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CONVERGENCE Oy THE DISCRETIZATION EQUATIONS WHICH
ARISE IN STOCHASTIC CONTROL

by H. J. Kushner

We concider a problem which arises in the numericnl anualysis
of the degencrate partiul differential equations which arisc in sto-
chastic control theory. The result will also shed some light on thc
relationghip betwcen diffusions and finite state Markov chaing, and
illustrates a role of probability theory in numerical analysis.

Consider the degenerate linear elliptic equations

V+k(x) =0, xe6,
(1) V(x) = 9(x), x € 3G
32

= La (x)— + L £,(x) 2 )
i

W 3x,3x, ax,

where G is a bounded open set, k and @ are continuous and aij(x) =

id

X. Equation (1) arises in stochastic contrel as a formal representation

oik(x)cjk(x), where © and f, satisfy a Lipschitz condition in
k

of the cost

.
(2) c(x) = E, é k(xs)ds + Exp(xT), X € G,
for the diffusion

(3) dx = f(x)dt + e(x)dz,

where 2z

¢ is a vector valued Wiener process and T = inf{t: Xy £ G).




Similar representetious can be developed for discounted, and time depen-
dent costs, and our convergeuce results can be extended to these cases.
We consider the proLlem: Discretize (1) with finite difference
interval h (or hy if it depsnds on the @ircction). Solve the finite
difference equations, to obtain a function Vh(x) at the finite dif-
ference points, Then what happens to Vh(x) as h —0? The guestion
is important since (1) does not usually saticfy the classical econdi-
tions which clascical numerical analysis is based upon, and if we
are to have confideuce in the finite differemce solution, it is es~
sential to know that Vh(x) - C(x) irrespeetive of whether (1) has
strong derivatives or not; i.e., that (1) can legitimutely serve as
an intermediary in obtzining (2), or an approximation to (2).
It is shown that, whether or not (1) has a smooth solutien,
the solutions of finite difference equations converge to (2) under
quite broad conditions, if the finite difference schemes are care-
fully chosen, The analysis is purely probabilistic, and uses only
probabilistic properties of (2), (3), and the solutions of the finite

difference equations,




Convergonee of the Discretization Equations Which

Arise in Stochastic Conirol
H. J. Kushner

Introduction., We¢ will consider a problem which ;;ises in the numeri-
cal analysis of the degencrule partial differential equations which arisé
in stochastic control thcory. The result will also shed some light on the
relationship belween diffusions and finite state Markov chains, and illus-
trates a role of probability theory in numericel analysie, The discussion
will be informal, See H. J. Kushner, "Probability Limit Theorems and the

Convergence of Finite Difference Approximations to Partial Differential

Equations", J. Math. Anal. and Appl., 1970, for more results,

The Problem. Ccnsider the degenerate linear elliptic equations

(1) ' ZV + k(x) =0, x ¢ G,

V(x) = 9(x), x €30

2
% o 9
2= Loay (g + L1 (Ng5-,
i,3 i3 i i

where G is a bounded open set, k and ¢ are eontinuous and aiJ(x) =
) 3 dik(x)ojk(x), where Y and f, satisfy a Lipschitz condition in x,
Equetion (1) arises in stochastic control as a fermal representation of

the cost




"
(?) e(x) = F, é k(xg)ds + Exv(XT), x € @
for the diifusion

dx = f(x)dt + o(x)dz,

where 2
t

lar represontakions can be developed for discounted, and time dependent

is a vector valucd Wiener process and 7t = inf(t: Xy { G}. Simi-

ecosts, and our convergence resulte can be extended to these cases.

We consider the problem: Discretize (1) with finite difference inter-
val h (or h; if it depends on the direction), Solve the finite differ-
ence equations, to obtzin a function Vh(x) at the finite difference points,
Then what happens to Vh(x) as h »0% The guestion is important since (1)
does not usually satisfy the classical conditions which classical numerical
analysis is based upon, .and if we are to have confidence in the finite d4if-
ference solution, it is essential to kanow that Vi(x) - C(x) irrespective
of whether (1) has strong derivatives or not; i.e., that (1) can legitimately
serve as sn intermediary in obtaining (2), or an approximation to (2). .

For Equation (1) let the difference interval be h (in any coordinate

direction, for convenience only) and let e, be the unit vector in the i-th

i
coordinate direction., Suppose that G is strietly contained in a hypercube

H with sides [-A,A]. Define the set of nodes R: in R* by R; -

((nlh,...,nrh), n, ranging over 0, +l, #2,...}. Define =GN R;.

