the revised values.

skm* = skm p -
 skmp

T'

0-12 Printout

The final printout contains the revised mass and stiffness
matrices, eigenproperties, S^, * and the confidence intervals
of the eigenproperties.

The operations in the program which are the most time con-
suming are O-l and 0-4. Both are' equivalent in length.
Thus if the program requires three iterations in the outer
loop the time required is equivalent to approximately six
eigenvalue/vector computations.
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5. DEMONSTRATION OF MOUSE

5. 1 Spring-Mass Problems

The first problem selected for demonstration and
checkout of MOUSE was a four degree-of-f reedom spring-
mass system. The basic reasons for the selection were
the small number of degrees of freedom and the ease in
which a set of hypothetical test data with errors could
be derived. The system with associated mass and stiff-
ness matrices is shown below.

/ f / 1 I

1
%
ml
!?

f 1

*i
[K] =

r- ' .

-k,

.

0_

[M] =

m,

-k

•1C2+^3 ~k3

-k3 k3+k l t

-k,

m.

0

0

-k,

m,

Note that the stiffnesses in the chain are dis-
tributed in the stiffness matrix, i.e. kj x = kj+k,,,
k1 2 = -k2, etc. To maintain these relationships, an
[A] matrix is developed.
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dk

dk

dk

dk

dk

i i

i 2

2 2

2 3

3 3

dk.

dk,

1

0

0

0

0

0

0

1

-1

1

0

0

0

0

0

0

1

-1

1

0

0

0

0

0

0

1

-1

1

dk,

dk.

dk.

dk,

To maintain physical significance, the changes
must be make to k. and k,̂. Consequently the
matrix [A-^-j r] plays a very important role in the
stiffness matrix optimization.

Initially it may be difficult to predict certain
stiffnesses because of elemental complexity (e.g.!;

bending of a conical shell). Since the user of the
program will have to estimate how well he can predict
each of the stiffnesses, k17 k2, . . , he can make his
estimate part relative and part absolute. For example
the stiffness of a hollow circular tube will be more
predictable than the stiffness of the conical shell.
The analyst may feel that his uncertainty in the second
case is five times the uncertainty in the first. He
may then assign a 5% uncertainty (from experience) to
the tube stiffness and a 25% uncertainty to the shell
stiffness. These numbers are then input into the program
in a covariance matrix for k and m

<*l

Note that the covariance matrix and mean values for k
and m define the "prior distribution" of the mass and
stiffness matrix. It is the objective of the program to
update this prior distribution using test data.
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Finally, the -test measurements are input along with
the measurement accuracies. Reasonable prediction of
the accuracies is important because a bad test point
with an unreasonably high estimate of accuracy would
drive the program away from an optimum solution.

Sample results for a specific .four degree-of-
freedom chain are presented in Tables 5-1 through 5-3.
Note that the examples shown use all of the eigenvector
and eigenvalue data obtainable. This was convenient,
but the program is not restricted with regard to the
number of test measurements. A single frequency measure-
ment could be used and it would have an influence on
the stiffness and mass matrices.

From Table 5-2 it is obvious that perfect modal
data will produce an almost perfect correction to the
model. From 5-3 we find that imperfect data also corrects
the model but the convergence is not exact. One additional
point might be added: the mode shapes in Table 5-3 are
perturbed from the true spring-mass model. If the data
represented a slightly different model in concept (e.g.
more coupling between masses) the results would not
have been so positive. Therefore, at this point we can
conclude that MOUSE does operate effectively on a small
system where the analytical model is an adequate repre-
sentation of the true system
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TABLE 5-1 True System Characteristics

(1) Stiffness Matrix

2.25 x 105

-1.40 x 105

0

0

(2)

(3)

(4)

-1.40 x 10&

2.55 x 10s

-1.15 x 105

0

-1.15 x 10'

3.15 x 10'

-2.0 x 10'

