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ARJTMCT

for

' Or Tllii DISCRETIZATION EQUATIONS WHICH

ARISE IN STOCHASTIC CONTROL

by H. J. Kushuer
.

We consider a problem which ariaes in the numer.ic.-i.] analysis

of the degenerate partial differential equations which arise in stc-

cb.as1.ic control theory. The- result will also shed eoine light on the

relati one-hip between diffusions and finite state Markov chains, and

illustrates a role of probability theory in numerical analysis.

Consider the degenerate linear elliptic equations

V + k(x) = 0, x e G,

(1) V(x) -<p(*), * e &}

*•• Z a - -
J d>.dx i dx

* v

G is a boaiidtd op«n set, k and <p are continuous and a. . (x ) *

£ o (x)a (x), where 0 and f. satisfy a Lipschitz condition in
. IX JK ij

x. Equation (1) arises in stochastic control as a formal representation

of the cost

T

(2) C(x) = E / k(x )ds + E cp(x ), x e G,
0

for the diffusion

(3) dx = f(x)dt + ff(x)dz,

where z is a vector valued Wiener process and T * inf(t: x. i G}
V V



lilfir represent z-tiout can be dcvejopcd for^discounted, and time depen-

dent cost::, and our ccnvtrgi i.e..1 r e&ul t^ can be extended to these cases.

We con... ider the proUU-m: Discretize (l) with finite difference

interval h (or h. if it depends on the direction). Solve the finite

difference equations, to obtain a function V. (x) at the finite dif-

ference points. Then v/hat happens to V.(x) as h ~»0? The question

is important sincr (1) cloe^ not usually satirfy the classical condi-

tions which clarrical numerical analysis if based upon, and if we
i

are to have confidence in the finite difference solution, it is es-

sential to know that V,(x) -»C(x) irrespective of whether (1) has

strong derivatives or not; i.e., that (1) can legitimately serve as

an intermediary in obtaining (2), or an approximation to (2).

It is shown that, whether or not (l) has a smooth solution,
•

the solutions of finite difference equation* converge to (2) under

quite broad conditions, if the finite difference schemes are care-

fully chosen. The analysis is purely probabilistic, and uses only

probabilistic properties of (2), (3), and the solutions of the finite

difference equations.



ace of the Discretization Equations Which

Arise in Stochastic Control

H. J. Kusbr.er

Introduction. \l*.. will consider a problem which arises in the numeri-

ca] analysis of the degenerate partial differential equations v?hich arise

in stochastic control theory. The result will also shed some light on the

relationship between diffusions and finite stat* Markov chains, and illus-

trates a role of probab.1 .lily theory in numerical analysis. The discussion

will be informal. See H. J. Kushner, "Probability Limit Theorems and the

Convergence of Finite Difference Approximations to Partial Differential

Equations", J. Math. AriaJ. and Appl., 1970, for acre results.

The Problem. Consider the degenerate linear elliptic equations

(1) CV + k(x) « 0. x c G,

V(x) = f(x), x € dG

'

vhere G is a bounded open set, k and 9 are continuous and a. .(x) *

£ cr,, (x)a.. (x), where a. and f. satisfy a Lipschitz condition in x.
J K. J lC 1J X

Equttion (1) arises in stochastic control as a formal representation of

the cost



T
(?) 0(x) . t 1 k(x )<ln + K«<x ), X r. H,

* f\ *0

for the diffusion

dx « f(x)dt + o(x)dz,

where z is a vector valued Wiener process and T = inf{t: x, / G). Simi-
t Tl

lar representations cad be developed for discounted, and time dependent

costs, and our convergence results can be extended to these cases.

We consider the problem: Discretize (l) with finite difference inter-

val h (or h. if it depends or the direction). Solve the finite differ-

ence equations, to obtain a. function V.(x) at the finite difference points.

Then what happens to V,(x) as h -»0f The question is important since (1)

does not usually satisfy the classical condition* which classical numerical

analysis is based upon, .and if we are to have coafidence in the finite dif-

ference solution, it is essential to know that Vh(x) -»C(x) irrespective

of whether (1) has strong derivatives or not; i.e., that (l) can legitimately

serve as at. intermediary in obtaining (2), or an approximation to (2).