Gy
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In order to expuse the methed, and not get involved with the rather

long finite difference equulions arising when mixed second derivatives oceur,

ij

to the more gencral case,

we let a,. =0 for i # j. There is no trouble in extending the method

The following Tinite difference approximotions will be used.

V(x + eih) - V(x)

1 } ,
V(x) - V(x - e;h)

(e) Yy, i

where the upper term of (3a) is used if fi(x) >0, and the lower other-

wise, (This uszge will be carried throughout)

V(x + e.h) - ) + ¥(x - e.h)
(3v) T L e b . A el

HePs nf

The reason for the choice (%a) will appear shortly.

If Vv _(x) denotes the solution to the finite difference eguations, then

n(
usirg (3) for x € G, (1) yields

V, (x+e.h) hlf.] 4 a V, (x-e,h) 8
" ) - T B LR TR B Nl i1
(1) n(*) T (X 0y }’ n " {hl £ + ‘11’

where



h

Def'ine Vh(x) = ¢@(x) for x e RF - G

h he Rewrite (1') as (with the obvious

identificution of term:)

Vh(x) = i.Yh(r + e L)p (%% + eih)

(1) + iﬁvh(y - eh)p, (x,%x - e;h) + p, (x)k(x)

ph(x) = hp/Qb(x), V(x) =9(x), for x ¢ R; - Gy
Now the reason for the choice (3) will become clear, Note that since
the ph(x,y) >0 and sum to at most unity, and can be defined for all
X,y € R;, they can be considered to be trensition prebabilities for a Msrkov
chain on the grid R;.
Denote the sequence of random variables of this Markov chain by [{:].

Thus P{§i+l = gi + hei} = ph(x,x + eih), etc. Define

.h
N, = inf{k: S £ Gh].
Now we proceed to investigate the behavior es h -40. Suppose (not very res-

trictive - sce example) BgNy < K, <= The solution to (1") ecan be written

as

Nh-l

(lnv) Vh(X) = EX k§o ph(gz)k(g:) » Ex¢(g;h)'

Equatior (1"') looks something like a Reimann sum approximstion to (2),




2
and, indecd this is the idea to be pursurd._ We will show that the measures
of a suitzbly interpolated {g:) converge to those of X, in a certain
sense, and that this implics that Vh(x) converges to C(x) for x on any
Gh. This holcs irresp ctive of whether strong derivatives of (1) exist or
not.

A key foct is Theorem 1, drawn from Gikhman and Skorokhed,"Introduction

to Random Processes", (in Russian), Izdateletvo Nauka, Moscow, 1966.

—— e

Theorem 1. Let C[0,T] = @ be the set of R valued continuous func--

- tions on the interval [0,T]. Let yn(t), y(t), t € [0,T] be continuous pro-

eesses with paths in the (topological) space N, let n_ and u be the

n

measures irduced on Q by the processes yn(-) and y(+), resp. Let (for

o<t <t'<T)

(k) lim Tim P suwp |y(t')=y(t")] >€>0) =0
-0 n xlt'-t"l_(_b

-

for any € > 0. Let the finite dimensional distributions of (yn(t)} con-

verge to those of -y(t). Iet F(-) be a bounded and continuous (w.p.1.)

Borel functional on the topological space Q. Then

EF(y (+)) -~ EF(y(-)).

In order to exploit Thecorem A, the process {E:} must be related to
a suitable continuous time process {gh(t)}.
By a comparison of (1"') and (2), we note that the "discrete time"

cost rate is ph(}.) times the continuous time cost. In an intuitive sense,




< h . b .
one step of the disc:cle process gk should take ph(ﬁl:) units of real

time.  Thuc the following definition is natural, Define the time sequence

{ti} by (sametimce argmonta of functions are deleted for simplicity, and
Q’J(Er)) ""': are used int: rchange '.xb]y)

t:th=0, e 5 e,
0 0 8
0<s<k
s h,,
Define a process £ (t) by
h . b h
£ (tk) - Ek
. h : h h ;
at the times [tk}, end for ¢, <t < tk+l’ by the linear interpolation

h h
(t - t)) h (t - t)
gh(t) - §2+1 k k+1

+
Pae) F ey

Thus the continuous process gh(t) is piecewise linear and changes slope
at the random break points [tk] only.