0

0

-2.0 x 10s

2.0 x 105

Mass Matrix

1.0

0

0

0

0

1.0

0

0

0

0

1.0

0

0

0

0

1.0

Eigenvalues

1 . 1.28872+04

2 1.17816+05

3 3.51608+05

4 5.12689+05

Modal Matrix

Vector( 1)

2.93227-01

4.44265-01

5.78353-01

6.18186-01

Frequencies

1.80676+01

5.46289+01

9.43734+01

1.13959+02

Vector( 2)

-6.70209-01

-5.13114-01

2.03809-01

4.95980-01

Vector( 3)

6.46597-01

-5.84744-01

-2.95936-01

3.90396-01

VectorC 4)

-2.16220-01

4.44316-01

-7.32388-01

4.68445-01
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TABLE 5-2 Deliberate Perturbation of kx and k2 in the

Spring-Mass Chain, Optimization with Perfect

Test Data

(1) Stiffness Matrix Before Optimization

2.50 x 10

•1.50 x 101

0

0

(6)

-1.50 x 10s

2.65 x 10s

-1.15 x 105

0

0

-1.15 x 105

3.15 x 105

-2.00 x 105

0

0

-2.00 x 105

2.00 x 10s

(2) Mass Matrix - Same as Table 1 (Unperturbed)

(3) Eigenvalues/vectors - Same as Table 1

(4) Stiffness Covariance Matrix

°k k
1 2

ak k
1 2

7.2 x 107

1.0 x 10

(5) [A] Matrix

' d k l l '
dk 1 2
dk 2 2

> =

I 1

0 -1

0 1

dk.

dk.

Stiffness Matrix after Optimization

2.25103xl05

-1.40084xl05

0

0

-1.40084xl05

2.55084xl05

-1.15 x 105

0

-1.15 x 10s

3.15 x 10s

-2.0 x 105

0

0

-2.0 x io5

2.0 x 10s

5-5



TABLE 5-3 Deliberate Perturbation of k and k
1 2

in the Spring-Mass Chain, Optimization

with Imperfect Test Data

(1) Stiffness Matrix Before Optimization -

Same as Table 2

(2) Mass Matrix - Same as Table 1 (Unperturbed)

(3) Eigenvalues/vectors

Test Eigenvalues

1 1.27080+04

2 1.17797+05

3 3.60191+05

4 5.24376+05

Test Modal Matrix

Vector( 1) ' Vector( 2)

3.20877-01 -5.97509-01

4.83715-01 -5.60864-01

5.58403-01 1.92409-01

6.52936-01 5.00780-01

Frequencies

1.79415+01

5.46245+01

9.55183+01

1.15250+02

Vector( 3)
•

6.55247-01

-5.70894-01

-2.98186-01

3.83446-01

Vector( 4)

-2.98320-01

4.66466-01

-7.56338-01

3.55445-01

(4) Stiffness Covariance Matrix - Same as Table 2

(5) [A] Matrix - Same as Table 2

(6) Measurement Errors

a - 6.6564 x 101*

0, 2 = 5.5507 x 106
A 2 .

a = 2.5 x 10-3

= 4.9421 x 10
(all eigenvector elements
have the same variance)

a., = 1.0510 x 108
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(7) Stiffness Matrix after Optimization

2.30524 x 105 -1.48385 x 10s 0 . 0

-1.48385 x 105 2.63385 x 10s -1.13 x 105 0

0 -1.15 x 105 3.15 x 10s -2.0 x 101

0 0 -2.0 x 105 2.0 x 10!
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5.2 Saturn Lateral Vibrations

A second test of MOUSE involved a 58 degree-of
freedom model of Saturn. This model contains bending

... stiffness only. The primary uncertainty in the struc-
ture was believed to be in the upper half of the '
structure and it was this half that was permitted to
fluctuate in the analysis. The vehicle is pictured
in Figure 5-1. •

The model that was provided contained bending
stiffness (slender beam) only and no allowance was made
for shear. Consequently the frequencies measured in
test diverge considerably from the model starting with
the third elastic mode. 100 elements of test data
were originally input to MOUSE representing nineteen
stations of the first five mode shapes and the first
five frequencies. The program did not converge
properly because the corrections were so large that
stiffnesses became negative. This same problem
occurred as long as data from the third, fourth and
fifth modes was included. The program worked only
with data from the first two modes.