For Equation (l) let the difference interval be h (in any coordinate

direction, for convenience only) and let e. be the unit vector in the i-th

coordinate direction. Suppose that G is strictly contained in a hypercube

H with sides [-A,A], Define the set of nodes R*" in Rr by R^ «=

{(n̂ , ...,nrh), n^ ranging over 0, +1, +2,...}. Define G = G 0



In order to expose- t;vj method, and not get involved with the rather

lone, finite difference equations arising when mixed second derivatives occur,

we let a.. . * 0 for i / j. There is no trouble in extending the method
ij

to the more general c a ;->•_•..

The following finj.tr> difference.1 approximations will be used.

, ,V(x «• eh) - V(x)
(3.) Vx ~i j ,

i v V(x) - V(x - e.h) >

where the upper terra of (3a) is used if f̂ (x) > 0, and the lower other-

wise. (This usage will be carried throughout)

V(x + e h) - 2V(x) + V(x - e.h)
(3b) V (*) -- i - f - i-

xi i be

The reason for the choice (Ja) will appear shortly.

If V,(x) denotes the solution to the finite difference equations, then
•r

usirg (3) for x e . Gfa, (1) yields

,
h

v y
x + e i h rhfi 4x) = L — ̂ -7—1 — i
*W

*«+

where

Q (x) . 2 La + Z h | f J
i i



Define V (x) ~ C | ' ( x ) f 'c-r x c R*" - G . Re-write (] ' ) as (vith the obvious

identif.icution of term-)

Vh(x) - >.', V h ( x + eih)ph(

P(x)k(x)

, V(x) = cp(>:), for x e R^ - G, .

Now the reason for the choice (.3) wi.13 become clear. Note that since

the p,(x,y) > 0 and sum to at nost unity, and can be defined for all

x, y e R,. they can be considered to be trpnsition probabilities for a Markov

chain on the grid R..

Denote the sequence of random variables of this Markov chain by l£)'

Thus P(ik+1 + he^ = Ph(x,x + eih)J etc. Define

inf{k; '

Now we proceed to investigate the behavior as h -»0. Suppose (not very res-

trictive - see example) K N < K. < «. The solution to (l") can be written

as

(I"') Vh(x)
k=0

Equation (i"r ) looks something like a Reiaarm sum approximation to (2),



and, indeed this-- is= tin idea to be pursued. We vill show that the measures
.

of a suitably interpolated U *} converge to those of x in a certain
n t

sense, and that thjf; iTTif.Vut; that V,(x) converges to C(x) for x on any

G,. This hole.'. irrer,j, ctj.vr of vhethor strong derivatives of (l) exist or

not.
•

A key ftx-l is Theorem 1, drawn froT Gikhman and Skorokhod, "introduction

to RHndoro ProCt'o^es'' , (in Russian), Izdatclctvo Kauka, Moscow, 1966.

Theorem .11 Let C[0,T] ~ fi be the set of Rr valued continuous func-

tions on the in-Leryal [0,T], Let y (t), y(t), t e [0,T] be continuous pro-

cesses with paths in the (topolô ical) space ft. Let \JL and M. be the

measures induced on fi by the processes y (•) and y(*), resp. Let (for

0 < t1 < t" < T)

lim Tim P ( «up | yn(t« )-yn(t")| > e > 0}
C '"

for any c > 0. Let the finite dimensional distributions of (yn(t)} con-

verge to those of y(t). Let F(*) be a bounded and continuous (w.p. 3.)

Borel functional on the topo logical space ft. Tben

In order to exploit Theorem A, the process (!) must be related to

a suitable continuous time process {I (t)}.

By a comparison of (l": ) and (2), we note that the "discrete time"

cost rate ii, i-h(
x) times th-:- continuous time cost. In an intuitive sense,



one ftep of the disc; de p'.vcesi £ ' should take Pu.(4, } units of real
K. n ic

timt?. Thu^ tho i'ojicuvinp. definition IK natural. Define the time sequence

(t } by ( .sam>rt:'ui!<'c ;u-c,
| ! t (1 ;;!,:; of function are deleted for simi'licity, and

K

a, ( ^ ,). •'*•, are uKfd ant; rchangcably)
*-! K- iC

v .., h

Z ^
,

Define a process I (t) by

6 (tO c ^vK K

at th<? times {t,}, and for t. < t < t, f by the linear irrterpolati

(t '
.