The use of §h(t) is a natural way of relating {!i} end x,

The main results ares

Let measures u ~and (on the topological space Q = C[0,T]) cor-

respond to processes gh(t) and x_, resp., t € [0,T]. The conditions (C1)-

t
(C4) used in the sequel are quite natural for a large elass of problems,

and are illustrated in the example.




Theorem 2. Assume

—— e e S ———— e

(c1) fi(E,) and Gj_.I(F) are_uniformly bounded and satisfy a uniform

Lipschitz condition. (Rec:ll a = 00',)

(C2) Let & cqgual h or h°. For real positive K, let

h A -

d .l.h » =
hlﬁh > ot () > bih'

(C3) let a(g), have the form

_ 0 0 0 0
ae) = [ } o(e) [ ] F(8) = ag(E)a3(t)

0 %(¢) 0 o, (t)

where 2{;1(,&) has uniformly bourded terms, and oo(g) is an r, X rg matrix,

Then the finite dimensional distributioms of the processes gh( t) converge

to those of the process x, and, for O <t' <" <T, and € >0

un TERL  sup  |8°(e) - £N(e)] > 9 =o.
8-20h =0 " |t'-t"| < & )

Remark., (C2) means the following., Either we allow Ziaii(g) >¢€, >0

0
. 2
for some real eo, in which case ﬁb =h, or we allow Z‘iaii(g) =0 and
21“1' > €, >0, in which case & =h. Thus 2 cases are considered - one

case in which there is always some diffusion somewhere, and one case in

which there is no diffusion -~ but where the veloeity of x

¢ is never 0,

In the intermediate case the ratio

mangth(g)
mingat_h(é)




may be infinite, invalidating our proofs. The first case is one of great im-

portance.

Corollary 1. Assume (CL)-(C3). Let F(-) be a bounded continuous fune-

tion on C[0,T] w.p.l. (relstive to u). Then (with 53 =X = %)

EF(E"(+)) > E F(x(+)).

Theorem 2 uses condition (C6): There is an h. >0 so that for h < b,

0
G satisfies: Let £ = (a,b) be a line connecting two adjacent (along co-

;. If a and b are

both in G, then so is the line [ connecting them.

ordinate directiouns) points (a,b) of the grid R

(C6) ecan be weakened in many ways - but there seems little point in
complicating the condition here., It is certainly satisfied (for any hb)
for convex G. (C6) is used %o assure that the first passagc times from
G, of both gh(t) and g: are approximately the same time, I.e., if
;h(t) leaves the G betweeh the n-th and n+l-st steps of gi, then
N, = n. It is used to avoid the possibility illustrated in the Figure (for
all small h), where if the discrete process ;: jumps from a to b at
time n, it has not actually left G, but the interpolated process gh(t)

. T .k T
leaves right after time n. Let N = max{n: 8 T} and M = min(Nh,Nh).

Theorem 3. Assume (C1)-(€3) and (C6). let k(*) and o(-) be uni-

formly continuous and bounded on some open set comtaining G =G + 0G.

Let v denote the first (random) time that the process x, leaves G




- 9
(v = inf{ts x, # G}), aud suppose that T N « = min(T,1) is continuous
w.p.l. (The w.p.l. statement is relstive to u) eu C[{0,T]. Denote 1, =

inf(t: §h(t) £ G}l. Then

N7
lim F,xf hk(&,h(s)_)ds

E. [ k(x)ds =
*o ° h-0 X0
M1
. h
= lm E_ % h(gg)ph(ﬁs)
h -0 s=0

h h
E@o(x,. ) = lim Eg@(¢ (Nt )) = lim E (L. ).
x TN hs0 X h h =0 %* Hh

Theorem 4, Assumc the conditions of Theorem 2, and let, for some

to < =,

h
(5) Px(gk leaves Gh at least once by time to/l{gﬁh} > Mo >0
where Mo is independent of x € G, and h >0, for small h. Then the

vn(") given by (1"') converge to (2 ) as h -0, uniformly in x in G;

i.e., the solutions of the finite difference equations (1', 1") converge to

the weak solution (2) of Equation (1), as h =0.
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Figure 1

The conditions imposed in Theorems 2-4 are rather natural for a large
class of prdblems. In order to illustrate this, a brief check of their
validity will be made for a 2-dimensional problem, It should be clear that
the example is typical of a large clacrs, Although the basic problem arose
in numerical analysis, the approach taken here, as well as the conditions,
are probabilistic. Hence, the checking of the cemditions involves probabil-

istic calculations on the underlying processes. Let

0
dx, = £ (x,)at 2a = = oot
e [ ]

dx, = fz(x)dt + v dz

vhere v is a constant and the f, satisfy (C1). Let f,(x)) = x, in G.