After considerable experimentation with cutting
of step size and modifying the iteration scheme, it
was finally concluded that the shear behavior of the
vehicle could not be matched by a strictly bending
model. It has been recommended that shear stiffness
be added to the model before trying the MOUSE applica-
tion again.

The excellent agreement in the first two modes
indicates that these modes probably involve relatively
little shear. The results of the MOUSE application
are shown in Tables 5-4 and 5-5.

Note that low numbered positions represent the upper-
most part of the vehicle. The position numbering and
the corresponding vehicle stations are given in
Table 5-6.
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Vehicle Station
(m.) (in.)

105.0

99.06 1 4000

88.90 -- 3600

78.74 -^ 3200

68.58-- 2800

58.42 T 2400

48.26-- 2000

38.10" 1600

27.94-- 1200

17.78— 800

7.62" 400

- 0

-5.5 -1-

Spacecraft

Instrument Unit

S-IVB Stage

S-II Stage

S-IC Stage

Figure 5-1 Vehicle Configuration
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TABLE 5-4 Comparison of Frequencies

Frequencies Frequencies - Revised frequencies
measured in predicted in using data from

test the original first two. modes
model and MOUSE

1.106 Hz 1.121 Hz 1.108 Hz
1.821 Hz 1.840 Hz 1.823 Hz
2.547 Hz 3.051 Hz
3.443 Hz 4.747 Hz
5.167 Hz 8.064 Hz
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TABLE 5-5 Comparison of Eigenvalues
and Eigenvectors

MODE
3
4

POSITION
1
5
9
13

- ' 17
21

" " -25"-" " '
27
29
33

. . 37-
39
41
A3
45
49
51
53
5-s— - -----

i
5
9

. 1 3
17
21
25
27
29
33
37
39
41
A3
45
49
51
53
55

MODE
3
3
3
3
3
3
3
3
3

: 3

3
3
3
3
3'
3

3
3.
4
4
4
4
4
4
4
4
4
4
4

. 4 .
4
4
4
4
4
4
4

REVISED
EIGENVALUES
4<>e4

i+92 + cl
1.31180+G2

EIGENVECTORS
1-22973-02
9.91213-03
5.28236-U3
4.?26So-ci3
2 <,39935- 03
1.67648-03
1.11963-03 ~~ ~

: 6. 184.92- C-A
?.6379s-uA
-9. 97579-05
-3.52664-04
-4-.58497-QA
-4.82939-04
-4<.59?99-Q4
-3.Q2682-GA
-6.89009-C5
2.26645-04
4.88565-C4
1, 56235- 04
1.9235.3-02
1.28l2i-o2
1.44193-03

-4.31323-04
-1.85582-03
-1.93bOO-v3
-1. 79272-03
-1.53289-03 •
-1. 24898-03
-7.81985-C4
-3.00863-04
-5.81048-06 .
1.28824-L.4
?.94450-04
3.23037-04
1.75429-04