Thus the continuous process £ (t) is piecewift* linear and changes slope

at the random break points {t, } only.

The use of £ (t) is a natural way of relating {£ ) and x.

The main results are»

Let measures ^ and p. (on the topological space fl « C[0,T]) cor-

.,

on

respond to processes | (t) and x., resp. t e [0,T], The conditions (Cl)-

used in the sequel are quite natural for a large class of problems,

and are illustrated in the exawple.



Thiorun el. A.vsiur.g

(Cl) f4 ( 0 u^d a . . . ( f ) are uniforraJy boupled and batisfy a uniform

LJpsc-hi.ty oondi tion. (Kf c- •" I a = aj ' .)

Q

(CP) Lft 6 egiia] h or h . t'or real positive K. 3e_L

(C5) Let a(0, have the form

an r X r *vhere IT ' (£) hafi^unlfor/Rly bounded tergist and 0_

Theti the finite dimensJortal distributiorCof the proceeds s (t) con verge

to thoae of the proco.s^ x, ttiid^ for 0 < t1 < t" < T, and e > 0

liin P { sup
t'-t"| <

- 5 (t")| > €} . 0.

Remark. (C?) means the following. Either we allow .. > e > 0

for some real e , in which case 5. = h , or we allow Z.a (|) = 0 and

L|f.| > c > 0, in which case 6 = h. Thus 2. cases are considered - one

case in which there is always some diffusion scBewhere, and one case in

which there is no diffusion - but where the velocity of x. is never 0.
T

In the intermediate caye the ratio

.



8

may be infinite, invalidating our proofs. The first case IB one of great im-

portance.

Coro Llary 1. Assimu^ ( tU)~(^)- Let F( • ) be a bounded continuous func-

tion on C[0,T] w.p.l. (relative- to M). Then (with £ * X * x )

Theorem 2 uses condition (C6): There is an h >0 so that for h < ho>

G satisfies: Let I = (a,b) be a line connecting two adjacent (along co-

ordinate directions) points (&,b) of the grid R, . If a and b are

both in G, then so is the line t connecting tfeem.

(C6) can be weakened in »any ways - but there seems little point in
•

complicating the condition here. It is certainly satisfied (for any b_)
™

for convey. G. (c6) is used to assure that the first passant1 times from

G, of both t (t) and I, are approximately the same time. I.e., if

t (t) leaves the G between the n-th and n+l-at steps of |., then

N. = n. It is used to avoid the possibility illustrated in the Figure (for

•11 small h), where if the discrete process | jumps from a to b at
•

time n, it has not actually left G, but the interpolated process 5 (t)

T Tleaves right after time n. Let N. * max(n: t < T} and M. = min(N.,N.)b n h* b

Theorem J. Assume (C.l)-(C3) and (C6). Lejt k(-) and < p ( « ) be uni-

forinly continuous and bounded on some open set containing G = G + oXJ.

Let -i denote the first (random) time that the process x. leaves G



(T = inf{ti x / 0}), rmo suppose that T fl i =»in(T,i) it: continuous
v

w.p..1. (The w.p. 1. ĵ la t -UK i ) L i_s r & j at ive t o n) cni C[0,T]. Donate T.

inf{t: Ih(t) / G). Then

TOT TOt
E / k(x )ds = lira E /

X 0 h -»0 0

Mh-l= im E E jcibi
h- .0 C 8=0

.
ESKx™..) = lim Eq;(th(TnO) - lim E ^ C ) .

h -»0 h -»0 ^3

Theorem k. Assume the conditions of Theorem 2, and letj for some

(5) p*5 leaves G at least once by tiltie - * >0

where M is independent of x 6 G, and h > 0, for small h. Then the

V.(x) given by (!"') converge to (2 ) a£ h -»0, unifomly in x in. G;

î .e.,, the solutions of the finite difference equations (1*, 1") converge to

the veak solution (2) of Equation (1), as h ->0«

.
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Figure I

The conditions imposed in Theorems 2-k are rather natural for a large

class of problems. In order to illustrate this, a brief check of their

validity will be made for a ?-dimensional problem. It should be clear that

the example is typical of a large clars. Although the basic problem arose

in numerical analysis, the approach taken here, as well as the conditions,

are probabilistic. Hc-nce, the checking of the conditions involves probabil-

istic calculations on the underlying processes. Let

••

dx, = 2a
p 0'

IP v<
0crf

dx2 = f2(x)dt + v dz

where v is a constant and the f satisfy (Cl). Let

We seek to solve

i * *2 in



11

/V(x) + k(x) = 0 in G

V(x) -- <|>(x) ori dG

where k( •) and <p(*) nrf continuous and bounded,

and G is the box

+ f iW ,_ . y,.