We seek to solve
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sV(x) + k(x) =0 in G

V(x) = ¢(x) on

where k(-) and @(°*) are continuous and bounded,
2 .2 \
v o d e}
25 00 5 00 52
X, 1 2

and G is the box

Q
]

{x: Ixil < A}.

Thus (C6) holds for all hy > 0.

Note that £ is degenerate and G has cormers; hence, classical theory
cannot be used to solve the convergence problem &8 h = 0.

We need only show that T A v is continuous w.p.l. (relative to u)
on C[0,T], and that (5) holds. let w be a gemeric point of C[0,T] = Q.
TNt is comtinuous at any path which is not tangent teo the boundary at
TN T,

Returning to the problem, refer to Fig. 2. It is clear that if tan-
gencies at the boundary occur only w.p. zero, them, by wvirtue of the con-
tinuity of xt(w) w.p.l., (T N 7)(w) will be comtinuous w.p.l. This will
now be shown to be the case,

We observe that

(a) for X,y >0 x;, must increase (as time inereases) since dx, =

x2dt in G. Hence, w.p.l., points on the boundary section Lh (Fig. 2) are
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not acecesible, Similarly for L,.
%
a

r""f—" "1':" e 1 [
L

Figure 2

(v) Also, since x, >0 on L, the path eannot be tangent on L

2t 1’

and similarly for L2.
(¢) Owing to the dominant effects of the diffusion on movement in the

vertical direetion, the points on 1.5 and L6 are regular in the sense of

erkjn’ i-el’

Tim P (x € 3G, x
b—aox K

T"‘e_e(} for al. 8>e >0} =0

(@) Pl1=1) =0
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(e) PX(XT = qJ or \i;ﬁf] = Q,
() Since Xy is eoullnuous, w.p,l., there are g5(¢u) >0, WeP.ls,
E)*(U") >0 w.p.l. go thal

distance(x exterior of G) > ey(®),

t-e (W)’

for all t < W(w) if (o) <1T.

(a)-(f) imply continuity w.p.l. of T N T.

Only (5) remains to be proved, Let N = tolxlhz, for eny t >0, and

0

-

define

M*(g) = number of positive steps of !2 p» KN
’

h

M_(¢) = number of negative steps of ¢ ,,
’

k<N
A sufficient condition for (5) is
o 14
q (x) = B (M (§) - M (&) > ?‘! > M, >o0.

For some real K, we have the bounds,

|

1 b
3K SBlb 2" b2

-h}s%-tl(h.

Let [ui] be a Markov process on (0, #1, 42,...} with transition pro-

e
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bability

k k
Plug,; =% 2 =

PRI

i

Define M+(u) analogonsly to M+(§). Theu

ap(®) 2 q, O = HM(0) = () 2E2 )

The mean value of ui+l - is -2Kh, and its variance is 1 - (Zkh)z. Now

k

+(u) - M_(u) - N(-2kh) 1 2a/h + 2Nkh

q"’“(x) =3 Jn 1 - (2kn)2 *Judsr (m)E, ;

The left term in brackets converges in distribution to the normal sero

mean and unity variance random veriable, and the right hand termm in the
brackets is strictly less then some K, <« for mmall h. Thus, for all

small h

«©
1 2
a(x) >9, (x) > =/ emp - bdb
» Vzﬂ' 5
which proves (5).
The proof of the convergence of the finite dimensional distributions
of gh(t) to those of the diffusion xi proceeds in a series of steps.

First the representation (6) is proved, where [“.:, are orthogonal for
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The ¢ Lthe drterpoliat
ol

(1)

; 1 N 1}'|
‘k-l‘l - ‘}:

15

Coynrinnee gportionul to /:‘LI(' and the E:»li: are
11 h.
~h
B,
£ ; nf(fh) 1 ‘
14
kel Kk e

for of () ie sppravimated by the interpolation of qh(t)

0

B,

The finite dimencional distributions of the interpolation of (7) ere ap-

rrouximated by those

of the interpolation of (as h —0, small 4),

0
~ ~ ~h \
(8) R AR G R
k+1 k k s
s o (7)) Lot
0'k & 8

where the sums of AmE are approximately A and finally the interpolation

of (8) vy a diffusion,