-9.91559-C-5
-3.74566-04
-6.633?3-OA

"~~ ~ "."TEST;
EIGENVALUES
4.82914*01
1.30912*02

EIGENVECTORS
6.67537-03
7.11380-03
4.16418-03
3.36340-03
1.99534-03
1.38806-03
8.67537-04
3.47015-04 .
4-33769-05 i
-2..6G261-04
-5.20522-04.
-6.U94C30-04
-6.07276-04
-5.20522-Q4
-3.47015-04
-8.67537-05
2V662M-04
5.20522-04
7.86783-04
1. 6434Q-02
8.21699-03 j
1.97208-03 j
6,57359-04 !
-6. 21699-04
-1.31472-03 i
-1.47906-03
-1.64340-03
-1.47906-03
-1.31472-03
-6..57359-04
-8.21699-05
_1.64340~C-A
3.28679-04
4ol0849-04
3.28679-04
-8.21699-05
-4.93019-04
-6.57359-04
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TABLE 5-6 . Positions of Eigenvector
Measurements

Vehicle Stations Position No,

105.0 meters 1
102.0 5
95.0 . 9
92.5 13
85.0 17
80.5 21
76.0 25
71.0 27
66.5 29
59.5 33
51.5 37
45.5 39
42.0 41
35.5 43
27.0 45
19.5 49
12.0 . 51
6.0 - 53
0.0 55
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6.0 CONCLUSIONS AND RECOMMENDATIONS

The following are conclusions resulting from
the developmental and evaluation effort on MOUSE.

© the MOUSE Bayesian estimator approach is
valid for true models in the linear range
of perturbation.

a difficulties arise if the perturbations
exceed the linear range, there is a need
for handling quickly and efficiently the
non-linearity in the convergence process.

© the measured modes strongly influence the
convergence and non-orthogonality or un-
accounted for inaccuracy can influence
satisfactory convergence.

Areas which need further investigation are:

© the use of higher order derivatives

© the influence of improper models

© restraint of corrections within specified
limits

© maintenance of total mass fixity while
letting component mass vary.!
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- APPENDIX A -

USER'S MANUAL FOR MOUSE

A.I INTRODUCTION

Modal Optimization Using Statistical Evaluators (MOUSE)
was written in'FORTRAN'V for UNIVAC 1108.

© Mass, Stiffness/ Model Covariance and A Matrices -
These matrices shall not exceed 140 rows or columns.

0 Control Flags - The control flags give the options of:

(1) printing or not printing the partial derivative
matrix;

(2) selecting 90%, 95% or 99% confidence limits;

(3) maximum number of iterations before partials are
recomputed; and

(4) maximum number of times partials may be computed.

© Input-Output Tapes (Disk) - Logical 5 is the input (card
reader) and Logical 6 is the output (printer). Logicals
3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19
are binary scratch tapes (disk) used during computation.

® Core Requirement - The program requires 56K storage.

© Random Elements - A maximum of 140 random elements are
acceptable.

A.2 CARD PREPARATION

1. Case Heading (20A4)

This card may contain any alphanumeric character
in columns 1-80 for problem identification.

2. N, NM, NVEC, JFLAG, KONF, IROW, ITERMX, INTR, NRS,
NPARD (1018)

Column 1-8 - Integer must be right justified

N = Mass and stiffness matrix dimension
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Column 9-16 - integer must be right justified

NM = Number of modes (test data)

Column 17-24 - Integer must be right justified

NVEC = Number of highest mode in test data
including rigid-body modes. A
maximum of three rigid-body modes
allowable.

Example: The system has two rigid-body modes
and the test data includes the first
five flexure modes. NM = 5, NVEC = 7
since the fifth flexure mode is the
seventh system mode.

Column 25-32 - Integer must be right justified

JFLAG = 0 Do not print partial derivatives
JFLAG = 1 Print partial derivative matrix.

Column 33-40 - Integer must be right justified

KONF =1 99% confidence limits
KONF =2 95% confidence limits
'KONF = 3 90% confidence limits

Column 41-48 - Integer must be right justified

IROW = number of measured elements per
eigenvector

Column 49-56 - Integer must be right justified

ITERMX = Maximum number of iterations before
recomputing partial derivatives.

Column 57-64 - Integer must be right justified

INTR = Number of variable properties, i.e.
stiffness or mass in model.