G = {x: \ x ± \ < A).

Thus (C6) holds for all h > 0.

Note that / is degenerate and G has corners; hence, classical theory

cannot be used to BO I've the convergence problem »B b -# 0.

We need only show that T fl T is continuous w.p,1. (relative to n)

on C[0,T], and that (^) holds. Let o> be a generic point of C[0,T] » H.

T 0 t is coutinuouB at any path which is not tangent to the boundary at

TOT.

Returning to the problem, refer to Fig. 2. Jt is clear that if tan-

gencies at the boundary occur only w.p. zero, then, by virtue of the con-

tinuity of x (co) w.p. 1., (T n i)(o>) will be continuous w.p. 1. This will

now be shown to be the case.

We observe that

(a) for x > 0 x nu3t increase (as ti»e increases) since dx. «
cT J.I- J.

x_dt in G. Hence, w.p.1., points on the boundary section L. (Pig. 2) are



•

•

12
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not aec<: r:;.ible. Similar ly for L..
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Figure 2

.

(b) Also, since x^ > 0 on L,. the path cannot be tangent on L,.
2t JL* J-

and similarly for L .

(c) Owing to the dominant effects of the diffusion on movement in the

vertical direction, the points on L and L we regular in the sense of

Dynkinj i.e.,

lim P { x c
6->0 X

x c G f or aD. ft > c > 0} = 0

(d) PX{T = T) = 0



i'
;•
'-

(f) Siucf x i« ec'ulj.nuou.s, w.p. I., Hurt are t.,(<o) > 0, w.p.l.,
* s

>0 w.p.1. flo t!ml

distaricf (x / v, exterior of CJ) > ei,(^),
t ~ ' - f M

for all t < T(OJ) if 1(0^ < T.

(a)-(f) imply continuity w.p.l. of T 0 t.
o

Only (5») remains to be proved. Let H = t
o/

K-ih > ^or any

define

M (0 » number of positive «teps of 0>c.

A sufficient condition for (5)

arid

k < N

M (I) = number of negative Heps of {^ 2, k < N.

- M_(S) > 3 >

For some real K, we have the bounds,

Let (u } be a Markov process on fo, +1, +2,...} with transition pro-



Ik•*•*

bability

_.

Define M (u) aria logon .-;.ly to M ( £ ) . .

)-

The mean value of VL , - u Is -2Kb, and its •variance is 1 - (2kh) , Now

(u) - N(-2 •."•
•

The left term in brackets converges in distribution to the normal «ejro

an and unity variance random variable, and the right band term in the

brackets is strictly less than some K, < » for Mall h. Thus, for

•

wbich proves (5).

°-V"(lt)-^^"*"5ir<'r'

•
The proof of the convergence of the finite dimensional distributions
h

of 6 (t) to those of the diffusion xt proceed* in a series of steps.

First the representation (6) is proved, where (oO ar* orthogonal for

:



* • . • ' ' .1' ' >,- I I", f : • ' ( • ] < c .• riri; . :r^ }u ^ ' j 'vj i ' l . i o'ia1 1-o ^t riud the- fJ> '
K K

! 'n i Ug.lblc" .f--»j' c i < - :l I h.

?h

''i-' V'k ^"V

'!'!• i Lin jfterpo.'tut..iop of ( < • ) it !)pj:r\ jy5ni--i ' tr(] by tin: interpolation, of TJ (t)

or

'\

0

Thf f in j t^ dimcn;-; 'ona] d i f t r jbul ions of the interpolation of (7) ere ap-

i-o> i jnsteJ by Lho^p of the intex-polation of (as h -»0, small A),

(8)
~h
yk+l

ri thi. sum., of Atc are approximately

of (B) by ,-( diffusion.

0

and finally the interpolation