Column 65-72 - Integer must be right justified

NRS = number of variable elements in mass and/
or stiffness matrix.
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Column'73-80 - Integer must be right justified

NPARD = Maximum number of partial deri-
vative computations

MODE (I) 1018

Column 1-8 - Integer must be right justified

MODE (I) = Ith mode

Column 73-80 - Integer must be right justified

MODE .(I) = Ith mode

The mode numbers must be entered
in ascending order of the test
data and include the rigid-body
modes. If the system has two
rigid-body modes and the test
data is of the first, third and
fourth flexible modes, the mode
numbers entered would be 3, 5, and
6. Up to 10 modes may be entered.

RS (I,J)- 20(14)

Column 1-4 - Integer must be right justified

I = Row number of random element

Column 5-8 - Integer must be right justified

J = Column number of random element

The associated I and J locate the
position of the random element in
the stiffness and mass matrices.
The element locations in the stiff-
ness matrix must be entered first.
An I and J equal to zero terminates
the stiffness location and starts
the mass location read. If there
are no stiffness random elements
the first I and J must be zero.
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There must be enough cards for NRS
+ 1 random elements. Example: if
all the random elements are in the
stiffness matrix and there are 30
such elements, 4 cards would be
required. Three cards containing
the 30 I's and J's and the last card
with I and J equal to zero to indi-
cate the end of stiffness elements.
If there is a mixture of stiffness
and mass elements the zero separator
will take care of the NRS +1
requirement.

5. INDIC (J) 2014

Column 1-4 - Integer must be right justified

INDIC (J) = location of data in test eigenvector

Each card contains 20 location
values. If the last value on the
card is zero no more cards will be
read. A maximum of 7 cards will
be read.

[COV (K,M)] INPUT ROUTINE

The standard deviations of stiffness and mass are
entered with INPUT. INPUT reads cards in the following
format (4 (213,E14 . 8).) .

Column 1-3 - Integer must be right justified,

Row location of element

Column 4-6 - Integer must be right justified

Column location of element

Column 7-20 - E14.8

Element value
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Column 21-23 - Integer must be right justified

Row location of element

A blank card terminates INPUT read.

This matrix is the estimated error of the model. It
currently is for uncorrelated properties but will
contain correlation in the next edition.
The values are squared by the program to generate
a diagonal covariance matrix, when each diagonal
element represents the randomness of a particular
property of the system.

7. [A] INPUT ROUTINE .

Same format as number 6.

Since this matrix is non-symmetrical, all non-zero
values must be entered.

8. LAMTST(I) 4E20.5 '

Column 1-20 - E20.5 FORMAT

LAMTST(I) = Modal frequency from test

The modal test frequencies must
be entered in ascending and in
units of Hz.

9. [X(I,J)] INPUT ROUTINE

Same format as number 6

Since this matrix is non-symmetrical, all non-zero
values must be entered. The test eigenvectors may
be normalized any way desired since the program will
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use the theoretical .values and mass matrix to renor-
. malize the values suitable for operation in the program.

10. VAR(A,X) 5E16.8

Column 1-16 - E16.8

VAR(I) = measurement accuracy (standard
deviation)

The frequency measurement accuracy (standard dev-
iation) is entered first, with one for each modal
frequency. The eigenvector accuracy is entered next v

(one for each eigenvector element). If the frequency
of the mode is measured to .01 Hz, .01 would be
entered for each frequency entered'. If the eigen-
values were normalized to 1 and were measured to 2%
of full scale, .02 would be entered for each eigen-
vector element.

11. [M(I,J)1 INPUT ROUTINE

Same format as number 6

Since the mass matrix is symmetric, only the diagonal
and upper triangular non-zero elements need to
be entered.

12. [K(I,J)1 INPUT ROUTINE

Same format as number 6

Since the stiffness matrix is symmetric, only the
diagonal and upper triangular non-zero elements need
to be entered.
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